Modified gym_manipulator.py and find_joint_limits to adhere to the refactor of robot devices
Modified the configuration of envs to take into account the refactor
Added support for hil_serl classifier to be trained with train.py
run classifier training by python lerobot/scripts/train.py --policy.type=hilserl_classifier
fixes in find_joint_limits, control_robot, end_effector_control_utils
- Added Nan detection mechanisms in the actor, learner and gym_manipulator for the case where we encounter nans in the loop.
- changed the non-blocking in the `.to(device)` functions to only work for the case of cuda because they were causing nans when running the policy on mps
- Added some joint clipping and limits in the env, robot and policy configs. TODO clean this part and make the limits in one config file only.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
- Added `lerobot/scripts/server/find_joint_limits.py` to test the min and max angles of the motion you wish the robot to explore during RL training.
- Added logic in `manipulator.py` to limit the maximum possible joint angles to allow motion within a predefined joint position range. The limits are specified in the yaml config for each robot. Checkout the so100.yaml.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>