修改readme

This commit is contained in:
2025-03-02 15:54:30 +08:00
parent bb9a9ee201
commit 42038a89e5

169
README.md
View File

@@ -1,85 +1,104 @@
Ubuntu20.04 + python3.11.9 + django
#1、安装python3.11.9
sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev libsqlite3-dev wget
wget https://www.python.org/ftp/python/3.11.9/Python-3.11.9.tgz
tar zxvf Python-3.11.9.tgz
cd Python-3.11.9
./configure --enable-optimizations
make -j$(nproc)
sudo make altinstall
python3.11 -m ensurepip --upgrade
wget https://bootstrap.pypa.io/get-pip.py
python3.11 get-pip.py
#2、安装python虚拟环境和依赖
cd /opt/matagent
python3.11 -m venv pyautogen
source pyautogen/bin/activate
#安装pyautogen
pip install pyautogen==0.2.34
pip install flaml[automl]
pip install chromadb
pip install Image
#安装django
pip install django
pip install djangorestframework
pip install requests
#安装 websocket支持 channels+asgi
pip install channels
pip install asgiref # Django Channels 依赖的包
#运行服务支持http+websocket websocket接口 ws://192.168.42.130:8000/matagent/chat
DJANGO_SETTINGS_MODULE=matagent.settings uvicorn matagent.asgi:application --host 0.0.0.0 --port 8000
#安装nginx
sudo apt-get update
sudo apt-get install nginx
--查看状态
sudo systemctl status nginx
--修改配置
/etc/nginx/default
nginx配置在default
# Multi-Agent Material Science Research Platform
This project is a comprehensive platform for material science research, consisting of a backend API server, a frontend web application, and a middleware desktop application. The platform integrates various AI agents for planning, scientific analysis, engineering tasks, and data analysis to assist in material science research.
## Project Structure
The project is divided into three main components:
#pip install autogen-agentchat[websockets]~=0.2 fastapi uvicorn
1. Backend (Python/FastAPI)
2. Frontend (Vue.js)
3. Middleware (C#/WPF)
## Backend
# 完整agent的console版本
matagent_main.py是入口点。
安装requirements.txt里面的pyautogen然后运行即可。
.coding目录不要删除里面包含的是一个配置好的AGENT执行python代码的环境否则会报错。
如果存在问题,检查.coding/pyvenv.cfg文件配置
data目录记录了实验数据PL和UV数据不要删除否则会报错。
The backend is built with Python using the FastAPI framework. It manages the core logic of the multi-agent system, handles WebSocket connections for real-time communication, and provides API endpoints for the frontend.
代码中agent之间的状态流转逻辑通常为每个group的state_transition函数中其中return 'auto'表示自动选择合适的agent。
### Setup and Running
# 简单agent的ui版本
cd ui-simple
chainlit run --port 8989 appUI.py
1. Navigate to the backend directory:
```
cd backend
```
chainlit继承了pyautogen的AssistantAgent在这个基础上实现了chainlit的接口。
class ChainlitAssistantAgent(AssistantAgent):
class ChainlitUserProxyAgent(UserProxyAgent):
同时重载了两个方法以发送数据到前端。
2. Install dependencies (it's recommended to use a virtual environment):
```
pip install -r requirements.txt
```
"""
Wrapper for AutoGens Assistant Agent
"""
def send(
self,
message: Union[Dict, str],
recipient: Agent,
request_reply: Optional[bool] = None,
silent: Optional[bool] = False,
) -> bool:
cl.run_sync(
cl.Message(
content=f'**{self.name}** Sending message to "{recipient.name}":\n\n{message}',
author=self.name,
).send()
)
super(ChainlitAssistantAgent, self).send(
message=message,
recipient=recipient,
request_reply=request_reply,
silent=silent,
)
3. Set up environment variables:
- Copy `.env.example` to `.env`
- Fill in the required API keys and configuration settings
4. Run the backend server:
```
uvicorn api:app --host 0.0.0.0 --port 8000
```
The backend will be available at `http://localhost:8000`.
## Frontend
The frontend is a Vue.js application that provides the user interface for interacting with the multi-agent system.
### Setup and Running
1. Navigate to the frontend directory:
```
cd frontend
```
2. Install dependencies:
```
npm install
```
3. Run the development server:
```
npm run dev
```
4. For production build:
```
npm run build
```
Before building for production, ensure that the following environment variables in the `.env` file are correctly set:
- `VITE_API_URL`: The backend API URL
- `VITE_API_URL_PREFIX`: The API prefix
- `VITE_WB_BASE_URL`: The WebSocket base URL for real-time communication
## Middleware
The middleware is a C# WPF desktop application that provides additional functionality and integration with local systems.
### Setup and Running
1. Open the solution file `middleware/zdhsys.sln` in Visual Studio.
2. Build the solution in Visual Studio.
3. Run the application from Visual Studio or navigate to the build output directory and run the executable.
## Usage
1. Start the backend server.
2. Launch the frontend application (either in development mode or by serving the production build).
3. If required, run the middleware desktop application.
4. Access the web interface through your browser and begin interacting with the multi-agent material science research platform.
## Features
- Real-time communication using WebSockets
- Multi-agent system for complex task planning and execution
- Integration of scientific, engineering, and data analysis teams
- Video streaming capabilities for remote monitoring
- Customizable UI for different aspects of material science research
## Contributing
Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.
## License
This project is licensed under the MIT License - see the LICENSE.md file for details.