Compare commits

..

18 Commits

Author SHA1 Message Date
Thomas Wolf
b670d3c43e Update lerobot/scripts/push_dataset_to_hub.py
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-29 15:30:39 +02:00
Thomas Wolf
efd3357124 Update lerobot/scripts/push_dataset_to_hub.py
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-29 15:30:33 +02:00
Thomas Wolf
785db44bd5 Update lerobot/common/datasets/push_dataset_to_hub/aloha_dora_format.py
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-29 15:30:21 +02:00
Thomas Wolf
e2f690e779 proposal for a more general Dora env 2024-05-29 15:29:41 +02:00
Thomas Wolf
68a680a9eb make aloha dora more flexible for A koch arm 2024-05-29 11:40:02 +02:00
Thomas Wolf
ce5329cf44 push_to_hub less hardcoded 2024-05-29 11:39:25 +02:00
Remi Cadene
f409bee6b1 WIP 2024-05-24 09:37:11 +00:00
Remi Cadene
c91ececc75 WIP 2024-05-24 09:06:29 +00:00
Simon Alibert
8a10e8442b Add boilerplate code
adding dora node logic

Add some documentation

refactor
2024-05-23 12:59:39 +00:00
Remi Cadene
10c5151fc6 remove hardcoding 2024-05-23 09:14:17 +00:00
Remi Cadene
a7d24f6dc2 works 2024-05-23 07:32:37 +00:00
Remi Cadene
642f1d0328 Add act_real_world.yaml 2024-05-22 15:15:36 +00:00
Remi Cadene
4843988d81 fix 2024-05-22 15:15:13 +00:00
Remi Cadene
772927616a fix 2024-05-22 09:12:34 +00:00
Remi Cadene
d52c6037e8 fix 2024-05-22 09:03:43 +00:00
Remi Cadene
b0cb342795 WIP Add aloha_dora_format 2024-05-21 21:16:31 +00:00
Remi Cadene
8460ea6f83 rename + format 2024-05-20 16:37:21 +00:00
haixuantao
9a3b0b738a Adding dora-record script 2024-05-20 16:34:21 +00:00
32 changed files with 1045 additions and 617 deletions

View File

@@ -10,6 +10,7 @@ on:
env:
PYTHON_VERSION: "3.10"
# CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
jobs:
latest-cpu:
@@ -50,6 +51,30 @@ jobs:
tags: huggingface/lerobot-cpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
# - name: Post to a Slack channel
# id: slack
# #uses: slackapi/slack-github-action@v1.25.0
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
# with:
# # Slack channel id, channel name, or user id to post message.
# # See also: https://api.slack.com/methods/chat.postMessage#channels
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
# # For posting a rich message using Block Kit
# payload: |
# {
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
# "blocks": [
# {
# "type": "section",
# "text": {
# "type": "mrkdwn",
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
# }
# }
# ]
# }
# env:
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-cuda:
name: GPU
@@ -88,40 +113,27 @@ jobs:
tags: huggingface/lerobot-gpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
latest-cuda-dev:
name: GPU Dev
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Check out code
uses: actions/checkout@v4
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU dev
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu-dev/Dockerfile
push: true
tags: huggingface/lerobot-gpu:dev
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
# - name: Post to a Slack channel
# id: slack
# #uses: slackapi/slack-github-action@v1.25.0
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
# with:
# # Slack channel id, channel name, or user id to post message.
# # See also: https://api.slack.com/methods/chat.postMessage#channels
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
# # For posting a rich message using Block Kit
# payload: |
# {
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
# "blocks": [
# {
# "type": "section",
# "text": {
# "type": "mrkdwn",
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
# }
# }
# ]
# }
# env:
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

32
.gitignore vendored
View File

@@ -2,16 +2,11 @@
logs
tmp
wandb
# Data
data
outputs
# Apple
.DS_Store
# VS Code
.vscode
rl
.DS_Store
# HPC
nautilus/*.yaml
@@ -95,7 +90,6 @@ instance/
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
@@ -108,6 +102,13 @@ ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
@@ -118,15 +119,6 @@ celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
@@ -144,9 +136,3 @@ dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/

View File

@@ -20,19 +20,15 @@ build-gpu:
test-end-to-end:
${MAKE} test-act-ete-train
${MAKE} test-act-ete-eval
${MAKE} test-act-ete-train-amp
${MAKE} test-act-ete-eval-amp
${MAKE} test-diffusion-ete-train
${MAKE} test-diffusion-ete-eval
${MAKE} test-tdmpc-ete-train
${MAKE} test-tdmpc-ete-eval
${MAKE} test-default-ete-eval
${MAKE} test-act-pusht-tutorial
test-act-ete-train:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
@@ -55,40 +51,9 @@ test-act-ete-eval:
env.episode_length=8 \
device=cpu \
test-act-ete-train-amp:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=cpu \
training.save_model=true \
training.save_freq=2 \
policy.n_action_steps=20 \
policy.chunk_size=20 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/act/ \
use_amp=true
test-act-ete-eval-amp:
python lerobot/scripts/eval.py \
-p tests/outputs/act/checkpoints/000002 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
use_amp=true
test-diffusion-ete-train:
python lerobot/scripts/train.py \
policy=diffusion \
policy.down_dims=\[64,128,256\] \
policy.diffusion_step_embed_dim=32 \
policy.num_inference_steps=10 \
env=pusht \
wandb.enable=False \
training.offline_steps=2 \
@@ -109,7 +74,6 @@ test-diffusion-ete-eval:
env.episode_length=8 \
device=cpu \
# TODO(alexander-soare): Restore online_steps to 2 when it is reinstated.
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
policy=tdmpc \
@@ -118,7 +82,7 @@ test-tdmpc-ete-train:
dataset_repo_id=lerobot/xarm_lift_medium \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
training.online_steps=2 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=2 \
@@ -136,6 +100,7 @@ test-tdmpc-ete-eval:
env.episode_length=8 \
device=cpu \
test-default-ete-eval:
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \
@@ -143,21 +108,3 @@ test-default-ete-eval:
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
test-act-pusht-tutorial:
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/created_by_Makefile.yaml
python lerobot/scripts/train.py \
policy=created_by_Makefile.yaml \
env=pusht \
wandb.enable=False \
training.offline_steps=2 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=2 \
device=cpu \
training.save_model=true \
training.save_freq=2 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/act_pusht/
rm lerobot/configs/policy/created_by_Makefile.yaml

View File

@@ -77,10 +77,6 @@ Install 🤗 LeRobot:
pip install .
```
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
you may need to install `cmake` and `build-essential` for building some of our dependencies.
On linux: `sudo apt-get install cmake build-essential`
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
@@ -103,7 +99,6 @@ wandb login
```
.
├── examples # contains demonstration examples, start here to learn about LeRobot
| └── advanced # contains even more examples for those who have mastered the basics
├── lerobot
| ├── configs # contains hydra yaml files with all options that you can override in the command line
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
@@ -163,10 +158,9 @@ See `python lerobot/scripts/eval.py --help` for more instructions.
### Train your own policy
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
Check out [example 3](./examples/3_train_policy.py) that illustrates how to start training a model.
In general, you can use our training script to easily train any policy. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
```bash
python lerobot/scripts/train.py \
policy=act \
@@ -190,19 +184,7 @@ A link to the wandb logs for the run will also show up in yellow in your termina
![](media/wandb.png)
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. You may use `eval.n_episodes=500` to evaluate on more episodes than the default. Or, after training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
#### Reproduce state-of-the-art (SOTA)
We have organized our configuration files (found under [`lerobot/configs`](./lerobot/configs)) such that they reproduce SOTA results from a given model variant in their respective original works. Simply running:
```bash
python lerobot/scripts/train.py policy=diffusion env=pusht
```
reproduces SOTA results for Diffusion Policy on the PushT task.
Pretrained policies, along with reproduction details, can be found under the "Models" section of https://huggingface.co/lerobot.
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. After training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
## Contribute

View File

@@ -1,40 +0,0 @@
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
# Configure image
ARG PYTHON_VERSION=3.10
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim less util-linux \
htop atop nvtop \
sed gawk grep curl wget \
tcpdump sysstat screen tmux \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install gh cli tool
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
&& mkdir -p -m 755 /etc/apt/keyrings \
&& wget -qO- https://cli.github.com/packages/githubcli-archive-keyring.gpg | tee /etc/apt/keyrings/githubcli-archive-keyring.gpg > /dev/null \
&& chmod go+r /etc/apt/keyrings/githubcli-archive-keyring.gpg \
&& echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/packages stable main" | tee /etc/apt/sources.list.d/github-cli.list > /dev/null \
&& apt update \
&& apt install gh -y \
&& apt clean && rm -rf /var/lib/apt/lists/*
# Setup `python`
RUN ln -s /usr/bin/python3 /usr/bin/python
# Install poetry
RUN curl -sSL https://install.python-poetry.org | python -
ENV PATH="/root/.local/bin:$PATH"
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
RUN poetry config virtualenvs.create false
RUN poetry config virtualenvs.in-project true
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"

View File

@@ -4,15 +4,18 @@ FROM nvidia/cuda:12.4.1-base-ubuntu22.04
ARG PYTHON_VERSION=3.10
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim ffmpeg \
htop atop nvtop \
sed gawk grep curl wget \
tcpdump sysstat screen \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create virtual environment
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN python -m venv /opt/venv
@@ -20,7 +23,8 @@ ENV PATH="/opt/venv/bin:$PATH"
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Install LeRobot
COPY . /lerobot
RUN git lfs install
RUN git clone https://github.com/huggingface/lerobot.git
WORKDIR /lerobot
RUN pip install --upgrade --no-cache-dir pip
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"

View File

@@ -1,183 +0,0 @@
This tutorial will explain the training script, how to use it, and particularly the use of Hydra to configure everything needed for the training run.
## The training script
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
- Loads a Hydra configuration file for the following steps (more on Hydra in a moment).
- Makes a simulation environment.
- Makes a dataset corresponding to that simulation environment.
- Makes a policy.
- Runs a standard training loop with forward pass, backward pass, optimization step, and occasional logging, evaluation (of the policy on the environment), and checkpointing.
## Basics of how we use Hydra
Explaining the ins and outs of [Hydra](https://hydra.cc/docs/intro/) is beyond the scope of this document, but here we'll share the main points you need to know.
First, `lerobot/configs` has a directory structure like this:
```
.
├── default.yaml
├── env
│ ├── aloha.yaml
│ ├── pusht.yaml
│ └── xarm.yaml
└── policy
├── act.yaml
├── diffusion.yaml
└── tdmpc.yaml
```
**_For brevity, in the rest of this document we'll drop the leading `lerobot/configs` path. So `default.yaml` really refers to `lerobot/configs/default.yaml`._**
When you run the training script with
```python
python lerobot/scripts/train.py
```
Hydra is set up to read `default.yaml` (via the `@hydra.main` decorator). If you take a look at the `@hydra.main`'s arguments you will see `config_path="../configs", config_name="default"`. At the top of `default.yaml`, is a `defaults` section which looks likes this:
```yaml
defaults:
- _self_
- env: pusht
- policy: diffusion
```
This logic tells Hydra to incorporate configuration parameters from `env/pusht.yaml` and `policy/diffusion.yaml`. _Note: Be aware of the order as any configuration parameters with the same name will be overidden. Thus, `default.yaml` is overriden by `env/pusht.yaml` which is overidden by `policy/diffusion.yaml`_.
Then, `default.yaml` also contains common configuration parameters such as `device: cuda` or `use_amp: false` (for enabling fp16 training). Some other parameters are set to `???` which indicates that they are expected to be set in additional yaml files. For instance, `training.offline_steps: ???` in `default.yaml` is set to `200000` in `diffusion.yaml`.
Thanks to this `defaults` section in `default.yaml`, if you want to train Diffusion Policy with PushT, you really only need to run:
```bash
python lerobot/scripts/train.py
```
However, you can be more explicit and launch the exact same Diffusion Policy training on PushT with:
```bash
python lerobot/scripts/train.py policy=diffusion env=pusht
```
This way of overriding defaults via the CLI is especially useful when you want to change the policy and/or environment. For instance, you can train ACT on the default Aloha environment with:
```bash
python lerobot/scripts/train.py policy=act env=aloha
```
There are two things to note here:
- Config overrides are passed as `param_name=param_value`.
- Here we have overridden the defaults section. `policy=act` tells Hydra to use `policy/act.yaml`, and `env=aloha` tells Hydra to use `env/pusht.yaml`.
_As an aside: we've set up all of our configurations so that they reproduce state-of-the-art results from papers in the literature._
## Overriding configuration parameters in the CLI
Now let's say that we want to train on a different task in the Aloha environment. If you look in `env/aloha.yaml` you will see something like:
```yaml
# lerobot/configs/env/aloha.yaml
env:
task: AlohaInsertion-v0
```
And if you look in `policy/act.yaml` you will see something like:
```yaml
# lerobot/configs/policy/act.yaml
dataset_repo_id: lerobot/aloha_sim_insertion_human
```
But our Aloha environment actually supports a cube transfer task as well. To train for this task, you could manually modify the two yaml configuration files respectively.
First, we'd need to switch to using the cube transfer task for the ALOHA environment.
```diff
# lerobot/configs/env/aloha.yaml
env:
- task: AlohaInsertion-v0
+ task: AlohaTransferCube-v0
```
Then, we'd also need to switch to using the cube transfer dataset.
```diff
# lerobot/configs/policy/act.yaml
-dataset_repo_id: lerobot/aloha_sim_insertion_human
+dataset_repo_id: lerobot/aloha_sim_transfer_cube_human
```
Then, you'd be able to run:
```bash
python lerobot/scripts/train.py policy=act env=aloha
```
and you'd be training and evaluating on the cube transfer task.
An alternative approach to editing the yaml configuration files, would be to override the defaults via the command line:
```bash
python lerobot/scripts/train.py \
policy=act \
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
env=aloha \
env.task=AlohaTransferCube-v0
```
There's something new here. Notice the `.` delimiter used to traverse the configuration hierarchy. _But be aware that the `defaults` section is an exception. As you saw above, we didn't need to write `defaults.policy=act` in the CLI. `policy=act` was enough._
Putting all that knowledge together, here's the command that was used to train https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human.
```bash
python lerobot/scripts/train.py \
hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human \
device=cuda
env=aloha \
env.task=AlohaTransferCube-v0 \
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
policy=act \
training.eval_freq=10000 \
training.log_freq=250 \
training.offline_steps=100000 \
training.save_model=true \
training.save_freq=25000 \
eval.n_episodes=50 \
eval.batch_size=50 \
wandb.enable=false \
```
There's one new thing here: `hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human`, which specifies where to save the training output.
## Using a configuration file not in `lerobot/configs`
Above we discusses the our training script is set up such that Hydra looks for `default.yaml` in `lerobot/configs`. But, if you have a configuration file elsewhere in your filesystem you may use:
```bash
python lerobot/scripts/train.py --config-dir PARENT/PATH --config-name FILE_NAME_WITHOUT_EXTENSION
```
Note: here we use regular syntax for providing CLI arguments to a Python script, not Hydra's `param_name=param_value` syntax.
As a concrete example, this becomes particularly handy when you have a folder with training outputs, and would like to re-run the training. For example, say you previously ran the training script with one of the earlier commands and have `outputs/train/my_experiment/checkpoints/pretrained_model/config.yaml`. This `config.yaml` file will have the full set of configuration parameters within it. To run the training with the same configuration again, do:
```bash
python lerobot/scripts/train.py --config-dir outputs/train/my_experiment/checkpoints/pretrained_model --config-name config
```
Note that you may still use the regular syntax for config parameter overrides (eg: by adding `training.offline_steps=200000`).
---
So far we've seen how to train Diffusion Policy for PushT and ACT for ALOHA. Now, what if we want to train ACT for PushT? Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
```bash
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
```
Please, head on over to our [advanced tutorial on adapting policy configuration to various environments](./advanced/train_act_pusht/train_act_pusht.md) to learn more.
Or in the meantime, happy coding! 🤗

View File

@@ -1,70 +0,0 @@
In this tutorial we will learn how to adapt a policy configuration to be compatible with a new environment and dataset. As a concrete example, we will adapt the default configuration for ACT to be compatible with the PushT environment and dataset.
If you haven't already read our tutorial on the [training script and configuration tooling](../4_train_policy_with_script.md) please do so prior to tackling this tutorial.
Let's get started!
Suppose we want to train ACT for PushT. Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
```bash
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
```
We need to adapt the parameters of the ACT policy configuration to the PushT environment. The most important ones are the image keys.
ALOHA's datasets and environments typically use a variable number of cameras. In `lerobot/configs/policy/act.yaml` you may notice two relevant sections. Here we show you the minimal diff needed to adjust to PushT:
```diff
override_dataset_stats:
- observation.images.top:
+ observation.image:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
policy:
input_shapes:
- observation.images.top: [3, 480, 640]
+ observation.image: [3, 96, 96]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
input_normalization_modes:
- observation.images.top: mean_std
+ observation.image: mean_std
observation.state: min_max
output_normalization_modes:
action: min_max
```
Here we've accounted for the following:
- PushT uses "observation.image" for its image key.
- PushT provides smaller images.
_Side note: technically we could override these via the CLI, but with many changes it gets a bit messy, and we also have a bit of a challenge in that we're using `.` in our observation keys which is treated by Hydra as a hierarchical separator_.
For your convenience, we provide [`act_pusht.yaml`](./act_pusht.yaml) in this directory. It contains the diff above, plus some other (optional) ones that are explained within. Please copy it into `lerobot/configs/policy` with:
```bash
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/act_pusht.yaml
```
(remember from a [previous tutorial](../4_train_policy_with_script.md) that Hydra will look in the `lerobot/configs` directory). Now try running the following.
<!-- Note to contributor: are you changing this command? Note that it's tested in `Makefile`, so change it there too! -->
```bash
python lerobot/scripts/train.py policy=act_pusht env=pusht
```
Notice that this is much the same as the command that failed at the start of the tutorial, only:
- Now we are using `policy=act_pusht` to point to our new configuration file.
- We can drop `dataset_repo_id=lerobot/pusht` as the change is incorporated in our new configuration file.
Hurrah! You're now training ACT for the PushT environment.
---
The bottom line of this tutorial is that when training policies for different environments and datasets you will need to understand what parts of the policy configuration are specific to those and make changes accordingly.
Happy coding! 🤗

1
gym_dora/README.md Normal file
View File

@@ -0,0 +1 @@
# gym_dora

17
gym_dora/example.py Normal file
View File

@@ -0,0 +1,17 @@
import gymnasium as gym
import gym_dora # noqa: F401
env = gym.make("gym_dora/DoraAloha-v0", disable_env_checker=True)
obs = env.reset()
policy = ... # make_policy
done = False
while not done:
actions = policy.select_action(obs)
observation, reward, terminated, truncated, info = env.step(actions)
done = terminated | truncated | done
env.close()

View File

@@ -0,0 +1,17 @@
from gymnasium.envs.registration import register
register(
id="gym_dora/DoraAloha-v0",
entry_point="gym_dora.env:DoraEnv",
max_episode_steps=300,
nondeterministic=True,
kwargs={"model": "aloha"},
)
register(
id="gym_dora/DoraKoch-v0",
entry_point="gym_dora.env:DoraEnv",
max_episode_steps=300,
nondeterministic=True,
kwargs={"model": "koch"},
)

199
gym_dora/gym_dora/env.py Normal file
View File

@@ -0,0 +1,199 @@
import os
import gymnasium as gym
import numpy as np
import pyarrow as pa
from dora import Node
from gymnasium import spaces
FPS = int(os.getenv("FPS", "30"))
IMAGE_WIDTH = int(os.getenv("IMAGE_WIDTH", "640"))
IMAGE_HEIGHT = int(os.getenv("IMAGE_HEIGHT", "480"))
ALOHA_JOINTS = [
# absolute joint position
"left_arm_waist",
"left_arm_shoulder",
"left_arm_elbow",
"left_arm_forearm_roll",
"left_arm_wrist_angle",
"left_arm_wrist_rotate",
# normalized gripper position 0: close, 1: open
"left_arm_gripper",
# absolute joint position
"right_arm_waist",
"right_arm_shoulder",
"right_arm_elbow",
"right_arm_forearm_roll",
"right_arm_wrist_angle",
"right_arm_wrist_rotate",
# normalized gripper position 0: close, 1: open
"right_arm_gripper",
]
ALOHA_ACTIONS = [
# position and quaternion for end effector
"left_arm_waist",
"left_arm_shoulder",
"left_arm_elbow",
"left_arm_forearm_roll",
"left_arm_wrist_angle",
"left_arm_wrist_rotate",
# normalized gripper position (0: close, 1: open)
"left_arm_gripper",
"right_arm_waist",
"right_arm_shoulder",
"right_arm_elbow",
"right_arm_forearm_roll",
"right_arm_wrist_angle",
"right_arm_wrist_rotate",
# normalized gripper position (0: close, 1: open)
"right_arm_gripper",
]
class DoraEnv(gym.Env):
metadata = {"render_modes": ["rgb_array"], "render_fps": FPS}
def __init__(
self,
model="aloha",
observation_width=IMAGE_WIDTH,
observation_height=IMAGE_HEIGHT,
cameras_names=None,
num_joints=None,
num_actions=None,
):
"""Initializes the Dora environment.
Args:
model (str): The model to use. Either 'aloha' or 'custom'.
observation_width (int): The width of the observation image.
observation_height (int): The height of the observation image.
cameras_names (list): A list of camera names to use. If not provided, the default is ['cam_high', 'cam_low', 'cam_left_wrist', 'cam_right_wrist'].
num_joints (int): The number of joints in the model. If not provided, the default is 14 for 'aloha' and 6 for 'fivedof'.
num_actions (int): The number of actions in the model. If not provided, the default is 14 for 'aloha' and 6 for 'fivedof'.
"""
super().__init__()
# Initialize a new node
self.node = Node() if os.environ.get("DORA_NODE_CONFIG", None) is not None else None
self.observation = {"pixels": {}, "agent_pos": None}
self.terminated = False
self.observation_height = observation_height
self.observation_width = observation_width
# Observation space
if model == "aloha":
self.observation_space = spaces.Dict(
{
"pixels": spaces.Dict(
{
"cam_high": spaces.Box(
low=0,
high=255,
shape=(self.observation_height, self.observation_width, 3),
dtype=np.uint8,
),
"cam_low": spaces.Box(
low=0,
high=255,
shape=(self.observation_height, self.observation_width, 3),
dtype=np.uint8,
),
"cam_left_wrist": spaces.Box(
low=0,
high=255,
shape=(self.observation_height, self.observation_width, 3),
dtype=np.uint8,
),
"cam_right_wrist": spaces.Box(
low=0,
high=255,
shape=(self.observation_height, self.observation_width, 3),
dtype=np.uint8,
),
}
),
"agent_pos": spaces.Box(
low=-1000.0,
high=1000.0,
shape=(len(ALOHA_JOINTS),),
dtype=np.float64,
),
}
)
elif model == "custom":
pixel_dict = {}
for camera in cameras_names:
assert camera.startswith("cam"), "Camera names must start with 'cam'"
pixel_dict[camera] = spaces.Box(
low=0,
high=255,
shape=(self.observation_height, self.observation_width, 3),
dtype=np.uint8,
)
self.observation_space = spaces.Dict(
{
"pixels": spaces.Dict(pixel_dict),
"agent_pos": spaces.Box(
low=-1000.0,
high=1000.0,
shape=(num_joints,),
dtype=np.float64,
),
}
)
else:
raise ValueError("Model must be either 'aloha' or 'custom'.")
# Action space
if model == "aloha":
self.action_space = spaces.Box(low=-1, high=1, shape=(len(ALOHA_ACTIONS),), dtype=np.float32)
elif model == "custom":
self.action_space = spaces.Box(low=-1, high=1, shape=(num_actions,), dtype=np.float32)
def _get_obs(self):
while True:
event = self.node.next(timeout=0.001)
## If event is None, the node event stream is closed and we should terminate the env
if event is None:
self.terminated = True
break
if event["type"] == "INPUT":
# Map Image input into pixels key within Aloha environment
if "cam" in event["id"]:
self.observation["pixels"][event["id"]] = (
event["value"].to_numpy().reshape(self.observation_height, self.observation_width, 3)
)
else:
# Map other inputs into the observation dictionary using the event id as key
self.observation[event["id"]] = event["value"].to_numpy()
# If the event is a timeout error break the update loop.
elif event["type"] == "ERROR":
break
def reset(self, seed: int | None = None):
self.node.send_output("reset")
self._get_obs()
self.terminated = False
info = {}
return self.observation, info
def step(self, action: np.ndarray):
# Send the action to the dataflow as action key.
self.node.send_output("action", pa.array(action))
self._get_obs()
reward = 0
terminated = truncated = self.terminated
info = {}
return self.observation, reward, terminated, truncated, info
def render(self): ...
def close(self):
# Drop the node
del self.node

182
gym_dora/poetry.lock generated Normal file
View File

@@ -0,0 +1,182 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "cloudpickle"
version = "3.0.0"
description = "Pickler class to extend the standard pickle.Pickler functionality"
optional = false
python-versions = ">=3.8"
files = [
{file = "cloudpickle-3.0.0-py3-none-any.whl", hash = "sha256:246ee7d0c295602a036e86369c77fecda4ab17b506496730f2f576d9016fd9c7"},
{file = "cloudpickle-3.0.0.tar.gz", hash = "sha256:996d9a482c6fb4f33c1a35335cf8afd065d2a56e973270364840712d9131a882"},
]
[[package]]
name = "dora-rs"
version = "0.3.4"
description = "`dora` goal is to be a low latency, composable, and distributed data flow."
optional = false
python-versions = "*"
files = [
{file = "dora_rs-0.3.4-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:d1b738eea5a4966d731c26c6b6a0a50a491a24f7e9e335475f983cfc6f0da19e"},
{file = "dora_rs-0.3.4-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:80b724871618c78a4e5863938fa66724176cc40352771087aebe1e62a8141157"},
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a3919e157b47dc1dbc74c040a73087a4485f0d1bee99b6adcdbc36559400fe2"},
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7c95f6e5858fd651d6cd220e4f052e99db2944b9c37fb0b5402d60ac4b41a63"},
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37d915fbbca282446235c98a9ca08389aa3ef3155d4e88c6c136326e9a830042"},
{file = "dora_rs-0.3.4-cp37-abi3-win32.whl", hash = "sha256:c9f7f22f65c884ec9bee0245ce98d0c7fad25dec0f982e566f844b5e8e58818f"},
{file = "dora_rs-0.3.4-cp37-abi3-win_amd64.whl", hash = "sha256:0a6a37f96a9f6e13b58b02a6ea75af192af5fbe4f456f6a67b1f239c3cee3276"},
{file = "dora_rs-0.3.4.tar.gz", hash = "sha256:05c5d0db0d23d7c4669995ae34db11cd636dbf91f5705d832669bd04e7452903"},
]
[package.dependencies]
pyarrow = "*"
[[package]]
name = "farama-notifications"
version = "0.0.4"
description = "Notifications for all Farama Foundation maintained libraries."
optional = false
python-versions = "*"
files = [
{file = "Farama-Notifications-0.0.4.tar.gz", hash = "sha256:13fceff2d14314cf80703c8266462ebf3733c7d165336eee998fc58e545efd18"},
{file = "Farama_Notifications-0.0.4-py3-none-any.whl", hash = "sha256:14de931035a41961f7c056361dc7f980762a143d05791ef5794a751a2caf05ae"},
]
[[package]]
name = "gymnasium"
version = "0.29.1"
description = "A standard API for reinforcement learning and a diverse set of reference environments (formerly Gym)."
optional = false
python-versions = ">=3.8"
files = [
{file = "gymnasium-0.29.1-py3-none-any.whl", hash = "sha256:61c3384b5575985bb7f85e43213bcb40f36fcdff388cae6bc229304c71f2843e"},
{file = "gymnasium-0.29.1.tar.gz", hash = "sha256:1a532752efcb7590478b1cc7aa04f608eb7a2fdad5570cd217b66b6a35274bb1"},
]
[package.dependencies]
cloudpickle = ">=1.2.0"
farama-notifications = ">=0.0.1"
numpy = ">=1.21.0"
typing-extensions = ">=4.3.0"
[package.extras]
accept-rom-license = ["autorom[accept-rom-license] (>=0.4.2,<0.5.0)"]
all = ["box2d-py (==2.3.5)", "cython (<3)", "imageio (>=2.14.1)", "jax (>=0.4.0)", "jaxlib (>=0.4.0)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (>=2.3.3)", "mujoco-py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (>=2.1.3)", "shimmy[atari] (>=0.1.0,<1.0)", "swig (==4.*)", "torch (>=1.0.0)"]
atari = ["shimmy[atari] (>=0.1.0,<1.0)"]
box2d = ["box2d-py (==2.3.5)", "pygame (>=2.1.3)", "swig (==4.*)"]
classic-control = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
jax = ["jax (>=0.4.0)", "jaxlib (>=0.4.0)"]
mujoco = ["imageio (>=2.14.1)", "mujoco (>=2.3.3)"]
mujoco-py = ["cython (<3)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "mujoco-py (>=2.1,<2.2)"]
other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)", "torch (>=1.0.0)"]
testing = ["pytest (==7.1.3)", "scipy (>=1.7.3)"]
toy-text = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
[[package]]
name = "numpy"
version = "1.26.4"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
{file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"},
{file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"},
{file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"},
{file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"},
{file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"},
{file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"},
{file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"},
{file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"},
{file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"},
{file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"},
{file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"},
{file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"},
{file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"},
{file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"},
{file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"},
{file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
]
[[package]]
name = "pyarrow"
version = "16.1.0"
description = "Python library for Apache Arrow"
optional = false
python-versions = ">=3.8"
files = [
{file = "pyarrow-16.1.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9"},
{file = "pyarrow-16.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c"},
{file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd"},
{file = "pyarrow-16.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff"},
{file = "pyarrow-16.1.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d0ebea336b535b37eee9eee31761813086d33ed06de9ab6fc6aaa0bace7b250c"},
{file = "pyarrow-16.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e73cfc4a99e796727919c5541c65bb88b973377501e39b9842ea71401ca6c1c"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf9251264247ecfe93e5f5a0cd43b8ae834f1e61d1abca22da55b20c788417f6"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddf5aace92d520d3d2a20031d8b0ec27b4395cab9f74e07cc95edf42a5cc0147"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:25233642583bf658f629eb230b9bb79d9af4d9f9229890b3c878699c82f7d11e"},
{file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a33a64576fddfbec0a44112eaf844c20853647ca833e9a647bfae0582b2ff94b"},
{file = "pyarrow-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:185d121b50836379fe012753cf15c4ba9638bda9645183ab36246923875f8d1b"},
{file = "pyarrow-16.1.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:2e51ca1d6ed7f2e9d5c3c83decf27b0d17bb207a7dea986e8dc3e24f80ff7d6f"},
{file = "pyarrow-16.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06ebccb6f8cb7357de85f60d5da50e83507954af617d7b05f48af1621d331c9a"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b04707f1979815f5e49824ce52d1dceb46e2f12909a48a6a753fe7cafbc44a0c"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d32000693deff8dc5df444b032b5985a48592c0697cb6e3071a5d59888714e2"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:8785bb10d5d6fd5e15d718ee1d1f914fe768bf8b4d1e5e9bf253de8a26cb1628"},
{file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:e1369af39587b794873b8a307cc6623a3b1194e69399af0efd05bb202195a5a7"},
{file = "pyarrow-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:febde33305f1498f6df85e8020bca496d0e9ebf2093bab9e0f65e2b4ae2b3444"},
{file = "pyarrow-16.1.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:b5f5705ab977947a43ac83b52ade3b881eb6e95fcc02d76f501d549a210ba77f"},
{file = "pyarrow-16.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0d27bf89dfc2576f6206e9cd6cf7a107c9c06dc13d53bbc25b0bd4556f19cf5f"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d07de3ee730647a600037bc1d7b7994067ed64d0eba797ac74b2bc77384f4c2"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbef391b63f708e103df99fbaa3acf9f671d77a183a07546ba2f2c297b361e83"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19741c4dbbbc986d38856ee7ddfdd6a00fc3b0fc2d928795b95410d38bb97d15"},
{file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f2c5fb249caa17b94e2b9278b36a05ce03d3180e6da0c4c3b3ce5b2788f30eed"},
{file = "pyarrow-16.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:e6b6d3cd35fbb93b70ade1336022cc1147b95ec6af7d36906ca7fe432eb09710"},
{file = "pyarrow-16.1.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:18da9b76a36a954665ccca8aa6bd9f46c1145f79c0bb8f4f244f5f8e799bca55"},
{file = "pyarrow-16.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:99f7549779b6e434467d2aa43ab2b7224dd9e41bdde486020bae198978c9e05e"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f07fdffe4fd5b15f5ec15c8b64584868d063bc22b86b46c9695624ca3505b7b4"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddfe389a08ea374972bd4065d5f25d14e36b43ebc22fc75f7b951f24378bf0b5"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3b20bd67c94b3a2ea0a749d2a5712fc845a69cb5d52e78e6449bbd295611f3aa"},
{file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:ba8ac20693c0bb0bf4b238751d4409e62852004a8cf031c73b0e0962b03e45e3"},
{file = "pyarrow-16.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:31a1851751433d89a986616015841977e0a188662fcffd1a5677453f1df2de0a"},
{file = "pyarrow-16.1.0.tar.gz", hash = "sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315"},
]
[package.dependencies]
numpy = ">=1.16.6"
[[package]]
name = "typing-extensions"
version = "4.11.0"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"},
{file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"},
]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "7e437b5c547ebe11095f1ce4ff1851d636f8e707ad7de8a6224b0f9ad978240f"

17
gym_dora/pyproject.toml Normal file
View File

@@ -0,0 +1,17 @@
[tool.poetry]
name = "gym-dora"
version = "0.1.0"
description = ""
authors = ["Simon Alibert <alibert.sim@gmail.com>"]
readme = "README.md"
packages = [{ include = "gym_dora" }]
[tool.poetry.dependencies]
python = "^3.10"
gymnasium = ">=0.29.1"
dora-rs = ">=0.3.4"
pyarrow = ">=12.0.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -16,12 +16,15 @@
import logging
import torch
from omegaconf import DictConfig, OmegaConf
from omegaconf import OmegaConf
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
def make_dataset(cfg: DictConfig, split="train") -> LeRobotDataset:
def make_dataset(
cfg,
split="train",
):
if cfg.env.name not in cfg.dataset_repo_id:
logging.warning(
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
@@ -40,7 +43,6 @@ def make_dataset(cfg: DictConfig, split="train") -> LeRobotDataset:
cfg.dataset_repo_id,
split=split,
delta_timestamps=delta_timestamps,
n_end_keyframes_dropped=eval(cfg.training.get("n_end_keyframes_dropped", "0")),
)
if cfg.get("override_dataset_stats"):

View File

@@ -44,26 +44,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
split: str = "train",
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
n_end_keyframes_dropped: int = 0,
):
"""
Args:
delta_timestamps: A dictionary mapping lists of relative times (Δt) to data keys. When a frame is
sampled from the underlying dataset, we treat it as a "keyframe" and load multiple frames
according to the list of Δt's. For example {"action": [-0.05, 0, 0.05]} indicates
that we want to load the current keyframe's action, as well as one from 50 ms ago, and one
50 ms into the future. The action key then contains a (3, action_dim) tensor (whereas without
`delta_timestamps` there would just be a (action_dim,) tensor. When the Δt's demand that
frames outside of an episode boundary are retrieved, a copy padding strategy is used. See
`load_previous_and_future_frames` for more details.
n_end_keyframes_dropped: Don't sample the last n items in each episode. This option is handy when
used in combination with `delta_timestamps` when, for example, the Δt's demand multiple future
frames, but we want to avoid introducing too much copy padding into the data distribution.
For example if `delta_timestamps = {"action": [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30]}`
and we sample the last frame in the episode, we would end up padding with 6 frames worth of
copies. Instead, we might want no padding (in which case we need n=6), or we might be okay
with up to 2 frames of padding (in which case we need n=4).
"""
super().__init__()
self.repo_id = repo_id
self.version = version
@@ -84,12 +65,6 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.info = load_info(repo_id, version, root)
if self.video:
self.videos_dir = load_videos(repo_id, version, root)
# If `n_end_keyframes_dropped == 0`, `self.index` contains exactly the indices of the hf_dataset. If
# `n_end_keyframes_dropped > 0`, `self.index` contains a subset of the indices of the hf_dataset where
# we drop those indices pertaining to the last n frames of each episode.
self.index = []
for from_ix, to_ix in zip(*self.episode_data_index.values(), strict=True):
self.index.extend(list(range(from_ix, to_ix - n_end_keyframes_dropped)))
@property
def fps(self) -> int:
@@ -132,11 +107,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
@property
def num_samples(self) -> int:
"""Number of possible samples in the dataset.
This is equivalent to the number of frames in the dataset minus n_end_keyframes_dropped.
"""
return len(self.index)
"""Number of samples/frames."""
return len(self.hf_dataset)
@property
def num_episodes(self) -> int:
@@ -156,7 +128,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
return self.num_samples
def __getitem__(self, idx):
item = self.hf_dataset[self.index[idx]]
item = self.hf_dataset[idx]
if self.delta_timestamps is not None:
item = load_previous_and_future_frames(

View File

@@ -0,0 +1,200 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains utilities to process raw data format from dora-record
"""
import logging
from pathlib import Path
import pandas as pd
import torch
from datasets import Dataset, Features, Image, Sequence, Value
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame
from lerobot.common.utils.utils import init_logging
def check_format(raw_dir) -> bool:
assert raw_dir.exists()
leader_file = list(raw_dir.glob("*.parquet"))
if len(leader_file) == 0:
raise ValueError(f"Missing parquet files in '{raw_dir}'")
return True
def load_from_raw(raw_dir: Path, out_dir: Path):
# Load data stream that will be used as reference for the timestamps synchronization
reference_files = list(raw_dir.glob("observation.images.cam_*.parquet"))
if len(reference_files) == 0:
raise ValueError(f"Missing reference files for camera, starting with in '{raw_dir}'")
# select first camera in alphanumeric order
reference_key = sorted(reference_files)[0].stem
reference_df = pd.read_parquet(raw_dir / f"{reference_key}.parquet")
reference_df = reference_df[["timestamp_utc", reference_key]]
# Merge all data stream using nearest backward strategy
df = reference_df
for path in raw_dir.glob("*.parquet"):
key = path.stem # action or observation.state or ...
if key == reference_key:
continue
modality_df = pd.read_parquet(path)
modality_df = modality_df[["timestamp_utc", key]]
df = pd.merge_asof(
df,
modality_df,
on="timestamp_utc",
direction="backward",
)
# Remove rows with a NaN in any column. It can happened during the first frames of an episode,
# because some cameras didnt start recording yet.
df = df.dropna(axis=0)
# Remove rows with episode_index -1 which indicates a failed episode
df = df[df["episode_index"] != -1]
# dora only use arrays, so single values are encapsulated into a list
df["episode_index"] = df["episode_index"].map(lambda x: x[0])
df["frame_index"] = df.groupby("episode_index").cumcount()
df = df.reset_index()
df["index"] = df.index
# set 'next.done' to True for the last frame of each episode
df["next.done"] = False
df.loc[df.groupby("episode_index").tail(1).index, "next.done"] = True
df["timestamp"] = df["timestamp_utc"].map(lambda x: x.timestamp())
# each episode starts with timestamp 0 to match the ones from the video
df["timestamp"] = df.groupby("episode_index")["timestamp"].transform(lambda x: x - x.iloc[0])
del df["timestamp_utc"]
# sanity check episode indices go from 0 to n-1
ep_ids = [ep_idx for ep_idx, _ in df.groupby("episode_index")]
expected_ep_ids = list(range(df["episode_index"].max() + 1))
assert ep_ids == expected_ep_ids, f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}"
# Create symlink to raw videos directory (that needs to be absolute not relative)
out_dir.mkdir(parents=True, exist_ok=True)
videos_dir = out_dir / "videos"
videos_dir.symlink_to((raw_dir / "videos").absolute())
# sanity check the video paths are well formated
for key in df:
if "observation.images." not in key:
continue
for ep_idx in ep_ids:
video_path = videos_dir / f"{key}_episode_{ep_idx:06d}.mp4"
assert video_path.exists(), f"Video file not found in {video_path}"
data_dict = {}
for key in df:
# is video frame
if "observation.images." in key:
# we need `[0] because dora only use arrays, so single values are encapsulated into a list.
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
# sanity check the video path is well formated
video_path = videos_dir.parent / data_dict[key][0]["path"]
assert video_path.exists(), f"Video file not found in {video_path}"
# is number
elif df[key].iloc[0].ndim == 0 or df[key].iloc[0].shape[0] == 1:
data_dict[key] = torch.from_numpy(df[key].values)
# is vector
elif df[key].iloc[0].shape[0] > 1:
data_dict[key] = torch.stack([torch.from_numpy(x.copy()) for x in df[key].values])
else:
raise ValueError(key)
# Get the episode index containing for each unique episode index
first_ep_index_df = df.groupby("episode_index").agg(start_index=("index", "first")).reset_index()
from_ = first_ep_index_df["start_index"].tolist()
to_ = from_[1:] + [len(df)]
episode_data_index = {
"from": from_,
"to": to_,
}
return data_dict, episode_data_index
def to_hf_dataset(data_dict, video) -> Dataset:
features = {}
keys = [key for key in data_dict if "observation.images." in key]
for key in keys:
if video:
features[key] = VideoFrame()
else:
features[key] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.velocity" in data_dict:
features["observation.velocity"] = Sequence(
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.effort" in data_dict:
features["observation.effort"] = Sequence(
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["next.done"] = Value(dtype="bool", id=None)
features["index"] = Value(dtype="int64", id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
init_logging()
if debug:
logging.warning("debug=True not implemented. Falling back to debug=False.")
# sanity check
check_format(raw_dir)
if fps is None:
fps = 30
else:
raise NotImplementedError()
if not video:
raise NotImplementedError()
data_df, episode_data_index = load_from_raw(raw_dir, out_dir)
hf_dataset = to_hf_dataset(data_df, video)
info = {
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -28,11 +28,11 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
raise ValueError("`n_envs must be at least 1")
kwargs = {
"obs_type": "pixels_agent_pos",
"render_mode": "rgb_array",
# "obs_type": "pixels_agent_pos",
# "render_mode": "rgb_array",
"max_episode_steps": cfg.env.episode_length,
"visualization_width": 384,
"visualization_height": 384,
# "visualization_width": 384,
# "visualization_height": 384,
}
package_name = f"gym_{cfg.env.name}"

View File

@@ -304,11 +304,7 @@ class DiffusionModel(nn.Module):
loss = F.mse_loss(pred, target, reduction="none")
# Mask loss wherever the action is padded with copies (edges of the dataset trajectory).
if self.config.do_mask_loss_for_padding:
if "action_is_pad" not in batch:
raise ValueError(
f"You need to provide 'action_is_pad' in the batch when {self.config.do_mask_loss_for_padding=}."
)
if self.config.do_mask_loss_for_padding and "action_is_pad" in batch:
in_episode_bound = ~batch["action_is_pad"]
loss = loss * in_episode_bound.unsqueeze(-1)

View File

@@ -10,9 +10,6 @@ hydra:
name: default
device: cuda # cpu
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
# automatic gradient scaling is used.
use_amp: false
# `seed` is used for training (eg: model initialization, dataset shuffling)
# AND for the evaluation environments.
seed: ???
@@ -20,7 +17,6 @@ dataset_repo_id: lerobot/pusht
training:
offline_steps: ???
# NOTE: `online_steps` is not implemented yet. It's here as a placeholder.
online_steps: ???
online_steps_between_rollouts: ???
online_sampling_ratio: 0.5

14
lerobot/configs/env/dora.yaml vendored Normal file
View File

@@ -0,0 +1,14 @@
# @package _global_
fps: 30
env:
name: dora
task: DoraAloha-v0
# from_pixels: True
# pixels_only: False
# image_size: [3, 480, 640]
episode_length: 400
# fps: ${fps}
# state_dim: 14
# action_dim: 14

View File

@@ -1,13 +1,22 @@
# @package _global_
# Change the seed to match what PushT eval uses
# (to avoid evaluating on seeds used for generating the training data).
seed: 100000
# Change the dataset repository to the PushT one.
dataset_repo_id: lerobot/pusht
seed: 1000
dataset_repo_id: cadene/aloha_v2_static_dora_test
override_dataset_stats:
observation.image:
observation.images.cam_right_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_left_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_high:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_low:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
@@ -15,9 +24,9 @@ override_dataset_stats:
training:
offline_steps: 80000
online_steps: 0
eval_freq: 10000
save_freq: 100000
log_freq: 250
eval_freq: 99999999999999
save_freq: 1000
log_freq: 100
save_model: true
batch_size: 8
@@ -44,19 +53,24 @@ policy:
n_action_steps: 100
input_shapes:
observation.image: [3, 96, 96]
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.cam_right_wrist: [3, 480, 640]
observation.images.cam_left_wrist: [3, 480, 640]
observation.images.cam_high: [3, 480, 640]
observation.images.cam_low: [3, 480, 640]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.image: mean_std
# Use min_max normalization just because it's more standard.
observation.state: min_max
observation.images.cam_right_wrist: mean_std
observation.images.cam_left_wrist: mean_std
observation.images.cam_high: mean_std
observation.images.cam_low: mean_std
observation.state: mean_std
output_normalization_modes:
# Use min_max normalization just because it's more standard.
action: min_max
action: mean_std
# Architecture.
# Vision backbone.
@@ -70,7 +84,7 @@ policy:
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1

View File

@@ -39,21 +39,11 @@ training:
adam_weight_decay: 1.0e-6
online_steps_between_rollouts: 1
# For each training batch we want (consider n_obs_steps=2, horizon=16):
# t | -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
# action | a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a
# observation | o, o, , , , , , , , , , , , , ,
# Note that at rollout we only use some of the actions (consider n_action_steps=8):
# action used | , a, a, a, a, a, a, a, a, , , , , , ,
delta_timestamps:
observation.image: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1 - ${policy.n_obs_steps} + ${policy.horizon})]"
# The original implementation doesn't sample keyframes for the last 7 steps. This is because, as described
# above, the last 7 actions from the diffusion model are not used.
n_end_keyframes_dropped: ${policy.horizon} - ${policy.n_action_steps} - ${policy.n_obs_steps} + 1
eval:
n_episodes: 50
batch_size: 50

View File

@@ -5,8 +5,7 @@ dataset_repo_id: lerobot/xarm_lift_medium
training:
offline_steps: 25000
# TODO(alexander-soare): uncomment when online training gets reinstated
online_steps: 0 # 25000 not implemented yet
online_steps: 25000
eval_freq: 5000
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5

View File

@@ -46,7 +46,6 @@ import json
import logging
import threading
import time
from contextlib import nullcontext
from copy import deepcopy
from datetime import datetime as dt
from pathlib import Path
@@ -521,7 +520,7 @@ def eval(
raise NotImplementedError()
# Check device is available
device = get_safe_torch_device(hydra_cfg.device, log=True)
get_safe_torch_device(hydra_cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
@@ -540,17 +539,16 @@ def eval(
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
policy.eval()
with torch.no_grad(), torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext():
info = eval_policy(
env,
policy,
hydra_cfg.eval.n_episodes,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
start_seed=hydra_cfg.seed,
enable_progbar=True,
enable_inner_progbar=True,
)
info = eval_policy(
env,
policy,
hydra_cfg.eval.n_episodes,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
start_seed=hydra_cfg.seed,
enable_progbar=True,
enable_inner_progbar=True,
)
print(info["aggregated"])
# Save info

View File

@@ -84,10 +84,14 @@ def get_from_raw_to_lerobot_format_fn(raw_format):
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import from_raw_to_lerobot_format
elif raw_format == "aloha_hdf5":
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import from_raw_to_lerobot_format
elif raw_format == "aloha_dora":
from lerobot.common.datasets.push_dataset_to_hub.aloha_dora_format import from_raw_to_lerobot_format
elif raw_format == "xarm_pkl":
from lerobot.common.datasets.push_dataset_to_hub.xarm_pkl_format import from_raw_to_lerobot_format
else:
raise ValueError(raw_format)
raise ValueError(
f"The selected {raw_format} can't be found. Did you add it to `lerobot/scripts/push_dataset_to_hub.py::get_from_raw_to_lerobot_format_fn`?"
)
return from_raw_to_lerobot_format
@@ -140,7 +144,8 @@ def push_videos_to_hub(repo_id, videos_dir, revision):
def push_dataset_to_hub(
data_dir: Path,
input_data_dir: Path,
output_data_dir: Path,
dataset_id: str,
raw_format: str | None,
community_id: str,
@@ -157,34 +162,33 @@ def push_dataset_to_hub(
):
repo_id = f"{community_id}/{dataset_id}"
raw_dir = data_dir / f"{dataset_id}_raw"
out_dir = data_dir / repo_id
meta_data_dir = out_dir / "meta_data"
videos_dir = out_dir / "videos"
meta_data_dir = output_data_dir / "meta_data"
videos_dir = output_data_dir / "videos"
tests_out_dir = tests_data_dir / repo_id
tests_meta_data_dir = tests_out_dir / "meta_data"
tests_videos_dir = tests_out_dir / "videos"
if out_dir.exists():
shutil.rmtree(out_dir)
if output_data_dir.exists():
shutil.rmtree(output_data_dir)
if tests_out_dir.exists() and save_tests_to_disk:
shutil.rmtree(tests_out_dir)
if not raw_dir.exists():
download_raw(raw_dir, dataset_id)
if not input_data_dir.exists():
download_raw(input_data_dir, dataset_id)
if raw_format is None:
# TODO(rcadene, adilzouitine): implement auto_find_raw_format
raise NotImplementedError()
# raw_format = auto_find_raw_format(raw_dir)
# raw_format = auto_find_raw_format(input_data_dir)
from_raw_to_lerobot_format = get_from_raw_to_lerobot_format_fn(raw_format)
# convert dataset from original raw format to LeRobot format
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(raw_dir, out_dir, fps, video, debug)
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(
input_data_dir, output_data_dir, fps, video, debug
)
lerobot_dataset = LeRobotDataset.from_preloaded(
repo_id=repo_id,
@@ -198,7 +202,7 @@ def push_dataset_to_hub(
if save_to_disk:
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
hf_dataset.save_to_disk(str(out_dir / "train"))
hf_dataset.save_to_disk(str(output_data_dir / "train"))
if not dry_run or save_to_disk:
# mandatory for upload
@@ -232,19 +236,25 @@ def push_dataset_to_hub(
fname = f"{key}_episode_{episode_index:06d}.mp4"
shutil.copy(videos_dir / fname, tests_videos_dir / fname)
if not save_to_disk and out_dir.exists():
if not save_to_disk and output_data_dir.exists():
# remove possible temporary files remaining in the output directory
shutil.rmtree(out_dir)
shutil.rmtree(output_data_dir)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-dir",
"--input-data-dir",
type=Path,
required=True,
help="Root directory containing datasets (e.g. `data` or `tmp/data` or `/tmp/lerobot/data`).",
help="Directory containing input raw datasets (e.g. `data/aloha_mobile_chair_raw` or `data/pusht_raw`).",
)
parser.add_argument(
"--output-data-dir",
type=Path,
required=True,
help="Root directory containing output dataset (e.g. `data/lerobot/aloha_mobile_chair` or `data/lerobot/pusht`).",
)
parser.add_argument(
"--dataset-id",

View File

@@ -15,14 +15,15 @@
# limitations under the License.
import logging
import time
from contextlib import nullcontext
from copy import deepcopy
from pathlib import Path
import datasets
import hydra
import torch
from datasets import concatenate_datasets
from datasets.utils import disable_progress_bars, enable_progress_bars
from omegaconf import DictConfig
from torch.cuda.amp import GradScaler
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import cycle
@@ -30,7 +31,6 @@ from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.policy_protocol import PolicyWithUpdate
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
@@ -69,6 +69,7 @@ def make_optimizer_and_scheduler(cfg, policy):
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
assert cfg.training.online_steps == 0, "Diffusion Policy does not handle online training."
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
@@ -86,40 +87,21 @@ def make_optimizer_and_scheduler(cfg, policy):
return optimizer, lr_scheduler
def update_policy(
policy,
batch,
optimizer,
grad_clip_norm,
grad_scaler: GradScaler,
lr_scheduler=None,
use_amp: bool = False,
):
def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
"""Returns a dictionary of items for logging."""
start_time = time.perf_counter()
device = get_device_from_parameters(policy)
start_time = time.time()
policy.train()
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
grad_scaler.scale(loss).backward()
# Unscale the graident of the optimzer's assigned params in-place **prior to gradient clipping**.
grad_scaler.unscale_(optimizer)
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
policy.parameters(),
grad_clip_norm,
error_if_nonfinite=False,
)
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
grad_scaler.step(optimizer)
# Updates the scale for next iteration.
grad_scaler.update()
optimizer.step()
optimizer.zero_grad()
if lr_scheduler is not None:
@@ -133,7 +115,7 @@ def update_policy(
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": optimizer.param_groups[0]["lr"],
"update_s": time.perf_counter() - start_time,
"update_s": time.time() - start_time,
**{k: v for k, v in output_dict.items() if k != "loss"},
}
@@ -229,6 +211,103 @@ def log_eval_info(logger, info, step, cfg, dataset, is_offline):
logger.log_dict(info, step, mode="eval")
def calculate_online_sample_weight(n_off: int, n_on: int, pc_on: float):
"""
Calculate the sampling weight to be assigned to samples so that a specified percentage of the batch comes from online dataset (on average).
Parameters:
- n_off (int): Number of offline samples, each with a sampling weight of 1.
- n_on (int): Number of online samples.
- pc_on (float): Desired percentage of online samples in decimal form (e.g., 50% as 0.5).
The total weight of offline samples is n_off * 1.0.
The total weight of offline samples is n_on * w.
The total combined weight of all samples is n_off + n_on * w.
The fraction of the weight that is online is n_on * w / (n_off + n_on * w).
We want this fraction to equal pc_on, so we set up the equation n_on * w / (n_off + n_on * w) = pc_on.
The solution is w = - (n_off * pc_on) / (n_on * (pc_on - 1))
"""
assert 0.0 <= pc_on <= 1.0
return -(n_off * pc_on) / (n_on * (pc_on - 1))
def add_episodes_inplace(
online_dataset: torch.utils.data.Dataset,
concat_dataset: torch.utils.data.ConcatDataset,
sampler: torch.utils.data.WeightedRandomSampler,
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
pc_online_samples: float,
):
"""
Modifies the online_dataset, concat_dataset, and sampler in place by integrating
new episodes from hf_dataset into the online_dataset, updating the concatenated
dataset's structure and adjusting the sampling strategy based on the specified
percentage of online samples.
Parameters:
- online_dataset (torch.utils.data.Dataset): The existing online dataset to be updated.
- concat_dataset (torch.utils.data.ConcatDataset): The concatenated dataset that combines
offline and online datasets, used for sampling purposes.
- sampler (torch.utils.data.WeightedRandomSampler): A sampler that will be updated to
reflect changes in the dataset sizes and specified sampling weights.
- hf_dataset (datasets.Dataset): A Hugging Face dataset containing the new episodes to be added.
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
They indicate the start index and end index of each episode in the dataset.
- pc_online_samples (float): The target percentage of samples that should come from
the online dataset during sampling operations.
Raises:
- AssertionError: If the first episode_id or index in hf_dataset is not 0
"""
first_episode_idx = hf_dataset.select_columns("episode_index")[0]["episode_index"].item()
last_episode_idx = hf_dataset.select_columns("episode_index")[-1]["episode_index"].item()
first_index = hf_dataset.select_columns("index")[0]["index"].item()
last_index = hf_dataset.select_columns("index")[-1]["index"].item()
# sanity check
assert first_episode_idx == 0, f"{first_episode_idx=} is not 0"
assert first_index == 0, f"{first_index=} is not 0"
assert first_index == episode_data_index["from"][first_episode_idx].item()
assert last_index == episode_data_index["to"][last_episode_idx].item() - 1
if len(online_dataset) == 0:
# initialize online dataset
online_dataset.hf_dataset = hf_dataset
online_dataset.episode_data_index = episode_data_index
else:
# get the starting indices of the new episodes and frames to be added
start_episode_idx = last_episode_idx + 1
start_index = last_index + 1
def shift_indices(episode_index, index):
# note: we dont shift "frame_index" since it represents the index of the frame in the episode it belongs to
example = {"episode_index": episode_index + start_episode_idx, "index": index + start_index}
return example
disable_progress_bars() # map has a tqdm progress bar
hf_dataset = hf_dataset.map(shift_indices, input_columns=["episode_index", "index"])
enable_progress_bars()
episode_data_index["from"] += start_index
episode_data_index["to"] += start_index
# extend online dataset
online_dataset.hf_dataset = concatenate_datasets([online_dataset.hf_dataset, hf_dataset])
# update the concatenated dataset length used during sampling
concat_dataset.cumulative_sizes = concat_dataset.cumsum(concat_dataset.datasets)
# update the sampling weights for each frame so that online frames get sampled a certain percentage of times
len_online = len(online_dataset)
len_offline = len(concat_dataset) - len_online
weight_offline = 1.0
weight_online = calculate_online_sample_weight(len_offline, len_online, pc_online_samples)
sampler.weights = torch.tensor([weight_offline] * len_offline + [weight_online] * len(online_dataset))
# update the total number of samples used during sampling
sampler.num_samples = len(concat_dataset)
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
if out_dir is None:
raise NotImplementedError()
@@ -237,11 +316,11 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
init_logging()
if cfg.training.online_steps > 0:
raise NotImplementedError("Online training is not implemented yet.")
if cfg.training.online_steps > 0 and cfg.eval.batch_size > 1:
logging.warning("eval.batch_size > 1 not supported for online training steps")
# Check device is available
device = get_safe_torch_device(cfg.device, log=True)
get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
@@ -259,7 +338,6 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
# Create optimizer and scheduler
# Temporary hack to move optimizer out of policy
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
grad_scaler = GradScaler(enabled=cfg.use_amp)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
@@ -280,15 +358,14 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
def evaluate_and_checkpoint_if_needed(step):
if step % cfg.training.eval_freq == 0:
logging.info(f"Eval policy at step {step}")
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.use_amp else nullcontext():
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
video_dir=Path(out_dir) / "eval",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
video_dir=Path(out_dir) / "eval",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline)
if cfg.wandb.enable:
logger.log_video(eval_info["video_paths"][0], step, mode="eval")
@@ -312,30 +389,23 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
num_workers=4,
batch_size=cfg.training.batch_size,
shuffle=True,
pin_memory=device.type != "cpu",
pin_memory=cfg.device != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
policy.train()
step = 0 # number of policy update (forward + backward + optim)
is_offline = True
for step in range(cfg.training.offline_steps):
if step == 0:
for offline_step in range(cfg.training.offline_steps):
if offline_step == 0:
logging.info("Start offline training on a fixed dataset")
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(device, non_blocking=True)
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = update_policy(
policy,
batch,
optimizer,
cfg.training.grad_clip_norm,
grad_scaler=grad_scaler,
lr_scheduler=lr_scheduler,
use_amp=cfg.use_amp,
)
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
if step % cfg.training.log_freq == 0:
@@ -345,6 +415,11 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
# so we pass in step + 1.
evaluate_and_checkpoint_if_needed(step + 1)
step += 1
# create an env dedicated to online episodes collection from policy rollout
online_training_env = make_env(cfg, n_envs=1)
# create an empty online dataset similar to offline dataset
online_dataset = deepcopy(offline_dataset)
online_dataset.hf_dataset = {}
@@ -361,11 +436,58 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
num_workers=4,
batch_size=cfg.training.batch_size,
sampler=sampler,
pin_memory=device.type != "cpu",
pin_memory=cfg.device != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
online_step = 0
is_offline = False
for env_step in range(cfg.training.online_steps):
if env_step == 0:
logging.info("Start online training by interacting with environment")
policy.eval()
with torch.no_grad():
eval_info = eval_policy(
online_training_env,
policy,
n_episodes=1,
return_episode_data=True,
start_seed=cfg.training.online_env_seed,
enable_progbar=True,
)
add_episodes_inplace(
online_dataset,
concat_dataset,
sampler,
hf_dataset=eval_info["episodes"]["hf_dataset"],
episode_data_index=eval_info["episodes"]["episode_data_index"],
pc_online_samples=cfg.training.online_sampling_ratio,
)
policy.train()
for _ in range(cfg.training.online_steps_between_rollouts):
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
if step % cfg.training.log_freq == 0:
log_train_info(logger, train_info, step, cfg, online_dataset, is_offline)
# Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
# so we pass in step + 1.
evaluate_and_checkpoint_if_needed(step + 1)
step += 1
online_step += 1
eval_env.close()
online_training_env.close()
logging.info("End of training")

79
poetry.lock generated
View File

@@ -767,6 +767,26 @@ files = [
[package.dependencies]
six = ">=1.4.0"
[[package]]
name = "dora-rs"
version = "0.3.4"
description = "`dora` goal is to be a low latency, composable, and distributed data flow."
optional = true
python-versions = "*"
files = [
{file = "dora_rs-0.3.4-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:d1b738eea5a4966d731c26c6b6a0a50a491a24f7e9e335475f983cfc6f0da19e"},
{file = "dora_rs-0.3.4-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:80b724871618c78a4e5863938fa66724176cc40352771087aebe1e62a8141157"},
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a3919e157b47dc1dbc74c040a73087a4485f0d1bee99b6adcdbc36559400fe2"},
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f7c95f6e5858fd651d6cd220e4f052e99db2944b9c37fb0b5402d60ac4b41a63"},
{file = "dora_rs-0.3.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37d915fbbca282446235c98a9ca08389aa3ef3155d4e88c6c136326e9a830042"},
{file = "dora_rs-0.3.4-cp37-abi3-win32.whl", hash = "sha256:c9f7f22f65c884ec9bee0245ce98d0c7fad25dec0f982e566f844b5e8e58818f"},
{file = "dora_rs-0.3.4-cp37-abi3-win_amd64.whl", hash = "sha256:0a6a37f96a9f6e13b58b02a6ea75af192af5fbe4f456f6a67b1f239c3cee3276"},
{file = "dora_rs-0.3.4.tar.gz", hash = "sha256:05c5d0db0d23d7c4669995ae34db11cd636dbf91f5705d832669bd04e7452903"},
]
[package.dependencies]
pyarrow = "*"
[[package]]
name = "einops"
version = "0.8.0"
@@ -1048,6 +1068,24 @@ mujoco = ">=2.3.7,<3.0.0"
dev = ["debugpy (>=1.8.1)", "pre-commit (>=3.7.0)"]
test = ["pytest (>=8.1.0)", "pytest-cov (>=5.0.0)"]
[[package]]
name = "gym-dora"
version = "0.1.0"
description = ""
optional = true
python-versions = "^3.10"
files = []
develop = true
[package.dependencies]
dora-rs = ">=0.3.4"
gymnasium = ">=0.29.1"
pyarrow = ">=12.0.0"
[package.source]
type = "directory"
url = "gym_dora"
[[package]]
name = "gym-pusht"
version = "0.1.4"
@@ -1655,9 +1693,13 @@ files = [
{file = "lxml-5.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:edcfa83e03370032a489430215c1e7783128808fd3e2e0a3225deee278585196"},
{file = "lxml-5.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:28bf95177400066596cdbcfc933312493799382879da504633d16cf60bba735b"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a745cc98d504d5bd2c19b10c79c61c7c3df9222629f1b6210c0368177589fb8"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b590b39ef90c6b22ec0be925b211298e810b4856909c8ca60d27ffbca6c12e6"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b336b0416828022bfd5a2e3083e7f5ba54b96242159f83c7e3eebaec752f1716"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:c2faf60c583af0d135e853c86ac2735ce178f0e338a3c7f9ae8f622fd2eb788c"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:4bc6cb140a7a0ad1f7bc37e018d0ed690b7b6520ade518285dc3171f7a117905"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7ff762670cada8e05b32bf1e4dc50b140790909caa8303cfddc4d702b71ea184"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:57f0a0bbc9868e10ebe874e9f129d2917750adf008fe7b9c1598c0fbbfdde6a6"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:a6d2092797b388342c1bc932077ad232f914351932353e2e8706851c870bca1f"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:60499fe961b21264e17a471ec296dcbf4365fbea611bf9e303ab69db7159ce61"},
{file = "lxml-5.2.2-cp37-cp37m-win32.whl", hash = "sha256:d9b342c76003c6b9336a80efcc766748a333573abf9350f4094ee46b006ec18f"},
{file = "lxml-5.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:b16db2770517b8799c79aa80f4053cd6f8b716f21f8aca962725a9565ce3ee40"},
@@ -2941,13 +2983,13 @@ files = [
[[package]]
name = "pytest"
version = "8.2.0"
version = "8.2.1"
description = "pytest: simple powerful testing with Python"
optional = true
python-versions = ">=3.8"
files = [
{file = "pytest-8.2.0-py3-none-any.whl", hash = "sha256:1733f0620f6cda4095bbf0d9ff8022486e91892245bb9e7d5542c018f612f233"},
{file = "pytest-8.2.0.tar.gz", hash = "sha256:d507d4482197eac0ba2bae2e9babf0672eb333017bcedaa5fb1a3d42c1174b3f"},
{file = "pytest-8.2.1-py3-none-any.whl", hash = "sha256:faccc5d332b8c3719f40283d0d44aa5cf101cec36f88cde9ed8f2bc0538612b1"},
{file = "pytest-8.2.1.tar.gz", hash = "sha256:5046e5b46d8e4cac199c373041f26be56fdb81eb4e67dc11d4e10811fc3408fd"},
]
[package.dependencies]
@@ -3029,6 +3071,7 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
@@ -3153,13 +3196,13 @@ files = [
[[package]]
name = "requests"
version = "2.31.0"
version = "2.32.1"
description = "Python HTTP for Humans."
optional = false
python-versions = ">=3.7"
python-versions = ">=3.8"
files = [
{file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"},
{file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"},
{file = "requests-2.32.1-py3-none-any.whl", hash = "sha256:21ac9465cdf8c1650fe1ecde8a71669a93d4e6f147550483a2967d08396a56a5"},
{file = "requests-2.32.1.tar.gz", hash = "sha256:eb97e87e64c79e64e5b8ac75cee9dd1f97f49e289b083ee6be96268930725685"},
]
[package.dependencies]
@@ -3406,13 +3449,13 @@ test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "po
[[package]]
name = "sentry-sdk"
version = "2.2.0"
version = "2.2.1"
description = "Python client for Sentry (https://sentry.io)"
optional = false
python-versions = ">=3.6"
files = [
{file = "sentry_sdk-2.2.0-py2.py3-none-any.whl", hash = "sha256:674f58da37835ea7447fe0e34c57b4a4277fad558b0a7cb4a6c83bcb263086be"},
{file = "sentry_sdk-2.2.0.tar.gz", hash = "sha256:70eca103cf4c6302365a9d7cf522e7ed7720828910eb23d43ada8e50d1ecda9d"},
{file = "sentry_sdk-2.2.1-py2.py3-none-any.whl", hash = "sha256:7d617a1b30e80c41f3b542347651fcf90bb0a36f3a398be58b4f06b79c8d85bc"},
{file = "sentry_sdk-2.2.1.tar.gz", hash = "sha256:8aa2ec825724d8d9d645cab68e6034928b1a6a148503af3e361db3fa6401183f"},
]
[package.dependencies]
@@ -3434,7 +3477,7 @@ django = ["django (>=1.8)"]
falcon = ["falcon (>=1.4)"]
fastapi = ["fastapi (>=0.79.0)"]
flask = ["blinker (>=1.1)", "flask (>=0.11)", "markupsafe"]
grpcio = ["grpcio (>=1.21.1)"]
grpcio = ["grpcio (>=1.21.1)", "protobuf (>=3.8.0)"]
httpx = ["httpx (>=0.16.0)"]
huey = ["huey (>=2)"]
huggingface-hub = ["huggingface-hub (>=0.22)"]
@@ -3556,19 +3599,18 @@ test = ["pytest"]
[[package]]
name = "setuptools"
version = "69.5.1"
version = "70.0.0"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "setuptools-69.5.1-py3-none-any.whl", hash = "sha256:c636ac361bc47580504644275c9ad802c50415c7522212252c033bd15f301f32"},
{file = "setuptools-69.5.1.tar.gz", hash = "sha256:6c1fccdac05a97e598fb0ae3bbed5904ccb317337a51139dcd51453611bbb987"},
{file = "setuptools-70.0.0-py3-none-any.whl", hash = "sha256:54faa7f2e8d2d11bcd2c07bed282eef1046b5c080d1c32add737d7b5817b1ad4"},
{file = "setuptools-70.0.0.tar.gz", hash = "sha256:f211a66637b8fa059bb28183da127d4e86396c991a942b028c6650d4319c3fd0"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
[[package]]
name = "shapely"
@@ -4223,6 +4265,7 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more
[extras]
aloha = ["gym-aloha"]
dev = ["debugpy", "pre-commit"]
dora = ["gym-dora"]
pusht = ["gym-pusht"]
test = ["pytest", "pytest-cov"]
umi = ["imagecodecs"]
@@ -4231,4 +4274,4 @@ xarm = ["gym-xarm"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "c3044329cfad91ffd91b411e85f16d8dfdcdfd7b9186d38fff5e18f4ee647e7b"
content-hash = "ea4e8207316a8ec8a4b95d6a89cf488c8733a8e7ab43e5f669c889ee87f3bef3"

View File

@@ -41,11 +41,12 @@ numba = ">=0.59.0"
torch = "^2.2.1"
opencv-python = ">=4.9.0"
diffusers = "^0.27.2"
torchvision = ">=0.17.1"
torchvision = ">=0.18.0"
h5py = ">=3.10.0"
huggingface-hub = {extras = ["hf-transfer"], version = "^0.23.0"}
gymnasium = ">=0.29.1"
cmake = ">=3.29.0.1"
gym-dora = { path = "gym_dora", optional = true, develop = true}
gym-pusht = { version = ">=0.1.3", optional = true}
gym-xarm = { version = ">=0.1.1", optional = true}
gym-aloha = { version = ">=0.1.1", optional = true}
@@ -61,6 +62,7 @@ rerun-sdk = ">=0.15.1"
[tool.poetry.extras]
dora = ["gym-dora"]
pusht = ["gym-pusht"]
xarm = ["gym-xarm"]
aloha = ["gym-aloha"]

View File

@@ -115,7 +115,6 @@ def test_compute_stats_on_xarm():
# reduce size of dataset sample on which stats compute is tested to 10 frames
dataset.hf_dataset = dataset.hf_dataset.select(range(10))
dataset.index = [i for i in dataset.index if i < 10]
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
# computation of the statistics. While doing this, we also make sure it works when we don't divide the

View File

@@ -45,11 +45,11 @@ def test_example_1():
@require_package("gym_pusht")
def test_examples_basic2_basic3_advanced1():
def test_examples_2_through_4():
"""
Train a model with example 3, check the outputs.
Evaluate the trained model with example 2, check the outputs.
Calculate the validation loss with advanced example 1, check the outputs.
Calculate the validation loss with example 4, check the outputs.
"""
### Test example 3
@@ -97,7 +97,7 @@ def test_examples_basic2_basic3_advanced1():
assert Path("outputs/eval/example_pusht_diffusion/rollout.mp4").exists()
## Test example 4
file_contents = _read_file("examples/advanced/2_calculate_validation_loss.py")
file_contents = _read_file("examples/4_calculate_validation_loss.py")
# Run on a single example from the last episode, use CPU, and use the local model.
file_contents = _find_and_replace(