WIP: 2024_07_16_vqbet_koch_pick_place_lego_simple_v2
This commit is contained in:
102
lerobot/configs/policy/vqbet_koch_real.yaml
Normal file
102
lerobot/configs/policy/vqbet_koch_real.yaml
Normal file
@@ -0,0 +1,102 @@
|
||||
# @package _global_
|
||||
|
||||
# Defaults for training for the PushT dataset.
|
||||
|
||||
seed: 100000
|
||||
dataset_repo_id: lerobot/koch_pick_place_lego
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.laptop:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.phone:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
online_steps: 0
|
||||
eval_freq: -1
|
||||
save_freq: 10000
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
grad_clip_norm: 10
|
||||
lr: 1.0e-4
|
||||
lr_scheduler: cosine
|
||||
lr_warmup_steps: 2000
|
||||
adam_betas: [0.95, 0.999]
|
||||
adam_eps: 1.0e-8
|
||||
adam_weight_decay: 1.0e-6
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
# VQ-BeT specific
|
||||
vqvae_lr: 1.0e-3
|
||||
n_vqvae_training_steps: 20000
|
||||
bet_weight_decay: 2e-4
|
||||
bet_learning_rate: 5.5e-5
|
||||
bet_betas: [0.9, 0.999]
|
||||
|
||||
delta_timestamps:
|
||||
observation.images.laptop: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
||||
observation.images.phone: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
||||
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
|
||||
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, ${policy.n_action_pred_token} + ${policy.action_chunk_size} - 1)]"
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
policy:
|
||||
name: vqbet
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 5
|
||||
n_action_pred_token: 7
|
||||
action_chunk_size: 5
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.images.laptop: [3, 480, 640]
|
||||
observation.images.phone: [3, 480, 640]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.laptop: mean_std
|
||||
observation.images.phone: mean_std
|
||||
observation.state: min_max
|
||||
output_normalization_modes:
|
||||
action: min_max
|
||||
|
||||
# Architecture / modeling.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
crop_is_random: False
|
||||
spatial_softmax_num_keypoints: 512
|
||||
use_group_norm: False
|
||||
crop_shape: null
|
||||
# VQ-VAE
|
||||
n_vqvae_training_steps: ${training.n_vqvae_training_steps}
|
||||
vqvae_n_embed: 16
|
||||
vqvae_embedding_dim: 256
|
||||
vqvae_enc_hidden_dim: 128
|
||||
# VQ-BeT
|
||||
gpt_block_size: 500
|
||||
gpt_input_dim: 512
|
||||
gpt_output_dim: 512
|
||||
gpt_n_layer: 8
|
||||
gpt_n_head: 8
|
||||
gpt_hidden_dim: 512
|
||||
dropout: 0.1
|
||||
mlp_hidden_dim: 1024
|
||||
offset_loss_weight: 10000.
|
||||
primary_code_loss_weight: 5.0
|
||||
secondary_code_loss_weight: 0.5
|
||||
bet_softmax_temperature: 0.1
|
||||
sequentially_select: False
|
||||
Reference in New Issue
Block a user