forked from tangger/lerobot
Compare commits
112 Commits
fix_path
...
user/alibe
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3f63c69876 | ||
|
|
8a21c00297 | ||
|
|
55d83b71cd | ||
|
|
b3a21e79c4 | ||
|
|
59e56886e2 | ||
|
|
2bf31bb082 | ||
|
|
8e0d356801 | ||
|
|
ed5a0c88e1 | ||
|
|
cb6d1e0871 | ||
|
|
9ced0cf1fb | ||
|
|
98534d1a63 | ||
|
|
edacc1d2a0 | ||
|
|
5a46b8a2a9 | ||
|
|
4a8c5e238e | ||
|
|
1a1308d62f | ||
|
|
203bcd7ca5 | ||
|
|
98b9631aa6 | ||
|
|
c5635b7d94 | ||
|
|
f00252552a | ||
|
|
90f6af9736 | ||
|
|
bcfdba109f | ||
|
|
0fae5b206b | ||
|
|
7cdd6d2450 | ||
|
|
058ac991eb | ||
|
|
d3adaf1379 | ||
|
|
dc89166bee | ||
|
|
5ef813ff1e | ||
|
|
a2ac83276b | ||
|
|
c0833f1c2d | ||
|
|
de5c30405e | ||
|
|
462e7469e8 | ||
|
|
298d391b26 | ||
|
|
be6364f109 | ||
|
|
127de1258d | ||
|
|
b905111895 | ||
|
|
0c41675986 | ||
|
|
1c24bbda3f | ||
|
|
e41c420a96 | ||
|
|
4a48b77540 | ||
|
|
f3cfc8b3b4 | ||
|
|
d2ef43436c | ||
|
|
40f3783fca | ||
|
|
e21ed6f510 | ||
|
|
bd40ffc53c | ||
|
|
d43fa600a0 | ||
|
|
e698d38a35 | ||
|
|
15ff3b3af8 | ||
|
|
a80d9c0257 | ||
|
|
b9047fbdd2 | ||
|
|
115927d0f6 | ||
|
|
529f42643d | ||
|
|
1b279a1fc0 | ||
|
|
3f0f95f4c0 | ||
|
|
8720c568d0 | ||
|
|
b633748987 | ||
|
|
41912b962b | ||
|
|
98361073ef | ||
|
|
48df15ed26 | ||
|
|
b562f89c3b | ||
|
|
4e10cd306b | ||
|
|
72d3c3120b | ||
|
|
acf1174447 | ||
|
|
1bd50122be | ||
|
|
2b0221052a | ||
|
|
4631d36c05 | ||
|
|
f23a53c3e4 | ||
|
|
82e6e01651 | ||
|
|
d323993569 | ||
|
|
ec536ef0fa | ||
|
|
3910c48e43 | ||
|
|
4b7ec81dde | ||
|
|
98a816f0f8 | ||
|
|
45a4a02b7e | ||
|
|
8bed0fc465 | ||
|
|
32e3f71dd1 | ||
|
|
5332766a82 | ||
|
|
b1ec3da035 | ||
|
|
d16f6a93b3 | ||
|
|
52e149fbfd | ||
|
|
4f1955edfd | ||
|
|
c5010fee9a | ||
|
|
18fa88475b | ||
|
|
b54cdc9a0f | ||
|
|
46ac87d2a6 | ||
|
|
896a11f60e | ||
|
|
2d5abbbd6f | ||
|
|
7d5d99e036 | ||
|
|
b420ab88f4 | ||
|
|
e799dc5e3f | ||
|
|
10034e85c4 | ||
|
|
ea17f4ce50 | ||
|
|
6a1a29386a | ||
|
|
88347965c2 | ||
|
|
09ddd9bf92 | ||
|
|
099a465367 | ||
|
|
8e346b379d | ||
|
|
bae7e7b41c | ||
|
|
75cc10198f | ||
|
|
3124f71ebd | ||
|
|
4ecfd17f9e | ||
|
|
58d1787ee3 | ||
|
|
b752833f3f | ||
|
|
a45896dc8d | ||
|
|
a222c88c99 | ||
|
|
736bc969ca | ||
|
|
4822d63dbe | ||
|
|
ba91976944 | ||
|
|
98484ac68e | ||
|
|
9512d1d2f3 | ||
|
|
87fcc536f9 | ||
|
|
304355c917 | ||
|
|
2a01487494 |
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -1 +1,2 @@
|
||||
*.memmap filter=lfs diff=lfs merge=lfs -text
|
||||
*.stl filter=lfs diff=lfs merge=lfs -text
|
||||
|
||||
722
.github/poetry/cpu/poetry.lock
generated
vendored
722
.github/poetry/cpu/poetry.lock
generated
vendored
@@ -1,4 +1,4 @@
|
||||
# This file is automatically @generated by Poetry 1.8.1 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "absl-py"
|
||||
@@ -44,56 +44,56 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "av"
|
||||
version = "11.0.0"
|
||||
version = "12.0.0"
|
||||
description = "Pythonic bindings for FFmpeg's libraries."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "av-11.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a01f13b37eb6d181e03bbbbda29093fe2d68f10755795188220acdc89560ec27"},
|
||||
{file = "av-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b2236faee1b5d71dff3cdef81ef6eec22cc8b71dbfb45eb037e6437fe80f24e7"},
|
||||
{file = "av-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40543a08e5c84aecd2bc84da5d43548743201897f0ba21bf5ae3a4dcddefca2b"},
|
||||
{file = "av-11.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2907376884d956376aaf3bc1905fa4e0dcb9ba4e0d183e519392a19d89317d1b"},
|
||||
{file = "av-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8d5581dcdc81cd601e3ce036809f14da82c46ff187bcefe981ec819390e0ab0"},
|
||||
{file = "av-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:150490f2a62cfa470f3cb60f3a0060ff93afd807e2b7b3b0eeeb5a992eb8d67b"},
|
||||
{file = "av-11.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d9bac0de62f09e2cb4e2132b5a46a89bc31c898189aa285b484c17351d991afe"},
|
||||
{file = "av-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2122ff8bdace4ce50207920f37de472517921e2ca1f0503464f748fdb8e20506"},
|
||||
{file = "av-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:527d840697fee6ad4cf47eba987eaf30cd76bd96b2d20eaa907e166b9b8065c8"},
|
||||
{file = "av-11.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abeaedddfca9101886eb6fc47318c5f5ece8480d330d73aacf6917d7421981a2"},
|
||||
{file = "av-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13790fbb889b955baf885fe3761e923e85537ef414173465ec293177cedb7b99"},
|
||||
{file = "av-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:fc27e27f52480287f44226ad4ae3eb53346bf027959d0f00a9154530bd98b371"},
|
||||
{file = "av-11.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:892583e2c6b8c2500e5d24310f499caefcdaa2e48c8f7169ad41041aaaf4da11"},
|
||||
{file = "av-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6943679d70a9f4de974049e7ae2cf0b20afe0d7ddab650526c02a6cf9adcd08f"},
|
||||
{file = "av-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6d73b038ccf1df5c16bc643eee5c694fb7732e09375e2f4903c1f4ce90dfb72"},
|
||||
{file = "av-11.0.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c83422db3333e97b9680700df5185139352fc3a568b14179da3bdcbeb2f0e91b"},
|
||||
{file = "av-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8413900f6a3639e0088c018a3a516a1656d4d16799e7aa759a16ddf3bd268e2b"},
|
||||
{file = "av-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:908e49ee336223801d8f2f7dca5a1deb64e9d8256138b8e7a79013b682a6ebb5"},
|
||||
{file = "av-11.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:82411ae4a562da07b76028d2f349fb0e6a86aa78ad2b18d2d7bf5b06b17fba14"},
|
||||
{file = "av-11.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:621104bd63e38fa4eca554da3722b1aac329619de39152f27eec8999acc72342"},
|
||||
{file = "av-11.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:442878990c094455a16c10127edcc54bc4e78d355e6a13ad2a27608b0ecda38f"},
|
||||
{file = "av-11.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:658199c92987dc72511f5ee8ade62faef6234b7a04c8b5788de99e366be5e073"},
|
||||
{file = "av-11.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad4b381665c49267b46f87297573898b85e5c41384750fee2e70267fbc4ba318"},
|
||||
{file = "av-11.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:60de14f71293e36ca4e297cc8a8460f0cf74f38a201694f3c6fc7f40301582f2"},
|
||||
{file = "av-11.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a90f04af96374dab94028a7471597bdfcf03083338b9be2eb8ca4805a8ec7ab5"},
|
||||
{file = "av-11.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8821ab2d23e4cb5c8abea6b08d2b1bfceca6af2d88fab1d1dc1b3ec7b34933c7"},
|
||||
{file = "av-11.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a92342ed307eeaf9509a6b0f3bafd4337c4880c851b50acc18df48c625b63b6"},
|
||||
{file = "av-11.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbe3502975bc844f5d432c1f24d331bf6ef3e05532ebf06f7ed08b60719b8ea5"},
|
||||
{file = "av-11.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c278b3a4fd111b4c9190abe6b1a5ca358d5f91e851d470b62577b957e0187b09"},
|
||||
{file = "av-11.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:478aa1d54fbc3058ea65ff41086b6adbe1326b456a027d2f3b59dbe60b4ac2ca"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e8df10bb2d56a981d02a8a0b41491912b76dad06305d174a2575ef55ad451100"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b30c51e597785a89241bd61865faff2dbd3327856a8285a1e120dbf60e18348b"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a8b8bd92edb096699b306e7b090ad096925ca3bdae6f89656f023fa2a2da627d"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9383af733abfc44f6fc29307a6c922fbf671ee343dc97b78b74eac6a2346a46d"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a9df4a60579198b560f641cdfe4c2139948a70193ddc096b275f2cf6d94e3e04"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8ae5f7ae0a7093fb813686d4aa4c554531f80a28480427f5c155da51b747eff0"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50fb7d606f8236891d773c701d5650b93af8dbf78eeaac36fc7e1f7f64a9d664"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:543e0f9bf6ff02dedbe66d906fbc89c8907c80a8ea7413fc3fed68ce4a6e9b44"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:daa279c884457ab194ce78bdd89c0aa391af733da95fb3258d4c6eb8c258299a"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1aacc21f4cf96447117a61edfb776afb73186750a5e08a21484ddfc3599aefb5"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2568b38eef777b916a5d02e42b8f67f92e12023531239ddd32e1ca4f3cdf8c5b"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:747c6d347e27c59cc2e78c9c505d23cd88eceff0cc9386be73693ae9009a577c"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4bbd8f4941b9d3450eff40003b9b9d904667aec7ab085fa31f0f9bca32d755e0"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f39c1244ba0cf185b2722aeec116b8a98a2ee5728ce687cec0bda60ee0360dfc"},
|
||||
{file = "av-11.0.0.tar.gz", hash = "sha256:48223f000a252070f8e700ff634bb7fb3aa1b7bc7e450373029fbdd6f369ac31"},
|
||||
{file = "av-12.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b9d0890553951f76c479a9f2bb952aebae902b1c7d52feea614d37e1cd728a44"},
|
||||
{file = "av-12.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5d7f229a253c2e3fea9682c09c5ae179bd6d5d2da38d89eb7f29ef7bed10cb2f"},
|
||||
{file = "av-12.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:61b3555d143aacf02e0446f6030319403538eba4dc713c18dfa653a2a23e7f9c"},
|
||||
{file = "av-12.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:607e13b2c2b26159a37525d7b6f647a32ce78711fccff23d146d3e255ffa115f"},
|
||||
{file = "av-12.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f0b4cfb89f4f06b339c766f92648e798a96747d4163f2fa78660d1ab1f1b5e"},
|
||||
{file = "av-12.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:41dcb8c269fa58a56edf3a3c814c32a0c69586827f132b4e395a951b0ce14fad"},
|
||||
{file = "av-12.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fa78fbe0e4469226512380180063116105048c66cb12e18ab4b518466c57e6c"},
|
||||
{file = "av-12.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:60a869be1d6af916e65ea461cb93922f5db0698655ed7a7eae7c3ecd4af4debb"},
|
||||
{file = "av-12.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df61811cc551c186f0a0e530d97b8b139453534d0f92c1790a923f666522ceda"},
|
||||
{file = "av-12.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99cd2fc53091ebfb9a2fa9dd3580267f5bd1c040d0efd99fbc1a162576b271cb"},
|
||||
{file = "av-12.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a6d4f1e261df48932128e6495772faa4cc23f5dd1512eec73daab82ad9f3240"},
|
||||
{file = "av-12.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:6aec88e41a498b1e01e2dce5371557e20f9a51aae0c16decc5924ec0be2e22b6"},
|
||||
{file = "av-12.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:90eb8f2d548e96cbc6f78e89c911cdb15a3d80fd944f31111660ce45939cd037"},
|
||||
{file = "av-12.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7f3a02910e77d750dbd516256a16db15030e5371530ff5a5ae902dc03d9005d"},
|
||||
{file = "av-12.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2477cc51526aa50575313d66e5e8ad7ab944588469be5e557b360ed572ae536"},
|
||||
{file = "av-12.0.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a2f47149d3ca6deb79f3e515b8bef50e27ebdb160813e6d67dba77278d2a7883"},
|
||||
{file = "av-12.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3306e4a3ce8b5bfcc3075793d4ed3a2df69179d8fba22cb944a6164dc235dfb6"},
|
||||
{file = "av-12.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:dc1b742e7f6df1b499fb960bd6697d1dd8e7ada7484a041a8c20e70a87225f53"},
|
||||
{file = "av-12.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0183be6889e835e1b074b4037bfce4fd44671c606cf1c4ab92ea2f271b544aec"},
|
||||
{file = "av-12.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:57337f20b208292ec8d3b11e4d289d8688a43d728174850a81b865d3253fff2c"},
|
||||
{file = "av-12.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ec915e8f6521545a38566eefc281042ee504ea3cee0618d8558e4920588b3b2"},
|
||||
{file = "av-12.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:33ad5c0a23c45b72bd6bd47f3b2c1adcd2935ee3d0b6178ed66bba62b964ff31"},
|
||||
{file = "av-12.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfc3a652b12c93120514d56cf025da47442c5ba51530cdf7ba3660257dbb0de1"},
|
||||
{file = "av-12.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:037f793dd1ef4a1f57f090191a7f803ad10ec82da0d04ea26bbe0b8a145fe927"},
|
||||
{file = "av-12.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fc532376aa264722fae55063abd1871d17a563dc895978e142c8ecfcdeb3a2e8"},
|
||||
{file = "av-12.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:abf0c4bc40a0af8a30f4cd96f3be6f19fbce0f21222d7fcec148e085127153f7"},
|
||||
{file = "av-12.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81cedd1c072fbebf606724c406b1a1b00adc711f1dfd2bc04c633ce39d8439d8"},
|
||||
{file = "av-12.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:02d60f48be9f15dcda37d50f3ce8d7249d9a455643d4322dd3449986bacfc628"},
|
||||
{file = "av-12.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d2619e4c26d661eecfc404f7d739d8b35f0dcef353fabe61512e030254b7031"},
|
||||
{file = "av-12.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:1892cc91c888d101777d5432d54e0554c11d1c3a2c65d02a2cae0a2256a8fbb9"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:4819e3ef6c3a44ef6f75907229133a1ee7f688245b2cf49b6b8e969a81ca72c9"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb16bb314cf1503b0250fc46b2c455ee196584231101be0123f4f78638227b62"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3e6a62bda9a1e144feeb59bbee046d7a2d98399634a30f57e4990197313c158"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08175ffbafa3a70c7b2f81083e160e34122a208cdf70f150b8f5d02c2de6965"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e1d255be317b7c1ebdc4dae98935b9f3869161112dc829c625e54f90d8bdd7ab"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:17964b36e08435910aabd5b3f7dca12f99536902529767d276026bc08f94ced7"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2d5f78de29edee06ddcdd4c2b759914575492d6a0cd4de2ce31ee63a4953eff"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:309b32bc97158d0f0c19e273b8e17a855a86806b7194aebc23bd497326cff11f"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c409c71bd9c7c2f8d018c822f36b1447cfa96eca158381a96f3319bb0ff6e79e"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:08fc5eaef60a257d622998626e233bf3ff90d2f817f6695d6a27e0ffcfe9dcff"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:746ab0eff8a7a21a6c6d16e6b6e61709527eba2ad1a524d92a01bb60d02a3df7"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:013b3ac3de3aa1c137af0cedafd364fd1c7524ab3e1cd53e04564fd1632ac04d"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fa55923527648f51ac005e44fe2797ebc67f53ad4850e0194d3753761ee33a2"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:35d514f4dee0cf67e9e6b2a65fb4a28f98da88e71e8c7f7960bd04625d9fe965"},
|
||||
{file = "av-12.0.0.tar.gz", hash = "sha256:bcf21ebb722d4538b4099e5a78f730d78814dd70003511c185941dba5651b14d"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -339,72 +339,72 @@ files = [
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "cython"
|
||||
version = "3.0.9"
|
||||
description = "The Cython compiler for writing C extensions in the Python language."
|
||||
name = "coverage"
|
||||
version = "7.4.4"
|
||||
description = "Code coverage measurement for Python"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "Cython-3.0.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:296bd30d4445ac61b66c9d766567f6e81a6e262835d261e903c60c891a6729d3"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f496b52845cb45568a69d6359a2c335135233003e708ea02155c10ce3548aa89"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:858c3766b9aa3ab8a413392c72bbab1c144a9766b7c7bfdef64e2e414363fa0c"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c0eb1e6ef036028a52525fd9a012a556f6dd4788a0e8755fe864ba0e70cde2ff"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c8191941073ea5896321de3c8c958fd66e5f304b0cd1f22c59edd0b86c4dd90d"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e32b016030bc72a8a22a1f21f470a2f57573761a4f00fbfe8347263f4fbdb9f1"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-win32.whl", hash = "sha256:d6f3ff1cd6123973fe03e0fb8ee936622f976c0c41138969975824d08886572b"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-win_amd64.whl", hash = "sha256:56f3b643dbe14449248bbeb9a63fe3878a24256664bc8c8ef6efd45d102596d8"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:35e6665a20d6b8a152d72b7fd87dbb2af6bb6b18a235b71add68122d594dbd41"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92f4960c40ad027bd8c364c50db11104eadc59ffeb9e5b7f605ca2f05946e20"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38df37d0e732fbd9a2fef898788492e82b770c33d1e4ed12444bbc8a3b3f89c0"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad7fd88ebaeaf2e76fd729a8919fae80dab3d6ac0005e28494261d52ff347a8f"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1365d5f76bf4d19df3d19ce932584c9bb76e9fb096185168918ef9b36e06bfa4"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c232e7f279388ac9625c3e5a5a9f0078a9334959c5d6458052c65bbbba895e1e"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-win32.whl", hash = "sha256:357e2fad46a25030b0c0496487e01a9dc0fdd0c09df0897f554d8ba3c1bc4872"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-win_amd64.whl", hash = "sha256:1315aee506506e8d69cf6631d8769e6b10131fdcc0eb66df2698f2a3ddaeeff2"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:157973807c2796addbed5fbc4d9c882ab34bbc60dc297ca729504901479d5df7"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00b105b5d050645dd59e6767bc0f18b48a4aa11c85f42ec7dd8181606f4059e3"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac5536d09bef240cae0416d5a703d298b74c7bbc397da803ac9d344e732d4369"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09c44501d476d16aaa4cbc29c87f8c0f54fc20e69b650d59cbfa4863426fc70c"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:cc9c3b9f20d8e298618e5ccd32083ca386e785b08f9893fbec4c50b6b85be772"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a30d96938c633e3ec37000ac3796525da71254ef109e66bdfd78f29891af6454"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-win32.whl", hash = "sha256:757ca93bdd80702546df4d610d2494ef2e74249cac4d5ba9464589fb464bd8a3"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-win_amd64.whl", hash = "sha256:1dc320a9905ab95414013f6de805efbff9e17bb5fb3b90bbac533f017bec8136"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4ae349960ebe0da0d33724eaa7f1eb866688fe5434cc67ce4dbc06d6a719fbfc"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63d2537bf688247f76ded6dee28ebd26274f019309aef1eb4f2f9c5c482fde2d"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36f5a2dfc724bea1f710b649f02d802d80fc18320c8e6396684ba4a48412445a"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:deaf4197d4b0bcd5714a497158ea96a2bd6d0f9636095437448f7e06453cc83d"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:000af6deb7412eb7ac0c635ff5e637fb8725dd0a7b88cc58dfc2b3de14e701c4"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:15c7f5c2d35bed9aa5f2a51eaac0df23ae72f2dbacf62fc672dd6bfaa75d2d6f"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-win32.whl", hash = "sha256:f49aa4970cd3bec66ac22e701def16dca2a49c59cceba519898dd7526e0be2c0"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-win_amd64.whl", hash = "sha256:4558814fa025b193058d42eeee498a53d6b04b2980d01339fc2444b23fd98e58"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:539cd1d74fd61f6cfc310fa6bbbad5adc144627f2b7486a07075d4e002fd6aad"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3232926cd406ee02eabb732206f6e882c3aed9d58f0fea764013d9240405bcf"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33b6ac376538a7fc8c567b85d3c71504308a9318702ec0485dd66c059f3165cb"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2cc92504b5d22ac66031ffb827bd3a967fc75a5f0f76ab48bce62df19be6fdfd"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:22b8fae756c5c0d8968691bed520876de452f216c28ec896a00739a12dba3bd9"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9cda0d92a09f3520f29bd91009f1194ba9600777c02c30c6d2d4ac65fb63e40d"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-win32.whl", hash = "sha256:ec612418490941ed16c50c8d3784c7bdc4c4b2a10c361259871790b02ec8c1db"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-win_amd64.whl", hash = "sha256:976c8d2bedc91ff6493fc973d38b2dc01020324039e2af0e049704a8e1b22936"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5055988b007c92256b6e9896441c3055556038c3497fcbf8c921a6c1fce90719"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9360606d964c2d0492a866464efcf9d0a92715644eede3f6a2aa696de54a137"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c6e809f060bed073dc7cba1648077fe3b68208863d517c8b39f3920eecf9dd"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:95ed792c966f969cea7489c32ff90150b415c1f3567db8d5a9d489c7c1602dac"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8edd59d22950b400b03ca78d27dc694d2836a92ef0cac4f64cb4b2ff902f7e25"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4cf0ed273bf60e97922fcbbdd380c39693922a597760160b4b4355e6078ca188"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-win32.whl", hash = "sha256:5eb9bd4ae12ebb2bc79a193d95aacf090fbd8d7013e11ed5412711650cb34934"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-win_amd64.whl", hash = "sha256:44457279da56e0f829bb1fc5a5dc0836e5d498dbcf9b2324f32f7cc9d2ec6569"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4b419a1adc2af43f4660e2f6eaf1e4fac2dbac59490771eb8ac3d6063f22356"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f836192140f033b2319a0128936367c295c2b32e23df05b03b672a6015757ea"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fd198c1a7f8e9382904d622cc0efa3c184605881fd5262c64cbb7168c4c1ec5"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a274fe9ca5c53fafbcf5c8f262f8ad6896206a466f0eeb40aaf36a7951e957c0"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:158c38360bbc5063341b1e78d3737f1251050f89f58a3df0d10fb171c44262be"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8bf30b045f7deda0014b042c1b41c1d272facc762ab657529e3b05505888e878"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-win32.whl", hash = "sha256:9a001fd95c140c94d934078544ff60a3c46aca2dc86e75a76e4121d3cd1f4b33"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-win_amd64.whl", hash = "sha256:530c01c4aebba709c0ec9c7ecefe07177d0b9fd7ffee29450a118d92192ccbdf"},
|
||||
{file = "Cython-3.0.9-py2.py3-none-any.whl", hash = "sha256:bf96417714353c5454c2e3238fca9338599330cf51625cdc1ca698684465646f"},
|
||||
{file = "Cython-3.0.9.tar.gz", hash = "sha256:a2d354f059d1f055d34cfaa62c5b68bc78ac2ceab6407148d47fb508cf3ba4f3"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0be5efd5127542ef31f165de269f77560d6cdef525fffa446de6f7e9186cfb2"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ccd341521be3d1b3daeb41960ae94a5e87abe2f46f17224ba5d6f2b8398016cf"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fa497a8ab37784fbb20ab699c246053ac294d13fc7eb40ec007a5043ec91f8"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1a93009cb80730c9bca5d6d4665494b725b6e8e157c1cb7f2db5b4b122ea562"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:690db6517f09336559dc0b5f55342df62370a48f5469fabf502db2c6d1cffcd2"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:09c3255458533cb76ef55da8cc49ffab9e33f083739c8bd4f58e79fecfe288f7"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ce1415194b4a6bd0cdcc3a1dfbf58b63f910dcb7330fe15bdff542c56949f87"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b91cbc4b195444e7e258ba27ac33769c41b94967919f10037e6355e998af255c"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-win32.whl", hash = "sha256:598825b51b81c808cb6f078dcb972f96af96b078faa47af7dfcdf282835baa8d"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:09ef9199ed6653989ebbcaacc9b62b514bb63ea2f90256e71fea3ed74bd8ff6f"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f9f50e7ef2a71e2fae92774c99170eb8304e3fdf9c8c3c7ae9bab3e7229c5cf"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:623512f8ba53c422fcfb2ce68362c97945095b864cda94a92edbaf5994201083"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0513b9508b93da4e1716744ef6ebc507aff016ba115ffe8ecff744d1322a7b63"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40209e141059b9370a2657c9b15607815359ab3ef9918f0196b6fccce8d3230f"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a2b2b78c78293782fd3767d53e6474582f62443d0504b1554370bde86cc8227"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:73bfb9c09951125d06ee473bed216e2c3742f530fc5acc1383883125de76d9cd"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f384c3cc76aeedce208643697fb3e8437604b512255de6d18dae3f27655a384"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:54eb8d1bf7cacfbf2a3186019bcf01d11c666bd495ed18717162f7eb1e9dd00b"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-win32.whl", hash = "sha256:cac99918c7bba15302a2d81f0312c08054a3359eaa1929c7e4b26ebe41e9b286"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:b14706df8b2de49869ae03a5ccbc211f4041750cd4a66f698df89d44f4bd30ec"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:201bef2eea65e0e9c56343115ba3814e896afe6d36ffd37bab783261db430f76"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:41c9c5f3de16b903b610d09650e5e27adbfa7f500302718c9ffd1c12cf9d6818"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d898fe162d26929b5960e4e138651f7427048e72c853607f2b200909794ed978"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ea79bb50e805cd6ac058dfa3b5c8f6c040cb87fe83de10845857f5535d1db70"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce4b94265ca988c3f8e479e741693d143026632672e3ff924f25fab50518dd51"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:00838a35b882694afda09f85e469c96367daa3f3f2b097d846a7216993d37f4c"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fdfafb32984684eb03c2d83e1e51f64f0906b11e64482df3c5db936ce3839d48"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:69eb372f7e2ece89f14751fbcbe470295d73ed41ecd37ca36ed2eb47512a6ab9"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-win32.whl", hash = "sha256:137eb07173141545e07403cca94ab625cc1cc6bc4c1e97b6e3846270e7e1fea0"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:d71eec7d83298f1af3326ce0ff1d0ea83c7cb98f72b577097f9083b20bdaf05e"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d5ae728ff3b5401cc320d792866987e7e7e880e6ebd24433b70a33b643bb0384"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc4f1358cb0c78edef3ed237ef2c86056206bb8d9140e73b6b89fbcfcbdd40e1"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8130a2aa2acb8788e0b56938786c33c7c98562697bf9f4c7d6e8e5e3a0501e4a"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf271892d13e43bc2b51e6908ec9a6a5094a4df1d8af0bfc360088ee6c684409"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4cdc86d54b5da0df6d3d3a2f0b710949286094c3a6700c21e9015932b81447e"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ae71e7ddb7a413dd60052e90528f2f65270aad4b509563af6d03d53e979feafd"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:38dd60d7bf242c4ed5b38e094baf6401faa114fc09e9e6632374388a404f98e7"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa5b1c1bfc28384f1f53b69a023d789f72b2e0ab1b3787aae16992a7ca21056c"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-win32.whl", hash = "sha256:dfa8fe35a0bb90382837b238fff375de15f0dcdb9ae68ff85f7a63649c98527e"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:b2991665420a803495e0b90a79233c1433d6ed77ef282e8e152a324bbbc5e0c8"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b799445b9f7ee8bf299cfaed6f5b226c0037b74886a4e11515e569b36fe310d"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b4d33f418f46362995f1e9d4f3a35a1b6322cb959c31d88ae56b0298e1c22357"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aadacf9a2f407a4688d700e4ebab33a7e2e408f2ca04dbf4aef17585389eff3e"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c95949560050d04d46b919301826525597f07b33beba6187d04fa64d47ac82e"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff7687ca3d7028d8a5f0ebae95a6e4827c5616b31a4ee1192bdfde697db110d4"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5fc1de20b2d4a061b3df27ab9b7c7111e9a710f10dc2b84d33a4ab25065994ec"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c74880fc64d4958159fbd537a091d2a585448a8f8508bf248d72112723974cbd"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:742a76a12aa45b44d236815d282b03cfb1de3b4323f3e4ec933acfae08e54ade"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-win32.whl", hash = "sha256:d89d7b2974cae412400e88f35d86af72208e1ede1a541954af5d944a8ba46c57"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:9ca28a302acb19b6af89e90f33ee3e1906961f94b54ea37de6737b7ca9d8827c"},
|
||||
{file = "coverage-7.4.4-pp38.pp39.pp310-none-any.whl", hash = "sha256:b2c5edc4ac10a7ef6605a966c58929ec6c1bd0917fb8c15cb3363f65aa40e677"},
|
||||
{file = "coverage-7.4.4.tar.gz", hash = "sha256:c901df83d097649e257e803be22592aedfd5182f07b3cc87d640bbb9afd50f49"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""}
|
||||
|
||||
[package.extras]
|
||||
toml = ["tomli"]
|
||||
|
||||
[[package]]
|
||||
name = "debugpy"
|
||||
version = "1.8.1"
|
||||
@@ -500,13 +500,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "dm-control"
|
||||
version = "1.0.16"
|
||||
version = "1.0.14"
|
||||
description = "Continuous control environments and MuJoCo Python bindings."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "dm_control-1.0.16-py3-none-any.whl", hash = "sha256:341f582e26d88556ac0dd1963e11c25f93ef6649b07c75d04570a7de3edebd1b"},
|
||||
{file = "dm_control-1.0.16.tar.gz", hash = "sha256:bbdd6dc54b4dbc33eef6c43294edb0a927c3a5f35621e698480f88f55f48a1fd"},
|
||||
{file = "dm_control-1.0.14-py3-none-any.whl", hash = "sha256:883c63244a7ebf598700a97564ed19fffd3479ca79efd090aed881609cdb9fc6"},
|
||||
{file = "dm_control-1.0.14.tar.gz", hash = "sha256:def1ece747b6f175c581150826b50f1a6134086dab34f8f3fd2d088ea035cf3d"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -516,7 +516,7 @@ dm-tree = "!=0.1.2"
|
||||
glfw = "*"
|
||||
labmaze = "*"
|
||||
lxml = "*"
|
||||
mujoco = ">=3.1.1"
|
||||
mujoco = ">=2.3.7"
|
||||
numpy = ">=1.9.0"
|
||||
protobuf = ">=3.19.4"
|
||||
pyopengl = ">=3.1.4"
|
||||
@@ -614,6 +614,16 @@ files = [
|
||||
[package.dependencies]
|
||||
six = ">=1.4.0"
|
||||
|
||||
[[package]]
|
||||
name = "egl-probe"
|
||||
version = "1.0.2"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "egl_probe-1.0.2.tar.gz", hash = "sha256:29bdca7b08da1e060cfb42cd46af8300a7ac4f3b1b2eeb16e545ea16d9a5ac93"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "einops"
|
||||
version = "0.7.0"
|
||||
@@ -625,43 +635,6 @@ files = [
|
||||
{file = "einops-0.7.0.tar.gz", hash = "sha256:b2b04ad6081a3b227080c9bf5e3ace7160357ff03043cd66cc5b2319eb7031d1"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "etils"
|
||||
version = "1.7.0"
|
||||
description = "Collection of common python utils"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
files = [
|
||||
{file = "etils-1.7.0-py3-none-any.whl", hash = "sha256:61af8f7c242171de15e22e5da02d527cb9e677d11f8bcafe18fcc3548eee3e60"},
|
||||
{file = "etils-1.7.0.tar.gz", hash = "sha256:97b68fd25e185683215286ef3a54e38199b6245f5fe8be6bedc1189be4256350"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
fsspec = {version = "*", optional = true, markers = "extra == \"epath\""}
|
||||
importlib_resources = {version = "*", optional = true, markers = "extra == \"epath\""}
|
||||
typing_extensions = {version = "*", optional = true, markers = "extra == \"epy\""}
|
||||
zipp = {version = "*", optional = true, markers = "extra == \"epath\""}
|
||||
|
||||
[package.extras]
|
||||
all = ["etils[array-types]", "etils[eapp]", "etils[ecolab]", "etils[edc]", "etils[enp]", "etils[epath-gcs]", "etils[epath-s3]", "etils[epath]", "etils[epy]", "etils[etqdm]", "etils[etree-dm]", "etils[etree-jax]", "etils[etree-tf]", "etils[etree]"]
|
||||
array-types = ["etils[enp]"]
|
||||
dev = ["chex", "dataclass_array", "optree", "pyink", "pylint (>=2.6.0)", "pytest", "pytest-subtests", "pytest-xdist", "torch"]
|
||||
docs = ["etils[all,dev]", "sphinx-apitree[ext]"]
|
||||
eapp = ["absl-py", "etils[epy]", "simple_parsing"]
|
||||
ecolab = ["etils[enp]", "etils[epy]", "etils[etree]", "jupyter", "mediapy", "numpy", "packaging", "protobuf"]
|
||||
edc = ["etils[epy]"]
|
||||
enp = ["etils[epy]", "numpy"]
|
||||
epath = ["etils[epy]", "fsspec", "importlib_resources", "typing_extensions", "zipp"]
|
||||
epath-gcs = ["etils[epath]", "gcsfs"]
|
||||
epath-s3 = ["etils[epath]", "s3fs"]
|
||||
epy = ["typing_extensions"]
|
||||
etqdm = ["absl-py", "etils[epy]", "tqdm"]
|
||||
etree = ["etils[array-types]", "etils[enp]", "etils[epy]", "etils[etqdm]"]
|
||||
etree-dm = ["dm-tree", "etils[etree]"]
|
||||
etree-jax = ["etils[etree]", "jax[cpu]"]
|
||||
etree-tf = ["etils[etree]", "tensorflow"]
|
||||
lazy-imports = ["etils[ecolab]"]
|
||||
|
||||
[[package]]
|
||||
name = "exceptiongroup"
|
||||
version = "1.2.0"
|
||||
@@ -676,6 +649,17 @@ files = [
|
||||
[package.extras]
|
||||
test = ["pytest (>=6)"]
|
||||
|
||||
[[package]]
|
||||
name = "farama-notifications"
|
||||
version = "0.0.4"
|
||||
description = "Notifications for all Farama Foundation maintained libraries."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "Farama-Notifications-0.0.4.tar.gz", hash = "sha256:13fceff2d14314cf80703c8266462ebf3733c7d165336eee998fc58e545efd18"},
|
||||
{file = "Farama_Notifications-0.0.4-py3-none-any.whl", hash = "sha256:14de931035a41961f7c056361dc7f980762a143d05791ef5794a751a2caf05ae"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fasteners"
|
||||
version = "0.19"
|
||||
@@ -705,13 +689,13 @@ typing = ["typing-extensions (>=4.8)"]
|
||||
|
||||
[[package]]
|
||||
name = "fsspec"
|
||||
version = "2024.2.0"
|
||||
version = "2024.3.1"
|
||||
description = "File-system specification"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "fsspec-2024.2.0-py3-none-any.whl", hash = "sha256:817f969556fa5916bc682e02ca2045f96ff7f586d45110fcb76022063ad2c7d8"},
|
||||
{file = "fsspec-2024.2.0.tar.gz", hash = "sha256:b6ad1a679f760dda52b1168c859d01b7b80648ea6f7f7c7f5a8a91dc3f3ecb84"},
|
||||
{file = "fsspec-2024.3.1-py3-none-any.whl", hash = "sha256:918d18d41bf73f0e2b261824baeb1b124bcf771767e3a26425cd7dec3332f512"},
|
||||
{file = "fsspec-2024.3.1.tar.gz", hash = "sha256:f39780e282d7d117ffb42bb96992f8a90795e4d0fb0f661a70ca39fe9c43ded9"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@@ -811,43 +795,124 @@ files = [
|
||||
preview = ["glfw-preview"]
|
||||
|
||||
[[package]]
|
||||
name = "gym"
|
||||
version = "0.26.2"
|
||||
description = "Gym: A universal API for reinforcement learning environments"
|
||||
name = "grpcio"
|
||||
version = "1.62.1"
|
||||
description = "HTTP/2-based RPC framework"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "gym-0.26.2.tar.gz", hash = "sha256:e0d882f4b54f0c65f203104c24ab8a38b039f1289986803c7d02cdbe214fbcc4"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:179bee6f5ed7b5f618844f760b6acf7e910988de77a4f75b95bbfaa8106f3c1e"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:48611e4fa010e823ba2de8fd3f77c1322dd60cb0d180dc6630a7e157b205f7ea"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:b2a0e71b0a2158aa4bce48be9f8f9eb45cbd17c78c7443616d00abbe2a509f6d"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbe80577c7880911d3ad65e5ecc997416c98f354efeba2f8d0f9112a67ed65a5"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58f6c693d446964e3292425e1d16e21a97a48ba9172f2d0df9d7b640acb99243"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:77c339403db5a20ef4fed02e4d1a9a3d9866bf9c0afc77a42234677313ea22f3"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b5a4ea906db7dec694098435d84bf2854fe158eb3cd51e1107e571246d4d1d70"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-win32.whl", hash = "sha256:4187201a53f8561c015bc745b81a1b2d278967b8de35f3399b84b0695e281d5f"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-win_amd64.whl", hash = "sha256:844d1f3fb11bd1ed362d3fdc495d0770cfab75761836193af166fee113421d66"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:833379943d1728a005e44103f17ecd73d058d37d95783eb8f0b28ddc1f54d7b2"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:c7fcc6a32e7b7b58f5a7d27530669337a5d587d4066060bcb9dee7a8c833dfb7"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:fa7d28eb4d50b7cbe75bb8b45ed0da9a1dc5b219a0af59449676a29c2eed9698"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48f7135c3de2f298b833be8b4ae20cafe37091634e91f61f5a7eb3d61ec6f660"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71f11fd63365ade276c9d4a7b7df5c136f9030e3457107e1791b3737a9b9ed6a"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4b49fd8fe9f9ac23b78437da94c54aa7e9996fbb220bac024a67469ce5d0825f"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:482ae2ae78679ba9ed5752099b32e5fe580443b4f798e1b71df412abf43375db"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-win32.whl", hash = "sha256:1faa02530b6c7426404372515fe5ddf66e199c2ee613f88f025c6f3bd816450c"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bd90b8c395f39bc82a5fb32a0173e220e3f401ff697840f4003e15b96d1befc"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:b134d5d71b4e0837fff574c00e49176051a1c532d26c052a1e43231f252d813b"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d1f6c96573dc09d50dbcbd91dbf71d5cf97640c9427c32584010fbbd4c0e0037"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:359f821d4578f80f41909b9ee9b76fb249a21035a061a327f91c953493782c31"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a485f0c2010c696be269184bdb5ae72781344cb4e60db976c59d84dd6354fac9"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b50b09b4dc01767163d67e1532f948264167cd27f49e9377e3556c3cba1268e1"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3227c667dccbe38f2c4d943238b887bac588d97c104815aecc62d2fd976e014b"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3952b581eb121324853ce2b191dae08badb75cd493cb4e0243368aa9e61cfd41"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-win32.whl", hash = "sha256:83a17b303425104d6329c10eb34bba186ffa67161e63fa6cdae7776ff76df73f"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-win_amd64.whl", hash = "sha256:6696ffe440333a19d8d128e88d440f91fb92c75a80ce4b44d55800e656a3ef1d"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-linux_armv7l.whl", hash = "sha256:e3393b0823f938253370ebef033c9fd23d27f3eae8eb9a8f6264900c7ea3fb5a"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:83e7ccb85a74beaeae2634f10eb858a0ed1a63081172649ff4261f929bacfd22"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:882020c87999d54667a284c7ddf065b359bd00251fcd70279ac486776dbf84ec"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a10383035e864f386fe096fed5c47d27a2bf7173c56a6e26cffaaa5a361addb1"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:960edebedc6b9ada1ef58e1c71156f28689978188cd8cff3b646b57288a927d9"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:23e2e04b83f347d0aadde0c9b616f4726c3d76db04b438fd3904b289a725267f"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:978121758711916d34fe57c1f75b79cdfc73952f1481bb9583399331682d36f7"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-win_amd64.whl", hash = "sha256:9084086190cc6d628f282e5615f987288b95457292e969b9205e45b442276407"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:22bccdd7b23c420a27fd28540fb5dcbc97dc6be105f7698cb0e7d7a420d0e362"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:8999bf1b57172dbc7c3e4bb3c732658e918f5c333b2942243f10d0d653953ba9"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d9e52558b8b8c2f4ac05ac86344a7417ccdd2b460a59616de49eb6933b07a0bd"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1714e7bc935780bc3de1b3fcbc7674209adf5208ff825799d579ffd6cd0bd505"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8842ccbd8c0e253c1f189088228f9b433f7a93b7196b9e5b6f87dba393f5d5d"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f1e7b36bdff50103af95a80923bf1853f6823dd62f2d2a2524b66ed74103e49"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bba97b8e8883a8038606480d6b6772289f4c907f6ba780fa1f7b7da7dfd76f06"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-win32.whl", hash = "sha256:a7f615270fe534548112a74e790cd9d4f5509d744dd718cd442bf016626c22e4"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-win_amd64.whl", hash = "sha256:e6c8c8693df718c5ecbc7babb12c69a4e3677fd11de8886f05ab22d4e6b1c43b"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:73db2dc1b201d20ab7083e7041946910bb991e7e9761a0394bbc3c2632326483"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:407b26b7f7bbd4f4751dbc9767a1f0716f9fe72d3d7e96bb3ccfc4aace07c8de"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:f8de7c8cef9261a2d0a62edf2ccea3d741a523c6b8a6477a340a1f2e417658de"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd5c8a1af40ec305d001c60236308a67e25419003e9bb3ebfab5695a8d0b369"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be0477cb31da67846a33b1a75c611f88bfbcd427fe17701b6317aefceee1b96f"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:60dcd824df166ba266ee0cfaf35a31406cd16ef602b49f5d4dfb21f014b0dedd"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:973c49086cabab773525f6077f95e5a993bfc03ba8fc32e32f2c279497780585"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-win32.whl", hash = "sha256:12859468e8918d3bd243d213cd6fd6ab07208195dc140763c00dfe901ce1e1b4"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7209117bbeebdfa5d898205cc55153a51285757902dd73c47de498ad4d11332"},
|
||||
{file = "grpcio-1.62.1.tar.gz", hash = "sha256:6c455e008fa86d9e9a9d85bb76da4277c0d7d9668a3bfa70dbe86e9f3c759947"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
protobuf = ["grpcio-tools (>=1.62.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "gymnasium"
|
||||
version = "0.29.1"
|
||||
description = "A standard API for reinforcement learning and a diverse set of reference environments (formerly Gym)."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "gymnasium-0.29.1-py3-none-any.whl", hash = "sha256:61c3384b5575985bb7f85e43213bcb40f36fcdff388cae6bc229304c71f2843e"},
|
||||
{file = "gymnasium-0.29.1.tar.gz", hash = "sha256:1a532752efcb7590478b1cc7aa04f608eb7a2fdad5570cd217b66b6a35274bb1"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
cloudpickle = ">=1.2.0"
|
||||
gym_notices = ">=0.0.4"
|
||||
numpy = ">=1.18.0"
|
||||
farama-notifications = ">=0.0.1"
|
||||
numpy = ">=1.21.0"
|
||||
typing-extensions = ">=4.3.0"
|
||||
|
||||
[package.extras]
|
||||
accept-rom-license = ["autorom[accept-rom-license] (>=0.4.2,<0.5.0)"]
|
||||
all = ["ale-py (>=0.8.0,<0.9.0)", "box2d-py (==2.3.5)", "imageio (>=2.14.1)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (==2.2)", "mujoco_py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (==2.1.0)", "pytest (==7.0.1)", "swig (==4.*)"]
|
||||
atari = ["ale-py (>=0.8.0,<0.9.0)"]
|
||||
box2d = ["box2d-py (==2.3.5)", "pygame (==2.1.0)", "swig (==4.*)"]
|
||||
classic-control = ["pygame (==2.1.0)"]
|
||||
mujoco = ["imageio (>=2.14.1)", "mujoco (==2.2)"]
|
||||
mujoco-py = ["mujoco_py (>=2.1,<2.2)"]
|
||||
other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)"]
|
||||
testing = ["box2d-py (==2.3.5)", "imageio (>=2.14.1)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (==2.2)", "mujoco_py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (==2.1.0)", "pytest (==7.0.1)", "swig (==4.*)"]
|
||||
toy-text = ["pygame (==2.1.0)"]
|
||||
all = ["box2d-py (==2.3.5)", "cython (<3)", "imageio (>=2.14.1)", "jax (>=0.4.0)", "jaxlib (>=0.4.0)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (>=2.3.3)", "mujoco-py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (>=2.1.3)", "shimmy[atari] (>=0.1.0,<1.0)", "swig (==4.*)", "torch (>=1.0.0)"]
|
||||
atari = ["shimmy[atari] (>=0.1.0,<1.0)"]
|
||||
box2d = ["box2d-py (==2.3.5)", "pygame (>=2.1.3)", "swig (==4.*)"]
|
||||
classic-control = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
|
||||
jax = ["jax (>=0.4.0)", "jaxlib (>=0.4.0)"]
|
||||
mujoco = ["imageio (>=2.14.1)", "mujoco (>=2.3.3)"]
|
||||
mujoco-py = ["cython (<3)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "mujoco-py (>=2.1,<2.2)"]
|
||||
other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)", "torch (>=1.0.0)"]
|
||||
testing = ["pytest (==7.1.3)", "scipy (>=1.7.3)"]
|
||||
toy-text = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
|
||||
|
||||
[[package]]
|
||||
name = "gym-notices"
|
||||
version = "0.0.8"
|
||||
description = "Notices for gym"
|
||||
name = "gymnasium-robotics"
|
||||
version = "1.2.4"
|
||||
description = "Robotics environments for the Gymnasium repo."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "gym-notices-0.0.8.tar.gz", hash = "sha256:ad25e200487cafa369728625fe064e88ada1346618526102659b4640f2b4b911"},
|
||||
{file = "gym_notices-0.0.8-py3-none-any.whl", hash = "sha256:e5f82e00823a166747b4c2a07de63b6560b1acb880638547e0cabf825a01e463"},
|
||||
{file = "gymnasium-robotics-1.2.4.tar.gz", hash = "sha256:d304192b066f8b800599dfbe3d9d90bba9b761ee884472bdc4d05968a8bc61cb"},
|
||||
{file = "gymnasium_robotics-1.2.4-py3-none-any.whl", hash = "sha256:c2cb23e087ca0280ae6802837eb7b3a6d14e5bd24c00803ab09f015fcff3eef5"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
gymnasium = ">=0.26"
|
||||
imageio = "*"
|
||||
Jinja2 = ">=3.0.3"
|
||||
mujoco = ">=2.3.3,<3.0"
|
||||
numpy = ">=1.21.0"
|
||||
PettingZoo = ">=1.23.0"
|
||||
|
||||
[package.extras]
|
||||
mujoco-py = ["cython (<3)", "mujoco-py (>=2.1,<2.2)"]
|
||||
testing = ["Jinja2 (>=3.0.3)", "PettingZoo (>=1.23.0)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "pytest (==7.0.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "h5py"
|
||||
version = "3.10.0"
|
||||
@@ -1012,13 +1077,13 @@ setuptools = "*"
|
||||
|
||||
[[package]]
|
||||
name = "importlib-metadata"
|
||||
version = "7.0.2"
|
||||
version = "7.1.0"
|
||||
description = "Read metadata from Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "importlib_metadata-7.0.2-py3-none-any.whl", hash = "sha256:f4bc4c0c070c490abf4ce96d715f68e95923320370efb66143df00199bb6c100"},
|
||||
{file = "importlib_metadata-7.0.2.tar.gz", hash = "sha256:198f568f3230878cb1b44fbd7975f87906c22336dba2e4a7f05278c281fbd792"},
|
||||
{file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"},
|
||||
{file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -1027,22 +1092,7 @@ zipp = ">=0.5"
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
perf = ["ipython"]
|
||||
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "importlib-resources"
|
||||
version = "6.3.0"
|
||||
description = "Read resources from Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "importlib_resources-6.3.0-py3-none-any.whl", hash = "sha256:783407aa1cd05550e3aa123e8f7cfaebee35ffa9cb0242919e2d1e4172222705"},
|
||||
{file = "importlib_resources-6.3.0.tar.gz", hash = "sha256:166072a97e86917a9025876f34286f549b9caf1d10b35a1b372bffa1600c6569"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
testing = ["jaraco.collections", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"]
|
||||
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "iniconfig"
|
||||
@@ -1254,6 +1304,21 @@ html5 = ["html5lib"]
|
||||
htmlsoup = ["BeautifulSoup4"]
|
||||
source = ["Cython (>=3.0.7)"]
|
||||
|
||||
[[package]]
|
||||
name = "markdown"
|
||||
version = "3.6"
|
||||
description = "Python implementation of John Gruber's Markdown."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"},
|
||||
{file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"]
|
||||
testing = ["coverage", "pyyaml"]
|
||||
|
||||
[[package]]
|
||||
name = "markupsafe"
|
||||
version = "2.1.5"
|
||||
@@ -1366,65 +1431,44 @@ tests = ["pytest (>=4.6)"]
|
||||
|
||||
[[package]]
|
||||
name = "mujoco"
|
||||
version = "3.1.3"
|
||||
version = "2.3.7"
|
||||
description = "MuJoCo Physics Simulator"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "mujoco-3.1.3-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:1a07e33443ca88c77128336e550502c58721e37b3830af29f0118311c17d826e"},
|
||||
{file = "mujoco-3.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:da442c45fa08cf7f307a6f2484ff382b90714b9f52aaceffd5fcb8536dbdc11c"},
|
||||
{file = "mujoco-3.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec08dbfddef6e4c6d7b03685b929ed134e8eb9d0dbc788752ff54216b7b3544e"},
|
||||
{file = "mujoco-3.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1578279ff581ed1c70893cc16ecf48a048a14568e9e64b446a2d32c22b1154c"},
|
||||
{file = "mujoco-3.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:9a359e7787e1d0bbdb9fafeb31df61261a4cdc42d0a5d77c91fbe57c63e4c6fd"},
|
||||
{file = "mujoco-3.1.3-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:b070805d65ee6b708ddf1a16a16fc2073ce2d1eea8ea26352b8aee4071de274c"},
|
||||
{file = "mujoco-3.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d789a95150cf1bef21e3a3431c26263730b0437ec3b4794b2eed0f900185746e"},
|
||||
{file = "mujoco-3.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6661aa27c81be338ce0973ba6e83f655ff3cc023ea9d62398f130b46478f708a"},
|
||||
{file = "mujoco-3.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f79dc6134c90a7274d2663c07bea6d45629ea52ce40bf6722c5d506df909b4b9"},
|
||||
{file = "mujoco-3.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:b1df674d9486e1bd2e93fb69009d8db4adcf4b3b7edc92da5c98d1c6a2ea7a28"},
|
||||
{file = "mujoco-3.1.3-cp312-cp312-macosx_10_16_x86_64.whl", hash = "sha256:51841750310a1c4b5e7c7f19d28fe5e3deea0e2c7cc60ebab33c2f07360b1700"},
|
||||
{file = "mujoco-3.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe4318af5b14ea39bc5b8892c69797a1a9deb02199178814be16abb5611308fb"},
|
||||
{file = "mujoco-3.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:079f293a56c2b3aa6b4101c3822ee5587b5cc9bf35028afdd1f2128db102ad20"},
|
||||
{file = "mujoco-3.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4c120414bf89a11538e3f5eb1de6bcd6c4aeade9775ecad3e4eea27d88e1492"},
|
||||
{file = "mujoco-3.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:7fc9d69383dc0f7c4b775b2be829a065fb78dca743a25f9d864d52174c916b2b"},
|
||||
{file = "mujoco-3.1.3-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:5a29004079a40d23836228647bae9ea41f77fd7e407e8ad642dc72054e5a099e"},
|
||||
{file = "mujoco-3.1.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c1d1e083d8825faf9e2609d4e749cc5629ed7735374ed68eb3dde63dd0e4fe73"},
|
||||
{file = "mujoco-3.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc267cf0de8de3c8b317f7c12b2d7a484a7f462263f8ce4c8ae18e9d6817897"},
|
||||
{file = "mujoco-3.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d67a2aae8d5d58f7ac41d0bcffcd745955415887843bc34da8e3d794b46afbae"},
|
||||
{file = "mujoco-3.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:8ddb9a07d5ad59c67f2d7e79568cba27ad68cf2284a68370f2054dce2e6e4128"},
|
||||
{file = "mujoco-3.1.3-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:acdc761e8fa7d4bfb9f262b8886dbb3dd41a957c3ef7ec126aae3342f68b1293"},
|
||||
{file = "mujoco-3.1.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:49bad0da02ebf67ab37a6f6fe435dfc6339f0b46b51b452ee79aaffa5b73659b"},
|
||||
{file = "mujoco-3.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daa6a3ca50a3769ebfd59274651d2edc76b177cd950560022120fb77cd51f607"},
|
||||
{file = "mujoco-3.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80f3e99d1f2bb02bf7903ba4fef9c31e05fba439b7292ed751390ec78e1eb890"},
|
||||
{file = "mujoco-3.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:2d2fe38b1a7f64e708e8b9a96cf7677027b33fb6e059184163976c6c03fef4cc"},
|
||||
{file = "mujoco-3.1.3.tar.gz", hash = "sha256:f700d074031060b46111ddb60432d00425f821eeeaf0ccc76ed95d47861bd4de"},
|
||||
{file = "mujoco-2.3.7-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:e8714a5ff6a1561b364b7b4648d4c0c8d13e751874cf7401c309b9d23fa9598b"},
|
||||
{file = "mujoco-2.3.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a934315f858a4e0c4b90a682fde519471cfdd7baa64435179da8cd20d4ae3f99"},
|
||||
{file = "mujoco-2.3.7-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:36513024330f88b5f9a43558efef5692b33599bffd5141029b690a27918ffcbe"},
|
||||
{file = "mujoco-2.3.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d4eede8ba8210fbd3d3cd1dbf69e24dd1541aa74c5af5b8adbbbf65504b6dba"},
|
||||
{file = "mujoco-2.3.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab85fafc9d5a091c712947573b7e694512d283876bf7f33ae3f8daad3a20c0db"},
|
||||
{file = "mujoco-2.3.7-cp310-cp310-win_amd64.whl", hash = "sha256:f8b7e13fef8c813d91b78f975ed0815157692777907ffa4b4be53a4edb75019b"},
|
||||
{file = "mujoco-2.3.7-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:779520216f72a8e370e3f0cdd71b45c3b7384c63331a3189194c930a3e7cff5c"},
|
||||
{file = "mujoco-2.3.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9d4018053879016282d27ab7a91e292c72d44efb5a88553feacfe5b843dde103"},
|
||||
{file = "mujoco-2.3.7-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:3149b16b8122ee62642474bfd2871064e8edc40235471cf5d84be3569afc0312"},
|
||||
{file = "mujoco-2.3.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c08660a8d52ef3efde76095f0991e807703a950c1e882d2bcd984b9a846626f7"},
|
||||
{file = "mujoco-2.3.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:426af8965f8636d94a0f75740c3024a62b3e585020ee817ef5208ec844a1ad94"},
|
||||
{file = "mujoco-2.3.7-cp311-cp311-win_amd64.whl", hash = "sha256:215415a8e98a4b50625beae859079d5e0810b2039e50420f0ba81763c34abb59"},
|
||||
{file = "mujoco-2.3.7-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:8b78d14f4c60cea3c58e046bd4de453fb5b9b33aca6a25fc91d39a53f3a5342a"},
|
||||
{file = "mujoco-2.3.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5c6f5a51d6f537a4bf294cf73816f3a6384573f8f10a5452b044df2771412a96"},
|
||||
{file = "mujoco-2.3.7-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:ea8911e6047f92d7d775701f37e4c093971b6def3160f01d0b6926e29a7e962e"},
|
||||
{file = "mujoco-2.3.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7473a3de4dd1a8762d569ffb139196b4c5e7eca27d256df97b6cd4c66d2a09b2"},
|
||||
{file = "mujoco-2.3.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40e7e2d8f93d2495ec74efec84e5118ecc6e1d85157a844789c73c9ac9a4e28e"},
|
||||
{file = "mujoco-2.3.7-cp38-cp38-win_amd64.whl", hash = "sha256:720bc228a2023b3b0ed6af78f5b0f8ea36867be321d473321555c57dbf6e4e5b"},
|
||||
{file = "mujoco-2.3.7-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:855e79686366442aa410246043b44f7d842d3900d68fe7e37feb42147db9d707"},
|
||||
{file = "mujoco-2.3.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:98947f4a742d34d36f3c3f83e9167025bb0414bbaa4bd859b0673bdab9959963"},
|
||||
{file = "mujoco-2.3.7-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:d42818f2ee5d1632dbce31d136ed5ff868db54b04e4e9aca0c5a3ac329f8a90f"},
|
||||
{file = "mujoco-2.3.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9237e1ba14bced9449c31199e6d5be49547f3a4c99bc83b196af7ca45fd73b83"},
|
||||
{file = "mujoco-2.3.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b728ea638245b150e2650c5433e6952e0ed3798c63e47e264574270caea2a3"},
|
||||
{file = "mujoco-2.3.7-cp39-cp39-win_amd64.whl", hash = "sha256:9c721a5042b99d948d5f0296a534bcce3f142c777c4d7642f503a539513f3912"},
|
||||
{file = "mujoco-2.3.7.tar.gz", hash = "sha256:422041f1ce37c6d151fbced1048df626837e94fe3cd9f813585907046336a7d0"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
absl-py = "*"
|
||||
etils = {version = "*", extras = ["epath"]}
|
||||
glfw = "*"
|
||||
numpy = "*"
|
||||
pyopengl = "*"
|
||||
|
||||
[[package]]
|
||||
name = "mujoco-py"
|
||||
version = "2.1.2.14"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "mujoco-py-2.1.2.14.tar.gz", hash = "sha256:eb5b14485acf80a3cf8c15f4b080c6a28a9f79e68869aa696d16cbd51ea7706f"},
|
||||
{file = "mujoco_py-2.1.2.14-py3-none-any.whl", hash = "sha256:37c0b41bc0153a8a0eb3663103a67c60f65467753f74e4ff6e68b879f3e3a71f"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
cffi = ">=1.10"
|
||||
Cython = ">=0.27.2"
|
||||
fasteners = ">=0.15,<1.0"
|
||||
glfw = ">=1.4.0"
|
||||
imageio = ">=2.1.2"
|
||||
numpy = ">=1.11"
|
||||
|
||||
[[package]]
|
||||
name = "networkx"
|
||||
version = "3.2.1"
|
||||
@@ -1459,32 +1503,32 @@ setuptools = "*"
|
||||
|
||||
[[package]]
|
||||
name = "numba"
|
||||
version = "0.59.0"
|
||||
version = "0.59.1"
|
||||
description = "compiling Python code using LLVM"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "numba-0.59.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8d061d800473fb8fef76a455221f4ad649a53f5e0f96e3f6c8b8553ee6fa98fa"},
|
||||
{file = "numba-0.59.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c086a434e7d3891ce5dfd3d1e7ee8102ac1e733962098578b507864120559ceb"},
|
||||
{file = "numba-0.59.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:9e20736bf62e61f8353fb71b0d3a1efba636c7a303d511600fc57648b55823ed"},
|
||||
{file = "numba-0.59.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e86e6786aec31d2002122199486e10bbc0dc40f78d76364cded375912b13614c"},
|
||||
{file = "numba-0.59.0-cp310-cp310-win_amd64.whl", hash = "sha256:0307ee91b24500bb7e64d8a109848baf3a3905df48ce142b8ac60aaa406a0400"},
|
||||
{file = "numba-0.59.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d540f69a8245fb714419c2209e9af6104e568eb97623adc8943642e61f5d6d8e"},
|
||||
{file = "numba-0.59.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1192d6b2906bf3ff72b1d97458724d98860ab86a91abdd4cfd9328432b661e31"},
|
||||
{file = "numba-0.59.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:90efb436d3413809fcd15298c6d395cb7d98184350472588356ccf19db9e37c8"},
|
||||
{file = "numba-0.59.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cd3dac45e25d927dcb65d44fb3a973994f5add2b15add13337844afe669dd1ba"},
|
||||
{file = "numba-0.59.0-cp311-cp311-win_amd64.whl", hash = "sha256:753dc601a159861808cc3207bad5c17724d3b69552fd22768fddbf302a817a4c"},
|
||||
{file = "numba-0.59.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ce62bc0e6dd5264e7ff7f34f41786889fa81a6b860662f824aa7532537a7bee0"},
|
||||
{file = "numba-0.59.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8cbef55b73741b5eea2dbaf1b0590b14977ca95a13a07d200b794f8f6833a01c"},
|
||||
{file = "numba-0.59.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:70d26ba589f764be45ea8c272caa467dbe882b9676f6749fe6f42678091f5f21"},
|
||||
{file = "numba-0.59.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e125f7d69968118c28ec0eed9fbedd75440e64214b8d2eac033c22c04db48492"},
|
||||
{file = "numba-0.59.0-cp312-cp312-win_amd64.whl", hash = "sha256:4981659220b61a03c1e557654027d271f56f3087448967a55c79a0e5f926de62"},
|
||||
{file = "numba-0.59.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe4d7562d1eed754a7511ed7ba962067f198f86909741c5c6e18c4f1819b1f47"},
|
||||
{file = "numba-0.59.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6feb1504bb432280f900deaf4b1dadcee68812209500ed3f81c375cbceab24dc"},
|
||||
{file = "numba-0.59.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:944faad25ee23ea9dda582bfb0189fb9f4fc232359a80ab2a028b94c14ce2b1d"},
|
||||
{file = "numba-0.59.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5516a469514bfae52a9d7989db4940653a5cbfac106f44cb9c50133b7ad6224b"},
|
||||
{file = "numba-0.59.0-cp39-cp39-win_amd64.whl", hash = "sha256:32bd0a41525ec0b1b853da244808f4e5333867df3c43c30c33f89cf20b9c2b63"},
|
||||
{file = "numba-0.59.0.tar.gz", hash = "sha256:12b9b064a3e4ad00e2371fc5212ef0396c80f41caec9b5ec391c8b04b6eaf2a8"},
|
||||
{file = "numba-0.59.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:97385a7f12212c4f4bc28f648720a92514bee79d7063e40ef66c2d30600fd18e"},
|
||||
{file = "numba-0.59.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b77aecf52040de2a1eb1d7e314497b9e56fba17466c80b457b971a25bb1576d"},
|
||||
{file = "numba-0.59.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:3476a4f641bfd58f35ead42f4dcaf5f132569c4647c6f1360ccf18ee4cda3990"},
|
||||
{file = "numba-0.59.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:525ef3f820931bdae95ee5379c670d5c97289c6520726bc6937a4a7d4230ba24"},
|
||||
{file = "numba-0.59.1-cp310-cp310-win_amd64.whl", hash = "sha256:990e395e44d192a12105eca3083b61307db7da10e093972ca285c85bef0963d6"},
|
||||
{file = "numba-0.59.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:43727e7ad20b3ec23ee4fc642f5b61845c71f75dd2825b3c234390c6d8d64051"},
|
||||
{file = "numba-0.59.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:411df625372c77959570050e861981e9d196cc1da9aa62c3d6a836b5cc338966"},
|
||||
{file = "numba-0.59.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2801003caa263d1e8497fb84829a7ecfb61738a95f62bc05693fcf1733e978e4"},
|
||||
{file = "numba-0.59.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dd2842fac03be4e5324ebbbd4d2d0c8c0fc6e0df75c09477dd45b288a0777389"},
|
||||
{file = "numba-0.59.1-cp311-cp311-win_amd64.whl", hash = "sha256:0594b3dfb369fada1f8bb2e3045cd6c61a564c62e50cf1f86b4666bc721b3450"},
|
||||
{file = "numba-0.59.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1cce206a3b92836cdf26ef39d3a3242fec25e07f020cc4feec4c4a865e340569"},
|
||||
{file = "numba-0.59.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8c8b4477763cb1fbd86a3be7050500229417bf60867c93e131fd2626edb02238"},
|
||||
{file = "numba-0.59.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7d80bce4ef7e65bf895c29e3889ca75a29ee01da80266a01d34815918e365835"},
|
||||
{file = "numba-0.59.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f7ad1d217773e89a9845886401eaaab0a156a90aa2f179fdc125261fd1105096"},
|
||||
{file = "numba-0.59.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bf68f4d69dd3a9f26a9b23548fa23e3bcb9042e2935257b471d2a8d3c424b7f"},
|
||||
{file = "numba-0.59.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e0318ae729de6e5dbe64c75ead1a95eb01fabfe0e2ebed81ebf0344d32db0ae"},
|
||||
{file = "numba-0.59.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0f68589740a8c38bb7dc1b938b55d1145244c8353078eea23895d4f82c8b9ec1"},
|
||||
{file = "numba-0.59.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:649913a3758891c77c32e2d2a3bcbedf4a69f5fea276d11f9119677c45a422e8"},
|
||||
{file = "numba-0.59.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9712808e4545270291d76b9a264839ac878c5eb7d8b6e02c970dc0ac29bc8187"},
|
||||
{file = "numba-0.59.1-cp39-cp39-win_amd64.whl", hash = "sha256:8d51ccd7008a83105ad6a0082b6a2b70f1142dc7cfd76deb8c5a862367eb8c86"},
|
||||
{file = "numba-0.59.1.tar.gz", hash = "sha256:76f69132b96028d2774ed20415e8c528a34e3299a40581bae178f0994a2f370b"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -1699,6 +1743,31 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d
|
||||
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
|
||||
xml = ["lxml (>=4.9.2)"]
|
||||
|
||||
[[package]]
|
||||
name = "pettingzoo"
|
||||
version = "1.24.3"
|
||||
description = "Gymnasium for multi-agent reinforcement learning."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pettingzoo-1.24.3-py3-none-any.whl", hash = "sha256:23ed90517d2e8a7098bdaf5e31234b3a7f7b73ca578d70d1ca7b9d0cb0e37982"},
|
||||
{file = "pettingzoo-1.24.3.tar.gz", hash = "sha256:91f9094f18e06fb74b98f4099cd22e8ae4396125e51719d50b30c9f1c7ab07e6"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
gymnasium = ">=0.28.0"
|
||||
numpy = ">=1.21.0"
|
||||
|
||||
[package.extras]
|
||||
all = ["box2d-py (==2.3.5)", "chess (==1.9.4)", "multi-agent-ale-py (==0.1.11)", "pillow (>=8.0.1)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "rlcard (==1.0.5)", "scipy (>=1.4.1)", "shimmy[openspiel] (>=1.2.0)"]
|
||||
atari = ["multi-agent-ale-py (==0.1.11)", "pygame (==2.3.0)"]
|
||||
butterfly = ["pygame (==2.3.0)", "pymunk (==6.2.0)"]
|
||||
classic = ["chess (==1.9.4)", "pygame (==2.3.0)", "rlcard (==1.0.5)", "shimmy[openspiel] (>=1.2.0)"]
|
||||
mpe = ["pygame (==2.3.0)"]
|
||||
other = ["pillow (>=8.0.1)"]
|
||||
sisl = ["box2d-py (==2.3.5)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "scipy (>=1.4.1)"]
|
||||
testing = ["AutoROM", "pre-commit", "pynput", "pytest", "pytest-cov", "pytest-markdown-docs", "pytest-xdist"]
|
||||
|
||||
[[package]]
|
||||
name = "pillow"
|
||||
version = "10.2.0"
|
||||
@@ -2101,6 +2170,24 @@ tomli = {version = ">=1", markers = "python_version < \"3.11\""}
|
||||
[package.extras]
|
||||
testing = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
|
||||
|
||||
[[package]]
|
||||
name = "pytest-cov"
|
||||
version = "5.0.0"
|
||||
description = "Pytest plugin for measuring coverage."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pytest-cov-5.0.0.tar.gz", hash = "sha256:5837b58e9f6ebd335b0f8060eecce69b662415b16dc503883a02f45dfeb14857"},
|
||||
{file = "pytest_cov-5.0.0-py3-none-any.whl", hash = "sha256:4f0764a1219df53214206bf1feea4633c3b558a2925c8b59f144f682861ce652"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
coverage = {version = ">=5.2.1", extras = ["toml"]}
|
||||
pytest = ">=4.6"
|
||||
|
||||
[package.extras]
|
||||
testing = ["fields", "hunter", "process-tests", "pytest-xdist", "virtualenv"]
|
||||
|
||||
[[package]]
|
||||
name = "python-dateutil"
|
||||
version = "2.9.0.post0"
|
||||
@@ -2310,6 +2397,30 @@ urllib3 = ">=1.21.1,<3"
|
||||
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
|
||||
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
|
||||
|
||||
[[package]]
|
||||
name = "robomimic"
|
||||
version = "0.2.0"
|
||||
description = "robomimic: A Modular Framework for Robot Learning from Demonstration"
|
||||
optional = false
|
||||
python-versions = ">=3"
|
||||
files = [
|
||||
{file = "robomimic-0.2.0.tar.gz", hash = "sha256:ee3bb5cf9c3e1feead6b57b43c5db738fd0a8e0c015fdf6419808af8fffdc463"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
egl_probe = ">=1.0.1"
|
||||
h5py = "*"
|
||||
imageio = "*"
|
||||
imageio-ffmpeg = "*"
|
||||
numpy = ">=1.13.3"
|
||||
psutil = "*"
|
||||
tensorboard = "*"
|
||||
tensorboardX = "*"
|
||||
termcolor = "*"
|
||||
torch = "*"
|
||||
torchvision = "*"
|
||||
tqdm = "*"
|
||||
|
||||
[[package]]
|
||||
name = "safetensors"
|
||||
version = "0.4.2"
|
||||
@@ -2534,13 +2645,13 @@ test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov",
|
||||
|
||||
[[package]]
|
||||
name = "sentry-sdk"
|
||||
version = "1.42.0"
|
||||
version = "1.43.0"
|
||||
description = "Python client for Sentry (https://sentry.io)"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "sentry-sdk-1.42.0.tar.gz", hash = "sha256:4a8364b8f7edbf47f95f7163e48334c96100d9c098f0ae6606e2e18183c223e6"},
|
||||
{file = "sentry_sdk-1.42.0-py2.py3-none-any.whl", hash = "sha256:a654ee7e497a3f5f6368b36d4f04baeab1fe92b3105f7f6965d6ef0de35a9ba4"},
|
||||
{file = "sentry-sdk-1.43.0.tar.gz", hash = "sha256:41df73af89d22921d8733714fb0fc5586c3461907e06688e6537d01a27e0e0f6"},
|
||||
{file = "sentry_sdk-1.43.0-py2.py3-none-any.whl", hash = "sha256:8d768724839ca18d7b4c7463ef7528c40b7aa2bfbf7fe554d5f9a7c044acfd36"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -2554,6 +2665,7 @@ asyncpg = ["asyncpg (>=0.23)"]
|
||||
beam = ["apache-beam (>=2.12)"]
|
||||
bottle = ["bottle (>=0.12.13)"]
|
||||
celery = ["celery (>=3)"]
|
||||
celery-redbeat = ["celery-redbeat (>=2)"]
|
||||
chalice = ["chalice (>=1.16.0)"]
|
||||
clickhouse-driver = ["clickhouse-driver (>=0.2.0)"]
|
||||
django = ["django (>=1.8)"]
|
||||
@@ -2798,9 +2910,58 @@ files = [
|
||||
[package.dependencies]
|
||||
mpmath = ">=0.19"
|
||||
|
||||
[[package]]
|
||||
name = "tensorboard"
|
||||
version = "2.16.2"
|
||||
description = "TensorBoard lets you watch Tensors Flow"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "tensorboard-2.16.2-py3-none-any.whl", hash = "sha256:9f2b4e7dad86667615c0e5cd072f1ea8403fc032a299f0072d6f74855775cc45"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
absl-py = ">=0.4"
|
||||
grpcio = ">=1.48.2"
|
||||
markdown = ">=2.6.8"
|
||||
numpy = ">=1.12.0"
|
||||
protobuf = ">=3.19.6,<4.24.0 || >4.24.0"
|
||||
setuptools = ">=41.0.0"
|
||||
six = ">1.9"
|
||||
tensorboard-data-server = ">=0.7.0,<0.8.0"
|
||||
werkzeug = ">=1.0.1"
|
||||
|
||||
[[package]]
|
||||
name = "tensorboard-data-server"
|
||||
version = "0.7.2"
|
||||
description = "Fast data loading for TensorBoard"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"},
|
||||
{file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"},
|
||||
{file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tensorboardx"
|
||||
version = "2.6.2.2"
|
||||
description = "TensorBoardX lets you watch Tensors Flow without Tensorflow"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "tensorboardX-2.6.2.2-py2.py3-none-any.whl", hash = "sha256:160025acbf759ede23fd3526ae9d9bfbfd8b68eb16c38a010ebe326dc6395db8"},
|
||||
{file = "tensorboardX-2.6.2.2.tar.gz", hash = "sha256:c6476d7cd0d529b0b72f4acadb1269f9ed8b22f441e87a84f2a3b940bb87b666"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
numpy = "*"
|
||||
packaging = "*"
|
||||
protobuf = ">=3.20"
|
||||
|
||||
[[package]]
|
||||
name = "tensordict"
|
||||
version = "0.4.0+6a56ecd"
|
||||
version = "0.4.0+b4c91e8"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
@@ -2821,7 +2982,7 @@ tests = ["pytest", "pytest-benchmark", "pytest-instafail", "pytest-rerunfailures
|
||||
type = "git"
|
||||
url = "https://github.com/pytorch/tensordict"
|
||||
reference = "HEAD"
|
||||
resolved_reference = "6a56ecd728757feee387f946b7da66dd452b739b"
|
||||
resolved_reference = "b4c91e8828c538ca0a50d8383fd99311a9afb078"
|
||||
|
||||
[[package]]
|
||||
name = "termcolor"
|
||||
@@ -3084,6 +3245,23 @@ perf = ["orjson"]
|
||||
reports = ["pydantic (>=2.0.0)"]
|
||||
sweeps = ["sweeps (>=0.2.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "werkzeug"
|
||||
version = "3.0.1"
|
||||
description = "The comprehensive WSGI web application library."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "werkzeug-3.0.1-py3-none-any.whl", hash = "sha256:90a285dc0e42ad56b34e696398b8122ee4c681833fb35b8334a095d82c56da10"},
|
||||
{file = "werkzeug-3.0.1.tar.gz", hash = "sha256:507e811ecea72b18a404947aded4b3390e1db8f826b494d76550ef45bb3b1dcc"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
MarkupSafe = ">=2.1.1"
|
||||
|
||||
[package.extras]
|
||||
watchdog = ["watchdog (>=2.3)"]
|
||||
|
||||
[[package]]
|
||||
name = "zarr"
|
||||
version = "2.17.1"
|
||||
@@ -3107,13 +3285,13 @@ jupyter = ["ipytree (>=0.2.2)", "ipywidgets (>=8.0.0)", "notebook"]
|
||||
|
||||
[[package]]
|
||||
name = "zipp"
|
||||
version = "3.18.0"
|
||||
version = "3.18.1"
|
||||
description = "Backport of pathlib-compatible object wrapper for zip files"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "zipp-3.18.0-py3-none-any.whl", hash = "sha256:c1bb803ed69d2cce2373152797064f7e79bc43f0a3748eb494096a867e0ebf79"},
|
||||
{file = "zipp-3.18.0.tar.gz", hash = "sha256:df8d042b02765029a09b157efd8e820451045890acc30f8e37dd2f94a060221f"},
|
||||
{file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
|
||||
{file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@@ -3123,4 +3301,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "4aa6a1e3f29560dd4a1c24d493ee1154089da4aa8d2190ad1f786c125ab2b735"
|
||||
content-hash = "9f3f9a0c7ec2aed90c4f51737b71a07e0819c7cb895fe4e84fa4ada1f352b063"
|
||||
|
||||
11
.github/poetry/cpu/pyproject.toml
vendored
11
.github/poetry/cpu/pyproject.toml
vendored
@@ -21,7 +21,6 @@ packages = [{include = "lerobot"}]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
cython = "^3.0.8"
|
||||
termcolor = "^2.4.0"
|
||||
omegaconf = "^2.3.0"
|
||||
dm-env = "^1.6"
|
||||
@@ -42,22 +41,24 @@ mpmath = "^1.3.0"
|
||||
torch = {version = "^2.2.1", source = "torch-cpu"}
|
||||
tensordict = {git = "https://github.com/pytorch/tensordict"}
|
||||
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
|
||||
mujoco = "^3.1.2"
|
||||
mujoco-py = "^2.1.2.14"
|
||||
gym = "^0.26.2"
|
||||
mujoco = "^2.3.7"
|
||||
opencv-python = "^4.9.0.80"
|
||||
diffusers = "^0.26.3"
|
||||
torchvision = {version = "^0.17.1", source = "torch-cpu"}
|
||||
h5py = "^3.10.0"
|
||||
dm = "^1.3"
|
||||
dm-control = "^1.0.16"
|
||||
dm-control = "1.0.14"
|
||||
robomimic = "0.2.0"
|
||||
huggingface-hub = "^0.21.4"
|
||||
gymnasium-robotics = "^1.2.4"
|
||||
gymnasium = "^0.29.1"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pre-commit = "^3.6.2"
|
||||
debugpy = "^1.8.1"
|
||||
pytest = "^8.1.0"
|
||||
pytest-cov = "^5.0.0"
|
||||
|
||||
|
||||
[[tool.poetry.source]]
|
||||
|
||||
127
.github/workflows/test.yml
vendored
127
.github/workflows/test.yml
vendored
@@ -1,4 +1,4 @@
|
||||
name: Test
|
||||
name: Tests
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
@@ -10,20 +10,15 @@ on:
|
||||
- main
|
||||
|
||||
jobs:
|
||||
test:
|
||||
tests:
|
||||
if: |
|
||||
${{ github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'CI') }} ||
|
||||
${{ github.event_name == 'push' }}
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
POETRY_VERSION: 1.8.1
|
||||
POETRY_VERSION: 1.8.2
|
||||
DATA_DIR: tests/data
|
||||
TMPDIR: ~/tmp
|
||||
TEMP: ~/tmp
|
||||
TMP: ~/tmp
|
||||
PYOPENGL_PLATFORM: egl
|
||||
MUJOCO_GL: egl
|
||||
LEROBOT_TESTS_DEVICE: cpu
|
||||
steps:
|
||||
#----------------------------------------------
|
||||
# check-out repo and set-up python
|
||||
@@ -86,6 +81,10 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
if: steps.restore-dependencies-cache.outputs.cache-hit != 'true'
|
||||
env:
|
||||
TMPDIR: ~/tmp
|
||||
TEMP: ~/tmp
|
||||
TMP: ~/tmp
|
||||
run: |
|
||||
mkdir ~/tmp
|
||||
poetry install --no-interaction --no-root
|
||||
@@ -110,35 +109,125 @@ jobs:
|
||||
run: poetry install --no-interaction
|
||||
|
||||
#----------------------------------------------
|
||||
# run tests
|
||||
# run tests & coverage
|
||||
#----------------------------------------------
|
||||
- name: Run tests
|
||||
env:
|
||||
LEROBOT_TESTS_DEVICE: cpu
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
pytest tests
|
||||
pytest --cov=./lerobot --cov-report=xml tests
|
||||
|
||||
- name: Test train pusht end-to-end
|
||||
# TODO(aliberts): Link with HF Codecov account
|
||||
# - name: Upload coverage reports to Codecov with GitHub Action
|
||||
# uses: codecov/codecov-action@v4
|
||||
# with:
|
||||
# files: ./coverage.xml
|
||||
# verbose: true
|
||||
|
||||
#----------------------------------------------
|
||||
# run end-to-end tests
|
||||
#----------------------------------------------
|
||||
- name: Test train ACT on ALOHA end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.job.name=pusht \
|
||||
policy=act \
|
||||
env=aloha \
|
||||
wandb.enable=False \
|
||||
offline_steps=2 \
|
||||
online_steps=0 \
|
||||
device=cpu \
|
||||
save_model=true \
|
||||
save_freq=2 \
|
||||
horizon=20 \
|
||||
policy.batch_size=2 \
|
||||
hydra.run.dir=tests/outputs/act/
|
||||
|
||||
- name: Test eval ACT on ALOHA end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
--config tests/outputs/act/.hydra/config.yaml \
|
||||
eval_episodes=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
policy.pretrained_model_path=tests/outputs/act/models/2.pt
|
||||
|
||||
- name: Test eval ACT on ALOHA end-to-end (policy is None)
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
--config lerobot/configs/default.yaml \
|
||||
policy=act \
|
||||
env=aloha \
|
||||
eval_episodes=1 \
|
||||
device=cpu
|
||||
|
||||
- name: Test train Diffusion on PushT end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/train.py \
|
||||
policy=diffusion \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
offline_steps=2 \
|
||||
online_steps=0 \
|
||||
device=cpu \
|
||||
save_model=true \
|
||||
save_freq=1 \
|
||||
hydra.run.dir=tests/outputs/
|
||||
save_freq=2 \
|
||||
hydra.run.dir=tests/outputs/diffusion/
|
||||
|
||||
- name: Test eval pusht end-to-end
|
||||
- name: Test eval Diffusion on PushT end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
hydra.job.name=pusht \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
--config tests/outputs/diffusion/.hydra/config.yaml \
|
||||
eval_episodes=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
policy.pretrained_model_path=tests/outputs/models/1.pt
|
||||
policy.pretrained_model_path=tests/outputs/diffusion/models/2.pt
|
||||
|
||||
- name: Test eval Diffusion on PushT end-to-end (policy is None)
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
--config lerobot/configs/default.yaml \
|
||||
policy=diffusion \
|
||||
env=pusht \
|
||||
eval_episodes=1 \
|
||||
device=cpu
|
||||
|
||||
- name: Test train TDMPC on Simxarm end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/train.py \
|
||||
policy=tdmpc \
|
||||
env=simxarm \
|
||||
wandb.enable=False \
|
||||
offline_steps=1 \
|
||||
online_steps=1 \
|
||||
device=cpu \
|
||||
save_model=true \
|
||||
save_freq=2 \
|
||||
hydra.run.dir=tests/outputs/tdmpc/
|
||||
|
||||
- name: Test eval TDMPC on Simxarm end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
--config tests/outputs/tdmpc/.hydra/config.yaml \
|
||||
eval_episodes=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
policy.pretrained_model_path=tests/outputs/tdmpc/models/2.pt
|
||||
|
||||
- name: Test eval TDPMC on Simxarm end-to-end (policy is None)
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
--config lerobot/configs/default.yaml \
|
||||
policy=tdmpc \
|
||||
env=simxarm \
|
||||
eval_episodes=1 \
|
||||
device=cpu
|
||||
|
||||
@@ -14,11 +14,11 @@ repos:
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.15.1
|
||||
rev: v3.15.2
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.2
|
||||
rev: v0.3.4
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
|
||||
229
LICENSE
229
LICENSE
@@ -253,6 +253,31 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
## Some of lerobot's code is derived from simxarm, which is subject to the following copyright notice:
|
||||
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Nicklas Hansen & Yanjie Ze
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
## Some of lerobot's code is derived from ALOHA, which is subject to the following copyright notice:
|
||||
|
||||
MIT License
|
||||
@@ -276,3 +301,207 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
## Some of lerobot's code is derived from DETR, which is subject to the following copyright notice:
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2020 - present, Facebook, Inc
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
430
README.md
430
README.md
@@ -1,72 +1,369 @@
|
||||
# LeRobot
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="media/lerobot-logo-thumbnail.png">
|
||||
<source media="(prefers-color-scheme: light)" srcset="media/lerobot-logo-thumbnail.png">
|
||||
<img alt="LeRobot, Hugging Face Robotics Library" src="media/lerobot-logo-thumbnail.png" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<div align="center">
|
||||
|
||||
[](https://github.com/huggingface/lerobot/actions/workflows/test.yml?query=branch%3Amain)
|
||||
[](https://codecov.io/gh/huggingface/lerobot)
|
||||
[](https://www.python.org/downloads/)
|
||||
[](https://github.com/huggingface/lerobot/blob/main/LICENSE)
|
||||
[](https://pypi.org/project/lerobot/)
|
||||
[](https://pypi.org/project/lerobot/)
|
||||
[](https://github.com/huggingface/lerobot/tree/main/examples)
|
||||
[](https://discord.gg/s3KuuzsPFb)
|
||||
|
||||
</div>
|
||||
|
||||
---
|
||||
|
||||
**State-of-the-art machine learning for real-world robotics**
|
||||
|
||||
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
|
||||
|
||||
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
|
||||
|
||||
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started. In the coming weeks, the plan is to add more and more support for real-world robotics on the most affordable and capable robots out there.
|
||||
|
||||
🤗 LeRobot hosts pretrained models and datasets on this HuggingFace community page: [huggingface.co/lerobot](https://huggingface.co/lerobot)
|
||||
|
||||
#### Examples of pretrained models and environments
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="http://remicadene.com/assets/gif/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
|
||||
<td><img src="http://remicadene.com/assets/gif/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
|
||||
<td><img src="http://remicadene.com/assets/gif/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">ACT policy on ALOHA env</td>
|
||||
<td align="center">TDMPC policy on SimXArm env</td>
|
||||
<td align="center">Diffusion policy on PushT env</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
### Acknowledgment
|
||||
|
||||
- ACT policy and ALOHA environment are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha/)
|
||||
- Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
|
||||
- TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
|
||||
- Abstractions and utilities for Reinforcement Learning come from [TorchRL](https://github.com/pytorch/rl)
|
||||
|
||||
## Installation
|
||||
|
||||
Create a virtual environment with Python 3.10, e.g. using `conda`:
|
||||
```
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
[Install `poetry`](https://python-poetry.org/docs/#installation) (if you don't have it already)
|
||||
```
|
||||
```bash
|
||||
curl -sSL https://install.python-poetry.org | python -
|
||||
```
|
||||
|
||||
Install dependencies
|
||||
```
|
||||
```bash
|
||||
poetry install
|
||||
```
|
||||
|
||||
If you encounter a disk space error, try to change your tmp dir to a location where you have enough disk space, e.g.
|
||||
```
|
||||
```bash
|
||||
mkdir ~/tmp
|
||||
export TMPDIR='~/tmp'
|
||||
```
|
||||
|
||||
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with
|
||||
```
|
||||
```bash
|
||||
wandb login
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
|
||||
### Train
|
||||
## Walkthrough
|
||||
|
||||
```
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.job.name=pusht \
|
||||
env=pusht
|
||||
```
|
||||
|
||||
### Visualize offline buffer
|
||||
.
|
||||
├── lerobot
|
||||
| ├── configs # contains hydra yaml files with all options that you can override in the command line
|
||||
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
|
||||
| | ├── env # various sim environments and their datasets: aloha.yaml, pusht.yaml, simxarm.yaml
|
||||
| | └── policy # various policies: act.yaml, diffusion.yaml, tdmpc.yaml
|
||||
| ├── common # contains classes and utilities
|
||||
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, simxarm
|
||||
| | ├── envs # various sim environments: aloha, pusht, simxarm
|
||||
| | └── policies # various policies: act, diffusion, tdmpc
|
||||
| └── scripts # contains functions to execute via command line
|
||||
| ├── visualize_dataset.py # load a dataset and render its demonstrations
|
||||
| ├── eval.py # load policy and evaluate it on an environment
|
||||
| └── train.py # train a policy via imitation learning and/or reinforcement learning
|
||||
├── outputs # contains results of scripts execution: logs, videos, model checkpoints
|
||||
├── .github
|
||||
| └── workflows
|
||||
| └── test.yml # defines install settings for continuous integration and specifies end-to-end tests
|
||||
└── tests # contains pytest utilities for continuous integration
|
||||
|
||||
```
|
||||
|
||||
### Visualize datasets
|
||||
|
||||
You can import our dataset class, download the data from the HuggingFace hub and use our rendering utilities:
|
||||
```python
|
||||
""" Copy pasted from `examples/1_visualize_dataset.py` """
|
||||
import lerobot
|
||||
from lerobot.common.datasets.aloha import AlohaDataset
|
||||
from torchrl.data.replay_buffers import SamplerWithoutReplacement
|
||||
from lerobot.scripts.visualize_dataset import render_dataset
|
||||
|
||||
print(lerobot.available_datasets)
|
||||
# >>> ['aloha_sim_insertion_human', 'aloha_sim_insertion_scripted', 'aloha_sim_transfer_cube_human', 'aloha_sim_transfer_cube_scripted', 'pusht', 'xarm_lift_medium']
|
||||
|
||||
# we use this sampler to sample 1 frame after the other
|
||||
sampler = SamplerWithoutReplacement(shuffle=False)
|
||||
|
||||
dataset = AlohaDataset("aloha_sim_transfer_cube_human", sampler=sampler)
|
||||
|
||||
video_paths = render_dataset(
|
||||
dataset,
|
||||
out_dir="outputs/visualize_dataset/example",
|
||||
max_num_samples=300,
|
||||
fps=50,
|
||||
)
|
||||
print(video_paths)
|
||||
# >>> ['outputs/visualize_dataset/example/episode_0.mp4']
|
||||
```
|
||||
|
||||
Or you can achieve the same result by executing our script from the command line:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset.py \
|
||||
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
|
||||
env=pusht
|
||||
env=aloha \
|
||||
task=sim_sim_transfer_cube_human \
|
||||
hydra.run.dir=outputs/visualize_dataset/example
|
||||
# >>> ['outputs/visualize_dataset/example/episode_0.mp4']
|
||||
```
|
||||
|
||||
### Visualize online buffer / Eval
|
||||
### Evaluate a pretrained policy
|
||||
|
||||
You can import our environment class, download pretrained policies from the HuggingFace hub, and use our rollout utilities with rendering:
|
||||
```python
|
||||
""" Copy pasted from `examples/2_evaluate_pretrained_policy.py`
|
||||
# TODO
|
||||
```
|
||||
|
||||
Or you can achieve the same result by executing our script from the command line:
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
|
||||
env=pusht
|
||||
--hub-id lerobot/diffusion_policy_pusht_image \
|
||||
--revision v1.0 \
|
||||
eval_episodes=10 \
|
||||
hydra.run.dir=outputs/eval/example_hub
|
||||
```
|
||||
|
||||
After launching training of your own policy, you can also re-evaluate the checkpoints with:
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
--config PATH/TO/FOLDER/config.yaml \
|
||||
policy.pretrained_model_path=PATH/TO/FOLDER/weights.pth \
|
||||
eval_episodes=10 \
|
||||
hydra.run.dir=outputs/eval/example_dir
|
||||
```
|
||||
|
||||
## TODO
|
||||
See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||
|
||||
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/users/Cadene/projects/1)
|
||||
### Train your own policy
|
||||
|
||||
Ask [Remi Cadene](re.cadene@gmail.com) for access if needed.
|
||||
You can import our dataset, environment, policy classes, and use our training utilities (if some data is missing, it will be automatically downloaded from HuggingFace hub):
|
||||
```python
|
||||
""" Copy pasted from `examples/3_train_policy.py`
|
||||
# TODO
|
||||
```
|
||||
|
||||
Or you can achieve the same result by executing our script from the command line:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.run.dir=outputs/train/example
|
||||
```
|
||||
|
||||
You can easily train any policy on any environment:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
env=aloha \
|
||||
task=sim_insertion \
|
||||
dataset_id=aloha_sim_insertion_scripted \
|
||||
policy=act \
|
||||
hydra.run.dir=outputs/train/aloha_act
|
||||
```
|
||||
|
||||
## Contribute
|
||||
|
||||
Feel free to open issues and PRs, and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](remi.cadene@huggingface.co).
|
||||
|
||||
**TODO**
|
||||
|
||||
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/orgs/huggingface/projects/46)
|
||||
|
||||
**Follow our style**
|
||||
|
||||
```bash
|
||||
# install if needed
|
||||
pre-commit install
|
||||
# apply style and linter checks before git commit
|
||||
pre-commit
|
||||
```
|
||||
|
||||
**Add dependencies**
|
||||
|
||||
Instead of `pip install some-package`, we use `poetry` to track the versions of our dependencies:
|
||||
```bash
|
||||
poetry add some-package
|
||||
```
|
||||
|
||||
**NOTE:** Currently, to ensure the CI works properly, any new package must also be added in the CPU-only environment dedicated CI. To do this, you should create a separate environment and add the new package there as well. For example:
|
||||
```bash
|
||||
# add the new package to your main poetry env
|
||||
poetry add some-package
|
||||
# add the same package to the CPU-only env dedicated to CI
|
||||
conda create -y -n lerobot-ci python=3.10
|
||||
conda activate lerobot-ci
|
||||
cd .github/poetry/cpu
|
||||
poetry add some-package
|
||||
```
|
||||
|
||||
**Run tests locally**
|
||||
|
||||
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
|
||||
|
||||
On Mac:
|
||||
```bash
|
||||
brew install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
On Ubuntu:
|
||||
```bash
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
Pull artifacts if they're not in [tests/data](tests/data)
|
||||
```bash
|
||||
git lfs pull
|
||||
```
|
||||
|
||||
When adding a new dataset, mock it with
|
||||
```bash
|
||||
python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir tests/data/$DATASET
|
||||
```
|
||||
|
||||
Run tests
|
||||
```bash
|
||||
DATA_DIR="tests/data" pytest -sx tests
|
||||
```
|
||||
|
||||
**Add a new dataset**
|
||||
|
||||
To add a dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Then you can upload it to the hub with:
|
||||
```bash
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
|
||||
--repo-type dataset \
|
||||
--revision v1.0
|
||||
```
|
||||
|
||||
You will need to set the corresponding version as a default argument in your dataset class:
|
||||
```python
|
||||
version: str | None = "v1.0",
|
||||
```
|
||||
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
|
||||
|
||||
For instance, for [lerobot/pusht](https://huggingface.co/datasets/lerobot/pusht), we used:
|
||||
```bash
|
||||
HF_USER=lerobot
|
||||
DATASET=pusht
|
||||
```
|
||||
|
||||
If you want to improve an existing dataset, you can download it locally with:
|
||||
```bash
|
||||
mkdir -p data/$DATASET
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download ${HF_USER}/$DATASET \
|
||||
--repo-type dataset \
|
||||
--local-dir data/$DATASET \
|
||||
--local-dir-use-symlinks=False \
|
||||
--revision v1.0
|
||||
```
|
||||
|
||||
Iterate on your code and dataset with:
|
||||
```bash
|
||||
DATA_DIR=data python train.py
|
||||
```
|
||||
|
||||
Upload a new version (v2.0 or v1.1 if the changes are respectively more or less significant):
|
||||
```bash
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
|
||||
--repo-type dataset \
|
||||
--revision v1.1 \
|
||||
--delete "*"
|
||||
```
|
||||
|
||||
Then you will need to set the corresponding version as a default argument in your dataset class:
|
||||
```python
|
||||
version: str | None = "v1.1",
|
||||
```
|
||||
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
|
||||
|
||||
|
||||
## Profile
|
||||
Finally, you might want to mock the dataset if you need to update the unit tests as well:
|
||||
```bash
|
||||
python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir tests/data/$DATASET
|
||||
```
|
||||
|
||||
**Example**
|
||||
**Add a pretrained policy**
|
||||
|
||||
Once you have trained a policy you may upload it to the HuggingFace hub.
|
||||
|
||||
Firstly, make sure you have a model repository set up on the hub. The hub ID looks like HF_USER/REPO_NAME.
|
||||
|
||||
Secondly, assuming you have trained a policy, you need:
|
||||
|
||||
- `config.yaml` which you can get from the `.hydra` directory of your training output folder.
|
||||
- `model.pt` which should be one of the saved models in the `models` directory of your training output folder (they won't be named `model.pt` but you will need to choose one).
|
||||
- `stats.pth` which should point to the same file in the dataset directory (found in `data/{dataset_name}`).
|
||||
|
||||
To upload these to the hub, prepare a folder with the following structure (you can use symlinks rather than copying):
|
||||
|
||||
```
|
||||
to_upload
|
||||
├── config.yaml
|
||||
├── model.pt
|
||||
└── stats.pth
|
||||
```
|
||||
|
||||
With the folder prepared, run the following with a desired revision ID.
|
||||
|
||||
```bash
|
||||
huggingface-cli upload $HUB_ID to_upload --revision $REVISION_ID
|
||||
```
|
||||
|
||||
If you want this to be the default revision also run the following (don't worry, it won't upload the files again; it will just adjust the file pointers):
|
||||
|
||||
```bash
|
||||
huggingface-cli upload $HUB_ID to_upload
|
||||
```
|
||||
|
||||
See `eval.py` for an example of how a user may use your policy.
|
||||
|
||||
|
||||
**Improve your code with profiling**
|
||||
|
||||
An example of a code snippet to profile the evaluation of a policy:
|
||||
```python
|
||||
from torch.profiler import profile, record_function, ProfilerActivity
|
||||
|
||||
@@ -85,87 +382,12 @@ with profile(
|
||||
with record_function("eval_policy"):
|
||||
for i in range(num_episodes):
|
||||
prof.step()
|
||||
# insert code to profile, potentially whole body of eval_policy function
|
||||
```
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
pretrained_model_path=/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt \
|
||||
--config outputs/pusht/.hydra/config.yaml \
|
||||
pretrained_model_path=outputs/pusht/model.pt \
|
||||
eval_episodes=7
|
||||
```
|
||||
|
||||
## Contribute
|
||||
|
||||
**Style**
|
||||
```
|
||||
# install if needed
|
||||
pre-commit install
|
||||
# apply style and linter checks before git commit
|
||||
pre-commit run -a
|
||||
```
|
||||
|
||||
**Adding dependencies (temporary)**
|
||||
|
||||
Right now, for the CI to work, whenever a new dependency is added it needs to be also added to the cpu env, eg:
|
||||
|
||||
```
|
||||
# Run in this directory, adds the package to the main env with cuda
|
||||
poetry add some-package
|
||||
|
||||
# Adds the same package to the cpu env
|
||||
cd .github/poetry/cpu && poetry add some-package
|
||||
```
|
||||
|
||||
**Tests**
|
||||
|
||||
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
|
||||
|
||||
On Mac:
|
||||
```
|
||||
brew install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
On Ubuntu:
|
||||
```
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
Pull artifacts if they're not in [tests/data](tests/data)
|
||||
```
|
||||
git lfs pull
|
||||
```
|
||||
|
||||
When adding a new dataset, mock it with
|
||||
```
|
||||
python tests/scripts/mock_dataset.py --in-data-dir data/<dataset_id> --out-data-dir tests/data/<dataset_id>
|
||||
```
|
||||
|
||||
Run tests
|
||||
```
|
||||
DATA_DIR="tests/data" pytest -sx tests
|
||||
```
|
||||
|
||||
**Datasets**
|
||||
|
||||
To add a pytorch rl dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
|
||||
```
|
||||
huggingface-cli login --token $HUGGINGFACE_TOKEN --add-to-git-credential
|
||||
```
|
||||
|
||||
Then you can upload it to the hub with:
|
||||
```
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload --repo-type dataset $HF_USER/$DATASET data/$DATASET
|
||||
```
|
||||
|
||||
For instance, for [cadene/pusht](https://huggingface.co/datasets/cadene/pusht), we used:
|
||||
```
|
||||
HF_USER=cadene
|
||||
DATASET=pusht
|
||||
```
|
||||
|
||||
|
||||
## Acknowledgment
|
||||
- Our Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
|
||||
- Our TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
|
||||
- Our ACT policy and ALOHA environment are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha/)
|
||||
|
||||
24
examples/1_visualize_dataset.py
Normal file
24
examples/1_visualize_dataset.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import os
|
||||
|
||||
from torchrl.data.replay_buffers import SamplerWithoutReplacement
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.aloha import AlohaDataset
|
||||
from lerobot.scripts.visualize_dataset import render_dataset
|
||||
|
||||
print(lerobot.available_datasets)
|
||||
# >>> ['aloha_sim_insertion_human', 'aloha_sim_insertion_scripted', 'aloha_sim_transfer_cube_human', 'aloha_sim_transfer_cube_scripted', 'pusht', 'xarm_lift_medium']
|
||||
|
||||
# we use this sampler to sample 1 frame after the other
|
||||
sampler = SamplerWithoutReplacement(shuffle=False)
|
||||
|
||||
dataset = AlohaDataset("aloha_sim_transfer_cube_human", sampler=sampler, root=os.environ.get("DATA_DIR"))
|
||||
|
||||
video_paths = render_dataset(
|
||||
dataset,
|
||||
out_dir="outputs/visualize_dataset/example",
|
||||
max_num_samples=300,
|
||||
fps=50,
|
||||
)
|
||||
print(video_paths)
|
||||
# ['outputs/visualize_dataset/example/episode_0.mp4']
|
||||
1
examples/2_evaluate_pretrained_policy.py
Normal file
1
examples/2_evaluate_pretrained_policy.py
Normal file
@@ -0,0 +1 @@
|
||||
# TODO
|
||||
1
examples/3_train_policy.py
Normal file
1
examples/3_train_policy.py
Normal file
@@ -0,0 +1 @@
|
||||
# TODO
|
||||
@@ -1 +1,59 @@
|
||||
"""
|
||||
This file contains lists of available environments, dataset and policies to reflect the current state of LeRobot library.
|
||||
We do not want to import all the dependencies, but instead we keep it lightweight to ensure fast access to these variables.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import lerobot
|
||||
print(lerobot.available_envs)
|
||||
print(lerobot.available_tasks_per_env)
|
||||
print(lerobot.available_datasets_per_env)
|
||||
print(lerobot.available_datasets)
|
||||
print(lerobot.available_policies)
|
||||
```
|
||||
|
||||
Note:
|
||||
When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
|
||||
1. set the required class attributes:
|
||||
- for classes inheriting from `AbstractDataset`: `available_datasets`
|
||||
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
|
||||
- for classes inheriting from `AbstractPolicy`: `name`
|
||||
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
|
||||
3. update variables in `tests/test_available.py` by importing your new class
|
||||
"""
|
||||
|
||||
from lerobot.__version__ import __version__ # noqa: F401
|
||||
|
||||
available_envs = [
|
||||
"aloha",
|
||||
"pusht",
|
||||
"simxarm",
|
||||
]
|
||||
|
||||
available_tasks_per_env = {
|
||||
"aloha": [
|
||||
"sim_insertion",
|
||||
"sim_transfer_cube",
|
||||
],
|
||||
"pusht": ["pusht"],
|
||||
"simxarm": ["lift"],
|
||||
}
|
||||
|
||||
available_datasets_per_env = {
|
||||
"aloha": [
|
||||
"aloha_sim_insertion_human",
|
||||
"aloha_sim_insertion_scripted",
|
||||
"aloha_sim_transfer_cube_human",
|
||||
"aloha_sim_transfer_cube_scripted",
|
||||
],
|
||||
"pusht": ["pusht"],
|
||||
"simxarm": ["xarm_lift_medium"],
|
||||
}
|
||||
|
||||
available_datasets = [dataset for env in available_envs for dataset in available_datasets_per_env[env]]
|
||||
|
||||
available_policies = [
|
||||
"act",
|
||||
"diffusion",
|
||||
"tdmpc",
|
||||
]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
""" To enable `lerobot.__version__` """
|
||||
"""To enable `lerobot.__version__`"""
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
|
||||
@@ -9,30 +9,74 @@ import tqdm
|
||||
from huggingface_hub import snapshot_download
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.samplers import Sampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
|
||||
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
|
||||
from torchrl.envs.transforms.transforms import Compose
|
||||
|
||||
HF_USER = "lerobot"
|
||||
|
||||
|
||||
class AbstractDataset(TensorDictReplayBuffer):
|
||||
"""
|
||||
AbstractDataset represents a dataset in the context of imitation learning or reinforcement learning.
|
||||
This class is designed to be subclassed by concrete implementations that specify particular types of datasets.
|
||||
These implementations can vary based on the source of the data, the environment the data pertains to,
|
||||
or the specific kind of data manipulation applied.
|
||||
|
||||
Note:
|
||||
- `TensorDictReplayBuffer` is the base class from which `AbstractDataset` inherits. It provides the foundational
|
||||
functionality for storing and retrieving `TensorDict`-like data.
|
||||
- `available_datasets` should be overridden by concrete subclasses to list the specific dataset variants supported.
|
||||
It is expected that these variants correspond to a HuggingFace dataset on the hub.
|
||||
For instance, the `AlohaDataset` which inherites from `AbstractDataset` has 4 available dataset variants:
|
||||
- [aloha_sim_transfer_cube_scripted](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted)
|
||||
- [aloha_sim_insertion_scripted](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_scripted)
|
||||
- [aloha_sim_transfer_cube_human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human)
|
||||
- [aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human)
|
||||
- When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
|
||||
1. set the required class attributes:
|
||||
- for classes inheriting from `AbstractDataset`: `available_datasets`
|
||||
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
|
||||
- for classes inheriting from `AbstractPolicy`: `name`
|
||||
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
|
||||
3. update variables in `tests/test_available.py` by importing your new class
|
||||
"""
|
||||
|
||||
available_datasets: list[str] | None = None
|
||||
|
||||
class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
version: str | None = None,
|
||||
batch_size: int | None = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
sampler: Sampler | None = None,
|
||||
collate_fn: Callable | None = None,
|
||||
writer: Writer | None = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
assert (
|
||||
self.available_datasets is not None
|
||||
), "Subclasses of `AbstractDataset` should set the `available_datasets` class attribute."
|
||||
assert (
|
||||
dataset_id in self.available_datasets
|
||||
), f"The provided dataset ({dataset_id}) is not on the list of available datasets {self.available_datasets}."
|
||||
|
||||
self.dataset_id = dataset_id
|
||||
self.version = version
|
||||
self.shuffle = shuffle
|
||||
self.root = root
|
||||
self.root = root if root is None else Path(root)
|
||||
|
||||
if self.root is not None and self.version is not None:
|
||||
logging.warning(
|
||||
f"The version of the dataset ({self.version}) is not enforced when root is provided ({self.root})."
|
||||
)
|
||||
|
||||
storage = self._download_or_load_dataset()
|
||||
|
||||
super().__init__(
|
||||
@@ -49,9 +93,9 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
@property
|
||||
def stats_patterns(self) -> dict:
|
||||
return {
|
||||
("observation", "state"): "b c -> 1 c",
|
||||
("observation", "image"): "b c h w -> 1 c 1 1",
|
||||
("action",): "b c -> 1 c",
|
||||
("observation", "state"): "b c -> c",
|
||||
("observation", "image"): "b c h w -> c 1 1",
|
||||
("action",): "b c -> c",
|
||||
}
|
||||
|
||||
@property
|
||||
@@ -96,10 +140,14 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
|
||||
def _download_or_load_dataset(self) -> torch.StorageBase:
|
||||
if self.root is None:
|
||||
self.data_dir = snapshot_download(repo_id=f"cadene/{self.dataset_id}", repo_type="dataset")
|
||||
self.data_dir = Path(
|
||||
snapshot_download(
|
||||
repo_id=f"{HF_USER}/{self.dataset_id}", repo_type="dataset", revision=self.version
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.data_dir = self.root / self.dataset_id
|
||||
return TensorStorage(TensorDict.load_memmap(self.data_dir))
|
||||
return TensorStorage(TensorDict.load_memmap(self.data_dir / "replay_buffer"))
|
||||
|
||||
def _compute_stats(self, num_batch=100, batch_size=32):
|
||||
rb = TensorDictReplayBuffer(
|
||||
|
||||
@@ -9,11 +9,11 @@ import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.samplers import Sampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
from lerobot.common.datasets.abstract import AbstractDataset
|
||||
|
||||
DATASET_IDS = [
|
||||
"aloha_sim_insertion_human",
|
||||
@@ -80,25 +80,27 @@ def download(data_dir, dataset_id):
|
||||
gdown.download(EP49_URLS[dataset_id], output=str(data_dir / "episode_49.hdf5"), fuzzy=True)
|
||||
|
||||
|
||||
class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
class AlohaDataset(AbstractDataset):
|
||||
available_datasets = DATASET_IDS
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
version: str | None = "v1.2",
|
||||
batch_size: int | None = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
sampler: Sampler | None = None,
|
||||
collate_fn: Callable | None = None,
|
||||
writer: Writer | None = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
assert dataset_id in DATASET_IDS
|
||||
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
version,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
@@ -113,11 +115,11 @@ class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
@property
|
||||
def stats_patterns(self) -> dict:
|
||||
d = {
|
||||
("observation", "state"): "b c -> 1 c",
|
||||
("action",): "b c -> 1 c",
|
||||
("observation", "state"): "b c -> c",
|
||||
("action",): "b c -> c",
|
||||
}
|
||||
for cam in CAMERAS[self.dataset_id]:
|
||||
d[("observation", "image", cam)] = "b c h w -> 1 c 1 1"
|
||||
d[("observation", "image", cam)] = "b c h w -> c 1 1"
|
||||
return d
|
||||
|
||||
@property
|
||||
|
||||
@@ -5,7 +5,7 @@ from pathlib import Path
|
||||
import torch
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
|
||||
|
||||
from lerobot.common.envs.transforms import NormalizeTransform, Prod
|
||||
from lerobot.common.transforms import NormalizeTransform, Prod
|
||||
|
||||
# DATA_DIR specifies to location where datasets are loaded. By default, DATA_DIR is None and
|
||||
# we load from `$HOME/.cache/huggingface/hub/datasets`. For our unit tests, we set `DATA_DIR=tests/data`
|
||||
@@ -14,7 +14,13 @@ DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
|
||||
|
||||
def make_offline_buffer(
|
||||
cfg, overwrite_sampler=None, normalize=True, overwrite_batch_size=None, overwrite_prefetch=None
|
||||
cfg,
|
||||
overwrite_sampler=None,
|
||||
# set normalize=False to remove all transformations and keep images unnormalized in [0,255]
|
||||
normalize=True,
|
||||
overwrite_batch_size=None,
|
||||
overwrite_prefetch=None,
|
||||
stats_path=None,
|
||||
):
|
||||
if cfg.policy.balanced_sampling:
|
||||
assert cfg.online_steps > 0
|
||||
@@ -59,25 +65,27 @@ def make_offline_buffer(
|
||||
sampler = overwrite_sampler
|
||||
|
||||
if cfg.env.name == "simxarm":
|
||||
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
|
||||
from lerobot.common.datasets.simxarm import SimxarmDataset
|
||||
|
||||
clsfunc = SimxarmExperienceReplay
|
||||
dataset_id = f"xarm_{cfg.env.task}_medium"
|
||||
clsfunc = SimxarmDataset
|
||||
|
||||
elif cfg.env.name == "pusht":
|
||||
from lerobot.common.datasets.pusht import PushtExperienceReplay
|
||||
from lerobot.common.datasets.pusht import PushtDataset
|
||||
|
||||
clsfunc = PushtExperienceReplay
|
||||
dataset_id = "pusht"
|
||||
clsfunc = PushtDataset
|
||||
|
||||
elif cfg.env.name == "aloha":
|
||||
from lerobot.common.datasets.aloha import AlohaExperienceReplay
|
||||
from lerobot.common.datasets.aloha import AlohaDataset
|
||||
|
||||
clsfunc = AlohaExperienceReplay
|
||||
dataset_id = f"aloha_{cfg.env.task}"
|
||||
clsfunc = AlohaDataset
|
||||
else:
|
||||
raise ValueError(cfg.env.name)
|
||||
|
||||
# TODO(rcadene): backward compatiblity to load pretrained pusht policy
|
||||
dataset_id = cfg.get("dataset_id")
|
||||
if dataset_id is None and cfg.env.name == "pusht":
|
||||
dataset_id = "pusht"
|
||||
|
||||
offline_buffer = clsfunc(
|
||||
dataset_id=dataset_id,
|
||||
sampler=sampler,
|
||||
@@ -95,13 +103,15 @@ def make_offline_buffer(
|
||||
else:
|
||||
img_keys = offline_buffer.image_keys
|
||||
|
||||
transforms = [Prod(in_keys=img_keys, prod=1 / 255)]
|
||||
|
||||
if normalize:
|
||||
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
|
||||
stats = offline_buffer.compute_or_load_stats()
|
||||
transforms = [Prod(in_keys=img_keys, prod=1 / 255)]
|
||||
|
||||
# we only normalize the state and action, since the images are usually normalized inside the model for now (except for tdmpc: see the following)
|
||||
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max,
|
||||
# min_max_from_spec
|
||||
stats = offline_buffer.compute_or_load_stats() if stats_path is None else torch.load(stats_path)
|
||||
|
||||
# we only normalize the state and action, since the images are usually normalized inside the model for
|
||||
# now (except for tdmpc: see the following)
|
||||
in_keys = [("observation", "state"), ("action")]
|
||||
|
||||
if cfg.policy.name == "tdmpc":
|
||||
@@ -122,7 +132,7 @@ def make_offline_buffer(
|
||||
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
|
||||
transforms.append(NormalizeTransform(stats, in_keys, mode=normalization_mode))
|
||||
|
||||
offline_buffer.set_transform(transforms)
|
||||
offline_buffer.set_transform(transforms)
|
||||
|
||||
if not overwrite_sampler:
|
||||
index = torch.arange(0, offline_buffer.num_samples, 1)
|
||||
|
||||
@@ -9,11 +9,11 @@ import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.samplers import Sampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
from lerobot.common.datasets.abstract import AbstractDataset
|
||||
from lerobot.common.datasets.utils import download_and_extract_zip
|
||||
from lerobot.common.envs.pusht.pusht_env import pymunk_to_shapely
|
||||
from lerobot.common.policies.diffusion.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
|
||||
@@ -83,23 +83,27 @@ def add_tee(
|
||||
return body
|
||||
|
||||
|
||||
class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
class PushtDataset(AbstractDataset):
|
||||
available_datasets = ["pusht"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
version: str | None = "v1.2",
|
||||
batch_size: int | None = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
sampler: Sampler | None = None,
|
||||
collate_fn: Callable | None = None,
|
||||
writer: Writer | None = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
version,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
|
||||
@@ -8,12 +8,12 @@ import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import (
|
||||
SliceSampler,
|
||||
Sampler,
|
||||
)
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
from lerobot.common.datasets.abstract import AbstractDataset
|
||||
|
||||
|
||||
def download():
|
||||
@@ -32,7 +32,7 @@ def download():
|
||||
Path(download_path).unlink()
|
||||
|
||||
|
||||
class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
class SimxarmDataset(AbstractDataset):
|
||||
available_datasets = [
|
||||
"xarm_lift_medium",
|
||||
]
|
||||
@@ -40,19 +40,21 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
version: str | None = "v1.1",
|
||||
batch_size: int | None = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
sampler: Sampler | None = None,
|
||||
collate_fn: Callable | None = None,
|
||||
writer: Writer | None = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
version,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
@@ -65,11 +67,11 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
)
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
# assert self.root is not None
|
||||
# TODO(rcadene): finish download
|
||||
download()
|
||||
# download()
|
||||
|
||||
dataset_path = self.root / f"{self.dataset_id}_raw" / "buffer.pkl"
|
||||
dataset_path = self.root / f"{self.dataset_id}" / "buffer.pkl"
|
||||
print(f"Using offline dataset '{dataset_path}'")
|
||||
with open(dataset_path, "rb") as f:
|
||||
dataset_dict = pickle.load(f)
|
||||
@@ -103,15 +105,19 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
"frame_id": torch.arange(0, num_frames, 1),
|
||||
("next", "observation", "image"): next_image,
|
||||
("next", "observation", "state"): next_state,
|
||||
("next", "observation", "reward"): next_reward,
|
||||
("next", "observation", "done"): next_done,
|
||||
("next", "reward"): next_reward,
|
||||
("next", "done"): next_done,
|
||||
},
|
||||
batch_size=num_frames,
|
||||
)
|
||||
|
||||
if episode_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = episode[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
td_data = (
|
||||
episode[0]
|
||||
.expand(total_frames)
|
||||
.memmap_like(self.root / f"{self.dataset_id}" / "replay_buffer")
|
||||
)
|
||||
|
||||
td_data[idx0:idx1] = episode
|
||||
|
||||
|
||||
@@ -1,12 +1,27 @@
|
||||
import abc
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
from tensordict import TensorDict
|
||||
from torchrl.envs import EnvBase
|
||||
|
||||
from lerobot.common.utils import set_global_seed
|
||||
|
||||
|
||||
class AbstractEnv(EnvBase):
|
||||
"""
|
||||
Note:
|
||||
When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
|
||||
1. set the required class attributes:
|
||||
- for classes inheriting from `AbstractDataset`: `available_datasets`
|
||||
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
|
||||
- for classes inheriting from `AbstractPolicy`: `name`
|
||||
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
|
||||
3. update variables in `tests/test_available.py` by importing your new class
|
||||
"""
|
||||
|
||||
name: str | None = None # same name should be used to instantiate the environment in factory.py
|
||||
available_tasks: list[str] | None = None # for instance: sim_insertion, sim_transfer_cube, pusht, lift
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
@@ -20,6 +35,14 @@ class AbstractEnv(EnvBase):
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(device=device, batch_size=[])
|
||||
assert self.name is not None, "Subclasses of `AbstractEnv` should set the `name` class attribute."
|
||||
assert (
|
||||
self.available_tasks is not None
|
||||
), "Subclasses of `AbstractEnv` should set the `available_tasks` class attribute."
|
||||
assert (
|
||||
task in self.available_tasks
|
||||
), f"The provided task ({task}) is not on the list of available tasks {self.available_tasks}."
|
||||
|
||||
self.task = task
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
@@ -27,7 +50,6 @@ class AbstractEnv(EnvBase):
|
||||
self.image_size = image_size
|
||||
self.num_prev_obs = num_prev_obs
|
||||
self.num_prev_action = num_prev_action
|
||||
self._rendering_hooks = []
|
||||
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
@@ -36,7 +58,13 @@ class AbstractEnv(EnvBase):
|
||||
|
||||
self._make_env()
|
||||
self._make_spec()
|
||||
self._current_seed = self.set_seed(seed)
|
||||
|
||||
# self._next_seed will be used for the next reset. It is recommended that when self.set_seed is called
|
||||
# you store the return value in self._next_seed (it will be a new randomly generated seed).
|
||||
self._next_seed = seed
|
||||
# Don't store the result of this in self._next_seed, as we want to make sure that the first time
|
||||
# self._reset is called, we use seed.
|
||||
self.set_seed(seed)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
|
||||
@@ -45,36 +73,20 @@ class AbstractEnv(EnvBase):
|
||||
raise NotImplementedError()
|
||||
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
|
||||
|
||||
def register_rendering_hook(self, func):
|
||||
self._rendering_hooks.append(func)
|
||||
|
||||
def call_rendering_hooks(self):
|
||||
for func in self._rendering_hooks:
|
||||
func(self)
|
||||
|
||||
def reset_rendering_hooks(self):
|
||||
self._rendering_hooks = []
|
||||
|
||||
@abc.abstractmethod
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
raise NotImplementedError()
|
||||
raise NotImplementedError("Abstract method")
|
||||
|
||||
@abc.abstractmethod
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
raise NotImplementedError()
|
||||
raise NotImplementedError("Abstract method")
|
||||
|
||||
@abc.abstractmethod
|
||||
def _step(self, tensordict: TensorDict):
|
||||
raise NotImplementedError()
|
||||
raise NotImplementedError("Abstract method")
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_env(self):
|
||||
raise NotImplementedError()
|
||||
raise NotImplementedError("Abstract method")
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_spec(self):
|
||||
raise NotImplementedError()
|
||||
raise NotImplementedError("Abstract method")
|
||||
|
||||
@abc.abstractmethod
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
raise NotImplementedError()
|
||||
set_global_seed(seed)
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -29,12 +29,16 @@ from lerobot.common.envs.aloha.tasks.sim_end_effector import (
|
||||
TransferCubeEndEffectorTask,
|
||||
)
|
||||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
from lerobot.common.utils import set_seed
|
||||
from lerobot.common.utils import set_global_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
_has_gym = importlib.util.find_spec("gymnasium") is not None
|
||||
|
||||
|
||||
class AlohaEnv(AbstractEnv):
|
||||
name = "aloha"
|
||||
available_tasks = ["sim_insertion", "sim_transfer_cube"]
|
||||
_reset_warning_issued = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
@@ -61,7 +65,7 @@ class AlohaEnv(AbstractEnv):
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
raise ImportError("Cannot import gymnasium.")
|
||||
|
||||
if not self.from_pixels:
|
||||
raise NotImplementedError()
|
||||
@@ -120,91 +124,74 @@ class AlohaEnv(AbstractEnv):
|
||||
return obs
|
||||
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
td = tensordict
|
||||
if td is None or td.is_empty():
|
||||
# we need to handle seed iteration, since self._env.reset() rely an internal _seed.
|
||||
self._current_seed += 1
|
||||
self.set_seed(self._current_seed)
|
||||
if tensordict is not None and not AlohaEnv._reset_warning_issued:
|
||||
logging.warning(f"{self.__class__.__name__}._reset ignores the provided tensordict.")
|
||||
AlohaEnv._reset_warning_issued = True
|
||||
|
||||
# TODO(rcadene): do not use global variable for this
|
||||
if "sim_transfer_cube" in self.task:
|
||||
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
||||
elif "sim_insertion" in self.task:
|
||||
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
||||
# Seed the environment and update the seed to be used for the next reset.
|
||||
self._next_seed = self.set_seed(self._next_seed)
|
||||
|
||||
raw_obs = self._env.reset()
|
||||
# TODO(rcadene): add assert
|
||||
# assert self._current_seed == self._env._seed
|
||||
# TODO(rcadene): do not use global variable for this
|
||||
if "sim_transfer_cube" in self.task:
|
||||
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
||||
elif "sim_insertion" in self.task:
|
||||
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
||||
|
||||
obs = self._format_raw_obs(raw_obs.observation)
|
||||
raw_obs = self._env.reset()
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
obs = self._format_raw_obs(raw_obs.observation)
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
td = tensordict
|
||||
action = td["action"].numpy()
|
||||
# step expects shape=(4,) so we pad if necessary
|
||||
assert action.ndim == 1
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
sum_reward = 0
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
_, reward, _, raw_obs = self._env.step(action)
|
||||
|
||||
num_action_steps = action.shape[0]
|
||||
for i in range(num_action_steps):
|
||||
_, reward, discount, raw_obs = self._env.step(action[i])
|
||||
del discount # not used
|
||||
# TODO(rcadene): add an enum
|
||||
success = done = reward == 4
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
# TOOD(rcadene): add an enum
|
||||
success = done = reward == 4
|
||||
sum_reward += reward
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"]["top"])
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"]["top"])
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"reward": torch.tensor([sum_reward], dtype=torch.float32),
|
||||
# succes and done are true when coverage > self.success_threshold in env
|
||||
"reward": torch.tensor([reward], dtype=torch.float32),
|
||||
# success and done are true when coverage > self.success_threshold in env
|
||||
"done": torch.tensor([done], dtype=torch.bool),
|
||||
"success": torch.tensor([success], dtype=torch.bool),
|
||||
},
|
||||
@@ -219,7 +206,7 @@ class AlohaEnv(AbstractEnv):
|
||||
if self.from_pixels:
|
||||
if isinstance(self.image_size, int):
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
elif OmegaConf.is_list(self.image_size):
|
||||
elif OmegaConf.is_list(self.image_size) or isinstance(self.image_size, list):
|
||||
assert len(self.image_size) == 3 # c h w
|
||||
assert self.image_size[0] == 3 # c is RGB
|
||||
image_shape = tuple(self.image_size)
|
||||
@@ -305,7 +292,7 @@ class AlohaEnv(AbstractEnv):
|
||||
)
|
||||
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
set_seed(seed)
|
||||
set_global_seed(seed)
|
||||
# TODO(rcadene): seed the env
|
||||
# self._env.seed(seed)
|
||||
logging.warning("Aloha env is not seeded")
|
||||
|
||||
@@ -1,19 +1,23 @@
|
||||
from torchrl.envs import SerialEnv
|
||||
from torchrl.envs.transforms import Compose, StepCounter, Transform, TransformedEnv
|
||||
|
||||
|
||||
def make_env(cfg, transform=None):
|
||||
"""
|
||||
Note: The returned environment is wrapped in a torchrl.SerialEnv with cfg.rollout_batch_size underlying
|
||||
environments. The env therefore returns batches.`
|
||||
"""
|
||||
|
||||
kwargs = {
|
||||
"frame_skip": cfg.env.action_repeat,
|
||||
"from_pixels": cfg.env.from_pixels,
|
||||
"pixels_only": cfg.env.pixels_only,
|
||||
"image_size": cfg.env.image_size,
|
||||
# TODO(rcadene): do we want a specific eval_env_seed?
|
||||
"seed": cfg.seed,
|
||||
"num_prev_obs": cfg.n_obs_steps - 1,
|
||||
}
|
||||
|
||||
if cfg.env.name == "simxarm":
|
||||
from lerobot.common.envs.simxarm import SimxarmEnv
|
||||
from lerobot.common.envs.simxarm.env import SimxarmEnv
|
||||
|
||||
kwargs["task"] = cfg.env.task
|
||||
clsfunc = SimxarmEnv
|
||||
@@ -31,43 +35,30 @@ def make_env(cfg, transform=None):
|
||||
else:
|
||||
raise ValueError(cfg.env.name)
|
||||
|
||||
env = clsfunc(**kwargs)
|
||||
def _make_env(seed):
|
||||
nonlocal kwargs
|
||||
kwargs["seed"] = seed
|
||||
env = clsfunc(**kwargs)
|
||||
|
||||
# limit rollout to max_steps
|
||||
env = TransformedEnv(env, StepCounter(max_steps=cfg.env.episode_length))
|
||||
# limit rollout to max_steps
|
||||
env = TransformedEnv(env, StepCounter(max_steps=cfg.env.episode_length))
|
||||
|
||||
if transform is not None:
|
||||
# useful to add normalization
|
||||
if isinstance(transform, Compose):
|
||||
for tf in transform:
|
||||
env.append_transform(tf.clone())
|
||||
elif isinstance(transform, Transform):
|
||||
env.append_transform(transform.clone())
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
if transform is not None:
|
||||
# useful to add normalization
|
||||
if isinstance(transform, Compose):
|
||||
for tf in transform:
|
||||
env.append_transform(tf.clone())
|
||||
elif isinstance(transform, Transform):
|
||||
env.append_transform(transform.clone())
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
return env
|
||||
return env
|
||||
|
||||
|
||||
# def make_env(env_name, frame_skip, device, is_test=False):
|
||||
# env = GymEnv(
|
||||
# env_name,
|
||||
# frame_skip=frame_skip,
|
||||
# from_pixels=True,
|
||||
# pixels_only=False,
|
||||
# device=device,
|
||||
# )
|
||||
# env = TransformedEnv(env)
|
||||
# env.append_transform(NoopResetEnv(noops=30, random=True))
|
||||
# if not is_test:
|
||||
# env.append_transform(EndOfLifeTransform())
|
||||
# env.append_transform(RewardClipping(-1, 1))
|
||||
# env.append_transform(ToTensorImage())
|
||||
# env.append_transform(GrayScale())
|
||||
# env.append_transform(Resize(84, 84))
|
||||
# env.append_transform(CatFrames(N=4, dim=-3))
|
||||
# env.append_transform(RewardSum())
|
||||
# env.append_transform(StepCounter(max_steps=4500))
|
||||
# env.append_transform(DoubleToFloat())
|
||||
# env.append_transform(VecNorm(in_keys=["pixels"]))
|
||||
# return env
|
||||
return SerialEnv(
|
||||
cfg.rollout_batch_size,
|
||||
create_env_fn=_make_env,
|
||||
create_env_kwargs=[
|
||||
{"seed": env_seed} for env_seed in range(cfg.seed, cfg.seed + cfg.rollout_batch_size)
|
||||
],
|
||||
)
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import importlib
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.tensor_specs import (
|
||||
@@ -14,12 +16,16 @@ from torchrl.data.tensor_specs import (
|
||||
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.utils import set_seed
|
||||
from lerobot.common.utils import set_global_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
_has_gym = importlib.util.find_spec("gymnasium") is not None
|
||||
|
||||
|
||||
class PushtEnv(AbstractEnv):
|
||||
name = "pusht"
|
||||
available_tasks = ["pusht"]
|
||||
_reset_warning_issued = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
task="pusht",
|
||||
@@ -46,7 +52,7 @@ class PushtEnv(AbstractEnv):
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
raise ImportError("Cannot import gymnasium.")
|
||||
|
||||
# TODO(rcadene) (PushTEnv is similar to PushTImageEnv, but without the image rendering, it's faster to iterate on)
|
||||
# from lerobot.common.envs.pusht.pusht_env import PushTEnv
|
||||
@@ -57,12 +63,30 @@ class PushtEnv(AbstractEnv):
|
||||
|
||||
self._env = PushTImageEnv(render_size=self.image_size)
|
||||
|
||||
def render(self, mode="rgb_array", width=384, height=384):
|
||||
def render(self, mode="rgb_array", width=96, height=96, with_marker=True):
|
||||
"""
|
||||
with_marker adds a cursor showing the targeted action for the controller.
|
||||
"""
|
||||
if width != height:
|
||||
raise NotImplementedError()
|
||||
tmp = self._env.render_size
|
||||
self._env.render_size = width
|
||||
out = self._env.render(mode)
|
||||
if width != self._env.render_size:
|
||||
self._env.render_cache = None
|
||||
self._env.render_size = width
|
||||
out = self._env.render(mode).copy()
|
||||
if with_marker and self._env.latest_action is not None:
|
||||
action = np.array(self._env.latest_action)
|
||||
coord = (action / 512 * self._env.render_size).astype(np.int32)
|
||||
marker_size = int(8 / 96 * self._env.render_size)
|
||||
thickness = int(1 / 96 * self._env.render_size)
|
||||
cv2.drawMarker(
|
||||
out,
|
||||
coord,
|
||||
color=(255, 0, 0),
|
||||
markerType=cv2.MARKER_CROSS,
|
||||
markerSize=marker_size,
|
||||
thickness=thickness,
|
||||
)
|
||||
self._env.render_size = tmp
|
||||
return out
|
||||
|
||||
@@ -80,80 +104,65 @@ class PushtEnv(AbstractEnv):
|
||||
return obs
|
||||
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
td = tensordict
|
||||
if td is None or td.is_empty():
|
||||
# we need to handle seed iteration, since self._env.reset() rely an internal _seed.
|
||||
self._current_seed += 1
|
||||
self.set_seed(self._current_seed)
|
||||
raw_obs = self._env.reset()
|
||||
assert self._current_seed == self._env._seed
|
||||
if tensordict is not None and not PushtEnv._reset_warning_issued:
|
||||
logging.warning(f"{self.__class__.__name__}._reset ignores the provided tensordict.")
|
||||
PushtEnv._reset_warning_issued = True
|
||||
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
# Seed the environment and update the seed to be used for the next reset.
|
||||
self._next_seed = self.set_seed(self._next_seed)
|
||||
raw_obs = self._env.reset()
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
td = tensordict
|
||||
action = td["action"].numpy()
|
||||
# step expects shape=(4,) so we pad if necessary
|
||||
assert action.ndim == 1
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
sum_reward = 0
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
raw_obs, reward, done, info = self._env.step(action)
|
||||
|
||||
num_action_steps = action.shape[0]
|
||||
for i in range(num_action_steps):
|
||||
raw_obs, reward, done, info = self._env.step(action[i])
|
||||
sum_reward += reward
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"])
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"])
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"reward": torch.tensor([sum_reward], dtype=torch.float32),
|
||||
# succes and done are true when coverage > self.success_threshold in env
|
||||
"reward": torch.tensor([reward], dtype=torch.float32),
|
||||
# success and done are true when coverage > self.success_threshold in env
|
||||
"done": torch.tensor([done], dtype=torch.bool),
|
||||
"success": torch.tensor([done], dtype=torch.bool),
|
||||
},
|
||||
@@ -230,5 +239,7 @@ class PushtEnv(AbstractEnv):
|
||||
)
|
||||
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
set_seed(seed)
|
||||
# Set global seed.
|
||||
set_global_seed(seed)
|
||||
# Set PushTImageEnv seed as it relies on it's own internal _seed attribute.
|
||||
self._env.seed(seed)
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
import collections
|
||||
|
||||
import cv2
|
||||
import gym
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import pygame
|
||||
import pymunk
|
||||
import pymunk.pygame_util
|
||||
import shapely.geometry as sg
|
||||
import skimage.transform as st
|
||||
from gym import spaces
|
||||
from gymnasium import spaces
|
||||
from pymunk.vec2d import Vec2d
|
||||
|
||||
from lerobot.common.envs.pusht.pymunk_override import DrawOptions
|
||||
@@ -33,7 +33,7 @@ class PushTEnv(gym.Env):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
legacy=False,
|
||||
legacy=True, # compatibility with original
|
||||
block_cog=None,
|
||||
damping=None,
|
||||
render_action=True,
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from gym import spaces
|
||||
from gymnasium import spaces
|
||||
|
||||
from lerobot.common.envs.pusht.pusht_env import PushTEnv
|
||||
|
||||
@@ -8,7 +7,8 @@ from lerobot.common.envs.pusht.pusht_env import PushTEnv
|
||||
class PushTImageEnv(PushTEnv):
|
||||
metadata = {"render.modes": ["rgb_array"], "video.frames_per_second": 10}
|
||||
|
||||
def __init__(self, legacy=False, block_cog=None, damping=None, render_size=96):
|
||||
# Note: legacy defaults to True for compatibility with original
|
||||
def __init__(self, legacy=True, block_cog=None, damping=None, render_size=96):
|
||||
super().__init__(
|
||||
legacy=legacy, block_cog=block_cog, damping=damping, render_size=render_size, render_action=False
|
||||
)
|
||||
@@ -28,20 +28,6 @@ class PushTImageEnv(PushTEnv):
|
||||
img_obs = np.moveaxis(img, -1, 0)
|
||||
obs = {"image": img_obs, "agent_pos": agent_pos}
|
||||
|
||||
# draw action
|
||||
if self.latest_action is not None:
|
||||
action = np.array(self.latest_action)
|
||||
coord = (action / 512 * 96).astype(np.int32)
|
||||
marker_size = int(8 / 96 * self.render_size)
|
||||
thickness = int(1 / 96 * self.render_size)
|
||||
cv2.drawMarker(
|
||||
img,
|
||||
coord,
|
||||
color=(255, 0, 0),
|
||||
markerType=cv2.MARKER_CROSS,
|
||||
markerSize=marker_size,
|
||||
thickness=thickness,
|
||||
)
|
||||
self.render_cache = img
|
||||
|
||||
return obs
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import importlib
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
@@ -15,15 +16,17 @@ from torchrl.data.tensor_specs import (
|
||||
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.utils import set_seed
|
||||
from lerobot.common.utils import set_global_seed
|
||||
|
||||
MAX_NUM_ACTIONS = 4
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
_has_simxarm = importlib.util.find_spec("simxarm") is not None and _has_gym
|
||||
_has_gym = importlib.util.find_spec("gymnasium") is not None
|
||||
|
||||
|
||||
class SimxarmEnv(AbstractEnv):
|
||||
name = "simxarm"
|
||||
available_tasks = ["lift"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
@@ -49,13 +52,12 @@ class SimxarmEnv(AbstractEnv):
|
||||
)
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_simxarm:
|
||||
raise ImportError("Cannot import simxarm.")
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
raise ImportError("Cannot import gymnasium.")
|
||||
|
||||
import gym
|
||||
from simxarm import TASKS
|
||||
import gymnasium
|
||||
|
||||
from lerobot.common.envs.simxarm.simxarm import TASKS
|
||||
|
||||
if self.task not in TASKS:
|
||||
raise ValueError(f"Unknown task {self.task}. Must be one of {list(TASKS.keys())}")
|
||||
@@ -63,7 +65,7 @@ class SimxarmEnv(AbstractEnv):
|
||||
self._env = TASKS[self.task]["env"]()
|
||||
|
||||
num_actions = len(TASKS[self.task]["action_space"])
|
||||
self._action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
|
||||
self._action_space = gymnasium.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
|
||||
self._action_padding = np.zeros((MAX_NUM_ACTIONS - num_actions), dtype=np.float32)
|
||||
if "w" not in TASKS[self.task]["action_space"]:
|
||||
self._action_padding[-1] = 1.0
|
||||
@@ -84,7 +86,7 @@ class SimxarmEnv(AbstractEnv):
|
||||
else:
|
||||
obs = {"state": torch.tensor(raw_obs["observation"], dtype=torch.float32)}
|
||||
|
||||
obs = TensorDict(obs, batch_size=[])
|
||||
# obs = TensorDict(obs, batch_size=[])
|
||||
return obs
|
||||
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
@@ -118,7 +120,6 @@ class SimxarmEnv(AbstractEnv):
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
@@ -152,8 +153,6 @@ class SimxarmEnv(AbstractEnv):
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": self._format_raw_obs(raw_obs),
|
||||
@@ -232,5 +231,7 @@ class SimxarmEnv(AbstractEnv):
|
||||
)
|
||||
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
set_seed(seed)
|
||||
self._env.seed(seed)
|
||||
set_global_seed(seed)
|
||||
self._seed = seed
|
||||
# TODO(aliberts): change self._reset so that it takes in a seed value
|
||||
logging.warning("simxarm env is not properly seeded")
|
||||
166
lerobot/common/envs/simxarm/simxarm/__init__.py
Normal file
166
lerobot/common/envs/simxarm/simxarm/__init__.py
Normal file
@@ -0,0 +1,166 @@
|
||||
from collections import OrderedDict, deque
|
||||
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
from gymnasium.wrappers import TimeLimit
|
||||
|
||||
from lerobot.common.envs.simxarm.simxarm.tasks.base import Base as Base
|
||||
from lerobot.common.envs.simxarm.simxarm.tasks.lift import Lift
|
||||
from lerobot.common.envs.simxarm.simxarm.tasks.peg_in_box import PegInBox
|
||||
from lerobot.common.envs.simxarm.simxarm.tasks.push import Push
|
||||
from lerobot.common.envs.simxarm.simxarm.tasks.reach import Reach
|
||||
|
||||
TASKS = OrderedDict(
|
||||
(
|
||||
(
|
||||
"reach",
|
||||
{
|
||||
"env": Reach,
|
||||
"action_space": "xyz",
|
||||
"episode_length": 50,
|
||||
"description": "Reach a target location with the end effector",
|
||||
},
|
||||
),
|
||||
(
|
||||
"push",
|
||||
{
|
||||
"env": Push,
|
||||
"action_space": "xyz",
|
||||
"episode_length": 50,
|
||||
"description": "Push a cube to a target location",
|
||||
},
|
||||
),
|
||||
(
|
||||
"peg_in_box",
|
||||
{
|
||||
"env": PegInBox,
|
||||
"action_space": "xyz",
|
||||
"episode_length": 50,
|
||||
"description": "Insert a peg into a box",
|
||||
},
|
||||
),
|
||||
(
|
||||
"lift",
|
||||
{
|
||||
"env": Lift,
|
||||
"action_space": "xyzw",
|
||||
"episode_length": 50,
|
||||
"description": "Lift a cube above a height threshold",
|
||||
},
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class SimXarmWrapper(gym.Wrapper):
|
||||
"""
|
||||
A wrapper for the SimXarm environments. This wrapper is used to
|
||||
convert the action and observation spaces to the correct format.
|
||||
"""
|
||||
|
||||
def __init__(self, env, task, obs_mode, image_size, action_repeat, frame_stack=1, channel_last=False):
|
||||
super().__init__(env)
|
||||
self._env = env
|
||||
self.obs_mode = obs_mode
|
||||
self.image_size = image_size
|
||||
self.action_repeat = action_repeat
|
||||
self.frame_stack = frame_stack
|
||||
self._frames = deque([], maxlen=frame_stack)
|
||||
self.channel_last = channel_last
|
||||
self._max_episode_steps = task["episode_length"] // action_repeat
|
||||
|
||||
image_shape = (
|
||||
(image_size, image_size, 3 * frame_stack)
|
||||
if channel_last
|
||||
else (3 * frame_stack, image_size, image_size)
|
||||
)
|
||||
if obs_mode == "state":
|
||||
self.observation_space = env.observation_space["observation"]
|
||||
elif obs_mode == "rgb":
|
||||
self.observation_space = gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8)
|
||||
elif obs_mode == "all":
|
||||
self.observation_space = gym.spaces.Dict(
|
||||
state=gym.spaces.Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float32),
|
||||
rgb=gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8),
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown obs_mode {obs_mode}. Must be one of [rgb, all, state]")
|
||||
self.action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(len(task["action_space"]),))
|
||||
self.action_padding = np.zeros(4 - len(task["action_space"]), dtype=np.float32)
|
||||
if "w" not in task["action_space"]:
|
||||
self.action_padding[-1] = 1.0
|
||||
|
||||
def _render_obs(self):
|
||||
obs = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
|
||||
if not self.channel_last:
|
||||
obs = obs.transpose(2, 0, 1)
|
||||
return obs.copy()
|
||||
|
||||
def _update_frames(self, reset=False):
|
||||
pixels = self._render_obs()
|
||||
self._frames.append(pixels)
|
||||
if reset:
|
||||
for _ in range(1, self.frame_stack):
|
||||
self._frames.append(pixels)
|
||||
assert len(self._frames) == self.frame_stack
|
||||
|
||||
def transform_obs(self, obs, reset=False):
|
||||
if self.obs_mode == "state":
|
||||
return obs["observation"]
|
||||
elif self.obs_mode == "rgb":
|
||||
self._update_frames(reset=reset)
|
||||
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
|
||||
return rgb_obs
|
||||
elif self.obs_mode == "all":
|
||||
self._update_frames(reset=reset)
|
||||
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
|
||||
return OrderedDict((("rgb", rgb_obs), ("state", self.robot_state)))
|
||||
else:
|
||||
raise ValueError(f"Unknown obs_mode {self.obs_mode}. Must be one of [rgb, all, state]")
|
||||
|
||||
def reset(self):
|
||||
return self.transform_obs(self._env.reset(), reset=True)
|
||||
|
||||
def step(self, action):
|
||||
action = np.concatenate([action, self.action_padding])
|
||||
reward = 0.0
|
||||
for _ in range(self.action_repeat):
|
||||
obs, r, done, info = self._env.step(action)
|
||||
reward += r
|
||||
return self.transform_obs(obs), reward, done, info
|
||||
|
||||
def render(self, mode="rgb_array", width=384, height=384, **kwargs):
|
||||
return self._env.render(mode, width=width, height=height)
|
||||
|
||||
@property
|
||||
def state(self):
|
||||
return self._env.robot_state
|
||||
|
||||
|
||||
def make(task, obs_mode="state", image_size=84, action_repeat=1, frame_stack=1, channel_last=False, seed=0):
|
||||
"""
|
||||
Create a new environment.
|
||||
Args:
|
||||
task (str): The task to create an environment for. Must be one of:
|
||||
- 'reach'
|
||||
- 'push'
|
||||
- 'peg-in-box'
|
||||
- 'lift'
|
||||
obs_mode (str): The observation mode to use. Must be one of:
|
||||
- 'state': Only state observations
|
||||
- 'rgb': RGB images
|
||||
- 'all': RGB images and state observations
|
||||
image_size (int): The size of the image observations
|
||||
action_repeat (int): The number of times to repeat the action
|
||||
seed (int): The random seed to use
|
||||
Returns:
|
||||
gym.Env: The environment
|
||||
"""
|
||||
if task not in TASKS:
|
||||
raise ValueError(f"Unknown task {task}. Must be one of {list(TASKS.keys())}")
|
||||
env = TASKS[task]["env"]()
|
||||
env = TimeLimit(env, TASKS[task]["episode_length"])
|
||||
env = SimXarmWrapper(env, TASKS[task], obs_mode, image_size, action_repeat, frame_stack, channel_last)
|
||||
env.seed(seed)
|
||||
|
||||
return env
|
||||
53
lerobot/common/envs/simxarm/simxarm/tasks/assets/lift.xml
Normal file
53
lerobot/common/envs/simxarm/simxarm/tasks/assets/lift.xml
Normal file
@@ -0,0 +1,53 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
|
||||
<mujoco>
|
||||
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
|
||||
<size nconmax="2000" njmax="500"/>
|
||||
|
||||
<option timestep="0.002">
|
||||
<flag warmstart="enable"></flag>
|
||||
</option>
|
||||
|
||||
<include file="shared.xml"></include>
|
||||
|
||||
<worldbody>
|
||||
<body name="floor0" pos="0 0 0">
|
||||
<geom name="floorgeom0" pos="1.2 -2.0 0" size="20.0 20.0 1" type="plane" condim="3" material="floor_mat"></geom>
|
||||
</body>
|
||||
|
||||
<include file="xarm.xml"></include>
|
||||
|
||||
<body pos="0.75 0 0.6325" name="pedestal0">
|
||||
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
|
||||
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
|
||||
</body>
|
||||
|
||||
<body pos="1.5 0.075 0.3425" name="table0">
|
||||
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 1 1"></geom>
|
||||
</body>
|
||||
|
||||
<body name="object" pos="1.405 0.3 0.58625">
|
||||
<joint name="object_joint0" type="free" limited="false"></joint>
|
||||
<geom size="0.035 0.035 0.035" type="box" name="object0" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
|
||||
<site name="object_site" pos="0 0 0" size="0.035 0.035 0.035" rgba="1 0 0 0" type="box"></site>
|
||||
</body>
|
||||
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
|
||||
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
|
||||
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
|
||||
|
||||
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
|
||||
</worldbody>
|
||||
|
||||
<equality>
|
||||
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
|
||||
</equality>
|
||||
|
||||
<actuator>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
|
||||
</actuator>
|
||||
</mujoco>
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:21fb81ae7fba19e3c6b2d2ca60c8051712ba273357287eb5a397d92d61c7a736
|
||||
size 1211434
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:be68ce180d11630a667a5f37f4dffcc3feebe4217d4bb3912c813b6d9ca3ec66
|
||||
size 3284
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:2c6448552bf6b1c4f17334d686a5320ce051bcdfe31431edf69303d8a570d1de
|
||||
size 3284
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:748b9e197e6521914f18d1f6383a36f211136b3f33f2ad2a8c11b9f921c2cf86
|
||||
size 6284
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:a44756eb72f9c214cb37e61dc209cd7073fdff3e4271a7423476ef6fd090d2d4
|
||||
size 242684
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:e8e48692ad26837bb3d6a97582c89784d09948fc09bfe4e5a59017859ff04dac
|
||||
size 366284
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:501665812b08d67e764390db781e839adc6896a9540301d60adf606f57648921
|
||||
size 22284
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:34b541122df84d2ef5fcb91b715eb19659dc15ad8d44a191dde481f780265636
|
||||
size 184184
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:61e641cd47c169ecef779683332e00e4914db729bf02dfb61bfbe69351827455
|
||||
size 225584
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:9e2798e7946dd70046c95455d5ba96392d0b54a6069caba91dc4ca66e1379b42
|
||||
size 237084
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:c757fee95f873191a0633c355c07a360032960771cabbd7593a6cdb0f1ffb089
|
||||
size 243684
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:715ad5787c5dab57589937fd47289882707b5e1eb997e340d567785b02f4ec90
|
||||
size 229084
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:85b320aa420497827223d16d492bba8de091173374e361396fc7a5dad7bdb0cb
|
||||
size 399384
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:97115d848fbf802cb770cd9be639ae2af993103b9d9bbb0c50c943c738a36f18
|
||||
size 231684
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:f6fcbc18258090eb56c21cfb17baa5ae43abc98b1958cd366f3a73b9898fc7f0
|
||||
size 2106184
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:c5dee87c7f37baf554b8456ebfe0b3e8ed0b22b8938bd1add6505c2ad6d32c7d
|
||||
size 242684
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:b41dd2c2c550281bf78d7cc6fa117b14786700e5c453560a0cb5fd6dfa0ffb3e
|
||||
size 366284
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:75ca1107d0a42a0f03802a9a49cab48419b31851ee8935f8f1ca06be1c1c91e8
|
||||
size 22284
|
||||
@@ -0,0 +1,74 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
|
||||
<mujoco>
|
||||
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
|
||||
<size nconmax="2000" njmax="500"/>
|
||||
|
||||
<option timestep="0.001">
|
||||
<flag warmstart="enable"></flag>
|
||||
</option>
|
||||
|
||||
<include file="shared.xml"></include>
|
||||
|
||||
<worldbody>
|
||||
<body name="floor0" pos="0 0 0">
|
||||
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
|
||||
</body>
|
||||
|
||||
<include file="xarm.xml"></include>
|
||||
|
||||
<body pos="0.75 0 0.6325" name="pedestal0">
|
||||
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
|
||||
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
|
||||
</body>
|
||||
|
||||
<body pos="1.5 0.075 0.3425" name="table0">
|
||||
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
|
||||
</body>
|
||||
|
||||
<body name="box0" pos="1.605 0.25 0.55">
|
||||
<joint name="box_joint0" type="free" limited="false"></joint>
|
||||
<site name="box_site" pos="0 0.075 -0.01" size="0.02" rgba="0 0 0 0" type="sphere"></site>
|
||||
<geom name="box_side0" pos="0 0 0" size="0.065 0.002 0.04" type= "box" rgba="0.8 0.1 0.1 1" mass ="1" condim="4" />
|
||||
<geom name="box_side1" pos="0 0.149 0" size="0.065 0.002 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
|
||||
<geom name="box_side2" pos="0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.8 0.1 0.1 1" mass ="2" condim="4" />
|
||||
<geom name="box_side3" pos="-0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
|
||||
<geom name="box_side4" pos="-0 0.074 -0.038" size="0.065 0.075 0.002" type="box" rgba="0.5 0 0 1" mass ="2" condim="4"/>
|
||||
</body>
|
||||
|
||||
<body name="object0" pos="1.4 0.25 0.65">
|
||||
<joint name="object_joint0" type="free" limited="false"></joint>
|
||||
<geom name="object_target0" type="cylinder" pos="0 0 -0.05" size="0.03 0.035" rgba="0.6 0.8 0.5 1" mass ="0.1" condim="3" />
|
||||
<site name="object_site" pos="0 0 -0.05" size="0.0325 0.0375" rgba="0 0 0 0" type="cylinder"></site>
|
||||
<body name="B0" pos="0 0 0" euler="0 0 0 ">
|
||||
<joint name="B0:joint" type="slide" limited="true" axis="0 0 1" damping="0.05" range="0.0001 0.0001001" solimpfriction="0.98 0.98 0.95" frictionloss="1"></joint>
|
||||
<geom type="capsule" size="0.002 0.03" rgba="0 0 0 1" mass="0.001" condim="4"/>
|
||||
<body name="B1" pos="0 0 0.04" euler="0 3.14 0 ">
|
||||
<joint name="B1:joint1" type="hinge" axis="1 0 0" range="-0.1 0.1" frictionloss="1"></joint>
|
||||
<joint name="B1:joint2" type="hinge" axis="0 1 0" range="-0.1 0.1" frictionloss="1"></joint>
|
||||
<joint name="B1:joint3" type="hinge" axis="0 0 1" range="-0.1 0.1" frictionloss="1"></joint>
|
||||
<geom type="capsule" size="0.002 0.004" rgba="1 0 0 0" mass="0.001" condim="4"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
|
||||
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
|
||||
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
|
||||
|
||||
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
|
||||
</worldbody>
|
||||
|
||||
<equality>
|
||||
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<weld body1="right_hand" body2="B1" solimp="0.99 0.99 0.99" solref="0.02 1"></weld>
|
||||
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
|
||||
</equality>
|
||||
|
||||
<actuator>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
|
||||
</actuator>
|
||||
</mujoco>
|
||||
54
lerobot/common/envs/simxarm/simxarm/tasks/assets/push.xml
Normal file
54
lerobot/common/envs/simxarm/simxarm/tasks/assets/push.xml
Normal file
@@ -0,0 +1,54 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
|
||||
<mujoco>
|
||||
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
|
||||
<size nconmax="2000" njmax="500"/>
|
||||
|
||||
<option timestep="0.002">
|
||||
<flag warmstart="enable"></flag>
|
||||
</option>
|
||||
|
||||
<include file="shared.xml"></include>
|
||||
|
||||
<worldbody>
|
||||
<body name="floor0" pos="0 0 0">
|
||||
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
|
||||
<site name="target0" pos="1.565 0.3 0.545" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
|
||||
</body>
|
||||
|
||||
<include file="xarm.xml"></include>
|
||||
|
||||
<body pos="0.75 0 0.6325" name="pedestal0">
|
||||
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
|
||||
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
|
||||
</body>
|
||||
|
||||
<body pos="1.5 0.075 0.3425" name="table0">
|
||||
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
|
||||
</body>
|
||||
|
||||
<body name="object" pos="1.655 0.3 0.68">
|
||||
<joint name="object_joint0" type="free" limited="false"></joint>
|
||||
<geom size="0.024 0.024 0.024" type="box" name="object" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
|
||||
<site name="object_site" pos="0 0 0" size="0.024 0.024 0.024" rgba="0 0 0 0" type="box"></site>
|
||||
</body>
|
||||
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
|
||||
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
|
||||
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
|
||||
|
||||
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
|
||||
</worldbody>
|
||||
|
||||
<equality>
|
||||
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
|
||||
</equality>
|
||||
|
||||
<actuator>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
|
||||
</actuator>
|
||||
</mujoco>
|
||||
48
lerobot/common/envs/simxarm/simxarm/tasks/assets/reach.xml
Normal file
48
lerobot/common/envs/simxarm/simxarm/tasks/assets/reach.xml
Normal file
@@ -0,0 +1,48 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
|
||||
<mujoco>
|
||||
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
|
||||
<size nconmax="2000" njmax="500"/>
|
||||
|
||||
<option timestep="0.002">
|
||||
<flag warmstart="enable"></flag>
|
||||
</option>
|
||||
|
||||
<include file="shared.xml"></include>
|
||||
|
||||
<worldbody>
|
||||
<body name="floor0" pos="0 0 0">
|
||||
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
|
||||
<site name="target0" pos="1.605 0.3 0.58" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
|
||||
</body>
|
||||
|
||||
<include file="xarm.xml"></include>
|
||||
|
||||
<body pos="0.75 0 0.6325" name="pedestal0">
|
||||
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
|
||||
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
|
||||
</body>
|
||||
|
||||
<body pos="1.5 0.075 0.3425" name="table0">
|
||||
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
|
||||
</body>
|
||||
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
|
||||
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
|
||||
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
|
||||
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
|
||||
|
||||
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
|
||||
</worldbody>
|
||||
|
||||
<equality>
|
||||
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
|
||||
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
|
||||
</equality>
|
||||
|
||||
<actuator>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
|
||||
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
|
||||
</actuator>
|
||||
</mujoco>
|
||||
51
lerobot/common/envs/simxarm/simxarm/tasks/assets/shared.xml
Normal file
51
lerobot/common/envs/simxarm/simxarm/tasks/assets/shared.xml
Normal file
@@ -0,0 +1,51 @@
|
||||
<mujoco>
|
||||
<asset>
|
||||
<texture type="skybox" builtin="gradient" rgb1="0.0 0.0 0.0" rgb2="0.0 0.0 0.0" width="32" height="32"></texture>
|
||||
<material name="floor_mat" specular="0" shininess="0.0" reflectance="0" rgba="0.043 0.055 0.051 1"></material>
|
||||
|
||||
<material name="table_mat" specular="0.2" shininess="0.2" reflectance="0" rgba="1 1 1 1"></material>
|
||||
<material name="pedestal_mat" specular="0.35" shininess="0.5" reflectance="0" rgba="0.705 0.585 0.405 1"></material>
|
||||
<material name="block_mat" specular="0.5" shininess="0.9" reflectance="0.05" rgba="0.373 0.678 0.627 1"></material>
|
||||
|
||||
<material name="robot0:geomMat" shininess="0.03" specular="0.4"></material>
|
||||
<material name="robot0:gripper_finger_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
|
||||
<material name="robot0:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
|
||||
<material name="background:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
|
||||
<material name="robot0:arm_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
|
||||
<material name="robot0:head_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
|
||||
<material name="robot0:torso_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
|
||||
<material name="robot0:base_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
|
||||
|
||||
<mesh name="link_base" file="link_base.stl" />
|
||||
<mesh name="link1" file="link1.stl" />
|
||||
<mesh name="link2" file="link2.stl" />
|
||||
<mesh name="link3" file="link3.stl" />
|
||||
<mesh name="link4" file="link4.stl" />
|
||||
<mesh name="link5" file="link5.stl" />
|
||||
<mesh name="link6" file="link6.stl" />
|
||||
<mesh name="link7" file="link7.stl" />
|
||||
<mesh name="base_link" file="base_link.stl" />
|
||||
<mesh name="left_outer_knuckle" file="left_outer_knuckle.stl" />
|
||||
<mesh name="left_finger" file="left_finger.stl" />
|
||||
<mesh name="left_inner_knuckle" file="left_inner_knuckle.stl" />
|
||||
<mesh name="right_outer_knuckle" file="right_outer_knuckle.stl" />
|
||||
<mesh name="right_finger" file="right_finger.stl" />
|
||||
<mesh name="right_inner_knuckle" file="right_inner_knuckle.stl" />
|
||||
</asset>
|
||||
|
||||
<equality>
|
||||
<weld body1="robot0:mocap2" body2="link7" solimp="0.9 0.95 0.001" solref="0.02 1"></weld>
|
||||
</equality>
|
||||
|
||||
<default>
|
||||
<joint armature="1" damping="0.1" limited="true"/>
|
||||
<default class="robot0:blue">
|
||||
<geom rgba="0.086 0.506 0.767 1.0"></geom>
|
||||
</default>
|
||||
|
||||
<default class="robot0:grey">
|
||||
<geom rgba="0.356 0.361 0.376 1.0"></geom>
|
||||
</default>
|
||||
</default>
|
||||
|
||||
</mujoco>
|
||||
88
lerobot/common/envs/simxarm/simxarm/tasks/assets/xarm.xml
Normal file
88
lerobot/common/envs/simxarm/simxarm/tasks/assets/xarm.xml
Normal file
@@ -0,0 +1,88 @@
|
||||
<mujoco model="xarm7">
|
||||
<body mocap="true" name="robot0:mocap2" pos="0 0 0">
|
||||
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0.5 0 0" size="0.005 0.005 0.005" type="box"></geom>
|
||||
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0 0 0" size="1 0.005 0.005" type="box"></geom>
|
||||
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0 0.5 0" size="0.005 1 0.001" type="box"></geom>
|
||||
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0.5 0 0" size="0.005 0.005 1" type="box"></geom>
|
||||
</body>
|
||||
|
||||
<body name="link0" pos="1.09 0.28 0.655">
|
||||
<geom name="bb" type="mesh" mesh="link_base" material="robot0:base_mat" rgba="1 1 1 1"/>
|
||||
<body name="link1" pos="0 0 0.267">
|
||||
<inertial pos="-0.0042142 0.02821 -0.0087788" quat="0.917781 -0.277115 0.0606681 0.277858" mass="0.42603" diaginertia="0.00144551 0.00137757 0.000823511" />
|
||||
<joint name="joint1" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="10" frictionloss="1" />
|
||||
<geom name="j1" type="mesh" mesh="link1" material="robot0:arm_mat" rgba="1 1 1 1"/>
|
||||
<body name="link2" pos="0 0 0" quat="0.707105 -0.707108 0 0">
|
||||
<inertial pos="-3.3178e-05 -0.12849 0.026337" quat="0.447793 0.894132 -0.00224061 0.00218314" mass="0.56095" diaginertia="0.00319151 0.00311598 0.000980804" />
|
||||
<joint name="joint2" pos="0 0 0" axis="0 0 1" limited="true" range="-2.059 2.0944" damping="10" frictionloss="1" />
|
||||
<geom name="j2" type="mesh" mesh="link2" material="robot0:head_mat" rgba="1 1 1 1"/>
|
||||
<body name="link3" pos="0 -0.293 0" quat="0.707105 0.707108 0 0">
|
||||
<inertial pos="0.04223 -0.023258 -0.0096674" quat="0.883205 0.339803 0.323238 0.000542237" mass="0.44463" diaginertia="0.00133227 0.00119126 0.000780475" />
|
||||
<joint name="joint3" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
|
||||
<geom name="j3" type="mesh" mesh="link3" material="robot0:gripper_mat" rgba="1 1 1 1"/>
|
||||
<body name="link4" pos="0.0525 0 0" quat="0.707105 0.707108 0 0">
|
||||
<inertial pos="0.067148 -0.10732 0.024479" quat="0.0654142 0.483317 -0.738663 0.465298" mass="0.52387" diaginertia="0.00288984 0.00282705 0.000894409" />
|
||||
<joint name="joint4" pos="0 0 0" axis="0 0 1" limited="true" range="-0.19198 3.927" damping="5" frictionloss="1" />
|
||||
<geom name="j4" type="mesh" mesh="link4" material="robot0:arm_mat" rgba="1 1 1 1"/>
|
||||
<body name="link5" pos="0.0775 -0.3425 0" quat="0.707105 0.707108 0 0">
|
||||
<inertial pos="-0.00023397 0.036705 -0.080064" quat="0.981064 -0.19003 0.00637998 0.0369004" mass="0.18554" diaginertia="0.00099553 0.000988613 0.000247126" />
|
||||
<joint name="joint5" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
|
||||
<geom name="j5" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link5" />
|
||||
<body name="link6" pos="0 0 0" quat="0.707105 0.707108 0 0">
|
||||
<inertial pos="0.058911 0.028469 0.0068428" quat="-0.188705 0.793535 0.166088 0.554173" mass="0.31344" diaginertia="0.000827892 0.000768871 0.000386708" />
|
||||
<joint name="joint6" pos="0 0 0" axis="0 0 1" limited="true" range="-1.69297 3.14159" damping="2" frictionloss="1" />
|
||||
<geom name="j6" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link6" />
|
||||
<body name="link7" pos="0.076 0.097 0" quat="0.707105 -0.707108 0 0">
|
||||
<inertial pos="-0.000420033 -0.00287433 0.0257078" quat="0.999372 -0.0349129 -0.00605634 0.000551744" mass="0.85624" diaginertia="0.00137671 0.00118744 0.000514968" />
|
||||
<joint name="joint7" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="2" frictionloss="1" />
|
||||
<geom name="j8" material="robot0:gripper_mat" type="mesh" rgba="0.753 0.753 0.753 1" mesh="link7" />
|
||||
<geom name="j9" material="robot0:gripper_mat" type="mesh" rgba="1 1 1 1" mesh="base_link" />
|
||||
<site name="grasp" pos="0 0 0.16" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
|
||||
<body name="left_outer_knuckle" pos="0 0.035 0.059098">
|
||||
<inertial pos="0 0.021559 0.015181" quat="0.47789 0.87842 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
|
||||
<joint name="drive_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
|
||||
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_outer_knuckle" />
|
||||
<body name="left_finger" pos="0 0.035465 0.042039">
|
||||
<inertial pos="0 -0.016413 0.029258" quat="0.697634 0.115353 -0.115353 0.697634" mass="0.048304" diaginertia="1.88037e-05 1.7493e-05 3.56792e-06" />
|
||||
<joint name="left_finger_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
|
||||
<geom name="j10" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="left_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
|
||||
<body name="right_hand" pos="0 -0.03 0.05" quat="-0.7071 0 0 0.7071">
|
||||
<site name="ee" pos="0 0 0" rgba="0 0 1 0" type="sphere" group="1"/>
|
||||
<site name="ee_x" pos="0 0 0" size="0.005 .1" quat="0.707105 0.707108 0 0 " rgba="1 0 0 0" type="cylinder" group="1"/>
|
||||
<site name="ee_z" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0 0.707108" rgba="0 0 1 0" type="cylinder" group="1"/>
|
||||
<site name="ee_y" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0.707108 0 " rgba="0 1 0 0" type="cylinder" group="1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="left_inner_knuckle" pos="0 0.02 0.074098">
|
||||
<inertial pos="1.86601e-06 0.0220468 0.0261335" quat="0.664139 -0.242732 0.242713 0.664146" mass="0.0230126" diaginertia="8.34216e-06 6.0949e-06 2.75601e-06" />
|
||||
<joint name="left_inner_knuckle_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
|
||||
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
|
||||
</body>
|
||||
<body name="right_outer_knuckle" pos="0 -0.035 0.059098">
|
||||
<inertial pos="0 -0.021559 0.015181" quat="0.87842 0.47789 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
|
||||
<joint name="right_outer_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
|
||||
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_outer_knuckle" />
|
||||
<body name="right_finger" pos="0 -0.035465 0.042039">
|
||||
<inertial pos="0 0.016413 0.029258" quat="0.697634 -0.115356 0.115356 0.697634" mass="0.048304" diaginertia="1.88038e-05 1.7493e-05 3.56779e-06" />
|
||||
<joint name="right_finger_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
|
||||
<geom name="j11" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="right_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
|
||||
<body name="left_hand" pos="0 0.03 0.05" quat="-0.7071 0 0 0.7071">
|
||||
<site name="ee_2" pos="0 0 0" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
<body name="right_inner_knuckle" pos="0 -0.02 0.074098">
|
||||
<inertial pos="1.866e-06 -0.022047 0.026133" quat="0.66415 0.242702 -0.242721 0.664144" mass="0.023013" diaginertia="8.34209e-06 6.0949e-06 2.75601e-06" />
|
||||
<joint name="right_inner_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
|
||||
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujoco>
|
||||
145
lerobot/common/envs/simxarm/simxarm/tasks/base.py
Normal file
145
lerobot/common/envs/simxarm/simxarm/tasks/base.py
Normal file
@@ -0,0 +1,145 @@
|
||||
import os
|
||||
|
||||
import mujoco
|
||||
import numpy as np
|
||||
from gymnasium_robotics.envs import robot_env
|
||||
|
||||
from lerobot.common.envs.simxarm.simxarm.tasks import mocap
|
||||
|
||||
|
||||
class Base(robot_env.MujocoRobotEnv):
|
||||
"""
|
||||
Superclass for all simxarm environments.
|
||||
Args:
|
||||
xml_name (str): name of the xml environment file
|
||||
gripper_rotation (list): initial rotation of the gripper (given as a quaternion)
|
||||
"""
|
||||
|
||||
def __init__(self, xml_name, gripper_rotation=None):
|
||||
if gripper_rotation is None:
|
||||
gripper_rotation = [0, 1, 0, 0]
|
||||
self.gripper_rotation = np.array(gripper_rotation, dtype=np.float32)
|
||||
self.center_of_table = np.array([1.655, 0.3, 0.63625])
|
||||
self.max_z = 1.2
|
||||
self.min_z = 0.2
|
||||
super().__init__(
|
||||
model_path=os.path.join(os.path.dirname(__file__), "assets", xml_name + ".xml"),
|
||||
n_substeps=20,
|
||||
n_actions=4,
|
||||
initial_qpos={},
|
||||
)
|
||||
|
||||
@property
|
||||
def dt(self):
|
||||
return self.n_substeps * self.model.opt.timestep
|
||||
|
||||
@property
|
||||
def eef(self):
|
||||
return self._utils.get_site_xpos(self.model, self.data, "grasp")
|
||||
|
||||
@property
|
||||
def obj(self):
|
||||
return self._utils.get_site_xpos(self.model, self.data, "object_site")
|
||||
|
||||
@property
|
||||
def robot_state(self):
|
||||
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
|
||||
return np.concatenate([self.eef, gripper_angle])
|
||||
|
||||
def is_success(self):
|
||||
return NotImplementedError()
|
||||
|
||||
def get_reward(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def _sample_goal(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_obs(self):
|
||||
return self._get_obs()
|
||||
|
||||
def _step_callback(self):
|
||||
self._mujoco.mj_forward(self.model, self.data)
|
||||
|
||||
def _limit_gripper(self, gripper_pos, pos_ctrl):
|
||||
if gripper_pos[0] > self.center_of_table[0] - 0.105 + 0.15:
|
||||
pos_ctrl[0] = min(pos_ctrl[0], 0)
|
||||
if gripper_pos[0] < self.center_of_table[0] - 0.105 - 0.3:
|
||||
pos_ctrl[0] = max(pos_ctrl[0], 0)
|
||||
if gripper_pos[1] > self.center_of_table[1] + 0.3:
|
||||
pos_ctrl[1] = min(pos_ctrl[1], 0)
|
||||
if gripper_pos[1] < self.center_of_table[1] - 0.3:
|
||||
pos_ctrl[1] = max(pos_ctrl[1], 0)
|
||||
if gripper_pos[2] > self.max_z:
|
||||
pos_ctrl[2] = min(pos_ctrl[2], 0)
|
||||
if gripper_pos[2] < self.min_z:
|
||||
pos_ctrl[2] = max(pos_ctrl[2], 0)
|
||||
return pos_ctrl
|
||||
|
||||
def _apply_action(self, action):
|
||||
assert action.shape == (4,)
|
||||
action = action.copy()
|
||||
pos_ctrl, gripper_ctrl = action[:3], action[3]
|
||||
pos_ctrl = self._limit_gripper(
|
||||
self._utils.get_site_xpos(self.model, self.data, "grasp"), pos_ctrl
|
||||
) * (1 / self.n_substeps)
|
||||
gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl])
|
||||
mocap.apply_action(
|
||||
self.model,
|
||||
self._model_names,
|
||||
self.data,
|
||||
np.concatenate([pos_ctrl, self.gripper_rotation, gripper_ctrl]),
|
||||
)
|
||||
|
||||
def _render_callback(self):
|
||||
self._mujoco.mj_forward(self.model, self.data)
|
||||
|
||||
def _reset_sim(self):
|
||||
self.data.time = self.initial_time
|
||||
self.data.qpos[:] = np.copy(self.initial_qpos)
|
||||
self.data.qvel[:] = np.copy(self.initial_qvel)
|
||||
self._sample_goal()
|
||||
self._mujoco.mj_step(self.model, self.data, nstep=10)
|
||||
return True
|
||||
|
||||
def _set_gripper(self, gripper_pos, gripper_rotation):
|
||||
self._utils.set_mocap_pos(self.model, self.data, "robot0:mocap", gripper_pos)
|
||||
self._utils.set_mocap_quat(self.model, self.data, "robot0:mocap", gripper_rotation)
|
||||
self._utils.set_joint_qpos(self.model, self.data, "right_outer_knuckle_joint", 0)
|
||||
self.data.qpos[10] = 0.0
|
||||
self.data.qpos[12] = 0.0
|
||||
|
||||
def _env_setup(self, initial_qpos):
|
||||
for name, value in initial_qpos.items():
|
||||
self.data.set_joint_qpos(name, value)
|
||||
mocap.reset(self.model, self.data)
|
||||
mujoco.mj_forward(self.model, self.data)
|
||||
self._sample_goal()
|
||||
mujoco.mj_forward(self.model, self.data)
|
||||
|
||||
def reset(self):
|
||||
self._reset_sim()
|
||||
return self._get_obs()
|
||||
|
||||
def step(self, action):
|
||||
assert action.shape == (4,)
|
||||
assert self.action_space.contains(action), "{!r} ({}) invalid".format(action, type(action))
|
||||
self._apply_action(action)
|
||||
self._mujoco.mj_step(self.model, self.data, nstep=2)
|
||||
self._step_callback()
|
||||
obs = self._get_obs()
|
||||
reward = self.get_reward()
|
||||
done = False
|
||||
info = {"is_success": self.is_success(), "success": self.is_success()}
|
||||
return obs, reward, done, info
|
||||
|
||||
def render(self, mode="rgb_array", width=384, height=384):
|
||||
self._render_callback()
|
||||
# HACK
|
||||
self.model.vis.global_.offwidth = width
|
||||
self.model.vis.global_.offheight = height
|
||||
return self.mujoco_renderer.render(mode)
|
||||
|
||||
def close(self):
|
||||
if self.mujoco_renderer is not None:
|
||||
self.mujoco_renderer.close()
|
||||
100
lerobot/common/envs/simxarm/simxarm/tasks/lift.py
Normal file
100
lerobot/common/envs/simxarm/simxarm/tasks/lift.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.envs.simxarm.simxarm import Base
|
||||
|
||||
|
||||
class Lift(Base):
|
||||
def __init__(self):
|
||||
self._z_threshold = 0.15
|
||||
super().__init__("lift")
|
||||
|
||||
@property
|
||||
def z_target(self):
|
||||
return self._init_z + self._z_threshold
|
||||
|
||||
def is_success(self):
|
||||
return self.obj[2] >= self.z_target
|
||||
|
||||
def get_reward(self):
|
||||
reach_dist = np.linalg.norm(self.obj - self.eef)
|
||||
reach_dist_xy = np.linalg.norm(self.obj[:-1] - self.eef[:-1])
|
||||
pick_completed = self.obj[2] >= (self.z_target - 0.01)
|
||||
obj_dropped = (self.obj[2] < (self._init_z + 0.005)) and (reach_dist > 0.02)
|
||||
|
||||
# Reach
|
||||
if reach_dist < 0.05:
|
||||
reach_reward = -reach_dist + max(self._action[-1], 0) / 50
|
||||
elif reach_dist_xy < 0.05:
|
||||
reach_reward = -reach_dist
|
||||
else:
|
||||
z_bonus = np.linalg.norm(np.linalg.norm(self.obj[-1] - self.eef[-1]))
|
||||
reach_reward = -reach_dist - 2 * z_bonus
|
||||
|
||||
# Pick
|
||||
if pick_completed and not obj_dropped:
|
||||
pick_reward = self.z_target
|
||||
elif (reach_dist < 0.1) and (self.obj[2] > (self._init_z + 0.005)):
|
||||
pick_reward = min(self.z_target, self.obj[2])
|
||||
else:
|
||||
pick_reward = 0
|
||||
|
||||
return reach_reward / 100 + pick_reward
|
||||
|
||||
def _get_obs(self):
|
||||
eef_velp = self._utils.get_site_xvelp(self.model, self.data, "grasp") * self.dt
|
||||
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
|
||||
eef = self.eef - self.center_of_table
|
||||
|
||||
obj = self.obj - self.center_of_table
|
||||
obj_rot = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")[-4:]
|
||||
obj_velp = self._utils.get_site_xvelp(self.model, self.data, "object_site") * self.dt
|
||||
obj_velr = self._utils.get_site_xvelr(self.model, self.data, "object_site") * self.dt
|
||||
|
||||
obs = np.concatenate(
|
||||
[
|
||||
eef,
|
||||
eef_velp,
|
||||
obj,
|
||||
obj_rot,
|
||||
obj_velp,
|
||||
obj_velr,
|
||||
eef - obj,
|
||||
np.array(
|
||||
[
|
||||
np.linalg.norm(eef - obj),
|
||||
np.linalg.norm(eef[:-1] - obj[:-1]),
|
||||
self.z_target,
|
||||
self.z_target - obj[-1],
|
||||
self.z_target - eef[-1],
|
||||
]
|
||||
),
|
||||
gripper_angle,
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": eef}
|
||||
|
||||
def _sample_goal(self):
|
||||
# Gripper
|
||||
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
|
||||
super()._set_gripper(gripper_pos, self.gripper_rotation)
|
||||
|
||||
# Object
|
||||
object_pos = self.center_of_table - np.array([0.15, 0.10, 0.07])
|
||||
object_pos[0] += self.np_random.uniform(-0.05, 0.05, size=1)
|
||||
object_pos[1] += self.np_random.uniform(-0.05, 0.05, size=1)
|
||||
object_qpos = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")
|
||||
object_qpos[:3] = object_pos
|
||||
self._utils.set_joint_qpos(self.model, self.data, "object_joint0", object_qpos)
|
||||
self._init_z = object_pos[2]
|
||||
|
||||
# Goal
|
||||
return object_pos + np.array([0, 0, self._z_threshold])
|
||||
|
||||
def reset(self):
|
||||
self._action = np.zeros(4)
|
||||
return super().reset()
|
||||
|
||||
def step(self, action):
|
||||
self._action = action.copy()
|
||||
return super().step(action)
|
||||
67
lerobot/common/envs/simxarm/simxarm/tasks/mocap.py
Normal file
67
lerobot/common/envs/simxarm/simxarm/tasks/mocap.py
Normal file
@@ -0,0 +1,67 @@
|
||||
# import mujoco_py
|
||||
import mujoco
|
||||
import numpy as np
|
||||
|
||||
|
||||
def apply_action(model, model_names, data, action):
|
||||
if model.nmocap > 0:
|
||||
pos_action, gripper_action = np.split(action, (model.nmocap * 7,))
|
||||
if data.ctrl is not None:
|
||||
for i in range(gripper_action.shape[0]):
|
||||
data.ctrl[i] = gripper_action[i]
|
||||
pos_action = pos_action.reshape(model.nmocap, 7)
|
||||
pos_delta, quat_delta = pos_action[:, :3], pos_action[:, 3:]
|
||||
reset_mocap2body_xpos(model, model_names, data)
|
||||
data.mocap_pos[:] = data.mocap_pos + pos_delta
|
||||
data.mocap_quat[:] = data.mocap_quat + quat_delta
|
||||
|
||||
|
||||
def reset(model, data):
|
||||
if model.nmocap > 0 and model.eq_data is not None:
|
||||
for i in range(model.eq_data.shape[0]):
|
||||
# if sim.model.eq_type[i] == mujoco_py.const.EQ_WELD:
|
||||
if model.eq_type[i] == mujoco.mjtEq.mjEQ_WELD:
|
||||
# model.eq_data[i, :] = np.array([0., 0., 0., 1., 0., 0., 0.])
|
||||
model.eq_data[i, :] = np.array(
|
||||
[
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
]
|
||||
)
|
||||
# sim.forward()
|
||||
mujoco.mj_forward(model, data)
|
||||
|
||||
|
||||
def reset_mocap2body_xpos(model, model_names, data):
|
||||
if model.eq_type is None or model.eq_obj1id is None or model.eq_obj2id is None:
|
||||
return
|
||||
|
||||
# For all weld constraints
|
||||
for eq_type, obj1_id, obj2_id in zip(model.eq_type, model.eq_obj1id, model.eq_obj2id, strict=False):
|
||||
# if eq_type != mujoco_py.const.EQ_WELD:
|
||||
if eq_type != mujoco.mjtEq.mjEQ_WELD:
|
||||
continue
|
||||
# body2 = model.body_id2name(obj2_id)
|
||||
body2 = model_names.body_id2name[obj2_id]
|
||||
if body2 == "B0" or body2 == "B9" or body2 == "B1":
|
||||
continue
|
||||
mocap_id = model.body_mocapid[obj1_id]
|
||||
if mocap_id != -1:
|
||||
# obj1 is the mocap, obj2 is the welded body
|
||||
body_idx = obj2_id
|
||||
else:
|
||||
# obj2 is the mocap, obj1 is the welded body
|
||||
mocap_id = model.body_mocapid[obj2_id]
|
||||
body_idx = obj1_id
|
||||
assert mocap_id != -1
|
||||
data.mocap_pos[mocap_id][:] = data.xpos[body_idx]
|
||||
data.mocap_quat[mocap_id][:] = data.xquat[body_idx]
|
||||
86
lerobot/common/envs/simxarm/simxarm/tasks/peg_in_box.py
Normal file
86
lerobot/common/envs/simxarm/simxarm/tasks/peg_in_box.py
Normal file
@@ -0,0 +1,86 @@
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.envs.simxarm.simxarm import Base
|
||||
|
||||
|
||||
class PegInBox(Base):
|
||||
def __init__(self):
|
||||
super().__init__("peg_in_box")
|
||||
|
||||
def _reset_sim(self):
|
||||
self._act_magnitude = 0
|
||||
super()._reset_sim()
|
||||
for _ in range(10):
|
||||
self._apply_action(np.array([0, 0, 0, 1], dtype=np.float32))
|
||||
self.sim.step()
|
||||
|
||||
@property
|
||||
def box(self):
|
||||
return self.sim.data.get_site_xpos("box_site")
|
||||
|
||||
def is_success(self):
|
||||
return np.linalg.norm(self.obj - self.box) <= 0.05
|
||||
|
||||
def get_reward(self):
|
||||
dist_xy = np.linalg.norm(self.obj[:2] - self.box[:2])
|
||||
dist_xyz = np.linalg.norm(self.obj - self.box)
|
||||
return float(dist_xy <= 0.045) * (2 - 6 * dist_xyz) - 0.2 * np.square(self._act_magnitude) - dist_xy
|
||||
|
||||
def _get_obs(self):
|
||||
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
|
||||
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
|
||||
eef, box = self.eef - self.center_of_table, self.box - self.center_of_table
|
||||
|
||||
obj = self.obj - self.center_of_table
|
||||
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
|
||||
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
|
||||
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
|
||||
|
||||
obs = np.concatenate(
|
||||
[
|
||||
eef,
|
||||
eef_velp,
|
||||
box,
|
||||
obj,
|
||||
obj_rot,
|
||||
obj_velp,
|
||||
obj_velr,
|
||||
eef - box,
|
||||
eef - obj,
|
||||
obj - box,
|
||||
np.array(
|
||||
[
|
||||
np.linalg.norm(eef - box),
|
||||
np.linalg.norm(eef - obj),
|
||||
np.linalg.norm(obj - box),
|
||||
gripper_angle,
|
||||
]
|
||||
),
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": box}
|
||||
|
||||
def _sample_goal(self):
|
||||
# Gripper
|
||||
gripper_pos = np.array([1.280, 0.295, 0.9]) + self.np_random.uniform(-0.05, 0.05, size=3)
|
||||
super()._set_gripper(gripper_pos, self.gripper_rotation)
|
||||
|
||||
# Object
|
||||
object_pos = gripper_pos - np.array([0, 0, 0.06]) + self.np_random.uniform(-0.005, 0.005, size=3)
|
||||
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
|
||||
object_qpos[:3] = object_pos
|
||||
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
|
||||
|
||||
# Box
|
||||
box_pos = np.array([1.61, 0.18, 0.58])
|
||||
box_pos[:2] += self.np_random.uniform(-0.11, 0.11, size=2)
|
||||
box_qpos = self.sim.data.get_joint_qpos("box_joint0")
|
||||
box_qpos[:3] = box_pos
|
||||
self.sim.data.set_joint_qpos("box_joint0", box_qpos)
|
||||
|
||||
return self.box
|
||||
|
||||
def step(self, action):
|
||||
self._act_magnitude = np.linalg.norm(action[:3])
|
||||
return super().step(action)
|
||||
78
lerobot/common/envs/simxarm/simxarm/tasks/push.py
Normal file
78
lerobot/common/envs/simxarm/simxarm/tasks/push.py
Normal file
@@ -0,0 +1,78 @@
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.envs.simxarm.simxarm import Base
|
||||
|
||||
|
||||
class Push(Base):
|
||||
def __init__(self):
|
||||
super().__init__("push")
|
||||
|
||||
def _reset_sim(self):
|
||||
self._act_magnitude = 0
|
||||
super()._reset_sim()
|
||||
|
||||
def is_success(self):
|
||||
return np.linalg.norm(self.obj - self.goal) <= 0.05
|
||||
|
||||
def get_reward(self):
|
||||
dist = np.linalg.norm(self.obj - self.goal)
|
||||
penalty = self._act_magnitude**2
|
||||
return -(dist + 0.15 * penalty)
|
||||
|
||||
def _get_obs(self):
|
||||
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
|
||||
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
|
||||
eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
|
||||
|
||||
obj = self.obj - self.center_of_table
|
||||
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
|
||||
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
|
||||
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
|
||||
|
||||
obs = np.concatenate(
|
||||
[
|
||||
eef,
|
||||
eef_velp,
|
||||
goal,
|
||||
obj,
|
||||
obj_rot,
|
||||
obj_velp,
|
||||
obj_velr,
|
||||
eef - goal,
|
||||
eef - obj,
|
||||
obj - goal,
|
||||
np.array(
|
||||
[
|
||||
np.linalg.norm(eef - goal),
|
||||
np.linalg.norm(eef - obj),
|
||||
np.linalg.norm(obj - goal),
|
||||
gripper_angle,
|
||||
]
|
||||
),
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
|
||||
|
||||
def _sample_goal(self):
|
||||
# Gripper
|
||||
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
|
||||
super()._set_gripper(gripper_pos, self.gripper_rotation)
|
||||
|
||||
# Object
|
||||
object_pos = self.center_of_table - np.array([0.25, 0, 0.07])
|
||||
object_pos[0] += self.np_random.uniform(-0.08, 0.08, size=1)
|
||||
object_pos[1] += self.np_random.uniform(-0.08, 0.08, size=1)
|
||||
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
|
||||
object_qpos[:3] = object_pos
|
||||
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
|
||||
|
||||
# Goal
|
||||
self.goal = np.array([1.600, 0.200, 0.545])
|
||||
self.goal[:2] += self.np_random.uniform(-0.1, 0.1, size=2)
|
||||
self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
|
||||
return self.goal
|
||||
|
||||
def step(self, action):
|
||||
self._act_magnitude = np.linalg.norm(action[:3])
|
||||
return super().step(action)
|
||||
44
lerobot/common/envs/simxarm/simxarm/tasks/reach.py
Normal file
44
lerobot/common/envs/simxarm/simxarm/tasks/reach.py
Normal file
@@ -0,0 +1,44 @@
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.envs.simxarm.simxarm import Base
|
||||
|
||||
|
||||
class Reach(Base):
|
||||
def __init__(self):
|
||||
super().__init__("reach")
|
||||
|
||||
def _reset_sim(self):
|
||||
self._act_magnitude = 0
|
||||
super()._reset_sim()
|
||||
|
||||
def is_success(self):
|
||||
return np.linalg.norm(self.eef - self.goal) <= 0.05
|
||||
|
||||
def get_reward(self):
|
||||
dist = np.linalg.norm(self.eef - self.goal)
|
||||
penalty = self._act_magnitude**2
|
||||
return -(dist + 0.15 * penalty)
|
||||
|
||||
def _get_obs(self):
|
||||
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
|
||||
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
|
||||
eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
|
||||
obs = np.concatenate(
|
||||
[eef, eef_velp, goal, eef - goal, np.array([np.linalg.norm(eef - goal), gripper_angle])], axis=0
|
||||
)
|
||||
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
|
||||
|
||||
def _sample_goal(self):
|
||||
# Gripper
|
||||
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
|
||||
super()._set_gripper(gripper_pos, self.gripper_rotation)
|
||||
|
||||
# Goal
|
||||
self.goal = np.array([1.550, 0.287, 0.580])
|
||||
self.goal[:2] += self.np_random.uniform(-0.125, 0.125, size=2)
|
||||
self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
|
||||
return self.goal
|
||||
|
||||
def step(self, action):
|
||||
self._act_magnitude = np.linalg.norm(action[:3])
|
||||
return super().step(action)
|
||||
@@ -30,6 +30,7 @@ class Logger:
|
||||
self._model_dir = self._log_dir / "models"
|
||||
self._buffer_dir = self._log_dir / "buffers"
|
||||
self._save_model = cfg.save_model
|
||||
self._disable_wandb_artifact = cfg.wandb.disable_artifact
|
||||
self._save_buffer = cfg.save_buffer
|
||||
self._group = cfg_to_group(cfg)
|
||||
self._seed = cfg.seed
|
||||
@@ -71,9 +72,10 @@ class Logger:
|
||||
self._model_dir.mkdir(parents=True, exist_ok=True)
|
||||
fp = self._model_dir / f"{str(identifier)}.pt"
|
||||
policy.save(fp)
|
||||
if self._wandb:
|
||||
if self._wandb and not self._disable_wandb_artifact:
|
||||
# note wandb artifact does not accept ":" in its name
|
||||
artifact = self._wandb.Artifact(
|
||||
self._group + "-" + str(self._seed) + "-" + str(identifier),
|
||||
self._group.replace(":", "_") + "-" + str(self._seed) + "-" + str(identifier),
|
||||
type="model",
|
||||
)
|
||||
artifact.add_file(fp)
|
||||
|
||||
82
lerobot/common/policies/abstract.py
Normal file
82
lerobot/common/policies/abstract.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from collections import deque
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
|
||||
class AbstractPolicy(nn.Module):
|
||||
"""Base policy which all policies should be derived from.
|
||||
|
||||
The forward method should generally not be overriden as it plays the role of handling multi-step policies. See its
|
||||
documentation for more information.
|
||||
|
||||
Note:
|
||||
When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
|
||||
1. set the required class attributes:
|
||||
- for classes inheriting from `AbstractDataset`: `available_datasets`
|
||||
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
|
||||
- for classes inheriting from `AbstractPolicy`: `name`
|
||||
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
|
||||
3. update variables in `tests/test_available.py` by importing your new class
|
||||
"""
|
||||
|
||||
name: str | None = None # same name should be used to instantiate the policy in factory.py
|
||||
|
||||
def __init__(self, n_action_steps: int | None):
|
||||
"""
|
||||
n_action_steps: Sets the cache size for storing action trajectories. If None, it is assumed that a single
|
||||
action is returned by `select_actions` and that doesn't have a horizon dimension. The `forward` method then
|
||||
adds that dimension.
|
||||
"""
|
||||
super().__init__()
|
||||
assert self.name is not None, "Subclasses of `AbstractPolicy` should set the `name` class attribute."
|
||||
self.n_action_steps = n_action_steps
|
||||
self.clear_action_queue()
|
||||
|
||||
def update(self, replay_buffer, step):
|
||||
"""One step of the policy's learning algorithm."""
|
||||
raise NotImplementedError("Abstract method")
|
||||
|
||||
def save(self, fp):
|
||||
torch.save(self.state_dict(), fp)
|
||||
|
||||
def load(self, fp):
|
||||
d = torch.load(fp)
|
||||
self.load_state_dict(d)
|
||||
|
||||
def select_actions(self, observation) -> Tensor:
|
||||
"""Select an action (or trajectory of actions) based on an observation during rollout.
|
||||
|
||||
If n_action_steps was provided at initialization, this should return a (batch_size, n_action_steps, *) tensor of
|
||||
actions. Otherwise if n_actions_steps is None, this should return a (batch_size, *) tensor of actions.
|
||||
"""
|
||||
raise NotImplementedError("Abstract method")
|
||||
|
||||
def clear_action_queue(self):
|
||||
"""This should be called whenever the environment is reset."""
|
||||
if self.n_action_steps is not None:
|
||||
self._action_queue = deque([], maxlen=self.n_action_steps)
|
||||
|
||||
def forward(self, *args, **kwargs) -> Tensor:
|
||||
"""Inference step that makes multi-step policies compatible with their single-step environments.
|
||||
|
||||
WARNING: In general, this should not be overriden.
|
||||
|
||||
Consider a "policy" that observes the environment then charts a course of N actions to take. To make this fit
|
||||
into the formalism of a TorchRL environment, we view it as being effectively a policy that (1) makes an
|
||||
observation and prepares a queue of actions, (2) consumes that queue when queried, regardless of the environment
|
||||
observation, (3) repopulates the action queue when empty. This method handles the aforementioned logic so that
|
||||
the subclass doesn't have to.
|
||||
|
||||
This method effectively wraps the `select_actions` method of the subclass. The following assumptions are made:
|
||||
1. The `select_actions` method returns a Tensor of actions with shape (B, H, *) where B is the batch size, H is
|
||||
the action trajectory horizon and * is the action dimensions.
|
||||
2. Prior to the `select_actions` method being called, theres is an `n_action_steps` instance attribute defined.
|
||||
"""
|
||||
if self.n_action_steps is None:
|
||||
return self.select_actions(*args, **kwargs)
|
||||
if len(self._action_queue) == 0:
|
||||
# `select_actions` returns a (batch_size, n_action_steps, *) tensor, but the queue effectively has shape
|
||||
# (n_action_steps, batch_size, *), hence the transpose.
|
||||
self._action_queue.extend(self.select_actions(*args, **kwargs).transpose(0, 1))
|
||||
return self._action_queue.popleft()
|
||||
@@ -2,11 +2,12 @@ import logging
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
from lerobot.common.policies.abstract import AbstractPolicy
|
||||
from lerobot.common.policies.act.detr_vae import build
|
||||
from lerobot.common.utils import get_safe_torch_device
|
||||
|
||||
|
||||
def build_act_model_and_optimizer(cfg):
|
||||
@@ -40,12 +41,14 @@ def kl_divergence(mu, logvar):
|
||||
return total_kld, dimension_wise_kld, mean_kld
|
||||
|
||||
|
||||
class ActionChunkingTransformerPolicy(nn.Module):
|
||||
class ActionChunkingTransformerPolicy(AbstractPolicy):
|
||||
name = "act"
|
||||
|
||||
def __init__(self, cfg, device, n_action_steps=1):
|
||||
super().__init__()
|
||||
super().__init__(n_action_steps)
|
||||
self.cfg = cfg
|
||||
self.n_action_steps = n_action_steps
|
||||
self.device = device
|
||||
self.device = get_safe_torch_device(device)
|
||||
self.model, self.optimizer = build_act_model_and_optimizer(cfg)
|
||||
self.kl_weight = self.cfg.kl_weight
|
||||
logging.info(f"KL Weight {self.kl_weight}")
|
||||
@@ -147,16 +150,15 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
||||
return loss
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, observation, step_count):
|
||||
def select_actions(self, observation, step_count):
|
||||
if observation["image"].shape[0] != 1:
|
||||
raise NotImplementedError("Batch size > 1 not handled")
|
||||
|
||||
# TODO(rcadene): remove unused step_count
|
||||
del step_count
|
||||
|
||||
self.eval()
|
||||
|
||||
# TODO(rcadene): remove unsqueeze hack to add bsize=1
|
||||
observation["image", "top"] = observation["image", "top"].unsqueeze(0)
|
||||
# observation["state"] = observation["state"].unsqueeze(0)
|
||||
|
||||
# TODO(rcadene): remove hack
|
||||
# add 1 camera dimension
|
||||
observation["image", "top"] = observation["image", "top"].unsqueeze(1)
|
||||
@@ -180,11 +182,8 @@ class ActionChunkingTransformerPolicy(nn.Module):
|
||||
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
|
||||
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
|
||||
|
||||
# remove bsize=1
|
||||
action = action.squeeze(0)
|
||||
|
||||
# take first predicted action or n first actions
|
||||
action = action[0] if self.n_action_steps == 1 else action[: self.n_action_steps]
|
||||
action = action[: self.n_action_steps]
|
||||
return action
|
||||
|
||||
def _forward(self, qpos, image, actions=None, is_pad=None):
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
"""
|
||||
Various positional encodings for the transformer.
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
|
||||
@@ -6,6 +6,7 @@ Copy-paste from torch.nn.Transformer with modifications:
|
||||
* extra LN at the end of encoder is removed
|
||||
* decoder returns a stack of activations from all decoding layers
|
||||
"""
|
||||
|
||||
import copy
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@ Misc functions, including distributed helpers.
|
||||
|
||||
Mostly copy-paste from torchvision references.
|
||||
"""
|
||||
|
||||
import datetime
|
||||
import os
|
||||
import pickle
|
||||
|
||||
@@ -1,3 +1,44 @@
|
||||
"""Code from the original diffusion policy project.
|
||||
|
||||
Notes on how to load a checkpoint from the original repository:
|
||||
|
||||
In the original repository, run the eval and use a breakpoint to extract the policy weights.
|
||||
|
||||
```
|
||||
torch.save(policy.state_dict(), "weights.pt")
|
||||
```
|
||||
|
||||
In this repository, add a breakpoint somewhere after creating an equivalent policy and load in the weights:
|
||||
|
||||
```
|
||||
loaded = torch.load("weights.pt")
|
||||
aligned = {}
|
||||
their_prefix = "obs_encoder.obs_nets.image.backbone"
|
||||
our_prefix = "obs_encoder.key_model_map.image.backbone"
|
||||
aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
|
||||
their_prefix = "obs_encoder.obs_nets.image.pool"
|
||||
our_prefix = "obs_encoder.key_model_map.image.pool"
|
||||
aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
|
||||
their_prefix = "obs_encoder.obs_nets.image.nets.3"
|
||||
our_prefix = "obs_encoder.key_model_map.image.out"
|
||||
aligned.update({our_prefix + k.removeprefix(their_prefix): v for k, v in loaded.items() if k.startswith(their_prefix)})
|
||||
aligned.update({k: v for k, v in loaded.items() if k.startswith('model.')})
|
||||
# Note: here you are loading into the ema model.
|
||||
missing_keys, unexpected_keys = policy.ema_diffusion.load_state_dict(aligned, strict=False)
|
||||
assert all('_dummy_variable' in k for k in missing_keys)
|
||||
assert len(unexpected_keys) == 0
|
||||
```
|
||||
|
||||
Then in that same runtime you can also save the weights with the new aligned state_dict:
|
||||
|
||||
```
|
||||
policy.save("weights.pt")
|
||||
```
|
||||
|
||||
Now you can remove the breakpoint and extra code and load in the weights just like with any other lerobot checkpoint.
|
||||
|
||||
"""
|
||||
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
@@ -190,11 +231,10 @@ class DiffusionUnetImagePolicy(BaseImagePolicy):
|
||||
|
||||
# run sampling
|
||||
nsample = self.conditional_sample(
|
||||
cond_data, cond_mask, local_cond=local_cond, global_cond=global_cond, **self.kwargs
|
||||
cond_data, cond_mask, local_cond=local_cond, global_cond=global_cond
|
||||
)
|
||||
|
||||
action_pred = nsample[..., :action_dim]
|
||||
|
||||
# get action
|
||||
start = n_obs_steps - 1
|
||||
end = start + self.n_action_steps
|
||||
|
||||
@@ -1,15 +1,40 @@
|
||||
import copy
|
||||
from typing import Dict, Tuple, Union
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision
|
||||
from robomimic.models.base_nets import ResNet18Conv, SpatialSoftmax
|
||||
|
||||
from lerobot.common.policies.diffusion.model.crop_randomizer import CropRandomizer
|
||||
from lerobot.common.policies.diffusion.model.module_attr_mixin import ModuleAttrMixin
|
||||
from lerobot.common.policies.diffusion.pytorch_utils import replace_submodules
|
||||
|
||||
|
||||
class RgbEncoder(nn.Module):
|
||||
"""Following `VisualCore` from Robomimic 0.2.0."""
|
||||
|
||||
def __init__(self, input_shape, relu=True, pretrained=False, num_keypoints=32):
|
||||
"""
|
||||
input_shape: channel-first input shape (C, H, W)
|
||||
resnet_name: a timm model name.
|
||||
pretrained: whether to use timm pretrained weights.
|
||||
relu: whether to use relu as a final step.
|
||||
num_keypoints: Number of keypoints for SpatialSoftmax (default value of 32 matches PushT Image).
|
||||
"""
|
||||
super().__init__()
|
||||
self.backbone = ResNet18Conv(input_channel=input_shape[0], pretrained=pretrained)
|
||||
# Figure out the feature map shape.
|
||||
with torch.inference_mode():
|
||||
feat_map_shape = tuple(self.backbone(torch.zeros(size=(1, *input_shape))).shape[1:])
|
||||
self.pool = SpatialSoftmax(feat_map_shape, num_kp=num_keypoints)
|
||||
self.out = nn.Linear(num_keypoints * 2, num_keypoints * 2)
|
||||
self.relu = nn.ReLU() if relu else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
return self.relu(self.out(torch.flatten(self.pool(self.backbone(x)), start_dim=1)))
|
||||
|
||||
|
||||
class MultiImageObsEncoder(ModuleAttrMixin):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -24,7 +49,7 @@ class MultiImageObsEncoder(ModuleAttrMixin):
|
||||
share_rgb_model: bool = False,
|
||||
# renormalize rgb input with imagenet normalization
|
||||
# assuming input in [0,1]
|
||||
imagenet_norm: bool = False,
|
||||
norm_mean_std: Optional[tuple[float, float]] = None,
|
||||
):
|
||||
"""
|
||||
Assumes rgb input: B,C,H,W
|
||||
@@ -98,10 +123,9 @@ class MultiImageObsEncoder(ModuleAttrMixin):
|
||||
this_normalizer = torchvision.transforms.CenterCrop(size=(h, w))
|
||||
# configure normalizer
|
||||
this_normalizer = nn.Identity()
|
||||
if imagenet_norm:
|
||||
# TODO(rcadene): move normalizer to dataset and env
|
||||
if norm_mean_std is not None:
|
||||
this_normalizer = torchvision.transforms.Normalize(
|
||||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
||||
mean=norm_mean_std[0], std=norm_mean_std[1]
|
||||
)
|
||||
|
||||
this_transform = nn.Sequential(this_resizer, this_randomizer, this_normalizer)
|
||||
@@ -124,6 +148,17 @@ class MultiImageObsEncoder(ModuleAttrMixin):
|
||||
def forward(self, obs_dict):
|
||||
batch_size = None
|
||||
features = []
|
||||
|
||||
# process lowdim input
|
||||
for key in self.low_dim_keys:
|
||||
data = obs_dict[key]
|
||||
if batch_size is None:
|
||||
batch_size = data.shape[0]
|
||||
else:
|
||||
assert batch_size == data.shape[0]
|
||||
assert data.shape[1:] == self.key_shape_map[key]
|
||||
features.append(data)
|
||||
|
||||
# process rgb input
|
||||
if self.share_rgb_model:
|
||||
# pass all rgb obs to rgb model
|
||||
@@ -161,16 +196,6 @@ class MultiImageObsEncoder(ModuleAttrMixin):
|
||||
feature = self.key_model_map[key](img)
|
||||
features.append(feature)
|
||||
|
||||
# process lowdim input
|
||||
for key in self.low_dim_keys:
|
||||
data = obs_dict[key]
|
||||
if batch_size is None:
|
||||
batch_size = data.shape[0]
|
||||
else:
|
||||
assert batch_size == data.shape[0]
|
||||
assert data.shape[1:] == self.key_shape_map[key]
|
||||
features.append(data)
|
||||
|
||||
# concatenate all features
|
||||
result = torch.cat(features, dim=-1)
|
||||
return result
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
A collection of utilities for working with nested tensor structures consisting
|
||||
of numpy arrays and torch tensors.
|
||||
"""
|
||||
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -1,16 +1,20 @@
|
||||
import copy
|
||||
import logging
|
||||
import time
|
||||
|
||||
import hydra
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from lerobot.common.policies.abstract import AbstractPolicy
|
||||
from lerobot.common.policies.diffusion.diffusion_unet_image_policy import DiffusionUnetImagePolicy
|
||||
from lerobot.common.policies.diffusion.model.lr_scheduler import get_scheduler
|
||||
from lerobot.common.policies.diffusion.model.multi_image_obs_encoder import MultiImageObsEncoder
|
||||
from lerobot.common.policies.diffusion.model.multi_image_obs_encoder import MultiImageObsEncoder, RgbEncoder
|
||||
from lerobot.common.utils import get_safe_torch_device
|
||||
|
||||
|
||||
class DiffusionPolicy(nn.Module):
|
||||
class DiffusionPolicy(AbstractPolicy):
|
||||
name = "diffusion"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cfg,
|
||||
@@ -34,11 +38,14 @@ class DiffusionPolicy(nn.Module):
|
||||
# parameters passed to step
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
super().__init__(n_action_steps)
|
||||
self.cfg = cfg
|
||||
|
||||
noise_scheduler = hydra.utils.instantiate(cfg_noise_scheduler)
|
||||
rgb_model = hydra.utils.instantiate(cfg_rgb_model)
|
||||
rgb_model_input_shape = copy.deepcopy(shape_meta.obs.image.shape)
|
||||
if cfg_obs_encoder.crop_shape is not None:
|
||||
rgb_model_input_shape[1:] = cfg_obs_encoder.crop_shape
|
||||
rgb_model = RgbEncoder(input_shape=rgb_model_input_shape, **cfg_rgb_model)
|
||||
obs_encoder = MultiImageObsEncoder(
|
||||
rgb_model=rgb_model,
|
||||
**cfg_obs_encoder,
|
||||
@@ -62,15 +69,16 @@ class DiffusionPolicy(nn.Module):
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.device = torch.device(cfg_device)
|
||||
if torch.cuda.is_available() and cfg_device == "cuda":
|
||||
self.diffusion.cuda()
|
||||
self.device = get_safe_torch_device(cfg_device)
|
||||
self.diffusion.to(self.device)
|
||||
|
||||
self.ema_diffusion = None
|
||||
self.ema = None
|
||||
if self.cfg.use_ema:
|
||||
self.ema_diffusion = copy.deepcopy(self.diffusion)
|
||||
self.ema = hydra.utils.instantiate(
|
||||
cfg_ema,
|
||||
model=copy.deepcopy(self.diffusion),
|
||||
model=self.ema_diffusion,
|
||||
)
|
||||
|
||||
self.optimizer = hydra.utils.instantiate(
|
||||
@@ -93,21 +101,22 @@ class DiffusionPolicy(nn.Module):
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, observation, step_count):
|
||||
def select_actions(self, observation, step_count):
|
||||
"""
|
||||
Note: this uses the ema model weights if self.training == False, otherwise the non-ema model weights.
|
||||
"""
|
||||
# TODO(rcadene): remove unused step_count
|
||||
del step_count
|
||||
|
||||
# TODO(rcadene): remove unsqueeze hack to add bsize=1
|
||||
observation["image"] = observation["image"].unsqueeze(0)
|
||||
observation["state"] = observation["state"].unsqueeze(0)
|
||||
|
||||
obs_dict = {
|
||||
"image": observation["image"],
|
||||
"agent_pos": observation["state"],
|
||||
}
|
||||
out = self.diffusion.predict_action(obs_dict)
|
||||
|
||||
action = out["action"].squeeze(0)
|
||||
if self.training:
|
||||
out = self.diffusion.predict_action(obs_dict)
|
||||
else:
|
||||
out = self.ema_diffusion.predict_action(obs_dict)
|
||||
action = out["action"]
|
||||
return action
|
||||
|
||||
def update(self, replay_buffer, step):
|
||||
@@ -196,4 +205,10 @@ class DiffusionPolicy(nn.Module):
|
||||
|
||||
def load(self, fp):
|
||||
d = torch.load(fp)
|
||||
self.load_state_dict(d)
|
||||
missing_keys, unexpected_keys = self.load_state_dict(d, strict=False)
|
||||
if len(missing_keys) > 0:
|
||||
assert all(k.startswith("ema_diffusion.") for k in missing_keys)
|
||||
logging.warning(
|
||||
"DiffusionPolicy.load expected ema parameters in loaded state dict but none were found."
|
||||
)
|
||||
assert len(unexpected_keys) == 0
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
def make_policy(cfg):
|
||||
if cfg.policy.name == "tdmpc":
|
||||
from lerobot.common.policies.tdmpc.policy import TDMPC
|
||||
if cfg.policy.name != "diffusion" and cfg.rollout_batch_size > 1:
|
||||
raise NotImplementedError("Only diffusion policy supports rollout_batch_size > 1 for the time being.")
|
||||
|
||||
policy = TDMPC(cfg.policy, cfg.device)
|
||||
if cfg.policy.name == "tdmpc":
|
||||
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
|
||||
|
||||
policy = TDMPCPolicy(cfg.policy, cfg.device)
|
||||
elif cfg.policy.name == "diffusion":
|
||||
from lerobot.common.policies.diffusion.policy import DiffusionPolicy
|
||||
|
||||
|
||||
@@ -9,6 +9,8 @@ import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import lerobot.common.policies.tdmpc.helper as h
|
||||
from lerobot.common.policies.abstract import AbstractPolicy
|
||||
from lerobot.common.utils import get_safe_torch_device
|
||||
|
||||
FIRST_FRAME = 0
|
||||
|
||||
@@ -85,17 +87,20 @@ class TOLD(nn.Module):
|
||||
return torch.min(Q1, Q2) if return_type == "min" else (Q1 + Q2) / 2
|
||||
|
||||
|
||||
class TDMPC(nn.Module):
|
||||
class TDMPCPolicy(AbstractPolicy):
|
||||
"""Implementation of TD-MPC learning + inference."""
|
||||
|
||||
name = "tdmpc"
|
||||
|
||||
def __init__(self, cfg, device):
|
||||
super().__init__()
|
||||
super().__init__(None)
|
||||
self.action_dim = cfg.action_dim
|
||||
|
||||
self.cfg = cfg
|
||||
self.device = torch.device(device)
|
||||
self.device = get_safe_torch_device(device)
|
||||
self.std = h.linear_schedule(cfg.std_schedule, 0)
|
||||
self.model = TOLD(cfg).cuda() if torch.cuda.is_available() and device == "cuda" else TOLD(cfg)
|
||||
self.model = TOLD(cfg)
|
||||
self.model.to(self.device)
|
||||
self.model_target = deepcopy(self.model)
|
||||
self.optim = torch.optim.Adam(self.model.parameters(), lr=self.cfg.lr)
|
||||
self.pi_optim = torch.optim.Adam(self.model._pi.parameters(), lr=self.cfg.lr)
|
||||
@@ -124,20 +129,19 @@ class TDMPC(nn.Module):
|
||||
self.model_target.load_state_dict(d["model_target"])
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, observation, step_count):
|
||||
t0 = step_count.item() == 0
|
||||
def select_actions(self, observation, step_count):
|
||||
if observation["image"].shape[0] != 1:
|
||||
raise NotImplementedError("Batch size > 1 not handled")
|
||||
|
||||
# TODO(rcadene): remove unsqueeze hack...
|
||||
if observation["image"].ndim == 3:
|
||||
observation["image"] = observation["image"].unsqueeze(0)
|
||||
observation["state"] = observation["state"].unsqueeze(0)
|
||||
t0 = step_count.item() == 0
|
||||
|
||||
obs = {
|
||||
# TODO(rcadene): remove contiguous hack...
|
||||
"rgb": observation["image"].contiguous(),
|
||||
"state": observation["state"].contiguous(),
|
||||
}
|
||||
action = self.act(obs, t0=t0, step=self.step.item())
|
||||
# Note: unsqueeze needed because `act` still uses non-batch logic.
|
||||
action = self.act(obs, t0=t0, step=self.step.item()).unsqueeze(0)
|
||||
return action
|
||||
|
||||
@torch.no_grad()
|
||||
|
||||
@@ -6,7 +6,27 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
def set_seed(seed):
|
||||
def get_safe_torch_device(cfg_device: str, log: bool = False) -> torch.device:
|
||||
match cfg_device:
|
||||
case "cuda":
|
||||
assert torch.cuda.is_available()
|
||||
device = torch.device("cuda")
|
||||
case "mps":
|
||||
assert torch.backends.mps.is_available()
|
||||
device = torch.device("mps")
|
||||
case "cpu":
|
||||
device = torch.device("cpu")
|
||||
if log:
|
||||
logging.warning("Using CPU, this will be slow.")
|
||||
case _:
|
||||
device = torch.device(cfg_device)
|
||||
if log:
|
||||
logging.warning(f"Using custom {cfg_device} device.")
|
||||
|
||||
return device
|
||||
|
||||
|
||||
def set_global_seed(seed):
|
||||
"""Set seed for reproducibility."""
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
|
||||
@@ -5,11 +5,14 @@ defaults:
|
||||
|
||||
hydra:
|
||||
run:
|
||||
dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}_${env.name}_${policy.name}_${hydra.job.name}
|
||||
dir: outputs/train/${now:%Y-%m-%d}/${now:%H-%M-%S}_${env.name}_${policy.name}_${hydra.job.name}
|
||||
job:
|
||||
name: default
|
||||
|
||||
seed: 1337
|
||||
# batch size for TorchRL SerialEnv. Each underlying env will get the seed = seed + env_index
|
||||
# NOTE: only diffusion policy supports rollout_batch_size > 1
|
||||
rollout_batch_size: 1
|
||||
device: cuda # cpu
|
||||
prefetch: 4
|
||||
eval_freq: ???
|
||||
@@ -23,12 +26,17 @@ fps: ???
|
||||
|
||||
offline_prioritized_sampler: true
|
||||
|
||||
dataset_id: ???
|
||||
|
||||
n_action_steps: ???
|
||||
n_obs_steps: ???
|
||||
env: ???
|
||||
|
||||
policy: ???
|
||||
|
||||
wandb:
|
||||
enable: true
|
||||
# Set to true to disable saving an artifact despite save_model == True
|
||||
disable_artifact: false
|
||||
project: lerobot
|
||||
notes: ""
|
||||
|
||||
4
lerobot/configs/env/aloha.yaml
vendored
4
lerobot/configs/env/aloha.yaml
vendored
@@ -10,9 +10,11 @@ online_steps: 25000
|
||||
|
||||
fps: 50
|
||||
|
||||
dataset_id: aloha_sim_insertion_human
|
||||
|
||||
env:
|
||||
name: aloha
|
||||
task: sim_insertion_human
|
||||
task: sim_insertion
|
||||
from_pixels: True
|
||||
pixels_only: False
|
||||
image_size: [3, 480, 640]
|
||||
|
||||
2
lerobot/configs/env/pusht.yaml
vendored
2
lerobot/configs/env/pusht.yaml
vendored
@@ -10,6 +10,8 @@ online_steps: 25000
|
||||
|
||||
fps: 10
|
||||
|
||||
dataset_id: pusht
|
||||
|
||||
env:
|
||||
name: pusht
|
||||
task: pusht
|
||||
|
||||
2
lerobot/configs/env/simxarm.yaml
vendored
2
lerobot/configs/env/simxarm.yaml
vendored
@@ -9,6 +9,8 @@ online_steps: 25000
|
||||
|
||||
fps: 15
|
||||
|
||||
dataset_id: xarm_lift_medium
|
||||
|
||||
env:
|
||||
name: simxarm
|
||||
task: lift
|
||||
|
||||
@@ -12,6 +12,7 @@ shape_meta:
|
||||
action:
|
||||
shape: [2]
|
||||
|
||||
seed: 100000
|
||||
horizon: 16
|
||||
n_obs_steps: 2
|
||||
n_action_steps: 8
|
||||
@@ -21,12 +22,12 @@ past_action_visible: False
|
||||
keypoint_visible_rate: 1.0
|
||||
obs_as_global_cond: True
|
||||
|
||||
eval_episodes: 1
|
||||
eval_freq: 10000
|
||||
save_freq: 100000
|
||||
eval_episodes: 50
|
||||
eval_freq: 5000
|
||||
save_freq: 5000
|
||||
log_freq: 250
|
||||
|
||||
offline_steps: 1344000
|
||||
offline_steps: 200000
|
||||
online_steps: 0
|
||||
|
||||
offline_prioritized_sampler: true
|
||||
@@ -42,8 +43,8 @@ policy:
|
||||
num_inference_steps: 100
|
||||
obs_as_global_cond: ${obs_as_global_cond}
|
||||
# crop_shape: null
|
||||
diffusion_step_embed_dim: 256 # before 128
|
||||
down_dims: [256, 512, 1024] # before [512, 1024, 2048]
|
||||
diffusion_step_embed_dim: 128
|
||||
down_dims: [512, 1024, 2048]
|
||||
kernel_size: 5
|
||||
n_groups: 8
|
||||
cond_predict_scale: True
|
||||
@@ -76,17 +77,17 @@ noise_scheduler:
|
||||
obs_encoder:
|
||||
shape_meta: ${shape_meta}
|
||||
# resize_shape: null
|
||||
# crop_shape: [76, 76]
|
||||
crop_shape: [84, 84]
|
||||
# constant center crop
|
||||
# random_crop: True
|
||||
random_crop: True
|
||||
use_group_norm: True
|
||||
share_rgb_model: False
|
||||
imagenet_norm: True
|
||||
norm_mean_std: [0.5, 0.5] # for PushT the original impl normalizes to [-1, 1] (maybe not the case for robomimic envs)
|
||||
|
||||
rgb_model:
|
||||
_target_: lerobot.common.policies.diffusion.pytorch_utils.get_resnet
|
||||
name: resnet18
|
||||
weights: null
|
||||
pretrained: false
|
||||
num_keypoints: 32
|
||||
relu: true
|
||||
|
||||
ema:
|
||||
_target_: lerobot.common.policies.diffusion.model.ema_model.EMAModel
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
# @package _global_
|
||||
|
||||
n_action_steps: 1
|
||||
n_obs_steps: 1
|
||||
|
||||
policy:
|
||||
name: tdmpc
|
||||
|
||||
@@ -1,21 +1,58 @@
|
||||
"""Evaluate a policy on an environment by running rollouts and computing metrics.
|
||||
|
||||
The script may be run in one of two ways:
|
||||
|
||||
1. By providing the path to a config file with the --config argument.
|
||||
2. By providing a HuggingFace Hub ID with the --hub-id argument. You may also provide a revision number with the
|
||||
--revision argument.
|
||||
|
||||
In either case, it is possible to override config arguments by adding a list of config.key=value arguments.
|
||||
|
||||
Examples:
|
||||
|
||||
You have a specific config file to go with trained model weights, and want to run 10 episodes.
|
||||
|
||||
```
|
||||
python lerobot/scripts/eval.py \
|
||||
--config PATH/TO/FOLDER/config.yaml \
|
||||
policy.pretrained_model_path=PATH/TO/FOLDER/weights.pth \
|
||||
eval_episodes=10
|
||||
```
|
||||
|
||||
You have a HuggingFace Hub ID, you know which revision you want, and want to run 10 episodes (note that in this case,
|
||||
you don't need to specify which weights to use):
|
||||
|
||||
```
|
||||
python lerobot/scripts/eval.py --hub-id HUB/ID --revision v1.0 eval_episodes=10
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os.path as osp
|
||||
import threading
|
||||
import time
|
||||
from datetime import datetime as dt
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import hydra
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from huggingface_hub import snapshot_download
|
||||
from tensordict.nn import TensorDictModule
|
||||
from torchrl.envs import EnvBase
|
||||
from torchrl.envs.batched_envs import BatchedEnvBase
|
||||
|
||||
from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.policies.abstract import AbstractPolicy
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import init_logging, set_seed
|
||||
from lerobot.common.utils import get_safe_torch_device, init_logging, set_global_seed
|
||||
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
@@ -23,8 +60,8 @@ def write_video(video_path, stacked_frames, fps):
|
||||
|
||||
|
||||
def eval_policy(
|
||||
env: EnvBase,
|
||||
policy: TensorDictModule = None,
|
||||
env: BatchedEnvBase,
|
||||
policy: AbstractPolicy,
|
||||
num_episodes: int = 10,
|
||||
max_steps: int = 30,
|
||||
save_video: bool = False,
|
||||
@@ -32,93 +69,135 @@ def eval_policy(
|
||||
fps: int = 15,
|
||||
return_first_video: bool = False,
|
||||
):
|
||||
if policy is not None:
|
||||
policy.eval()
|
||||
start = time.time()
|
||||
sum_rewards = []
|
||||
max_rewards = []
|
||||
successes = []
|
||||
threads = []
|
||||
for i in tqdm.tqdm(range(num_episodes)):
|
||||
ep_frames = []
|
||||
if save_video or (return_first_video and i == 0):
|
||||
seeds = []
|
||||
threads = [] # for video saving threads
|
||||
episode_counter = 0 # for saving the correct number of videos
|
||||
|
||||
def render_frame(env):
|
||||
# TODO(alexander-soare): if num_episodes is not evenly divisible by the batch size, this will do more work than
|
||||
# needed as I'm currently taking a ceil.
|
||||
for i in tqdm.tqdm(range(-(-num_episodes // env.batch_size[0]))):
|
||||
ep_frames = []
|
||||
|
||||
def maybe_render_frame(env: EnvBase, _):
|
||||
if save_video or (return_first_video and i == 0): # noqa: B023
|
||||
ep_frames.append(env.render()) # noqa: B023
|
||||
|
||||
env.register_rendering_hook(render_frame)
|
||||
# Clear the policy's action queue before the start of a new rollout.
|
||||
if policy is not None:
|
||||
policy.clear_action_queue()
|
||||
|
||||
if env.is_closed:
|
||||
env.start() # needed to be able to get the seeds the first time as BatchedEnvs are lazy
|
||||
seeds.extend(env._next_seed)
|
||||
with torch.inference_mode():
|
||||
# TODO(alexander-soare): When `break_when_any_done == False` this rolls out for max_steps even when all
|
||||
# envs are done the first time. But we only use the first rollout. This is a waste of compute.
|
||||
rollout = env.rollout(
|
||||
max_steps=max_steps,
|
||||
policy=policy,
|
||||
auto_cast_to_device=True,
|
||||
callback=maybe_render_frame,
|
||||
break_when_any_done=env.batch_size[0] == 1,
|
||||
)
|
||||
# print(", ".join([f"{x:.3f}" for x in rollout["next", "reward"][:,0].tolist()]))
|
||||
ep_sum_reward = rollout["next", "reward"].sum()
|
||||
ep_max_reward = rollout["next", "reward"].max()
|
||||
ep_success = rollout["next", "success"].any()
|
||||
sum_rewards.append(ep_sum_reward.item())
|
||||
max_rewards.append(ep_max_reward.item())
|
||||
successes.append(ep_success.item())
|
||||
# Figure out where in each rollout sequence the first done condition was encountered (results after
|
||||
# this won't be included).
|
||||
# Note: this assumes that the shape of the done key is (batch_size, max_steps, 1).
|
||||
# Note: this relies on a property of argmax: that it returns the first occurrence as a tiebreaker.
|
||||
rollout_steps = rollout["next", "done"].shape[1]
|
||||
done_indices = torch.argmax(rollout["next", "done"].to(int), axis=1) # (batch_size, rollout_steps)
|
||||
mask = (torch.arange(rollout_steps) <= done_indices).unsqueeze(-1) # (batch_size, rollout_steps, 1)
|
||||
batch_sum_reward = einops.reduce((rollout["next", "reward"] * mask), "b n 1 -> b", "sum")
|
||||
batch_max_reward = einops.reduce((rollout["next", "reward"] * mask), "b n 1 -> b", "max")
|
||||
batch_success = einops.reduce((rollout["next", "success"] * mask), "b n 1 -> b", "any")
|
||||
sum_rewards.extend(batch_sum_reward.tolist())
|
||||
max_rewards.extend(batch_max_reward.tolist())
|
||||
successes.extend(batch_success.tolist())
|
||||
|
||||
if save_video or (return_first_video and i == 0):
|
||||
stacked_frames = np.stack(ep_frames)
|
||||
batch_stacked_frames = np.stack(ep_frames) # (t, b, *)
|
||||
batch_stacked_frames = batch_stacked_frames.transpose(
|
||||
1, 0, *range(2, batch_stacked_frames.ndim)
|
||||
) # (b, t, *)
|
||||
|
||||
if save_video:
|
||||
video_dir.mkdir(parents=True, exist_ok=True)
|
||||
video_path = video_dir / f"eval_episode_{i}.mp4"
|
||||
thread = threading.Thread(
|
||||
target=write_video,
|
||||
args=(str(video_path), stacked_frames, fps),
|
||||
)
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
for stacked_frames, done_index in zip(
|
||||
batch_stacked_frames, done_indices.flatten().tolist(), strict=False
|
||||
):
|
||||
if episode_counter >= num_episodes:
|
||||
continue
|
||||
video_dir.mkdir(parents=True, exist_ok=True)
|
||||
video_path = video_dir / f"eval_episode_{episode_counter}.mp4"
|
||||
thread = threading.Thread(
|
||||
target=write_video,
|
||||
args=(str(video_path), stacked_frames[:done_index], fps),
|
||||
)
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
episode_counter += 1
|
||||
|
||||
if return_first_video and i == 0:
|
||||
first_video = stacked_frames.transpose(0, 3, 1, 2)
|
||||
|
||||
env.reset_rendering_hooks()
|
||||
first_video = batch_stacked_frames[0].transpose(0, 3, 1, 2)
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
info = {
|
||||
"avg_sum_reward": np.nanmean(sum_rewards),
|
||||
"avg_max_reward": np.nanmean(max_rewards),
|
||||
"pc_success": np.nanmean(successes) * 100,
|
||||
"eval_s": time.time() - start,
|
||||
"eval_ep_s": (time.time() - start) / num_episodes,
|
||||
"per_episode": [
|
||||
{
|
||||
"episode_ix": i,
|
||||
"sum_reward": sum_reward,
|
||||
"max_reward": max_reward,
|
||||
"success": success,
|
||||
"seed": seed,
|
||||
}
|
||||
for i, (sum_reward, max_reward, success, seed) in enumerate(
|
||||
zip(
|
||||
sum_rewards[:num_episodes],
|
||||
max_rewards[:num_episodes],
|
||||
successes[:num_episodes],
|
||||
seeds[:num_episodes],
|
||||
strict=True,
|
||||
)
|
||||
)
|
||||
],
|
||||
"aggregated": {
|
||||
"avg_sum_reward": np.nanmean(sum_rewards[:num_episodes]),
|
||||
"avg_max_reward": np.nanmean(max_rewards[:num_episodes]),
|
||||
"pc_success": np.nanmean(successes[:num_episodes]) * 100,
|
||||
"eval_s": time.time() - start,
|
||||
"eval_ep_s": (time.time() - start) / num_episodes,
|
||||
},
|
||||
}
|
||||
if return_first_video:
|
||||
return info, first_video
|
||||
return info
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
||||
def eval_cli(cfg: dict):
|
||||
eval(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
|
||||
|
||||
|
||||
def eval(cfg: dict, out_dir=None):
|
||||
def eval(cfg: dict, out_dir=None, stats_path=None):
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
|
||||
init_logging()
|
||||
|
||||
if cfg.device == "cuda":
|
||||
assert torch.cuda.is_available()
|
||||
else:
|
||||
logging.warning("Using CPU, this will be slow.")
|
||||
# Check device is available
|
||||
get_safe_torch_device(cfg.device, log=True)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
set_seed(cfg.seed)
|
||||
set_global_seed(cfg.seed)
|
||||
|
||||
log_output_dir(out_dir)
|
||||
|
||||
logging.info("make_offline_buffer")
|
||||
offline_buffer = make_offline_buffer(cfg)
|
||||
logging.info("Making transforms.")
|
||||
offline_buffer = make_offline_buffer(cfg, stats_path=stats_path)
|
||||
|
||||
logging.info("make_env")
|
||||
logging.info("Making environment.")
|
||||
env = make_env(cfg, transform=offline_buffer.transform)
|
||||
|
||||
if cfg.policy.pretrained_model_path:
|
||||
@@ -132,19 +211,71 @@ def eval(cfg: dict, out_dir=None):
|
||||
# when policy is None, rollout a random policy
|
||||
policy = None
|
||||
|
||||
metrics = eval_policy(
|
||||
info = eval_policy(
|
||||
env,
|
||||
policy=policy,
|
||||
save_video=True,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
fps=cfg.env.fps,
|
||||
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||
max_steps=cfg.env.episode_length,
|
||||
num_episodes=cfg.eval_episodes,
|
||||
)
|
||||
print(metrics)
|
||||
print(info["aggregated"])
|
||||
|
||||
# Save info
|
||||
with open(Path(out_dir) / "eval_info.json", "w") as f:
|
||||
json.dump(info, f, indent=2)
|
||||
|
||||
logging.info("End of eval")
|
||||
|
||||
|
||||
def _relative_path_between(path1: Path, path2: Path) -> Path:
|
||||
"""Returns path1 relative to path2."""
|
||||
path1 = path1.absolute()
|
||||
path2 = path2.absolute()
|
||||
try:
|
||||
return path1.relative_to(path2)
|
||||
except ValueError: # most likely because path1 is not a subpath of path2
|
||||
common_parts = Path(osp.commonpath([path1, path2])).parts
|
||||
return Path(
|
||||
"/".join([".."] * (len(path2.parts) - len(common_parts)) + list(path1.parts[len(common_parts) :]))
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
eval_cli()
|
||||
parser = argparse.ArgumentParser(
|
||||
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
|
||||
)
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument("--config", help="Path to a specific yaml config you want to use.")
|
||||
group.add_argument("--hub-id", help="HuggingFace Hub ID for a pretrained model.")
|
||||
parser.add_argument("--revision", help="Optionally provide the HuggingFace Hub revision ID.")
|
||||
parser.add_argument(
|
||||
"overrides",
|
||||
nargs="*",
|
||||
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.config is not None:
|
||||
# Note: For the config_path, Hydra wants a path relative to this script file.
|
||||
hydra.initialize(
|
||||
config_path=str(
|
||||
_relative_path_between(Path(args.config).absolute().parent, Path(__file__).parent)
|
||||
)
|
||||
)
|
||||
cfg = hydra.compose(Path(args.config).stem, args.overrides)
|
||||
# TODO(alexander-soare): Save and load stats in trained model directory.
|
||||
stats_path = None
|
||||
elif args.hub_id is not None:
|
||||
folder = Path(snapshot_download(args.hub_id, revision="v1.0"))
|
||||
cfg = hydra.initialize(config_path=str(_relative_path_between(folder, Path(__file__).parent)))
|
||||
cfg = hydra.compose("config", args.overrides)
|
||||
cfg.policy.pretrained_model_path = folder / "model.pt"
|
||||
stats_path = folder / "stats.pth"
|
||||
|
||||
eval(
|
||||
cfg,
|
||||
out_dir=f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{cfg.env.name}_{cfg.policy.name}",
|
||||
stats_path=stats_path,
|
||||
)
|
||||
|
||||
@@ -12,7 +12,7 @@ from lerobot.common.datasets.factory import make_offline_buffer
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import format_big_number, init_logging, set_seed
|
||||
from lerobot.common.utils import format_big_number, get_safe_torch_device, init_logging, set_global_seed
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
|
||||
@@ -112,17 +112,17 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
raise NotImplementedError()
|
||||
if job_name is None:
|
||||
raise NotImplementedError()
|
||||
if cfg.online_steps > 0:
|
||||
assert cfg.rollout_batch_size == 1, "rollout_batch_size > 1 not supported for online training steps"
|
||||
|
||||
init_logging()
|
||||
|
||||
if cfg.device == "cuda":
|
||||
assert torch.cuda.is_available()
|
||||
else:
|
||||
logging.warning("Using CPU, this will be slow.")
|
||||
# Check device is available
|
||||
get_safe_torch_device(cfg.device, log=True)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
set_seed(cfg.seed)
|
||||
set_global_seed(cfg.seed)
|
||||
|
||||
logging.info("make_offline_buffer")
|
||||
offline_buffer = make_offline_buffer(cfg)
|
||||
@@ -155,11 +155,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
||||
num_total_params = sum(p.numel() for p in policy.parameters())
|
||||
|
||||
td_policy = TensorDictModule(
|
||||
policy,
|
||||
in_keys=["observation", "step_count"],
|
||||
out_keys=["action"],
|
||||
)
|
||||
td_policy = TensorDictModule(policy, in_keys=["observation", "step_count"], out_keys=["action"])
|
||||
|
||||
# log metrics to terminal and wandb
|
||||
logger = Logger(out_dir, job_name, cfg)
|
||||
@@ -174,6 +170,29 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
||||
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
||||
|
||||
# Note: this helper will be used in offline and online training loops.
|
||||
def _maybe_eval_and_maybe_save(step):
|
||||
if step % cfg.eval_freq == 0:
|
||||
logging.info(f"Eval policy at step {step}")
|
||||
eval_info, first_video = eval_policy(
|
||||
env,
|
||||
td_policy,
|
||||
num_episodes=cfg.eval_episodes,
|
||||
max_steps=cfg.env.episode_length,
|
||||
return_first_video=True,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
save_video=True,
|
||||
)
|
||||
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_buffer, is_offline)
|
||||
if cfg.wandb.enable:
|
||||
logger.log_video(first_video, step, mode="eval")
|
||||
logging.info("Resume training")
|
||||
|
||||
if cfg.save_model and step % cfg.save_freq == 0:
|
||||
logging.info(f"Checkpoint policy after step {step}")
|
||||
logger.save_model(policy, identifier=step)
|
||||
logging.info("Resume training")
|
||||
|
||||
step = 0 # number of policy update (forward + backward + optim)
|
||||
|
||||
is_offline = True
|
||||
@@ -181,30 +200,14 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
if offline_step == 0:
|
||||
logging.info("Start offline training on a fixed dataset")
|
||||
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
||||
policy.train()
|
||||
train_info = policy.update(offline_buffer, step)
|
||||
if step % cfg.log_freq == 0:
|
||||
log_train_info(logger, train_info, step, cfg, offline_buffer, is_offline)
|
||||
|
||||
if step > 0 and step % cfg.eval_freq == 0:
|
||||
logging.info(f"Eval policy at step {step}")
|
||||
eval_info, first_video = eval_policy(
|
||||
env,
|
||||
td_policy,
|
||||
num_episodes=cfg.eval_episodes,
|
||||
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||
return_first_video=True,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
save_video=True,
|
||||
)
|
||||
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
||||
if cfg.wandb.enable:
|
||||
logger.log_video(first_video, step, mode="eval")
|
||||
logging.info("Resume training")
|
||||
|
||||
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
|
||||
logging.info(f"Checkpoint policy at step {step}")
|
||||
logger.save_model(policy, identifier=step)
|
||||
logging.info("Resume training")
|
||||
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass in
|
||||
# step + 1.
|
||||
_maybe_eval_and_maybe_save(step + 1)
|
||||
|
||||
step += 1
|
||||
|
||||
@@ -217,11 +220,26 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
# TODO: add configurable number of rollout? (default=1)
|
||||
with torch.no_grad():
|
||||
rollout = env.rollout(
|
||||
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||
max_steps=cfg.env.episode_length,
|
||||
policy=td_policy,
|
||||
auto_cast_to_device=True,
|
||||
)
|
||||
assert len(rollout) <= cfg.env.episode_length // cfg.n_action_steps
|
||||
|
||||
assert (
|
||||
len(rollout.batch_size) == 2
|
||||
), "2 dimensions expected: number of env in parallel x max number of steps during rollout"
|
||||
|
||||
num_parallel_env = rollout.batch_size[0]
|
||||
if num_parallel_env != 1:
|
||||
# TODO(rcadene): when num_parallel_env > 1, rollout["episode"] needs to be properly set and we need to add tests
|
||||
raise NotImplementedError()
|
||||
|
||||
num_max_steps = rollout.batch_size[1]
|
||||
assert num_max_steps <= cfg.env.episode_length
|
||||
|
||||
# reshape to have a list of steps to insert into online_buffer
|
||||
rollout = rollout.reshape(num_parallel_env * num_max_steps)
|
||||
|
||||
# set same episode index for all time steps contained in this rollout
|
||||
rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int)
|
||||
online_buffer.extend(rollout)
|
||||
@@ -247,24 +265,9 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
train_info.update(rollout_info)
|
||||
log_train_info(logger, train_info, step, cfg, offline_buffer, is_offline)
|
||||
|
||||
if step > 0 and step % cfg.eval_freq == 0:
|
||||
logging.info(f"Eval policy at step {step}")
|
||||
eval_info, first_video = eval_policy(
|
||||
env,
|
||||
td_policy,
|
||||
num_episodes=cfg.eval_episodes,
|
||||
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||
return_first_video=True,
|
||||
)
|
||||
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
||||
if cfg.wandb.enable:
|
||||
logger.log_video(first_video, step, mode="eval")
|
||||
logging.info("Resume training")
|
||||
|
||||
if step > 0 and cfg.save_model and step % cfg.save_freq == 0:
|
||||
logging.info(f"Checkpoint policy at step {step}")
|
||||
logger.save_model(policy, identifier=step)
|
||||
logging.info("Resume training")
|
||||
# Note: _maybe_eval_and_maybe_save happens **after** the `step`th training update has completed, so we pass
|
||||
# in step + 1.
|
||||
_maybe_eval_and_maybe_save(step + 1)
|
||||
|
||||
step += 1
|
||||
online_step += 1
|
||||
|
||||
@@ -25,6 +25,7 @@ def visualize_dataset_cli(cfg: dict):
|
||||
|
||||
|
||||
def cat_and_write_video(video_path, frames, fps):
|
||||
# Expects images in [0, 255].
|
||||
frames = torch.cat(frames)
|
||||
assert frames.dtype == torch.uint8
|
||||
frames = einops.rearrange(frames, "b c h w -> b h w c").numpy()
|
||||
@@ -45,44 +46,63 @@ def visualize_dataset(cfg: dict, out_dir=None):
|
||||
|
||||
logging.info("make_offline_buffer")
|
||||
offline_buffer = make_offline_buffer(
|
||||
cfg, overwrite_sampler=sampler, normalize=False, overwrite_batch_size=1, overwrite_prefetch=12
|
||||
cfg,
|
||||
overwrite_sampler=sampler,
|
||||
# remove all transformations such as rescale images from [0,255] to [0,1] or normalization
|
||||
normalize=False,
|
||||
overwrite_batch_size=1,
|
||||
overwrite_prefetch=12,
|
||||
)
|
||||
|
||||
logging.info("Start rendering episodes from offline buffer")
|
||||
video_paths = render_dataset(offline_buffer, out_dir, MAX_NUM_STEPS * NUM_EPISODES_TO_RENDER, cfg.fps)
|
||||
for video_path in video_paths:
|
||||
logging.info(video_path)
|
||||
|
||||
|
||||
def render_dataset(offline_buffer, out_dir, max_num_samples, fps):
|
||||
out_dir = Path(out_dir)
|
||||
video_paths = []
|
||||
threads = []
|
||||
frames = {}
|
||||
current_ep_idx = 0
|
||||
logging.info(f"Visualizing episode {current_ep_idx}")
|
||||
for _ in range(MAX_NUM_STEPS * NUM_EPISODES_TO_RENDER):
|
||||
for i in range(max_num_samples):
|
||||
# TODO(rcadene): make it work with bsize > 1
|
||||
ep_td = offline_buffer.sample(1)
|
||||
ep_idx = ep_td["episode"][FIRST_FRAME].item()
|
||||
|
||||
# TODO(rcaene): modify offline_buffer._sampler._sample_list or sampler to randomly sample an episode, but sequentially sample frames
|
||||
no_more_frames = offline_buffer._sampler._sample_list.numel() == 0
|
||||
new_episode = ep_idx != current_ep_idx
|
||||
# TODO(rcadene): modify offline_buffer._sampler._sample_list or sampler to randomly sample an episode, but sequentially sample frames
|
||||
num_frames_left = offline_buffer._sampler._sample_list.numel()
|
||||
episode_is_done = ep_idx != current_ep_idx
|
||||
|
||||
if new_episode:
|
||||
logging.info(f"Visualizing episode {current_ep_idx}")
|
||||
if episode_is_done:
|
||||
logging.info(f"Rendering episode {current_ep_idx}")
|
||||
|
||||
for im_key in offline_buffer.image_keys:
|
||||
if new_episode or no_more_frames:
|
||||
# append last observed frames (the ones after last action taken)
|
||||
frames[im_key].append(ep_td[("next", *im_key)])
|
||||
|
||||
video_dir = Path(out_dir) / "visualize_dataset"
|
||||
video_dir.mkdir(parents=True, exist_ok=True)
|
||||
if not episode_is_done and num_frames_left > 0 and i < (max_num_samples - 1):
|
||||
# when first frame of episode, initialize frames dict
|
||||
if im_key not in frames:
|
||||
frames[im_key] = []
|
||||
# add current frame to list of frames to render
|
||||
frames[im_key].append(ep_td[im_key])
|
||||
else:
|
||||
# When episode has no more frame in its list of observation,
|
||||
# one frame still remains. It is the result of the last action taken.
|
||||
# It is stored in `"next"`, so we add it to the list of frames to render.
|
||||
frames[im_key].append(ep_td["next"][im_key])
|
||||
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
if len(offline_buffer.image_keys) > 1:
|
||||
camera = im_key[-1]
|
||||
video_path = video_dir / f"episode_{current_ep_idx}_{camera}.mp4"
|
||||
video_path = out_dir / f"episode_{current_ep_idx}_{camera}.mp4"
|
||||
else:
|
||||
video_path = video_dir / f"episode_{current_ep_idx}.mp4"
|
||||
video_path = out_dir / f"episode_{current_ep_idx}.mp4"
|
||||
video_paths.append(str(video_path))
|
||||
|
||||
thread = threading.Thread(
|
||||
target=cat_and_write_video,
|
||||
args=(str(video_path), frames[im_key], cfg.fps),
|
||||
args=(str(video_path), frames[im_key], fps),
|
||||
)
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
@@ -92,19 +112,18 @@ def visualize_dataset(cfg: dict, out_dir=None):
|
||||
# reset list of frames
|
||||
del frames[im_key]
|
||||
|
||||
# append current cameras images to list of frames
|
||||
if im_key not in frames:
|
||||
frames[im_key] = []
|
||||
frames[im_key].append(ep_td[im_key])
|
||||
|
||||
if no_more_frames:
|
||||
if num_frames_left == 0:
|
||||
logging.info("Ran out of frames")
|
||||
break
|
||||
|
||||
if current_ep_idx == NUM_EPISODES_TO_RENDER:
|
||||
break
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
logging.info("End of visualize_dataset")
|
||||
return video_paths
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
BIN
media/lerobot-logo-light.png
Normal file
BIN
media/lerobot-logo-light.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 199 KiB |
BIN
media/lerobot-logo-thumbnail.png
Normal file
BIN
media/lerobot-logo-thumbnail.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 160 KiB |
621
poetry.lock
generated
621
poetry.lock
generated
@@ -1,4 +1,4 @@
|
||||
# This file is automatically @generated by Poetry 1.8.1 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "absl-py"
|
||||
@@ -44,56 +44,56 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "av"
|
||||
version = "11.0.0"
|
||||
version = "12.0.0"
|
||||
description = "Pythonic bindings for FFmpeg's libraries."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "av-11.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a01f13b37eb6d181e03bbbbda29093fe2d68f10755795188220acdc89560ec27"},
|
||||
{file = "av-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b2236faee1b5d71dff3cdef81ef6eec22cc8b71dbfb45eb037e6437fe80f24e7"},
|
||||
{file = "av-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40543a08e5c84aecd2bc84da5d43548743201897f0ba21bf5ae3a4dcddefca2b"},
|
||||
{file = "av-11.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2907376884d956376aaf3bc1905fa4e0dcb9ba4e0d183e519392a19d89317d1b"},
|
||||
{file = "av-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8d5581dcdc81cd601e3ce036809f14da82c46ff187bcefe981ec819390e0ab0"},
|
||||
{file = "av-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:150490f2a62cfa470f3cb60f3a0060ff93afd807e2b7b3b0eeeb5a992eb8d67b"},
|
||||
{file = "av-11.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d9bac0de62f09e2cb4e2132b5a46a89bc31c898189aa285b484c17351d991afe"},
|
||||
{file = "av-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2122ff8bdace4ce50207920f37de472517921e2ca1f0503464f748fdb8e20506"},
|
||||
{file = "av-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:527d840697fee6ad4cf47eba987eaf30cd76bd96b2d20eaa907e166b9b8065c8"},
|
||||
{file = "av-11.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abeaedddfca9101886eb6fc47318c5f5ece8480d330d73aacf6917d7421981a2"},
|
||||
{file = "av-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13790fbb889b955baf885fe3761e923e85537ef414173465ec293177cedb7b99"},
|
||||
{file = "av-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:fc27e27f52480287f44226ad4ae3eb53346bf027959d0f00a9154530bd98b371"},
|
||||
{file = "av-11.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:892583e2c6b8c2500e5d24310f499caefcdaa2e48c8f7169ad41041aaaf4da11"},
|
||||
{file = "av-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6943679d70a9f4de974049e7ae2cf0b20afe0d7ddab650526c02a6cf9adcd08f"},
|
||||
{file = "av-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e6d73b038ccf1df5c16bc643eee5c694fb7732e09375e2f4903c1f4ce90dfb72"},
|
||||
{file = "av-11.0.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c83422db3333e97b9680700df5185139352fc3a568b14179da3bdcbeb2f0e91b"},
|
||||
{file = "av-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8413900f6a3639e0088c018a3a516a1656d4d16799e7aa759a16ddf3bd268e2b"},
|
||||
{file = "av-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:908e49ee336223801d8f2f7dca5a1deb64e9d8256138b8e7a79013b682a6ebb5"},
|
||||
{file = "av-11.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:82411ae4a562da07b76028d2f349fb0e6a86aa78ad2b18d2d7bf5b06b17fba14"},
|
||||
{file = "av-11.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:621104bd63e38fa4eca554da3722b1aac329619de39152f27eec8999acc72342"},
|
||||
{file = "av-11.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:442878990c094455a16c10127edcc54bc4e78d355e6a13ad2a27608b0ecda38f"},
|
||||
{file = "av-11.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:658199c92987dc72511f5ee8ade62faef6234b7a04c8b5788de99e366be5e073"},
|
||||
{file = "av-11.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad4b381665c49267b46f87297573898b85e5c41384750fee2e70267fbc4ba318"},
|
||||
{file = "av-11.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:60de14f71293e36ca4e297cc8a8460f0cf74f38a201694f3c6fc7f40301582f2"},
|
||||
{file = "av-11.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a90f04af96374dab94028a7471597bdfcf03083338b9be2eb8ca4805a8ec7ab5"},
|
||||
{file = "av-11.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8821ab2d23e4cb5c8abea6b08d2b1bfceca6af2d88fab1d1dc1b3ec7b34933c7"},
|
||||
{file = "av-11.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9a92342ed307eeaf9509a6b0f3bafd4337c4880c851b50acc18df48c625b63b6"},
|
||||
{file = "av-11.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bbe3502975bc844f5d432c1f24d331bf6ef3e05532ebf06f7ed08b60719b8ea5"},
|
||||
{file = "av-11.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c278b3a4fd111b4c9190abe6b1a5ca358d5f91e851d470b62577b957e0187b09"},
|
||||
{file = "av-11.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:478aa1d54fbc3058ea65ff41086b6adbe1326b456a027d2f3b59dbe60b4ac2ca"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e8df10bb2d56a981d02a8a0b41491912b76dad06305d174a2575ef55ad451100"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b30c51e597785a89241bd61865faff2dbd3327856a8285a1e120dbf60e18348b"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a8b8bd92edb096699b306e7b090ad096925ca3bdae6f89656f023fa2a2da627d"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9383af733abfc44f6fc29307a6c922fbf671ee343dc97b78b74eac6a2346a46d"},
|
||||
{file = "av-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a9df4a60579198b560f641cdfe4c2139948a70193ddc096b275f2cf6d94e3e04"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8ae5f7ae0a7093fb813686d4aa4c554531f80a28480427f5c155da51b747eff0"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50fb7d606f8236891d773c701d5650b93af8dbf78eeaac36fc7e1f7f64a9d664"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:543e0f9bf6ff02dedbe66d906fbc89c8907c80a8ea7413fc3fed68ce4a6e9b44"},
|
||||
{file = "av-11.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:daa279c884457ab194ce78bdd89c0aa391af733da95fb3258d4c6eb8c258299a"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1aacc21f4cf96447117a61edfb776afb73186750a5e08a21484ddfc3599aefb5"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2568b38eef777b916a5d02e42b8f67f92e12023531239ddd32e1ca4f3cdf8c5b"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:747c6d347e27c59cc2e78c9c505d23cd88eceff0cc9386be73693ae9009a577c"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4bbd8f4941b9d3450eff40003b9b9d904667aec7ab085fa31f0f9bca32d755e0"},
|
||||
{file = "av-11.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:f39c1244ba0cf185b2722aeec116b8a98a2ee5728ce687cec0bda60ee0360dfc"},
|
||||
{file = "av-11.0.0.tar.gz", hash = "sha256:48223f000a252070f8e700ff634bb7fb3aa1b7bc7e450373029fbdd6f369ac31"},
|
||||
{file = "av-12.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b9d0890553951f76c479a9f2bb952aebae902b1c7d52feea614d37e1cd728a44"},
|
||||
{file = "av-12.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5d7f229a253c2e3fea9682c09c5ae179bd6d5d2da38d89eb7f29ef7bed10cb2f"},
|
||||
{file = "av-12.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:61b3555d143aacf02e0446f6030319403538eba4dc713c18dfa653a2a23e7f9c"},
|
||||
{file = "av-12.0.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:607e13b2c2b26159a37525d7b6f647a32ce78711fccff23d146d3e255ffa115f"},
|
||||
{file = "av-12.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f0b4cfb89f4f06b339c766f92648e798a96747d4163f2fa78660d1ab1f1b5e"},
|
||||
{file = "av-12.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:41dcb8c269fa58a56edf3a3c814c32a0c69586827f132b4e395a951b0ce14fad"},
|
||||
{file = "av-12.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4fa78fbe0e4469226512380180063116105048c66cb12e18ab4b518466c57e6c"},
|
||||
{file = "av-12.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:60a869be1d6af916e65ea461cb93922f5db0698655ed7a7eae7c3ecd4af4debb"},
|
||||
{file = "av-12.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df61811cc551c186f0a0e530d97b8b139453534d0f92c1790a923f666522ceda"},
|
||||
{file = "av-12.0.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:99cd2fc53091ebfb9a2fa9dd3580267f5bd1c040d0efd99fbc1a162576b271cb"},
|
||||
{file = "av-12.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a6d4f1e261df48932128e6495772faa4cc23f5dd1512eec73daab82ad9f3240"},
|
||||
{file = "av-12.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:6aec88e41a498b1e01e2dce5371557e20f9a51aae0c16decc5924ec0be2e22b6"},
|
||||
{file = "av-12.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:90eb8f2d548e96cbc6f78e89c911cdb15a3d80fd944f31111660ce45939cd037"},
|
||||
{file = "av-12.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d7f3a02910e77d750dbd516256a16db15030e5371530ff5a5ae902dc03d9005d"},
|
||||
{file = "av-12.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2477cc51526aa50575313d66e5e8ad7ab944588469be5e557b360ed572ae536"},
|
||||
{file = "av-12.0.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a2f47149d3ca6deb79f3e515b8bef50e27ebdb160813e6d67dba77278d2a7883"},
|
||||
{file = "av-12.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3306e4a3ce8b5bfcc3075793d4ed3a2df69179d8fba22cb944a6164dc235dfb6"},
|
||||
{file = "av-12.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:dc1b742e7f6df1b499fb960bd6697d1dd8e7ada7484a041a8c20e70a87225f53"},
|
||||
{file = "av-12.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0183be6889e835e1b074b4037bfce4fd44671c606cf1c4ab92ea2f271b544aec"},
|
||||
{file = "av-12.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:57337f20b208292ec8d3b11e4d289d8688a43d728174850a81b865d3253fff2c"},
|
||||
{file = "av-12.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ec915e8f6521545a38566eefc281042ee504ea3cee0618d8558e4920588b3b2"},
|
||||
{file = "av-12.0.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:33ad5c0a23c45b72bd6bd47f3b2c1adcd2935ee3d0b6178ed66bba62b964ff31"},
|
||||
{file = "av-12.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfc3a652b12c93120514d56cf025da47442c5ba51530cdf7ba3660257dbb0de1"},
|
||||
{file = "av-12.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:037f793dd1ef4a1f57f090191a7f803ad10ec82da0d04ea26bbe0b8a145fe927"},
|
||||
{file = "av-12.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fc532376aa264722fae55063abd1871d17a563dc895978e142c8ecfcdeb3a2e8"},
|
||||
{file = "av-12.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:abf0c4bc40a0af8a30f4cd96f3be6f19fbce0f21222d7fcec148e085127153f7"},
|
||||
{file = "av-12.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81cedd1c072fbebf606724c406b1a1b00adc711f1dfd2bc04c633ce39d8439d8"},
|
||||
{file = "av-12.0.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:02d60f48be9f15dcda37d50f3ce8d7249d9a455643d4322dd3449986bacfc628"},
|
||||
{file = "av-12.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d2619e4c26d661eecfc404f7d739d8b35f0dcef353fabe61512e030254b7031"},
|
||||
{file = "av-12.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:1892cc91c888d101777d5432d54e0554c11d1c3a2c65d02a2cae0a2256a8fbb9"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:4819e3ef6c3a44ef6f75907229133a1ee7f688245b2cf49b6b8e969a81ca72c9"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb16bb314cf1503b0250fc46b2c455ee196584231101be0123f4f78638227b62"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3e6a62bda9a1e144feeb59bbee046d7a2d98399634a30f57e4990197313c158"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e08175ffbafa3a70c7b2f81083e160e34122a208cdf70f150b8f5d02c2de6965"},
|
||||
{file = "av-12.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e1d255be317b7c1ebdc4dae98935b9f3869161112dc829c625e54f90d8bdd7ab"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:17964b36e08435910aabd5b3f7dca12f99536902529767d276026bc08f94ced7"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2d5f78de29edee06ddcdd4c2b759914575492d6a0cd4de2ce31ee63a4953eff"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:309b32bc97158d0f0c19e273b8e17a855a86806b7194aebc23bd497326cff11f"},
|
||||
{file = "av-12.0.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c409c71bd9c7c2f8d018c822f36b1447cfa96eca158381a96f3319bb0ff6e79e"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:08fc5eaef60a257d622998626e233bf3ff90d2f817f6695d6a27e0ffcfe9dcff"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:746ab0eff8a7a21a6c6d16e6b6e61709527eba2ad1a524d92a01bb60d02a3df7"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:013b3ac3de3aa1c137af0cedafd364fd1c7524ab3e1cd53e04564fd1632ac04d"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fa55923527648f51ac005e44fe2797ebc67f53ad4850e0194d3753761ee33a2"},
|
||||
{file = "av-12.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:35d514f4dee0cf67e9e6b2a65fb4a28f98da88e71e8c7f7960bd04625d9fe965"},
|
||||
{file = "av-12.0.0.tar.gz", hash = "sha256:bcf21ebb722d4538b4099e5a78f730d78814dd70003511c185941dba5651b14d"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -339,72 +339,72 @@ files = [
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "cython"
|
||||
version = "3.0.9"
|
||||
description = "The Cython compiler for writing C extensions in the Python language."
|
||||
name = "coverage"
|
||||
version = "7.4.4"
|
||||
description = "Code coverage measurement for Python"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "Cython-3.0.9-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:296bd30d4445ac61b66c9d766567f6e81a6e262835d261e903c60c891a6729d3"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f496b52845cb45568a69d6359a2c335135233003e708ea02155c10ce3548aa89"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:858c3766b9aa3ab8a413392c72bbab1c144a9766b7c7bfdef64e2e414363fa0c"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c0eb1e6ef036028a52525fd9a012a556f6dd4788a0e8755fe864ba0e70cde2ff"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c8191941073ea5896321de3c8c958fd66e5f304b0cd1f22c59edd0b86c4dd90d"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e32b016030bc72a8a22a1f21f470a2f57573761a4f00fbfe8347263f4fbdb9f1"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-win32.whl", hash = "sha256:d6f3ff1cd6123973fe03e0fb8ee936622f976c0c41138969975824d08886572b"},
|
||||
{file = "Cython-3.0.9-cp310-cp310-win_amd64.whl", hash = "sha256:56f3b643dbe14449248bbeb9a63fe3878a24256664bc8c8ef6efd45d102596d8"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:35e6665a20d6b8a152d72b7fd87dbb2af6bb6b18a235b71add68122d594dbd41"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f92f4960c40ad027bd8c364c50db11104eadc59ffeb9e5b7f605ca2f05946e20"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38df37d0e732fbd9a2fef898788492e82b770c33d1e4ed12444bbc8a3b3f89c0"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad7fd88ebaeaf2e76fd729a8919fae80dab3d6ac0005e28494261d52ff347a8f"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:1365d5f76bf4d19df3d19ce932584c9bb76e9fb096185168918ef9b36e06bfa4"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c232e7f279388ac9625c3e5a5a9f0078a9334959c5d6458052c65bbbba895e1e"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-win32.whl", hash = "sha256:357e2fad46a25030b0c0496487e01a9dc0fdd0c09df0897f554d8ba3c1bc4872"},
|
||||
{file = "Cython-3.0.9-cp311-cp311-win_amd64.whl", hash = "sha256:1315aee506506e8d69cf6631d8769e6b10131fdcc0eb66df2698f2a3ddaeeff2"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:157973807c2796addbed5fbc4d9c882ab34bbc60dc297ca729504901479d5df7"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00b105b5d050645dd59e6767bc0f18b48a4aa11c85f42ec7dd8181606f4059e3"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac5536d09bef240cae0416d5a703d298b74c7bbc397da803ac9d344e732d4369"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09c44501d476d16aaa4cbc29c87f8c0f54fc20e69b650d59cbfa4863426fc70c"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:cc9c3b9f20d8e298618e5ccd32083ca386e785b08f9893fbec4c50b6b85be772"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a30d96938c633e3ec37000ac3796525da71254ef109e66bdfd78f29891af6454"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-win32.whl", hash = "sha256:757ca93bdd80702546df4d610d2494ef2e74249cac4d5ba9464589fb464bd8a3"},
|
||||
{file = "Cython-3.0.9-cp312-cp312-win_amd64.whl", hash = "sha256:1dc320a9905ab95414013f6de805efbff9e17bb5fb3b90bbac533f017bec8136"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4ae349960ebe0da0d33724eaa7f1eb866688fe5434cc67ce4dbc06d6a719fbfc"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63d2537bf688247f76ded6dee28ebd26274f019309aef1eb4f2f9c5c482fde2d"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:36f5a2dfc724bea1f710b649f02d802d80fc18320c8e6396684ba4a48412445a"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:deaf4197d4b0bcd5714a497158ea96a2bd6d0f9636095437448f7e06453cc83d"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:000af6deb7412eb7ac0c635ff5e637fb8725dd0a7b88cc58dfc2b3de14e701c4"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:15c7f5c2d35bed9aa5f2a51eaac0df23ae72f2dbacf62fc672dd6bfaa75d2d6f"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-win32.whl", hash = "sha256:f49aa4970cd3bec66ac22e701def16dca2a49c59cceba519898dd7526e0be2c0"},
|
||||
{file = "Cython-3.0.9-cp36-cp36m-win_amd64.whl", hash = "sha256:4558814fa025b193058d42eeee498a53d6b04b2980d01339fc2444b23fd98e58"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:539cd1d74fd61f6cfc310fa6bbbad5adc144627f2b7486a07075d4e002fd6aad"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3232926cd406ee02eabb732206f6e882c3aed9d58f0fea764013d9240405bcf"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33b6ac376538a7fc8c567b85d3c71504308a9318702ec0485dd66c059f3165cb"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2cc92504b5d22ac66031ffb827bd3a967fc75a5f0f76ab48bce62df19be6fdfd"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:22b8fae756c5c0d8968691bed520876de452f216c28ec896a00739a12dba3bd9"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:9cda0d92a09f3520f29bd91009f1194ba9600777c02c30c6d2d4ac65fb63e40d"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-win32.whl", hash = "sha256:ec612418490941ed16c50c8d3784c7bdc4c4b2a10c361259871790b02ec8c1db"},
|
||||
{file = "Cython-3.0.9-cp37-cp37m-win_amd64.whl", hash = "sha256:976c8d2bedc91ff6493fc973d38b2dc01020324039e2af0e049704a8e1b22936"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5055988b007c92256b6e9896441c3055556038c3497fcbf8c921a6c1fce90719"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9360606d964c2d0492a866464efcf9d0a92715644eede3f6a2aa696de54a137"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:02c6e809f060bed073dc7cba1648077fe3b68208863d517c8b39f3920eecf9dd"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:95ed792c966f969cea7489c32ff90150b415c1f3567db8d5a9d489c7c1602dac"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8edd59d22950b400b03ca78d27dc694d2836a92ef0cac4f64cb4b2ff902f7e25"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:4cf0ed273bf60e97922fcbbdd380c39693922a597760160b4b4355e6078ca188"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-win32.whl", hash = "sha256:5eb9bd4ae12ebb2bc79a193d95aacf090fbd8d7013e11ed5412711650cb34934"},
|
||||
{file = "Cython-3.0.9-cp38-cp38-win_amd64.whl", hash = "sha256:44457279da56e0f829bb1fc5a5dc0836e5d498dbcf9b2324f32f7cc9d2ec6569"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4b419a1adc2af43f4660e2f6eaf1e4fac2dbac59490771eb8ac3d6063f22356"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f836192140f033b2319a0128936367c295c2b32e23df05b03b672a6015757ea"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fd198c1a7f8e9382904d622cc0efa3c184605881fd5262c64cbb7168c4c1ec5"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a274fe9ca5c53fafbcf5c8f262f8ad6896206a466f0eeb40aaf36a7951e957c0"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:158c38360bbc5063341b1e78d3737f1251050f89f58a3df0d10fb171c44262be"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8bf30b045f7deda0014b042c1b41c1d272facc762ab657529e3b05505888e878"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-win32.whl", hash = "sha256:9a001fd95c140c94d934078544ff60a3c46aca2dc86e75a76e4121d3cd1f4b33"},
|
||||
{file = "Cython-3.0.9-cp39-cp39-win_amd64.whl", hash = "sha256:530c01c4aebba709c0ec9c7ecefe07177d0b9fd7ffee29450a118d92192ccbdf"},
|
||||
{file = "Cython-3.0.9-py2.py3-none-any.whl", hash = "sha256:bf96417714353c5454c2e3238fca9338599330cf51625cdc1ca698684465646f"},
|
||||
{file = "Cython-3.0.9.tar.gz", hash = "sha256:a2d354f059d1f055d34cfaa62c5b68bc78ac2ceab6407148d47fb508cf3ba4f3"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0be5efd5127542ef31f165de269f77560d6cdef525fffa446de6f7e9186cfb2"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ccd341521be3d1b3daeb41960ae94a5e87abe2f46f17224ba5d6f2b8398016cf"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09fa497a8ab37784fbb20ab699c246053ac294d13fc7eb40ec007a5043ec91f8"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b1a93009cb80730c9bca5d6d4665494b725b6e8e157c1cb7f2db5b4b122ea562"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:690db6517f09336559dc0b5f55342df62370a48f5469fabf502db2c6d1cffcd2"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:09c3255458533cb76ef55da8cc49ffab9e33f083739c8bd4f58e79fecfe288f7"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8ce1415194b4a6bd0cdcc3a1dfbf58b63f910dcb7330fe15bdff542c56949f87"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b91cbc4b195444e7e258ba27ac33769c41b94967919f10037e6355e998af255c"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-win32.whl", hash = "sha256:598825b51b81c808cb6f078dcb972f96af96b078faa47af7dfcdf282835baa8d"},
|
||||
{file = "coverage-7.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:09ef9199ed6653989ebbcaacc9b62b514bb63ea2f90256e71fea3ed74bd8ff6f"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f9f50e7ef2a71e2fae92774c99170eb8304e3fdf9c8c3c7ae9bab3e7229c5cf"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:623512f8ba53c422fcfb2ce68362c97945095b864cda94a92edbaf5994201083"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0513b9508b93da4e1716744ef6ebc507aff016ba115ffe8ecff744d1322a7b63"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40209e141059b9370a2657c9b15607815359ab3ef9918f0196b6fccce8d3230f"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a2b2b78c78293782fd3767d53e6474582f62443d0504b1554370bde86cc8227"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:73bfb9c09951125d06ee473bed216e2c3742f530fc5acc1383883125de76d9cd"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f384c3cc76aeedce208643697fb3e8437604b512255de6d18dae3f27655a384"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:54eb8d1bf7cacfbf2a3186019bcf01d11c666bd495ed18717162f7eb1e9dd00b"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-win32.whl", hash = "sha256:cac99918c7bba15302a2d81f0312c08054a3359eaa1929c7e4b26ebe41e9b286"},
|
||||
{file = "coverage-7.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:b14706df8b2de49869ae03a5ccbc211f4041750cd4a66f698df89d44f4bd30ec"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:201bef2eea65e0e9c56343115ba3814e896afe6d36ffd37bab783261db430f76"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:41c9c5f3de16b903b610d09650e5e27adbfa7f500302718c9ffd1c12cf9d6818"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d898fe162d26929b5960e4e138651f7427048e72c853607f2b200909794ed978"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ea79bb50e805cd6ac058dfa3b5c8f6c040cb87fe83de10845857f5535d1db70"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ce4b94265ca988c3f8e479e741693d143026632672e3ff924f25fab50518dd51"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:00838a35b882694afda09f85e469c96367daa3f3f2b097d846a7216993d37f4c"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:fdfafb32984684eb03c2d83e1e51f64f0906b11e64482df3c5db936ce3839d48"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:69eb372f7e2ece89f14751fbcbe470295d73ed41ecd37ca36ed2eb47512a6ab9"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-win32.whl", hash = "sha256:137eb07173141545e07403cca94ab625cc1cc6bc4c1e97b6e3846270e7e1fea0"},
|
||||
{file = "coverage-7.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:d71eec7d83298f1af3326ce0ff1d0ea83c7cb98f72b577097f9083b20bdaf05e"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d5ae728ff3b5401cc320d792866987e7e7e880e6ebd24433b70a33b643bb0384"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cc4f1358cb0c78edef3ed237ef2c86056206bb8d9140e73b6b89fbcfcbdd40e1"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8130a2aa2acb8788e0b56938786c33c7c98562697bf9f4c7d6e8e5e3a0501e4a"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cf271892d13e43bc2b51e6908ec9a6a5094a4df1d8af0bfc360088ee6c684409"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4cdc86d54b5da0df6d3d3a2f0b710949286094c3a6700c21e9015932b81447e"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:ae71e7ddb7a413dd60052e90528f2f65270aad4b509563af6d03d53e979feafd"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:38dd60d7bf242c4ed5b38e094baf6401faa114fc09e9e6632374388a404f98e7"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa5b1c1bfc28384f1f53b69a023d789f72b2e0ab1b3787aae16992a7ca21056c"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-win32.whl", hash = "sha256:dfa8fe35a0bb90382837b238fff375de15f0dcdb9ae68ff85f7a63649c98527e"},
|
||||
{file = "coverage-7.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:b2991665420a803495e0b90a79233c1433d6ed77ef282e8e152a324bbbc5e0c8"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3b799445b9f7ee8bf299cfaed6f5b226c0037b74886a4e11515e569b36fe310d"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b4d33f418f46362995f1e9d4f3a35a1b6322cb959c31d88ae56b0298e1c22357"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aadacf9a2f407a4688d700e4ebab33a7e2e408f2ca04dbf4aef17585389eff3e"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7c95949560050d04d46b919301826525597f07b33beba6187d04fa64d47ac82e"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff7687ca3d7028d8a5f0ebae95a6e4827c5616b31a4ee1192bdfde697db110d4"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:5fc1de20b2d4a061b3df27ab9b7c7111e9a710f10dc2b84d33a4ab25065994ec"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:c74880fc64d4958159fbd537a091d2a585448a8f8508bf248d72112723974cbd"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:742a76a12aa45b44d236815d282b03cfb1de3b4323f3e4ec933acfae08e54ade"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-win32.whl", hash = "sha256:d89d7b2974cae412400e88f35d86af72208e1ede1a541954af5d944a8ba46c57"},
|
||||
{file = "coverage-7.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:9ca28a302acb19b6af89e90f33ee3e1906961f94b54ea37de6737b7ca9d8827c"},
|
||||
{file = "coverage-7.4.4-pp38.pp39.pp310-none-any.whl", hash = "sha256:b2c5edc4ac10a7ef6605a966c58929ec6c1bd0917fb8c15cb3363f65aa40e677"},
|
||||
{file = "coverage-7.4.4.tar.gz", hash = "sha256:c901df83d097649e257e803be22592aedfd5182f07b3cc87d640bbb9afd50f49"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""}
|
||||
|
||||
[package.extras]
|
||||
toml = ["tomli"]
|
||||
|
||||
[[package]]
|
||||
name = "debugpy"
|
||||
version = "1.8.1"
|
||||
@@ -604,6 +604,16 @@ files = [
|
||||
[package.dependencies]
|
||||
six = ">=1.4.0"
|
||||
|
||||
[[package]]
|
||||
name = "egl-probe"
|
||||
version = "1.0.2"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "egl_probe-1.0.2.tar.gz", hash = "sha256:29bdca7b08da1e060cfb42cd46af8300a7ac4f3b1b2eeb16e545ea16d9a5ac93"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "einops"
|
||||
version = "0.7.0"
|
||||
@@ -629,6 +639,17 @@ files = [
|
||||
[package.extras]
|
||||
test = ["pytest (>=6)"]
|
||||
|
||||
[[package]]
|
||||
name = "farama-notifications"
|
||||
version = "0.0.4"
|
||||
description = "Notifications for all Farama Foundation maintained libraries."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "Farama-Notifications-0.0.4.tar.gz", hash = "sha256:13fceff2d14314cf80703c8266462ebf3733c7d165336eee998fc58e545efd18"},
|
||||
{file = "Farama_Notifications-0.0.4-py3-none-any.whl", hash = "sha256:14de931035a41961f7c056361dc7f980762a143d05791ef5794a751a2caf05ae"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fasteners"
|
||||
version = "0.19"
|
||||
@@ -658,13 +679,13 @@ typing = ["typing-extensions (>=4.8)"]
|
||||
|
||||
[[package]]
|
||||
name = "fsspec"
|
||||
version = "2024.2.0"
|
||||
version = "2024.3.1"
|
||||
description = "File-system specification"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "fsspec-2024.2.0-py3-none-any.whl", hash = "sha256:817f969556fa5916bc682e02ca2045f96ff7f586d45110fcb76022063ad2c7d8"},
|
||||
{file = "fsspec-2024.2.0.tar.gz", hash = "sha256:b6ad1a679f760dda52b1168c859d01b7b80648ea6f7f7c7f5a8a91dc3f3ecb84"},
|
||||
{file = "fsspec-2024.3.1-py3-none-any.whl", hash = "sha256:918d18d41bf73f0e2b261824baeb1b124bcf771767e3a26425cd7dec3332f512"},
|
||||
{file = "fsspec-2024.3.1.tar.gz", hash = "sha256:f39780e282d7d117ffb42bb96992f8a90795e4d0fb0f661a70ca39fe9c43ded9"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@@ -764,43 +785,124 @@ files = [
|
||||
preview = ["glfw-preview"]
|
||||
|
||||
[[package]]
|
||||
name = "gym"
|
||||
version = "0.26.2"
|
||||
description = "Gym: A universal API for reinforcement learning environments"
|
||||
name = "grpcio"
|
||||
version = "1.62.1"
|
||||
description = "HTTP/2-based RPC framework"
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "gym-0.26.2.tar.gz", hash = "sha256:e0d882f4b54f0c65f203104c24ab8a38b039f1289986803c7d02cdbe214fbcc4"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-linux_armv7l.whl", hash = "sha256:179bee6f5ed7b5f618844f760b6acf7e910988de77a4f75b95bbfaa8106f3c1e"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:48611e4fa010e823ba2de8fd3f77c1322dd60cb0d180dc6630a7e157b205f7ea"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:b2a0e71b0a2158aa4bce48be9f8f9eb45cbd17c78c7443616d00abbe2a509f6d"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fbe80577c7880911d3ad65e5ecc997416c98f354efeba2f8d0f9112a67ed65a5"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58f6c693d446964e3292425e1d16e21a97a48ba9172f2d0df9d7b640acb99243"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:77c339403db5a20ef4fed02e4d1a9a3d9866bf9c0afc77a42234677313ea22f3"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b5a4ea906db7dec694098435d84bf2854fe158eb3cd51e1107e571246d4d1d70"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-win32.whl", hash = "sha256:4187201a53f8561c015bc745b81a1b2d278967b8de35f3399b84b0695e281d5f"},
|
||||
{file = "grpcio-1.62.1-cp310-cp310-win_amd64.whl", hash = "sha256:844d1f3fb11bd1ed362d3fdc495d0770cfab75761836193af166fee113421d66"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-linux_armv7l.whl", hash = "sha256:833379943d1728a005e44103f17ecd73d058d37d95783eb8f0b28ddc1f54d7b2"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:c7fcc6a32e7b7b58f5a7d27530669337a5d587d4066060bcb9dee7a8c833dfb7"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:fa7d28eb4d50b7cbe75bb8b45ed0da9a1dc5b219a0af59449676a29c2eed9698"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:48f7135c3de2f298b833be8b4ae20cafe37091634e91f61f5a7eb3d61ec6f660"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:71f11fd63365ade276c9d4a7b7df5c136f9030e3457107e1791b3737a9b9ed6a"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:4b49fd8fe9f9ac23b78437da94c54aa7e9996fbb220bac024a67469ce5d0825f"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:482ae2ae78679ba9ed5752099b32e5fe580443b4f798e1b71df412abf43375db"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-win32.whl", hash = "sha256:1faa02530b6c7426404372515fe5ddf66e199c2ee613f88f025c6f3bd816450c"},
|
||||
{file = "grpcio-1.62.1-cp311-cp311-win_amd64.whl", hash = "sha256:5bd90b8c395f39bc82a5fb32a0173e220e3f401ff697840f4003e15b96d1befc"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-linux_armv7l.whl", hash = "sha256:b134d5d71b4e0837fff574c00e49176051a1c532d26c052a1e43231f252d813b"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-macosx_10_10_universal2.whl", hash = "sha256:d1f6c96573dc09d50dbcbd91dbf71d5cf97640c9427c32584010fbbd4c0e0037"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:359f821d4578f80f41909b9ee9b76fb249a21035a061a327f91c953493782c31"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a485f0c2010c696be269184bdb5ae72781344cb4e60db976c59d84dd6354fac9"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b50b09b4dc01767163d67e1532f948264167cd27f49e9377e3556c3cba1268e1"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:3227c667dccbe38f2c4d943238b887bac588d97c104815aecc62d2fd976e014b"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:3952b581eb121324853ce2b191dae08badb75cd493cb4e0243368aa9e61cfd41"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-win32.whl", hash = "sha256:83a17b303425104d6329c10eb34bba186ffa67161e63fa6cdae7776ff76df73f"},
|
||||
{file = "grpcio-1.62.1-cp312-cp312-win_amd64.whl", hash = "sha256:6696ffe440333a19d8d128e88d440f91fb92c75a80ce4b44d55800e656a3ef1d"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-linux_armv7l.whl", hash = "sha256:e3393b0823f938253370ebef033c9fd23d27f3eae8eb9a8f6264900c7ea3fb5a"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:83e7ccb85a74beaeae2634f10eb858a0ed1a63081172649ff4261f929bacfd22"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:882020c87999d54667a284c7ddf065b359bd00251fcd70279ac486776dbf84ec"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a10383035e864f386fe096fed5c47d27a2bf7173c56a6e26cffaaa5a361addb1"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:960edebedc6b9ada1ef58e1c71156f28689978188cd8cff3b646b57288a927d9"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:23e2e04b83f347d0aadde0c9b616f4726c3d76db04b438fd3904b289a725267f"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:978121758711916d34fe57c1f75b79cdfc73952f1481bb9583399331682d36f7"},
|
||||
{file = "grpcio-1.62.1-cp37-cp37m-win_amd64.whl", hash = "sha256:9084086190cc6d628f282e5615f987288b95457292e969b9205e45b442276407"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-linux_armv7l.whl", hash = "sha256:22bccdd7b23c420a27fd28540fb5dcbc97dc6be105f7698cb0e7d7a420d0e362"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:8999bf1b57172dbc7c3e4bb3c732658e918f5c333b2942243f10d0d653953ba9"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:d9e52558b8b8c2f4ac05ac86344a7417ccdd2b460a59616de49eb6933b07a0bd"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1714e7bc935780bc3de1b3fcbc7674209adf5208ff825799d579ffd6cd0bd505"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8842ccbd8c0e253c1f189088228f9b433f7a93b7196b9e5b6f87dba393f5d5d"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1f1e7b36bdff50103af95a80923bf1853f6823dd62f2d2a2524b66ed74103e49"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:bba97b8e8883a8038606480d6b6772289f4c907f6ba780fa1f7b7da7dfd76f06"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-win32.whl", hash = "sha256:a7f615270fe534548112a74e790cd9d4f5509d744dd718cd442bf016626c22e4"},
|
||||
{file = "grpcio-1.62.1-cp38-cp38-win_amd64.whl", hash = "sha256:e6c8c8693df718c5ecbc7babb12c69a4e3677fd11de8886f05ab22d4e6b1c43b"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-linux_armv7l.whl", hash = "sha256:73db2dc1b201d20ab7083e7041946910bb991e7e9761a0394bbc3c2632326483"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:407b26b7f7bbd4f4751dbc9767a1f0716f9fe72d3d7e96bb3ccfc4aace07c8de"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:f8de7c8cef9261a2d0a62edf2ccea3d741a523c6b8a6477a340a1f2e417658de"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bd5c8a1af40ec305d001c60236308a67e25419003e9bb3ebfab5695a8d0b369"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be0477cb31da67846a33b1a75c611f88bfbcd427fe17701b6317aefceee1b96f"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:60dcd824df166ba266ee0cfaf35a31406cd16ef602b49f5d4dfb21f014b0dedd"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:973c49086cabab773525f6077f95e5a993bfc03ba8fc32e32f2c279497780585"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-win32.whl", hash = "sha256:12859468e8918d3bd243d213cd6fd6ab07208195dc140763c00dfe901ce1e1b4"},
|
||||
{file = "grpcio-1.62.1-cp39-cp39-win_amd64.whl", hash = "sha256:b7209117bbeebdfa5d898205cc55153a51285757902dd73c47de498ad4d11332"},
|
||||
{file = "grpcio-1.62.1.tar.gz", hash = "sha256:6c455e008fa86d9e9a9d85bb76da4277c0d7d9668a3bfa70dbe86e9f3c759947"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
protobuf = ["grpcio-tools (>=1.62.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "gymnasium"
|
||||
version = "0.29.1"
|
||||
description = "A standard API for reinforcement learning and a diverse set of reference environments (formerly Gym)."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "gymnasium-0.29.1-py3-none-any.whl", hash = "sha256:61c3384b5575985bb7f85e43213bcb40f36fcdff388cae6bc229304c71f2843e"},
|
||||
{file = "gymnasium-0.29.1.tar.gz", hash = "sha256:1a532752efcb7590478b1cc7aa04f608eb7a2fdad5570cd217b66b6a35274bb1"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
cloudpickle = ">=1.2.0"
|
||||
gym_notices = ">=0.0.4"
|
||||
numpy = ">=1.18.0"
|
||||
farama-notifications = ">=0.0.1"
|
||||
numpy = ">=1.21.0"
|
||||
typing-extensions = ">=4.3.0"
|
||||
|
||||
[package.extras]
|
||||
accept-rom-license = ["autorom[accept-rom-license] (>=0.4.2,<0.5.0)"]
|
||||
all = ["ale-py (>=0.8.0,<0.9.0)", "box2d-py (==2.3.5)", "imageio (>=2.14.1)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (==2.2)", "mujoco_py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (==2.1.0)", "pytest (==7.0.1)", "swig (==4.*)"]
|
||||
atari = ["ale-py (>=0.8.0,<0.9.0)"]
|
||||
box2d = ["box2d-py (==2.3.5)", "pygame (==2.1.0)", "swig (==4.*)"]
|
||||
classic-control = ["pygame (==2.1.0)"]
|
||||
mujoco = ["imageio (>=2.14.1)", "mujoco (==2.2)"]
|
||||
mujoco-py = ["mujoco_py (>=2.1,<2.2)"]
|
||||
other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)"]
|
||||
testing = ["box2d-py (==2.3.5)", "imageio (>=2.14.1)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (==2.2)", "mujoco_py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (==2.1.0)", "pytest (==7.0.1)", "swig (==4.*)"]
|
||||
toy-text = ["pygame (==2.1.0)"]
|
||||
all = ["box2d-py (==2.3.5)", "cython (<3)", "imageio (>=2.14.1)", "jax (>=0.4.0)", "jaxlib (>=0.4.0)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (>=2.3.3)", "mujoco-py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (>=2.1.3)", "shimmy[atari] (>=0.1.0,<1.0)", "swig (==4.*)", "torch (>=1.0.0)"]
|
||||
atari = ["shimmy[atari] (>=0.1.0,<1.0)"]
|
||||
box2d = ["box2d-py (==2.3.5)", "pygame (>=2.1.3)", "swig (==4.*)"]
|
||||
classic-control = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
|
||||
jax = ["jax (>=0.4.0)", "jaxlib (>=0.4.0)"]
|
||||
mujoco = ["imageio (>=2.14.1)", "mujoco (>=2.3.3)"]
|
||||
mujoco-py = ["cython (<3)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "mujoco-py (>=2.1,<2.2)"]
|
||||
other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)", "torch (>=1.0.0)"]
|
||||
testing = ["pytest (==7.1.3)", "scipy (>=1.7.3)"]
|
||||
toy-text = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
|
||||
|
||||
[[package]]
|
||||
name = "gym-notices"
|
||||
version = "0.0.8"
|
||||
description = "Notices for gym"
|
||||
name = "gymnasium-robotics"
|
||||
version = "1.2.4"
|
||||
description = "Robotics environments for the Gymnasium repo."
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "gym-notices-0.0.8.tar.gz", hash = "sha256:ad25e200487cafa369728625fe064e88ada1346618526102659b4640f2b4b911"},
|
||||
{file = "gym_notices-0.0.8-py3-none-any.whl", hash = "sha256:e5f82e00823a166747b4c2a07de63b6560b1acb880638547e0cabf825a01e463"},
|
||||
{file = "gymnasium-robotics-1.2.4.tar.gz", hash = "sha256:d304192b066f8b800599dfbe3d9d90bba9b761ee884472bdc4d05968a8bc61cb"},
|
||||
{file = "gymnasium_robotics-1.2.4-py3-none-any.whl", hash = "sha256:c2cb23e087ca0280ae6802837eb7b3a6d14e5bd24c00803ab09f015fcff3eef5"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
gymnasium = ">=0.26"
|
||||
imageio = "*"
|
||||
Jinja2 = ">=3.0.3"
|
||||
mujoco = ">=2.3.3,<3.0"
|
||||
numpy = ">=1.21.0"
|
||||
PettingZoo = ">=1.23.0"
|
||||
|
||||
[package.extras]
|
||||
mujoco-py = ["cython (<3)", "mujoco-py (>=2.1,<2.2)"]
|
||||
testing = ["Jinja2 (>=3.0.3)", "PettingZoo (>=1.23.0)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "pytest (==7.0.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "h5py"
|
||||
version = "3.10.0"
|
||||
@@ -1038,13 +1140,13 @@ setuptools = "*"
|
||||
|
||||
[[package]]
|
||||
name = "importlib-metadata"
|
||||
version = "7.0.2"
|
||||
version = "7.1.0"
|
||||
description = "Read metadata from Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "importlib_metadata-7.0.2-py3-none-any.whl", hash = "sha256:f4bc4c0c070c490abf4ce96d715f68e95923320370efb66143df00199bb6c100"},
|
||||
{file = "importlib_metadata-7.0.2.tar.gz", hash = "sha256:198f568f3230878cb1b44fbd7975f87906c22336dba2e4a7f05278c281fbd792"},
|
||||
{file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"},
|
||||
{file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -1053,7 +1155,7 @@ zipp = ">=0.5"
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
perf = ["ipython"]
|
||||
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
|
||||
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "iniconfig"
|
||||
@@ -1265,6 +1367,21 @@ html5 = ["html5lib"]
|
||||
htmlsoup = ["BeautifulSoup4"]
|
||||
source = ["Cython (>=3.0.7)"]
|
||||
|
||||
[[package]]
|
||||
name = "markdown"
|
||||
version = "3.6"
|
||||
description = "Python implementation of John Gruber's Markdown."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"},
|
||||
{file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["mdx-gh-links (>=0.2)", "mkdocs (>=1.5)", "mkdocs-gen-files", "mkdocs-literate-nav", "mkdocs-nature (>=0.6)", "mkdocs-section-index", "mkdocstrings[python]"]
|
||||
testing = ["coverage", "pyyaml"]
|
||||
|
||||
[[package]]
|
||||
name = "markupsafe"
|
||||
version = "2.1.5"
|
||||
@@ -1415,25 +1532,6 @@ glfw = "*"
|
||||
numpy = "*"
|
||||
pyopengl = "*"
|
||||
|
||||
[[package]]
|
||||
name = "mujoco-py"
|
||||
version = "2.1.2.14"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "mujoco-py-2.1.2.14.tar.gz", hash = "sha256:eb5b14485acf80a3cf8c15f4b080c6a28a9f79e68869aa696d16cbd51ea7706f"},
|
||||
{file = "mujoco_py-2.1.2.14-py3-none-any.whl", hash = "sha256:37c0b41bc0153a8a0eb3663103a67c60f65467753f74e4ff6e68b879f3e3a71f"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
cffi = ">=1.10"
|
||||
Cython = ">=0.27.2"
|
||||
fasteners = ">=0.15,<1.0"
|
||||
glfw = ">=1.4.0"
|
||||
imageio = ">=2.1.2"
|
||||
numpy = ">=1.11"
|
||||
|
||||
[[package]]
|
||||
name = "networkx"
|
||||
version = "3.2.1"
|
||||
@@ -1468,32 +1566,32 @@ setuptools = "*"
|
||||
|
||||
[[package]]
|
||||
name = "numba"
|
||||
version = "0.59.0"
|
||||
version = "0.59.1"
|
||||
description = "compiling Python code using LLVM"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "numba-0.59.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:8d061d800473fb8fef76a455221f4ad649a53f5e0f96e3f6c8b8553ee6fa98fa"},
|
||||
{file = "numba-0.59.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c086a434e7d3891ce5dfd3d1e7ee8102ac1e733962098578b507864120559ceb"},
|
||||
{file = "numba-0.59.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:9e20736bf62e61f8353fb71b0d3a1efba636c7a303d511600fc57648b55823ed"},
|
||||
{file = "numba-0.59.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e86e6786aec31d2002122199486e10bbc0dc40f78d76364cded375912b13614c"},
|
||||
{file = "numba-0.59.0-cp310-cp310-win_amd64.whl", hash = "sha256:0307ee91b24500bb7e64d8a109848baf3a3905df48ce142b8ac60aaa406a0400"},
|
||||
{file = "numba-0.59.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d540f69a8245fb714419c2209e9af6104e568eb97623adc8943642e61f5d6d8e"},
|
||||
{file = "numba-0.59.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1192d6b2906bf3ff72b1d97458724d98860ab86a91abdd4cfd9328432b661e31"},
|
||||
{file = "numba-0.59.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:90efb436d3413809fcd15298c6d395cb7d98184350472588356ccf19db9e37c8"},
|
||||
{file = "numba-0.59.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cd3dac45e25d927dcb65d44fb3a973994f5add2b15add13337844afe669dd1ba"},
|
||||
{file = "numba-0.59.0-cp311-cp311-win_amd64.whl", hash = "sha256:753dc601a159861808cc3207bad5c17724d3b69552fd22768fddbf302a817a4c"},
|
||||
{file = "numba-0.59.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ce62bc0e6dd5264e7ff7f34f41786889fa81a6b860662f824aa7532537a7bee0"},
|
||||
{file = "numba-0.59.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8cbef55b73741b5eea2dbaf1b0590b14977ca95a13a07d200b794f8f6833a01c"},
|
||||
{file = "numba-0.59.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:70d26ba589f764be45ea8c272caa467dbe882b9676f6749fe6f42678091f5f21"},
|
||||
{file = "numba-0.59.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e125f7d69968118c28ec0eed9fbedd75440e64214b8d2eac033c22c04db48492"},
|
||||
{file = "numba-0.59.0-cp312-cp312-win_amd64.whl", hash = "sha256:4981659220b61a03c1e557654027d271f56f3087448967a55c79a0e5f926de62"},
|
||||
{file = "numba-0.59.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fe4d7562d1eed754a7511ed7ba962067f198f86909741c5c6e18c4f1819b1f47"},
|
||||
{file = "numba-0.59.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6feb1504bb432280f900deaf4b1dadcee68812209500ed3f81c375cbceab24dc"},
|
||||
{file = "numba-0.59.0-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:944faad25ee23ea9dda582bfb0189fb9f4fc232359a80ab2a028b94c14ce2b1d"},
|
||||
{file = "numba-0.59.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5516a469514bfae52a9d7989db4940653a5cbfac106f44cb9c50133b7ad6224b"},
|
||||
{file = "numba-0.59.0-cp39-cp39-win_amd64.whl", hash = "sha256:32bd0a41525ec0b1b853da244808f4e5333867df3c43c30c33f89cf20b9c2b63"},
|
||||
{file = "numba-0.59.0.tar.gz", hash = "sha256:12b9b064a3e4ad00e2371fc5212ef0396c80f41caec9b5ec391c8b04b6eaf2a8"},
|
||||
{file = "numba-0.59.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:97385a7f12212c4f4bc28f648720a92514bee79d7063e40ef66c2d30600fd18e"},
|
||||
{file = "numba-0.59.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0b77aecf52040de2a1eb1d7e314497b9e56fba17466c80b457b971a25bb1576d"},
|
||||
{file = "numba-0.59.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:3476a4f641bfd58f35ead42f4dcaf5f132569c4647c6f1360ccf18ee4cda3990"},
|
||||
{file = "numba-0.59.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:525ef3f820931bdae95ee5379c670d5c97289c6520726bc6937a4a7d4230ba24"},
|
||||
{file = "numba-0.59.1-cp310-cp310-win_amd64.whl", hash = "sha256:990e395e44d192a12105eca3083b61307db7da10e093972ca285c85bef0963d6"},
|
||||
{file = "numba-0.59.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:43727e7ad20b3ec23ee4fc642f5b61845c71f75dd2825b3c234390c6d8d64051"},
|
||||
{file = "numba-0.59.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:411df625372c77959570050e861981e9d196cc1da9aa62c3d6a836b5cc338966"},
|
||||
{file = "numba-0.59.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2801003caa263d1e8497fb84829a7ecfb61738a95f62bc05693fcf1733e978e4"},
|
||||
{file = "numba-0.59.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:dd2842fac03be4e5324ebbbd4d2d0c8c0fc6e0df75c09477dd45b288a0777389"},
|
||||
{file = "numba-0.59.1-cp311-cp311-win_amd64.whl", hash = "sha256:0594b3dfb369fada1f8bb2e3045cd6c61a564c62e50cf1f86b4666bc721b3450"},
|
||||
{file = "numba-0.59.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1cce206a3b92836cdf26ef39d3a3242fec25e07f020cc4feec4c4a865e340569"},
|
||||
{file = "numba-0.59.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8c8b4477763cb1fbd86a3be7050500229417bf60867c93e131fd2626edb02238"},
|
||||
{file = "numba-0.59.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7d80bce4ef7e65bf895c29e3889ca75a29ee01da80266a01d34815918e365835"},
|
||||
{file = "numba-0.59.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f7ad1d217773e89a9845886401eaaab0a156a90aa2f179fdc125261fd1105096"},
|
||||
{file = "numba-0.59.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bf68f4d69dd3a9f26a9b23548fa23e3bcb9042e2935257b471d2a8d3c424b7f"},
|
||||
{file = "numba-0.59.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e0318ae729de6e5dbe64c75ead1a95eb01fabfe0e2ebed81ebf0344d32db0ae"},
|
||||
{file = "numba-0.59.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0f68589740a8c38bb7dc1b938b55d1145244c8353078eea23895d4f82c8b9ec1"},
|
||||
{file = "numba-0.59.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:649913a3758891c77c32e2d2a3bcbedf4a69f5fea276d11f9119677c45a422e8"},
|
||||
{file = "numba-0.59.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9712808e4545270291d76b9a264839ac878c5eb7d8b6e02c970dc0ac29bc8187"},
|
||||
{file = "numba-0.59.1-cp39-cp39-win_amd64.whl", hash = "sha256:8d51ccd7008a83105ad6a0082b6a2b70f1142dc7cfd76deb8c5a862367eb8c86"},
|
||||
{file = "numba-0.59.1.tar.gz", hash = "sha256:76f69132b96028d2774ed20415e8c528a34e3299a40581bae178f0994a2f370b"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -1849,6 +1947,31 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d
|
||||
test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"]
|
||||
xml = ["lxml (>=4.9.2)"]
|
||||
|
||||
[[package]]
|
||||
name = "pettingzoo"
|
||||
version = "1.24.3"
|
||||
description = "Gymnasium for multi-agent reinforcement learning."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pettingzoo-1.24.3-py3-none-any.whl", hash = "sha256:23ed90517d2e8a7098bdaf5e31234b3a7f7b73ca578d70d1ca7b9d0cb0e37982"},
|
||||
{file = "pettingzoo-1.24.3.tar.gz", hash = "sha256:91f9094f18e06fb74b98f4099cd22e8ae4396125e51719d50b30c9f1c7ab07e6"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
gymnasium = ">=0.28.0"
|
||||
numpy = ">=1.21.0"
|
||||
|
||||
[package.extras]
|
||||
all = ["box2d-py (==2.3.5)", "chess (==1.9.4)", "multi-agent-ale-py (==0.1.11)", "pillow (>=8.0.1)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "rlcard (==1.0.5)", "scipy (>=1.4.1)", "shimmy[openspiel] (>=1.2.0)"]
|
||||
atari = ["multi-agent-ale-py (==0.1.11)", "pygame (==2.3.0)"]
|
||||
butterfly = ["pygame (==2.3.0)", "pymunk (==6.2.0)"]
|
||||
classic = ["chess (==1.9.4)", "pygame (==2.3.0)", "rlcard (==1.0.5)", "shimmy[openspiel] (>=1.2.0)"]
|
||||
mpe = ["pygame (==2.3.0)"]
|
||||
other = ["pillow (>=8.0.1)"]
|
||||
sisl = ["box2d-py (==2.3.5)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "scipy (>=1.4.1)"]
|
||||
testing = ["AutoROM", "pre-commit", "pynput", "pytest", "pytest-cov", "pytest-markdown-docs", "pytest-xdist"]
|
||||
|
||||
[[package]]
|
||||
name = "pillow"
|
||||
version = "10.2.0"
|
||||
@@ -2251,6 +2374,24 @@ tomli = {version = ">=1", markers = "python_version < \"3.11\""}
|
||||
[package.extras]
|
||||
testing = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
|
||||
|
||||
[[package]]
|
||||
name = "pytest-cov"
|
||||
version = "5.0.0"
|
||||
description = "Pytest plugin for measuring coverage."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pytest-cov-5.0.0.tar.gz", hash = "sha256:5837b58e9f6ebd335b0f8060eecce69b662415b16dc503883a02f45dfeb14857"},
|
||||
{file = "pytest_cov-5.0.0-py3-none-any.whl", hash = "sha256:4f0764a1219df53214206bf1feea4633c3b558a2925c8b59f144f682861ce652"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
coverage = {version = ">=5.2.1", extras = ["toml"]}
|
||||
pytest = ">=4.6"
|
||||
|
||||
[package.extras]
|
||||
testing = ["fields", "hunter", "process-tests", "pytest-xdist", "virtualenv"]
|
||||
|
||||
[[package]]
|
||||
name = "python-dateutil"
|
||||
version = "2.9.0.post0"
|
||||
@@ -2460,6 +2601,30 @@ urllib3 = ">=1.21.1,<3"
|
||||
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
|
||||
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
|
||||
|
||||
[[package]]
|
||||
name = "robomimic"
|
||||
version = "0.2.0"
|
||||
description = "robomimic: A Modular Framework for Robot Learning from Demonstration"
|
||||
optional = false
|
||||
python-versions = ">=3"
|
||||
files = [
|
||||
{file = "robomimic-0.2.0.tar.gz", hash = "sha256:ee3bb5cf9c3e1feead6b57b43c5db738fd0a8e0c015fdf6419808af8fffdc463"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
egl_probe = ">=1.0.1"
|
||||
h5py = "*"
|
||||
imageio = "*"
|
||||
imageio-ffmpeg = "*"
|
||||
numpy = ">=1.13.3"
|
||||
psutil = "*"
|
||||
tensorboard = "*"
|
||||
tensorboardX = "*"
|
||||
termcolor = "*"
|
||||
torch = "*"
|
||||
torchvision = "*"
|
||||
tqdm = "*"
|
||||
|
||||
[[package]]
|
||||
name = "safetensors"
|
||||
version = "0.4.2"
|
||||
@@ -2684,13 +2849,13 @@ test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov",
|
||||
|
||||
[[package]]
|
||||
name = "sentry-sdk"
|
||||
version = "1.41.0"
|
||||
version = "1.43.0"
|
||||
description = "Python client for Sentry (https://sentry.io)"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "sentry-sdk-1.41.0.tar.gz", hash = "sha256:4f2d6c43c07925d8cd10dfbd0970ea7cb784f70e79523cca9dbcd72df38e5a46"},
|
||||
{file = "sentry_sdk-1.41.0-py2.py3-none-any.whl", hash = "sha256:be4f8f4b29a80b6a3b71f0f31487beb9e296391da20af8504498a328befed53f"},
|
||||
{file = "sentry-sdk-1.43.0.tar.gz", hash = "sha256:41df73af89d22921d8733714fb0fc5586c3461907e06688e6537d01a27e0e0f6"},
|
||||
{file = "sentry_sdk-1.43.0-py2.py3-none-any.whl", hash = "sha256:8d768724839ca18d7b4c7463ef7528c40b7aa2bfbf7fe554d5f9a7c044acfd36"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@@ -2704,6 +2869,7 @@ asyncpg = ["asyncpg (>=0.23)"]
|
||||
beam = ["apache-beam (>=2.12)"]
|
||||
bottle = ["bottle (>=0.12.13)"]
|
||||
celery = ["celery (>=3)"]
|
||||
celery-redbeat = ["celery-redbeat (>=2)"]
|
||||
chalice = ["chalice (>=1.16.0)"]
|
||||
clickhouse-driver = ["clickhouse-driver (>=0.2.0)"]
|
||||
django = ["django (>=1.8)"]
|
||||
@@ -2714,6 +2880,7 @@ grpcio = ["grpcio (>=1.21.1)"]
|
||||
httpx = ["httpx (>=0.16.0)"]
|
||||
huey = ["huey (>=2)"]
|
||||
loguru = ["loguru (>=0.5)"]
|
||||
openai = ["openai (>=1.0.0)", "tiktoken (>=0.3.0)"]
|
||||
opentelemetry = ["opentelemetry-distro (>=0.35b0)"]
|
||||
opentelemetry-experimental = ["opentelemetry-distro (>=0.40b0,<1.0)", "opentelemetry-instrumentation-aiohttp-client (>=0.40b0,<1.0)", "opentelemetry-instrumentation-django (>=0.40b0,<1.0)", "opentelemetry-instrumentation-fastapi (>=0.40b0,<1.0)", "opentelemetry-instrumentation-flask (>=0.40b0,<1.0)", "opentelemetry-instrumentation-requests (>=0.40b0,<1.0)", "opentelemetry-instrumentation-sqlite3 (>=0.40b0,<1.0)", "opentelemetry-instrumentation-urllib (>=0.40b0,<1.0)"]
|
||||
pure-eval = ["asttokens", "executing", "pure-eval"]
|
||||
@@ -2829,18 +2996,18 @@ test = ["pytest"]
|
||||
|
||||
[[package]]
|
||||
name = "setuptools"
|
||||
version = "69.1.1"
|
||||
version = "69.2.0"
|
||||
description = "Easily download, build, install, upgrade, and uninstall Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "setuptools-69.1.1-py3-none-any.whl", hash = "sha256:02fa291a0471b3a18b2b2481ed902af520c69e8ae0919c13da936542754b4c56"},
|
||||
{file = "setuptools-69.1.1.tar.gz", hash = "sha256:5c0806c7d9af348e6dd3777b4f4dbb42c7ad85b190104837488eab9a7c945cf8"},
|
||||
{file = "setuptools-69.2.0-py3-none-any.whl", hash = "sha256:c21c49fb1042386df081cb5d86759792ab89efca84cf114889191cd09aacc80c"},
|
||||
{file = "setuptools-69.2.0.tar.gz", hash = "sha256:0ff4183f8f42cd8fa3acea16c45205521a4ef28f73c6391d8a25e92893134f2e"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
|
||||
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
|
||||
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
|
||||
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
|
||||
|
||||
[[package]]
|
||||
@@ -2947,9 +3114,58 @@ files = [
|
||||
[package.dependencies]
|
||||
mpmath = ">=0.19"
|
||||
|
||||
[[package]]
|
||||
name = "tensorboard"
|
||||
version = "2.16.2"
|
||||
description = "TensorBoard lets you watch Tensors Flow"
|
||||
optional = false
|
||||
python-versions = ">=3.9"
|
||||
files = [
|
||||
{file = "tensorboard-2.16.2-py3-none-any.whl", hash = "sha256:9f2b4e7dad86667615c0e5cd072f1ea8403fc032a299f0072d6f74855775cc45"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
absl-py = ">=0.4"
|
||||
grpcio = ">=1.48.2"
|
||||
markdown = ">=2.6.8"
|
||||
numpy = ">=1.12.0"
|
||||
protobuf = ">=3.19.6,<4.24.0 || >4.24.0"
|
||||
setuptools = ">=41.0.0"
|
||||
six = ">1.9"
|
||||
tensorboard-data-server = ">=0.7.0,<0.8.0"
|
||||
werkzeug = ">=1.0.1"
|
||||
|
||||
[[package]]
|
||||
name = "tensorboard-data-server"
|
||||
version = "0.7.2"
|
||||
description = "Fast data loading for TensorBoard"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb"},
|
||||
{file = "tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60"},
|
||||
{file = "tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "tensorboardx"
|
||||
version = "2.6.2.2"
|
||||
description = "TensorBoardX lets you watch Tensors Flow without Tensorflow"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
files = [
|
||||
{file = "tensorboardX-2.6.2.2-py2.py3-none-any.whl", hash = "sha256:160025acbf759ede23fd3526ae9d9bfbfd8b68eb16c38a010ebe326dc6395db8"},
|
||||
{file = "tensorboardX-2.6.2.2.tar.gz", hash = "sha256:c6476d7cd0d529b0b72f4acadb1269f9ed8b22f441e87a84f2a3b940bb87b666"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
numpy = "*"
|
||||
packaging = "*"
|
||||
protobuf = ">=3.20"
|
||||
|
||||
[[package]]
|
||||
name = "tensordict"
|
||||
version = "0.4.0+551331d"
|
||||
version = "0.4.0+b4c91e8"
|
||||
description = ""
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
@@ -2970,7 +3186,7 @@ tests = ["pytest", "pytest-benchmark", "pytest-instafail", "pytest-rerunfailures
|
||||
type = "git"
|
||||
url = "https://github.com/pytorch/tensordict"
|
||||
reference = "HEAD"
|
||||
resolved_reference = "ed22554d6860731610df784b2f5d09f31d3dbc7a"
|
||||
resolved_reference = "b4c91e8828c538ca0a50d8383fd99311a9afb078"
|
||||
|
||||
[[package]]
|
||||
name = "termcolor"
|
||||
@@ -3288,6 +3504,23 @@ perf = ["orjson"]
|
||||
reports = ["pydantic (>=2.0.0)"]
|
||||
sweeps = ["sweeps (>=0.2.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "werkzeug"
|
||||
version = "3.0.1"
|
||||
description = "The comprehensive WSGI web application library."
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "werkzeug-3.0.1-py3-none-any.whl", hash = "sha256:90a285dc0e42ad56b34e696398b8122ee4c681833fb35b8334a095d82c56da10"},
|
||||
{file = "werkzeug-3.0.1.tar.gz", hash = "sha256:507e811ecea72b18a404947aded4b3390e1db8f826b494d76550ef45bb3b1dcc"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
MarkupSafe = ">=2.1.1"
|
||||
|
||||
[package.extras]
|
||||
watchdog = ["watchdog (>=2.3)"]
|
||||
|
||||
[[package]]
|
||||
name = "zarr"
|
||||
version = "2.17.1"
|
||||
@@ -3311,20 +3544,20 @@ jupyter = ["ipytree (>=0.2.2)", "ipywidgets (>=8.0.0)", "notebook"]
|
||||
|
||||
[[package]]
|
||||
name = "zipp"
|
||||
version = "3.17.0"
|
||||
version = "3.18.1"
|
||||
description = "Backport of pathlib-compatible object wrapper for zip files"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "zipp-3.17.0-py3-none-any.whl", hash = "sha256:0e923e726174922dce09c53c59ad483ff7bbb8e572e00c7f7c46b88556409f31"},
|
||||
{file = "zipp-3.17.0.tar.gz", hash = "sha256:84e64a1c28cf7e91ed2078bb8cc8c259cb19b76942096c8d7b84947690cabaf0"},
|
||||
{file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
|
||||
{file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy (>=0.9.1)", "pytest-ruff"]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = "^3.10"
|
||||
content-hash = "ee86b84a795e6a3e9c2d79f244a87b55589adbe46d549ac38adf48be27c04cf9"
|
||||
content-hash = "e5c1e40c1cab71b9f2620e7b160c2f03f99e3e18804268a1667ad69699c34bb3"
|
||||
|
||||
@@ -21,7 +21,6 @@ packages = [{include = "lerobot"}]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
cython = "^3.0.8"
|
||||
termcolor = "^2.4.0"
|
||||
omegaconf = "^2.3.0"
|
||||
dm-env = "^1.6"
|
||||
@@ -42,21 +41,23 @@ mpmath = "^1.3.0"
|
||||
torch = "^2.2.1"
|
||||
tensordict = {git = "https://github.com/pytorch/tensordict"}
|
||||
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
|
||||
mujoco = "2.3.7"
|
||||
mujoco-py = "^2.1.2.14"
|
||||
gym = "^0.26.2"
|
||||
mujoco = "^2.3.7"
|
||||
opencv-python = "^4.9.0.80"
|
||||
diffusers = "^0.26.3"
|
||||
torchvision = "^0.17.1"
|
||||
h5py = "^3.10.0"
|
||||
dm-control = "1.0.14"
|
||||
huggingface-hub = {extras = ["hf-transfer"], version = "^0.21.4"}
|
||||
robomimic = "0.2.0"
|
||||
gymnasium-robotics = "^1.2.4"
|
||||
gymnasium = "^0.29.1"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pre-commit = "^3.6.2"
|
||||
debugpy = "^1.8.1"
|
||||
pytest = "^8.1.0"
|
||||
pytest-cov = "^5.0.0"
|
||||
|
||||
|
||||
[tool.ruff]
|
||||
@@ -89,7 +90,7 @@ exclude = [
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
|
||||
|
||||
ignore-init-module-imports = true
|
||||
|
||||
[tool.poetry-dynamic-versioning]
|
||||
enable = true
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user