Compare commits

...

63 Commits

Author SHA1 Message Date
Remi Cadene
eeb7e0d490 nightly 2024-07-27 13:31:03 +02:00
Remi Cadene
fac22b1dfe Revert "Revert image aug"
This reverts commit 569c9092dc.
2024-07-26 23:55:44 +02:00
Remi Cadene
2a0c497c87 Add act_koch_real_bigger.yaml 2024-07-26 23:55:38 +02:00
Remi Cadene
34735ec486 Add act_koch_real_bigger.yaml 2024-07-26 23:54:48 +02:00
Remi Cadene
57af6b90a2 revert debug 2024-07-26 18:01:23 +02:00
Remi Cadene
44dc6ab182 fix camera_index 2024-07-26 17:52:06 +02:00
Remi Cadene
569c9092dc Revert image aug 2024-07-26 17:38:38 +02:00
Remi Cadene
181f20a16d Merge remote-tracking branch 'origin/main' into user/rcadene/2024_07_16_control_robot_v2 2024-07-26 17:14:06 +02:00
Remi Cadene
bf2fc099cc fix tests 2024-07-26 17:07:09 +02:00
Remi Cadene
5a16163790 Add configuration of motors 2024-07-26 16:46:43 +02:00
Remi Cadene
875c1fbb2a Rename record replay; Remove run_policy; Add koch.yaml; Move to degree 2024-07-23 11:31:12 +02:00
Remi Cadene
b0f4f4f9a1 Add compatibility with camera index as port 2024-07-19 11:32:31 +02:00
Remi Cadene
1664dac300 fix 2024-07-18 18:48:41 +02:00
Remi Cadene
895182b272 Merge remote-tracking branch 'origin/main' into user/rcadene/2024_07_16_control_robot_v2 2024-07-17 23:04:14 +02:00
Remi Cadene
2c7089e9f9 robot disconnect, fix cv2.waitkey 2024-07-17 23:01:20 +02:00
Remi Cadene
3e2c43296c Display cameras and add reset env in run_policy (WIP) 2024-07-17 10:37:23 +02:00
Remi Cadene
6fc1d0dfc1 Update transforms (increase sharpness, reduce saturation, reduce hue) 2024-07-16 18:04:55 +02:00
Remi Cadene
694a5dbca8 fix color 2024-07-15 17:36:05 +02:00
Remi
61d9d74308 Merge branch 'main' into user/rcadene/2024_06_22_control_robot 2024-07-15 14:35:02 +02:00
Remi Cadene
87e39da641 shutil.rmtree(tmp_imgs_dir) 2024-07-15 14:20:35 +02:00
Simon Alibert
03d778e672 Fix docker build 2024-07-15 11:06:08 +02:00
Remi Cadene
14bc60270f back 2024-07-14 17:31:12 +02:00
Remi Cadene
0407b0dab2 DEBUG 2024-07-14 17:25:27 +02:00
Remi Cadene
8b4a1c7a7f fix 2024-07-14 17:12:57 +02:00
Remi Cadene
d878ec27d5 is_headless 2024-07-14 14:52:15 +00:00
Remi Cadene
42325f5990 Try adding python3-dev in lerobot-gpu-dev/Dockerfile 2024-07-14 16:45:09 +02:00
Remi Cadene
d2a17d2c74 Add push to hub, Camera 0 and 1, pynput optional 2024-07-14 16:35:22 +02:00
Remi Cadene
3fc351074c task: null 2024-07-13 16:46:25 +02:00
Remi Cadene
3e80ec65d2 Add env/koch_real.yaml 2024-07-13 16:38:24 +02:00
Remi Cadene
8be46f3760 Add env/koch_real.yaml 2024-07-13 16:37:44 +02:00
Remi Cadene
30c7a9e6fc nit + num-image-writers 8 2024-07-12 20:00:41 +02:00
Remi Cadene
d525e1b0f8 Add keyboard interaction, Add tqdm, Optimize stuff, Fix, Add resuming 2024-07-12 19:56:28 +02:00
Remi Cadene
7a659dbd6b Add reset-time-s, Add keyboard early exit, Add comments 2024-07-12 12:58:56 +02:00
Remi Cadene
1993d29296 Remove int32 convertion function, Set PID 1500, 0, 400 for elbow 2024-07-12 11:24:29 +02:00
Remi Cadene
e615176845 nit 2024-07-11 20:03:56 +02:00
Remi Cadene
3918e118c3 Add assert_same_address 2024-07-11 18:38:23 +02:00
Remi Cadene
17bc32c1e3 nit 2024-07-11 17:16:24 +02:00
Remi Cadene
73692e7459 Make data recording smooth and small fix 2024-07-11 17:14:23 +02:00
Remi Cadene
e6aa8cc641 more ports 2024-07-11 15:27:03 +02:00
Remi Cadene
5494faf096 fix unit tests (minimal) 2024-07-11 00:24:58 +02:00
Remi Cadene
01f8cede0b Add koch to CI 2024-07-10 23:05:36 +02:00
Remi Cadene
5d092b1be2 nit 2024-07-10 20:01:29 +02:00
Remi Cadene
7560372404 removed to radian representations 2024-07-10 19:56:51 +02:00
Remi Cadene
1bc13f39bf rename color to color_mode 2024-07-10 19:54:23 +02:00
Remi Cadene
95de4b7454 Skip tests if alexander koch robot is not available 2024-07-10 19:41:57 +02:00
Remi Cadene
c2388c59be uncomment shutil.rmtree(tmp_imgs_dir) 2024-07-10 19:07:15 +02:00
Remi Cadene
f7a7ed9aa9 Update opencv and dynamixel (find_port) 2024-07-10 18:47:59 +02:00
Remi Cadene
7411cf2a7a Improve opencv 2024-07-10 17:43:33 +02:00
Remi Cadene
2bebdf78a0 Nit + Remove benchmark opencv + Clean + Add docstring 2024-07-10 17:35:18 +02:00
Remi Cadene
fb06417a83 remove comment read/write single value 2024-07-10 14:13:22 +02:00
Remi Cadene
dd7bce7563 format 2024-07-10 14:11:53 +02:00
Remi Cadene
68a561570c fix unit test 2024-07-10 14:05:58 +02:00
Remi Cadene
52e760a88e Almost done 2024-07-10 00:07:40 +02:00
Remi Cadene
798373e7bf All tests passing except test_control_robot.py 2024-07-09 22:57:36 +02:00
Remi Cadene
a0432f1608 Add unit tests (WIP) 2024-07-09 22:57:36 +02:00
Remi Cadene
3ba05d53b9 Remove async in dynamixel 2024-07-09 22:57:36 +02:00
Remi Cadene
72b2e342ae revert threads to thread, results to color_image in OpenCVCamera 2024-07-09 22:57:36 +02:00
Remi Cadene
d83d34d9b3 Add log_control_info 2024-07-09 22:57:36 +02:00
Remi Cadene
3ff789c181 Add async_read and async_write (it doesnt work) 2024-07-09 22:57:36 +02:00
Remi Cadene
6e77a399a2 Add dynamixel-sdk as extra 2024-07-09 22:57:35 +02:00
Remi Cadene
8a7aa50e97 Style 2024-07-09 22:57:12 +02:00
Remi Cadene
47aac0dff7 rebase lock 2024-07-09 22:57:11 +02:00
Remi Cadene
858d49fc04 Add robot_devices and control_robot script 2024-07-09 22:56:46 +02:00
15 changed files with 847 additions and 394 deletions

View File

@@ -182,7 +182,7 @@ class OpenCVCamera:
```
"""
def __init__(self, camera_index: int, config: OpenCVCameraConfig | None = None, **kwargs):
def __init__(self, camera_index: int | str, config: OpenCVCameraConfig | None = None, **kwargs):
if config is None:
config = OpenCVCameraConfig()
# Overwrite config arguments using kwargs
@@ -194,11 +194,6 @@ class OpenCVCamera:
self.height = config.height
self.color_mode = config.color_mode
if not isinstance(self.camera_index, int):
raise ValueError(
f"Camera index must be provided as an int, but {self.camera_index} was given instead."
)
self.camera = None
self.is_connected = False
self.thread = None

View File

@@ -2,6 +2,7 @@ from pathlib import Path
from typing import Protocol
import cv2
import einops
import numpy as np
@@ -39,6 +40,16 @@ def save_depth_image(depth, path, write_shape=False):
cv2.imwrite(str(path), depth_image)
def convert_torch_image_to_cv2(tensor, rgb_to_bgr=True):
assert tensor.ndim == 3
c, h, w = tensor.shape
assert c < h and c < w
color_image = einops.rearrange(tensor, "c h w -> h w c").numpy()
if rgb_to_bgr:
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
return color_image
# Defines a camera type
class Camera(Protocol):
def connect(self): ...

View File

@@ -5,6 +5,7 @@ from copy import deepcopy
from pathlib import Path
import numpy as np
import tqdm
from dynamixel_sdk import (
COMM_SUCCESS,
DXL_HIBYTE,
@@ -21,9 +22,11 @@ from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError,
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 2.0
BAUD_RATE = 1_000_000
BAUDRATE = 1_000_000
TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m077
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m288
# https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
@@ -86,6 +89,16 @@ X_SERIES_CONTROL_TABLE = {
"Present_Temperature": (146, 1),
}
X_SERIES_BAUDRATE_TABLE = {
0: 9_600,
1: 57_600,
2: 115_200,
3: 1_000_000,
4: 2_000_000,
5: 3_000_000,
6: 4_000_000,
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
@@ -98,7 +111,73 @@ MODEL_CONTROL_TABLE = {
"xm540-w270": X_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"x_series": 4096,
"xl330-m077": 4096,
"xl330-m288": 4096,
"xl430-w250": 4096,
"xm430-w350": 4096,
"xm540-w270": 4096,
}
MODEL_BAUDRATE_TABLE = {
"x_series": X_SERIES_BAUDRATE_TABLE,
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
}
NUM_READ_RETRY = 10
NUM_WRITE_RETRY = 10
def convert_indices_to_baudrates(values: np.ndarray | list[int], models: list[str]):
assert len(values) == len(models)
for i in range(len(values)):
model = models[i]
index = values[i]
values[i] = MODEL_BAUDRATE_TABLE[model][index]
return values
def convert_baudrates_to_indices(values: np.ndarray | list[int], models: list[str]):
assert len(values) == len(models)
for i in range(len(values)):
model = models[i]
brate = values[i]
table_values = list(MODEL_BAUDRATE_TABLE[model].values())
table_keys = list(MODEL_BAUDRATE_TABLE[model].keys())
values[i] = table_keys[table_values.index(brate)]
return values
def convert_to_bytes(value, bytes):
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
DXL_LOBYTE(DXL_LOWORD(value)),
]
elif bytes == 2:
data = [
DXL_LOBYTE(DXL_LOWORD(value)),
DXL_HIBYTE(DXL_LOWORD(value)),
]
elif bytes == 4:
data = [
DXL_LOBYTE(DXL_LOWORD(value)),
DXL_HIBYTE(DXL_LOWORD(value)),
DXL_LOBYTE(DXL_HIWORD(value)),
DXL_HIBYTE(DXL_HIWORD(value)),
]
else:
raise NotImplementedError(
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
f"{bytes} is provided instead."
)
return data
def get_group_sync_key(data_name, motor_names):
@@ -233,6 +312,7 @@ class DynamixelMotorsBus:
port: str,
motors: dict[str, tuple[int, str]],
extra_model_control_table: dict[str, list[tuple]] | None = None,
extra_model_resolution: dict[str, int] | None = None,
):
self.port = port
self.motors = motors
@@ -241,6 +321,10 @@ class DynamixelMotorsBus:
if extra_model_control_table:
self.model_ctrl_table.update(extra_model_control_table)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
if extra_model_resolution:
self.model_resolution.update(extra_model_resolution)
self.port_handler = None
self.packet_handler = None
self.calibration = None
@@ -268,52 +352,279 @@ class DynamixelMotorsBus:
)
raise
self.port_handler.setBaudRate(BAUD_RATE)
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
# Allow to read and write
self.is_connected = True
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
# Set expected baud rate for the bus
self.set_bus_baudrate(BAUDRATE)
if not self.are_motors_configured():
print(
r"/!\ First, verify that all the cables are connected the proper way. If you detect an issue, before making any modification, unplug the power cord to not damage the motors. Rewire correctly. Then plug the power again and relaunch the script."
)
print(
r"/!\ Secondly, if the cables connection look correct and it is the first time that you use these motors, follow these manual steps to configure them."
)
input("Press Enter to configure your motors...")
print()
self.configure_motors()
def reconnect(self):
self.port_handler = PortHandler(self.port)
self.packet_handler = PacketHandler(PROTOCOL_VERSION)
if not self.port_handler.openPort():
raise OSError(f"Failed to open port '{self.port}'.")
self.is_connected = True
def are_motors_configured(self):
try:
return (self.motor_indices == self.read("ID")).all()
except ConnectionError as e:
print(e)
return False
def configure_motors(self):
# TODO(rcadene): This script assumes motors follow the X_SERIES baudrates
print("Scanning all baudrates and motor indices")
all_baudrates = set(X_SERIES_BAUDRATE_TABLE.values())
ids_per_baudrate = {}
for baudrate in all_baudrates:
self.set_bus_baudrate(baudrate)
present_ids = self.find_motor_indices()
if len(present_ids) > 0:
ids_per_baudrate[baudrate] = present_ids
print(f"Motor indices detected: {ids_per_baudrate}")
print()
possible_baudrates = list(ids_per_baudrate.keys())
possible_ids = list({idx for sublist in ids_per_baudrate.values() for idx in sublist})
untaken_ids = list(set(range(MAX_ID_RANGE)) - set(possible_ids) - set(self.motor_indices))
# Connect successively one motor to the chain and write a unique random index for each
for i in range(len(self.motors)):
self.disconnect()
print("1. Unplug the power cord")
print(
f"2. Plug/unplug minimal number of cables to only have the first {i+1} motor(s) ({self.motor_names[:i+1]}) connected."
)
print("3. Re-plug the power cord.")
input("Press Enter to continue...")
print()
self.reconnect()
if i > 0:
try:
self._read_with_motor_ids(self.motor_models, untaken_ids[:i], "ID")
except ConnectionError:
print(f"Failed to read from {untaken_ids[:i+1]}. Make sure the power cord is plugged in.")
input("Press Enter to continue...")
print()
self.reconnect()
print("Scanning possible baudrates and motor indices")
motor_found = False
for baudrate in possible_baudrates:
self.set_bus_baudrate(baudrate)
present_ids = self.find_motor_indices(possible_ids)
if len(present_ids) == 1:
present_idx = present_ids[0]
print(f"Detected motor with index {present_idx}")
if baudrate != BAUDRATE:
print(f"Setting its baudrate to {BAUDRATE}")
baudrate_idx = list(X_SERIES_BAUDRATE_TABLE.values()).index(BAUDRATE)
# The write can fail, so we allow retries
for _ in range(NUM_WRITE_RETRY):
self._write_with_motor_ids(
self.motor_models, present_idx, "Baud_Rate", baudrate_idx
)
time.sleep(0.5)
self.set_bus_baudrate(BAUDRATE)
try:
present_baudrate_idx = self._read_with_motor_ids(
self.motor_models, present_idx, "Baud_Rate"
)
except ConnectionError:
print("Failed to write baudrate. Retrying.")
self.set_bus_baudrate(baudrate)
continue
break
else:
raise
if present_baudrate_idx != baudrate_idx:
raise OSError("Failed to write baudrate.")
print(f"Setting its index to a temporary untaken index ({untaken_ids[i]})")
self._write_with_motor_ids(self.motor_models, present_idx, "ID", untaken_ids[i])
present_idx = self._read_with_motor_ids(self.motor_models, untaken_ids[i], "ID")
if present_idx != untaken_ids[i]:
raise OSError("Failed to write index.")
motor_found = True
break
elif len(present_ids) > 1:
raise OSError(f"More than one motor detected ({present_ids}), but only one was expected.")
if not motor_found:
raise OSError(
"No motor found, but one new motor expected. Verify power cord is plugged in and retry."
)
print()
print(f"Setting expected motor indices: {self.motor_indices}")
self.set_bus_baudrate(BAUDRATE)
self._write_with_motor_ids(
self.motor_models, untaken_ids[: len(self.motors)], "ID", self.motor_indices
)
print()
if (self.read("ID") != self.motor_indices).any():
raise OSError("Failed to write motors indices.")
print("Configuration is done!")
def find_motor_indices(self, possible_ids=None):
if possible_ids is None:
possible_ids = range(MAX_ID_RANGE)
indices = []
for idx in tqdm.tqdm(possible_ids):
try:
present_idx = self._read_with_motor_ids(self.motor_models, [idx], "ID")[0]
except ConnectionError:
continue
if idx != present_idx:
# sanity check
raise OSError(
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
)
indices.append(idx)
return indices
def set_bus_baudrate(self, baudrate):
present_bus_baudrate = self.port_handler.getBaudRate()
if present_bus_baudrate != baudrate:
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
self.port_handler.setBaudRate(baudrate)
if self.port_handler.getBaudRate() != baudrate:
raise OSError("Failed to write bus baud rate.")
@property
def motor_names(self) -> list[int]:
def motor_names(self) -> list[str]:
return list(self.motors.keys())
@property
def motor_models(self) -> list[str]:
return [model for _, model in self.motors.values()]
@property
def motor_indices(self) -> list[int]:
return [idx for idx, _ in self.motors.values()]
def set_calibration(self, calibration: dict[str, tuple[int, bool]]):
self.calibration = calibration
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
if not self.calibration:
return values
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 centered degree range [-180.0, 180.0[
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, dynamixel xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 42638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered degree range [-180, 180[. This function first applies the pre-computed calibration to convert
from [0, 2**32[ to [-2048, 2048[, then divide by 2048.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32[ to centered signed int32 range [-2**31, 2**31[
values = values.astype(np.int32)
for i, name in enumerate(motor_names):
homing_offset, drive_mode = self.calibration[name]
if values[i] is not None:
if drive_mode:
values[i] *= -1
values[i] += homing_offset
# Update direction of rotation of the motor to match between leader and follower. In fact, the motor of the leader for a given joint
# can be assembled in an opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to centered resolution range [-resolution, resolution[ (e.g. [-2048, 2048[)
values[i] += homing_offset
# Convert from range [-resolution, resolution[ to the universal float32 centered degree range [-180, 180[
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
_, model = self.motors[name]
resolution = self.model_resolution[model]
values[i] = values[i] / (resolution // 2) * 180
return values
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
if not self.calibration:
return values
if motor_names is None:
motor_names = self.motor_names
# Convert from the universal float32 centered degree range [-180, 180[ to centered resolution range [-resolution, resolution[
for i, name in enumerate(motor_names):
_, model = self.motors[name]
resolution = self.model_resolution[model]
values[i] = values[i] / 180 * (resolution // 2)
values = np.round(values).astype(np.int32)
# Convert from range [-resolution, resolution[ to centered signed int32 range [-2**31, 2**31[
for i, name in enumerate(motor_names):
homing_offset, drive_mode = self.calibration[name]
values[i] -= homing_offset
if values[i] is not None:
values[i] -= homing_offset
if drive_mode:
values[i] *= -1
# Update direction of rotation of the motor that was matching between leader and follower to their original direction.
# In fact, the motor of the leader for a given joint can be assembled in an opposite direction in term of rotation
# than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
return values
def _read_with_motor_ids(self, motor_models, motor_ids, data_name):
return_list = True
if not isinstance(motor_ids, list):
return_list = False
motor_ids = [motor_ids]
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
for idx in motor_ids:
group.addParam(idx)
comm = group.txRxPacket()
if comm != COMM_SUCCESS:
raise ConnectionError(
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
values = []
for idx in motor_ids:
value = group.getData(idx, addr, bytes)
values.append(value)
if return_list:
return values
else:
return values[0]
def read(self, data_name, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
@@ -367,7 +678,7 @@ class DynamixelMotorsBus:
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration(values, motor_names)
# log the number of seconds it took to read the data from the motors
@@ -380,6 +691,26 @@ class DynamixelMotorsBus:
return values
def _write_with_motor_ids(self, motor_models, motor_ids, data_name, values):
if not isinstance(motor_ids, list):
motor_ids = [motor_ids]
if not isinstance(values, list):
values = [values]
assert_same_address(self.model_ctrl_table, motor_models, data_name)
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
group = GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
for idx, value in zip(motor_ids, values, strict=True):
data = convert_to_bytes(value, bytes)
group.addParam(idx, data)
comm = group.txPacket()
if comm != COMM_SUCCESS:
raise ConnectionError(
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
@@ -406,7 +737,7 @@ class DynamixelMotorsBus:
motor_ids.append(motor_idx)
models.append(model)
if data_name in CALIBRATION_REQUIRED:
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.revert_calibration(values, motor_names)
values = values.tolist()
@@ -422,30 +753,7 @@ class DynamixelMotorsBus:
)
for idx, value in zip(motor_ids, values, strict=True):
# Note: No need to convert back into unsigned int, since this byte preprocessing
# already handles it for us.
if bytes == 1:
data = [
DXL_LOBYTE(DXL_LOWORD(value)),
]
elif bytes == 2:
data = [
DXL_LOBYTE(DXL_LOWORD(value)),
DXL_HIBYTE(DXL_LOWORD(value)),
]
elif bytes == 4:
data = [
DXL_LOBYTE(DXL_LOWORD(value)),
DXL_HIBYTE(DXL_LOWORD(value)),
DXL_LOBYTE(DXL_HIWORD(value)),
DXL_HIBYTE(DXL_HIWORD(value)),
]
else:
raise NotImplementedError(
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
f"{bytes} is provided instead."
)
data = convert_to_bytes(value, bytes)
if init_group:
self.group_writers[group_key].addParam(idx, data)
else:

View File

@@ -1,46 +1,7 @@
def make_robot(name):
if name == "koch":
# TODO(rcadene): Add configurable robot from command line and yaml config
# TODO(rcadene): Add example with and without cameras
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
from lerobot.common.robot_devices.robots.koch import KochRobot
import hydra
from omegaconf import DictConfig
robot = KochRobot(
leader_arms={
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl330-m077"),
"shoulder_lift": (2, "xl330-m077"),
"elbow_flex": (3, "xl330-m077"),
"wrist_flex": (4, "xl330-m077"),
"wrist_roll": (5, "xl330-m077"),
"gripper": (6, "xl330-m077"),
},
),
},
follower_arms={
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
),
},
cameras={
"laptop": OpenCVCamera(0, fps=30, width=640, height=480),
"phone": OpenCVCamera(1, fps=30, width=640, height=480),
},
)
else:
raise ValueError(f"Robot '{name}' not found.")
def make_robot(cfg: DictConfig):
robot = hydra.utils.instantiate(cfg)
return robot

View File

@@ -29,9 +29,12 @@ URL_90_DEGREE_POSITION = {
# Calibration logic
########################################################################
# In range ]-2048, 2048[
TARGET_HORIZONTAL_POSITION = np.array([0, -1024, 1024, 0, -1024, 0])
TARGET_90_DEGREE_POSITION = np.array([1024, 0, 0, 1024, 0, -1024])
GRIPPER_OPEN = np.array([-400])
# In range ]-180, 180[
GRIPPER_OPEN = np.array([-35.156])
def apply_homing_offset(values: np.array, homing_offset: np.array) -> np.array:
@@ -330,7 +333,9 @@ class KochRobot:
# Connect the arms
for name in self.follower_arms:
print(f"Connecting {name} follower arm.")
self.follower_arms[name].connect()
print(f"Connecting {name} leader arm.")
self.leader_arms[name].connect()
# Reset the arms and load or run calibration
@@ -357,6 +362,18 @@ class KochRobot:
for name in self.leader_arms:
self.leader_arms[name].set_calibration(calibration[f"leader_{name}"])
for name in self.leader_arms:
values = self.leader_arms[name].read("Present_Position")
if (values < -180).any() or (values >= 180).any():
raise ValueError(
f"At least one of the motor of the {name} leader arm has a joint value outside of its centered degree range of ]-180, 180[."
'This "jump of range" can be caused by a hardware issue, or you might have unexpectedly completed a full rotation of the motor '
"during manipulation or transportation of your robot. "
f"The values and motors: {values} {self.leader_arms[name].motor_names}.\n"
"Rotate the arm to fit the range ]-180, 180[ and relaunch the script, or recalibrate all motors by setting a different "
"`calibration_path` during the instatiation of your robot."
)
# Set better PID values to close the gap between recored states and actions
# TODO(rcadene): Implement an automatic procedure to set optimial PID values for each motor
for name in self.follower_arms:
@@ -500,11 +517,7 @@ class KochRobot:
obs_dict = {}
obs_dict["observation.state"] = torch.from_numpy(state)
for name in self.cameras:
# Convert to pytorch format: channel first and float32 in [0,1]
img = torch.from_numpy(images[name])
img = img.type(torch.float32) / 255
img = img.permute(2, 0, 1).contiguous()
obs_dict[f"observation.images.{name}"] = img
obs_dict[f"observation.images.{name}"] = torch.from_numpy(images[name])
return obs_dict
def send_action(self, action: torch.Tensor):

View File

@@ -107,13 +107,13 @@ training:
min_max: [0.8, 1.2]
saturation:
weight: 1
min_max: [0.5, 1.5]
min_max: [0.7, 1.3]
hue:
weight: 1
min_max: [-0.05, 0.05]
min_max: [-0.02, 0.02]
sharpness:
weight: 1
min_max: [0.8, 1.2]
min_max: [0.1, 1.9]
eval:
n_episodes: 1

View File

@@ -0,0 +1,102 @@
# @package _global_
# Use `act_koch_real.yaml` to train on real-world datasets collected on Alexander Koch's robots.
# Compared to `act.yaml`, it contains 2 cameras (i.e. laptop, phone) instead of 1 camera (i.e. top).
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
#
# Example of usage for training:
# ```bash
# python lerobot/scripts/train.py \
# policy=act_koch_real \
# env=koch_real
# ```
seed: 1000
dataset_repo_id: lerobot/koch_pick_place_lego
override_dataset_stats:
observation.images.laptop:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.phone:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 160000
online_steps: 0
eval_freq: -1
save_freq: 5000
log_freq: 100
save_checkpoint: true
batch_size: 16
lr: 1e-4
lr_backbone: 1e-4
weight_decay: 1e-4
grad_clip_norm: 10
online_steps_between_rollouts: 1
delta_timestamps:
action: "[i / ${fps} + 1 / ${fps} for i in range(${policy.chunk_size})]"
eval:
n_episodes: 50
batch_size: 50
# See `configuration_act.py` for more details.
policy:
name: act
# Input / output structure.
n_obs_steps: 1
chunk_size: 100
n_action_steps: 100
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.laptop: [3, 480, 640]
observation.images.phone: [3, 480, 640]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.images.laptop: mean_std
observation.images.phone: mean_std
observation.state: mean_std
output_normalization_modes:
action: mean_std
# Architecture.
# Vision backbone.
vision_backbone: resnet18
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
replace_final_stride_with_dilation: false
# Transformer layers.
pre_norm: false
dim_model: 512
n_heads: 8
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 4
# VAE.
use_vae: true
latent_dim: 32
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_momentum: null
# Training and loss computation.
dropout: 0.1
kl_weight: 10.0

View File

@@ -0,0 +1,38 @@
_target_: lerobot.common.robot_devices.robots.koch.KochRobot
leader_arms:
main:
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
port: /dev/tty.usbmodem575E0031751
motors:
# name: (index, model)
shoulder_pan: [1, "xl330-m077"]
shoulder_lift: [2, "xl330-m077"]
elbow_flex: [3, "xl330-m077"]
wrist_flex: [4, "xl330-m077"]
wrist_roll: [5, "xl330-m077"]
gripper: [6, "xl330-m077"]
follower_arms:
main:
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
port: /dev/tty.usbmodem575E0032081
motors:
# name: (index, model)
shoulder_pan: [1, "xl430-w250"]
shoulder_lift: [2, "xl430-w250"]
elbow_flex: [3, "xl330-m288"]
wrist_flex: [4, "xl330-m288"]
wrist_roll: [5, "xl330-m288"]
gripper: [6, "xl330-m288"]
cameras:
laptop:
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
camera_index: 0
fps: 30
width: 640
height: 480
phone:
_target_: lerobot.common.robot_devices.cameras.opencv.OpenCVCamera
camera_index: 1
fps: 30
width: 640
height: 480

View File

@@ -4,6 +4,9 @@ Examples of usage:
- Unlimited teleoperation at highest frequency (~200 Hz is expected), to exit with CTRL+C:
```bash
python lerobot/scripts/control_robot.py teleoperate
# Remove the cameras from the robot definition. They are not used in 'teleoperate' anyway.
python lerobot/scripts/control_robot.py teleoperate '~cameras'
```
- Unlimited teleoperation at a limited frequency of 30 Hz, to simulate data recording frequency:
@@ -14,7 +17,7 @@ python lerobot/scripts/control_robot.py teleoperate \
- Record one episode in order to test replay:
```bash
python lerobot/scripts/control_robot.py record_dataset \
python lerobot/scripts/control_robot.py record \
--fps 30 \
--root tmp/data \
--repo-id $USER/koch_test \
@@ -32,7 +35,7 @@ python lerobot/scripts/visualize_dataset.py \
- Replay this test episode:
```bash
python lerobot/scripts/control_robot.py replay_episode \
python lerobot/scripts/control_robot.py replay \
--fps 30 \
--root tmp/data \
--repo-id $USER/koch_test \
@@ -42,12 +45,11 @@ python lerobot/scripts/control_robot.py replay_episode \
- Record a full dataset in order to train a policy, with 2 seconds of warmup,
30 seconds of recording for each episode, and 10 seconds to reset the environment in between episodes:
```bash
python lerobot/scripts/control_robot.py record_dataset \
python lerobot/scripts/control_robot.py record \
--fps 30 \
--root data \
--repo-id $USER/koch_pick_place_lego \
--num-episodes 50 \
--run-compute-stats 1 \
--warmup-time-s 2 \
--episode-time-s 30 \
--reset-time-s 10
@@ -74,7 +76,14 @@ DATA_DIR=data python lerobot/scripts/train.py \
- Run the pretrained policy on the robot:
```bash
python lerobot/scripts/control_robot.py run_policy \
python lerobot/scripts/control_robot.py record \
--fps 30 \
--root data \
--repo-id $USER/eval_act_koch_real \
--num-episodes 10 \
--warmup-time-s 2 \
--episode-time-s 30 \
--reset-time-s 10
-p outputs/train/act_koch_real/checkpoints/080000/pretrained_model
```
"""
@@ -88,8 +97,10 @@ import platform
import shutil
import time
from contextlib import nullcontext
from functools import cache
from pathlib import Path
import cv2
import torch
import tqdm
from huggingface_hub import create_branch
@@ -179,7 +190,8 @@ def log_control_info(robot, dt_s, episode_index=None, frame_index=None, fps=None
logging.info(info_str)
def get_is_headless():
@cache
def is_headless():
if platform.system() == "Linux":
display = os.environ.get("DISPLAY")
if display is None or display == "":
@@ -213,8 +225,10 @@ def teleoperate(robot: Robot, fps: int | None = None, teleop_time_s: float | Non
break
def record_dataset(
def record(
robot: Robot,
policy: torch.nn.Module | None = None,
hydra_cfg: DictConfig | None = None,
fps: int | None = None,
root="data",
repo_id="lerobot/debug",
@@ -255,32 +269,10 @@ def record_dataset(
else:
episode_index = 0
is_headless = get_is_headless()
# Execute a few seconds without recording data, to give times
# to the robot devices to connect and start synchronizing.
timestamp = 0
start_time = time.perf_counter()
is_warmup_print = False
while timestamp < warmup_time_s:
if not is_warmup_print:
logging.info("Warming up (no data recording)")
os.system('say "Warmup" &')
is_warmup_print = True
now = time.perf_counter()
observation, action = robot.teleop_step(record_data=True)
if not is_headless:
image_keys = [key for key in observation if "image" in key]
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - now
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_time
if is_headless():
logging.info(
"Headless environment detected. Display cameras on screen and keyboard inputs will not be available."
)
# Allow to exit early while recording an episode or resetting the environment,
# by tapping the right arrow key '->'. This might require a sudo permission
@@ -290,9 +282,7 @@ def record_dataset(
stop_recording = False
# Only import pynput if not in a headless environment
if is_headless:
logging.info("Headless environment detected. Keyboard input will not be available.")
else:
if not is_headless():
from pynput import keyboard
def on_press(key):
@@ -315,6 +305,53 @@ def record_dataset(
listener = keyboard.Listener(on_press=on_press)
listener.start()
# Load policy if any
if policy is not None:
# Check device is available
device = get_safe_torch_device(hydra_cfg.device, log=True)
policy.eval()
policy.to(device)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(hydra_cfg.seed)
# override fps using policy fps
fps = hydra_cfg.env.fps
# Execute a few seconds without recording data, to give times
# to the robot devices to connect and start synchronizing.
timestamp = 0
start_time = time.perf_counter()
is_warmup_print = False
while timestamp < warmup_time_s:
if not is_warmup_print:
logging.info("Warming up (no data recording)")
os.system('say "Warmup" &')
is_warmup_print = True
now = time.perf_counter()
if policy is None:
observation, action = robot.teleop_step(record_data=True)
else:
observation = robot.capture_observation()
if not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - now
log_control_info(robot, dt_s, fps=fps)
timestamp = time.perf_counter() - start_time
# Save images using threads to reach high fps (30 and more)
# Using `with` to exist smoothly if an execption is raised.
# Using only 4 worker threads to avoid blocking the main thread.
@@ -330,7 +367,11 @@ def record_dataset(
start_time = time.perf_counter()
while timestamp < episode_time_s:
now = time.perf_counter()
observation, action = robot.teleop_step(record_data=True)
if policy is None:
observation, action = robot.teleop_step(record_data=True)
else:
observation = robot.capture_observation()
image_keys = [key for key in observation if "image" in key]
not_image_keys = [key for key in observation if "image" not in key]
@@ -342,11 +383,44 @@ def record_dataset(
)
]
if not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
for key in not_image_keys:
if key not in ep_dict:
ep_dict[key] = []
ep_dict[key].append(observation[key])
if policy is not None:
with (
torch.inference_mode(),
torch.autocast(device_type=device.type)
if device.type == "cuda" and hydra_cfg.use_amp
else nullcontext(),
):
# Convert to pytorch format: channel first and float32 in [0,1] with batch dimension
for name in observation:
if "image" in name:
observation[name] = observation[name].type(torch.float32) / 255
observation[name] = observation[name].permute(2, 0, 1).contiguous()
observation[name] = observation[name].unsqueeze(0)
if device.type == "mps":
for name in observation:
observation[name] = observation[name].to(device)
action = policy.select_action(observation)
# remove batch dimension
action = action.squeeze(0)
action = action.to("cpu")
robot.send_action(action)
action = {"action": action}
for key in action:
if key not in ep_dict:
ep_dict[key] = []
@@ -434,7 +508,7 @@ def record_dataset(
if is_last_episode:
logging.info("Done recording")
os.system('say "Done recording"')
if not is_headless:
if not is_headless():
listener.stop()
logging.info("Waiting for threads writing the images on disk to terminate...")
@@ -444,6 +518,10 @@ def record_dataset(
pass
break
robot.disconnect()
if not is_headless():
cv2.destroyAllWindows()
num_episodes = episode_index
logging.info("Encoding videos")
@@ -495,6 +573,7 @@ def record_dataset(
stats = compute_stats(lerobot_dataset)
lerobot_dataset.stats = stats
else:
stats = {}
logging.info("Skipping computation of the dataset statistrics")
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
@@ -516,7 +595,7 @@ def record_dataset(
return lerobot_dataset
def replay_episode(robot: Robot, episode: int, fps: int | None = None, root="data", repo_id="lerobot/debug"):
def replay(robot: Robot, episode: int, fps: int | None = None, root="data", repo_id="lerobot/debug"):
# TODO(rcadene): Add option to record logs
local_dir = Path(root) / repo_id
if not local_dir.exists():
@@ -546,61 +625,6 @@ def replay_episode(robot: Robot, episode: int, fps: int | None = None, root="dat
log_control_info(robot, dt_s, fps=fps)
def run_policy(robot: Robot, policy: torch.nn.Module, hydra_cfg: DictConfig, run_time_s: float | None = None):
# TODO(rcadene): Add option to record eval dataset and logs
# Check device is available
device = get_safe_torch_device(hydra_cfg.device, log=True)
policy.eval()
policy.to(device)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(hydra_cfg.seed)
fps = hydra_cfg.env.fps
if not robot.is_connected:
robot.connect()
start_time = time.perf_counter()
while True:
now = time.perf_counter()
observation = robot.capture_observation()
with (
torch.inference_mode(),
torch.autocast(device_type=device.type)
if device.type == "cuda" and hydra_cfg.use_amp
else nullcontext(),
):
# add batch dimension to 1
for name in observation:
observation[name] = observation[name].unsqueeze(0)
if device.type == "mps":
for name in observation:
observation[name] = observation[name].to(device)
action = policy.select_action(observation)
# remove batch dimension
action = action.squeeze(0)
robot.send_action(action.to("cpu"))
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
dt_s = time.perf_counter() - now
log_control_info(robot, dt_s, fps=fps)
if run_time_s is not None and time.perf_counter() - start_time > run_time_s:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="mode", required=True)
@@ -608,10 +632,15 @@ if __name__ == "__main__":
# Set common options for all the subparsers
base_parser = argparse.ArgumentParser(add_help=False)
base_parser.add_argument(
"--robot",
"--robot-path",
type=str,
default="koch",
help="Name of the robot provided to the `make_robot(name)` factory function.",
default="lerobot/configs/robot/koch.yaml",
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
)
base_parser.add_argument(
"robot_overrides",
nargs="*",
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
)
parser_teleop = subparsers.add_parser("teleoperate", parents=[base_parser])
@@ -619,7 +648,7 @@ if __name__ == "__main__":
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
parser_record = subparsers.add_parser("record_dataset", parents=[base_parser])
parser_record = subparsers.add_parser("record", parents=[base_parser])
parser_record.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
@@ -678,8 +707,22 @@ if __name__ == "__main__":
default=0,
help="By default, data recording is resumed. When set to 1, delete the local directory and start data recording from scratch.",
)
parser_record.add_argument(
"-p",
"--pretrained-policy-name-or-path",
type=str,
help=(
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
"saved using `Policy.save_pretrained`."
),
)
parser_record.add_argument(
"overrides",
nargs="*",
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
)
parser_replay = subparsers.add_parser("replay_episode", parents=[base_parser])
parser_replay = subparsers.add_parser("replay", parents=[base_parser])
parser_replay.add_argument(
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
)
@@ -697,41 +740,38 @@ if __name__ == "__main__":
)
parser_replay.add_argument("--episode", type=int, default=0, help="Index of the episode to replay.")
parser_policy = subparsers.add_parser("run_policy", parents=[base_parser])
parser_policy.add_argument(
"-p",
"--pretrained-policy-name-or-path",
type=str,
help=(
"Either the repo ID of a model hosted on the Hub or a path to a directory containing weights "
"saved using `Policy.save_pretrained`."
),
)
parser_policy.add_argument(
"overrides",
nargs="*",
help="Any key=value arguments to override config values (use dots for.nested=overrides)",
)
args = parser.parse_args()
init_logging()
control_mode = args.mode
robot_name = args.robot
robot_path = args.robot_path
robot_overrides = args.robot_overrides
kwargs = vars(args)
del kwargs["mode"]
del kwargs["robot"]
del kwargs["robot_path"]
del kwargs["robot_overrides"]
robot_cfg = init_hydra_config(robot_path, robot_overrides)
robot = make_robot(robot_cfg)
robot = make_robot(robot_name)
if control_mode == "teleoperate":
teleoperate(robot, **kwargs)
elif control_mode == "record_dataset":
record_dataset(robot, **kwargs)
elif control_mode == "replay_episode":
replay_episode(robot, **kwargs)
elif control_mode == "run_policy":
pretrained_policy_path = get_pretrained_policy_path(args.pretrained_policy_name_or_path)
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", args.overrides)
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
run_policy(robot, policy, hydra_cfg)
elif control_mode == "record":
pretrained_policy_name_or_path = args.pretrained_policy_name_or_path
overrides = args.overrides
del kwargs["pretrained_policy_name_or_path"]
del kwargs["overrides"]
policy_cfg = None
if pretrained_policy_name_or_path is not None:
pretrained_policy_path = get_pretrained_policy_path(pretrained_policy_name_or_path)
policy_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", overrides)
policy = make_policy(hydra_cfg=policy_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
record(robot, policy, policy_cfg, **kwargs)
else:
record(robot, **kwargs)
elif control_mode == "replay":
replay(robot, **kwargs)

203
poetry.lock generated
View File

@@ -795,6 +795,7 @@ files = [
{file = "dora_rs-0.3.5-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:01f811d0c6722f74743c153a7be0144686daeafa968c473e60f6b6c5dc8f5bff"},
{file = "dora_rs-0.3.5-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:a36e97d31eeb66e6d5913130695d188ceee1248029961012a8b4f59fd3f58670"},
{file = "dora_rs-0.3.5-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25d620123a733661dc740ef2b456601ddbaa69ae2b50d8141daa3c684bda385c"},
{file = "dora_rs-0.3.5-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a9fdc4e73578bebb1c8d0f8bea2243a5a9e179f08c74d98576123b59b75e5cac"},
{file = "dora_rs-0.3.5-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e65830634c58158557f0ab90e5d1f492bcbc6b74587b05825ba4c20b634dc1bd"},
{file = "dora_rs-0.3.5-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c01f9ab8f93295341aeab2d606d484d9cff9d05f57581e2180433ec8e0d38307"},
{file = "dora_rs-0.3.5-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:5d6d46a49a34cd7e4f74496a1089b9a1b78282c219a28d98fe031a763e92d530"},
@@ -1536,20 +1537,6 @@ files = [
{file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"},
]
[[package]]
name = "intel-openmp"
version = "2021.4.0"
description = "Intel OpenMP* Runtime Library"
optional = false
python-versions = "*"
files = [
{file = "intel_openmp-2021.4.0-py2.py3-none-macosx_10_15_x86_64.macosx_11_0_x86_64.whl", hash = "sha256:41c01e266a7fdb631a7609191709322da2bbf24b252ba763f125dd651bcc7675"},
{file = "intel_openmp-2021.4.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:3b921236a38384e2016f0f3d65af6732cf2c12918087128a9163225451e776f2"},
{file = "intel_openmp-2021.4.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:e2240ab8d01472fed04f3544a878cda5da16c26232b7ea1b59132dbfb48b186e"},
{file = "intel_openmp-2021.4.0-py2.py3-none-win32.whl", hash = "sha256:6e863d8fd3d7e8ef389d52cf97a50fe2afe1a19247e8c0d168ce021546f96fc9"},
{file = "intel_openmp-2021.4.0-py2.py3-none-win_amd64.whl", hash = "sha256:eef4c8bcc8acefd7f5cd3b9384dbf73d59e2c99fc56545712ded913f43c4a94f"},
]
[[package]]
name = "jinja2"
version = "3.1.4"
@@ -1741,9 +1728,13 @@ files = [
{file = "lxml-5.2.2-cp36-cp36m-win_amd64.whl", hash = "sha256:edcfa83e03370032a489430215c1e7783128808fd3e2e0a3225deee278585196"},
{file = "lxml-5.2.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:28bf95177400066596cdbcfc933312493799382879da504633d16cf60bba735b"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3a745cc98d504d5bd2c19b10c79c61c7c3df9222629f1b6210c0368177589fb8"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b590b39ef90c6b22ec0be925b211298e810b4856909c8ca60d27ffbca6c12e6"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b336b0416828022bfd5a2e3083e7f5ba54b96242159f83c7e3eebaec752f1716"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:c2faf60c583af0d135e853c86ac2735ce178f0e338a3c7f9ae8f622fd2eb788c"},
{file = "lxml-5.2.2-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:4bc6cb140a7a0ad1f7bc37e018d0ed690b7b6520ade518285dc3171f7a117905"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7ff762670cada8e05b32bf1e4dc50b140790909caa8303cfddc4d702b71ea184"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:57f0a0bbc9868e10ebe874e9f129d2917750adf008fe7b9c1598c0fbbfdde6a6"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:a6d2092797b388342c1bc932077ad232f914351932353e2e8706851c870bca1f"},
{file = "lxml-5.2.2-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:60499fe961b21264e17a471ec296dcbf4365fbea611bf9e303ab69db7159ce61"},
{file = "lxml-5.2.2-cp37-cp37m-win32.whl", hash = "sha256:d9b342c76003c6b9336a80efcc766748a333573abf9350f4094ee46b006ec18f"},
{file = "lxml-5.2.2-cp37-cp37m-win_amd64.whl", hash = "sha256:b16db2770517b8799c79aa80f4053cd6f8b716f21f8aca962725a9565ce3ee40"},
@@ -1883,24 +1874,6 @@ files = [
{file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
]
[[package]]
name = "mkl"
version = "2021.4.0"
description = "Intel® oneAPI Math Kernel Library"
optional = false
python-versions = "*"
files = [
{file = "mkl-2021.4.0-py2.py3-none-macosx_10_15_x86_64.macosx_11_0_x86_64.whl", hash = "sha256:67460f5cd7e30e405b54d70d1ed3ca78118370b65f7327d495e9c8847705e2fb"},
{file = "mkl-2021.4.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:636d07d90e68ccc9630c654d47ce9fdeb036bb46e2b193b3a9ac8cfea683cce5"},
{file = "mkl-2021.4.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:398dbf2b0d12acaf54117a5210e8f191827f373d362d796091d161f610c1ebfb"},
{file = "mkl-2021.4.0-py2.py3-none-win32.whl", hash = "sha256:439c640b269a5668134e3dcbcea4350459c4a8bc46469669b2d67e07e3d330e8"},
{file = "mkl-2021.4.0-py2.py3-none-win_amd64.whl", hash = "sha256:ceef3cafce4c009dd25f65d7ad0d833a0fbadc3d8903991ec92351fe5de1e718"},
]
[package.dependencies]
intel-openmp = "==2021.*"
tbb = "==2021.*"
[[package]]
name = "moviepy"
version = "1.0.3"
@@ -2292,12 +2265,13 @@ files = [
[[package]]
name = "nvidia-cudnn-cu12"
version = "8.9.2.26"
version = "9.1.0.70"
description = "cuDNN runtime libraries"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"},
{file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f"},
{file = "nvidia_cudnn_cu12-9.1.0.70-py3-none-win_amd64.whl", hash = "sha256:6278562929433d68365a07a4a1546c237ba2849852c0d4b2262a486e805b977a"},
]
[package.dependencies]
@@ -2357,13 +2331,12 @@ nvidia-nvjitlink-cu12 = "*"
[[package]]
name = "nvidia-nccl-cu12"
version = "2.20.5"
version = "2.21.5"
description = "NVIDIA Collective Communication Library (NCCL) Runtime"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01"},
{file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56"},
{file = "nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0"},
]
[[package]]
@@ -2373,6 +2346,7 @@ description = "Nvidia JIT LTO Library"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_aarch64.whl", hash = "sha256:98103729cc5226e13ca319a10bbf9433bbbd44ef64fe72f45f067cacc14b8d27"},
{file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f9b37bc5c8cf7509665cb6ada5aaa0ce65618f2332b7d3e78e9790511f111212"},
{file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-win_amd64.whl", hash = "sha256:e782564d705ff0bf61ac3e1bf730166da66dd2fe9012f111ede5fc49b64ae697"},
]
@@ -3240,6 +3214,33 @@ files = [
[package.dependencies]
six = ">=1.10.0"
[[package]]
name = "pytorch-triton"
version = "3.0.0+dedb7bdf33"
description = "A language and compiler for custom Deep Learning operations"
optional = false
python-versions = "*"
files = [
{file = "pytorch_triton-3.0.0+dedb7bdf33-cp310-cp310-linux_x86_64.whl", hash = "sha256:55a025ff4fc61eff466e08eccd7c6bcebaae971f59094157f552074bbb618789"},
{file = "pytorch_triton-3.0.0+dedb7bdf33-cp311-cp311-linux_x86_64.whl", hash = "sha256:46c9fd3d1c02a62201d98759ba4318ad89ca6c871a4c4a076f1ae667cc5a0eb7"},
{file = "pytorch_triton-3.0.0+dedb7bdf33-cp312-cp312-linux_x86_64.whl", hash = "sha256:e7e3f94c08e389302944bc03cb6d4368560d5da4283799f2c8cd4f57727b1b54"},
{file = "pytorch_triton-3.0.0+dedb7bdf33-cp38-cp38-linux_x86_64.whl", hash = "sha256:a095aabfbd38b3d596c859ac25e0352c869b8e659bc35093edf97794a59e6164"},
{file = "pytorch_triton-3.0.0+dedb7bdf33-cp39-cp39-linux_x86_64.whl", hash = "sha256:5e65e0084a60b0001e5740c491225af81f312f81f6929f155225900f7ea9596b"},
]
[package.dependencies]
filelock = "*"
[package.extras]
build = ["cmake (>=3.20)", "lit"]
tests = ["autopep8", "flake8", "isort", "llnl-hatchet", "numpy", "pytest", "scipy (>=1.7.1)"]
tutorials = ["matplotlib", "pandas", "tabulate"]
[package.source]
type = "legacy"
url = "https://download.pytorch.org/whl/nightly/cu121"
reference = "pytorch-nightly"
[[package]]
name = "pytz"
version = "2024.1"
@@ -3276,6 +3277,7 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
@@ -3925,19 +3927,6 @@ mpmath = ">=1.1.0,<1.4"
[package.extras]
dev = ["hypothesis (>=6.70.0)", "pytest (>=7.1.0)"]
[[package]]
name = "tbb"
version = "2021.13.0"
description = "Intel® oneAPI Threading Building Blocks (oneTBB)"
optional = false
python-versions = "*"
files = [
{file = "tbb-2021.13.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:a2567725329639519d46d92a2634cf61e76601dac2f777a05686fea546c4fe4f"},
{file = "tbb-2021.13.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:aaf667e92849adb012b8874d6393282afc318aca4407fc62f912ee30a22da46a"},
{file = "tbb-2021.13.0-py3-none-win32.whl", hash = "sha256:6669d26703e9943f6164c6407bd4a237a45007e79b8d3832fe6999576eaaa9ef"},
{file = "tbb-2021.13.0-py3-none-win_amd64.whl", hash = "sha256:3528a53e4bbe64b07a6112b4c5a00ff3c61924ee46c9c68e004a1ac7ad1f09c3"},
]
[[package]]
name = "termcolor"
version = "2.4.0"
@@ -3982,95 +3971,86 @@ files = [
[[package]]
name = "torch"
version = "2.3.1"
version = "2.5.0.dev20240726+cu121"
description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration"
optional = false
python-versions = ">=3.8.0"
files = [
{file = "torch-2.3.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:605a25b23944be5ab7c3467e843580e1d888b8066e5aaf17ff7bf9cc30001cc3"},
{file = "torch-2.3.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f2357eb0965583a0954d6f9ad005bba0091f956aef879822274b1bcdb11bd308"},
{file = "torch-2.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:32b05fe0d1ada7f69c9f86c14ff69b0ef1957a5a54199bacba63d22d8fab720b"},
{file = "torch-2.3.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:7c09a94362778428484bcf995f6004b04952106aee0ef45ff0b4bab484f5498d"},
{file = "torch-2.3.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:b2ec81b61bb094ea4a9dee1cd3f7b76a44555375719ad29f05c0ca8ef596ad39"},
{file = "torch-2.3.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:490cc3d917d1fe0bd027057dfe9941dc1d6d8e3cae76140f5dd9a7e5bc7130ab"},
{file = "torch-2.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:5802530783bd465fe66c2df99123c9a54be06da118fbd785a25ab0a88123758a"},
{file = "torch-2.3.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:a7dd4ed388ad1f3d502bf09453d5fe596c7b121de7e0cfaca1e2017782e9bbac"},
{file = "torch-2.3.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:a486c0b1976a118805fc7c9641d02df7afbb0c21e6b555d3bb985c9f9601b61a"},
{file = "torch-2.3.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:224259821fe3e4c6f7edf1528e4fe4ac779c77addaa74215eb0b63a5c474d66c"},
{file = "torch-2.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:e5fdccbf6f1334b2203a61a0e03821d5845f1421defe311dabeae2fc8fbeac2d"},
{file = "torch-2.3.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:3c333dc2ebc189561514eda06e81df22bf8fb64e2384746b2cb9f04f96d1d4c8"},
{file = "torch-2.3.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:07e9ba746832b8d069cacb45f312cadd8ad02b81ea527ec9766c0e7404bb3feb"},
{file = "torch-2.3.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:462d1c07dbf6bb5d9d2f3316fee73a24f3d12cd8dacf681ad46ef6418f7f6626"},
{file = "torch-2.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:ff60bf7ce3de1d43ad3f6969983f321a31f0a45df3690921720bcad6a8596cc4"},
{file = "torch-2.3.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:bee0bd33dc58aa8fc8a7527876e9b9a0e812ad08122054a5bff2ce5abf005b10"},
{file = "torch-2.3.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:aaa872abde9a3d4f91580f6396d54888620f4a0b92e3976a6034759df4b961ad"},
{file = "torch-2.3.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:3d7a7f7ef21a7520510553dc3938b0c57c116a7daee20736a9e25cbc0e832bdc"},
{file = "torch-2.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:4777f6cefa0c2b5fa87223c213e7b6f417cf254a45e5829be4ccd1b2a4ee1011"},
{file = "torch-2.3.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:2bb5af780c55be68fe100feb0528d2edebace1d55cb2e351de735809ba7391eb"},
{file = "torch-2.5.0.dev20240726+cu121-cp310-cp310-linux_x86_64.whl", hash = "sha256:ecf50e5394403518c01c0906ef1e19bf7816a7a17ef733b401b47e389988546d"},
{file = "torch-2.5.0.dev20240726+cu121-cp310-cp310-win_amd64.whl", hash = "sha256:6ea949aa1d2d186692f29e6f2bb03eb7bde5bd3d3232990fe4f66fb6fcbb5eef"},
{file = "torch-2.5.0.dev20240726+cu121-cp311-cp311-linux_x86_64.whl", hash = "sha256:fc85bb92112b9a9691b23110ab40cb585826c1549a5d5e3ca9b58047162c036d"},
{file = "torch-2.5.0.dev20240726+cu121-cp311-cp311-win_amd64.whl", hash = "sha256:7c4cb56b84bebb30ab9f20fd8be368409dd251d2e0d684705582ad80a5d725de"},
{file = "torch-2.5.0.dev20240726+cu121-cp312-cp312-linux_x86_64.whl", hash = "sha256:d89f741ccd90073be452b293779e5ea58c10bd9dce2cc542355747d5a4c46a0e"},
{file = "torch-2.5.0.dev20240726+cu121-cp312-cp312-win_amd64.whl", hash = "sha256:9b0a8770fddc28b42ade03e484bb7e42825b564fb9dbc34ddbc5e2bae5a04bab"},
{file = "torch-2.5.0.dev20240726+cu121-cp313-cp313-linux_x86_64.whl", hash = "sha256:0e95dfd30616729f1ac5ceac1903fbdf336f905760949e6cfffbb1fb8de6f44c"},
{file = "torch-2.5.0.dev20240726+cu121-cp38-cp38-linux_x86_64.whl", hash = "sha256:9daf32a6fe045d9d2f8af7fb2de07d7d37c79fb491ffc99a6470aa9296874051"},
{file = "torch-2.5.0.dev20240726+cu121-cp38-cp38-win_amd64.whl", hash = "sha256:a5ed07b95ba63ecf6f952eef99cb0d71b07057034aab03f8cc904f0ddb4754b5"},
{file = "torch-2.5.0.dev20240726+cu121-cp39-cp39-linux_x86_64.whl", hash = "sha256:7dc57e52f4dd965d2d963be80b0dac538983ae813db37adf2758115a05ad75bb"},
{file = "torch-2.5.0.dev20240726+cu121-cp39-cp39-win_amd64.whl", hash = "sha256:53e4ea263449eb32cb130f2d33ea976a206705a1d695c06c4b2fc4e8f609ba0f"},
]
[package.dependencies]
filelock = "*"
fsspec = "*"
jinja2 = "*"
mkl = {version = ">=2021.1.1,<=2021.4.0", markers = "platform_system == \"Windows\""}
networkx = "*"
nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cudnn-cu12 = {version = "9.1.0.70", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-nccl-cu12 = {version = "2.21.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""}
sympy = "*"
triton = {version = "2.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""}
pytorch-triton = {version = "3.0.0+dedb7bdf33", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.13\""}
sympy = {version = ">=1.13.0", markers = "python_version >= \"3.9\""}
typing-extensions = ">=4.8.0"
[package.extras]
opt-einsum = ["opt-einsum (>=3.3)"]
optree = ["optree (>=0.9.1)"]
optree = ["optree (>=0.12.0)"]
[package.source]
type = "legacy"
url = "https://download.pytorch.org/whl/nightly/cu121"
reference = "pytorch-nightly"
[[package]]
name = "torchvision"
version = "0.18.1"
version = "0.20.0.dev20240726+cu121"
description = "image and video datasets and models for torch deep learning"
optional = false
python-versions = ">=3.8"
files = [
{file = "torchvision-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3e694e54b0548dad99c12af6bf0c8e4f3350137d391dcd19af22a1c5f89322b3"},
{file = "torchvision-0.18.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:0b3bda0aa5b416eeb547143b8eeaf17720bdba9cf516dc991aacb81811aa96a5"},
{file = "torchvision-0.18.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:573ff523c739405edb085f65cb592f482d28a30e29b0be4c4ba08040b3ae785f"},
{file = "torchvision-0.18.1-cp310-cp310-win_amd64.whl", hash = "sha256:ef7bbbc60b38e831a75e547c66ca1784f2ac27100f9e4ddbe9614cef6cbcd942"},
{file = "torchvision-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:80b5d794dd0fdba787adc22f1a367a5ead452327686473cb260dd94364bc56a6"},
{file = "torchvision-0.18.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:9077cf590cdb3a5e8fdf5cdb71797f8c67713f974cf0228ecb17fcd670ab42f9"},
{file = "torchvision-0.18.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ceb993a882f1ae7ae373ed39c28d7e3e802205b0e59a7ed84ef4028f0bba8d7f"},
{file = "torchvision-0.18.1-cp311-cp311-win_amd64.whl", hash = "sha256:52f7436140045dc2239cdc502aa76b2bd8bd676d64244ff154d304aa69852046"},
{file = "torchvision-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2be6f0bf7c455c89a51a1dbb6f668d36c6edc479f49ac912d745d10df5715657"},
{file = "torchvision-0.18.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:f118d887bfde3a948a41d56587525401e5cac1b7db2eaca203324d6ed2b1caca"},
{file = "torchvision-0.18.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:13d24d904f65e62d66a1e0c41faec630bc193867b8a4a01166769e8a8e8df8e9"},
{file = "torchvision-0.18.1-cp312-cp312-win_amd64.whl", hash = "sha256:ed6340b69a63a625e512a66127210d412551d9c5f2ad2978130c6a45bf56cd4a"},
{file = "torchvision-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b1c3864fa9378c88bce8ad0ef3599f4f25397897ce612e1c245c74b97092f35e"},
{file = "torchvision-0.18.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:02085a2ffc7461f5c0edb07d6f3455ee1806561f37736b903da820067eea58c7"},
{file = "torchvision-0.18.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:9726c316a2501df8503e5a5dc46a631afd4c515a958972e5b7f7b9c87d2125c0"},
{file = "torchvision-0.18.1-cp38-cp38-win_amd64.whl", hash = "sha256:64a2662dbf30db9055d8b201d6e56f312a504e5ccd9d144c57c41622d3c524cb"},
{file = "torchvision-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:975b8594c0f5288875408acbb74946eea786c5b008d129c0d045d0ead23742bc"},
{file = "torchvision-0.18.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:da83c8bbd34d8bee48bfa1d1b40e0844bc3cba10ed825a5a8cbe3ce7b62264cd"},
{file = "torchvision-0.18.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:54bfcd352abb396d5c9c237d200167c178bd136051b138e1e8ef46ce367c2773"},
{file = "torchvision-0.18.1-cp39-cp39-win_amd64.whl", hash = "sha256:5c8366a1aeee49e9ea9e64b30d199debdf06b1bd7610a76165eb5d7869c3bde5"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp310-cp310-linux_x86_64.whl", hash = "sha256:d515b6989902d13303b0863081be9c338321b8786584d830f19d3935888fe37a"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp310-cp310-win_amd64.whl", hash = "sha256:bdeb4c2bf70ee8c0643fb1a9112b06214abf6065d92a72ea515230c0effa2f1f"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp311-cp311-linux_x86_64.whl", hash = "sha256:95b43e60834fce99c5a1c45e298d4a62feba2a3c3c62678978285b71f0e85d0c"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp311-cp311-win_amd64.whl", hash = "sha256:b0e2a0ee4e9dfd1842c43c60c54b671240785520f337bd14e15333653352dc5a"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp312-cp312-linux_x86_64.whl", hash = "sha256:642ba00eaf7b74599d20c367507bb0b70bd47f3b0d39ea543a3ccc0ffed82f4b"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp312-cp312-win_amd64.whl", hash = "sha256:e8ded5b6d1e1aae1fbaaba098fec610bdd1a0be32eddf914c180d663638eaf5e"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp38-cp38-linux_x86_64.whl", hash = "sha256:f8303f347c9c0d165a16fe3f0d6eefe9ad03bdbdb0bf4e6325c7b728cb4bf7a2"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp38-cp38-win_amd64.whl", hash = "sha256:e9e57eb6855cdfb3d597a05618214f1b41bdf81c8fd62c63c6f1caefbab6b9c5"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp39-cp39-linux_x86_64.whl", hash = "sha256:47fc41d8773a60a3a9fedcd5feacaaee874d5ce03cb5b92e4482f0a4c172c15f"},
{file = "torchvision-0.20.0.dev20240726+cu121-cp39-cp39-win_amd64.whl", hash = "sha256:0995f390b8ba98da2624ff86542997fcb18a916dc59d63a54b5dcc5c7e607e11"},
]
[package.dependencies]
numpy = "*"
pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0"
torch = "2.3.1"
torch = "2.5.0.dev20240726"
[package.extras]
gdown = ["gdown (>=4.7.3)"]
scipy = ["scipy"]
[package.source]
type = "legacy"
url = "https://download.pytorch.org/whl/nightly/cu121"
reference = "pytorch-nightly"
[[package]]
name = "tqdm"
version = "4.66.4"
@@ -4091,29 +4071,6 @@ notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "triton"
version = "2.3.1"
description = "A language and compiler for custom Deep Learning operations"
optional = false
python-versions = "*"
files = [
{file = "triton-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c84595cbe5e546b1b290d2a58b1494df5a2ef066dd890655e5b8a8a92205c33"},
{file = "triton-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9d64ae33bcb3a7a18081e3a746e8cf87ca8623ca13d2c362413ce7a486f893e"},
{file = "triton-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaf80e8761a9e3498aa92e7bf83a085b31959c61f5e8ac14eedd018df6fccd10"},
{file = "triton-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b13bf35a2b659af7159bf78e92798dc62d877aa991de723937329e2d382f1991"},
{file = "triton-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63381e35ded3304704ea867ffde3b7cfc42c16a55b3062d41e017ef510433d66"},
{file = "triton-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d968264523c7a07911c8fb51b4e0d1b920204dae71491b1fe7b01b62a31e124"},
]
[package.dependencies]
filelock = "*"
[package.extras]
build = ["cmake (>=3.20)", "lit"]
tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)", "torch"]
tutorials = ["matplotlib", "pandas", "tabulate", "torch"]
[[package]]
name = "typing-extensions"
version = "4.12.2"
@@ -4485,4 +4442,4 @@ xarm = ["gym-xarm"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "dfe9c6a54e0382156e62e7bd2c7aab1be6372da76d30c61b06d27232276638cb"
content-hash = "d205dcc3a9df41c8ced0c51341f415c408bcb7b09c8d74724ce4b2c3a1708fad"

View File

@@ -25,6 +25,10 @@ classifiers=[
]
packages = [{include = "lerobot"}]
[[tool.poetry.source]]
name = "pytorch-nightly"
url = "https://download.pytorch.org/whl/nightly/cu121"
secondary = true
[tool.poetry.dependencies]
python = ">=3.10,<3.13"
@@ -38,10 +42,10 @@ einops = ">=0.8.0"
pymunk = ">=6.6.0"
zarr = ">=2.17.0"
numba = ">=0.59.0"
torch = ">=2.2.1"
torch = { version = "*", source = "pytorch-nightly" }
torchvision = { version = "*", source = "pytorch-nightly" }
opencv-python = ">=4.9.0"
diffusers = ">=0.27.2"
torchvision = ">=0.17.1"
h5py = ">=3.10.0"
huggingface-hub = {extras = ["hf-transfer"], version = ">=0.23.0"}
gymnasium = ">=0.29.1"

View File

@@ -15,7 +15,9 @@
# limitations under the License.
import pytest
from .utils import DEVICE
from lerobot.common.utils.utils import init_hydra_config
from .utils import DEVICE, KOCH_ROBOT_CONFIG_PATH
def pytest_collection_finish():
@@ -27,11 +29,12 @@ def is_koch_available():
try:
from lerobot.common.robot_devices.robots.factory import make_robot
robot = make_robot("koch")
robot_cfg = init_hydra_config(KOCH_ROBOT_CONFIG_PATH)
robot = make_robot(robot_cfg)
robot.connect()
del robot
return True
except Exception as e:
print("An alexander koch robot is not available.")
print("A koch robot is not available.")
print(e)
return False

View File

@@ -3,13 +3,19 @@ from pathlib import Path
from lerobot.common.policies.factory import make_policy
from lerobot.common.robot_devices.robots.factory import make_robot
from lerobot.common.utils.utils import init_hydra_config
from lerobot.scripts.control_robot import record_dataset, replay_episode, run_policy, teleoperate
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE, require_koch
from lerobot.scripts.control_robot import record, replay, teleoperate
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE, KOCH_ROBOT_CONFIG_PATH, require_koch
def make_robot_():
robot_cfg = init_hydra_config(KOCH_ROBOT_CONFIG_PATH)
robot = make_robot(robot_cfg)
return robot
@require_koch
def test_teleoperate(request):
robot = make_robot("koch")
robot = make_robot_()
teleoperate(robot, teleop_time_s=1)
teleoperate(robot, fps=30, teleop_time_s=1)
teleoperate(robot, fps=60, teleop_time_s=1)
@@ -17,20 +23,19 @@ def test_teleoperate(request):
@require_koch
def test_record_dataset_and_replay_episode_and_run_policy(tmpdir, request):
robot_name = "koch"
def test_record_and_replay_and_policy(tmpdir, request):
env_name = "koch_real"
policy_name = "act_koch_real"
root = Path(tmpdir)
repo_id = "lerobot/debug"
robot = make_robot(robot_name)
dataset = record_dataset(
robot = make_robot_()
dataset = record(
robot, fps=30, root=root, repo_id=repo_id, warmup_time_s=1, episode_time_s=1, num_episodes=2
)
replay_episode(robot, episode=0, fps=30, root=root, repo_id=repo_id)
replay(robot, episode=0, fps=30, root=root, repo_id=repo_id)
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
@@ -43,6 +48,6 @@ def test_record_dataset_and_replay_episode_and_run_policy(tmpdir, request):
policy = make_policy(hydra_cfg=cfg, dataset_stats=dataset.stats)
run_policy(robot, policy, cfg, run_time_s=1)
record(robot, policy, cfg, run_time_s=1)
del robot

View File

@@ -1,33 +1,54 @@
# TODO(rcadene): measure fps in nightly?
# TODO(rcadene): test logs
# TODO(rcadene): test calibration
# TODO(rcadene): add compatibility with other motors bus
import time
import hydra
import numpy as np
import pytest
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from tests.utils import require_koch
from lerobot.common.utils.utils import init_hydra_config
from tests.utils import KOCH_ROBOT_CONFIG_PATH, require_koch
def make_motors_bus():
robot_cfg = init_hydra_config(KOCH_ROBOT_CONFIG_PATH)
# Instantiating a common motors structure.
# Here the one from Alexander Koch follower arm.
motors_bus = hydra.utils.instantiate(robot_cfg.leader_arms.main)
return motors_bus
@require_koch
def test_find_port(request):
from lerobot.common.robot_devices.motors.dynamixel import find_port
find_port()
@require_koch
def test_configure_motors_all_ids_1(request):
# This test expect the configuration was already correct.
motors_bus = make_motors_bus()
motors_bus.connect()
motors_bus.write("Baud_Rate", [0] * len(motors_bus.motors))
motors_bus.set_bus_baudrate(9_600)
motors_bus.write("ID", [1] * len(motors_bus.motors))
del motors_bus
# Test configure
motors_bus = make_motors_bus()
motors_bus.connect()
assert motors_bus.are_motors_configured()
del motors_bus
@require_koch
def test_motors_bus(request):
# TODO(rcadene): measure fps in nightly?
# TODO(rcadene): test logs
# TODO(rcadene): test calibration
# TODO(rcadene): add compatibility with other motors bus
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
# Test instantiating a common motors structure.
# Here the one from Alexander Koch follower arm.
port = "/dev/tty.usbmodem575E0032081"
motors = {
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
}
motors_bus = DynamixelMotorsBus(port, motors)
motors_bus = make_motors_bus()
# Test reading and writting before connecting raises an error
with pytest.raises(RobotDeviceNotConnectedError):
@@ -41,7 +62,7 @@ def test_motors_bus(request):
del motors_bus
# Test connecting
motors_bus = DynamixelMotorsBus(port, motors)
motors_bus = make_motors_bus()
motors_bus.connect()
# Test connecting twice raises an error
@@ -52,7 +73,7 @@ def test_motors_bus(request):
motors_bus.write("Torque_Enable", 0)
values = motors_bus.read("Torque_Enable")
assert isinstance(values, np.ndarray)
assert len(values) == len(motors)
assert len(values) == len(motors_bus.motors)
assert (values == 0).all()
# Test writing torque on a specific motor
@@ -83,10 +104,3 @@ def test_motors_bus(request):
time.sleep(1)
new_values = motors_bus.read("Present_Position")
assert (new_values == values).all()
@require_koch
def test_find_port(request):
from lerobot.common.robot_devices.motors.dynamixel import find_port
find_port()

View File

@@ -23,6 +23,7 @@ from lerobot.common.utils.import_utils import is_package_available
# Pass this as the first argument to init_hydra_config.
DEFAULT_CONFIG_PATH = "lerobot/configs/default.yaml"
KOCH_ROBOT_CONFIG_PATH = "lerobot/configs/robot/koch.yaml"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
@@ -161,6 +162,7 @@ def require_koch(func):
if request is None:
raise ValueError("The 'request' fixture must be passed to the test function as a parameter.")
# The function `is_koch_available` is defined in `tests/conftest.py`
if not request.getfixturevalue("is_koch_available"):
pytest.skip("An alexander koch robot is not available.")
return func(*args, **kwargs)