Files
openpi/examples/ur_sim/env.py

155 lines
5.3 KiB
Python

import argparse
import time
import sys
import logging
logging.getLogger('gymnasium').setLevel(logging.ERROR)
import warnings
warnings.filterwarnings('ignore', category=UserWarning)
from omni.isaac.lab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Tutorial on using the differential IK controller.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, other_args = parser.parse_known_args()
sys.argv = [sys.argv[0]] + other_args # clear out sys.argv for hydra
# launch omniverse app
args_cli.enable_cameras = True
# args_cli.headless = True
args_cli.headless = False
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import cv2
import h5py
import torch
import gymnasium
import numpy as np
from pathlib import Path
from openpi_client.runtime import environment as _environment
from typing_extensions import override
from scipy.spatial.transform import Rotation as R
import real2simeval.environments
from real2simeval.splat_render.render import SplatRenderer
from real2simeval.utils import get_transform_from_txt, scalar_last, decrease_brightness
from omni.isaac.lab_tasks.utils import parse_env_cfg
from omni.isaac.core.prims import GeometryPrimView
import omni.isaac.lab.utils.math as math
DATA_PATH = Path(__file__).parent.parent.parent.parent.parent / "data"
class URSimEnvironment(_environment.Environment):
"""An environment for an Aloha robot in simulation."""
def __init__(self, task: str, seed: int = 0) -> None:
np.random.seed(seed)
self._rng = np.random.default_rng(seed)
self.file = h5py.File("data/episode.h5", "r")
self.step = 0
env_cfg = parse_env_cfg(
task,
device= args_cli.device,
num_envs=1,
use_fabric=True,
)
sim_assets = {
"pi_scene_v2_static": DATA_PATH/"pi_scene_v2",
"bottle": DATA_PATH/"pi_objects/bottle",
"plate": DATA_PATH/"pi_objects/plate",
"robot": DATA_PATH/"pi_robot/",
}
env_cfg.setup_scene(sim_assets)
self._gym = gymnasium.make(task, cfg = env_cfg)
self._last_obs = None
self._done = True
self._episode_reward = 0.0
@override
def reset(self) -> None:
gym_obs, _ = self._gym.reset(seed=int(self._rng.integers(2**32 - 1)))
self._last_obs = self._convert_observation(gym_obs) # type: ignore
self._done = False
self._episode_reward = 0.0
@override
def done(self) -> bool:
return self._done
@override
def get_observation(self) -> dict:
if self._last_obs is None:
raise RuntimeError("Observation is not set. Call reset() first.")
return self._last_obs # type: ignore
@override
def apply_action(self, action: dict) -> None:
action = action["actions"]
# ur5e = self.file["observation/ur5e/joints/position"][self.step]
# robotiq = self.file["observation/robotiq_gripper/gripper/position"][self.step]
# action = np.concatenate([ur5e, robotiq], axis=-1)
# scale gripper from [0,1] to [-1,1]
action = action.copy()
action[-1] = action[-1] * 2 - 1
action = torch.tensor(action, dtype=torch.float32)[None]
gym_obs, reward, terminated, truncated, info = self._gym.step(action)
self._last_obs = self._convert_observation(gym_obs) # type: ignore
self._done = terminated or truncated
# self._episode_reward = max(self._episode_reward, reward)
img1 = self._last_obs["observation/base_0_camera/rgb/image"]
img2 = self._last_obs["observation/wrist_0_camera/rgb/image"]
big_img = np.concatenate([img1, img2], axis=1)
cv2.imshow("big_img", cv2.cvtColor(big_img, cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
self.step += 1
def _convert_observation(self, gym_obs: dict) -> dict:
# Convert axis order from [H, W, C] --> [C, H, W]
# img = np.transpose(gym_obs["pixels"]["top"], (2, 0, 1))
data = {}
data["observation/ur5e/joints/position"] = gym_obs["policy"]["joints"][:6].detach().cpu().numpy()
data["observation/robotiq_gripper/gripper/position"] = gym_obs["policy"]["joints"][6:].detach().cpu().numpy()
data["observation/base_0_camera/rgb/image"] = gym_obs["splat"]["base_cam"]
data["observation/wrist_0_camera/rgb/image"] = gym_obs["splat"]["wrist_cam"]
# data["observation/base_0_camera/rgb/image"] = (self.file["observation/base_0_camera/rgb/image_224_224"][self.step])
# data["observation/wrist_0_camera/rgb/image"] = (self.file["observation/wrist_0_camera/rgb/image_224_224"][self.step])
# data["observation/base_0_camera/rgb/image"] = (self.file["observation/base_0_camera/rgb/image_256_320"][self.step])
# data["observation/wrist_0_camera/rgb/image"] = (self.file["observation/wrist_0_camera/rgb/image_256_320"][self.step])
# data["observation/ur5e/joints/position"] = self.file["observation/ur5e/joints/position"][self.step]
# data["observation/robotiq_gripper/gripper/position"] = self.file["observation/robotiq_gripper/gripper/position"][self.step]
#
# print(data["observation/ur5e/joints/position"])
return data