initial commit, with UR env connected to sim backend

This commit is contained in:
pi4
2024-12-30 15:56:31 -08:00
parent 06c632b144
commit b69b9b6f6e
6 changed files with 556 additions and 2 deletions

154
examples/ur_sim/env.py Normal file
View File

@@ -0,0 +1,154 @@
import argparse
import time
import sys
import logging
logging.getLogger('gymnasium').setLevel(logging.ERROR)
import warnings
warnings.filterwarnings('ignore', category=UserWarning)
from omni.isaac.lab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Tutorial on using the differential IK controller.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, other_args = parser.parse_known_args()
sys.argv = [sys.argv[0]] + other_args # clear out sys.argv for hydra
# launch omniverse app
args_cli.enable_cameras = True
# args_cli.headless = True
args_cli.headless = False
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import cv2
import h5py
import torch
import gymnasium
import numpy as np
from pathlib import Path
from openpi_client.runtime import environment as _environment
from typing_extensions import override
from scipy.spatial.transform import Rotation as R
import real2simeval.environments
from real2simeval.splat_render.render import SplatRenderer
from real2simeval.utils import get_transform_from_txt, scalar_last, decrease_brightness
from omni.isaac.lab_tasks.utils import parse_env_cfg
from omni.isaac.core.prims import GeometryPrimView
import omni.isaac.lab.utils.math as math
DATA_PATH = Path(__file__).parent.parent.parent.parent.parent / "data"
class URSimEnvironment(_environment.Environment):
"""An environment for an Aloha robot in simulation."""
def __init__(self, task: str, seed: int = 0) -> None:
np.random.seed(seed)
self._rng = np.random.default_rng(seed)
self.file = h5py.File("data/episode.h5", "r")
self.step = 0
env_cfg = parse_env_cfg(
task,
device= args_cli.device,
num_envs=1,
use_fabric=True,
)
sim_assets = {
"pi_scene_v2_static": DATA_PATH/"pi_scene_v2",
"bottle": DATA_PATH/"pi_objects/bottle",
"plate": DATA_PATH/"pi_objects/plate",
"robot": DATA_PATH/"pi_robot/",
}
env_cfg.setup_scene(sim_assets)
self._gym = gymnasium.make(task, cfg = env_cfg)
self._last_obs = None
self._done = True
self._episode_reward = 0.0
@override
def reset(self) -> None:
gym_obs, _ = self._gym.reset(seed=int(self._rng.integers(2**32 - 1)))
self._last_obs = self._convert_observation(gym_obs) # type: ignore
self._done = False
self._episode_reward = 0.0
@override
def done(self) -> bool:
return self._done
@override
def get_observation(self) -> dict:
if self._last_obs is None:
raise RuntimeError("Observation is not set. Call reset() first.")
return self._last_obs # type: ignore
@override
def apply_action(self, action: dict) -> None:
action = action["actions"]
# ur5e = self.file["observation/ur5e/joints/position"][self.step]
# robotiq = self.file["observation/robotiq_gripper/gripper/position"][self.step]
# action = np.concatenate([ur5e, robotiq], axis=-1)
# scale gripper from [0,1] to [-1,1]
action = action.copy()
action[-1] = action[-1] * 2 - 1
action = torch.tensor(action, dtype=torch.float32)[None]
gym_obs, reward, terminated, truncated, info = self._gym.step(action)
self._last_obs = self._convert_observation(gym_obs) # type: ignore
self._done = terminated or truncated
# self._episode_reward = max(self._episode_reward, reward)
img1 = self._last_obs["observation/base_0_camera/rgb/image"]
img2 = self._last_obs["observation/wrist_0_camera/rgb/image"]
big_img = np.concatenate([img1, img2], axis=1)
cv2.imshow("big_img", cv2.cvtColor(big_img, cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
self.step += 1
def _convert_observation(self, gym_obs: dict) -> dict:
# Convert axis order from [H, W, C] --> [C, H, W]
# img = np.transpose(gym_obs["pixels"]["top"], (2, 0, 1))
data = {}
data["observation/ur5e/joints/position"] = gym_obs["policy"]["joints"][:6].detach().cpu().numpy()
data["observation/robotiq_gripper/gripper/position"] = gym_obs["policy"]["joints"][6:].detach().cpu().numpy()
data["observation/base_0_camera/rgb/image"] = gym_obs["splat"]["base_cam"]
data["observation/wrist_0_camera/rgb/image"] = gym_obs["splat"]["wrist_cam"]
# data["observation/base_0_camera/rgb/image"] = (self.file["observation/base_0_camera/rgb/image_224_224"][self.step])
# data["observation/wrist_0_camera/rgb/image"] = (self.file["observation/wrist_0_camera/rgb/image_224_224"][self.step])
# data["observation/base_0_camera/rgb/image"] = (self.file["observation/base_0_camera/rgb/image_256_320"][self.step])
# data["observation/wrist_0_camera/rgb/image"] = (self.file["observation/wrist_0_camera/rgb/image_256_320"][self.step])
# data["observation/ur5e/joints/position"] = self.file["observation/ur5e/joints/position"][self.step]
# data["observation/robotiq_gripper/gripper/position"] = self.file["observation/robotiq_gripper/gripper/position"][self.step]
#
# print(data["observation/ur5e/joints/position"])
return data

228
examples/ur_sim/env.py.back Normal file
View File

@@ -0,0 +1,228 @@
import argparse
import time
import sys
import logging
logging.getLogger('gymnasium').setLevel(logging.ERROR)
import warnings
warnings.filterwarnings('ignore', category=UserWarning)
from omni.isaac.lab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Tutorial on using the differential IK controller.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, other_args = parser.parse_known_args()
sys.argv = [sys.argv[0]] + other_args # clear out sys.argv for hydra
# launch omniverse app
args_cli.enable_cameras = True
args_cli.headless = True
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import cv2
import h5py
import torch
import gymnasium
import numpy as np
from pathlib import Path
from openpi_client.runtime import environment as _environment
from typing_extensions import override
from scipy.spatial.transform import Rotation as R
import real2simeval.environments
from real2simeval.splat_render.render import SplatRenderer
from real2simeval.utils import get_transform_from_txt, scalar_last, decrease_brightness
from omni.isaac.lab_tasks.utils import parse_env_cfg
from omni.isaac.core.prims import GeometryPrimView
import omni.isaac.lab.utils.math as math
class URSimEnvironment(_environment.Environment):
"""An environment for an Aloha robot in simulation."""
def __init__(self, task: str, seed: int = 0) -> None:
np.random.seed(seed)
self._rng = np.random.default_rng(seed)
self.file = h5py.File("data/episode.h5", "r")
self.step = 0
env_cfg = parse_env_cfg(
task,
device= args_cli.device,
num_envs=1,
use_fabric=True,
)
self._gym = gymnasium.make(task, cfg = env_cfg)
splats = {
"pi_scene_v2": "./data/pi_scene_v2/splat.ply",
"bottle": "./data/pi_objects/bottle/splat.ply",
"plate": "./data/pi_objects/plate/splat.ply",
}
views = {}
robot = Path("./data/pi_robot/SEGMENTED/")
for ply in robot.glob("*.ply"):
splats[ply.stem] = str(ply)
path = ply.stem.replace("-", "/")
view = GeometryPrimView(
prim_paths_expr=f"/World/envs/env_.*/robot/{path}",
)
views[ply.stem] = view
splat_renderer = SplatRenderer(splats=splats)
splat_renderer.init_cameras({
"hand_cam": { "fovy": 1.04, "fovx": 1.33, "res": (480, 640) },
"third_person_cam": { "fovy": 1.04, "fovx": 1.33, "res": (480, 640) },
# "hand_cam": { "fovy": 0.7925, "fovx": 1.01, "res": (480, 640) },
# "third_person_cam": { "fovy": 0.7925, "fovx": 1.01, "res": (480, 640) },
})
self.splats = splats
self.views = views
self.splat_renderer = splat_renderer
self._last_obs = None
self._done = True
self._episode_reward = 0.0
@override
def reset(self) -> None:
gym_obs, _ = self._gym.reset(seed=int(self._rng.integers(2**32 - 1)))
self.env_transformed = False
self._last_obs = self._convert_observation(gym_obs) # type: ignore
self._done = False
self._episode_reward = 0.0
@override
def done(self) -> bool:
return self._done
@override
def get_observation(self) -> dict:
if self._last_obs is None:
raise RuntimeError("Observation is not set. Call reset() first.")
return self._last_obs # type: ignore
@override
def apply_action(self, action: dict) -> None:
action = action["actions"]
# ur5e = self.file["observation/ur5e/joints/position"][self.step]
# robotiq = self.file["observation/robotiq_gripper/gripper/position"][self.step]
# action = np.concatenate([ur5e, robotiq], axis=-1)
# scale gripper from [0,1] to [-1,1]
action = action.copy()
action[-1] = action[-1] * 2 - 1
action = torch.tensor(action, dtype=torch.float32)[None]
gym_obs, reward, terminated, truncated, info = self._gym.step(action)
self._last_obs = self._convert_observation(gym_obs) # type: ignore
self._done = terminated or truncated
# self._episode_reward = max(self._episode_reward, reward)
img1 = self._last_obs["observation/base_0_camera/rgb/image"]
img2 = self._last_obs["observation/wrist_0_camera/rgb/image"]
big_img = np.concatenate([img1, img2], axis=1)
cv2.imshow("big_img", cv2.cvtColor(big_img, cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
self.step += 1
def _convert_observation(self, gym_obs: dict) -> dict:
# Convert axis order from [H, W, C] --> [C, H, W]
# img = np.transpose(gym_obs["pixels"]["top"], (2, 0, 1))
for splat in self.splats:
if splat == "pi_scene_v2":
if self.env_transformed:
continue
else:
self.env_transformed = True
if splat in self.views:
view = self.views[splat]
pos, rot = view.get_world_poses()
pos, rot = pos.squeeze(), rot.squeeze()
else:
try:
body = self._gym.scene[splat]
except KeyError:
continue
pos = body.data.root_state_w[0, :3]
rot = body.data.root_state_w[0, 3:7]
rot = math.matrix_from_quat(rot)
self.splat_renderer.transform(
pos,
rot,
scale_factor=1.0,
obj = splat
)
cam_pos_hand = self._gym.scene["handcam"].data.pos_w[0].detach().cpu().numpy()
cam_rot_hand = self._gym.scene["handcam"].data.quat_w_world[0].detach().cpu().numpy()
cam_rot_hand = scalar_last(cam_rot_hand)
cam_rot_hand = R.from_quat(cam_rot_hand).as_matrix()
cam_pos = self._gym.scene["camera"].data.pos_w[0].detach().cpu().numpy()
cam_rot = self._gym.scene["camera"].data.quat_w_world[0].detach().cpu().numpy()
cam_rot = scalar_last(cam_rot)
cam_rot = R.from_quat(cam_rot).as_matrix()
cam_extrinsics_dict = {
"hand_cam": {
"pos": cam_pos_hand,
"rot": cam_rot_hand,
},
"third_person_cam": {
"pos": cam_pos,
"rot": cam_rot,
},
}
rgb = self.splat_renderer.render(cam_extrinsics_dict)
for k, v in rgb.items():
rgb[k] = v.detach().cpu().numpy()
rgb[k] = (rgb[k] * 255).astype(np.uint8)
data = {}
data["observation/ur5e/joints/position"] = gym_obs["policy"]["joints"][:6].detach().cpu().numpy()
data["observation/robotiq_gripper/gripper/position"] = gym_obs["policy"]["joints"][6:].detach().cpu().numpy()
data["observation/base_0_camera/rgb/image"] = rgb["third_person_cam"]
data["observation/wrist_0_camera/rgb/image"] = rgb["hand_cam"]
# data["observation/base_0_camera/rgb/image"] = (self.file["observation/base_0_camera/rgb/image_224_224"][self.step])
# data["observation/wrist_0_camera/rgb/image"] = (self.file["observation/wrist_0_camera/rgb/image_224_224"][self.step])
# data["observation/base_0_camera/rgb/image"] = (self.file["observation/base_0_camera/rgb/image_256_320"][self.step])
# data["observation/wrist_0_camera/rgb/image"] = (self.file["observation/wrist_0_camera/rgb/image_256_320"][self.step])
# data["observation/ur5e/joints/position"] = self.file["observation/ur5e/joints/position"][self.step]
# data["observation/robotiq_gripper/gripper/position"] = self.file["observation/robotiq_gripper/gripper/position"][self.step]
#
# print(data["observation/ur5e/joints/position"])
return data

56
examples/ur_sim/main.py Normal file
View File

@@ -0,0 +1,56 @@
import dataclasses
import logging
import pathlib
import env as _env
from openpi_client import action_chunk_broker
from openpi_client import websocket_client_policy as _websocket_client_policy
from openpi_client.runtime import runtime as _runtime
from openpi_client.runtime.agents import policy_agent as _policy_agent
import saver as _saver
import tyro
@dataclasses.dataclass
class Args:
out_path: pathlib.Path = pathlib.Path("replay.mp4")
task: str = "PIBussing"
seed: int = 0
action_horizon: int = 10
host: str = "0.0.0.0"
port: int = 8000
display: bool = False
def main(args: Args) -> None:
runtime = _runtime.Runtime(
environment=_env.URSimEnvironment(
task=args.task,
seed=args.seed,
),
agent=_policy_agent.PolicyAgent(
policy=action_chunk_broker.ActionChunkBroker(
policy=_websocket_client_policy.WebsocketClientPolicy(
host=args.host,
port=args.port,
),
action_horizon=args.action_horizon,
)
),
subscribers=[
_saver.VideoSaver(args.out_path),
],
max_hz=50,
)
runtime.run()
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, force=True)
tyro.cli(main)

40
examples/ur_sim/saver.py Normal file
View File

@@ -0,0 +1,40 @@
import logging
import pathlib
import imageio
import numpy as np
from openpi_client.runtime import subscriber as _subscriber
# import openpi.transforms as transforms
from typing_extensions import override
class VideoSaver(_subscriber.Subscriber):
"""Saves episode data."""
def __init__(self, out_path: pathlib.Path, subsample: int = 1) -> None:
self._out_path = out_path
self._images: list[np.ndarray] = []
self._subsample = subsample
@override
def on_episode_start(self) -> None:
self._images = []
@override
def on_step(self, observation: dict, action: dict) -> None:
img1 = observation["observation/base_0_camera/rgb/image"]
img2 = observation["observation/wrist_0_camera/rgb/image"]
big_img = np.concatenate([img1, img2], axis=1)
self._images.append(big_img)
# im = observation["image"][0] # [C, H, W]
# im = np.transpose(im, (1, 2, 0)) # [H, W, C]
# self._images.append(im)
@override
def on_episode_end(self) -> None:
logging.info(f"Saving video to {self._out_path}")
imageio.mimwrite(
self._out_path,
[np.asarray(x) for x in self._images[:: self._subsample]],
fps=20 // max(1, self._subsample),
)

View File

@@ -11,7 +11,7 @@ from openpi.models import exported as _exported
from openpi.models import model as _model
from openpi.policies import aloha_policy
from openpi.policies import calvin_policy
from openpi.policies import droid_policy
from openpi.policies import droid_policy, ur_policy
from openpi.policies import libero_policy
from openpi.policies import policy as _policy
from openpi.policies import policy_config as _policy_config
@@ -28,6 +28,7 @@ class EnvMode(enum.Enum):
DROID = "droid"
CALVIN = "calvin"
LIBERO = "libero"
UR = "ur"
@dataclasses.dataclass
@@ -109,6 +110,10 @@ DEFAULT_EXPORTED: dict[EnvMode, Exported] = {
dir="s3://openpi-assets/exported/pi0_libero/model",
processor="libero",
),
EnvMode.UR: Exported(
dir="s3://openpi-assets/exported/pi0_base/model",
processor="ur5_single_24dim"
)
}
@@ -222,9 +227,22 @@ def create_default_policy(
libero_policy.LiberoOutputs(),
],
)
case EnvMode.UR:
delta_action_mask = delta_actions.make_bool_mask(6, -1)
config = make_policy_config(
input_layers=[
ur_policy.URInputs(action_dim=model.action_dim),
transforms.ResizeImages(224,224),
],
output_layers=[
ur_policy.UROutputs(
delta_action_mask=delta_action_mask,
)
],
)
case _:
raise ValueError(f"Unknown environment mode: {env}")
return _policy_config.create_policy(config)

View File

@@ -0,0 +1,58 @@
from collections.abc import Sequence
import numpy as np
from openpi import transforms
class URInputs(transforms.DataTransformFn):
def __init__(self, action_dim: int, *, delta_action_mask: Sequence[bool] | None = None):
self._action_dim = action_dim
self._delta_action_mask = delta_action_mask
def __call__(self, data: dict) -> dict:
state = np.concatenate([
data["observation/ur5e/joints/position"],
data["observation/robotiq_gripper/gripper/position"]
], axis=1)
state = transforms.pad_to_dim(state, self._action_dim)
print(f"state: {state}")
base_image = data["observation/base_0_camera/rgb/image"]
inputs = {
"state": state,
"image": {
"base_0_rgb": data["observation/base_0_camera/rgb/image"],
"left_wrist_0_rgb": data["observation/wrist_0_camera/rgb/image"],
"right_wrist_0_rgb": np.zeros_like(base_image),
},
"image_mask": {
"base_0_rgb": np.ones(1, dtype=np.bool_),
"left_wrist_0_rgb": np.ones(1, dtype=np.bool_),
"right_wrist_0_rgb": np.zeros(1, dtype=np.bool_),
},
}
if "prompt" in data:
inputs["prompt"] = data["prompt"]
return inputs
class UROutputs(transforms.DataTransformFn):
def __init__(self, *, delta_action_mask: Sequence[bool] | None = None):
self._delta_action_mask = delta_action_mask
def __call__(self, data: dict) -> dict:
# Only return the first 8 dims.
actions = np.asarray(data["actions"][..., :7])
# Apply the delta action mask.
if self._delta_action_mask is not None:
state = np.asarray(data["state"][..., :7])
mask = np.asarray(self._delta_action_mask[:7])
actions = actions + np.expand_dims(np.where(mask, state, 0), axis=-2)
return {"actions": actions}