Compare commits

...

1 Commits

Author SHA1 Message Date
fracapuano
241e7076f2 add: async inference stack 2025-06-03 18:03:42 +02:00
7 changed files with 1521 additions and 0 deletions

View File

@@ -0,0 +1,60 @@
// fmt: off
// flake8: noqa
// !/usr/bin/env python
// Copyright 2024 The HuggingFace Inc. team.
// All rights reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package async_inference;
// AsyncInference: from Robot perspective
// Robot send observations to & executes action received from a remote Policy server
service AsyncInference {
// Robot -> Policy to share observations with a remote inference server
// Policy -> Robot to share actions predicted for given observations
rpc SendObservations(stream Observation) returns (Empty);
rpc StreamActions(Empty) returns (stream Action);
rpc SendPolicyInstructions(PolicySetup) returns (Empty);
rpc Ready(Empty) returns (Empty);
}
enum TransferState {
TRANSFER_UNKNOWN = 0;
TRANSFER_BEGIN = 1;
TRANSFER_MIDDLE = 2;
TRANSFER_END = 3;
}
// Messages
message Observation {
// sent by Robot, to remote Policy
TransferState transfer_state = 1;
bytes data = 2;
}
message Action {
// sent by remote Policy, to Robot
TransferState transfer_state = 1;
bytes data = 2;
}
message PolicySetup {
// sent by Robot to remote server, to init Policy
TransferState transfer_state = 1;
bytes data = 2;
}
message Empty {}

View File

@@ -0,0 +1,48 @@
# fmt: off
# flake8: noqa
# -*- coding: utf-8 -*-
# Generated by the protocol buffer compiler. DO NOT EDIT!
# NO CHECKED-IN PROTOBUF GENCODE
# source: async_inference.proto
# Protobuf Python Version: 5.29.0
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import runtime_version as _runtime_version
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
_runtime_version.ValidateProtobufRuntimeVersion(
_runtime_version.Domain.PUBLIC,
5,
29,
0,
'',
'async_inference.proto'
)
# @@protoc_insertion_point(imports)
_sym_db = _symbol_database.Default()
DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x15\x61sync_inference.proto\x12\x0f\x61sync_inference\"S\n\x0bObservation\x12\x36\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x1e.async_inference.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"N\n\x06\x41\x63tion\x12\x36\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x1e.async_inference.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"S\n\x0bPolicySetup\x12\x36\n\x0etransfer_state\x18\x01 \x01(\x0e\x32\x1e.async_inference.TransferState\x12\x0c\n\x04\x64\x61ta\x18\x02 \x01(\x0c\"\x07\n\x05\x45mpty*`\n\rTransferState\x12\x14\n\x10TRANSFER_UNKNOWN\x10\x00\x12\x12\n\x0eTRANSFER_BEGIN\x10\x01\x12\x13\n\x0fTRANSFER_MIDDLE\x10\x02\x12\x10\n\x0cTRANSFER_END\x10\x03\x32\xa9\x02\n\x0e\x41syncInference\x12J\n\x10SendObservations\x12\x1c.async_inference.Observation\x1a\x16.async_inference.Empty(\x01\x12\x42\n\rStreamActions\x12\x16.async_inference.Empty\x1a\x17.async_inference.Action0\x01\x12N\n\x16SendPolicyInstructions\x12\x1c.async_inference.PolicySetup\x1a\x16.async_inference.Empty\x12\x37\n\x05Ready\x12\x16.async_inference.Empty\x1a\x16.async_inference.Emptyb\x06proto3')
_globals = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'async_inference_pb2', _globals)
if not _descriptor._USE_C_DESCRIPTORS:
DESCRIPTOR._loaded_options = None
_globals['_TRANSFERSTATE']._serialized_start=301
_globals['_TRANSFERSTATE']._serialized_end=397
_globals['_OBSERVATION']._serialized_start=42
_globals['_OBSERVATION']._serialized_end=125
_globals['_ACTION']._serialized_start=127
_globals['_ACTION']._serialized_end=205
_globals['_POLICYSETUP']._serialized_start=207
_globals['_POLICYSETUP']._serialized_end=290
_globals['_EMPTY']._serialized_start=292
_globals['_EMPTY']._serialized_end=299
_globals['_ASYNCINFERENCE']._serialized_start=400
_globals['_ASYNCINFERENCE']._serialized_end=697
# @@protoc_insertion_point(module_scope)

View File

@@ -0,0 +1,236 @@
# fmt: off
# flake8: noqa
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import warnings
import async_inference_pb2 as async__inference__pb2
GRPC_GENERATED_VERSION = '1.71.0'
GRPC_VERSION = grpc.__version__
_version_not_supported = False
try:
from grpc._utilities import first_version_is_lower
_version_not_supported = first_version_is_lower(GRPC_VERSION, GRPC_GENERATED_VERSION)
except ImportError:
_version_not_supported = True
if _version_not_supported:
raise RuntimeError(
f'The grpc package installed is at version {GRPC_VERSION},'
+ f' but the generated code in async_inference_pb2_grpc.py depends on'
+ f' grpcio>={GRPC_GENERATED_VERSION}.'
+ f' Please upgrade your grpc module to grpcio>={GRPC_GENERATED_VERSION}'
+ f' or downgrade your generated code using grpcio-tools<={GRPC_VERSION}.'
)
class AsyncInferenceStub:
"""AsyncInference: from Robot perspective
Robot send observations to & executes action received from a remote Policy server
"""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.SendObservations = channel.stream_unary(
'/async_inference.AsyncInference/SendObservations',
request_serializer=async__inference__pb2.Observation.SerializeToString,
response_deserializer=async__inference__pb2.Empty.FromString,
_registered_method=True)
self.StreamActions = channel.unary_stream(
'/async_inference.AsyncInference/StreamActions',
request_serializer=async__inference__pb2.Empty.SerializeToString,
response_deserializer=async__inference__pb2.Action.FromString,
_registered_method=True)
self.SendPolicyInstructions = channel.unary_unary(
'/async_inference.AsyncInference/SendPolicyInstructions',
request_serializer=async__inference__pb2.PolicySetup.SerializeToString,
response_deserializer=async__inference__pb2.Empty.FromString,
_registered_method=True)
self.Ready = channel.unary_unary(
'/async_inference.AsyncInference/Ready',
request_serializer=async__inference__pb2.Empty.SerializeToString,
response_deserializer=async__inference__pb2.Empty.FromString,
_registered_method=True)
class AsyncInferenceServicer:
"""AsyncInference: from Robot perspective
Robot send observations to & executes action received from a remote Policy server
"""
def SendObservations(self, request_iterator, context):
"""Robot -> Policy to share observations with a remote inference server
Policy -> Robot to share actions predicted for given observations
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def StreamActions(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def SendPolicyInstructions(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def Ready(self, request, context):
"""Missing associated documentation comment in .proto file."""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_AsyncInferenceServicer_to_server(servicer, server):
rpc_method_handlers = {
'SendObservations': grpc.stream_unary_rpc_method_handler(
servicer.SendObservations,
request_deserializer=async__inference__pb2.Observation.FromString,
response_serializer=async__inference__pb2.Empty.SerializeToString,
),
'StreamActions': grpc.unary_stream_rpc_method_handler(
servicer.StreamActions,
request_deserializer=async__inference__pb2.Empty.FromString,
response_serializer=async__inference__pb2.Action.SerializeToString,
),
'SendPolicyInstructions': grpc.unary_unary_rpc_method_handler(
servicer.SendPolicyInstructions,
request_deserializer=async__inference__pb2.PolicySetup.FromString,
response_serializer=async__inference__pb2.Empty.SerializeToString,
),
'Ready': grpc.unary_unary_rpc_method_handler(
servicer.Ready,
request_deserializer=async__inference__pb2.Empty.FromString,
response_serializer=async__inference__pb2.Empty.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'async_inference.AsyncInference', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
server.add_registered_method_handlers('async_inference.AsyncInference', rpc_method_handlers)
# This class is part of an EXPERIMENTAL API.
class AsyncInference:
"""AsyncInference: from Robot perspective
Robot send observations to & executes action received from a remote Policy server
"""
@staticmethod
def SendObservations(request_iterator,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.stream_unary(
request_iterator,
target,
'/async_inference.AsyncInference/SendObservations',
async__inference__pb2.Observation.SerializeToString,
async__inference__pb2.Empty.FromString,
options,
channel_credentials,
insecure,
call_credentials,
compression,
wait_for_ready,
timeout,
metadata,
_registered_method=True)
@staticmethod
def StreamActions(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_stream(
request,
target,
'/async_inference.AsyncInference/StreamActions',
async__inference__pb2.Empty.SerializeToString,
async__inference__pb2.Action.FromString,
options,
channel_credentials,
insecure,
call_credentials,
compression,
wait_for_ready,
timeout,
metadata,
_registered_method=True)
@staticmethod
def SendPolicyInstructions(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(
request,
target,
'/async_inference.AsyncInference/SendPolicyInstructions',
async__inference__pb2.PolicySetup.SerializeToString,
async__inference__pb2.Empty.FromString,
options,
channel_credentials,
insecure,
call_credentials,
compression,
wait_for_ready,
timeout,
metadata,
_registered_method=True)
@staticmethod
def Ready(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(
request,
target,
'/async_inference.AsyncInference/Ready',
async__inference__pb2.Empty.SerializeToString,
async__inference__pb2.Empty.FromString,
options,
channel_credentials,
insecure,
call_credentials,
compression,
wait_for_ready,
timeout,
metadata,
_registered_method=True)

View File

@@ -0,0 +1,12 @@
"""Server/Client side: Sometimes you just want the environment to wait a tiny bit"""
idle_wait = 0.01
"""Client side: The environment evolves with a time resolution equal to environment_dt"""
environment_dt = 1 / 30
"""Server side: Running inference on (at most) environment_dt"""
inference_latency = environment_dt
"""Supported policies"""
supported_policies = ["act", "smolvla"]

View File

@@ -0,0 +1,128 @@
import logging
import logging.handlers
import os
import time
from typing import Any
import torch
def setup_logging(prefix: str, info_bracket: str):
"""Sets up logging"""
# Create logs directory if it doesn't exist
os.makedirs("logs", exist_ok=True)
# Delete any existing prefix_* log files
for old_log_file in os.listdir("logs"):
if old_log_file.startswith(prefix) and old_log_file.endswith(".log"):
try:
os.remove(os.path.join("logs", old_log_file))
print(f"Deleted old log file: {old_log_file}")
except Exception as e:
print(f"Failed to delete old log file {old_log_file}: {e}")
# Set up logging with both console and file output
logger = logging.getLogger(prefix)
# Prevent propagation to root logger to avoid duplicate messages
logger.propagate = False
logger.setLevel(logging.INFO)
# Console handler
console_handler = logging.StreamHandler()
console_handler.setFormatter(
logging.Formatter(
f"%(asctime)s.%(msecs)03d [{info_bracket}] [%(levelname)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
)
logger.addHandler(console_handler)
# File handler - creates a new log file for each run
file_handler = logging.handlers.RotatingFileHandler(
f"logs/policy_server_{int(time.time())}.log",
maxBytes=10 * 1024 * 1024, # 10MB
backupCount=5,
)
file_handler.setFormatter(
logging.Formatter(
f"%(asctime)s.%(msecs)03d [{info_bracket}] [%(levelname)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
)
logger.addHandler(file_handler)
return logger
class TimedData:
def __init__(self, timestamp: float, data: Any, timestep: int):
"""Initialize a TimedData object.
Args:
timestamp: Unix timestamp relative to data's creation.
data: The actual data to wrap a timestamp around.
timestep: The timestep of the data.
"""
self.timestamp = timestamp
self.data = data
self.timestep = timestep
def get_data(self):
return self.data
def get_timestamp(self):
return self.timestamp
def get_timestep(self):
return self.timestep
class TimedAction(TimedData):
def __init__(self, timestamp: float, action: torch.Tensor, timestep: int):
super().__init__(timestamp=timestamp, data=action, timestep=timestep)
def get_action(self):
return self.get_data()
class TimedObservation(TimedData):
def __init__(
self,
timestamp: float,
observation: dict[str, torch.Tensor],
timestep: int,
transfer_state: int = 0,
must_go: bool = False,
):
super().__init__(timestamp=timestamp, data=observation, timestep=timestep)
self.transfer_state = transfer_state
self.must_go = must_go
def get_observation(self):
return self.get_data()
class TinyPolicyConfig:
def __init__(
self,
policy_type: str = "act",
pretrained_name_or_path: str = "fracapuano/act_so100_test",
device: str = "cpu",
):
self.policy_type = policy_type
self.pretrained_name_or_path = pretrained_name_or_path
self.device = device
def _compare_observation_states(obs1_state: torch.Tensor, obs2_state: torch.Tensor, atol: float) -> bool:
"""Check if two observation states are similar, under a tolerance threshold"""
return torch.linalg.norm(obs1_state - obs2_state) < atol
def observations_similar(obs1: TimedObservation, obs2: TimedObservation, atol: float = 1) -> bool:
"""Check if two observations are similar, under a tolerance threshold"""
obs1_state = obs1.get_observation()["observation.state"]
obs2_state = obs2.get_observation()["observation.state"]
return _compare_observation_states(obs1_state, obs2_state, atol=atol)

View File

@@ -0,0 +1,429 @@
import itertools
import pickle # nosec
import time
from concurrent import futures
from queue import Queue
from typing import Generator, List, Optional
import async_inference_pb2 # type: ignore
import async_inference_pb2_grpc # type: ignore
import grpc
import torch
from datasets import load_dataset
from lerobot.common.policies.factory import get_policy_class
from lerobot.scripts.server.constants import environment_dt, idle_wait, inference_latency, supported_policies
from lerobot.scripts.server.helpers import (
TimedAction,
TimedObservation,
TinyPolicyConfig,
observations_similar,
setup_logging,
)
class PolicyServer(async_inference_pb2_grpc.AsyncInferenceServicer):
prefix = "policy_server"
info_bracket = "SERVER"
logger = setup_logging(prefix, info_bracket)
def __init__(self):
# Initialize dataset action generator (to debug this first version, will be removed in the future)
self.action_generator = itertools.cycle(self._stream_action_chunks_from_dataset())
self._setup_server()
self.actions_per_chunk = 20
self.actions_overlap = 10
self.running = True
def _setup_server(self) -> None:
"""Flushes server state when new client connects."""
# only running inference on the latest observation received by the server
self.observation_queue = Queue(maxsize=1)
self._predicted_timesteps = set()
self._predicted_observations = Queue(maxsize=1)
def Ready(self, request, context): # noqa: N802
client_id = context.peer()
self.logger.info(f"Client {client_id} connected and ready")
self._setup_server()
return async_inference_pb2.Empty()
def SendPolicyInstructions(self, request, context): # noqa: N802
"""Receive policy instructions from the robot client"""
client_id = context.peer()
self.logger.debug(f"Receiving policy instructions from {client_id}")
policy_specs = pickle.loads(request.data) # nosec
assert isinstance(policy_specs, TinyPolicyConfig), (
f"Policy specs must be a TinyPolicyConfig. Got {type(policy_specs)}"
)
self.logger.info(
f"Policy type: {policy_specs.policy_type} | "
f"Pretrained name or path: {policy_specs.pretrained_name_or_path} | "
f"Device: {policy_specs.device}"
)
assert policy_specs.policy_type in supported_policies, (
f"Policy type {policy_specs.policy_type} not supported. Supported policies: {supported_policies}"
)
self.device = policy_specs.device
self.policy_type = policy_specs.policy_type # act, pi0, etc.
policy_class = get_policy_class(self.policy_type)
start = time.time()
self.policy = policy_class.from_pretrained(policy_specs.pretrained_name_or_path)
self.policy.to(self.device)
end = time.time()
self.logger.info(f"Time taken to put policy on {self.device}: {end - start:.4f} seconds")
return async_inference_pb2.Empty()
def SendObservations(self, request_iterator, context): # noqa: N802
"""Receive observations from the robot client"""
client_id = context.peer()
self.logger.debug(f"Receiving observations from {client_id}")
for observation in request_iterator:
receive_time = time.time()
timed_observation = pickle.loads(observation.data) # nosec
deserialize_time = time.time()
self.logger.debug(f"Received observation #{timed_observation.get_timestep()}")
if not self._maybe_enqueue_observation(timed_observation):
continue
queue_time = time.time()
obs_timestep = timed_observation.get_timestep()
obs_timestamp = timed_observation.get_timestamp()
self.logger.info(
f"Received observation #{obs_timestep} | "
f"Client timestamp: {obs_timestamp:.6f} | "
f"Server timestamp: {receive_time:.6f} | "
)
if not hasattr(self, "previous_obs_timestamp"):
self.previous_obs_timestamp = obs_timestamp
self.logger.debug(
f"1/DeltaObsT (~frequency): {1 / (1e-6 + obs_timestamp - self.previous_obs_timestamp):.6f} Hz| "
f"Network latency: {receive_time - obs_timestamp:.6f}s | "
f"Deserialization time: {deserialize_time - receive_time:.6f}s | "
f"Queue time: {queue_time - deserialize_time:.6f}s | "
)
self.previous_obs_timestamp = obs_timestamp
return async_inference_pb2.Empty()
def StreamActions(self, request, context): # noqa: N802
"""Stream actions to the robot client"""
client_id = context.peer()
self.logger.debug(f"Client {client_id} connected for action streaming")
# Generate action based on the most recent observation and its timestep
try:
obs = self.observation_queue.get()
self.logger.info(
f"Running inference for observation #{obs.get_timestep()} (must_go: {obs.must_go})"
)
if obs:
self.last_predicted_obs = obs
self._predicted_timesteps.add(obs.get_timestep())
start_time = time.time()
action_chunk = self._predict_action_chunk(obs)
# action_chunk = self._read_action_chunk(obs)
inference_time = time.time() - start_time
start_time = time.time()
action_bytes = pickle.dumps(action_chunk) # nosec
serialize_time = time.time() - start_time
# Create and return the Action
action = async_inference_pb2.Action(transfer_state=obs.transfer_state, data=action_bytes)
self.logger.info(
f"Action chunk #{obs.get_timestep()} generated | Inference time: {inference_time:.6f}s |"
)
self.logger.debug(
f"Action chunk #{obs.get_timestep()} generated | "
f"Inference time: {inference_time:.6f}s |"
f"Serialize time: {serialize_time:.6f}s |"
f"Total time: {inference_time + serialize_time:.6f}s"
)
yield action
else:
self.logger.warning("No observation in queue yet!")
time.sleep(idle_wait)
except Exception as e:
self.logger.error(f"Error in StreamActions: {e}")
return async_inference_pb2.Empty()
def _enqueue_and_go(self, obs: TimedObservation):
# If queue is full, get the old observation to make room
if self.observation_queue.full():
# pops from queue
_ = self.observation_queue.get_nowait()
self.logger.debug("Observation queue was full, removed oldest observation")
# Now put the new observation (never blocks as queue is non-full here)
self.observation_queue.put(obs)
return True
def _obs_sanity_checks(self, obs: TimedObservation, previous_obs: TimedObservation) -> bool:
if obs.get_timestep() in self._predicted_timesteps:
self.logger.debug(f"Skipping observation #{obs.get_timestep()} - Timestep predicted already!")
return False
elif observations_similar(obs, previous_obs, atol=1):
self.logger.debug(
f"Skipping observation #{obs.get_timestep()} - Observation too similar to last obs predicted!"
)
return False
else:
return True
def _maybe_enqueue_observation(self, obs: TimedObservation) -> bool:
"""Enqueue an observation if it must go through processing, otherwise skip it.
Observations not in queue are never run through the policy network"""
if obs.must_go or not hasattr(self, "last_predicted_obs"):
self.logger.info(f"[MUST GO] Enqueued observation #{obs.get_timestep()} for direct processing!")
return self._enqueue_and_go(obs)
else:
if self._obs_sanity_checks(obs, self.last_predicted_obs):
return self._enqueue_and_go(obs)
else:
return False
def _time_action_chunk(self, t_0: float, action_chunk: list[torch.Tensor], i_0: int) -> list[TimedAction]:
"""Turn a chunk of actions into a list of TimedAction instances,
with the first action corresponding to t_0 and the rest corresponding to
t_0 + i*environment_dt for i in range(len(action_chunk))
"""
return [
TimedAction(t_0 + i * environment_dt, action, i_0 + i) for i, action in enumerate(action_chunk)
]
@torch.no_grad()
def _run_act_policy(self, observation: dict[str, torch.Tensor]) -> torch.Tensor:
"""Run ACT-like policies"""
start_time = time.time()
# prepare observation for policy forward pass
batch = self.policy.normalize_inputs(observation)
normalize_time = time.time()
self.logger.debug(f"Observation normalization time: {normalize_time - start_time:.6f}s")
if self.policy.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = [batch[key] for key in self.policy.config.image_features]
prep_time = time.time()
self.logger.debug(f"Observation image preparation time: {prep_time - normalize_time:.6f}s")
# forward pass outputs up to policy.config.n_action_steps != actions_per_chunk
actions = self.policy.model(batch)[0][:, : self.actions_per_chunk]
actions = self.policy.unnormalize_outputs({"action": actions})["action"]
end_time = time.time()
self.logger.info(f"[ACT] Action chunk generation total time: {end_time - start_time:.6f}s")
return actions
@torch.no_grad()
def _run_pi0_policy(self, observation: dict[str, torch.Tensor]) -> torch.Tensor:
"""Run PI0-like policies"""
raise NotImplementedError("PI0 policy not implemented yet")
@torch.no_grad()
def _run_smolvla_policy(
self, observation: dict[str, torch.Tensor], noise: Optional[torch.Tensor] = None
) -> torch.Tensor:
"""Run smolvla-like policies"""
observation = self.policy.normalize_inputs(observation)
images, img_masks = self.policy.prepare_images(observation)
state = self.policy.prepare_state(observation)
lang_tokens, lang_masks = self.policy.prepare_language(observation)
actions = self.policy.model.sample_actions(
images, img_masks, lang_tokens, lang_masks, state, noise=noise
)
# Unpad actions
original_action_dim = self.policy.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.policy.unnormalize_outputs(
{"action": actions, "robot_type": [self.policy.config.robot_type]}
)["action"]
return actions
def _get_action_chunk(
self, observation: dict[str, torch.Tensor], policy_type: str = "act"
) -> torch.Tensor:
"""Get an action chunk from the policy"""
if policy_type == "act":
return self._run_act_policy(observation)
elif policy_type == "smolvla":
return self._run_smolvla_policy(observation)
else:
raise ValueError(f"Policy class {policy_type} not supported")
def _predict_action_chunk(self, observation_t: TimedObservation) -> list[TimedAction]:
"""Predict an action based on the observation"""
"""1. Prepare observation"""
start_time = time.time()
observation = {
"robot_type": [self.policy.config.robot_type],
}
for k, v in observation_t.get_observation().items():
if isinstance(v, torch.Tensor): # VLAs present natural-language instructions
if "image" in k:
# Add batch dimension first, then reorder to NCHW format, then normalize to [0, 1]
observation[k] = (
v.unsqueeze(0).permute(0, 3, 1, 2).to(self.device, non_blocking=True) / 255.0
)
else:
observation[k] = v.unsqueeze(0).to(self.device, non_blocking=True)
else:
observation[k] = v # textual instructions are passed as a list of strings
prep_time = time.time()
self.logger.debug(f"Observation preparation time: {prep_time - start_time:.6f}s")
"""2. Get action chunk"""
action_tensor = self._get_action_chunk(observation, self.policy_type)
action_tensor = action_tensor.squeeze(0)
# Move to CPU before serializing
action_tensor = action_tensor.cpu()
post_inference_time = time.time()
self.logger.debug(f"Post-inference processing start: {post_inference_time - prep_time:.6f}s")
if action_tensor.dim() == 1:
# No chunk dimension, so repeat action to create a (dummy) chunk of actions
action_tensor = action_tensor.repeat(self.actions_per_chunk, 1)
action_chunk = self._time_action_chunk(
observation_t.get_timestamp(), list(action_tensor), observation_t.get_timestep()
)
chunk_time = time.time()
self.logger.debug(f"Action chunk creation time: {chunk_time - post_inference_time:.6f}s")
time.sleep(
max(0, inference_latency - max(0, chunk_time - start_time))
) # sleep to control inference latency
return action_chunk
def _stream_action_chunks_from_dataset(self) -> Generator[List[torch.Tensor], None, None]:
"""Stream chunks of actions from a prerecorded dataset.
Returns:
Generator that yields chunks of actions from the dataset
"""
import warnings
warnings.warn(
"This method is deprecated and will be removed in the future.", DeprecationWarning, stacklevel=2
)
dataset = load_dataset("fracapuano/so100_test", split="train").with_format("torch")
# 1. Select the action column only, where you will find tensors with 6 elements
actions = dataset["action"]
action_indices = torch.arange(len(actions))
# 2. Chunk the iterable of tensors into chunks with 10 elements each
# sending only first element for debugging
indices_chunks = action_indices.unfold(
0, self.actions_per_chunk, self.actions_per_chunk - self.actions_overlap
)
for idx_chunk in indices_chunks:
yield actions[idx_chunk[0] : idx_chunk[-1] + 1, :]
def _read_action_chunk(self, observation: Optional[TimedObservation] = None) -> list[TimedAction]:
"""Dummy function for predicting action chunk given observation.
Instead of computing actions on-the-fly, this method streams
actions from a prerecorded dataset.
"""
import warnings
warnings.warn(
"This method is deprecated and will be removed in the future.", DeprecationWarning, stacklevel=2
)
start_time = time.time()
if not observation:
observation = TimedObservation(timestamp=time.time(), observation={}, timestep=0)
# Get chunk of actions from the generator
actions_chunk = next(self.action_generator)
# Return a list of TimedActions, with timestamps starting from the observation timestamp
actions_chunk = self._time_action_chunk(
observation.get_timestamp(), actions_chunk, observation.get_timestep()
)
chunk_time = time.time()
self.logger.debug(f"Action chunk creation time: {chunk_time - start_time:.6f}s")
# slow action generation, emulates inference time
time.sleep(max(0, inference_latency - max(0, chunk_time - start_time)))
return actions_chunk
def stop(self):
"""Stop the server"""
self.running = False
self.logger.info("Server stopping...")
def serve():
port = 8080
# Create the server instance first
policy_server = PolicyServer()
# Setup and start gRPC server
server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
async_inference_pb2_grpc.add_AsyncInferenceServicer_to_server(policy_server, server)
server.add_insecure_port(f"[::]:{port}")
server.start()
policy_server.logger.info(f"PolicyServer started on port {port}")
try:
# Use the running attribute to control server lifetime
while policy_server.running:
time.sleep(1) # Check every second instead of sleeping indefinitely
except KeyboardInterrupt:
policy_server.stop()
policy_server.logger.info("Keyboard interrupt received")
if __name__ == "__main__":
serve()

View File

@@ -0,0 +1,608 @@
import argparse
import os
import pickle # nosec
import threading
import time
from queue import Empty, Queue
from typing import Callable, Optional
import async_inference_pb2 # type: ignore
import async_inference_pb2_grpc # type: ignore
import grpc
import torch
from lerobot.common.robot_devices.robots.utils import make_robot
from lerobot.scripts.server.constants import environment_dt, idle_wait
from lerobot.scripts.server.helpers import TimedAction, TimedObservation, TinyPolicyConfig, setup_logging
class RobotClient:
prefix = "robot_client"
info_bracket = "CLIENT"
logger = setup_logging(prefix, info_bracket)
def __init__(
self,
server_address: Optional[str] = None,
policy_type: str = "smolvla",
pretrained_name_or_path: str = "lerobot/smolvla_base",
policy_device: str = "cuda",
chunk_size_threshold: float = 0.5,
robot: str = "so100",
):
# Use environment variable if server_address is not provided
if server_address is None:
server_address = os.getenv("SERVER_ADDRESS", "localhost:8080")
self.logger.info(f"No server address provided, using default address: {server_address}")
self.policy_config = TinyPolicyConfig(policy_type, pretrained_name_or_path, policy_device)
self.channel = grpc.insecure_channel(server_address)
self.stub = async_inference_pb2_grpc.AsyncInferenceStub(self.channel)
self.logger.info(f"Initializing client to connect to server at {server_address}")
self.running = False
self.must_go = True # does the observation qualify for direct processing on the policy server?
self.latest_action = -1
self.action_chunk_size = -1
self._chunk_size_threshold = chunk_size_threshold
self.action_queue = Queue()
self.start_barrier = threading.Barrier(2) # 2 threads: action receiver, control loop
start_time = time.time()
self.robot = make_robot(robot)
self.robot.connect()
connect_time = time.time()
self.logger.info(f"Robot connection time: {connect_time - start_time:.4f}s")
time.sleep(idle_wait) # sleep waiting for cameras to activate
self.logger.info("Robot connected and ready")
def timestamps(self):
"""Get the timestamps of the actions in the queue"""
return sorted([action.get_timestep() for action in self.action_queue.queue])
def start(self):
"""Start the robot client and connect to the policy server"""
try:
# client-server handshake
start_time = time.time()
self.stub.Ready(async_inference_pb2.Empty())
end_time = time.time()
self.logger.info(f"Connected to policy server in {end_time - start_time:.4f}s")
# send policy instructions
policy_config_bytes = pickle.dumps(self.policy_config)
policy_setup = async_inference_pb2.PolicySetup(
transfer_state=async_inference_pb2.TRANSFER_BEGIN, data=policy_config_bytes
)
self.logger.info("Sending policy instructions to policy server")
self.logger.info(
f"Policy type: {self.policy_config.policy_type} | "
f"Pretrained name or path: {self.policy_config.pretrained_name_or_path} | "
f"Device: {self.policy_config.device}"
)
self.stub.SendPolicyInstructions(policy_setup)
self.running = True
self.available_actions_size = []
return True
except grpc.RpcError as e:
self.logger.error(f"Failed to connect to policy server: {e}")
return False
def stop(self):
"""Stop the robot client"""
self.running = False
self.robot.disconnect()
self.logger.info("Robot disconnected")
self.channel.close()
self.logger.info("Client stopped, channel closed")
def send_observation(
self,
obs: TimedObservation,
transfer_state: async_inference_pb2.TransferState = async_inference_pb2.TRANSFER_MIDDLE,
) -> bool:
"""Send observation to the policy server.
Returns True if the observation was sent successfully, False otherwise."""
if not self.running:
self.logger.warning("Client not running")
return False
assert isinstance(obs, TimedObservation), "Input observation needs to be a TimedObservation!"
start_time = time.time()
observation_bytes = pickle.dumps(obs)
serialize_time = time.time()
self.logger.debug(f"Observation serialization time: {serialize_time - start_time:.6f}s")
observation = async_inference_pb2.Observation(transfer_state=transfer_state, data=observation_bytes)
try:
send_start = time.time()
_ = self.stub.SendObservations(iter([observation]))
send_end = time.time()
obs_timestep = obs.get_timestep()
self.logger.info(
f"Sent observation #{obs_timestep} | "
f"Serialize time: {serialize_time - start_time:.6f}s | "
f"Network time: {send_end - send_start:.6f}s | "
f"Total time: {send_end - start_time:.6f}s"
)
self.last_obs_sent_time = send_end
return True
except grpc.RpcError as e:
self.logger.error(f"Error sending observation #{obs.get_timestep()}: {e}")
return False
def _validate_action(self, action: TimedAction):
"""Received actions are keps only when they have been produced for now or later, never before"""
return not action.get_timestep() <= self.latest_action
def _inspect_action_queue(self):
queue_size = self.action_queue.qsize()
timestamps = sorted([action.get_timestep() for action in self.action_queue.queue])
self.logger.debug(f"Queue size: {queue_size}, Queue contents: {timestamps}")
return queue_size, timestamps
def _update_action_queue(self, actions: list[TimedAction]):
"""Update the action queue with new actions, without ever emptying the queue"""
new_queue = Queue()
for action in actions:
if self._validate_action(action):
new_queue.put(action)
self.action_queue = new_queue
def _aggregate_action_queues(
self,
incoming_actions: list[TimedAction],
aggregate_fn: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
):
"""Finds the same timestep actions in the queue and aggregates them using the aggregate_fn"""
# TODO(fracapuano): move outside of the function and make aggregate_fn an always required argument
if not aggregate_fn:
# default aggregate function: take the latest action
def aggregate_fn(x1, x2):
return x2
action_intersections: list[torch.Tensor] = []
current_action_queue = {
action.get_timestep(): action.get_action() for action in self.action_queue.queue
}
for new_action in incoming_actions:
if new_action.get_timestep() in current_action_queue:
# TODO(fracapuano): There is probably a way to do this with broadcasting of the two action tensors
action_intersections.append(
TimedAction(
timestamp=new_action.get_timestamp(),
action=aggregate_fn(
current_action_queue[new_action.get_timestep()], new_action.get_action()
),
timestep=new_action.get_timestep(),
)
)
else:
action_intersections.append(new_action)
new_queue = Queue()
for action in action_intersections:
if self._validate_action(action):
new_queue.put(action)
self.action_queue = new_queue
def _clear_action_queue(self):
"""Clear the existing queue"""
while not self.action_queue.empty():
try:
self.action_queue.get_nowait()
except Empty:
break
def _fill_action_queue(self, actions: list[TimedAction]):
"""Fill the action queue with incoming valid actions"""
start_time = time.time()
valid_count = 0
for action in actions:
if self._validate_action(action):
self.action_queue.put(action)
valid_count += 1
end_time = time.time()
self.logger.debug(
f"Queue filled: {valid_count}/{len(actions)} valid actions added in {end_time - start_time:.6f}s"
)
def _clear_and_fill_action_queue(self, actions: list[TimedAction]):
self._clear_action_queue()
self._fill_action_queue(actions)
def receive_actions(self):
"""Receive actions from the policy server"""
# Wait at barrier for synchronized start
self.start_barrier.wait()
self.logger.info("Action receiving thread starting")
while self.running:
try:
# Use StreamActions to get a stream of actions from the server
for actions_chunk in self.stub.StreamActions(async_inference_pb2.Empty()):
receive_time = time.time()
# Deserialize bytes back into list[TimedAction]
deserialize_start = time.time()
timed_actions = pickle.loads(actions_chunk.data) # nosec
deserialize_end = time.time()
self.action_chunk_size = max(self.action_chunk_size, len(timed_actions))
start_time = time.time()
self.logger.info(f"Current latest action: {self.latest_action}")
# Get queue state before changes
old_size, old_timesteps = self._inspect_action_queue()
if not old_timesteps:
old_timesteps = [self.latest_action] # queue was empty
# Log incoming actions
incoming_timesteps = [a.get_timestep() for a in timed_actions]
# Calculate network latency if we have matching observations
if len(timed_actions) > 0:
first_action_timestep = timed_actions[0].get_timestep()
server_to_client_latency = receive_time - self.last_obs_sent_time
self.logger.info(
f"Received action chunk for step #{first_action_timestep} | "
f"Latest action: #{self.latest_action} | "
f"Network latency (server->client): {server_to_client_latency:.6f}s | "
f"Deserialization time: {deserialize_end - deserialize_start:.6f}s"
)
# Update action queue
start_time = time.time()
self._update_action_queue(timed_actions)
queue_update_time = time.time() - start_time
self.must_go = (
True # after receiving actions, next empty queue triggers must-go processing!
)
# Get queue state after changes
new_size, new_timesteps = self._inspect_action_queue()
self.logger.info(
f"Queue update complete ({queue_update_time:.6f}s) | "
f"Before: {old_size} items | "
f"After: {new_size} items | "
)
self.logger.info(
f"Latest action: {self.latest_action} | "
f"Old action steps: {old_timesteps[0]}:{old_timesteps[-1]} | "
f"Incoming action steps: {incoming_timesteps[0]}:{incoming_timesteps[-1]} | "
f"Updated action steps: {new_timesteps[0]}:{new_timesteps[-1]}"
)
except grpc.RpcError as e:
self.logger.error(f"Error receiving actions: {e}")
# Avoid tight loop on action receiver error
time.sleep(idle_wait)
def _actions_available(self):
"""Check if there are actions available in the queue"""
return not self.action_queue.empty()
def _get_next_action(self) -> Optional[TimedAction]:
"""Get the next action from the queue"""
try:
action = self.action_queue.get_nowait()
return action
except Empty:
return None
def _perform_action(self, timed_action: TimedAction):
self.robot.send_action(timed_action.get_action())
self.latest_action = timed_action.get_timestep()
self.logger.debug(
f"Ts={timed_action.get_timestamp()} | "
f"Action #{timed_action.get_timestep()} performed | "
f"Queue size: {self.action_queue.qsize()}"
)
def execute_actions(self):
"""Continuously execute actions from the queue"""
import warnings
warnings.warn("This method is deprecated! Will be removed soon!", stacklevel=2)
# Wait at barrier for synchronized start
self.start_barrier.wait()
time.sleep(idle_wait) # wait for observation capture to start
self.logger.info("Action execution thread starting")
while self.running:
# constantly monitor the size of the action queue
self.available_actions_size.append(self.action_queue.qsize())
if self._actions_available():
timed_action = self._get_next_action()
self._perform_action(timed_action)
time.sleep(environment_dt)
else:
self.logger.debug("No action available | Sleeping")
time.sleep(idle_wait)
def stream_observations(self, get_observation_fn):
"""Continuously stream observations to the server"""
import warnings
warnings.warn("This method is deprecated! Will be removed soon!", stacklevel=2)
# Wait at barrier for synchronized start
self.start_barrier.wait()
self.logger.info("Observation streaming thread starting")
while self.running:
try:
# Get serialized observation bytes from the function
start_time = time.time()
observation = get_observation_fn()
obs_capture_time = time.time() - start_time
self.logger.debug(f"Capturing observation took {obs_capture_time:.6f}s")
if not hasattr(self, "last_obs_timestamp"):
self.last_obs_timestamp = observation.get_timestamp()
obs_timestep, obs_timestamp = observation.get_timestep(), observation.get_timestamp()
self.logger.info(
f"Ts={obs_timestamp} | "
f"Captured observation #{obs_timestep} | "
f"1/DeltaTs (~frequency)={1 / (1e-6 + obs_timestamp - self.last_obs_timestamp):.6f}"
)
self.last_obs_timestamp = obs_timestamp
# Set appropriate transfer state
if obs_timestep == 0:
state = async_inference_pb2.TRANSFER_BEGIN
else:
state = async_inference_pb2.TRANSFER_MIDDLE
time.sleep(environment_dt)
self.send_observation(observation, state)
except Exception as e:
self.logger.error(f"Error in observation sender: {e}")
time.sleep(idle_wait)
def control_loop_action(self):
"""Reading and performing actions in local queue"""
self.available_actions_size.append(self.action_queue.qsize())
if self._actions_available():
# Get action from queue
get_start = time.time()
timed_action = self._get_next_action()
get_end = time.time() - get_start
self.logger.debug(
f"Popping action from queue to perform took {get_end:.6f}s | "
f"Queue size: {self.action_queue.qsize()}"
)
self._perform_action(timed_action)
def _ready_to_send_observation(self):
"""Flags when the client is ready to send an observation"""
return self.action_queue.qsize() / self.action_chunk_size <= self._chunk_size_threshold
def control_loop_observation(self, get_observation_fn):
try:
# Get serialized observation bytes from the function
start_time = time.time()
observation = get_observation_fn()
obs_capture_time = time.time() - start_time
# If there are no actions left in the queue, the observation must go through processing!
observation.must_go = self.must_go and self.action_queue.empty()
self.logger.debug(f"QUEUE SIZE: {self.action_queue.qsize()} (Must go: {observation.must_go})")
if observation.must_go:
# must-go flag will be set again after receiving actions
self.must_go = False
if not hasattr(self, "last_obs_timestamp"):
self.last_obs_timestamp = observation.get_timestamp()
obs_timestep, obs_timestamp = observation.get_timestep(), observation.get_timestamp()
self.last_obs_timestamp = obs_timestamp
self.logger.info(
f"Ts={obs_timestamp} | "
f"Captured observation #{obs_timestep} | "
f"1/DeltaTs (~frequency)={1 / (1e-6 + obs_timestamp - self.last_obs_timestamp):.6f}"
)
self.logger.debug(f"Capturing observation took {obs_capture_time:.6f}s")
# Set appropriate transfer state
if obs_timestep == 0:
state = async_inference_pb2.TRANSFER_BEGIN
else:
state = async_inference_pb2.TRANSFER_MIDDLE
self.send_observation(observation, state)
except Exception as e:
self.logger.error(f"Error in observation sender: {e}")
def control_loop(self, get_observation_fn):
"""Combined function for executing actions and streaming observations"""
# Wait at barrier for synchronized start
self.start_barrier.wait()
self.logger.info("Control loop thread starting")
control_loops = 0
while self.running:
control_loop_start = time.time()
self.control_loop_action()
"""Control loop: (2) Streaming observations to the remote policy server"""
if self._ready_to_send_observation() or control_loops == 0:
self.control_loop_observation(get_observation_fn)
# Dynamically adjust sleep time to maintain the desired control frequency
time.sleep(max(0, environment_dt - (time.time() - control_loop_start)))
control_loops += 1
def async_client(task_instruction: str, verbose: int = 0):
client = RobotClient()
if client.start():
# Function to get observations from the robot
def get_observation():
observation_content = None
observation_content = client.robot.capture_observation()
observation_content["task"] = [task_instruction]
observation = TimedObservation(
timestamp=time.time(), observation=observation_content, timestep=max(client.latest_action, 0)
)
return observation
client.logger.info("Starting all threads...")
# Create and start action receiver thread
action_receiver_thread = threading.Thread(target=client.receive_actions)
action_receiver_thread.daemon = True
control_loop_thread = threading.Thread(target=client.control_loop, args=(get_observation,))
control_loop_thread.daemon = True
# Start all threads
action_receiver_thread.start()
control_loop_thread.start()
try:
while client.running:
time.sleep(idle_wait)
except KeyboardInterrupt:
pass
finally:
client.stop()
client.logger.info("Client stopped")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Robot client for executing tasks via policy server")
parser.add_argument(
"--task",
type=str,
required=True,
help="Task instruction for the robot to execute (e.g., 'fold my tshirt')",
)
parser.add_argument("--verbose", type=int, default=0, help="Verbosity level (default: 0)")
parser.add_argument(
"--server-port-address",
type=str,
default="localhost:8080",
help="Server & port address (default: localhost:8080, or SERVER_ADDRESS env var)",
)
parser.add_argument("--policy-type", type=str, default="smolvla", help="Policy type (default: smolvla)")
parser.add_argument(
"--pretrained-name-or-path",
type=str,
default="lerobot/smolvla_base",
help="Pretrained model name or path (default: lerobot/smolvla_base)",
)
parser.add_argument(
"--policy-device", type=str, default="cuda", help="Device for policy inference (default: cuda)"
)
parser.add_argument(
"--chunk-size-threshold",
type=float,
default=0.5,
help="Chunk size threshold (`g` in the paper, default: 0.5)",
)
parser.add_argument(
"--robot",
type=str,
default="so100",
help="Robot name, as per the `make_robot` function (default: so100)",
)
args = parser.parse_args()
# Create client with parsed arguments
client = RobotClient(
server_address=args.server_address,
policy_type=args.policy_type,
pretrained_name_or_path=args.pretrained_name_or_path,
policy_device=args.policy_device,
chunk_size_threshold=args.chunk_size_threshold,
robot=args.robot,
)
if client.start():
# Function to get observations from the robot
def get_observation():
observation_content = None
observation_content = client.robot.capture_observation()
observation_content["task"] = [args.task]
observation = TimedObservation(
timestamp=time.time(), observation=observation_content, timestep=max(client.latest_action, 0)
)
return observation
client.logger.info("Starting all threads...")
# Create and start action receiver thread
action_receiver_thread = threading.Thread(target=client.receive_actions)
action_receiver_thread.daemon = True
control_loop_thread = threading.Thread(target=client.control_loop, args=(get_observation,))
control_loop_thread.daemon = True
# Start all threads
action_receiver_thread.start()
control_loop_thread.start()
try:
while client.running:
time.sleep(idle_wait)
except KeyboardInterrupt:
pass
finally:
client.stop()
client.logger.info("Client stopped")