Compare commits

...

76 Commits

Author SHA1 Message Date
Steven Palma
374d4351fd chore(dummy): add comments + better visualization 2025-03-25 13:02:11 +01:00
Steven Palma
4f3eaff2bd [skip ci] feat: implement rerun v0.1 2025-03-24 17:11:59 +01:00
Simon Alibert
1f7ddc1d76 New Feetech calibration (#859)
Co-authored-by: Pepijn <pepijn@huggingface.co>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-14 11:31:23 +01:00
Simon Alibert
ce63cfdb25 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-13 14:24:50 +01:00
Simon Alibert
974028bd28 Organize test folders (#856)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-13 14:05:55 +01:00
Simon Alibert
a36ed39487 Improve pre-commit config (#857) 2025-03-13 13:29:55 +01:00
Ermano Arruda
c37b1d45b6 parametrise tolerance_s in visualize_dataset scripts (#716) 2025-03-13 10:28:29 +01:00
Simon Alibert
d6f1359e69 Remove motors from Koch config 2025-03-12 17:16:09 +01:00
Simon Alibert
2357d4aceb Update base classes typing 2025-03-12 17:15:39 +01:00
pre-commit-ci[bot]
f994febca4 [pre-commit.ci] pre-commit autoupdate (#844)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-11 11:28:01 +01:00
Steven Palma
12f52632ed chore(docs): update instructions for change in device and use_amp (#843) 2025-03-10 21:03:33 +01:00
Steven Palma
8a64d8268b chore(deps): remove hydra dependency (#842) 2025-03-10 19:00:23 +01:00
Simon Alibert
d6ccdc222c Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-10 18:39:48 +01:00
Simon Alibert
9bd0788131 Update paths 2025-03-10 18:34:01 +01:00
Simon Alibert
1ae62c28f7 Move lekiwi files 2025-03-10 18:33:28 +01:00
Simon Alibert
baf6e66c3d Add init files 2025-03-10 18:29:58 +01:00
Simon Alibert
a065bd61ae Add keyboard teleop 2025-03-10 18:28:50 +01:00
Pepijn
84565c7c2e Fix camera rotation error (#839)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-10 17:02:19 +01:00
Ben Sprenger
05b54733da feat: add support for external plugin config dataclasses (#807)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-10 13:25:47 +01:00
Simon Alibert
513b008bcc fix: deactivate tdmpc backward compatibility test with use_mpc=True (#838) 2025-03-10 10:19:54 +01:00
Joe Clinton
32fffd4bbb Fix delay in teleoperation start time (#676)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-08 11:40:07 +01:00
Simon Alibert
03c7cf8a63 Remove pr_style_bot (#832) 2025-03-08 09:39:07 +01:00
Simon Alibert
074f0ac8fe Fix gpu nightly (#829) 2025-03-07 13:21:58 +01:00
Mathias Wulfman
25c63ccf63 🐛 Remove map_location=device that no longer exists when loading DiffusionPolicy from_pretained after commit 5e94738 (#830)
Co-authored-by: Mathias Wulfman <mathias.wulfman@wandercraft.eu>
2025-03-07 13:21:11 +01:00
Simon Alibert
5dc3c74e64 Add WidowX 2025-03-06 21:31:35 +01:00
Steven Palma
5e9473806c refactor(config): Move device & amp args to PreTrainedConfig (#812)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-06 17:59:28 +01:00
Simon Alibert
4214b01703 Add ViperX 2025-03-06 12:53:55 +01:00
Simon Alibert
b974e5541f Update stretch teleop 2025-03-06 11:46:06 +01:00
Harsimrat Sandhawalia
10706ed753 Support for discrete actions (#810) 2025-03-06 10:27:29 +01:00
Simon Alibert
fd64dc84ae Move stretch3 teleop 2025-03-06 10:24:27 +01:00
Steven Palma
0b8205a8a0 chore(doc): add star history graph to the README.md (#815) 2025-03-06 09:44:21 +01:00
Simon Alibert
57ae509823 Revert "docs: update installation instructions to use uv instead of conda" (#827) 2025-03-06 09:43:27 +01:00
Steven Palma
5d24ce3160 chore(doc): add license header to all files (#818) 2025-03-05 17:56:51 +01:00
eDeveloperOZ
d694ea1d38 docs: update installation instructions to use uv instead of conda (#731)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 10:07:35 +01:00
Tim Qian
a00936686f Fix doc (#793)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 10:02:25 +01:00
yadunund
2feb5edc65 Fix printout in make_cameras_from_configs (#796)
Signed-off-by: Yadunund <yadunund@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 10:01:24 +01:00
Yachen Kang
b80e55ca44 change "actions_id_pad" to "actions_is_pad"(🐛 Bug) (#774)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 01:31:56 +01:00
Pepijn
e8ce388109 Add wired instructions for LeKiwi (#814)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-04 19:04:19 +01:00
Pepijn
a4c1da25de Add kiwi to readme (#803) 2025-03-04 18:43:27 +01:00
Pepijn
a003e7c081 change wheel setup in kinematics (#811)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-04 18:42:45 +01:00
Simon Alibert
06988b2135 WIP stretch 3 robot & teleop 2025-03-04 13:32:58 +01:00
Simon Alibert
7ed7570b17 WIP Add stretch 2025-03-04 11:42:07 +01:00
Simon Alibert
e2d13ba7e4 Update paths 2025-03-04 11:38:31 +01:00
Simon Alibert
f6c1049474 Update errors 2025-03-04 11:24:05 +01:00
Simon Alibert
2b24feb604 Update constants 2025-03-04 11:07:15 +01:00
Mishig
a27411022d [visualization] Ignore 2d or 3d data for now (#809) 2025-03-04 10:53:01 +01:00
Steven Palma
3827974b58 refactor(test): remove duplicated code in conftest.py (#804) 2025-03-04 10:49:44 +01:00
Pepijn
b299cfea8a Add step assembly tutorial (#800) 2025-03-04 09:57:37 +01:00
Simon Alibert
a13e49073c Add Moss Robot 2025-03-03 20:42:48 +01:00
Simon Alibert
2c7e0f17b6 Add SO-100 teleop 2025-03-03 20:31:04 +01:00
Simon Alibert
418866007e Fixes for Koch robot 2025-03-03 20:19:23 +01:00
Simon Alibert
5ab418dbeb Add feetech calibration 2025-03-03 20:17:54 +01:00
Simon Alibert
95f61ee9d4 Add SO-100 robot 2025-03-03 20:17:18 +01:00
Simon Alibert
ac89c8d226 Add Koch teleop 2025-03-03 18:58:54 +01:00
Simon Alibert
d75d904e43 Add teleoperator base class 2025-03-03 18:55:59 +01:00
Simon Alibert
ea4d8d990c Add Koch robot 2025-03-03 18:53:45 +01:00
Simon Alibert
c93cbb8311 Fix base robot class 2025-03-03 18:49:40 +01:00
Simon Alibert
c0137e89b9 Add calibration dir 2025-03-03 18:44:39 +01:00
Simon Alibert
3111ba78ad Add errors 2025-03-03 18:44:15 +01:00
Simon Alibert
3d3a176940 Move & organize motors, add base class 2025-03-03 18:18:24 +01:00
Simon Alibert
212c6095a2 Move & organize cameras, add base class 2025-03-03 18:16:30 +01:00
Steven Palma
bf6f89a5b5 fix(examples): Add Tensor type check (#799) 2025-03-03 17:01:04 +01:00
Simon Alibert
48469ec674 Move motor files 2025-03-02 21:33:22 +01:00
Simon Alibert
c7dfd32b43 Update DynamixelMotorsBus signature 2025-03-02 21:29:35 +01:00
Simon Alibert
8861546ad8 [Security] Add Bandit (#795) 2025-03-01 19:19:26 +01:00
Simon Alibert
9c1a893ee3 [CI] Update Stylebot Permissions (#792) 2025-03-01 12:12:19 +01:00
Simon Alibert
e81c36cf74 Fix dataset version tags (#790) 2025-02-28 14:36:20 +01:00
Simon Alibert
ed83cbd4f2 Switch pyav -> av (#780) 2025-02-28 11:06:55 +01:00
Simon Alibert
2a33b9ad87 Revert "Fix pr_style_bot" (#787) 2025-02-27 16:49:18 +01:00
Quentin Gallouédec
6e85aa13ec Break style to test style bot (#785) 2025-02-27 16:46:06 +01:00
Simon Alibert
af05a1725c Fix pr_style_bot (#786) 2025-02-27 16:43:12 +01:00
Simon Alibert
731fb6ebaf Fix import 2025-02-26 19:02:15 +01:00
Simon Alibert
13e124302f Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-02-26 18:49:18 +01:00
Simon Alibert
59bdd29106 Move more files & objects around 2025-02-26 18:48:58 +01:00
Simon Alibert
124829104b Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-02-26 16:26:03 +01:00
Simon Alibert
21cd2940a9 Reorganize files 2025-02-26 16:22:07 +01:00
259 changed files with 6599 additions and 2642 deletions

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Misc
.git
tmp
@@ -59,7 +73,7 @@ pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/data
!tests/artifacts
htmlcov/
.tox/
.nox/

14
.gitattributes vendored
View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
*.memmap filter=lfs diff=lfs merge=lfs -text
*.stl filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve LeRobot
body:

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/build_docker_images.yml
name: Builds

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/nightly.yml
name: Nightly

View File

@@ -1,125 +0,0 @@
# Adapted from https://github.com/huggingface/diffusers/blob/main/.github/workflows/pr_style_bot.yml
name: PR Style Bot
on:
issue_comment:
types: [created]
permissions:
contents: write
pull-requests: write
jobs:
run-style-bot:
if: >
contains(github.event.comment.body, '@bot /style') &&
github.event.issue.pull_request != null
runs-on: ubuntu-latest
steps:
- name: Extract PR details
id: pr_info
uses: actions/github-script@v6
with:
script: |
const prNumber = context.payload.issue.number;
const { data: pr } = await github.rest.pulls.get({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: prNumber
});
// We capture both the branch ref and the "full_name" of the head repo
// so that we can check out the correct repository & branch (including forks).
core.setOutput("prNumber", prNumber);
core.setOutput("headRef", pr.head.ref);
core.setOutput("headRepoFullName", pr.head.repo.full_name);
- name: Check out PR branch
uses: actions/checkout@v4
env:
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
HEADREF: ${{ steps.pr_info.outputs.headRef }}
with:
persist-credentials: true
# Instead of checking out the base repo, use the contributor's repo name
repository: ${{ env.HEADREPOFULLNAME }}
ref: ${{ env.HEADREF }}
# You may need fetch-depth: 0 for being able to push
fetch-depth: 0
token: ${{ secrets.GITHUB_TOKEN }}
- name: Debug
env:
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
HEADREF: ${{ steps.pr_info.outputs.headRef }}
PRNUMBER: ${{ steps.pr_info.outputs.prNumber }}
run: |
echo "PR number: ${PRNUMBER}"
echo "Head Ref: ${HEADREF}"
echo "Head Repo Full Name: ${HEADREPOFULLNAME}"
- name: Set up Python
uses: actions/setup-python@v4
- name: Get Ruff Version from pre-commit-config.yaml
id: get-ruff-version
run: |
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
echo "ruff_version=${RUFF_VERSION}" >> $GITHUB_OUTPUT
- name: Install Ruff
env:
RUFF_VERSION: ${{ steps.get-ruff-version.outputs.ruff_version }}
run: python -m pip install "ruff==${RUFF_VERSION}"
- name: Ruff check
run: ruff check --fix
- name: Ruff format
run: ruff format
- name: Commit and push changes
id: commit_and_push
env:
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
HEADREF: ${{ steps.pr_info.outputs.headRef }}
PRNUMBER: ${{ steps.pr_info.outputs.prNumber }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
echo "HEADREPOFULLNAME: ${HEADREPOFULLNAME}, HEADREF: ${HEADREF}"
# Configure git with the Actions bot user
git config user.name "github-actions[bot]"
git config user.email "github-actions[bot]@users.noreply.github.com"
# Make sure your 'origin' remote is set to the contributor's fork
git remote set-url origin "https://x-access-token:${GITHUB_TOKEN}@github.com/${HEADREPOFULLNAME}.git"
# If there are changes after running style/quality, commit them
if [ -n "$(git status --porcelain)" ]; then
git add .
git commit -m "Apply style fixes"
# Push to the original contributor's forked branch
git push origin HEAD:${HEADREF}
echo "changes_pushed=true" >> $GITHUB_OUTPUT
else
echo "No changes to commit."
echo "changes_pushed=false" >> $GITHUB_OUTPUT
fi
- name: Comment on PR with workflow run link
if: steps.commit_and_push.outputs.changes_pushed == 'true'
uses: actions/github-script@v6
with:
script: |
const prNumber = parseInt(process.env.prNumber, 10);
const runUrl = `${process.env.GITHUB_SERVER_URL}/${process.env.GITHUB_REPOSITORY}/actions/runs/${process.env.GITHUB_RUN_ID}`
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: prNumber,
body: `Style fixes have been applied. [View the workflow run here](${runUrl}).`
});
env:
prNumber: ${{ steps.pr_info.outputs.prNumber }}

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Quality
on:

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/test-docker-build.yml
name: Test Dockerfiles

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Tests
on:

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
on:
push:

16
.gitignore vendored
View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Logging
logs
tmp
@@ -64,7 +78,7 @@ pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/data
!tests/artifacts
htmlcov/
.tox/
.nox/

View File

@@ -1,7 +1,29 @@
exclude: ^(tests/data)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
exclude: "tests/artifacts/.*\\.safetensors$"
default_language_version:
python: python3.10
repos:
##### Meta #####
- repo: meta
hooks:
- id: check-useless-excludes
- id: check-hooks-apply
##### Style / Misc. #####
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
hooks:
@@ -13,26 +35,40 @@ repos:
- id: check-toml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/crate-ci/typos
rev: v1.29.10
rev: v1.30.2
hooks:
- id: typos
args: [--force-exclude]
- repo: https://github.com/asottile/pyupgrade
rev: v3.19.1
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.6
rev: v0.9.10
hooks:
- id: ruff
args: [--fix]
- id: ruff-format
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.23.3
rev: v8.24.0
hooks:
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.3.1
rev: v1.4.1
hooks:
- id: zizmor
- repo: https://github.com/PyCQA/bandit
rev: 1.8.3
hooks:
- id: bandit
args: ["-c", "pyproject.toml"]
additional_dependencies: ["bandit[toml]"]

View File

@@ -291,7 +291,7 @@ sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/data](tests/data)
Pull artifacts if they're not in [tests/artifacts](tests/artifacts)
```bash
git lfs pull
```

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
.PHONY: tests
PYTHON_PATH := $(shell which python)
@@ -33,6 +47,7 @@ test-act-ete-train:
--policy.dim_model=64 \
--policy.n_action_steps=20 \
--policy.chunk_size=20 \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
@@ -47,7 +62,6 @@ test-act-ete-train:
--save_checkpoint=true \
--log_freq=1 \
--wandb.enable=false \
--device=$(DEVICE) \
--output_dir=tests/outputs/act/
test-act-ete-train-resume:
@@ -58,11 +72,11 @@ test-act-ete-train-resume:
test-act-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/act/checkpoints/000004/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--device=$(DEVICE)
--eval.batch_size=1
test-diffusion-ete-train:
python lerobot/scripts/train.py \
@@ -70,6 +84,7 @@ test-diffusion-ete-train:
--policy.down_dims='[64,128,256]' \
--policy.diffusion_step_embed_dim=32 \
--policy.num_inference_steps=10 \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--dataset.repo_id=lerobot/pusht \
@@ -84,21 +99,21 @@ test-diffusion-ete-train:
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--device=$(DEVICE) \
--output_dir=tests/outputs/diffusion/
test-diffusion-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/diffusion/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--device=$(DEVICE)
--eval.batch_size=1
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
--policy.type=tdmpc \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.task=XarmLift-v0 \
--env.episode_length=5 \
@@ -114,15 +129,14 @@ test-tdmpc-ete-train:
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--device=$(DEVICE) \
--output_dir=tests/outputs/tdmpc/
test-tdmpc-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.episode_length=5 \
--env.task=XarmLift-v0 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--device=$(DEVICE)
--eval.batch_size=1

View File

@@ -23,15 +23,24 @@
</div>
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">New robot in town: SO-100</a></p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Build Your Own SO-100 Robot!</a></p>
</h2>
<div align="center">
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p>We just added a new tutorial on how to build a more affordable robot, at the price of $110 per arm!</p>
<p>Teach it new skills by showing it a few moves with just a laptop.</p>
<p>Then watch your homemade robot act autonomously 🤯</p>
<p>Follow the link to the <a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">full tutorial for SO-100</a>.</p>
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p><strong>Meet the SO-100 Just $110 per arm!</strong></p>
<p>Train it in minutes with a few simple moves on your laptop.</p>
<p>Then sit back and watch your creation act autonomously! 🤯</p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Get the full SO-100 tutorial here.</a></p>
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
</div>
<br/>
@@ -223,8 +232,8 @@ python lerobot/scripts/eval.py \
--env.type=pusht \
--eval.batch_size=10 \
--eval.n_episodes=10 \
--use_amp=false \
--device=cuda
--policy.use_amp=false \
--policy.device=cuda
```
Note: After training your own policy, you can re-evaluate the checkpoints with:
@@ -375,3 +384,6 @@ Additionally, if you are using any of the particular policy architecture, pretra
year={2024}
}
```
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=huggingface/lerobot&type=Timeline)](https://star-history.com/#huggingface/lerobot&Timeline)

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
@@ -30,7 +44,7 @@ pretrained_policy_path = "lerobot/diffusion_pusht"
# OR a path to a local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path, map_location=device)
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
# Initialize evaluation environment to render two observation types:
# an image of the scene and state/position of the agent. The environment

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
Once you have trained a model with this script, you can try to evaluate it on
@@ -85,7 +99,7 @@ def main():
done = False
while not done:
for batch in dataloader:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
batch = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
loss, _ = policy.forward(batch)
loss.backward()
optimizer.step()

View File

@@ -1,5 +1,5 @@
This tutorial will explain the training script, how to use it, and particularly how to configure everything needed for the training run.
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--device=cpu` (`--device=mps` respectively). However, be advised that the code executes much slower on cpu.
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
## The training script

View File

@@ -386,14 +386,14 @@ When you connect your robot for the first time, the [`ManipulatorRobot`](../lero
Here are the positions you'll move the follower arm to:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/koch/follower_zero.webp?raw=true" alt="Koch v1.1 follower arm zero position" title="Koch v1.1 follower arm zero position" style="width:100%;"> | <img src="../media/koch/follower_rotated.webp?raw=true" alt="Koch v1.1 follower arm rotated position" title="Koch v1.1 follower arm rotated position" style="width:100%;"> | <img src="../media/koch/follower_rest.webp?raw=true" alt="Koch v1.1 follower arm rest position" title="Koch v1.1 follower arm rest position" style="width:100%;"> |
And here are the corresponding positions for the leader arm:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/koch/leader_zero.webp?raw=true" alt="Koch v1.1 leader arm zero position" title="Koch v1.1 leader arm zero position" style="width:100%;"> | <img src="../media/koch/leader_rotated.webp?raw=true" alt="Koch v1.1 leader arm rotated position" title="Koch v1.1 leader arm rotated position" style="width:100%;"> | <img src="../media/koch/leader_rest.webp?raw=true" alt="Koch v1.1 leader arm rest position" title="Koch v1.1 leader arm rest position" style="width:100%;"> |
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
@@ -898,14 +898,14 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_koch_test \
--job_name=act_koch_test \
--device=cuda \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/koch_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
For more information on the `train` script see the previous tutorial: [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md)

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from pathlib import Path

View File

@@ -0,0 +1,4 @@
from .camera import Camera
from .configs import CameraConfig
__all__ = ["Camera", "CameraConfig"]

View File

@@ -0,0 +1,25 @@
import abc
import numpy as np
class Camera(abc.ABC):
@abc.abstractmethod
def connect(self):
pass
@abc.abstractmethod
def read(self, temporary_color: str | None = None) -> np.ndarray:
pass
@abc.abstractmethod
def async_read(self) -> np.ndarray:
pass
@abc.abstractmethod
def disconnect(self):
pass
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -0,0 +1,11 @@
import abc
from dataclasses import dataclass
import draccus
@dataclass
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)

View File

@@ -0,0 +1,4 @@
from .camera_realsense import RealSenseCamera
from .configuration_realsense import RealSenseCameraConfig
__all__ = ["RealSenseCamera", "RealSenseCameraConfig"]

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains utilities for recording frames from Intel Realsense cameras.
"""
@@ -17,14 +31,15 @@ from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.robot_utils import (
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
from ..camera import Camera
from .configuration_realsense import RealSenseCameraConfig
SERIAL_NUMBER_INDEX = 1
@@ -34,7 +49,7 @@ def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
connected to the computer.
"""
if mock:
import tests.mock_pyrealsense2 as rs
import tests.cameras.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
@@ -86,7 +101,7 @@ def save_images_from_cameras(
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if mock:
import tests.mock_cv2 as cv2
import tests.cameras.mock_cv2 as cv2
else:
import cv2
@@ -94,13 +109,11 @@ def save_images_from_cameras(
cameras = []
for cam_sn in serial_numbers:
print(f"{cam_sn=}")
config = IntelRealSenseCameraConfig(
serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock
)
camera = IntelRealSenseCamera(config)
config = RealSenseCameraConfig(serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock)
camera = RealSenseCamera(config)
camera.connect()
print(
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
f"RealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
@@ -152,11 +165,11 @@ def save_images_from_cameras(
camera.disconnect()
class IntelRealSenseCamera:
class RealSenseCamera(Camera):
"""
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
The RealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
- can also be instantiated with the camera's name — if it's unique using IntelRealSenseCamera.init_from_name(),
- can also be instantiated with the camera's name — if it's unique using RealSenseCamera.init_from_name(),
- depth map can be returned.
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
@@ -164,15 +177,15 @@ class IntelRealSenseCamera:
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
```
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
When an RealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
of the given camera will be used.
Example of instantiating with a serial number:
```python
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
from lerobot.common.robot_devices.cameras.configs import RealSenseCameraConfig
config = IntelRealSenseCameraConfig(serial_number=128422271347)
camera = IntelRealSenseCamera(config)
config = RealSenseCameraConfig(serial_number=128422271347)
camera = RealSenseCamera(config)
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
@@ -181,21 +194,21 @@ class IntelRealSenseCamera:
Example of instantiating with a name if it's unique:
```
config = IntelRealSenseCameraConfig(name="Intel RealSense D405")
config = RealSenseCameraConfig(name="Intel RealSense D405")
```
Example of changing default fps, width, height and color_mode:
```python
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
config = RealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
```
Example of returning depth:
```python
config = IntelRealSenseCameraConfig(serial_number=128422271347, use_depth=True)
camera = IntelRealSenseCamera(config)
config = RealSenseCameraConfig(serial_number=128422271347, use_depth=True)
camera = RealSenseCamera(config)
camera.connect()
color_image, depth_map = camera.read()
```
@@ -203,16 +216,27 @@ class IntelRealSenseCamera:
def __init__(
self,
config: IntelRealSenseCameraConfig,
config: RealSenseCameraConfig,
):
self.config = config
if config.name is not None:
self.serial_number = self.find_serial_number_from_name(config.name)
else:
self.serial_number = config.serial_number
# Store the raw (capture) resolution from the config.
self.capture_width = config.width
self.capture_height = config.height
# If rotated by ±90, swap width and height.
if config.rotation in [-90, 90]:
self.width = config.height
self.height = config.width
else:
self.width = config.width
self.height = config.height
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.use_depth = config.use_depth
@@ -228,11 +252,10 @@ class IntelRealSenseCamera:
self.logs = {}
if self.mock:
import tests.mock_cv2 as cv2
import tests.cameras.mock_cv2 as cv2
else:
import cv2
# TODO(alibets): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
@@ -258,27 +281,29 @@ class IntelRealSenseCamera:
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is already connected."
)
raise DeviceAlreadyConnectedError(f"RealSenseCamera({self.serial_number}) is already connected.")
if self.mock:
import tests.mock_pyrealsense2 as rs
import tests.cameras.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
config = rs.config()
config.enable_device(str(self.serial_number))
if self.fps and self.width and self.height:
if self.fps and self.capture_width and self.capture_height:
# TODO(rcadene): can we set rgb8 directly?
config.enable_stream(rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps)
config.enable_stream(
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
)
else:
config.enable_stream(rs.stream.color)
if self.use_depth:
if self.fps and self.width and self.height:
config.enable_stream(rs.stream.depth, self.width, self.height, rs.format.z16, self.fps)
if self.fps and self.capture_width and self.capture_height:
config.enable_stream(
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
)
else:
config.enable_stream(rs.stream.depth)
@@ -302,7 +327,7 @@ class IntelRealSenseCamera:
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
)
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't access RealSenseCamera({self.serial_number}).")
color_stream = profile.get_stream(rs.stream.color)
color_profile = color_stream.as_video_stream_profile()
@@ -314,20 +339,20 @@ class IntelRealSenseCamera:
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
f"Can't set {self.fps=} for RealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
)
if self.width is not None and self.width != actual_width:
if self.capture_width is not None and self.capture_width != actual_width:
raise OSError(
f"Can't set {self.width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
f"Can't set {self.capture_width=} for RealSenseCamera({self.serial_number}). Actual value is {actual_width}."
)
if self.height is not None and self.height != actual_height:
if self.capture_height is not None and self.capture_height != actual_height:
raise OSError(
f"Can't set {self.height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
f"Can't set {self.capture_height=} for RealSenseCamera({self.serial_number}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.width = round(actual_width)
self.height = round(actual_height)
self.capture_width = round(actual_width)
self.capture_height = round(actual_height)
self.is_connected = True
@@ -342,12 +367,12 @@ class IntelRealSenseCamera:
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.mock:
import tests.mock_cv2 as cv2
import tests.cameras.mock_cv2 as cv2
else:
import cv2
@@ -358,7 +383,7 @@ class IntelRealSenseCamera:
color_frame = frame.get_color_frame()
if not color_frame:
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture color image from RealSenseCamera({self.serial_number}).")
color_image = np.asanyarray(color_frame.get_data())
@@ -373,7 +398,7 @@ class IntelRealSenseCamera:
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
h, w, _ = color_image.shape
if h != self.height or w != self.width:
if h != self.capture_height or w != self.capture_width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
@@ -390,12 +415,12 @@ class IntelRealSenseCamera:
if self.use_depth:
depth_frame = frame.get_depth_frame()
if not depth_frame:
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
raise OSError(f"Can't capture depth image from RealSenseCamera({self.serial_number}).")
depth_map = np.asanyarray(depth_frame.get_data())
h, w = depth_map.shape
if h != self.height or w != self.width:
if h != self.capture_height or w != self.capture_width:
raise OSError(
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
@@ -417,8 +442,8 @@ class IntelRealSenseCamera:
def async_read(self):
"""Access the latest color image"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
@@ -444,8 +469,8 @@ class IntelRealSenseCamera:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
raise DeviceNotConnectedError(
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None and self.thread.is_alive():
@@ -467,14 +492,14 @@ class IntelRealSenseCamera:
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
description="Save a few frames using `RealSenseCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--serial-numbers",
type=int,
nargs="*",
default=None,
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
help="List of serial numbers used to instantiate the `RealSenseCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",

View File

@@ -1,64 +1,35 @@
import abc
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
import draccus
@dataclass
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
OpenCVCameraConfig(0, 30, 640, 480)
OpenCVCameraConfig(0, 60, 640, 480)
OpenCVCameraConfig(0, 90, 640, 480)
OpenCVCameraConfig(0, 30, 1280, 720)
```
"""
camera_index: int
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
from ..configs import CameraConfig
@CameraConfig.register_subclass("intelrealsense")
@dataclass
class IntelRealSenseCameraConfig(CameraConfig):
class RealSenseCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
IntelRealSenseCameraConfig(128422271347, 30, 640, 480)
IntelRealSenseCameraConfig(128422271347, 60, 640, 480)
IntelRealSenseCameraConfig(128422271347, 90, 640, 480)
IntelRealSenseCameraConfig(128422271347, 30, 1280, 720)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
RealSenseCameraConfig(128422271347, 30, 640, 480)
RealSenseCameraConfig(128422271347, 60, 640, 480)
RealSenseCameraConfig(128422271347, 90, 640, 480)
RealSenseCameraConfig(128422271347, 30, 1280, 720)
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
```
"""

View File

@@ -0,0 +1,4 @@
from .camera_opencv import OpenCVCamera
from .configuration_opencv import OpenCVCameraConfig
__all__ = ["OpenCVCamera", "OpenCVCameraConfig"]

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
"""
@@ -15,14 +29,15 @@ from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.robot_utils import (
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
from ..camera import Camera
from .configuration_opencv import OpenCVCameraConfig
# The maximum opencv device index depends on your operating system. For instance,
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
@@ -66,7 +81,7 @@ def _find_cameras(
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
) -> list[int | str]:
if mock:
import tests.mock_cv2 as cv2
import tests.cameras.mock_cv2 as cv2
else:
import cv2
@@ -130,8 +145,8 @@ def save_images_from_cameras(
camera = OpenCVCamera(config)
camera.connect()
print(
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.width}, "
f"height={camera.height}, color_mode={camera.color_mode})"
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.capture_width}, "
f"height={camera.capture_height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
@@ -176,7 +191,7 @@ def save_images_from_cameras(
print(f"Images have been saved to {images_dir}")
class OpenCVCamera:
class OpenCVCamera(Camera):
"""
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
@@ -230,9 +245,19 @@ class OpenCVCamera:
else:
raise ValueError(f"Please check the provided camera_index: {self.camera_index}")
# Store the raw (capture) resolution from the config.
self.capture_width = config.width
self.capture_height = config.height
# If rotated by ±90, swap width and height.
if config.rotation in [-90, 90]:
self.width = config.height
self.height = config.width
else:
self.width = config.width
self.height = config.height
self.fps = config.fps
self.width = config.width
self.height = config.height
self.channels = config.channels
self.color_mode = config.color_mode
self.mock = config.mock
@@ -245,11 +270,10 @@ class OpenCVCamera:
self.logs = {}
if self.mock:
import tests.mock_cv2 as cv2
import tests.cameras.mock_cv2 as cv2
else:
import cv2
# TODO(aliberts): Do we keep original width/height or do we define them after rotation?
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
@@ -260,10 +284,10 @@ class OpenCVCamera:
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
raise DeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
if self.mock:
import tests.mock_cv2 as cv2
import tests.cameras.mock_cv2 as cv2
else:
import cv2
@@ -271,10 +295,20 @@ class OpenCVCamera:
# when other threads are used to save the images.
cv2.setNumThreads(1)
backend = (
cv2.CAP_V4L2
if platform.system() == "Linux"
else cv2.CAP_DSHOW
if platform.system() == "Windows"
else cv2.CAP_AVFOUNDATION
if platform.system() == "Darwin"
else cv2.CAP_ANY
)
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
# First create a temporary camera trying to access `camera_index`,
# and verify it is a valid camera by calling `isOpened`.
tmp_camera = cv2.VideoCapture(camera_idx)
tmp_camera = cv2.VideoCapture(camera_idx, backend)
is_camera_open = tmp_camera.isOpened()
# Release camera to make it accessible for `find_camera_indices`
tmp_camera.release()
@@ -297,14 +331,14 @@ class OpenCVCamera:
# Secondly, create the camera that will be used downstream.
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
# needs to be re-created.
self.camera = cv2.VideoCapture(camera_idx)
self.camera = cv2.VideoCapture(camera_idx, backend)
if self.fps is not None:
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
if self.width is not None:
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
if self.height is not None:
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
if self.capture_width is not None:
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.capture_width)
if self.capture_height is not None:
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.capture_height)
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
@@ -316,19 +350,22 @@ class OpenCVCamera:
raise OSError(
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
)
if self.width is not None and not math.isclose(self.width, actual_width, rel_tol=1e-3):
if self.capture_width is not None and not math.isclose(
self.capture_width, actual_width, rel_tol=1e-3
):
raise OSError(
f"Can't set {self.width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
f"Can't set {self.capture_width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
)
if self.height is not None and not math.isclose(self.height, actual_height, rel_tol=1e-3):
if self.capture_height is not None and not math.isclose(
self.capture_height, actual_height, rel_tol=1e-3
):
raise OSError(
f"Can't set {self.height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
f"Can't set {self.capture_height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.width = round(actual_width)
self.height = round(actual_height)
self.capture_width = round(actual_width)
self.capture_height = round(actual_height)
self.is_connected = True
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
@@ -339,7 +376,7 @@ class OpenCVCamera:
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
@@ -362,14 +399,14 @@ class OpenCVCamera:
# so we convert the image color from BGR to RGB.
if requested_color_mode == "rgb":
if self.mock:
import tests.mock_cv2 as cv2
import tests.cameras.mock_cv2 as cv2
else:
import cv2
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
h, w, _ = color_image.shape
if h != self.height or w != self.width:
if h != self.capture_height or w != self.capture_width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
@@ -396,7 +433,7 @@ class OpenCVCamera:
def async_read(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
@@ -418,7 +455,7 @@ class OpenCVCamera:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)

View File

@@ -0,0 +1,38 @@
from dataclasses import dataclass
from ..configs import CameraConfig
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
OpenCVCameraConfig(0, 30, 640, 480)
OpenCVCameraConfig(0, 60, 640, 480)
OpenCVCameraConfig(0, 90, 640, 480)
OpenCVCameraConfig(0, 30, 1280, 720)
```
"""
camera_index: int
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")

View File

@@ -0,0 +1,21 @@
from .camera import Camera
from .configs import CameraConfig
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from .opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from .intel.camera_realsense import RealSenseCamera
cameras[key] = RealSenseCamera(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return cameras

View File

@@ -1,15 +1,31 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# keys
import os
from pathlib import Path
from huggingface_hub.constants import HF_HOME
OBS_ENV = "observation.environment_state"
OBS_ROBOT = "observation.state"
OBS_ENV_STATE = "observation.environment_state"
OBS_STATE = "observation.state"
OBS_IMAGE = "observation.image"
OBS_IMAGES = "observation.images"
ACTION = "action"
ROBOTS = "robots"
TELEOPERATORS = "teleoperators"
# files & directories
CHECKPOINTS_DIR = "checkpoints"
LAST_CHECKPOINT_LINK = "last"
@@ -21,12 +37,16 @@ OPTIMIZER_STATE = "optimizer_state.safetensors"
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
SCHEDULER_STATE = "scheduler_state.json"
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
if "LEROBOT_HOME" in os.environ:
raise ValueError(
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
)
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
# calibration dir
default_calibration_path = HF_LEROBOT_HOME / ".calibration"
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import packaging.version
V2_MESSAGE = """

View File

@@ -13,6 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import logging
import shutil
from pathlib import Path
@@ -27,6 +28,7 @@ import torch.utils
from datasets import concatenate_datasets, load_dataset
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.constants import REPOCARD_NAME
from huggingface_hub.errors import RevisionNotFoundError
from lerobot.common.constants import HF_LEROBOT_HOME
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
@@ -69,7 +71,7 @@ from lerobot.common.datasets.video_utils import (
encode_video_frames,
get_video_info,
)
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robots.utils import Robot
CODEBASE_VERSION = "v2.1"
@@ -517,6 +519,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
branch: str | None = None,
tags: list | None = None,
license: str | None = "apache-2.0",
tag_version: bool = True,
push_videos: bool = True,
private: bool = False,
allow_patterns: list[str] | str | None = None,
@@ -562,6 +565,11 @@ class LeRobotDataset(torch.utils.data.Dataset):
)
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=branch)
if tag_version:
with contextlib.suppress(RevisionNotFoundError):
hub_api.delete_tag(self.repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
hub_api.create_tag(self.repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
def pull_from_repo(
self,
allow_patterns: list[str] | str | None = None,

View File

@@ -31,6 +31,7 @@ import packaging.version
import torch
from datasets.table import embed_table_storage
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from huggingface_hub.errors import RevisionNotFoundError
from PIL import Image as PILImage
from torchvision import transforms
@@ -39,7 +40,7 @@ from lerobot.common.datasets.backward_compatibility import (
BackwardCompatibilityError,
ForwardCompatibilityError,
)
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robots.utils import Robot
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
@@ -325,6 +326,19 @@ def get_safe_version(repo_id: str, version: str | packaging.version.Version) ->
)
hub_versions = get_repo_versions(repo_id)
if not hub_versions:
raise RevisionNotFoundError(
f"""Your dataset must be tagged with a codebase version.
Assuming _version_ is the codebase_version value in the info.json, you can run this:
```python
from huggingface_hub import HfApi
hub_api = HfApi()
hub_api.create_tag("{repo_id}", tag="_version_", repo_type="dataset")
```
"""
)
if target_version in hub_versions:
return f"v{target_version}"

View File

@@ -27,7 +27,7 @@ from textwrap import dedent
from lerobot import available_datasets
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
from lerobot.common.robots.aloha.configuration_aloha import AlohaRobotConfig
LOCAL_DIR = Path("data/")

View File

@@ -141,8 +141,8 @@ from lerobot.common.datasets.video_utils import (
get_image_pixel_channels,
get_video_info,
)
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.robot_devices.robots.utils import make_robot_config
from lerobot.common.robots import RobotConfig
from lerobot.common.robots.utils import make_robot_config
V16 = "v1.6"
V20 = "v2.0"

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import traceback
from pathlib import Path

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 2.0 to
2.1. It will:
@@ -57,7 +71,7 @@ def convert_dataset(
dataset.meta.info["codebase_version"] = CODEBASE_VERSION
write_info(dataset.meta.info, dataset.root)
dataset.push_to_hub(branch=branch, allow_patterns="meta/")
dataset.push_to_hub(branch=branch, tag_version=False, allow_patterns="meta/")
# delete old stats.json file
if (dataset.root / STATS_PATH).is_file:

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np

View File

@@ -1 +1,15 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv # noqa: F401

View File

@@ -1,9 +1,23 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass, field
import draccus
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from lerobot.configs.types import FeatureType, PolicyFeature
@@ -39,7 +53,7 @@ class AlohaEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"agent_pos": OBS_STATE,
"top": f"{OBS_IMAGE}.top",
"pixels/top": f"{OBS_IMAGES}.top",
}
@@ -80,8 +94,8 @@ class PushtEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"environment_state": OBS_ENV,
"agent_pos": OBS_STATE,
"environment_state": OBS_ENV_STATE,
"pixels": OBS_IMAGE,
}
)
@@ -122,7 +136,7 @@ class XarmEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"agent_pos": OBS_STATE,
"pixels": OBS_IMAGE,
}
)

17
lerobot/common/errors.py Normal file
View File

@@ -0,0 +1,17 @@
class DeviceNotConnectedError(ConnectionError):
"""Exception raised when the device is not connected."""
def __init__(self, message="This device is not connected. Try calling `connect()` first."):
self.message = message
super().__init__(self.message)
class DeviceAlreadyConnectedError(ConnectionError):
"""Exception raised when the device is already connected."""
def __init__(
self,
message="This device is already connected. Try not calling `connect()` twice.",
):
self.message = message
super().__init__(self.message)

View File

@@ -0,0 +1,3 @@
from .motors_bus import MotorsBus
__all__ = ["MotorsBus"]

View File

@@ -0,0 +1,41 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass
import draccus
@dataclass
class MotorsBusConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@MotorsBusConfig.register_subclass("dynamixel")
@dataclass
class DynamixelMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False
@MotorsBusConfig.register_subclass("feetech")
@dataclass
class FeetechMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False

View File

@@ -0,0 +1,4 @@
from .dynamixel import DynamixelMotorsBus, TorqueMode, set_operating_mode
from .dynamixel_calibration import run_arm_calibration
__all__ = ["DynamixelMotorsBus", "TorqueMode", "set_operating_mode", "run_arm_calibration"]

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import logging
import math
@@ -8,8 +22,7 @@ from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 2.0
@@ -274,11 +287,10 @@ class DynamixelMotorsBus:
motor_index = 6
motor_model = "xl330-m288"
config = DynamixelMotorsBusConfig(
motors_bus = DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus = DynamixelMotorsBus(config)
motors_bus.connect()
position = motors_bus.read("Present_Position")
@@ -294,11 +306,13 @@ class DynamixelMotorsBus:
def __init__(
self,
config: DynamixelMotorsBusConfig,
port: str,
motors: dict[str, tuple[int, str]],
mock: bool = False,
):
self.port = config.port
self.motors = config.motors
self.mock = config.mock
self.port = port
self.motors = motors
self.mock = mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
@@ -313,12 +327,12 @@ class DynamixelMotorsBus:
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
raise DeviceAlreadyConnectedError(
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.mock_dynamixel_sdk as dxl
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -342,7 +356,7 @@ class DynamixelMotorsBus:
def reconnect(self):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -632,7 +646,7 @@ class DynamixelMotorsBus:
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -670,14 +684,14 @@ class DynamixelMotorsBus:
def read(self, data_name, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.mock_dynamixel_sdk as dxl
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -743,7 +757,7 @@ class DynamixelMotorsBus:
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.mock_dynamixel_sdk as dxl
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -772,14 +786,14 @@ class DynamixelMotorsBus:
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.mock_dynamixel_sdk as dxl
import tests.motors.mock_dynamixel_sdk as dxl
else:
import dynamixel_sdk as dxl
@@ -841,7 +855,7 @@ class DynamixelMotorsBus:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)
@@ -857,3 +871,25 @@ class DynamixelMotorsBus:
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
def set_operating_mode(arm: DynamixelMotorsBus):
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
if len(all_motors_except_gripper) > 0:
# 4 corresponds to Extended Position on Koch motors
arm.write("Operating_Mode", 4, all_motors_except_gripper)
# Use 'position control current based' for gripper to be limited by the limit of the current.
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
# to make it move, and it will move back to its original target position when we release the force.
# 5 corresponds to Current Controlled Position on Koch gripper motors "xl330-m077, xl330-m288"
arm.write("Operating_Mode", 5, "gripper")

View File

@@ -1,14 +1,28 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Logic to calibrate a robot arm built with dynamixel motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import numpy as np
from lerobot.common.robot_devices.motors.dynamixel import (
from ..motors_bus import MotorsBus
from .dynamixel import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"

View File

@@ -0,0 +1,9 @@
from .feetech import FeetechMotorsBus, TorqueMode
from .feetech_calibration import apply_feetech_offsets_from_calibration, run_full_arm_calibration
__all__ = [
"FeetechMotorsBus",
"TorqueMode",
"apply_feetech_offsets_from_calibration",
"run_full_arm_calibration",
]

View File

@@ -1,6 +1,18 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import logging
import math
import time
import traceback
from copy import deepcopy
@@ -8,8 +20,7 @@ from copy import deepcopy
import numpy as np
import tqdm
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 0
@@ -18,13 +29,6 @@ TIMEOUT_MS = 1000
MAX_ID_RANGE = 252
# The following bounds define the lower and upper joints range (after calibration).
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
# which corresponds to a half rotation on the left and half rotation on the right.
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
# an error is raised.
LOWER_BOUND_DEGREE = -270
UPPER_BOUND_DEGREE = 270
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
@@ -34,7 +38,6 @@ UPPER_BOUND_LINEAR = 110
HALF_TURN_DEGREE = 180
# See this link for STS3215 Memory Table:
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
# data_name: (address, size_byte)
@@ -100,8 +103,6 @@ SCS_SERIES_BAUDRATE_TABLE = {
}
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
MODEL_CONTROL_TABLE = {
"scs_series": SCS_SERIES_CONTROL_TABLE,
@@ -123,15 +124,63 @@ NUM_READ_RETRY = 20
NUM_WRITE_RETRY = 20
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
"""This function converts the degree range to the step range for indicating motors rotation.
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
def convert_ticks_to_degrees(ticks, model):
resolutions = MODEL_RESOLUTION[model]
# Convert the ticks to degrees
return ticks * (360.0 / resolutions)
def convert_degrees_to_ticks(degrees, model):
resolutions = MODEL_RESOLUTION[model]
# Convert degrees to motor ticks
return int(degrees * (resolutions / 360.0))
def adjusted_to_homing_ticks(raw_motor_ticks: int, model: str, motorbus, motor_id: int) -> int:
"""
resolutions = [MODEL_RESOLUTION[model] for model in models]
steps = degrees / 180 * np.array(resolutions) / 2
steps = steps.astype(int)
return steps
Takes a raw reading [0..(res-1)] (e.g. 0..4095) and shifts it so that '2048'
becomes 0 in the homed coordinate system ([-2048..+2047] for 4096 resolution).
"""
resolutions = MODEL_RESOLUTION[model]
# Shift raw ticks by half-resolution so 2048 -> 0, then wrap [0..res-1].
ticks = (raw_motor_ticks - (resolutions // 2)) % resolutions
# If above halfway, fold it into negative territory => [-2048..+2047].
if ticks > (resolutions // 2):
ticks -= resolutions
# Flip sign if drive_mode is set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
ticks *= -1
return ticks
def adjusted_to_motor_ticks(adjusted_pos: int, model: str, motorbus, motor_id: int) -> int:
"""
Inverse of adjusted_to_homing_ticks(). Takes a 'homed' position in [-2048..+2047]
and recovers the raw [0..(res-1)] ticks with 2048 as midpoint.
"""
# Flip sign if drive_mode was set.
drive_mode = 0
if motorbus.calibration is not None:
drive_mode = motorbus.calibration["drive_mode"][motor_id - 1]
if drive_mode:
adjusted_pos *= -1
resolutions = MODEL_RESOLUTION[model]
# Shift by +half-resolution and wrap into [0..res-1].
# This undoes the earlier shift by -half-resolution.
ticks = (adjusted_pos + (resolutions // 2)) % resolutions
return ticks
def convert_to_bytes(value, bytes, mock=False):
@@ -253,11 +302,10 @@ class FeetechMotorsBus:
motor_index = 6
motor_model = "sts3215"
config = FeetechMotorsBusConfig(
motors_bus = FeetechMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={motor_name: (motor_index, motor_model)},
)
motors_bus = FeetechMotorsBus(config)
motors_bus.connect()
position = motors_bus.read("Present_Position")
@@ -273,11 +321,13 @@ class FeetechMotorsBus:
def __init__(
self,
config: FeetechMotorsBusConfig,
port: str,
motors: dict[str, tuple[int, str]],
mock: bool = False,
):
self.port = config.port
self.motors = config.motors
self.mock = config.mock
self.port = port
self.motors = motors
self.mock = mock
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
self.model_resolution = deepcopy(MODEL_RESOLUTION)
@@ -290,16 +340,14 @@ class FeetechMotorsBus:
self.group_writers = {}
self.logs = {}
self.track_positions = {}
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
raise DeviceAlreadyConnectedError(
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
)
if self.mock:
import tests.mock_scservo_sdk as scs
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -323,7 +371,7 @@ class FeetechMotorsBus:
def reconnect(self):
if self.mock:
import tests.mock_scservo_sdk as scs
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -388,33 +436,7 @@ class FeetechMotorsBus:
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
"""
try:
values = self.apply_calibration(values, motor_names)
except JointOutOfRangeError as e:
print(e)
self.autocorrect_calibration(values, motor_names)
values = self.apply_calibration(values, motor_names)
return values
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
@@ -426,34 +448,11 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
motor_idx, model = self.motors[name]
# Update direction of rotation of the motor to match between leader and follower.
# In fact, the motor of the leader for a given joint can be assembled in an
# opposite direction in term of rotation than the motor of the follower on the same joint.
if drive_mode:
values[i] *= -1
# Convert from range [-2**31, 2**31[ to
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
values[i] += homing_offset
# Convert from range ]-resolution, resolution[ to
# universal float32 centered degree range ]-180, 180[
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
raise JointOutOfRangeError(
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
f"but present value is {values[i]} degree. "
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
# Convert raw motor ticks to homed ticks, then convert the homed ticks to degrees
values[i] = adjusted_to_homing_ticks(values[i], model, self, motor_idx)
values[i] = convert_ticks_to_degrees(values[i], model)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -475,103 +474,6 @@ class FeetechMotorsBus:
return values
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
Some motors might have values outside of expected maximum bounds after calibration.
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
Known issues:
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
or by human error during manual calibration.
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
if drive_mode:
values[i] *= -1
# Convert from initial range to range [-180, 180] degrees
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
low_factor = (
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
upp_factor = (
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
) / resolution
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Convert from initial range to range [0, 100] in %
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
# Solve this inequality to find the factor to shift the range into [0, 100] %
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
low_factor = (start_pos - values[i]) / resolution
upp_factor = (end_pos - values[i]) / resolution
if not in_range:
# Get first integer between the two bounds
if low_factor < upp_factor:
factor = math.ceil(low_factor)
if factor > upp_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
else:
factor = math.ceil(upp_factor)
if factor > low_factor:
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
logging.warning(
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
f"from '{out_of_range_str}' to '{in_range_str}'."
)
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
self.calibration["homing_offset"][calib_idx] += resolution * factor
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Inverse of `apply_calibration`."""
if motor_names is None:
@@ -582,23 +484,11 @@ class FeetechMotorsBus:
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
drive_mode = self.calibration["drive_mode"][calib_idx]
homing_offset = self.calibration["homing_offset"][calib_idx]
_, model = self.motors[name]
resolution = self.model_resolution[model]
motor_idx, model = self.motors[name]
# Convert from nominal 0-centered degree range [-180, 180] to
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
# Subtract the homing offsets to come back to actual motor range of values
# which can be arbitrary.
values[i] -= homing_offset
# Remove drive mode, which is the rotation direction of the motor, to come back to
# actual motor rotation direction which can be arbitrary.
if drive_mode:
values[i] *= -1
# Convert degrees to homed ticks, then convert the homed ticks to raw ticks
values[i] = convert_degrees_to_ticks(values[i], model)
values[i] = adjusted_to_motor_ticks(values[i], model, self, motor_idx)
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
@@ -611,46 +501,9 @@ class FeetechMotorsBus:
values = np.round(values).astype(np.int32)
return values
def avoid_rotation_reset(self, values, motor_names, data_name):
if data_name not in self.track_positions:
self.track_positions[data_name] = {
"prev": [None] * len(self.motor_names),
# Assume False at initialization
"below_zero": [False] * len(self.motor_names),
"above_max": [False] * len(self.motor_names),
}
track = self.track_positions[data_name]
if motor_names is None:
motor_names = self.motor_names
for i, name in enumerate(motor_names):
idx = self.motor_names.index(name)
if track["prev"][idx] is None:
track["prev"][idx] = values[i]
continue
# Detect a full rotation occurred
if abs(track["prev"][idx] - values[i]) > 2048:
# Position went below 0 and got reset to 4095
if track["prev"][idx] < values[i]:
# So we set negative value by adding a full rotation
values[i] -= 4096
# Position went above 4095 and got reset to 0
elif track["prev"][idx] > values[i]:
# So we add a full rotation
values[i] += 4096
track["prev"][idx] = values[i]
return values
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
if self.mock:
import tests.mock_scservo_sdk as scs
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -688,12 +541,12 @@ class FeetechMotorsBus:
def read(self, data_name, motor_names: str | list[str] | None = None):
if self.mock:
import tests.mock_scservo_sdk as scs
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
@@ -721,7 +574,7 @@ class FeetechMotorsBus:
self.port_handler.ser.reset_output_buffer()
self.port_handler.ser.reset_input_buffer()
# create new group reader
# Create new group reader
self.group_readers[group_key] = scs.GroupSyncRead(
self.port_handler, self.packet_handler, addr, bytes
)
@@ -746,15 +599,8 @@ class FeetechMotorsBus:
values = np.array(values)
# Convert to signed int to use range [-2048, 2048] for our motor positions.
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
values = values.astype(np.int32)
if data_name in CALIBRATION_REQUIRED:
values = self.avoid_rotation_reset(values, motor_names, data_name)
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
values = self.apply_calibration_autocorrect(values, motor_names)
values = self.apply_calibration(values, motor_names)
# log the number of seconds it took to read the data from the motors
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
@@ -768,7 +614,7 @@ class FeetechMotorsBus:
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
if self.mock:
import tests.mock_scservo_sdk as scs
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -797,14 +643,14 @@ class FeetechMotorsBus:
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
)
start_time = time.perf_counter()
if self.mock:
import tests.mock_scservo_sdk as scs
import tests.motors.mock_scservo_sdk as scs
else:
import scservo_sdk as scs
@@ -866,7 +712,7 @@ class FeetechMotorsBus:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
)

View File

@@ -0,0 +1,254 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from ..motors_bus import MotorsBus
from .feetech import (
CalibrationMode,
FeetechMotorsBus,
TorqueMode,
)
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
def disable_torque(arm: MotorsBus):
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
def get_calibration_modes(arm: MotorsBus):
"""Returns calibration modes for each motor (DEGREE for rotational, LINEAR for gripper)."""
return [
CalibrationMode.LINEAR.name if name == "gripper" else CalibrationMode.DEGREE.name
for name in arm.motor_names
]
def reset_offset(motor_id, motor_bus):
# Open the write lock, changes to EEPROM do NOT persist yet
motor_bus.write("Lock", 1)
# Set offset to 0
motor_name = motor_bus.motor_names[motor_id - 1]
motor_bus.write("Offset", 0, motor_names=[motor_name])
# Close the write lock, changes to EEPROM do persist
motor_bus.write("Lock", 0)
# Confirm that the offset is zero by reading it back
confirmed_offset = motor_bus.read("Offset")[motor_id - 1]
print(f"Offset for motor {motor_id} reset to: {confirmed_offset}")
return confirmed_offset
def calibrate_homing_motor(motor_id, motor_bus):
reset_offset(motor_id, motor_bus)
home_ticks = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts at 0
print(f"Encoder offset (present position in homing position): {home_ticks}")
return home_ticks
def calibrate_linear_motor(motor_id, motor_bus):
motor_names = motor_bus.motor_names
motor_name = motor_names[motor_id - 1]
reset_offset(motor_id, motor_bus)
input(f"Close the {motor_name}, then press Enter...")
start_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] start position recorded: {start_pos}")
input(f"Open the {motor_name} fully, then press Enter...")
end_pos = motor_bus.read("Present_Position")[motor_id - 1] # Read index starts ar 0
print(f" [Motor {motor_id}] end position recorded: {end_pos}")
return start_pos, end_pos
def single_motor_calibration(arm: MotorsBus, motor_id: int):
"""Calibrates a single motor and returns its calibration data for updating the calibration file."""
disable_torque(arm)
print(f"\n--- Calibrating Motor {motor_id} ---")
start_pos = 0
end_pos = 0
encoder_offset = 0
if motor_id == 6:
start_pos, end_pos = calibrate_linear_motor(motor_id, arm)
else:
input("Move the motor to (zero) position, then press Enter...")
encoder_offset = calibrate_homing_motor(motor_id, arm)
print(f"Calibration for motor ID:{motor_id} done.")
# Create a calibration dictionary for the single motor
calib_dict = {
"homing_offset": int(encoder_offset),
"drive_mode": 0,
"start_pos": int(start_pos),
"end_pos": int(end_pos),
"calib_mode": get_calibration_modes(arm)[motor_id - 1],
"motor_name": arm.motor_names[motor_id - 1],
}
return calib_dict
def run_full_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""
Runs a full calibration process for all motors in a robotic arm.
This function calibrates each motor in the arm, determining encoder offsets and
start/end positions for linear and rotational motors. The calibration data is then
stored in a dictionary for later use.
**Calibration Process:**
- The user is prompted to move the arm to its homing position before starting.
- Motors with rotational motion are calibrated using a homing method.
- Linear actuators (e.g., grippers) are calibrated separately.
- Encoder offsets, start positions, and end positions are recorded.
**Example Usage:**
```python
run_full_arm_calibration(arm, "so100", "left", "follower")
```
"""
disable_torque(arm)
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to homing position (middle)")
print(
"See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero")
) # TODO(pepijn): replace with new instruction homing pos (all motors in middle) in tutorial
input("Press Enter to continue...")
start_positions = np.zeros(len(arm.motor_indices))
end_positions = np.zeros(len(arm.motor_indices))
encoder_offsets = np.zeros(len(arm.motor_indices))
modes = get_calibration_modes(arm)
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.DEGREE.name:
encoder_offsets[i] = calibrate_homing_motor(motor_id, arm)
start_positions[i] = 0
end_positions[i] = 0
for i, motor_id in enumerate(arm.motor_indices):
if modes[i] == CalibrationMode.LINEAR.name:
start_positions[i], end_positions[i] = calibrate_linear_motor(motor_id, arm)
encoder_offsets[i] = 0
print("\nMove arm to rest position")
input("Press Enter to continue...")
print(f"\n calibration of {robot_type} {arm_name} {arm_type} done!")
# Force drive_mode values (can be static)
drive_modes = [0, 1, 0, 0, 1, 0]
calib_dict = {
"homing_offset": encoder_offsets.astype(int).tolist(),
"drive_mode": drive_modes,
"start_pos": start_positions.astype(int).tolist(),
"end_pos": end_positions.astype(int).tolist(),
"calib_mode": get_calibration_modes(arm),
"motor_names": arm.motor_names,
}
return calib_dict
def run_full_auto_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""TODO(pepijn): Add this method later as extra
Example of usage:
```python
run_full_auto_arm_calibration(arm, "so100", "left", "follower")
```
"""
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
def apply_feetech_offsets_from_calibration(motorsbus: FeetechMotorsBus, calibration_dict: dict):
"""
Reads 'calibration_dict' containing 'homing_offset' and 'motor_names',
then writes each motor's offset to the servo's internal Offset (0x1F) in EPROM.
This version is modified so each homed position (originally 0) will now read
2047, i.e. 180° away from 0 in the 4096-count circle. Offsets are permanently
stored in EEPROM, so the servo's Present_Position is hardware-shifted even
after power cycling.
Steps:
1) Subtract 2047 from the old offset (so 0 -> 2047).
2) Clamp to [-2047..+2047].
3) Encode sign bit and magnitude into a 12-bit number.
"""
homing_offsets = calibration_dict["homing_offset"]
motor_names = calibration_dict["motor_names"]
start_pos = calibration_dict["start_pos"]
# Open the write lock, changes to EEPROM do NOT persist yet
motorsbus.write("Lock", 1)
# For each motor, set the 'Offset' parameter
for m_name, old_offset in zip(motor_names, homing_offsets, strict=False):
# If bus doesnt have a motor named m_name, skip
if m_name not in motorsbus.motors:
print(f"Warning: '{m_name}' not found in motorsbus.motors; skipping offset.")
continue
if m_name == "gripper":
old_offset = start_pos # If gripper set the offset to the start position of the gripper
continue
# Shift the offset so the homed position reads 2047
new_offset = old_offset - 2047
# Clamp to [-2047..+2047]
if new_offset > 2047:
new_offset = 2047
print(
f"Warning: '{new_offset}' is getting clamped because its larger then 2047; This should not happen!"
)
elif new_offset < -2047:
new_offset = -2047
print(
f"Warning: '{new_offset}' is getting clamped because its smaller then -2047; This should not happen!"
)
# Determine the direction (sign) bit and magnitude
direction_bit = 1 if new_offset < 0 else 0
magnitude = abs(new_offset)
# Combine sign bit (bit 11) with the magnitude (bits 0..10)
servo_offset = (direction_bit << 11) | magnitude
# Write offset to servo
motorsbus.write("Offset", servo_offset, motor_names=m_name)
print(
f"Set offset for {m_name}: "
f"old_offset={old_offset}, new_offset={new_offset}, servo_encoded={magnitude} + direction={direction_bit}"
)
motorsbus.write("Lock", 0)
print("Offsets have been saved to EEPROM successfully.")

View File

@@ -0,0 +1,46 @@
import abc
class MotorsBus(abc.ABC):
"""The main LeRobot class for implementing motors buses."""
def __init__(
self,
motors: dict[str, tuple[int, str]],
):
self.motors = motors
def __len__(self):
return len(self.motors)
@abc.abstractmethod
def connect(self):
pass
@abc.abstractmethod
def reconnect(self):
pass
@abc.abstractmethod
def set_calibration(self, calibration: dict[str, list]):
pass
@abc.abstractmethod
def apply_calibration(self):
pass
@abc.abstractmethod
def revert_calibration(self):
pass
@abc.abstractmethod
def read(self):
pass
@abc.abstractmethod
def write(self):
pass
@abc.abstractmethod
def disconnect(self):
pass

View File

@@ -0,0 +1,56 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .configs import MotorsBusConfig
from .motors_bus import MotorsBus
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
motors_buses = {}
for key, cfg in motors_bus_configs.items():
if cfg.type == "dynamixel":
from .dynamixel import DynamixelMotorsBus
motors_buses[key] = DynamixelMotorsBus(cfg)
elif cfg.type == "feetech":
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus
motors_buses[key] = FeetechMotorsBus(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return motors_buses
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
if motor_type == "dynamixel":
from .configs import DynamixelMotorsBusConfig
from .dynamixel import DynamixelMotorsBus
config = DynamixelMotorsBusConfig(**kwargs)
return DynamixelMotorsBus(config)
elif motor_type == "feetech":
from feetech import FeetechMotorsBus
from .configs import FeetechMotorsBusConfig
config = FeetechMotorsBusConfig(**kwargs)
return FeetechMotorsBus(config)
else:
raise ValueError(f"The motor type '{motor_type}' is not valid.")

View File

@@ -1 +1,15 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .optimizers import OptimizerConfig as OptimizerConfig

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .act.configuration_act import ACTConfig as ACTConfig
from .diffusion.configuration_diffusion import DiffusionConfig as DiffusionConfig
from .pi0.configuration_pi0 import PI0Config as PI0Config

View File

@@ -33,7 +33,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from torch import Tensor, nn
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
@@ -238,8 +238,8 @@ class DiffusionModel(nn.Module):
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch[OBS_ROBOT].shape[:2]
global_cond_feats = [batch[OBS_ROBOT]]
batch_size, n_obs_steps = batch[OBS_STATE].shape[:2]
global_cond_feats = [batch[OBS_STATE]]
# Extract image features.
if self.config.image_features:
if self.config.use_separate_rgb_encoder_per_camera:
@@ -269,7 +269,7 @@ class DiffusionModel(nn.Module):
global_cond_feats.append(img_features)
if self.config.env_state_feature:
global_cond_feats.append(batch[OBS_ENV])
global_cond_feats.append(batch[OBS_ENV_STATE])
# Concatenate features then flatten to (B, global_cond_dim).
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)

View File

@@ -16,7 +16,6 @@
import logging
import torch
from torch import nn
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
@@ -76,7 +75,6 @@ def make_policy_config(policy_type: str, **kwargs) -> PreTrainedConfig:
def make_policy(
cfg: PreTrainedConfig,
device: str | torch.device,
ds_meta: LeRobotDatasetMetadata | None = None,
env_cfg: EnvConfig | None = None,
) -> PreTrainedPolicy:
@@ -88,7 +86,6 @@ def make_policy(
Args:
cfg (PreTrainedConfig): The config of the policy to make. If `pretrained_path` is set, the policy will
be loaded with the weights from that path.
device (str): the device to load the policy onto.
ds_meta (LeRobotDatasetMetadata | None, optional): Dataset metadata to take input/output shapes and
statistics to use for (un)normalization of inputs/outputs in the policy. Defaults to None.
env_cfg (EnvConfig | None, optional): The config of a gym environment to parse features from. Must be
@@ -96,7 +93,7 @@ def make_policy(
Raises:
ValueError: Either ds_meta or env and env_cfg must be provided.
NotImplementedError: if the policy.type is 'vqbet' and the device 'mps' (due to an incompatibility)
NotImplementedError: if the policy.type is 'vqbet' and the policy device 'mps' (due to an incompatibility)
Returns:
PreTrainedPolicy: _description_
@@ -111,7 +108,7 @@ def make_policy(
# https://github.com/pytorch/pytorch/issues/77764. As a temporary fix, you can set the environment
# variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU as a fallback for this op. WARNING: this will be
# slower than running natively on MPS.
if cfg.type == "vqbet" and str(device) == "mps":
if cfg.type == "vqbet" and cfg.device == "mps":
raise NotImplementedError(
"Current implementation of VQBeT does not support `mps` backend. "
"Please use `cpu` or `cuda` backend."
@@ -145,7 +142,7 @@ def make_policy(
# Make a fresh policy.
policy = policy_cls(**kwargs)
policy.to(device)
policy.to(cfg.device)
assert isinstance(policy, nn.Module)
# policy = torch.compile(policy, mode="reduce-overhead")

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.optim.optimizers import AdamWConfig
@@ -76,6 +90,7 @@ class PI0Config(PreTrainedConfig):
def __post_init__(self):
super().__post_init__()
# TODO(Steven): Validate device and amp? in all policy configs?
"""Input validation (not exhaustive)."""
if self.n_action_steps > self.chunk_size:
raise ValueError(

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
@@ -31,7 +45,7 @@ def main():
cfg = PreTrainedConfig.from_pretrained(ckpt_torch_dir)
cfg.pretrained_path = ckpt_torch_dir
policy = make_policy(cfg, device, ds_meta=dataset.meta)
policy = make_policy(cfg, ds_meta=dataset.meta)
# policy = torch.compile(policy, mode="reduce-overhead")

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pickle
from pathlib import Path
@@ -87,7 +101,7 @@ def main():
cfg = PreTrainedConfig.from_pretrained(ckpt_torch_dir)
cfg.pretrained_path = ckpt_torch_dir
policy = make_policy(cfg, device, dataset_meta)
policy = make_policy(cfg, dataset_meta)
# loss_dict = policy.forward(batch, noise=noise, time=time_beta)
# loss_dict["loss"].backward()

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import GemmaConfig, PaliGemmaConfig

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Convert pi0 parameters from Jax to Pytorch

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F # noqa: N812
from packaging.version import Version

View File

@@ -57,7 +57,7 @@ import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoTokenizer
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.constants import ACTION, OBS_STATE
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
from lerobot.common.policies.pi0.paligemma_with_expert import (
@@ -271,7 +271,7 @@ class PI0Policy(PreTrainedPolicy):
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch = self.normalize_inputs(batch)
@@ -303,7 +303,7 @@ class PI0Policy(PreTrainedPolicy):
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
"""Do a full training forward pass to compute the loss"""
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
@@ -313,7 +313,7 @@ class PI0Policy(PreTrainedPolicy):
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
actions = self.prepare_action(batch)
actions_is_pad = batch.get("actions_id_pad")
actions_is_pad = batch.get("actions_is_pad")
loss_dict = {}
losses = self.model.forward(images, img_masks, lang_tokens, lang_masks, state, actions, noise, time)
@@ -380,7 +380,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_ROBOT].device
device = batch[OBS_STATE].device
tasks = batch["task"]
# PaliGemma prompt has to end with a new line
@@ -427,7 +427,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_state(self, batch):
"""Pad state"""
state = pad_vector(batch[OBS_ROBOT], self.config.max_state_dim)
state = pad_vector(batch[OBS_STATE], self.config.max_state_dim)
return state
def prepare_action(self, batch):

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import torch

View File

@@ -1,3 +1,16 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import logging
import os
@@ -73,7 +86,6 @@ class PreTrainedPolicy(nn.Module, HubMixin, abc.ABC):
cache_dir: str | Path | None = None,
local_files_only: bool = False,
revision: str | None = None,
map_location: str = "cpu",
strict: bool = False,
**kwargs,
) -> T:
@@ -98,7 +110,7 @@ class PreTrainedPolicy(nn.Module, HubMixin, abc.ABC):
if os.path.isdir(model_id):
print("Loading weights from local directory")
model_file = os.path.join(model_id, SAFETENSORS_SINGLE_FILE)
policy = cls._load_as_safetensor(instance, model_file, map_location, strict)
policy = cls._load_as_safetensor(instance, model_file, config.device, strict)
else:
try:
model_file = hf_hub_download(
@@ -112,13 +124,13 @@ class PreTrainedPolicy(nn.Module, HubMixin, abc.ABC):
token=token,
local_files_only=local_files_only,
)
policy = cls._load_as_safetensor(instance, model_file, map_location, strict)
policy = cls._load_as_safetensor(instance, model_file, config.device, strict)
except HfHubHTTPError as e:
raise FileNotFoundError(
f"{SAFETENSORS_SINGLE_FILE} not found on the HuggingFace Hub in {model_id}"
) from e
policy.to(map_location)
policy.to(config.device)
policy.eval()
return policy

View File

@@ -35,7 +35,7 @@ import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from torch import Tensor
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
@@ -753,9 +753,9 @@ class TDMPCObservationEncoder(nn.Module):
)
)
if self.config.env_state_feature:
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV]))
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV_STATE]))
if self.config.robot_state_feature:
feat.append(self.state_enc_layers(obs_dict[OBS_ROBOT]))
feat.append(self.state_enc_layers(obs_dict[OBS_STATE]))
return torch.stack(feat, dim=0).mean(0)

View File

@@ -1,53 +0,0 @@
from typing import Protocol
import numpy as np
from lerobot.common.robot_devices.cameras.configs import (
CameraConfig,
IntelRealSenseCameraConfig,
OpenCVCameraConfig,
)
# Defines a camera type
class Camera(Protocol):
def connect(self): ...
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
def async_read(self) -> np.ndarray: ...
def disconnect(self): ...
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
cameras[key] = IntelRealSenseCamera(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return cameras
def make_camera(camera_type, **kwargs) -> Camera:
if camera_type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
config = OpenCVCameraConfig(**kwargs)
return OpenCVCamera(config)
elif camera_type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
config = IntelRealSenseCameraConfig(**kwargs)
return IntelRealSenseCamera(config)
else:
raise ValueError(f"The camera type '{camera_type}' is not valid.")

View File

@@ -1,27 +0,0 @@
import abc
from dataclasses import dataclass
import draccus
@dataclass
class MotorsBusConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@MotorsBusConfig.register_subclass("dynamixel")
@dataclass
class DynamixelMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False
@MotorsBusConfig.register_subclass("feetech")
@dataclass
class FeetechMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False

View File

@@ -1,53 +0,0 @@
from typing import Protocol
from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
)
class MotorsBus(Protocol):
def motor_names(self): ...
def set_calibration(self): ...
def apply_calibration(self): ...
def revert_calibration(self): ...
def read(self): ...
def write(self): ...
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
motors_buses = {}
for key, cfg in motors_bus_configs.items():
if cfg.type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
motors_buses[key] = DynamixelMotorsBus(cfg)
elif cfg.type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
motors_buses[key] = FeetechMotorsBus(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return motors_buses
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
if motor_type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
config = DynamixelMotorsBusConfig(**kwargs)
return DynamixelMotorsBus(config)
elif motor_type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
config = FeetechMotorsBusConfig(**kwargs)
return FeetechMotorsBus(config)
else:
raise ValueError(f"The motor type '{motor_type}' is not valid.")

View File

@@ -1,599 +0,0 @@
import abc
from dataclasses import dataclass, field
from typing import Sequence
import draccus
from lerobot.common.robot_devices.cameras.configs import (
CameraConfig,
IntelRealSenseCameraConfig,
OpenCVCameraConfig,
)
from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
)
@dataclass
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
# TODO(rcadene, aliberts): remove ManipulatorRobotConfig abstraction
@dataclass
class ManipulatorRobotConfig(RobotConfig):
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
# as the number of motors in your follower arms (assumes all follower arms have the same number of
# motors).
max_relative_target: list[float] | float | None = None
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
# gripper is not put in torque mode.
gripper_open_degree: float | None = None
mock: bool = False
def __post_init__(self):
if self.mock:
for arm in self.leader_arms.values():
if not arm.mock:
arm.mock = True
for arm in self.follower_arms.values():
if not arm.mock:
arm.mock = True
for cam in self.cameras.values():
if not cam.mock:
cam.mock = True
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
for name in self.follower_arms:
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
raise ValueError(
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
f"`max_relative_target` list has as many parameters as there are motors per arm. "
"Note: This feature does not yet work with robots where different follower arms have "
"different numbers of motors."
)
@RobotConfig.register_subclass("aloha")
@dataclass
class AlohaRobotConfig(ManipulatorRobotConfig):
# Specific to Aloha, LeRobot comes with default calibration files. Assuming the motors have been
# properly assembled, no manual calibration step is expected. If you need to run manual calibration,
# simply update this path to ".cache/calibration/aloha"
calibration_dir: str = ".cache/calibration/aloha_default"
# /!\ FOR SAFETY, READ THIS /!\
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
# When you feel more confident with teleoperation or running the policy, you can extend
# this safety limit and even removing it by setting it to `null`.
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
max_relative_target: int | None = 5
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
# window_x
port="/dev/ttyDXL_leader_left",
motors={
# name: (index, model)
"waist": [1, "xm430-w350"],
"shoulder": [2, "xm430-w350"],
"shoulder_shadow": [3, "xm430-w350"],
"elbow": [4, "xm430-w350"],
"elbow_shadow": [5, "xm430-w350"],
"forearm_roll": [6, "xm430-w350"],
"wrist_angle": [7, "xm430-w350"],
"wrist_rotate": [8, "xl430-w250"],
"gripper": [9, "xc430-w150"],
},
),
"right": DynamixelMotorsBusConfig(
# window_x
port="/dev/ttyDXL_leader_right",
motors={
# name: (index, model)
"waist": [1, "xm430-w350"],
"shoulder": [2, "xm430-w350"],
"shoulder_shadow": [3, "xm430-w350"],
"elbow": [4, "xm430-w350"],
"elbow_shadow": [5, "xm430-w350"],
"forearm_roll": [6, "xm430-w350"],
"wrist_angle": [7, "xm430-w350"],
"wrist_rotate": [8, "xl430-w250"],
"gripper": [9, "xc430-w150"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/ttyDXL_follower_left",
motors={
# name: (index, model)
"waist": [1, "xm540-w270"],
"shoulder": [2, "xm540-w270"],
"shoulder_shadow": [3, "xm540-w270"],
"elbow": [4, "xm540-w270"],
"elbow_shadow": [5, "xm540-w270"],
"forearm_roll": [6, "xm540-w270"],
"wrist_angle": [7, "xm540-w270"],
"wrist_rotate": [8, "xm430-w350"],
"gripper": [9, "xm430-w350"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/ttyDXL_follower_right",
motors={
# name: (index, model)
"waist": [1, "xm540-w270"],
"shoulder": [2, "xm540-w270"],
"shoulder_shadow": [3, "xm540-w270"],
"elbow": [4, "xm540-w270"],
"elbow_shadow": [5, "xm540-w270"],
"forearm_roll": [6, "xm540-w270"],
"wrist_angle": [7, "xm540-w270"],
"wrist_rotate": [8, "xm430-w350"],
"gripper": [9, "xm430-w350"],
},
),
}
)
# Troubleshooting: If one of your IntelRealSense cameras freeze during
# data recording due to bandwidth limit, you might need to plug the camera
# on another USB hub or PCIe card.
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"cam_high": IntelRealSenseCameraConfig(
serial_number=128422271347,
fps=30,
width=640,
height=480,
),
"cam_low": IntelRealSenseCameraConfig(
serial_number=130322270656,
fps=30,
width=640,
height=480,
),
"cam_left_wrist": IntelRealSenseCameraConfig(
serial_number=218622272670,
fps=30,
width=640,
height=480,
),
"cam_right_wrist": IntelRealSenseCameraConfig(
serial_number=130322272300,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("koch")
@dataclass
class KochRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/koch"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0085511",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
# ~ Koch specific settings ~
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
gripper_open_degree: float = 35.156
mock: bool = False
@RobotConfig.register_subclass("koch_bimanual")
@dataclass
class KochBimanualRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/koch_bimanual"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0085511",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"left": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
"right": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
# ~ Koch specific settings ~
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
# to squeeze the gripper and have it spring back to an open position on its own.
gripper_open_degree: float = 35.156
mock: bool = False
@RobotConfig.register_subclass("moss")
@dataclass
class MossRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/moss"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("so100")
@dataclass
class So100RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so100"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("stretch")
@dataclass
class StretchRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"navigation": OpenCVCameraConfig(
camera_index="/dev/hello-nav-head-camera",
fps=10,
width=1280,
height=720,
rotation=-90,
),
"head": IntelRealSenseCameraConfig(
name="Intel RealSense D435I",
fps=30,
width=640,
height=480,
rotation=90,
),
"wrist": IntelRealSenseCameraConfig(
name="Intel RealSense D405",
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "192.168.0.193"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/ttyACM0",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False

View File

@@ -1,484 +0,0 @@
"""Logic to calibrate a robot arm built with feetech motors"""
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
import time
import numpy as np
from lerobot.common.robot_devices.motors.feetech import (
CalibrationMode,
TorqueMode,
convert_degrees_to_steps,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
URL_TEMPLATE = (
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
)
# The following positions are provided in nominal degree range ]-180, +180[
# For more info on these constants, see comments in the code where they get used.
ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
def apply_drive_mode(position, drive_mode):
assert_drive_mode(drive_mode)
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
signed_drive_mode = -(drive_mode * 2 - 1)
position *= signed_drive_mode
return position
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
count = 0
while True:
present_pos = arm.read("Present_Position", motor_name)
if positive_direction:
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
arm.write("Goal_Position", present_pos + 100, motor_name)
else:
arm.write("Goal_Position", present_pos - 100, motor_name)
if while_move_hook is not None:
while_move_hook()
present_pos = arm.read("Present_Position", motor_name).item()
present_speed = arm.read("Present_Speed", motor_name).item()
present_current = arm.read("Present_Current", motor_name).item()
# present_load = arm.read("Present_Load", motor_name).item()
# present_voltage = arm.read("Present_Voltage", motor_name).item()
# present_temperature = arm.read("Present_Temperature", motor_name).item()
# print(f"{present_pos=}")
# print(f"{present_speed=}")
# print(f"{present_current=}")
# print(f"{present_load=}")
# print(f"{present_voltage=}")
# print(f"{present_temperature=}")
if present_speed == 0 and present_current > 40:
count += 1
if count > 100 or present_current > 300:
return present_pos
else:
count = 0
def move_to_calibrate(
arm,
motor_name,
invert_drive_mode=False,
positive_first=True,
in_between_move_hook=None,
while_move_hook=None,
):
initial_pos = arm.read("Present_Position", motor_name)
if positive_first:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
else:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
if in_between_move_hook is not None:
in_between_move_hook()
if positive_first:
n_present_pos = move_until_block(
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
)
else:
p_present_pos = move_until_block(
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
)
zero_pos = (n_present_pos + p_present_pos) / 2
calib_data = {
"initial_pos": initial_pos,
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
"invert_drive_mode": invert_drive_mode,
"drive_mode": -1 if invert_drive_mode else 0,
"zero_pos": zero_pos,
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
}
return calib_data
def apply_offset(calib, offset):
calib["zero_pos"] += offset
if calib["drive_mode"]:
calib["homing_offset"] += offset
else:
calib["homing_offset"] -= offset
return calib
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
if robot_type == "so100":
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
elif robot_type == "moss":
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
else:
raise ValueError(robot_type)
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "so100" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
print(f'{arm.read("Present_Position", "elbow_flex")=}')
calib = {}
init_wf_pos = arm.read("Present_Position", "wrist_flex")
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
init_ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
time.sleep(2)
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
def in_between_move_hook():
nonlocal arm, calib
time.sleep(2)
ef_pos = arm.read("Present_Position", "elbow_flex")
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
time.sleep(2)
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
time.sleep(1)
def in_between_move_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm,
"shoulder_lift",
invert_drive_mode=True,
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
# add an 30 steps as offset to align with body
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
def while_move_hook():
nonlocal arm, calib
positions = {
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
"gripper": round(calib["gripper"]["end_pos"]),
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
time.sleep(2)
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
time.sleep(2)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
if not (robot_type == "moss" and arm_type == "follower"):
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to initial position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
input("Press Enter to continue...")
# Lower the acceleration of the motors (in [0,254])
initial_acceleration = arm.read("Acceleration")
arm.write("Lock", 0)
arm.write("Acceleration", 10)
time.sleep(1)
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
sl_pos = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
ef_pos = arm.read("Present_Position", "elbow_flex")
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
time.sleep(2)
calib = {}
print("Calibrate shoulder_pan")
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
time.sleep(1)
print("Calibrate gripper")
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
time.sleep(1)
print("Calibrate wrist_flex")
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
wr_pos = arm.read("Present_Position", "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
time.sleep(1)
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
def in_between_move_elbow_flex_hook():
nonlocal arm, calib
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm,
"elbow_flex",
invert_drive_mode=True,
in_between_move_hook=in_between_move_elbow_flex_hook,
)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
def in_between_move_shoulder_lift_hook():
nonlocal arm, calib
sl = arm.read("Present_Position", "shoulder_lift")
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
time.sleep(1)
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
time.sleep(1)
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
time.sleep(1)
print("Calibrate shoulder_lift")
calib["shoulder_lift"] = move_to_calibrate(
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
)
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
time.sleep(1)
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
time.sleep(2)
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
# Re-enable original accerlation
arm.write("Lock", 0)
arm.write("Acceleration", initial_acceleration)
time.sleep(1)
return calib_dict
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
"""This function ensures that a neural network trained on data collected on a given robot
can work on another robot. For instance before calibration, setting a same goal position
for each motor of two different robots will get two very different positions. But after calibration,
the two robots will move to the same position.To this end, this function computes the homing offset
and the drive mode for each motor of a given robot.
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
to the "rotated position".
After calibration, the homing offsets and drive modes are stored in a cache.
Example of usage:
```python
run_arm_calibration(arm, "so100", "left", "follower")
```
"""
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run calibration, the torque must be disabled on all motors.")
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
zero_pos = arm.read("Present_Position")
homing_offset = zero_target_pos - zero_pos
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
# This allows to identify the rotation direction of each motor.
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
# of the previous motor in the kinetic chain.
print("\nMove arm to rotated target position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
input("Press Enter to continue...")
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
# Find drive mode by rotating each motor by a quarter of a turn.
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
rotated_pos = arm.read("Present_Position")
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
# Re-compute homing offset to take into account drive mode
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
homing_offset = rotated_target_pos - rotated_drived_pos
print("\nMove arm to rest position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
input("Press Enter to continue...")
print()
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
calib_modes = []
for name in arm.motor_names:
if name == "gripper":
calib_modes.append(CalibrationMode.LINEAR.name)
else:
calib_modes.append(CalibrationMode.DEGREE.name)
calib_dict = {
"homing_offset": homing_offset.tolist(),
"drive_mode": drive_mode.tolist(),
"start_pos": zero_pos.tolist(),
"end_pos": rotated_pos.tolist(),
"calib_mode": calib_modes,
"motor_names": arm.motor_names,
}
return calib_dict

View File

@@ -1,208 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from dataclasses import replace
import torch
from stretch_body.gamepad_teleop import GamePadTeleop
from stretch_body.robot import Robot as StretchAPI
from stretch_body.robot_params import RobotParams
from lerobot.common.robot_devices.robots.configs import StretchRobotConfig
class StretchRobot(StretchAPI):
"""Wrapper of stretch_body.robot.Robot"""
def __init__(self, config: StretchRobotConfig | None = None, **kwargs):
super().__init__()
if config is None:
self.config = StretchRobotConfig(**kwargs)
else:
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.robot_type = self.config.type
self.cameras = self.config.cameras
self.is_connected = False
self.teleop = None
self.logs = {}
# TODO(aliberts): test this
RobotParams.set_logging_level("WARNING")
RobotParams.set_logging_formatter("brief_console_formatter")
self.state_keys = None
self.action_keys = None
def connect(self) -> None:
self.is_connected = self.startup()
if not self.is_connected:
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
raise ConnectionError()
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = self.is_connected and self.cameras[name].is_connected
if not self.is_connected:
print("Could not connect to the cameras, check that all cameras are plugged-in.")
raise ConnectionError()
self.run_calibration()
def run_calibration(self) -> None:
if not self.is_homed():
self.home()
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
before_read_t = time.perf_counter()
state = self.get_state()
action = self.teleop.gamepad_controller.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
before_write_t = time.perf_counter()
self.teleop.do_motion(robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
if self.state_keys is None:
self.state_keys = list(state)
if not record_data:
return
state = torch.as_tensor(list(state.values()))
action = torch.as_tensor(list(action.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionaries
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = state
action_dict["action"] = action
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict, action_dict
def get_state(self) -> dict:
status = self.get_status()
return {
"head_pan.pos": status["head"]["head_pan"]["pos"],
"head_tilt.pos": status["head"]["head_tilt"]["pos"],
"lift.pos": status["lift"]["pos"],
"arm.pos": status["arm"]["pos"],
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"],
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"],
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"],
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"],
"base_x.vel": status["base"]["x_vel"],
"base_y.vel": status["base"]["y_vel"],
"base_theta.vel": status["base"]["theta_vel"],
}
def capture_observation(self) -> dict:
# TODO(aliberts): return ndarrays instead of torch.Tensors
before_read_t = time.perf_counter()
state = self.get_state()
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
if self.state_keys is None:
self.state_keys = list(state)
state = torch.as_tensor(list(state.values()))
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionaries
obs_dict = {}
obs_dict["observation.state"] = state
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
# TODO(aliberts): return ndarrays instead of torch.Tensors
if not self.is_connected:
raise ConnectionError()
if self.teleop is None:
self.teleop = GamePadTeleop(robot_instance=False)
self.teleop.startup(robot=self)
if self.action_keys is None:
dummy_action = self.teleop.gamepad_controller.get_state()
self.action_keys = list(dummy_action.keys())
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
before_write_t = time.perf_counter()
self.teleop.do_motion(state=action_dict, robot=self)
self.push_command()
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
# TODO(aliberts): return action_sent when motion is limited
return action
def print_logs(self) -> None:
pass
# TODO(aliberts): move robot-specific logs logic here
def teleop_safety_stop(self) -> None:
if self.teleop is not None:
self.teleop._safety_stop(robot=self)
def disconnect(self) -> None:
self.stop()
if self.teleop is not None:
self.teleop.gamepad_controller.stop()
self.teleop.stop()
if len(self.cameras) > 0:
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
def __del__(self):
self.disconnect()

View File

@@ -1,72 +0,0 @@
from typing import Protocol
from lerobot.common.robot_devices.robots.configs import (
AlohaRobotConfig,
KochBimanualRobotConfig,
KochRobotConfig,
LeKiwiRobotConfig,
ManipulatorRobotConfig,
MossRobotConfig,
RobotConfig,
So100RobotConfig,
StretchRobotConfig,
)
def get_arm_id(name, arm_type):
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
"""
return f"{name}_{arm_type}"
class Robot(Protocol):
# TODO(rcadene, aliberts): Add unit test checking the protocol is implemented in the corresponding classes
robot_type: str
features: dict
def connect(self): ...
def run_calibration(self): ...
def teleop_step(self, record_data=False): ...
def capture_observation(self): ...
def send_action(self, action): ...
def disconnect(self): ...
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
if robot_type == "aloha":
return AlohaRobotConfig(**kwargs)
elif robot_type == "koch":
return KochRobotConfig(**kwargs)
elif robot_type == "koch_bimanual":
return KochBimanualRobotConfig(**kwargs)
elif robot_type == "moss":
return MossRobotConfig(**kwargs)
elif robot_type == "so100":
return So100RobotConfig(**kwargs)
elif robot_type == "stretch":
return StretchRobotConfig(**kwargs)
elif robot_type == "lekiwi":
return LeKiwiRobotConfig(**kwargs)
else:
raise ValueError(f"Robot type '{robot_type}' is not available.")
def make_robot_from_config(config: RobotConfig):
if isinstance(config, ManipulatorRobotConfig):
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
return ManipulatorRobot(config)
elif isinstance(config, LeKiwiRobotConfig):
from lerobot.common.robot_devices.robots.mobile_manipulator import MobileManipulator
return MobileManipulator(config)
else:
from lerobot.common.robot_devices.robots.stretch import StretchRobot
return StretchRobot(config)
def make_robot(robot_type: str, **kwargs) -> Robot:
config = make_robot_config(robot_type, **kwargs)
return make_robot_from_config(config)

View File

@@ -0,0 +1,4 @@
from .config import RobotConfig
from .robot import Robot
__all__ = ["RobotConfig", "Robot"]

View File

@@ -0,0 +1,17 @@
import abc
from dataclasses import dataclass
from pathlib import Path
import draccus
@dataclass(kw_only=True)
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
# Allows to distinguish between different robots of the same type
id: str | None = None
# Directory to store calibration file
calibration_dir: Path | None = None
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)

View File

@@ -0,0 +1,31 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.cameras.configs import CameraConfig
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.robots.config import RobotConfig
@RobotConfig.register_subclass("dummy")
@dataclass
class DummyConfig(RobotConfig):
id = "dummy"
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"cam": OpenCVCameraConfig(camera_index=0, fps=30, width=1280, height=720),
}
)

View File

@@ -0,0 +1,101 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy as np
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..robot import Robot
from .configuration_dummy import DummyConfig
class Dummy(Robot):
config_class = DummyConfig
name = "dummy"
def __init__(self, config: DummyConfig):
super().__init__(config)
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
@property
def state_feature(self) -> dict:
logging.warning("Dummy has nothing to send.")
@property
def action_feature(self) -> dict:
logging.warning("Dummy has nothing to send.")
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {
"cam": {
"shape": (480, 640, 3),
"names": ["height", "width", "channels"],
"info": None,
},
}
return cam_ft
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"Dummy is already connected. Do not run `robot.connect()` twice."
)
logging.info("Connecting cameras.")
for cam in self.cameras.values():
cam.connect()
self.is_connected = True
def calibrate(self) -> None:
logging.warning("Dummy has nothing to calibrate.")
return
def get_observation(self) -> dict[str, np.ndarray]:
if not self.is_connected:
raise DeviceNotConnectedError("Dummy is not connected. You need to run `robot.connect()`.")
obs_dict = {}
for cam_key, cam in self.cameras.items():
frame = cam.async_read()
obs_dict[f"{OBS_STATE}.{cam_key}"] = frame
return obs_dict
def send_action(self, action: np.ndarray) -> np.ndarray:
logging.warning("Dummy has nothing to send.")
def print_logs(self):
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"Dummy is not connected. You need to run `robot.connect()` before disconnecting."
)
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -0,0 +1,71 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
import rerun as rr
from lerobot.common.robots.dummy.configuration_dummy import DummyConfig
from lerobot.common.robots.dummy.dummy import Dummy
from lerobot.common.teleoperators.so100 import SO100Teleop, SO100TeleopConfig
# IMO, it's better to use rerun in the application code instead of the library code
def main():
logging.info("Configuring Devices")
leader_arm_config = SO100TeleopConfig(port="/dev/tty.usbmodem58760434171")
leader_arm = SO100Teleop(leader_arm_config)
robot_config = DummyConfig()
robot = Dummy(robot_config)
logging.info("Connecting SO100 Devices")
leader_arm.connect()
logging.info("Connecting Dummy")
robot.connect()
rr.init("rerun_dummy_data")
# If data source and visualizer are in different host, use .connect() instead to establish a tcp connection
# We can define a custom blueprint configuration for the visualizer panels
# Memory limit will make sure no more than 5% of the memory is used by the visualizer
rr.spawn(memory_limit="5%")
logging.info("Starting...")
i = 0
while i < 10000:
# An alternative would be do rerun log inside of these methods. But then that means embedding rerun into the library
arm_action = leader_arm.get_action()
observation = robot.get_observation()
for j in range(arm_action.size):
# If you want to disable batching we can do it: export RERUN_FLUSH_NUM_BYTES=256
current_time = time.time()
rr.set_time_seconds(f"arm_action_{j}", current_time)
rr.log(f"arm_action_{j}", rr.Scalar(arm_action[j]))
for k, v in observation.items():
# This discards all previous image frames
rr.set_time_seconds(k, 0.0)
rr.log(k, rr.Image(v))
i += 1
robot.disconnect()
leader_arm.disconnect()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,4 @@
from .configuration_koch import KochRobotConfig
from .robot_koch import KochRobot
__all__ = ["KochRobotConfig", "KochRobot"]

View File

@@ -0,0 +1,20 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("koch")
@dataclass
class KochRobotConfig(RobotConfig):
# Port to connect to the robot
port: str
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# cameras
cameras: dict[str, CameraConfig] = field(default_factory=dict)

View File

@@ -0,0 +1,217 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import numpy as np
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors.dynamixel import (
DynamixelMotorsBus,
TorqueMode,
run_arm_calibration,
set_operating_mode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .configuration_koch import KochRobotConfig
class KochRobot(Robot):
"""
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
"""
config_class = KochRobotConfig
name = "koch"
def __init__(self, config: KochRobotConfig):
super().__init__(config)
self.config = config
self.robot_type = config.type
self.arm = DynamixelMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
)
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
self.logs = {}
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
logging.info("Connecting arm.")
self.arm.connect()
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.arm.write("Torque_Enable", TorqueMode.DISABLED.value)
self.calibrate()
set_operating_mode(self.arm)
# Set better PID values to close the gap between recorded states and actions
# TODO(rcadene): Implement an automatic procedure to set optimal PID values for each motor
self.arm.write("Position_P_Gain", 1500, "elbow_flex")
self.arm.write("Position_I_Gain", 0, "elbow_flex")
self.arm.write("Position_D_Gain", 600, "elbow_flex")
logging.info("Activating torque.")
self.arm.write("Torque_Enable", TorqueMode.ENABLED.value)
# Check arm can be read
self.arm.read("Present_Position")
# Connect the cameras
for cam in self.cameras.values():
cam.connect()
self.is_connected = True
def calibrate(self) -> None:
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
if self.calibration_fpath.exists():
with open(self.calibration_fpath) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
logging.info(f"Missing calibration file '{self.calibration_fpath}'")
calibration = run_arm_calibration(self.arm, self.robot_type, self.name, "follower")
logging.info(f"Calibration is done! Saving calibration file '{self.calibration_fpath}'")
self.calibration_fpath.parent.mkdir(parents=True, exist_ok=True)
with open(self.calibration_fpath, "w") as f:
json.dump(calibration, f)
self.arm.set_calibration(calibration)
def get_observation(self) -> dict[str, np.ndarray]:
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
obs_dict = {}
# Read arm position
before_read_t = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.read("Present_Position")
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
# Capture images from cameras
for cam_key, cam in self.cameras.items():
before_camread_t = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
return obs_dict
def send_action(self, action: np.ndarray) -> np.ndarray:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.read("Present_Position")
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.write("Goal_Position", goal_pos.astype(np.int32))
return goal_pos
def print_logs(self):
# TODO(aliberts): move robot-specific logs logic here
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
self.arm.disconnect()
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False

View File

@@ -23,6 +23,9 @@ Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains th
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
### Wired version
If you have the **wired** LeKiwi version you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
## B. Install software on Pi
Now we have to setup the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
@@ -246,6 +249,110 @@ class LeKiwiRobotConfig(RobotConfig):
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False
```
## Wired version
For the wired LeKiwi version your configured IP address should refer to your own laptop (127.0.0.1), because leader arm and LeKiwi are in this case connected to own laptop. Below and example configuration for this wired setup:
```python
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "127.0.0.1"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index=0, fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index=1, fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431061",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False
```
@@ -259,8 +366,8 @@ Now we have to calibrate the leader arm and the follower arm. The wheel motors d
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/lekiwi/mobile_calib_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure the arm is connected to the Raspberry Pi and run this script (on the Raspberry Pi) to launch manual calibration:
@@ -272,11 +379,14 @@ python lerobot/scripts/control_robot.py \
--control.arms='["main_follower"]'
```
### Wired version
If you have the **wired** LeKiwi version please run all commands including this calibration command on your laptop.
### Calibrate leader arm
Then to calibrate the leader arm (which is attached to the laptop/pc). You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script (on your laptop/pc) to launch manual calibration:
@@ -306,26 +416,29 @@ python lerobot/scripts/control_robot.py \
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
|------------|-------------------|-----------------------|
| Fast | 0.4 | 90 |
| Medium | 0.25 | 60 |
| Slow | 0.1 | 30 |
| ---------- | ------------------ | ---------------------- |
| Fast | 0.4 | 90 |
| Medium | 0.25 | 60 |
| Slow | 0.1 | 30 |
| Key | Action |
|------|--------------------------------|
| W | Move forward |
| A | Move left |
| S | Move backward |
| D | Move right |
| Z | Turn left |
| X | Turn right |
| R | Increase speed |
| F | Decrease speed |
| Key | Action |
| --- | -------------- |
| W | Move forward |
| A | Move left |
| S | Move backward |
| D | Move right |
| Z | Turn left |
| X | Turn right |
| R | Increase speed |
| F | Decrease speed |
> [!TIP]
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py).
### Wired version
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.
## Troubleshoot communication
If you are having trouble connecting to the Mobile SO100, follow these steps to diagnose and resolve the issue.
@@ -364,6 +477,13 @@ Make sure the configuration file on both your laptop/pc and the Raspberry Pi is
# G. Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with LeKiwi.
To start the program on LeKiwi, SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=remote_robot
```
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
@@ -374,8 +494,7 @@ Store your Hugging Face repository name in a variable to run these commands:
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
On your laptop then run this command to record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
@@ -393,6 +512,9 @@ python lerobot/scripts/control_robot.py \
Note: You can resume recording by adding `--control.resume=true`.
### Wired version
If you have the **wired** LeKiwi version please run all commands including both these record dataset commands on your laptop.
# H. Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
@@ -427,14 +549,14 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_lekiwi_test \
--job_name=act_lekiwi_test \
--device=cuda \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/lekiwi_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_lekiwi_test/checkpoints`.

View File

@@ -0,0 +1,89 @@
from dataclasses import dataclass, field
from lerobot.common.cameras.configs import CameraConfig
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.motors.configs import FeetechMotorsBusConfig, MotorsBusConfig
from lerobot.common.robots.config import RobotConfig
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "192.168.0.193"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/ttyACM0",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import threading
@@ -7,7 +21,7 @@ from pathlib import Path
import cv2
import zmq
from lerobot.common.robot_devices.robots.mobile_manipulator import LeKiwi
from lerobot.common.robots.mobile_manipulator import LeKiwi
def setup_zmq_sockets(config):
@@ -47,7 +61,7 @@ def calibrate_follower_arm(motors_bus, calib_dir_str):
calib_dir.mkdir(parents=True, exist_ok=True)
calib_file = calib_dir / "main_follower.json"
try:
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
except ImportError:
print("[WARNING] Calibration function not available. Skipping calibration.")
return
@@ -58,7 +72,7 @@ def calibrate_follower_arm(motors_bus, calib_dir_str):
print(f"[INFO] Loaded calibration from {calib_file}")
else:
print("[INFO] Calibration file not found. Running manual calibration...")
calibration = run_arm_manual_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
calibration = run_full_arm_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
print(f"[INFO] Calibration complete. Saving to {calib_file}")
with open(calib_file, "w") as f:
json.dump(calibration, f)
@@ -79,8 +93,8 @@ def run_lekiwi(robot_config):
- Processes incoming commands (arm and wheel commands) and sends back sensor and camera data.
"""
# Import helper functions and classes
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus, TorqueMode
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus, TorqueMode
# Initialize cameras from the robot configuration.
cameras = make_cameras_from_configs(robot_config.cameras)

View File

@@ -0,0 +1,692 @@
import base64
import json
import os
import sys
from pathlib import Path
import cv2
import numpy as np
import torch
import zmq
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceNotConnectedError
from lerobot.common.motors.feetech.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.robots.utils import get_arm_id
PYNPUT_AVAILABLE = True
try:
# Only import if there's a valid X server or if we're not on a Pi
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
print("No DISPLAY set. Skipping pynput import.")
raise ImportError("pynput blocked intentionally due to no display.")
from pynput import keyboard
except ImportError:
keyboard = None
PYNPUT_AVAILABLE = False
except Exception as e:
keyboard = None
PYNPUT_AVAILABLE = False
print(f"Could not import pynput: {e}")
class MobileManipulator:
"""
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
The robot includes a three omniwheel mobile base and a remote follower arm.
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
forwarded to the remote follower arm (after applying a safety clamp).
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
"""
def __init__(self, config: LeKiwiRobotConfig):
"""
Expected keys in config:
- ip, port, video_port for the remote connection.
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
"""
self.robot_type = config.type
self.config = config
self.remote_ip = config.ip
self.remote_port = config.port
self.remote_port_video = config.video_port
self.calibration_dir = Path(self.config.calibration_dir)
self.logs = {}
self.teleop_keys = self.config.teleop_keys
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
self.cameras = make_cameras_from_configs(self.config.cameras)
self.is_connected = False
self.last_frames = {}
self.last_present_speed = {}
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
# ZeroMQ context and sockets.
self.context = None
self.cmd_socket = None
self.video_socket = None
# Keyboard state for base teleoperation.
self.running = True
self.pressed_keys = {
"forward": False,
"backward": False,
"left": False,
"right": False,
"rotate_left": False,
"rotate_right": False,
}
if PYNPUT_AVAILABLE:
print("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
)
self.listener.start()
else:
print("pynput not available - skipping local keyboard listener.")
self.listener = None
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
follower_arm_names = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
]
observations = ["x_mm", "y_mm", "theta"]
combined_names = follower_arm_names + observations
return {
"action": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
}
@property
def features(self):
return {**self.motor_features, **self.camera_features}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
@property
def available_arms(self):
available = []
for name in self.leader_arms:
available.append(get_arm_id(name, "leader"))
for name in self.follower_arms:
available.append(get_arm_id(name, "follower"))
return available
def on_press(self, key):
try:
# Movement
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = True
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = True
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = True
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = True
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = True
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = True
# Quit teleoperation
elif key.char == self.teleop_keys["quit"]:
self.running = False
return False
# Speed control
elif key.char == self.teleop_keys["speed_up"]:
self.speed_index = min(self.speed_index + 1, 2)
print(f"Speed index increased to {self.speed_index}")
elif key.char == self.teleop_keys["speed_down"]:
self.speed_index = max(self.speed_index - 1, 0)
print(f"Speed index decreased to {self.speed_index}")
except AttributeError:
# e.g., if key is special like Key.esc
if key == keyboard.Key.esc:
self.running = False
return False
def on_release(self, key):
try:
if hasattr(key, "char"):
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = False
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = False
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = False
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = False
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = False
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = False
except AttributeError:
pass
def connect(self):
if not self.leader_arms:
raise ValueError("MobileManipulator has no leader arm to connect.")
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.calibrate_leader()
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
self.context = zmq.Context()
self.cmd_socket = self.context.socket(zmq.PUSH)
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
self.cmd_socket.connect(connection_string)
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.video_socket = self.context.socket(zmq.PULL)
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
self.video_socket.connect(video_connection)
self.video_socket.setsockopt(zmq.CONFLATE, 1)
print(
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
)
self.is_connected = True
def load_or_run_calibration_(self, name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
def calibrate_leader(self):
for name, arm in self.leader_arms.items():
# Connect the bus
arm.connect()
# Disable torque on all motors
for motor_id in arm.motors:
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
# Now run calibration
calibration = self.load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def calibrate_follower(self):
for name, bus in self.follower_arms.items():
bus.connect()
# Disable torque on all motors
for motor_id in bus.motors:
bus.write("Torque_Enable", 0, motor_id)
# Then filter out wheels
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
if not arm_only_dict:
continue
original_motors = bus.motors
bus.motors = arm_only_dict
calibration = self.load_or_run_calibration_(name, bus, "follower")
bus.set_calibration(calibration)
bus.motors = original_motors
def _get_data(self):
"""
Polls the video socket for up to 15 ms. If data arrives, decode only
the *latest* message, returning frames, speed, and arm state. If
nothing arrives for any field, use the last known values.
"""
frames = {}
present_speed = {}
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
# Poll up to 15 ms
poller = zmq.Poller()
poller.register(self.video_socket, zmq.POLLIN)
socks = dict(poller.poll(15))
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Drain all messages, keep only the last
last_msg = None
while True:
try:
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
last_msg = obs_string
except zmq.Again:
break
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Decode only the final message
try:
observation = json.loads(last_msg)
images_dict = observation.get("images", {})
new_speed = observation.get("present_speed", {})
new_arm_state = observation.get("follower_arm_state", None)
# Convert images
for cam_name, image_b64 in images_dict.items():
if image_b64:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame_candidate is not None:
frames[cam_name] = frame_candidate
# If remote_arm_state is None and frames is None there is no message then use the previous message
if new_arm_state is not None and frames is not None:
self.last_frames = frames
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
self.last_remote_arm_state = remote_arm_state_tensor
present_speed = new_speed
self.last_present_speed = new_speed
else:
frames = self.last_frames
remote_arm_state_tensor = self.last_remote_arm_state
present_speed = self.last_present_speed
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return frames, present_speed, remote_arm_state_tensor
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
state_tensor = torch.zeros(3, dtype=torch.int32)
if present_speed:
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
if "1" in decoded:
state_tensor[0] = decoded["1"]
if "2" in decoded:
state_tensor[1] = decoded["2"]
if "3" in decoded:
state_tensor[2] = decoded["3"]
return state_tensor
def teleop_step(
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
# Prepare to assign the position of the leader to the follower
arm_positions = []
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
arm_positions.extend(pos_tensor.tolist())
# (The rest of your code for generating wheel commands remains unchanged)
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
x_cmd += xy_speed
if self.pressed_keys["backward"]:
x_cmd -= xy_speed
if self.pressed_keys["left"]:
y_cmd += xy_speed
if self.pressed_keys["right"]:
y_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
theta_cmd -= theta_speed
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
self.cmd_socket.send_string(json.dumps(message))
if not record_data:
return
obs_dict = self.capture_observation()
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
wheel_velocity_mm = (
wheel_velocity_tuple[0] * 1000.0,
wheel_velocity_tuple[1] * 1000.0,
wheel_velocity_tuple[2],
)
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
action_dict = {"action": action_tensor}
return obs_dict, action_dict
def capture_observation(self) -> dict:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame.
"""
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
obs_dict = {"observation.state": combined_state_tensor}
# Loop over each configured camera
for cam_name, cam in self.cameras.items():
frame = frames.get(cam_name, None)
if frame is None:
# Create a black image using the camera's configured width, height, and channels
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
# - Last 3: base commands.
if action.numel() < 9:
# Pad with zeros if there are not enough elements.
padded = torch.zeros(9, dtype=action.dtype)
padded[: action.numel()] = action
action = padded
# Extract arm and base actions.
arm_actions = action[:6].flatten()
base_actions = action[6:].flatten()
x_cmd_mm = base_actions[0].item() # mm/s
y_cmd_mm = base_actions[1].item() # mm/s
theta_cmd = base_actions[2].item() # deg/s
# Convert mm/s to m/s for the kinematics calculations.
x_cmd = x_cmd_mm / 1000.0 # m/s
y_cmd = y_cmd_mm / 1000.0 # m/s
# Compute wheel commands from body commands.
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
arm_positions_list = arm_actions.tolist()
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
self.cmd_socket.send_string(json.dumps(message))
return action
def print_logs(self):
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
"arm_positions": {},
}
self.cmd_socket.send_string(json.dumps(stop_cmd))
self.cmd_socket.close()
if self.video_socket:
self.video_socket.close()
if self.context:
self.context.term()
if PYNPUT_AVAILABLE:
self.listener.stop()
self.is_connected = False
print("[INFO] Disconnected from remote robot.")
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if PYNPUT_AVAILABLE:
self.listener.stop()
@staticmethod
def degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = abs(degps) * steps_per_deg
speed_int = int(round(speed_in_steps))
if speed_int > 0x7FFF:
speed_int = 0x7FFF
if degps < 0:
return speed_int | 0x8000
else:
return speed_int & 0x7FFF
@staticmethod
def raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed & 0x7FFF
degps = magnitude / steps_per_deg
if raw_speed & 0x8000:
degps = -degps
return degps
def body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheels linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
) -> tuple:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A tuple (x_cmd, y_cmd, theta_cmd) where:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity in deg/s.
"""
# Extract the raw values in order.
raw_list = [
int(wheel_raw.get("left_wheel", 0)),
int(wheel_raw.get("back_wheel", 0)),
int(wheel_raw.get("right_wheel", 0)),
]
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return (x_cmd, y_cmd, theta_cmd)
class LeKiwi:
def __init__(self, motor_bus):
"""
Initializes the LeKiwi with Feetech motors bus.
"""
self.motor_bus = motor_bus
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
# Initialize motors in velocity mode.
self.motor_bus.write("Lock", 0)
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
self.motor_bus.write("Lock", 1)
print("Motors set to velocity mode.")
def read_velocity(self):
"""
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
"""
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
return {
"left_wheel": int(raw_speeds[0]),
"back_wheel": int(raw_speeds[1]),
"right_wheel": int(raw_speeds[2]),
}
def set_velocity(self, command_speeds):
"""
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
The order of speeds must correspond to self.motor_ids.
"""
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)
def stop(self):
"""Stops the robot by setting all motor speeds to zero."""
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
print("Motors stopped.")

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains logic to instantiate a robot, read information from its motors and cameras,
and send orders to its motors.
"""
@@ -5,39 +19,133 @@ and send orders to its motors.
# calibration procedure, to make it easy for people to add their own robot.
import json
import logging
import time
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Sequence
import numpy as np
import torch
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.robots.configs import ManipulatorRobotConfig
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.cameras.configs import CameraConfig
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors.configs import MotorsBusConfig
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.config import RobotConfig
from lerobot.common.robots.utils import ensure_safe_goal_position, get_arm_id
def ensure_safe_goal_position(
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
):
# Cap relative action target magnitude for safety.
diff = goal_pos - present_pos
max_relative_target = torch.tensor(max_relative_target)
safe_diff = torch.minimum(diff, max_relative_target)
safe_diff = torch.maximum(safe_diff, -max_relative_target)
safe_goal_pos = present_pos + safe_diff
@dataclass
class ManipulatorRobotConfig(RobotConfig):
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
if not torch.allclose(goal_pos, safe_goal_pos):
logging.warning(
"Relative goal position magnitude had to be clamped to be safe.\n"
f" requested relative goal position target: {diff}\n"
f" clamped relative goal position target: {safe_diff}"
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
# as the number of motors in your follower arms (assumes all follower arms have the same number of
# motors).
max_relative_target: list[float] | float | None = None
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
# gripper is not put in torque mode.
gripper_open_degree: float | None = None
mock: bool = False
def __post_init__(self):
if self.mock:
for arm in self.leader_arms.values():
if not arm.mock:
arm.mock = True
for arm in self.follower_arms.values():
if not arm.mock:
arm.mock = True
for cam in self.cameras.values():
if not cam.mock:
cam.mock = True
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
for name in self.follower_arms:
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
raise ValueError(
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
f"`max_relative_target` list has as many parameters as there are motors per arm. "
"Note: This feature does not yet work with robots where different follower arms have "
"different numbers of motors."
)
def apply_feetech_offsets_from_calibration(motorsbus, calibration_dict: dict):
"""
Reads 'calibration_dict' containing 'homing_offset' and 'motor_names',
then writes each motor's offset to the servo's internal Offset (0x1F) in EPROM.
This version is modified so each homed position (originally 0) will now read
2047, i.e. 180° away from 0 in the 4096-count circle. Offsets are permanently
stored in EEPROM, so the servo's Present_Position is hardware-shifted even
after power cycling.
Steps:
1) Subtract 2047 from the old offset (so 0 -> 2047).
2) Clamp to [-2047..+2047].
3) Encode sign bit and magnitude into a 12-bit number.
"""
homing_offsets = calibration_dict["homing_offset"]
motor_names = calibration_dict["motor_names"]
start_pos = calibration_dict["start_pos"]
# Open the write lock, changes to EEPROM do NOT persist yet
motorsbus.write("Lock", 1)
# For each motor, set the 'Offset' parameter
for m_name, old_offset in zip(motor_names, homing_offsets, strict=False):
# If bus doesnt have a motor named m_name, skip
if m_name not in motorsbus.motors:
print(f"Warning: '{m_name}' not found in motorsbus.motors; skipping offset.")
continue
if m_name == "gripper":
old_offset = start_pos # If gripper set the offset to the start position of the gripper
continue
# Shift the offset so the homed position reads 2047
new_offset = old_offset - 2047
# Clamp to [-2047..+2047]
if new_offset > 2047:
new_offset = 2047
print(
f"Warning: '{new_offset}' is getting clamped because its larger then 2047; This should not happen!"
)
elif new_offset < -2047:
new_offset = -2047
print(
f"Warning: '{new_offset}' is getting clamped because its smaller then -2047; This should not happen!"
)
# Determine the direction (sign) bit and magnitude
direction_bit = 1 if new_offset < 0 else 0
magnitude = abs(new_offset)
# Combine sign bit (bit 11) with the magnitude (bits 0..10)
servo_offset = (direction_bit << 11) | magnitude
# Write offset to servo
motorsbus.write("Offset", servo_offset, motor_names=m_name)
print(
f"Set offset for {m_name}: "
f"old_offset={old_offset}, new_offset={new_offset}, servo_encoded={magnitude} + direction={direction_bit}"
)
return safe_goal_pos
motorsbus.write("Lock", 0)
print("Offsets have been saved to EEPROM successfully.")
class ManipulatorRobot:
@@ -210,7 +318,7 @@ class ManipulatorRobot:
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
@@ -228,9 +336,9 @@ class ManipulatorRobot:
self.leader_arms[name].connect()
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
from lerobot.common.motors.dynamixel.dynamixel import TorqueMode
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.robot_devices.motors.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech import TorqueMode
# We assume that at connection time, arms are in a rest position, and torque can
# be safely disabled to run calibration and/or set robot preset configurations.
@@ -295,16 +403,16 @@ class ManipulatorRobot:
print(f"Missing calibration file '{arm_calib_path}'")
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
from lerobot.common.motors.dynamixel.dynamixel_calibration import run_arm_calibration
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_arm_manual_calibration,
from lerobot.common.motors.feetech.feetech_calibration import (
run_full_arm_calibration,
)
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
@@ -313,16 +421,28 @@ class ManipulatorRobot:
return calibration
for name, arm in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm, "follower")
arm.set_calibration(calibration)
for name, arm in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
# For each follower arm
for name, arm_bus in self.follower_arms.items():
calibration = load_or_run_calibration_(name, arm_bus, "follower")
arm_bus.set_calibration(calibration)
# If this is a Feetech robot, also set the servo offset into EEPROM
if self.robot_type in ["so100", "lekiwi"]:
apply_feetech_offsets_from_calibration(arm_bus, calibration)
# For each leader arm
for name, arm_bus in self.leader_arms.items():
calibration = load_or_run_calibration_(name, arm_bus, "leader")
arm_bus.set_calibration(calibration)
# Optionally also set offset for leader if you want the servo offsets as well
if self.robot_type in ["so100", "lekiwi"]:
apply_feetech_offsets_from_calibration(arm_bus, calibration)
def set_koch_robot_preset(self):
def set_operating_mode_(arm):
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
from lerobot.common.motors.dynamixel.dynamixel import TorqueMode
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
@@ -432,7 +552,7 @@ class ManipulatorRobot:
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
@@ -512,7 +632,7 @@ class ManipulatorRobot:
def capture_observation(self):
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
@@ -558,7 +678,7 @@ class ManipulatorRobot:
action: tensor containing the concatenated goal positions for the follower arms.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
@@ -593,7 +713,7 @@ class ManipulatorRobot:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)

View File

@@ -1,3 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import os
@@ -9,13 +23,14 @@ import numpy as np
import torch
import zmq
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.feetech import TorqueMode
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceNotConnectedError
from lerobot.common.motors.feetech.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.robots.utils import get_arm_id
PYNPUT_AVAILABLE = True
try:
@@ -252,7 +267,7 @@ class MobileManipulator:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
@@ -381,7 +396,7 @@ class MobileManipulator:
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
@@ -392,21 +407,19 @@ class MobileManipulator:
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
arm_positions.extend(pos_tensor.tolist())
# (The rest of your code for generating wheel commands remains unchanged)
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
y_cmd = 0.0 # m/s forward/backward
x_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
x_cmd += xy_speed
if self.pressed_keys["backward"]:
x_cmd -= xy_speed
if self.pressed_keys["left"]:
y_cmd += xy_speed
if self.pressed_keys["right"]:
if self.pressed_keys["backward"]:
y_cmd -= xy_speed
if self.pressed_keys["left"]:
x_cmd += xy_speed
if self.pressed_keys["right"]:
x_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
@@ -443,7 +456,7 @@ class MobileManipulator:
and a camera frame.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
@@ -467,7 +480,7 @@ class MobileManipulator:
def send_action(self, action: torch.Tensor) -> torch.Tensor:
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
@@ -505,7 +518,7 @@ class MobileManipulator:
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError("Not connected.")
raise DeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
@@ -584,8 +597,8 @@ class MobileManipulator:
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
@@ -641,8 +654,8 @@ class MobileManipulator:
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.

View File

@@ -176,8 +176,8 @@ Next, you'll need to calibrate your Moss v1 robot to ensure that the leader and
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/moss/follower_zero.webp?raw=true" alt="Moss v1 follower arm zero position" title="Moss v1 follower arm zero position" style="width:100%;"> | <img src="../media/moss/follower_rotated.webp?raw=true" alt="Moss v1 follower arm rotated position" title="Moss v1 follower arm rotated position" style="width:100%;"> | <img src="../media/moss/follower_rest.webp?raw=true" alt="Moss v1 follower arm rest position" title="Moss v1 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
@@ -192,8 +192,8 @@ python lerobot/scripts/control_robot.py \
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/moss/leader_zero.webp?raw=true" alt="Moss v1 leader arm zero position" title="Moss v1 leader arm zero position" style="width:100%;"> | <img src="../media/moss/leader_rotated.webp?raw=true" alt="Moss v1 leader arm rotated position" title="Moss v1 leader arm rotated position" style="width:100%;"> | <img src="../media/moss/leader_rest.webp?raw=true" alt="Moss v1 leader arm rest position" title="Moss v1 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
@@ -293,14 +293,14 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_moss_test \
--job_name=act_moss_test \
--device=cuda \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.

View File

@@ -0,0 +1,4 @@
from .configuration_moss import MossRobotConfig
from .robot_moss import MossRobot
__all__ = ["MossRobotConfig", "MossRobot"]

View File

@@ -0,0 +1,30 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("moss")
@dataclass
class MossRobotConfig(RobotConfig):
# Port to connect to the robot
port: str
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
mock: bool = False
# motors
shoulder_pan: tuple = (1, "sts3215")
shoulder_lift: tuple = (2, "sts3215")
elbow_flex: tuple = (3, "sts3215")
wrist_flex: tuple = (4, "sts3215")
wrist_roll: tuple = (5, "sts3215")
gripper: tuple = (6, "sts3215")
# cameras
cameras: dict[str, CameraConfig] = field(default_factory=dict)

View File

@@ -0,0 +1,223 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import numpy as np
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
TorqueMode,
apply_feetech_offsets_from_calibration,
run_full_arm_calibration,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .configuration_moss import MossRobotConfig
class MossRobot(Robot):
"""
[Moss Arm](https://github.com/jess-moss/moss-robot-arms) designed by Jess Moss
"""
config_class = MossRobotConfig
name = "moss"
def __init__(self, config: MossRobotConfig):
super().__init__(config)
self.config = config
self.robot_type = config.type
self.arm = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": config.shoulder_pan,
"shoulder_lift": config.shoulder_lift,
"elbow_flex": config.elbow_flex,
"wrist_flex": config.wrist_flex,
"wrist_roll": config.wrist_roll,
"gripper": config.gripper,
},
)
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
self.logs = {}
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
logging.info("Connecting arm.")
self.arm.connect()
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.arm.write("Torque_Enable", TorqueMode.DISABLED.value)
self.calibrate()
# Mode=0 for Position Control
self.arm.write("Mode", 0)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.arm.write("P_Coefficient", 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.arm.write("I_Coefficient", 0)
self.arm.write("D_Coefficient", 32)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.arm.write("Lock", 0)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.arm.write("Maximum_Acceleration", 254)
self.arm.write("Acceleration", 254)
logging.info("Activating torque.")
self.arm.write("Torque_Enable", TorqueMode.ENABLED.value)
# Check arm can be read
self.arm.read("Present_Position")
# Connect the cameras
for cam in self.cameras.values():
cam.connect()
self.is_connected = True
def calibrate(self) -> None:
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
if self.calibration_fpath.exists():
with open(self.calibration_fpath) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
logging.info(f"Missing calibration file '{self.calibration_fpath}'")
calibration = run_full_arm_calibration(self.arm, self.robot_type, self.name, "follower")
logging.info(f"Calibration is done! Saving calibration file '{self.calibration_fpath}'")
self.calibration_fpath.parent.mkdir(parents=True, exist_ok=True)
with open(self.calibration_fpath, "w") as f:
json.dump(calibration, f)
self.arm.set_calibration(calibration)
apply_feetech_offsets_from_calibration(self.arm, calibration)
def get_observation(self) -> dict[str, np.ndarray]:
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
obs_dict = {}
# Read arm position
before_read_t = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.read("Present_Position")
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
# Capture images from cameras
for cam_key, cam in self.cameras.items():
before_camread_t = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
return obs_dict
def send_action(self, action: np.ndarray) -> np.ndarray:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.read("Present_Position")
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.write("Goal_Position", goal_pos.astype(np.int32))
return goal_pos
def print_logs(self):
# TODO(aliberts): move robot-specific logs logic here
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
self.arm.disconnect()
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False

View File

@@ -0,0 +1,67 @@
import abc
from typing import Any
from lerobot.common.constants import HF_LEROBOT_CALIBRATION, ROBOTS
from .config import RobotConfig
# TODO(aliberts): action/obs typing such as Generic[ObsType, ActType] similar to gym.Env ?
# https://github.com/Farama-Foundation/Gymnasium/blob/3287c869f9a48d99454306b0d4b4ec537f0f35e3/gymnasium/core.py#L23
class Robot(abc.ABC):
"""The main LeRobot class for implementing robots."""
# Set these in ALL subclasses
config_class: RobotConfig
name: str
def __init__(self, config: RobotConfig):
self.robot_type = self.name
self.id = config.id
self.calibration_dir = (
config.calibration_dir if config.calibration_dir else HF_LEROBOT_CALIBRATION / ROBOTS / self.name
)
self.calibration_dir.mkdir(parents=True, exist_ok=True)
self.calibration_fpath = self.calibration_dir / f"{self.id}.json"
# TODO(aliberts): create a proper Feature class for this that links with datasets
@abc.abstractproperty
def state_feature(self) -> dict:
pass
@abc.abstractproperty
def action_feature(self) -> dict:
pass
@abc.abstractproperty
def camera_features(self) -> dict[str, dict]:
pass
@abc.abstractmethod
def connect(self) -> None:
"""Connects to the robot."""
pass
@abc.abstractmethod
def calibrate(self) -> None:
"""Calibrates the robot."""
pass
@abc.abstractmethod
def get_observation(self) -> dict[str, Any]:
"""Gets observation from the robot."""
pass
@abc.abstractmethod
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
"""Sends actions to the robot."""
pass
@abc.abstractmethod
def disconnect(self) -> None:
"""Disconnects from the robot."""
pass
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@@ -4,8 +4,8 @@
- [A. Source the parts](#a-source-the-parts)
- [B. Install LeRobot](#b-install-lerobot)
- [C. Configure the motors](#c-configure-the-motors)
- [D. Assemble the arms](#d-assemble-the-arms)
- [C. Configure the Motors](#c-configure-the-motors)
- [D. Step-by-Step Assembly Instructions](#d-step-by-step-assembly-instructions)
- [E. Calibrate](#e-calibrate)
- [F. Teleoperate](#f-teleoperate)
- [G. Record a dataset](#g-record-a-dataset)
@@ -70,6 +70,7 @@ conda install -y -c conda-forge "opencv>=4.10.0"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
## C. Configure the motors
> [!NOTE]
@@ -98,22 +99,22 @@ Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem5
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
@@ -221,19 +222,13 @@ Redo the process for all your motors until ID 6. Do the same for the 6 motors of
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
#### c. Add motor horn to all 12 motors
## D. Step-by-Step Assembly Instructions
<details>
<summary><strong>Video adding motor horn</strong></summary>
**Step 1: Clean Parts**
- Remove all support material from the 3D-printed parts.
---
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
</details>
Follow the video for adding the motor horn. For SO-100, you need to align the holes on the motor horn to the motor spline to be approximately 1:30, 4:30, 7:30 and 10:30.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## D. Assemble the arms
### Additional Guidance
<details>
<summary><strong>Video assembling arms</strong></summary>
@@ -242,7 +237,211 @@ Try to avoid rotating the motor while doing so to keep position 2048 set during
</details>
Follow the video for assembling the arms. It is important to insert the cables into the motor that is being assembled before you assemble the motor into the arm! Inserting the cables beforehand is much easier than doing this afterward. The first arm should take a bit more than 1 hour to assemble, but once you get used to it, you can do it under 1 hour for the second arm.
**Note:**
This video provides visual guidance for assembling the arms, but it doesn't specify when or how to do the wiring. Inserting the cables beforehand is much easier than doing it afterward. The first arm may take a bit more than 1 hour to assemble, but once you get used to it, you can assemble the second arm in under 1 hour.
---
### First Motor
**Step 2: Insert Wires**
- Insert two wires into the first motor.
<img src="../media/tutorial/img1.jpg" style="height:300px;">
**Step 3: Install in Base**
- Place the first motor into the base.
<img src="../media/tutorial/img2.jpg" style="height:300px;">
**Step 4: Secure Motor**
- Fasten the motor with 4 screws. Two from the bottom and two from top.
**Step 5: Attach Motor Holder**
- Slide over the first motor holder and fasten it using two screws (one on each side).
<img src="../media/tutorial/img4.jpg" style="height:300px;">
**Step 6: Attach Motor Horns**
- Install both motor horns, securing the top horn with a screw. Try not to move the motor position when attaching the motor horn, especially for the leader arms, where we removed the gears.
<img src="../media/tutorial/img5.jpg" style="height:300px;">
<details>
<summary><strong>Video adding motor horn</strong></summary>
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
</details>
**Step 7: Attach Shoulder Part**
- Route one wire to the back of the robot and the other to the left or in photo towards you (see photo).
- Attach the shoulder part.
<img src="../media/tutorial/img6.jpg" style="height:300px;">
**Step 8: Secure Shoulder**
- Tighten the shoulder part with 4 screws on top and 4 on the bottom
*(access bottom holes by turning the shoulder).*
---
### Second Motor Assembly
**Step 9: Install Motor 2**
- Slide the second motor in from the top and link the wire from motor 1 to motor 2.
<img src="../media/tutorial/img8.jpg" style="height:300px;">
**Step 10: Attach Shoulder Holder**
- Add the shoulder motor holder.
- Ensure the wire from motor 1 to motor 2 goes behind the holder while the other wire is routed upward (see photo).
- This part can be tight to assemble, you can use a workbench like the image or a similar setup to push the part around the motor.
<div style="display: flex;">
<img src="../media/tutorial/img9.jpg" style="height:250px;">
<img src="../media/tutorial/img10.jpg" style="height:250px;">
<img src="../media/tutorial/img12.jpg" style="height:250px;">
</div>
**Step 11: Secure Motor 2**
- Fasten the second motor with 4 screws.
**Step 12: Attach Motor Horn**
- Attach both motor horns to motor 2, again use the horn screw.
**Step 13: Attach Base**
- Install the base attachment using 2 screws.
<img src="../media/tutorial/img11.jpg" style="height:300px;">
**Step 14: Attach Upper Arm**
- Attach the upper arm with 4 screws on each side.
<img src="../media/tutorial/img13.jpg" style="height:300px;">
---
### Third Motor Assembly
**Step 15: Install Motor 3**
- Route the motor cable from motor 2 through the cable holder to motor 3, then secure motor 3 with 4 screws.
**Step 16: Attach Motor Horn**
- Attach both motor horns to motor 3 and secure one again with a horn screw.
<img src="../media/tutorial/img14.jpg" style="height:300px;">
**Step 17: Attach Forearm**
- Connect the forearm to motor 3 using 4 screws on each side.
<img src="../media/tutorial/img15.jpg" style="height:300px;">
---
### Fourth Motor Assembly
**Step 18: Install Motor 4**
- Slide in motor 4, attach the cable from motor 3, and secure the cable in its holder with a screw.
<div style="display: flex;">
<img src="../media/tutorial/img16.jpg" style="height:300px;">
<img src="../media/tutorial/img19.jpg" style="height:300px;">
</div>
**Step 19: Attach Motor Holder 4**
- Install the fourth motor holder (a tight fit). Ensure one wire is routed upward and the wire from motor 3 is routed downward (see photo).
<img src="../media/tutorial/img17.jpg" style="height:300px;">
**Step 20: Secure Motor 4 & Attach Horn**
- Fasten motor 4 with 4 screws and attach its motor horns, use for one a horn screw.
<img src="../media/tutorial/img18.jpg" style="height:300px;">
---
### Wrist Assembly
**Step 21: Install Motor 5**
- Insert motor 5 into the wrist holder and secure it with 2 front screws.
<img src="../media/tutorial/img20.jpg" style="height:300px;">
**Step 22: Attach Wrist**
- Connect the wire from motor 4 to motor 5. And already insert the other wire for the gripper.
- Secure the wrist to motor 4 using 4 screws on both sides.
<img src="../media/tutorial/img22.jpg" style="height:300px;">
**Step 23: Attach Wrist Horn**
- Install only one motor horn on the wrist motor and secure it with a horn screw.
<img src="../media/tutorial/img23.jpg" style="height:300px;">
---
### Follower Configuration
**Step 24: Attach Gripper**
- Attach the gripper to motor 5.
<img src="../media/tutorial/img24.jpg" style="height:300px;">
**Step 25: Install Gripper Motor**
- Insert the gripper motor, connect the motor wire from motor 5 to motor 6, and secure it with 3 screws on each side.
<img src="../media/tutorial/img25.jpg" style="height:300px;">
**Step 26: Attach Gripper Horn & Claw**
- Attach the motor horns and again use a horn screw.
- Install the gripper claw and secure it with 4 screws on both sides.
<img src="../media/tutorial/img26.jpg" style="height:300px;">
**Step 27: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to Leader arm assembly.*
---
### Leader Configuration
For the leader configuration, perform **Steps 123**. Make sure that you removed the motor gears from the motors.
**Step 24: Attach Leader Holder**
- Mount the leader holder onto the wrist and secure it with a screw.
<img src="../media/tutorial/img29.jpg" style="height:300px;">
**Step 25: Attach Handle**
- Attach the handle to motor 5 using 4 screws.
<img src="../media/tutorial/img30.jpg" style="height:300px;">
**Step 26: Install Gripper Motor**
- Insert the gripper motor, secure it with 3 screws on each side, attach a motor horn using a horn screw, and connect the motor wire.
<img src="../media/tutorial/img31.jpg" style="height:300px;">
**Step 27: Attach Trigger**
- Attach the follower trigger with 4 screws.
<img src="../media/tutorial/img32.jpg" style="height:300px;">
**Step 28: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to calibration.*
## E. Calibrate
@@ -255,8 +454,8 @@ Next, you'll need to calibrate your SO-100 robot to ensure that the leader and f
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
@@ -271,8 +470,8 @@ python lerobot/scripts/control_robot.py \
#### b. Manual calibration of leader arm
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
|---|---|---|
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
@@ -372,14 +571,14 @@ python lerobot/scripts/train.py \
--policy.type=act \
--output_dir=outputs/train/act_so100_test \
--job_name=act_so100_test \
--device=cuda \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.

View File

@@ -0,0 +1,4 @@
from .configuration_so100 import SO100RobotConfig
from .robot_so100 import SO100Robot
__all__ = ["SO100RobotConfig", "SO100Robot"]

View File

@@ -0,0 +1,20 @@
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("so100")
@dataclass
class SO100RobotConfig(RobotConfig):
# Port to connect to the robot
port: str
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# cameras
cameras: dict[str, CameraConfig] = field(default_factory=dict)

View File

@@ -0,0 +1,223 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import numpy as np
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
TorqueMode,
apply_feetech_offsets_from_calibration,
run_full_arm_calibration,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .configuration_so100 import SO100RobotConfig
class SO100Robot(Robot):
"""
[SO-100 Follower Arm](https://github.com/TheRobotStudio/SO-ARM100) designed by TheRobotStudio
"""
config_class = SO100RobotConfig
name = "so100"
def __init__(self, config: SO100RobotConfig):
super().__init__(config)
self.config = config
self.robot_type = config.type
self.arm = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": (1, "sts3215"),
"shoulder_lift": (2, "sts3215"),
"elbow_flex": (3, "sts3215"),
"wrist_flex": (4, "sts3215"),
"wrist_roll": (5, "sts3215"),
"gripper": (6, "sts3215"),
},
)
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
self.logs = {}
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
)
logging.info("Connecting arm.")
self.arm.connect()
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.arm.write("Torque_Enable", TorqueMode.DISABLED.value)
self.calibrate()
# Mode=0 for Position Control
self.arm.write("Mode", 0)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.arm.write("P_Coefficient", 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.arm.write("I_Coefficient", 0)
self.arm.write("D_Coefficient", 32)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.arm.write("Lock", 0)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.arm.write("Maximum_Acceleration", 254)
self.arm.write("Acceleration", 254)
logging.info("Activating torque.")
self.arm.write("Torque_Enable", TorqueMode.ENABLED.value)
# Check arm can be read
self.arm.read("Present_Position")
# Connect the cameras
for cam in self.cameras.values():
cam.connect()
self.is_connected = True
def calibrate(self) -> None:
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
if self.calibration_fpath.exists():
with open(self.calibration_fpath) as f:
calibration = json.load(f)
else:
# TODO(rcadene): display a warning in __init__ if calibration file not available
logging.info(f"Missing calibration file '{self.calibration_fpath}'")
calibration = run_full_arm_calibration(self.arm, self.robot_type, self.name, "follower")
logging.info(f"Calibration is done! Saving calibration file '{self.calibration_fpath}'")
self.calibration_fpath.parent.mkdir(parents=True, exist_ok=True)
with open(self.calibration_fpath, "w") as f:
json.dump(calibration, f)
self.arm.set_calibration(calibration)
apply_feetech_offsets_from_calibration(self.arm, calibration)
def get_observation(self) -> dict[str, np.ndarray]:
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
obs_dict = {}
# Read arm position
before_read_t = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.read("Present_Position")
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
# Capture images from cameras
for cam_key, cam in self.cameras.items():
before_camread_t = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
return obs_dict
def send_action(self, action: np.ndarray) -> np.ndarray:
"""Command arm to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.read("Present_Position")
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
# Send goal position to the arm
self.arm.write("Goal_Position", goal_pos.astype(np.int32))
return goal_pos
def print_logs(self):
# TODO(aliberts): move robot-specific logs logic here
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
)
self.arm.disconnect()
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False

Some files were not shown because too many files have changed in this diff Show More