update
This commit is contained in:
3
.gitignore
vendored
3
.gitignore
vendored
@@ -1,8 +1,7 @@
|
||||
# ---> Python
|
||||
.gitignore
|
||||
backend/evaluate/eval_rag_result/*
|
||||
backend/evaluate/eval_rag_result
|
||||
backend/psk-graphrag
|
||||
backend/evaluate/eval_rag_dataset
|
||||
backend/history/*
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
|
||||
@@ -1,57 +0,0 @@
|
||||
PlanningAgent: >
|
||||
You are a planning agent.
|
||||
Your job is to break down complex Materials science research tasks into smaller, manageable subtasks.
|
||||
Assign these subtasks to the appropriate sub-teams; not all sub-teams are required to participate in every task.
|
||||
Your sub-teams are:
|
||||
1. User: A human agent to whom you transfer information whenever you need to confirm your execution steps to a human.
|
||||
2. Scientist: A professional team of material scientists who are mainly responsible for consulting on material synthesis, structure, application and properties.
|
||||
- The scientist team has the following members:
|
||||
2.1 Synthesis Scientist: who is good at giving perfect and correct synthesis solutions.
|
||||
2.2 Structure Scientist: focusing on agents of structural topics in materials science.
|
||||
2.3 Property Scientist: focuses on physical and chemistry property topics in materials science.
|
||||
2.4 Application Scientist: Focus on practical applications of materials, such as devices, chips, etc.
|
||||
3. Engineer: A team of professional engineers who are responsible for writing code, visualizing experimental schemes, converting experimental schemes to JSON, and more.
|
||||
- The engineer team has the following members:
|
||||
3.1 Structural engineer: A professional structural engineer who focus on converting natural language synthesis schemes to JSON or XML formated scheme, and then upload this JSON to S3 Storage.
|
||||
3.2 Software engineer: A professional software engineers will coding with Python.
|
||||
3.3 Code reviewer: A professional code reviewer will review the code written by software engineers and execute it.
|
||||
3.4 Scheme Plotter: An agent responsible for converting a expriment scheme into a Mermaid flowchart.
|
||||
4. Executor: A robotic platform is responsible for performing automated synthesis experiments, automated characterization experiments, and collecting experimental datas.
|
||||
- The Executor team has the following members:
|
||||
4.1 MobileRobot_Agent: This agent controls the mobile robot by calling the funciton sendScheme2MobileRobot to place the experimental container into the robot workstation. This agent called before RobotWorkstation_Agent.
|
||||
4.2 RobotWorkstation_Agent: This agent is called by the mobile robot agent, do not plan it alone.
|
||||
4.3 DataCollector_Agent: This agent collects experimental data and experimental logs from the characterization device in the robot platform and stores them.
|
||||
5. Analyst: A team of data analysts who are responsible for analyzing and visualizing experimental data and logs.
|
||||
- The Data Analysis team has the following members:
|
||||
5.1 Expriment_Analyst: The agent of data analysts who are responsible for analyzing experimental data and logs.
|
||||
5.2 Expriment_Optimizer: The agent optimizes the experimental scheme by means of component regulation and so on to make the experimental result close to the desired goal of the user.
|
||||
5.3 Data_Visulizer: The agent of data visulizers who are responsible for visualizing experimental data and logs.
|
||||
|
||||
You only plan and delegate tasks - you do not execute them yourself.
|
||||
|
||||
回答时你需要初始化/更新如下任务分配表和Mermaid流程图,并按顺序执行,使用如下格式并利用:
|
||||
| Team_name | Member_name | sub-task |
|
||||
| ----------- | ------------- | ------------------------------------ |
|
||||
| <team_name> | <member_name> | <status: brief sub-task description> |
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
User[User]
|
||||
subgraph <team_name>
|
||||
A1[<member_name>]
|
||||
end
|
||||
style xxx # 推荐多样的风格
|
||||
...
|
||||
User --> A1
|
||||
...
|
||||
```
|
||||
|
||||
每次回答时,你需要清晰明确的指出已经完成的子任务下一步子任务,使用如下格式:
|
||||
**已完成子任务:**
|
||||
1. <team> : <subtask>
|
||||
**Next sub-task:**
|
||||
n. <team> : <subtask>
|
||||
|
||||
You can end with "HUMAN" if you need to, which means you need human approval or other advice or instructions;
|
||||
After plan and delegate tasks are complete, end with "START";
|
||||
Determine if all sub-teams have completed their tasks, and if so, summarize the findings and end with "TERMINATE".
|
||||
BIN
backend/evaluate/eval_rag_dataset/data-00000-of-00001.arrow
Normal file
BIN
backend/evaluate/eval_rag_dataset/data-00000-of-00001.arrow
Normal file
Binary file not shown.
1
backend/evaluate/eval_rag_dataset/dataset_dict.json
Normal file
1
backend/evaluate/eval_rag_dataset/dataset_dict.json
Normal file
@@ -0,0 +1 @@
|
||||
{"splits": ["train"]}
|
||||
58
backend/evaluate/eval_rag_dataset/dataset_info.json
Normal file
58
backend/evaluate/eval_rag_dataset/dataset_info.json
Normal file
@@ -0,0 +1,58 @@
|
||||
{
|
||||
"citation": "",
|
||||
"description": "",
|
||||
"features": {
|
||||
"context": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"question": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"answer": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"topic": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"source_doc": {
|
||||
"dataset_id": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"document_id": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
}
|
||||
},
|
||||
"groundedness_score": {
|
||||
"dtype": "float64",
|
||||
"_type": "Value"
|
||||
},
|
||||
"groundedness_eval": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"relevance_score": {
|
||||
"dtype": "float64",
|
||||
"_type": "Value"
|
||||
},
|
||||
"relevance_eval": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"standalone_score": {
|
||||
"dtype": "float64",
|
||||
"_type": "Value"
|
||||
},
|
||||
"standalone_eval": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
}
|
||||
},
|
||||
"homepage": "",
|
||||
"license": ""
|
||||
}
|
||||
13
backend/evaluate/eval_rag_dataset/state.json
Normal file
13
backend/evaluate/eval_rag_dataset/state.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"_data_files": [
|
||||
{
|
||||
"filename": "data-00000-of-00001.arrow"
|
||||
}
|
||||
],
|
||||
"_fingerprint": "0748dad1d6b34503",
|
||||
"_format_columns": null,
|
||||
"_format_kwargs": {},
|
||||
"_format_type": null,
|
||||
"_output_all_columns": false,
|
||||
"_split": "train"
|
||||
}
|
||||
Binary file not shown.
30
backend/evaluate/eval_rag_dataset/train/dataset_info.json
Normal file
30
backend/evaluate/eval_rag_dataset/train/dataset_info.json
Normal file
@@ -0,0 +1,30 @@
|
||||
{
|
||||
"citation": "",
|
||||
"description": "",
|
||||
"features": {
|
||||
"context": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"question": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"answer": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"source_doc": {
|
||||
"dataset_id": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
},
|
||||
"document_id": {
|
||||
"dtype": "string",
|
||||
"_type": "Value"
|
||||
}
|
||||
}
|
||||
},
|
||||
"homepage": "",
|
||||
"license": ""
|
||||
}
|
||||
13
backend/evaluate/eval_rag_dataset/train/state.json
Normal file
13
backend/evaluate/eval_rag_dataset/train/state.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"_data_files": [
|
||||
{
|
||||
"filename": "data-00000-of-00001.arrow"
|
||||
}
|
||||
],
|
||||
"_fingerprint": "bcd109aa52b21899",
|
||||
"_format_columns": null,
|
||||
"_format_kwargs": {},
|
||||
"_format_type": null,
|
||||
"_output_all_columns": false,
|
||||
"_split": null
|
||||
}
|
||||
@@ -372,55 +372,6 @@ def upload_to_s3(json_data: str):
|
||||
# print(f"JSON解析错误: {e}")
|
||||
return f"Error: {str(e)}, Request human/user intervention."
|
||||
|
||||
def get_latest_exp_log():
|
||||
def get_uv_latest_file():
|
||||
import os
|
||||
import glob
|
||||
# UV数据缓存文件夹路径 (请将此路径修改为实际的文件夹路径)
|
||||
current_folder = os.path.dirname(os.path.abspath(__file__))
|
||||
folder_path = os.path.join(current_folder, 'data/UV/')
|
||||
|
||||
# 查找文件夹中的所有 .wls 文件
|
||||
uv_files = sorted(glob.glob(os.path.join(folder_path, '*.[Tt][Xx][Tt]')))
|
||||
|
||||
if not uv_files:
|
||||
res = f"ERROR: 缓存文件夹{current_folder}中没有找到任何UV文件"
|
||||
return res
|
||||
|
||||
# 找到最新修改的文件
|
||||
latest_file = uv_files[-1]
|
||||
res = f"找到最新的UV数据文件: {latest_file}"
|
||||
|
||||
return res
|
||||
|
||||
def get_pl_latest_file():
|
||||
import os
|
||||
import glob
|
||||
|
||||
current_folder = os.path.dirname(os.path.abspath(__file__))
|
||||
folder_path = os.path.join(current_folder, 'data/PL/')
|
||||
|
||||
# 查找文件夹中的所有 .txt 或 .TXT 文件
|
||||
pl_files = sorted(glob.glob(os.path.join(folder_path, '*.[Tt][Xx][Tt]')))
|
||||
|
||||
if not pl_files:
|
||||
res = f"ERROR: 缓存文件夹{current_folder}中没有找到任何PL文件"
|
||||
return res
|
||||
|
||||
# 找到最新修改的文件
|
||||
latest_file = pl_files[-1]
|
||||
res = f"找到最新的PL数据文件: {latest_file}"
|
||||
return res
|
||||
|
||||
pl_latest = get_pl_latest_file()
|
||||
uv_latest = get_uv_latest_file()
|
||||
|
||||
return pl_latest + "\n" + uv_latest
|
||||
|
||||
|
||||
def read_data():
|
||||
get_latest_exp_log()
|
||||
|
||||
|
||||
def default_func():
|
||||
return "Approved. Proceed as planned!"
|
||||
|
||||
Reference in New Issue
Block a user