Compare commits

..

160 Commits

Author SHA1 Message Date
AdilZouitine
a22fe8a6de Refactor SACObservationEncoder to improve modularity and readability. Split initialization into dedicated methods for image and state layers, and enhance caching logic for image features. Update forward method to streamline feature encoding and ensure proper normalization handling. 2025-04-18 12:22:14 +00:00
AdilZouitine
49b5f379a7 Refactor SACPolicy initialization by breaking down the constructor into smaller methods for normalization, encoders, critics, actor, and temperature setup. This enhances readability and maintainability. 2025-04-17 16:37:43 +00:00
AdilZouitine
7a3d8756b4 Refactor input and output normalization handling in SACPolicy for improved clarity and efficiency. Consolidate encoder initialization logic and remove redundant else statements. 2025-04-17 16:05:11 +00:00
AdilZouitine
dc1548fe1a Fix init temp
Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com>
2025-04-16 16:46:37 +02:00
AdilZouitine
23c9441d5f Update log_std_min type to float in PolicyConfig for consistency 2025-04-16 16:46:37 +02:00
AdilZouitine
870e3efb92 fix caching
Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com>
2025-04-16 16:46:37 +02:00
AdilZouitine
bfd48a8b70 Handle caching
Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com>
2025-04-16 16:46:37 +02:00
AdilZouitine
5dc7ff6d3c change the tanh distribution to match hil serl
Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com>
2025-04-16 16:46:37 +02:00
AdilZouitine
ee4ebeac9b match target entropy hil serl
Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com>
2025-04-16 16:46:37 +02:00
AdilZouitine
fe7b47f459 stick to hil serl nn architecture
Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com>
2025-04-16 16:46:37 +02:00
AdilZouitine
044ca3b039 Refactor modeling_sac and parameter handling for clarity and reusability.
Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com>
2025-04-16 16:46:37 +02:00
AdilZouitine
bc36c69b71 fix encoder training 2025-04-16 16:46:37 +02:00
pre-commit-ci[bot]
2b9b05f1ba [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-04-16 16:46:37 +02:00
Michel Aractingi
9eec7b8bb0 General fixes in code, removed delta action, fixed grasp penalty, added logic to put gripper reward in info 2025-04-16 16:46:37 +02:00
pre-commit-ci[bot]
a80a9cf379 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-04-16 16:46:37 +02:00
AdilZouitine
7a42af835e fix caching and dataset stats is optional 2025-04-16 16:46:37 +02:00
AdilZouitine
9751328783 Add rounding for safety 2025-04-16 16:46:37 +02:00
pre-commit-ci[bot]
7225bc74a3 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-04-16 16:46:37 +02:00
AdilZouitine
03b1644bf7 fix sign issue 2025-04-16 16:46:37 +02:00
AdilZouitine
9b6e5a383f Refactor complementary_info handling in ReplayBuffer 2025-04-16 16:46:37 +02:00
AdilZouitine
86466b025f Handle gripper penalty 2025-04-16 16:46:37 +02:00
AdilZouitine
54745f111d fix caching 2025-04-16 16:46:37 +02:00
pre-commit-ci[bot]
82584cca78 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-04-16 16:46:37 +02:00
AdilZouitine
d3a8c2c247 fix indentation issue 2025-04-16 16:46:37 +02:00
AdilZouitine
74c11c4a75 Enhance SAC configuration and replay buffer with asynchronous prefetching support
- Added async_prefetch parameter to SACConfig for improved buffer management.
- Implemented get_iterator method in ReplayBuffer to support asynchronous prefetching of batches.
- Updated learner_server to utilize the new iterator for online and offline sampling, enhancing training efficiency.
2025-04-16 16:46:37 +02:00
AdilZouitine
2d932b710c Enhance SACPolicy to support shared encoder and optimize action selection
- Cached encoder output in select_action method to reduce redundant computations.
- Updated action selection and grasp critic calls to utilize cached encoder features when available.
2025-04-16 16:46:37 +02:00
AdilZouitine
a54baceabb Enhance SACPolicy and learner server for improved grasp critic integration
- Updated SACPolicy to conditionally compute grasp critic losses based on the presence of discrete actions.
- Refactored the forward method to handle grasp critic model selection and loss computation more clearly.
- Adjusted learner server to utilize optimized parameters for grasp critic during training.
- Improved action handling in the ManiskillMockGripperWrapper to accommodate both tuple and single action inputs.
2025-04-16 16:46:37 +02:00
AdilZouitine
077d18b439 Refactor SACPolicy for improved readability and action dimension handling
- Cleaned up code formatting for better readability, including consistent spacing and removal of unnecessary blank lines.
- Consolidated continuous action dimension calculation to enhance clarity and maintainability.
- Simplified loss return statements in the forward method to improve code structure.
- Ensured grasp critic parameters are included conditionally based on configuration settings.
2025-04-16 16:46:37 +02:00
AdilZouitine
c6cd1475a7 Add mock gripper support and enhance SAC policy action handling
- Introduced mock_gripper parameter in ManiskillEnvConfig to enable gripper simulation.
- Added ManiskillMockGripperWrapper to adjust action space for environments with discrete actions.
- Updated SACPolicy to compute continuous action dimensions correctly, ensuring compatibility with the new gripper setup.
- Refactored action handling in the training loop to accommodate the changes in action dimensions.
2025-04-16 16:46:37 +02:00
AdilZouitine
e35ee47b07 Refactor SAC policy and training loop to enhance discrete action support
- Updated SACPolicy to conditionally compute losses for grasp critic based on num_discrete_actions.
- Simplified forward method to return loss outputs as a dictionary for better clarity.
- Adjusted learner_server to handle both main and grasp critic losses during training.
- Ensured optimizers are created conditionally for grasp critic based on configuration settings.
2025-04-16 16:46:37 +02:00
AdilZouitine
c3f2487026 Refactor SAC configuration and policy to support discrete actions
- Removed GraspCriticNetworkConfig class and integrated its parameters into SACConfig.
- Added num_discrete_actions parameter to SACConfig for better action handling.
- Updated SACPolicy to conditionally create grasp critic networks based on num_discrete_actions.
- Enhanced grasp critic forward pass to handle discrete actions and compute losses accordingly.
2025-04-16 16:46:37 +02:00
Michel Aractingi
c621077b62 Added Gripper quantization wrapper and grasp penalty
removed complementary info from buffer and learner server
removed get_gripper_action function
added gripper parameters to `common/envs/configs.py`
2025-04-16 16:46:37 +02:00
pre-commit-ci[bot]
f5cfd9fd48 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-04-16 16:46:37 +02:00
s1lent4gnt
22da1739b1 Add grasp critic to the training loop
- Integrated the grasp critic gradient update to the training loop in learner_server
- Added Adam optimizer and configured grasp critic learning rate in configuration_sac
- Added target critics networks update after the critics gradient step
2025-04-16 16:46:37 +02:00
s1lent4gnt
d38d5f988d Add get_gripper_action method to GamepadController 2025-04-16 16:46:37 +02:00
s1lent4gnt
8d1936ffe0 Add gripper penalty wrapper 2025-04-16 16:46:37 +02:00
s1lent4gnt
cef944e1b1 Add complementary info in the replay buffer
- Added complementary info in the add method
- Added complementary info in the sample method
2025-04-16 16:46:37 +02:00
s1lent4gnt
384eb2cd07 Add grasp critic
- Implemented grasp critic to evaluate gripper actions
- Added corresponding config parameters for tuning
2025-04-16 16:46:37 +02:00
pre-commit-ci[bot]
0f706ce543 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-31 13:59:32 +00:00
AdilZouitine
026ad463a9 Fix convergence of sac, multiple torch compile on the same model caused divergence 2025-03-31 13:54:21 +00:00
AdilZouitine
8494634d48 Fix cuda graph break 2025-03-31 07:59:56 +00:00
s1lent4gnt
66c3672738 Fix: Prevent Invalid next_state References When optimize_memory=True (#918) 2025-03-31 09:43:40 +02:00
pre-commit-ci[bot]
c05e4835d0 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:20:39 +00:00
Michel Aractingi
808cf63221 Added support for controlling the gripper with the pygame interface of gamepad
Minor modifications in gym_manipulator to quantize the gripper actions
clamped the observations after F.resize in ConvertToLeRobotObservation wrapper due to a bug in F.resize, images were returned exceeding the maximum value of 1.0
2025-03-28 17:18:48 +00:00
AdilZouitine
0150139668 Refactor SACPolicy for improved type annotations and readability
- Enhanced type annotations for variables in the `SACPolicy` class to improve code clarity.
- Updated method calls to use keyword arguments for better readability.
- Streamlined the extraction of batch components, ensuring consistent typing across the class methods.
2025-03-28 17:18:48 +00:00
AdilZouitine
b3ad63cf6e Refactor SACPolicy and learner_server for improved clarity and functionality
- Updated the `forward` method in `SACPolicy` to handle loss computation for actor, critic, and temperature models.
- Replaced direct calls to `compute_loss_*` methods with a unified `forward` method in `learner_server`.
- Enhanced batch processing by consolidating input parameters into a single dictionary for better readability and maintainability.
- Removed redundant code and improved documentation for clarity.
2025-03-28 17:18:48 +00:00
AdilZouitine
8b02e81bb5 Refactor actor_server.py for improved structure and logging
- Consolidated logging initialization and enhanced logging for actor processes.
- Streamlined the handling of gRPC connections and process management.
- Improved readability by organizing core algorithm functions and communication functions.
- Added detailed comments and documentation for clarity.
- Ensured proper queue management and shutdown handling for actor processes.
2025-03-28 17:18:48 +00:00
AdilZouitine
dcce446a66 Refactor learner_server.py for improved structure and clarity
- Removed unused imports and streamlined the code structure.
- Consolidated logging initialization and enhanced logging for training processes.
- Improved handling of training state loading and resume logic.
- Refactored transition and interaction message processing for better readability and maintainability.
- Added detailed comments and documentation for clarity.
2025-03-28 17:18:48 +00:00
AdilZouitine
82a6b69e0e Refactor imports in modeling_sac.py for improved organization
- Rearranged import statements for better readability.
- Removed unused imports and streamlined the code structure.
2025-03-28 17:18:48 +00:00
AdilZouitine
6f7024242a Refactor SACConfig properties for improved readability
- Simplified the `image_features` property to directly iterate over `input_features`.
- Removed unused imports and unnecessary code related to main execution, enhancing clarity and maintainability.
2025-03-28 17:18:48 +00:00
AdilZouitine
3c56ad33c3 fix 2025-03-28 17:18:48 +00:00
AdilZouitine
49baa1ff49 Enhance logging for actor and learner servers
- Implemented process-specific logging for actor and learner servers to improve traceability.
- Created a dedicated logs directory and ensured it exists before logging.
- Initialized logging with explicit log files for each process, including actor transitions, interactions, and policy.
- Updated the actor CLI to validate configuration and set up logging accordingly.
2025-03-28 17:18:48 +00:00
Michel Aractingi
02b9ea9446 Added gripper control mechanism to gym_manipulator
Moved HilSerl env config to configs/env/configs.py
fixes in actor_server and modeling_sac and configuration_sac
added the possibility of ignoring missing keys in env_cfg in get_features_from_env_config function
2025-03-28 17:18:48 +00:00
AdilZouitine
79e0f6e06c Add WrapperConfig for environment wrappers and update SACConfig properties
- Introduced `WrapperConfig` dataclass for environment wrapper configurations.
- Updated `ManiskillEnvConfig` to include a `wrapper` field for enhanced environment management.
- Modified `SACConfig` to return `None` for `observation_delta_indices` and `action_delta_indices` properties.
- Refactored `make_robot_env` function to improve readability and maintainability.
2025-03-28 17:18:48 +00:00
Michel Aractingi
d0b7690bc0 Change HILSerlRobotEnvConfig to inherit from EnvConfig
Added support for hil_serl classifier to be trained with train.py
run classifier training by python lerobot/scripts/train.py --policy.type=hilserl_classifier
fixes in find_joint_limits, control_robot, end_effector_control_utils
2025-03-28 17:18:48 +00:00
AdilZouitine
052a4acfc2 [WIP] Update SAC configuration and environment settings
- Reduced frame rate in `ManiskillEnvConfig` from 400 to 200.
- Enhanced `SACConfig` with new dataclasses for actor, learner, and network configurations.
- Improved input and output feature management in `SACConfig`.
- Refactored `actor_server` and `learner_server` to access configuration properties directly.
- Updated training pipeline to validate configurations and handle dataset repo IDs more robustly.
2025-03-28 17:18:48 +00:00
AdilZouitine
626e5dd35c Add wandb run id in config 2025-03-28 17:18:48 +00:00
AdilZouitine
dd37bd412e [WIP] Non functional yet
Add ManiSkill environment configuration and wrappers

- Introduced `VideoRecordConfig` for video recording settings.
- Added `ManiskillEnvConfig` to encapsulate environment-specific configurations.
- Implemented various wrappers for the ManiSkill environment, including observation and action scaling.
- Enhanced the `make_maniskill` function to create a wrapped ManiSkill environment with video recording and observation processing.
- Updated the `actor_server` and `learner_server` to utilize the new configuration structure.
- Refactored the training pipeline to accommodate the new environment and policy configurations.
2025-03-28 17:18:48 +00:00
Michel Aractingi
b7b6d8102f Change config logic in:
- gym_manipulator
- find_joint_limits
- end_effector_utils
2025-03-28 17:18:48 +00:00
AdilZouitine
ee25fd8afe Add .devcontainer to .gitignore for improved development environment management 2025-03-28 17:18:48 +00:00
AdilZouitine
5fbbc65869 Add task field to frame_dict in ReplayBuffer and simplify save_episode calls
- Introduced a new "task" field in frame_dict to meet the requirements of LeRobotDataset.
- Removed task_name parameter from save_episode calls for consistency.
2025-03-28 17:18:48 +00:00
AdilZouitine
f483931fc0 Handle new config with sac 2025-03-28 17:18:48 +00:00
AdilZouitine
b2025b852c Handle multi optimizers 2025-03-28 17:18:48 +00:00
pre-commit-ci[bot]
7c05755823 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:18:48 +00:00
Michel Aractingi
2945bbb221 Removed depleted files and scripts 2025-03-28 17:18:48 +00:00
pre-commit-ci[bot]
8e6d5f504c [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:18:48 +00:00
AdilZouitine
761a2dbcb3 Update tensor device assignment in ReplayBuffer class
- Changed the device assignment for tensors in the ReplayBuffer class from `device` to `storage_device` for consistency and improved resource management.
2025-03-28 17:18:48 +00:00
pre-commit-ci[bot]
81952b2092 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:18:48 +00:00
AdilZouitine
0eef49a0f6 Initialize log_alpha with the logarithm of temperature_init in SACPolicy
- Updated the SACPolicy class to set log_alpha using the logarithm of the initial temperature value from the configuration.
2025-03-28 17:18:48 +00:00
pre-commit-ci[bot]
2d5effeeba [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:18:48 +00:00
AdilZouitine
c5c921cd7c Remove unused functions and imports from modeling_sac.py
- Deleted the `find_and_copy_params` function and the `Ensemble` class, as they were deemed unnecessary.
- Cleaned up imports by removing `from_modules` from `tensordict` to enhance code clarity.
- Simplified the assertion in the `Policy` class for better readability.
2025-03-28 17:18:48 +00:00
AdilZouitine
80e766c05c Add intervention rate tracking in act_with_policy function
- Introduced counters for tracking intervention steps and total steps during training.
- Calculated and logged the intervention rate at the end of each episode.
- Reset intervention counters after each episode to ensure accurate tracking.
2025-03-28 17:18:48 +00:00
AdilZouitine
eb6787e159 - Updated the logging condition to use log_freq directly instead of accessing it through cfg.training.log_freq for improved readability and speed. 2025-03-28 17:18:48 +00:00
Eugene Mironov
659adfc743 [PORT HIL-SERL] Optimize training loop, extract config usage (#855)
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:48 +00:00
AdilZouitine
07cc0662da Enhance training information logging in learner server
- Added tracking for replay buffer size and offline replay buffer size during training steps.
2025-03-28 17:18:48 +00:00
AdilZouitine
a02195249f Update configuration files for improved performance and flexibility
- Increased frame rate in `maniskill_example.yaml` from 20 to 400 for enhanced simulation speed.
- Updated `sac_maniskill.yaml` to set `dataset_repo_id` to null and adjusted `grad_clip_norm` from 10.0 to 40.0.
- Changed `storage_device` from "cpu" to "cuda" for better resource utilization.
- Modified `save_freq` from 2000000 to 1000000 to optimize saving intervals.
- Enhanced input normalization parameters for `observation.state` and `observation.image` in SAC policy.
- Adjusted `num_critics` from 10 to 2 and `policy_parameters_push_frequency` from 1 to 4 for improved training dynamics.
- Updated `learner_server.py` to utilize `offline_buffer_capacity` for replay buffer initialization.
- Changed action multiplier in `maniskill_manipulator.py` from 1 to 0.03 for finer control over actions.
2025-03-28 17:18:48 +00:00
pre-commit-ci[bot]
cb272294f5 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:18:48 +00:00
AdilZouitine
4bb2077afa Refactor SACPolicy and learner server for improved replay buffer management
- Updated SACPolicy to create critic heads using a list comprehension for better readability.
- Simplified the saving and loading of models using `save_model` and `load_model` functions from the safetensors library.
- Introduced `initialize_offline_replay_buffer` function in the learner server to streamline offline dataset handling and replay buffer initialization.
- Enhanced logging for dataset loading processes to improve traceability during training.
2025-03-28 17:18:48 +00:00
Michel Aractingi
b82faf7d8c Add end effector action space to hil-serl (#861)
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-28 17:18:48 +00:00
AdilZouitine
7960f2c3c1 Enhance SAC configuration and policy with gradient clipping and temperature management
- Introduced `grad_clip_norm` parameter in SAC configuration for gradient clipping
- Updated SACPolicy to store temperature as an instance variable for consistent usage
- Modified loss calculations in SACPolicy to utilize the instance temperature
- Enhanced MLP and CriticHead to support a customizable final activation function
- Implemented gradient clipping in the learner server during training steps for both actor and critic
- Added tracking for gradient norms in training information
2025-03-28 17:18:48 +00:00
pre-commit-ci[bot]
dee154a1a5 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:18:48 +00:00
AdilZouitine
a3ef7dc6c3 Add custom save and load methods for SAC policy
- Implement `_save_pretrained` method to handle TensorDict state saving
- Add `_from_pretrained` class method for loading SAC policy from files
- Create utility function `find_and_copy_params` to handle parameter copying
2025-03-28 17:18:48 +00:00
AdilZouitine
7e3e1ce173 Remove torch.no_grad decorator and optimize next action prediction in SAC policy
- Removed `@torch.no_grad` decorator from Unnormalize forward method

- Added TODO comment for optimizing next action prediction in SAC policy
- Minor formatting adjustment in NaN assertion for log standard deviation
Co-authored-by: Yoel Chornton <yoel.chornton@gmail.com>
2025-03-28 17:18:48 +00:00
s1lent4gnt
83b2dc1219 [Port HIL-SERL] Balanced sampler function speed up and refactor to align with train.py (#715)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-28 17:18:48 +00:00
Eugene Mironov
db78fee9de [HIL-SERL] Migrate threading to multiprocessing (#759)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-28 17:18:48 +00:00
pre-commit-ci[bot]
38f5fa4523 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-03-28 17:18:48 +00:00
AdilZouitine
76df8a31b3 Add storage device configuration for SAC policy and replay buffer
- Introduce `storage_device` parameter in SAC configuration and training settings
- Update learner server to use configurable storage device for replay buffer
- Reduce online buffer capacity in ManiSkill configuration
- Modify replay buffer initialization to support custom storage device
2025-03-28 17:18:48 +00:00
AdilZouitine
24f93c755a Add memory optimization option to ReplayBuffer
- Introduce `optimize_memory` parameter to reduce memory usage in replay buffer
- Implement simplified memory optimization by not storing duplicate next_states
- Update learner server and buffer initialization to use memory optimization by default
2025-03-28 17:18:48 +00:00
AdilZouitine
20fee3d043 Add storage device parameter to replay buffer initialization
- Specify storage device for replay buffer to optimize memory management
2025-03-28 17:18:48 +00:00
AdilZouitine
7c366e3223 Refactor ReplayBuffer with tensor-based storage and improved sampling efficiency
- Replaced list-based memory storage with pre-allocated tensor storage
- Optimized sampling process with direct tensor indexing
- Added support for DrQ image augmentation during sampling for offline dataset
- Improved dataset conversion with more robust episode handling
- Enhanced buffer initialization and state tracking
- Added comprehensive testing for buffer conversion and sampling
2025-03-28 17:18:48 +00:00
AdilZouitine
2c799508d7 Update ManiSkill configuration and replay buffer to support truncation and dataset handling
- Reduced image size in ManiSkill environment configuration from 128 to 64
- Added support for truncation in replay buffer and actor server
- Updated SAC policy configuration to use a specific dataset and modify vision encoder settings
- Improved dataset conversion process with progress tracking and task naming
- Added flexibility for joint action space masking in learner server
2025-03-28 17:18:48 +00:00
Michel Aractingi
ff223c106d Added caching function in the learner_server and modeling sac in order to limit the number of forward passes through the pretrained encoder when its frozen.
Added tensordict dependencies
Updated the version of torch and torchvision

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:48 +00:00
Eugene Mironov
d48161da1b [Port HIL-SERL] Adjust Actor-Learner architecture & clean up dependency management for HIL-SERL (#722) 2025-03-28 17:18:48 +00:00
AdilZouitine
150def839c Refactor SAC policy with performance optimizations and multi-camera support
- Introduced Ensemble and CriticHead classes for more efficient critic network handling
- Added support for multiple camera inputs in observation encoder
- Optimized image encoding by batching image processing
- Updated configuration for ManiSkill environment with reduced image size and action scaling
- Compiled critic networks for improved performance
- Simplified normalization and ensemble handling in critic networks
Co-authored-by: michel-aractingi <michel.aractingi@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
795063aa1b - Fixed big issue in the loading of the policy parameters sent by the learner to the actor -- pass only the actor to the update_policy_parameters and remove strict=False
- Fixed big issue in the normalization of the actions in the `forward` function of the critic -- remove the `torch.no_grad` decorator in `normalize.py` in the normalization function
- Fixed performance issue to boost the optimization frequency by setting the storage device to be the same as the device of learning.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
AdilZouitine
d9cd85d976 Re-enable parameter push thread in learner server
- Uncomment and start the param_push_thread
- Restore thread joining for param_push_thread
2025-03-28 17:18:24 +00:00
AdilZouitine
279e03b6c8 Improve wandb logging and custom step tracking in logger
- Modify logger to support multiple custom step keys
- Update logging method to handle custom step keys more flexibly

- Enhance logging of optimization step and frequency
Co-authored-by: michel-aractingi  <michel.aractingi@gmail.com>
2025-03-28 17:18:24 +00:00
AdilZouitine
b7a0ffc3b8 Add maniskill support.
Co-authored-by: Michel Aractingi <michel.aractingi@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
291358d6a2 Fixed bug in the action scale of the intervention actions and offline dataset actions. (scale by inverse delta)
Co-authored-by: Adil Zouitine <adizouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
2aca830a09 Modified crop_dataset_roi interface to automatically write the cropped parameters to a json file in the meta of the dataset
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
2f34d84298 Optimized the replay buffer from the memory side to store data on cpu instead of a gpu device and send the batches to the gpu.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
61b0e9539f nit
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
23c6b891a3 removed uncomment in actor server
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
0847b2119b Changed the init_final value to center the starting mean and std of the policy
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
24fb8a7f47 Changed bounds for a new so100 robot
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
eb7e28d9d9 Hardcoded some normalization parameters. TODO refactor
Added masking actions on the level of the intervention actions and offline dataset

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
a0e0a9a9b1 fix log_alpha in modeling_sac: change to nn.parameter
added pretrained vision model in policy

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
57e09828ce Added logging for interventions to monitor the rate of interventions through time
Added an s keyboard command to force success in the case the reward classifier fails

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
9c14830cd9 Added possiblity to record and replay delta actions during teleoperation rather than absolute actions
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Yoel
4057904238 [PORT-Hilserl] classifier fixes (#695)
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Eugene Mironov
3c58867738 [Port HIL-SERL] Add resnet-10 as default encoder for HIL-SERL (#696)
Co-authored-by: Khalil Meftah <kmeftah.khalil@gmail.com>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Ke Wang <superwk1017@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
c623824139 - Added JointMaskingActionSpace wrapper in gym_manipulator in order to select which joints will be controlled. For example, we can disable the gripper actions for some tasks.
- Added Nan detection mechanisms in the actor, learner and gym_manipulator for the case where we encounter nans in the loop.
- changed the non-blocking in the `.to(device)` functions to only work for the case of cuda because they were causing nans when running the policy on mps
- Added some joint clipping and limits in the env, robot and policy configs. TODO clean this part and make the limits in one config file only.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
3cb43f801c Added sac_real config file in the policym configs dir.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
f4f5b26a21 Several fixes to move the actor_server and learner_server code from the maniskill environment to the real robot environment.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Eugene Mironov
434d1e0614 [HIL-SERL port] Add Reward classifier benchmark tracking to chose best visual encoder (#688) 2025-03-28 17:18:24 +00:00
Michel Aractingi
729b4ed697 - Added lerobot/scripts/server/gym_manipulator.py that contains all the necessary wrappers to run a gym-style env around the real robot.
- Added `lerobot/scripts/server/find_joint_limits.py` to test the min and max angles of the motion you wish the robot to explore during RL training.
- Added logic in `manipulator.py` to limit the maximum possible joint angles to allow motion within a predefined joint position range. The limits are specified in the yaml config for each robot. Checkout the so100.yaml.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
163bcbcad4 fixed bug in crop_dataset_roi.py
added missing buffer.pt in server dir

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
875662f16b Added additional wrappers for the environment: Action repeat, keyboard interface, reset wrapper
Tested the reset mechanism and keyboard interface and the convert wrapper on the robots.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
87c7eca582 Added crop_dataset_roi.py that allows you to load a lerobotdataset -> crop its images -> create a new lerobot dataset with the cropped and resized images.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
179ee3b1f6 - Added base gym env class for the real robot environment.
- Added several wrappers around the base gym env robot class.
- Including: time limit, reward classifier, crop images, preprocess observations.
- Added an interactive script crop_roi.py where the user can interactively select the roi in the observation images and return the correct crop values that will improve the policy and reward classifier performance.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
b29401e4e2 - Refactor observation encoder in modeling_sac.py
- added `torch.compile` to the actor and learner servers.
- organized imports in `train_sac.py`
- optimized the parameters push by not sending the frozen pre-trained encoder.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Yoel
faab32fe14 [Port HIL-SERL] Add HF vision encoder option in SAC (#651)
Added support with custom pretrained vision encoder to the modeling sac implementation. Great job @ChorntonYoel !
2025-03-28 17:18:24 +00:00
Michel Aractingi
c620b0878f Cleaned learner_server.py. Added several block function to improve readability.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
2023289ce8 Added support for checkpointing the policy. We can save and load the policy state dict, optimizers state, optimization step and interaction step
Added functions for converting the replay buffer from and to LeRobotDataset. When we want to save the replay buffer, we convert it first to LeRobotDataset format and save it locally and vice-versa.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
9afd093030 Removed unnecessary time.sleep in the streaming server on the learner side
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
f3c4d6e1ec Added missing config files env/maniskill_example.yaml and policy/sac_maniskill.yaml that are necessary to run the lerobot implementation of sac with the maniskill baselines.
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
18207d995e - Added additional logging information in wandb around the timings of the policy loop and optimization loop.
- Optimized critic design that improves the performance of the learner loop by a factor of 2
- Cleaned the code and fixed style issues

- Completed the config with actor_learner_config field that contains host-ip and port elemnts that are necessary for the actor-learner servers.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
a0a81c0c12 FREEDOM, added back the optimization loop code in learner_server.py
Ran experiment with pushcube env from maniskill. The learning seem to work.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
Michel Aractingi
ef64ba91d9 Added server directory in lerobot/scripts that contains scripts and the protobuf message types to split training into two processes, acting and learning. The actor rollouts the policy and collects interaction data while the learner recieves the data, trains the policy and sends the updated parameters to the actor. The two scripts are ran simultaneously
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
2025-03-28 17:18:24 +00:00
AdilZouitine
83dc00683c Stable version of rlpd + drq 2025-03-28 17:18:24 +00:00
AdilZouitine
5b92465e38 Add type annotations and restructure SACConfig class fields 2025-03-28 17:18:24 +00:00
Adil Zouitine
4b78ab2789 Change SAC policy implementation with configuration and modeling classes 2025-03-28 17:18:24 +00:00
Adil Zouitine
bd8c768f62 SAC works 2025-03-28 17:18:24 +00:00
Adil Zouitine
1e9bafc852 [WIP] correct sac implementation 2025-03-28 17:18:24 +00:00
Adil Zouitine
921ed960fb Add rlpd tricks 2025-03-28 17:18:24 +00:00
Adil Zouitine
67b64e445b SAC works 2025-03-28 17:18:24 +00:00
Adil Zouitine
6c8023e702 remove breakpoint 2025-03-28 17:18:24 +00:00
Adil Zouitine
b495b19a6a [WIP] correct sac implementation 2025-03-28 17:18:24 +00:00
Michel Aractingi
6139df553d Extend reward classifier for multiple camera views (#626) 2025-03-28 17:18:24 +00:00
Eugene Mironov
b68730474a [Port HIL_SERL] Final fixes for the Reward Classifier (#598) 2025-03-28 17:18:24 +00:00
Michel Aractingi
764925e4a2 added temporary fix for missing task_index key in online environment 2025-03-28 17:18:24 +00:00
Michel Aractingi
7bb142b707 split encoder for critic and actor 2025-03-28 17:18:24 +00:00
Michel Aractingi
2c2ed084cc style fixes 2025-03-28 17:18:24 +00:00
KeWang1017
91fefdecfa Refactor SAC configuration and policy for improved action sampling and stability
- Updated SACConfig to replace standard deviation parameterization with log_std_min and log_std_max for better control over action distributions.
- Modified SACPolicy to streamline action selection and log probability calculations, enhancing stochastic behavior.
- Removed deprecated TanhMultivariateNormalDiag class to simplify the codebase and improve maintainability.

These changes aim to enhance the robustness and performance of the SAC implementation during training and inference.
2025-03-28 17:18:24 +00:00
KeWang1017
70e3b9248c Refine SAC configuration and policy for enhanced performance
- Updated standard deviation parameterization in SACConfig to 'softplus' with defined min and max values for improved stability.
- Modified action sampling in SACPolicy to use reparameterized sampling, ensuring better gradient flow and log probability calculations.
- Cleaned up log probability calculations in TanhMultivariateNormalDiag for clarity and efficiency.
- Increased evaluation frequency in YAML configuration to 50000 for more efficient training cycles.

These changes aim to enhance the robustness and performance of the SAC implementation during training and inference.
2025-03-28 17:18:24 +00:00
KeWang1017
0ecf40d396 Refactor SACPolicy for improved action sampling and standard deviation handling
- Updated action selection to use distribution sampling and log probabilities for better stochastic behavior.
- Enhanced standard deviation clamping to prevent extreme values, ensuring stability in policy outputs.
- Cleaned up code by removing unnecessary comments and improving readability.

These changes aim to refine the SAC implementation, enhancing its robustness and performance during training and inference.
2025-03-28 17:18:24 +00:00
KeWang1017
a113daa81e trying to get sac running 2025-03-28 17:18:24 +00:00
Michel Aractingi
80b86e9bc3 Added normalization schemes and style checks 2025-03-28 17:18:24 +00:00
Michel Aractingi
9dafad15e6 added optimizer and sac to factory.py 2025-03-28 17:18:24 +00:00
Eugene Mironov
d96edbf5ac [HIL-SERL PORT] Fix linter issues (#588) 2025-03-28 17:18:24 +00:00
Eugene Mironov
6340d9d17c [Port Hil-SERL] Add unit tests for the reward classifier & fix imports & check script (#578) 2025-03-28 17:18:24 +00:00
Michel Aractingi
66268fcf85 added comments from kewang 2025-03-28 17:18:24 +00:00
KeWang1017
a5228a0dfe Enhance SAC configuration and policy with new parameters and subsampling logic
- Added `num_subsample_critics`, `critic_target_update_weight`, and `utd_ratio` to SACConfig.
- Implemented target entropy calculation in SACPolicy if not provided.
- Introduced subsampling of critics to prevent overfitting during updates.
- Updated temperature loss calculation to use the new target entropy.
- Added comments for future UTD update implementation.

These changes improve the flexibility and performance of the SAC implementation.
2025-03-28 17:18:24 +00:00
KeWang
dbadaae28b Port SAC WIP (#581)
Co-authored-by: KeWang1017 <ke.wang@helloleap.ai>
2025-03-28 17:18:24 +00:00
Michel Aractingi
44536d1f0c completed losses 2025-03-28 17:18:24 +00:00
Michel Aractingi
69b6de46d7 nit in control_robot.py 2025-03-28 17:18:24 +00:00
Michel Aractingi
399f834788 Update lerobot/scripts/train_hilserl_classifier.py
Co-authored-by: Yoel <yoel.chornton@gmail.com>
2025-03-28 17:18:24 +00:00
Eugene Mironov
df57d372d6 Fixup 2025-03-28 17:18:24 +00:00
Michel Aractingi
76234b7d14 Add human intervention mechanism and eval_robot script to evaluate policy on the robot (#541)
Co-authored-by: Yoel <yoel.chornton@gmail.com>
2025-03-28 17:18:24 +00:00
Yoel
58cc445921 Reward classifier and training (#528)
Co-authored-by: Daniel Ritchie <daniel@brainwavecollective.ai>
Co-authored-by: resolver101757 <kelster101757@hotmail.com>
Co-authored-by: Jannik Grothusen <56967823+J4nn1K@users.noreply.github.com>
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
2025-03-28 17:18:24 +00:00
284 changed files with 13044 additions and 21676 deletions

View File

@@ -40,24 +40,24 @@ jobs:
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push CPU
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-cpu/Dockerfile
@@ -78,24 +78,24 @@ jobs:
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu/Dockerfile
@@ -110,23 +110,23 @@ jobs:
group: aws-general-8-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU dev
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu-dev/Dockerfile

View File

@@ -1,23 +0,0 @@
name: Build documentation
on:
workflow_dispatch:
push:
paths:
- "docs/**"
branches:
- main
- doc-builder*
- v*-release
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: lerobot
additional_args: --not_python_module
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@@ -1,19 +0,0 @@
name: Build PR Documentation
on:
pull_request:
paths:
- "docs/**"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: lerobot
additional_args: --not_python_module

View File

@@ -33,7 +33,7 @@ jobs:
runs-on:
group: aws-general-8-plus
container:
image: huggingface/lerobot-cpu:latest # zizmor: ignore[unpinned-images]
image: huggingface/lerobot-cpu:latest
options: --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
@@ -60,7 +60,7 @@ jobs:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/lerobot-gpu:latest # zizmor: ignore[unpinned-images]
image: huggingface/lerobot-gpu:latest
options: --gpus all --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}

View File

@@ -33,12 +33,12 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up Python
uses: actions/setup-python@7f4fc3e22c37d6ff65e88745f38bd3157c663f7c # v4.9.1
uses: actions/setup-python@v4
with:
python-version: ${{ env.PYTHON_VERSION }}
@@ -64,9 +64,9 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: typos-action
uses: crate-ci/typos@db35ee91e80fbb447f33b0e5fbddb24d2a1a884f # v1.29.10
uses: crate-ci/typos@v1.29.10

View File

@@ -35,7 +35,7 @@ jobs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
@@ -64,17 +64,17 @@ jobs:
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Build Docker image
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
uses: docker/build-push-action@v5
with:
file: ${{ matrix.docker-file }}
context: .

View File

@@ -50,7 +50,7 @@ jobs:
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
@@ -62,7 +62,7 @@ jobs:
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
uses: astral-sh/setup-uv@v5
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
@@ -85,7 +85,7 @@ jobs:
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
@@ -94,7 +94,7 @@ jobs:
run: sudo apt-get update && sudo apt-get install -y ffmpeg
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
uses: astral-sh/setup-uv@v5
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
@@ -117,7 +117,7 @@ jobs:
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
@@ -129,7 +129,7 @@ jobs:
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
uses: astral-sh/setup-uv@v5
with:
enable-cache: true
version: ${{ env.UV_VERSION }}

View File

@@ -24,12 +24,12 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Secret Scanning
uses: trufflesecurity/trufflehog@90694bf9af66e7536abc5824e7a87246dbf933cb # v3.88.35
uses: trufflesecurity/trufflehog@main
with:
extra_args: --only-verified

View File

@@ -1,16 +0,0 @@
name: Upload PR Documentation
on: # zizmor: ignore[dangerous-triggers] We follow the same pattern as in Transformers
workflow_run:
workflows: [ "Build PR Documentation" ]
types:
- completed
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: lerobot
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

1
.gitignore vendored
View File

@@ -26,6 +26,7 @@ outputs
# VS Code
.vscode
.devcontainer
# HPC
nautilus/*.yaml

View File

@@ -36,19 +36,19 @@ repos:
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/adhtruong/mirrors-typos
rev: v1.32.0
- repo: https://github.com/crate-ci/typos
rev: v1.30.2
hooks:
- id: typos
args: [--force-exclude]
- repo: https://github.com/asottile/pyupgrade
rev: v3.20.0
rev: v3.19.1
hooks:
- id: pyupgrade
exclude: '^(.*_pb2_grpc\.py|.*_pb2\.py$)'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.11.11
rev: v0.9.10
hooks:
- id: ruff
args: [--fix]
@@ -57,12 +57,12 @@ repos:
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.26.0
rev: v8.24.0
hooks:
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.8.0
rev: v1.4.1
hooks:
- id: zizmor

View File

@@ -23,35 +23,21 @@
</div>
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
Build Your Own SO-101 Robot!</a></p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Build Your Own SO-100 Robot!</a></p>
</h2>
<div align="center">
<div style="display: flex; gap: 1rem; justify-content: center; align-items: center;" >
<img
src="media/so101/so101.webp?raw=true"
alt="SO-101 follower arm"
title="SO-101 follower arm"
style="width: 40%;"
/>
<img
src="media/so101/so101-leader.webp?raw=true"
alt="SO-101 leader arm"
title="SO-101 leader arm"
style="width: 40%;"
/>
</div>
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p><strong>Meet the updated SO100, the SO-101 Just €114 per arm!</strong></p>
<p><strong>Meet the SO-100 Just $110 per arm!</strong></p>
<p>Train it in minutes with a few simple moves on your laptop.</p>
<p>Then sit back and watch your creation act autonomously! 🤯</p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
See the full SO-101 tutorial here.</a></p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Get the full SO-100 tutorial here.</a></p>
<p>Want to take it to the next level? Make your SO-101 mobile by building LeKiwi!</p>
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
@@ -65,6 +51,7 @@
---
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier to entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
@@ -111,25 +98,18 @@ conda create -y -n lerobot python=3.10
conda activate lerobot
```
When using `miniconda`, install `ffmpeg` in your environment:
When using `miniconda`, if you don't have `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
conda install ffmpeg
```
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
pip install -e .
pip install --no-binary=av -e .
```
> **NOTE:** If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run:
`sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
`sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
@@ -138,7 +118,7 @@ For simulations, 🤗 LeRobot comes with gymnasium environments that can be inst
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install -e ".[aloha, pusht]"
pip install --no-binary=av -e ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
@@ -221,7 +201,7 @@ dataset attributes:
│ ├ episode_index (int64): index of the episode for this sample
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
│ ├ timestamp (float32): timestamp in the episode
│ ├ next.done (bool): indicates the end of an episode ; True for the last frame in each episode
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
│ └ index (int64): general index in the whole dataset
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
@@ -270,7 +250,7 @@ See `python lerobot/scripts/eval.py --help` for more instructions.
### Train your own policy
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
Check out [example 3](./examples/3_train_policy.py) that illustrate how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding `--wandb.enable=true`.
@@ -321,7 +301,7 @@ Once you have trained a policy you may upload it to the Hugging Face hub using a
You first need to find the checkpoint folder located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). Within that there is a `pretrained_model` directory which should contain:
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
- `train_config.json`: A consolidated configuration containing all parameters used for training. The policy configuration should match `config.json` exactly. This is useful for anyone who wants to evaluate your policy or for reproducibility.
- `train_config.json`: A consolidated configuration containing all parameter userd for training. The policy configuration should match `config.json` exactly. Thisis useful for anyone who wants to evaluate your policy or for reproducibility.
To upload these to the hub, run the following:
```bash
@@ -360,7 +340,7 @@ with profile(
If you want, you can cite this work with:
```bibtex
@misc{cadene2024lerobot,
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Palma, Steven and Kooijmans, Pepijn and Aractingi, Michel and Shukor, Mustafa and Aubakirova, Dana and Russi, Martino and Capuano, Francesco and Pascale, Caroline and Choghari, Jade and Moss, Jess and Wolf, Thomas},
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
howpublished = "\url{https://github.com/huggingface/lerobot}",
year = {2024}

View File

@@ -17,21 +17,12 @@
import argparse
import datetime as dt
import os
import time
from pathlib import Path
import cv2
import rerun as rr
# see https://rerun.io/docs/howto/visualization/limit-ram
RERUN_MEMORY_LIMIT = os.getenv("LEROBOT_RERUN_MEMORY_LIMIT", "5%")
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int, duration: int):
rr.init("lerobot_capture_camera_feed")
rr.spawn(memory_limit=RERUN_MEMORY_LIMIT)
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int):
now = dt.datetime.now()
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
if not capture_dir.exists():
@@ -48,21 +39,24 @@ def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
frame_index = 0
start_time = time.time()
while time.time() - start_time < duration:
while True:
ret, frame = cap.read()
if not ret:
print("Error: Could not read frame.")
break
rr.log("video/stream", rr.Image(frame.numpy()), static=True)
cv2.imshow("Video Stream", frame)
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
frame_index += 1
# Release the capture
cap.release()
# Break the loop on 'q' key press
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# TODO(Steven): Add a graceful shutdown via a close() method for the Viewer context, though not currently supported in the Rerun API.
# Release the capture and destroy all windows
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
@@ -92,11 +86,5 @@ if __name__ == "__main__":
default=720,
help="Height of the captured images.",
)
parser.add_argument(
"--duration",
type=int,
default=20,
help="Duration in seconds for which the video stream should be captured.",
)
args = parser.parse_args()
display_and_save_video_stream(**vars(args))

View File

@@ -32,7 +32,11 @@ import numpy as np
import pandas as pd
import PIL
import torch
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
from skimage.metrics import (
mean_squared_error,
peak_signal_noise_ratio,
structural_similarity,
)
from tqdm import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
@@ -94,7 +98,11 @@ def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> t
def save_decoded_frames(
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int
imgs_dir: Path,
save_dir: Path,
frames: torch.Tensor,
timestamps: list[float],
fps: int,
) -> None:
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
return
@@ -104,7 +112,10 @@ def save_decoded_frames(
idx = int(ts * fps)
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")
shutil.copyfile(
imgs_dir / f"frame_{idx:06d}.png",
save_dir / f"frame_{idx:06d}_original.png",
)
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
@@ -120,7 +131,11 @@ def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
imgs_dataset = hf_dataset.select_columns(img_keys[0])
for i, item in enumerate(
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
tqdm(
imgs_dataset,
desc=f"saving {dataset.repo_id} first episode images",
leave=False,
)
):
img = item[img_keys[0]]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
@@ -275,7 +290,9 @@ def benchmark_encoding_decoding(
random.seed(seed)
benchmark_table = []
for timestamps_mode in tqdm(
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
decoding_cfg["timestamps_modes"],
desc="decodings (timestamps_modes)",
leave=False,
):
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
benchmark_row = benchmark_decoding(
@@ -416,7 +433,7 @@ if __name__ == "__main__":
"--vcodec",
type=str,
nargs="*",
default=["libx264", "hevc", "libsvtav1"],
default=["libx264", "libx265", "libsvtav1"],
help="Video codecs to be tested",
)
parser.add_argument(
@@ -446,7 +463,7 @@ if __name__ == "__main__":
# nargs="*",
# default=[0, 1],
# help="Use the fastdecode tuning option. 0 disables it. "
# "For libx264 and libx265/hevc, only 1 is possible. "
# "For libx264 and libx265, only 1 is possible. "
# "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
# )
parser.add_argument(

View File

@@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
tcpdump sysstat screen tmux \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
speech-dispatcher portaudio19-dev libgeos-dev \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install ffmpeg build dependencies. See:

View File

@@ -1,137 +0,0 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
pip install -e ".[docs]"
```
You will also need `nodejs`. Please refer to their [installation page](https://nodejs.org/en/download)
---
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look before committing for instance). You don't have to `git commit` the built documentation.
---
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
doc-builder build lerobot docs/source/ --build_dir ~/tmp/test-build
```
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview lerobot docs/source/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
## Adding a new element to the navigation bar
Accepted files are Markdown (.md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/lerobot/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
```
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved sections set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
### Adding a new tutorial
Adding a new tutorial or section is done in two steps:
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. If you have a doubt, feel free to ask in a Github Issue or PR.
### Writing source documentation
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None or any strings should usually be put in `code`.
#### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
```
# first line of code
# second line
# etc
```
````
#### Adding an image
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.

View File

@@ -1,12 +0,0 @@
- sections:
- local: index
title: LeRobot
- local: installation
title: Installation
title: Get started
- sections:
- local: assemble_so101
title: Assemble SO-101
- local: getting_started_real_world_robot
title: Getting Started with Real-World Robots
title: "Tutorials"

View File

@@ -1,348 +0,0 @@
# Assemble SO-101
In the steps below we explain how to assemble our flagship robot, the SO-101.
## Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
To install LeRobot follow our [Installation Guide](./installation)
## Configure motors
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
### Find the USB ports associated to each arm
To find the port for each bus servo adapter, run this script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
##### Example outputs of script
<hfoptions id="example">
<hfoption id="Mac">
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
```bash
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
</hfoption>
<hfoption id="Linux">
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
Example output leader arm port: `/dev/ttyACM0`
```bash
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM0
Reconnect the usb cable.
```
Example output follower arm port: `/dev/ttyACM1`
```
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM1
Reconnect the usb cable.
```
</hfoption>
</hfoptions>
#### Update config file
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
```diff
@RobotConfig.register_subclass("so101")
@dataclass
class So101RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so101"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem58760431091",
+ port="{ADD YOUR LEADER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem585A0076891",
+ port="{ADD YOUR FOLLOWER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
Here is a video of the process:
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-find-motorbus.mp4" type="video/mp4" />
</video>
</div>
## Step-by-Step Assembly Instructions
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
| Leader-Arm Axis | Motor | Gear Ratio |
|-----------------|:-------:|:----------:|
| Base / Shoulder Yaw | 1 | 1 / 191 |
| Shoulder Pitch | 2 | 1 / 345 |
| Elbow | 3 | 1 / 191 |
| Wrist Roll | 4 | 1 / 147 |
| Wrist Pitch | 5 | 1 / 147 |
| Gripper | 6 | 1 / 147 |
### Set motor IDs
Plug your motor in one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage and make sure you give the right ID to the right motor according to the table above.
Here is a video of the process:
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-configure-motor.mp4" type="video/mp4" />
</video>
</div>
### Clean Parts
Remove all support material from the 3D-printed parts, the easiest way to do this is using a small screwdriver to get underneath the support material.
### Joint 1
- Place the first motor into the base.
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
- Install both motor horns, securing the top horn with a M3x6mm screw.
- Attach the shoulder part.
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
- Add the shoulder motor holder.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint1_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 2
- Slide the second motor in from the top.
- Fasten the second motor with 4 M2x6mm screws.
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
- Attach the upper arm with 4 M3x6mm screws on each side.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint2_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 3
- Insert motor 3 and fasten using 4 M2x6mm screws
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint3_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 4
- Slide over motor holder 4.
- Slide in motor 4.
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint4_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 5
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint5_v2.mp4" type="video/mp4" />
</video>
</div>
### Gripper / Handle
<hfoptions id="assembly">
<hfoption id="Follower">
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
- Attach the motor horns and again use a M3x6mm horn screw.
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Gripper_v2.mp4" type="video/mp4" />
</video>
</div>
</hfoption>
<hfoption id="Leader">
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
- Attach the handle to motor 5 using 1 M2x6mm screw.
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
- Attach the follower trigger with 4 M3x6mm screws.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Leader_v2.mp4" type="video/mp4" />
</video>
</div>
</hfoption>
</hfoptions>
##### Wiring
- Attach the motor controller on the back.
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Wiring_v2.mp4" type="video/mp4" />
</video>
</div>
## Calibrate
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
#### Manual calibration of follower arm
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
#### Manual calibration of leader arm
You will also need to move the leader arm to these positions sequentially:
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)

View File

@@ -1,370 +0,0 @@
# Getting Started with Real-World Robots
This tutorial will explain you how to train a neural network to autonomously control a real robot.
**You'll learn:**
1. How to record and visualize your dataset.
2. How to train a policy using your data and prepare it for evaluation.
3. How to evaluate your policy and visualize the results.
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
## Setup and Calibrate
If you haven't yet setup and calibrate the SO-101 follow these steps:
1. [Find ports and update config file](./assemble_so101#find-the-usb-ports-associated-to-each-arm)
2. [Calibrate](./assemble_so101#calibrate)
## Teleoperate
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=teleoperate
```
The teleoperate command will automatically:
1. Identify any missing calibrations and initiate the calibration procedure.
2. Connect the robot and start teleoperation.
## Setup Cameras
To connect a camera you have three options:
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
2. iPhone camera with MacOS
3. Phone camera on Linux
### Use OpenCVCamera
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
```bash
python lerobot/common/robot_devices/cameras/opencv.py \
--images-dir outputs/images_from_opencv_cameras
```
The output will look something like this if you have two cameras connected:
```
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
[...]
Camera found at index 0
Camera found at index 1
[...]
Connecting cameras
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
Saving images to outputs/images_from_opencv_cameras
Frame: 0000 Latency (ms): 39.52
[...]
Frame: 0046 Latency (ms): 40.07
Images have been saved to outputs/images_from_opencv_cameras
```
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
```
camera_00_frame_000000.png
[...]
camera_00_frame_000047.png
camera_01_frame_000000.png
[...]
camera_01_frame_000047.png
```
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
Now that you have the camera indexes, you should specify the camera's in the config.
### Use your phone
<hfoptions id="use phone">
<hfoption id="Mac">
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
- Sign in both devices with the same Apple ID.
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
Your iPhone should be detected automatically when running the camera setup script in the next section.
</hfoption>
<hfoption id="Linux">
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
```python
sudo apt install v4l2loopback-dkms v4l-utils
```
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
```python
flatpak install flathub com.obsproject.Studio
```
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
```python
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
```
5. *Start OBS Studio*. Launch with:
```python
flatpak run com.obsproject.Studio
```
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
```python
v4l2-ctl --list-devices
```
You should see an entry like:
```
VirtualCam (platform:v4l2loopback-000):
/dev/video1
```
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
```python
v4l2-ctl -d /dev/video1 --get-fmt-video
```
You should see an entry like:
```
>>> Format Video Capture:
>>> Width/Height : 640/480
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
```
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
If everything is set up correctly, you can proceed with the rest of the tutorial.
</hfoption>
</hfoptions>
## Teleoperate with cameras
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=teleoperate
--control.display_data=true
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
Add your token to the cli by running this command:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then store your Hugging Face repository name in a variable:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/so101_test \
--control.tags='["so101","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
```
| Field | Meaning |
|:---|:---|
| `2024-08-10 15:02:58` | Timestamp when `print` was called. |
| `ol_robot.py:219` | Source file and line number of the `print` call (`lerobot/scripts/control_robot.py` at line `219`). |
| `dt: 33.34 (30.0 Hz)` | Delta time (ms) between teleop steps (target: 30.0 Hz, `--fps 30`). Yellow if step is too slow. |
| `dtRlead: 5.06 (197.5 Hz)` | Delta time (ms) for reading present position from the **leader arm**. |
| `dtWfoll: 0.25 (3963.7 Hz)` | Delta time (ms) for writing goal position to the **follower arm** (asynchronous). |
| `dtRfoll: 6.22 (160.7 Hz)` | Delta time (ms) for reading present position from the **follower arm**. |
| `dtRlaptop: 32.57 (30.7 Hz)` | Delta time (ms) for capturing an image from the **laptop camera** (async thread). |
| `dtRphone: 33.84 (29.5 Hz)` | Delta time (ms) for capturing an image from the **phone camera** (async thread). |
#### Dataset upload
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
```bash
echo https://huggingface.co/datasets/${HF_USER}/so101_test
```
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
#### Record function
The `record` function provides a suite of tools for capturing and managing data during robot operation:
##### 1. Frame Capture and Video Encoding
- Frames from cameras are saved to disk during recording.
- At the end of each episode, frames are encoded into video files.
##### 2. Data Storage
- Data is stored using the `LeRobotDataset` format.
- By default, the dataset is pushed to your Hugging Face page.
- To disable uploading, use `--control.push_to_hub=false`.
##### 3. Checkpointing and Resuming
- Checkpoints are automatically created during recording.
- If an issue occurs, you can resume by re-running the same command with `--control.resume=true`.
- To start recording from scratch, **manually delete** the dataset directory.
##### 4. Recording Parameters
Set the flow of data recording using command-line arguments:
- `--control.warmup_time_s=10`
Number of seconds before starting data collection (default: **10 seconds**).
Allows devices to warm up and synchronize.
- `--control.episode_time_s=60`
Duration of each data recording episode (default: **60 seconds**).
- `--control.reset_time_s=60`
Duration for resetting the environment after each episode (default: **60 seconds**).
- `--control.num_episodes=50`
Total number of episodes to record (default: **50**).
##### 5. Keyboard Controls During Recording
Control the data recording flow using keyboard shortcuts:
- Press **Right Arrow (`→`)**: Early stop the current episode or reset time and move to the next.
- Press **Left Arrow (`←`)**: Cancel the current episode and re-record it.
- Press **Escape (`ESC`)**: Immediately stop the session, encode videos, and upload the dataset.
#### Tips for gathering data
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
In the following sections, youll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
Avoid adding too much variation too quickly, as it may hinder your results.
#### Troubleshooting:
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so101_test
```
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so101_test \
--local-files-only 1
```
This will launch a local web server that looks like this:
<div style="text-align:center;">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
</div>
## Replay an episode
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
You can replay the first episode on your robot with:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/so101_test \
--control.episode=0
```
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/so101_test \
--policy.type=act \
--output_dir=outputs/train/act_so101_test \
--job_name=act_so101_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain the command:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
--resume=true
```
#### Upload policy checkpoints
Once training is done, upload the latest checkpoint with:
```bash
huggingface-cli upload ${HF_USER}/act_so101_test \
outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
You can also upload intermediate checkpoints with:
```bash
CKPT=010000
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
```
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_so101_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).

View File

@@ -1,19 +0,0 @@
<div class="flex justify-center">
<a target="_blank" href="https://huggingface.co/lerobot">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-logo-thumbnail.png" style="width: 100%"></img>
</a>
</div>
# LeRobot
**State-of-the-art machine learning for real-world robotics**
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started.
🤗 LeRobot hosts pretrained models and datasets on the LeRobot HuggingFace page.
Join the LeRobot community on [Discord](https://discord.gg/s3KuuzsPFb)

View File

@@ -1,84 +0,0 @@
# Installation
## Install LeRobot
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git
cd lerobot
```
Create a virtual environment with Python 3.10, using [`Miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install)
```bash
conda create -y -n lerobot python=3.10
```
Now restart the shell by running:
<hfoptions id="shell_restart">
<hfoption id="Windows">
```bash
source ~/.bashrc
```
</hfoption>
<hfoption id="Mac">
```bash
source ~/.bash_profile
```
</hfoption>
<hfoption id="zshell">
```bash
source ~/.zshrc
```
</hfoption>
</hfoptions>
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
```bash
conda activate lerobot
```
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
> [!TIP]
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
cd lerobot && pip install -e ".[feetech]"
```
## Troubleshooting
If you encounter build errors, you may need to install additional dependencies: `cmake`, `build-essential`, and `ffmpeg libs`.
To install these for linux run:
```bash
sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config
```
For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
## Sim
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
- [pusht](https://github.com/huggingface/gym-pusht)
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install -e ".[aloha, pusht]"
```
## W&B
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
```bash
wandb login
```

View File

@@ -57,15 +57,9 @@ conda activate lerobot
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
#### 5. Install LeRobot with dependencies for the feetech motors:
```bash
conda install ffmpeg -c conda-forge
```
#### 6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
@@ -128,7 +122,7 @@ sudo chmod 666 /dev/ttyACM1
#### d. Update config file
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`SO100RobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
```diff
```python
@RobotConfig.register_subclass("so100")
@dataclass
class So100RobotConfig(ManipulatorRobotConfig):
@@ -141,8 +135,7 @@ class So100RobotConfig(ManipulatorRobotConfig):
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem58760431091",
+ port="{ADD YOUR LEADER PORT}",
port="/dev/tty.usbmodem58760431091", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
@@ -159,8 +152,7 @@ class So100RobotConfig(ManipulatorRobotConfig):
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem585A0076891",
+ port="{ADD YOUR FOLLOWER PORT}",
port="/dev/tty.usbmodem585A0076891", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
@@ -447,16 +439,18 @@ For the leader configuration, perform **Steps 123**. Make sure that you remov
## E. Calibrate
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
The calibration process is very important because it allows a neural network trained on one SO-100 robot to work on another.
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
#### Manual calibration of follower arm
#### a. Manual calibration of follower arm
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
> [!IMPORTANT]
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
@@ -467,12 +461,12 @@ python lerobot/scripts/control_robot.py \
--control.arms='["main_follower"]'
```
#### Manual calibration of leader arm
You will also need to move the leader arm to these positions sequentially:
#### b. Manual calibration of leader arm
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-100 leader arm middle position" title="SO-100 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
@@ -497,9 +491,6 @@ python lerobot/scripts/control_robot.py \
#### a. Teleop with displaying cameras
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
@@ -580,7 +571,7 @@ python lerobot/scripts/train.py \
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.

View File

@@ -67,15 +67,9 @@ conda activate lerobot
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
#### 5. Install LeRobot with dependencies for the feetech motors:
```bash
conda install ffmpeg -c conda-forge
```
#### 6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
## C. Install LeRobot on laptop
@@ -114,15 +108,9 @@ conda activate lerobot
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
#### 5. Install LeRobot with dependencies for the feetech motors:
```bash
conda install ffmpeg -c conda-forge
```
#### 6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms and Mobile base :robot:.
@@ -134,7 +122,7 @@ First we will assemble the two SO100 arms. One to attach to the mobile base and
## SO100 Arms
### Configure motors
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These need to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These needs to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
<img src="../media/lekiwi/motor_ids.webp?raw=true" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
@@ -405,10 +393,6 @@ python lerobot/scripts/control_robot.py \
```
# F. Teleoperate
> [!TIP]
> If you're using a Mac, you might need to give Terminal permission to access your keyboard. Go to System Preferences > Security & Privacy > Input Monitoring and check the box for Terminal.
To teleoperate SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
@@ -424,8 +408,6 @@ python lerobot/scripts/control_robot.py \
--control.fps=30
```
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`. For the `--control.type=remote_robot` you will also need to set `--control.viewer_ip` and `--control.viewer_port`
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
| ---------- | ------------------ | ---------------------- |
@@ -567,7 +549,7 @@ python lerobot/scripts/train.py \
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/lekiwi_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.

View File

@@ -31,20 +31,14 @@ conda create -y -n lerobot python=3.10 && conda activate lerobot
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
5. Install LeRobot with dependencies for the feetech motors:
```bash
conda install ffmpeg -c conda-forge
```
6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
## Configure the motors
Follow step 1 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the use of our scripts below.
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the use of our scripts below.
**Find USB ports associated to your arms**
To find the correct ports for each arm, run the utility script twice:
@@ -141,7 +135,7 @@ python lerobot/scripts/configure_motor.py \
--ID 1
```
Note: These motors are currently limited. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
@@ -164,7 +158,7 @@ Try to avoid rotating the motor while doing so to keep position 2048 set during
## Assemble the arms
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). The first arm should take a bit more than 1 hour to assemble, but once you get used to it, you can do it under 1 hour for the second arm.
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
## Calibrate
@@ -218,9 +212,6 @@ python lerobot/scripts/control_robot.py \
**Teleop with displaying cameras**
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
@@ -301,7 +292,7 @@ python lerobot/scripts/train.py \
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.

View File

@@ -0,0 +1,94 @@
# Training a HIL-SERL Reward Classifier with LeRobot
This tutorial provides step-by-step instructions for training a reward classifier using LeRobot.
---
## Training Script Overview
LeRobot includes a ready-to-use training script located at [`lerobot/scripts/train_hilserl_classifier.py`](../../lerobot/scripts/train_hilserl_classifier.py). Here's an outline of its workflow:
1. **Configuration Loading**
The script uses Hydra to load a configuration file for subsequent steps. (Details on Hydra follow below.)
2. **Dataset Initialization**
It loads a `LeRobotDataset` containing images and rewards. To optimize performance, a weighted random sampler is used to balance class sampling.
3. **Classifier Initialization**
A lightweight classification head is built on top of a frozen, pretrained image encoder from HuggingFace. The classifier outputs either:
- A single probability (binary classification), or
- Logits (multi-class classification).
4. **Training Loop Execution**
The script performs:
- Forward and backward passes,
- Optimization steps,
- Periodic logging, evaluation, and checkpoint saving.
---
## Configuring with Hydra
For detailed information about Hydra usage, refer to [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md). However, note that training the reward classifier differs slightly and requires a separate configuration file.
### Config File Setup
The default `default.yaml` cannot launch the reward classifier training directly. Instead, you need a configuration file like [`lerobot/configs/policy/hilserl_classifier.yaml`](../../lerobot/configs/policy/hilserl_classifier.yaml), with the following adjustment:
Replace the `dataset_repo_id` field with the identifier for your dataset, which contains images and sparse rewards:
```yaml
# Example: lerobot/configs/policy/reward_classifier.yaml
dataset_repo_id: "my_dataset_repo_id"
## Typical logs and metrics
```
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you config it correctly and your config is not overrided by other files. The final configuration will also be saved with the checkpoint.
After that, you will see training log like this one:
```
[2024-11-29 18:26:36,999][root][INFO] -
Epoch 5/5
Training: 82%|██████████████████████████████████████████████████████████████████████████████▋ | 91/111 [00:50<00:09, 2.04it/s, loss=0.2999, acc=69.99%]
```
or evaluation log like:
```
Validation: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:20<00:00, 1.37it/s]
```
### Metrics Tracking with Weights & Biases (WandB)
If `wandb.enable` is set to `true`, the training and evaluation logs will also be saved in WandB. This allows you to track key metrics in real-time, including:
- **Training Metrics**:
- `train/accuracy`
- `train/loss`
- `train/dataloading_s`
- **Evaluation Metrics**:
- `eval/accuracy`
- `eval/loss`
- `eval/eval_s`
#### Additional Features
You can also log sample predictions during evaluation. Each logged sample will include:
- The **input image**.
- The **predicted label**.
- The **true label**.
- The **classifier's "confidence" (logits/probability)**.
These logs can be useful for diagnosing and debugging performance issues.
#### Generate protobuf files
```bash
python -m grpc_tools.protoc \
-I lerobot/scripts/server \
--python_out=lerobot/scripts/server \
--grpc_python_out=lerobot/scripts/server \
lerobot/scripts/server/hilserl.proto
```

View File

@@ -1,711 +0,0 @@
# Assemble and use SO-101
In the steps below we explain how to assemble and use our flagship robot, the SO-101 with LeRobot 🤗.
## Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
> [!TIP]
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git
cd lerobot
```
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
```bash
conda create -y -n lerobot python=3.10
```
Now restart the shell by running:
##### Windows:
```bash
`source ~/.bashrc`
```
##### Mac:
```bash
`source ~/.bash_profile`
```
##### zshell:
```bash
`source ~/.zshrc`
```
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
```bash
conda activate lerobot
```
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
> [!NOTE]
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
cd lerobot && pip install -e ".[feetech]"
```
> [!NOTE]
> If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run: `sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
## Configure motors
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
### Find the USB ports associated to each arm
To find the port for each bus servo adapter, run this script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
#### Example outputs of script
##### Mac:
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
```bash
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
##### Linux:
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
Example output leader arm port: `/dev/ttyACM0`
```bash
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM0
Reconnect the usb cable.
```
Example output follower arm port: `/dev/ttyACM1`
```
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM1
Reconnect the usb cable.
```
#### Update config file
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
```diff
@RobotConfig.register_subclass("so101")
@dataclass
class So101RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so101"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem58760431091",
+ port="{ADD YOUR LEADER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem585A0076891",
+ port="{ADD YOUR FOLLOWER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
Here is a video of the process:
<video controls width="640" src="https://github.com/user-attachments/assets/fc45d756-31bb-4a61-b973-a87d633d08a7" type="video/mp4"></video>
### Set motor IDs
Now we need to set the motor ID for each motor. Plug your motor in only one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage.
Here is a video of the process:
<video controls width="640" src="https://github.com/user-attachments/assets/b31c115f-e706-4dcd-b7f1-4535da62416d" type="video/mp4"></video>
## Step-by-Step Assembly Instructions
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
| Leader-Arm Axis | Motor | Gear Ratio |
|-----------------|:-------:|:----------:|
| Base / Shoulder Yaw | 1 | 1 / 191 |
| Shoulder Pitch | 2 | 1 / 345 |
| Elbow | 3 | 1 / 191 |
| Wrist Roll | 4 | 1 / 147 |
| Wrist Pitch | 5 | 1 / 147 |
| Gripper | 6 | 1 / 147 |
### Clean Parts
Remove all support material from the 3D-printed parts.
### Joint 1
- Place the first motor into the base.
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
- Install both motor horns, securing the top horn with a M3x6mm screw.
- Attach the shoulder part.
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
- Add the shoulder motor holder.
<video controls width="640" src="https://github.com/user-attachments/assets/b0ee9dee-a2d0-445b-8489-02ebecb3d639" type="video/mp4"></video>
### Joint 2
- Slide the second motor in from the top.
- Fasten the second motor with 4 M2x6mm screws.
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
- Attach the upper arm with 4 M3x6mm screws on each side.
<video controls width="640" src="https://github.com/user-attachments/assets/32453dc2-5006-4140-9f56-f0d78eae5155" type="video/mp4"></video>
### Joint 3
- Insert motor 3 and fasten using 4 M2x6mm screws
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
<video controls width="640" src="https://github.com/user-attachments/assets/7384b9a7-a946-440c-b292-91391bcc4d6b" type="video/mp4"></video>
### Joint 4
- Slide over motor holder 4.
- Slide in motor 4.
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
<video controls width="640" src="https://github.com/user-attachments/assets/dca78ad0-7c36-4bdf-8162-c9ac42a1506f" type="video/mp4"></video>
### Joint 5
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
<video controls width="640" src="https://github.com/user-attachments/assets/55f5d245-976d-49ff-8b4a-59843c441b12" type="video/mp4"></video>
### Gripper / Handle
#### Follower:
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
- Attach the motor horns and again use a M3x6mm horn screw.
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
<video controls width="640" src="https://github.com/user-attachments/assets/6f766aa9-cfae-4388-89e7-0247f198c086" type="video/mp4"></video>
#### Leader:
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
- Attach the handle to motor 5 using 1 M2x6mm screw.
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
- Attach the follower trigger with 4 M3x6mm screws.
<video controls width="640" src="https://github.com/user-attachments/assets/1308c93d-2ef1-4560-8e93-a3812568a202" type="video/mp4"></video>
##### Wiring
- Attach the motor controller on the back.
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
<video controls width="640" src="https://github.com/user-attachments/assets/4c2cacfd-9276-4ee4-8bf2-ba2492667b78" type="video/mp4"></video>
## Calibrate
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
#### Manual calibration of follower arm
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
#### Manual calibration of leader arm
You will also need to move the leader arm to these positions sequentially:
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
## Control your robot
Congrats 🎉, your robot is all set to learn a task on its own. Next we will explain to you how to train a neural network to autonomously control a real robot.
**You'll learn to:**
1. How to record and visualize your dataset.
2. How to train a policy using your data and prepare it for evaluation.
3. How to evaluate your policy and visualize the results.
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
## Teleoperate
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=teleoperate
```
The teleoperate command will automatically:
1. Identify any missing calibrations and initiate the calibration procedure.
2. Connect the robot and start teleoperation.
## Setup Cameras
To connect a camera you have three options:
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
2. iPhone camera with MacOS
3. Phone camera on Linux
### Use OpenCVCamera
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
```bash
python lerobot/common/robot_devices/cameras/opencv.py \
--images-dir outputs/images_from_opencv_cameras
```
The output will look something like this if you have two cameras connected:
```
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
[...]
Camera found at index 0
Camera found at index 1
[...]
Connecting cameras
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
Saving images to outputs/images_from_opencv_cameras
Frame: 0000 Latency (ms): 39.52
[...]
Frame: 0046 Latency (ms): 40.07
Images have been saved to outputs/images_from_opencv_cameras
```
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
```
camera_00_frame_000000.png
[...]
camera_00_frame_000047.png
camera_01_frame_000000.png
[...]
camera_01_frame_000047.png
```
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
Now that you have the camera indexes, you should change them in the config. You can also change the fps, width or height of the camera.
The camera config is defined per robot, can be found here [`RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py) and looks like this:
```python
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"wrist": OpenCVCameraConfig(
camera_index=0, <-- UPDATE HERE
fps=30,
width=640,
height=480,
),
"base": OpenCVCameraConfig(
camera_index=1, <-- UPDATE HERE
fps=30,
width=640,
height=480,
),
}
)
```
### Use your phone
#### Mac:
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
- Sign in both devices with the same Apple ID.
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
Your iPhone should be detected automatically when running the camera setup script in the next section.
#### Linux:
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
```python
sudo apt install v4l2loopback-dkms v4l-utils
```
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
```python
flatpak install flathub com.obsproject.Studio
```
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
```python
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
```
5. *Start OBS Studio*. Launch with:
```python
flatpak run com.obsproject.Studio
```
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
```python
v4l2-ctl --list-devices
```
You should see an entry like:
```
VirtualCam (platform:v4l2loopback-000):
/dev/video1
```
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
```python
v4l2-ctl -d /dev/video1 --get-fmt-video
```
You should see an entry like:
```
>>> Format Video Capture:
>>> Width/Height : 640/480
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
```
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
If everything is set up correctly, you can proceed with the rest of the tutorial.
### Add wrist camera
If you have an additional camera you can add a wrist camera to the SO101. There are already many premade wrist camera holders that you can find in the SO101 repo: [Wrist camera's](https://github.com/TheRobotStudio/SO-ARM100#wrist-cameras)
## Teleoperate with cameras
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=teleoperate \
--control.display_data=true
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
Add your token to the cli by running this command:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then store your Hugging Face repository name in a variable:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/so101_test \
--control.tags='["so101","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.display_data=true \
--control.push_to_hub=true
```
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
```
It contains:
- `2024-08-10 15:02:58` which is the date and time of the call to the print function,
- `ol_robot.py:219` which is the end of the file name and the line number where the print function is called (`lerobot/scripts/control_robot.py` line `219`).
- `dt:33.34 (30.0hz)` which is the "delta time" or the number of milliseconds spent between the previous call to `robot.teleop_step(record_data=True)` and the current one, associated with the frequency (33.34 ms equals 30.0 Hz) ; note that we use `--fps 30` so we expect 30.0 Hz ; when a step takes more time, the line appears in yellow.
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
#### Dataset upload
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
```bash
echo https://huggingface.co/datasets/${HF_USER}/so101_test
```
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
#### Record function
The `record` function provides a suite of tools for capturing and managing data during robot operation:
1. Set the flow of data recording using command line arguments:
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
- `--control.reset_time_s=60` defines the number of seconds for resetting the environment after each episode (60 seconds by default).
- `--control.num_episodes=50` defines the number of episodes to record (50 by default).
2. Control the flow during data recording using keyboard keys:
- Press right arrow `->` at any time during episode recording to early stop and go to resetting. Same during resetting, to early stop and to go to the next episode recording.
- Press left arrow `<-` at any time during episode recording or resetting to early stop, cancel the current episode, and re-record it.
- Press escape `ESC` at any time during episode recording to end the session early and go straight to video encoding and dataset uploading.
3. Checkpoints are done set during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
#### Tips for gathering data
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
In the following sections, youll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
Avoid adding too much variation too quickly, as it may hinder your results.
#### Troubleshooting:
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so101_test
```
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so101_test \
--local-files-only 1
```
This will launch a local web server that looks like this:
<div style="text-align:center;">
<img src="../media/tutorial/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
</div>
## Replay an episode
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
You can replay the first episode on your robot with:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/so101_test \
--control.episode=0
```
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/so101_test \
--policy.type=act \
--output_dir=outputs/train/act_so101_test \
--job_name=act_so101_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain the command:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
--resume=true
```
#### Upload policy checkpoints
Once training is done, upload the latest checkpoint with:
```bash
huggingface-cli upload ${HF_USER}/act_so101_test \
outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
You can also upload intermediate checkpoints with:
```bash
CKPT=010000
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
```
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_so101_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).

View File

@@ -32,7 +32,10 @@ import torch
from huggingface_hub import HfApi
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
LeRobotDatasetMetadata,
)
# We ported a number of existing datasets ourselves, use this to see the list:
print("List of available datasets:")
@@ -119,7 +122,7 @@ print(dataset.features[camera_key]["shape"])
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
camera_key: [-1, -0.5, -0.20, 0],
# loads 6 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
@@ -143,6 +146,6 @@ dataloader = torch.utils.data.DataLoader(
for batch in dataloader:
print(f"{batch[camera_key].shape=}") # (32, 4, c, h, w)
print(f"{batch['observation.state'].shape=}") # (32, 6, c)
print(f"{batch['observation.state'].shape=}") # (32, 5, c)
print(f"{batch['action'].shape=}") # (32, 64, c)
break

View File

@@ -13,12 +13,12 @@
# limitations under the License.
"""
This script demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
It requires the installation of the 'gym_pusht' simulation environment. Install it by running:
```bash
pip install -e ".[pusht]"
pip install --no-binary=av -e ".[pusht]"`
```
"""
@@ -119,7 +119,7 @@ while not done:
rewards.append(reward)
frames.append(env.render())
# The rollout is considered done when the success state is reached (i.e. terminated is True),
# The rollout is considered done when the success state is reach (i.e. terminated is True),
# or the maximum number of iterations is reached (i.e. truncated is True)
done = terminated | truncated | done
step += 1

View File

@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""This script demonstrates how to train Diffusion Policy on the PushT environment.
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
Once you have trained a model with this script, you can try to evaluate it on
examples/2_evaluate_pretrained_policy.py
@@ -22,7 +22,10 @@ from pathlib import Path
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
LeRobotDatasetMetadata,
)
from lerobot.common.datasets.utils import dataset_to_policy_features
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
@@ -77,7 +80,24 @@ def main():
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to supervise the policy.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
"action": [
-0.1,
0.0,
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8,
0.9,
1.0,
1.1,
1.2,
1.3,
1.4,
],
}
# We can then instantiate the dataset with these delta_timestamps configuration.

View File

@@ -1,10 +1,10 @@
This tutorial will explain the training script, how to use it, and particularly how to configure everything needed for the training run.
> **Note:** The following assumes you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
## The training script
LeRobot offers a training script at [`lerobot/scripts/train.py`](../lerobot/scripts/train.py). At a high level it does the following:
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
- Initialize/load a configuration for the following steps using.
- Instantiates a dataset.
@@ -21,9 +21,9 @@ In the training script, the main function `train` expects a `TrainPipelineConfig
def train(cfg: TrainPipelineConfig):
```
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated to this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated for this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
Let's have a look at a simplified example. Amongst other attributes, the training config has the following attributes:
```python
@@ -43,14 +43,14 @@ class DatasetConfig:
```
This creates a hierarchical relationship where, for example assuming we have a `cfg` instance of `TrainPipelineConfig`, we can access the `repo_id` value with `cfg.dataset.repo_id`.
From the command line, we can specify this value by using a very similar syntax `--dataset.repo_id=repo/id`.
From the command line, we can specify this value with using a very similar syntax `--dataset.repo_id=repo/id`.
By default, every field takes its default value specified in the dataclass. If a field doesn't have a default value, it needs to be specified either from the command line or from a config file which path is also given in the command line (more in this below). In the example above, the `dataset` field doesn't have a default value which means it must be specified.
## Specifying values from the CLI
Let's say that we want to train [Diffusion Policy](../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
Let's say that we want to train [Diffusion Policy](../../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=lerobot/pusht \
@@ -60,10 +60,10 @@ python lerobot/scripts/train.py \
Let's break this down:
- To specify the dataset, we just need to specify its `repo_id` on the hub which is the only required argument in the `DatasetConfig`. The rest of the fields have default values and in this case we are fine with those so we can just add the option `--dataset.repo_id=lerobot/pusht`.
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../lerobot/common/policies)
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../lerobot/common/envs/configs.py)
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../../lerobot/common/policies)
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../../lerobot/common/envs/configs.py)
Let's see another example. Let's say you've been training [ACT](../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
Let's see another example. Let's say you've been training [ACT](../../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
```bash
python lerobot/scripts/train.py \
--policy.type=act \
@@ -74,7 +74,7 @@ python lerobot/scripts/train.py \
> Notice we added `--output_dir` to explicitly tell where to write outputs from this run (checkpoints, training state, configs etc.). This is not mandatory and if you don't specify it, a default directory will be created from the current date and time, env.type and policy.type. This will typically look like `outputs/train/2025-01-24/16-10-05_aloha_act`.
We now want to train a different policy for aloha on another task. We'll change the dataset and use [lerobot/aloha_sim_transfer_cube_human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human) instead. Of course, we also need to change the task of the environment as well to match this other task.
Looking at the [`AlohaEnv`](../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
Looking at the [`AlohaEnv`](../../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
```bash
python lerobot/scripts/train.py \
--policy.type=act \
@@ -135,7 +135,7 @@ will start a training run with the same configuration used for training [lerobot
## Resume training
Being able to resume a training run is important in case it crashed or aborted for any reason. We'll demonstrate how to do that here.
Being able to resume a training run is important in case it crashed or aborted for any reason. We'll demonstrate how to that here.
Let's reuse the command from the previous run and add a few more options:
```bash

View File

@@ -33,7 +33,7 @@ First, install the additional dependencies required for robots built with dynami
Using `pip`:
```bash
pip install -e ".[dynamixel]"
pip install --no-binary=av -e ".[dynamixel]"
```
Using `poetry`:
@@ -55,9 +55,6 @@ Finally, connect both arms to your computer via USB. Note that the USB doesn't p
Now you are ready to configure your motors for the first time, as detailed in the sections below. In the upcoming sections, you'll learn about our classes and functions by running some python code in an interactive session, or by copy-pasting it in a python file.
If you have already configured your motors the first time, you can streamline the process by directly running the teleoperate script (which is detailed further in the tutorial):
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
@@ -377,7 +374,7 @@ robot = ManipulatorRobot(robot_config)
The `KochRobotConfig` is used to set the associated settings and calibration process. For instance, we activate the torque of the gripper of the leader Koch v1.1 arm and position it at a 40 degree angle to use it as a trigger.
For the [Aloha bimanual robot](https://aloha-2.github.io), we would use `AlohaRobotConfig` to set different settings such as a secondary ID for shadow joints (shoulder, elbow). Specific to Aloha, LeRobot comes with default calibration files stored in `.cache/calibration/aloha_default`. Assuming the motors have been properly assembled, no manual calibration step is expected for Aloha.
For the [Aloha bimanual robot](https://aloha-2.github.io), we would use `AlohaRobotConfig` to set different settings such as a secondary ID for shadow joints (shoulder, elbow). Specific to Aloha, LeRobot comes with default calibration files stored in in `.cache/calibration/aloha_default`. Assuming the motors have been properly assembled, no manual calibration step is expected for Aloha.
**Calibrate and Connect the ManipulatorRobot**
@@ -399,7 +396,7 @@ And here are the corresponding positions for the leader arm:
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask you to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
@@ -622,7 +619,7 @@ camera_01_frame_000047.png
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
Finally, run this code to instantiate and connect your camera:
Finally, run this code to instantiate and connectyour camera:
```python
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
@@ -830,6 +827,11 @@ It contains:
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
Troubleshooting:
- On Linux, if you encounter any issue during video encoding with `ffmpeg: unknown encoder libsvtav1`, you can:
- install with conda-forge by running `conda install -c conda-forge ffmpeg` (it should be compiled with `libsvtav1`),
- or, install [Homebrew](https://brew.sh) and run `brew install ffmpeg` (it should be compiled with `libsvtav1`),
- or, install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1),
- and, make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/koch_test) that you can obtain by running:

View File

@@ -43,19 +43,14 @@ conda create -y -n lerobot python=3.10 && conda activate lerobot
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
6. When using `miniconda`, install `ffmpeg` in your environment:
6. Install LeRobot with stretch dependencies:
```bash
conda install ffmpeg -c conda-forge
```
7. Install LeRobot with stretch dependencies:
```bash
cd ~/lerobot && pip install -e ".[stretch]"
cd ~/lerobot && pip install --no-binary=av -e ".[stretch]"
```
> **Note:** If you get this message, you can ignore it: `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.`
8. Run a [system check](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#system-check) to make sure your robot is ready:
7. Run a [system check](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#system-check) to make sure your robot is ready:
```bash
stretch_system_check.py
```
@@ -99,11 +94,9 @@ This is equivalent to running `stretch_robot_home.py`
> **Note:** If you run any of the LeRobot scripts below and Stretch is not properly homed, it will automatically home/calibrate first.
**Teleoperate**
Before trying teleoperation, you need to activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
Now try out teleoperation (see above documentation to learn about the gamepad controls):
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=stretch \

View File

@@ -30,14 +30,9 @@ conda create -y -n lerobot python=3.10 && conda activate lerobot
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. When using `miniconda`, install `ffmpeg` in your environment:
5. Install LeRobot with dependencies for the Aloha motors (dynamixel) and cameras (intelrealsense):
```bash
conda install ffmpeg -c conda-forge
```
6. Install LeRobot with dependencies for the Aloha motors (dynamixel) and cameras (intelrealsense):
```bash
cd ~/lerobot && pip install -e ".[dynamixel, intelrealsense]"
cd ~/lerobot && pip install --no-binary=av -e ".[dynamixel, intelrealsense]"
```
## Teleoperate
@@ -48,9 +43,6 @@ Teleoperation consists in manually operating the leader arms to move the followe
2. Our code assumes that your robot has been assembled following Trossen Robotics instructions. This allows us to skip calibration, as we use the pre-defined calibration files in `.cache/calibration/aloha_default`. If you replace a motor, make sure you follow the exact instructions from Trossen Robotics.
By running the following code, you can start your first **SAFE** teleoperation:
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=aloha \
@@ -142,7 +134,7 @@ python lerobot/scripts/train.py \
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/aloha_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.

View File

@@ -26,7 +26,10 @@ import math
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
LeRobotDatasetMetadata,
)
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
@@ -51,7 +54,24 @@ def main():
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to calculate the loss.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
"action": [
-0.1,
0.0,
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8,
0.9,
1.0,
1.1,
1.2,
1.3,
1.4,
],
}
# Load the last 10% of episodes of the dataset as a validation set.
@@ -66,7 +86,7 @@ def main():
print(f"Number of episodes in full dataset: {total_episodes}")
print(f"Number of episodes in training dataset (90% subset): {len(train_episodes)}")
print(f"Number of episodes in validation dataset (10% subset): {len(val_episodes)}")
# - Load train and val datasets
# - Load train an val datasets
train_dataset = LeRobotDataset(
"lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps
)

View File

@@ -168,7 +168,12 @@ available_datasets = sorted(
)
# lists all available policies from `lerobot/common/policies`
available_policies = ["act", "diffusion", "tdmpc", "vqbet"]
available_policies = [
"act",
"diffusion",
"tdmpc",
"vqbet",
]
# lists all available robots from `lerobot/common/robot_devices/robots`
available_robots = [
@@ -176,7 +181,6 @@ available_robots = [
"koch_bimanual",
"aloha",
"so100",
"so101",
"moss",
]

View File

@@ -19,7 +19,10 @@ from lerobot.common.datasets.utils import load_image_as_numpy
def estimate_num_samples(
dataset_len: int, min_num_samples: int = 100, max_num_samples: int = 10_000, power: float = 0.75
dataset_len: int,
min_num_samples: int = 100,
max_num_samples: int = 10_000,
power: float = 0.75,
) -> int:
"""Heuristic to estimate the number of samples based on dataset size.
The power controls the sample growth relative to dataset size.
@@ -123,7 +126,9 @@ def _assert_type_and_shape(stats_list: list[dict[str, dict]]):
raise ValueError(f"Shape of '{k}' must be (3,1,1), but is {v.shape} instead.")
def aggregate_feature_stats(stats_ft_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
def aggregate_feature_stats(
stats_ft_list: list[dict[str, dict]],
) -> dict[str, dict[str, np.ndarray]]:
"""Aggregates stats for a single feature."""
means = np.stack([s["mean"] for s in stats_ft_list])
variances = np.stack([s["std"] ** 2 for s in stats_ft_list])
@@ -152,7 +157,9 @@ def aggregate_feature_stats(stats_ft_list: list[dict[str, dict]]) -> dict[str, d
}
def aggregate_stats(stats_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
def aggregate_stats(
stats_list: list[dict[str, dict]],
) -> dict[str, dict[str, np.ndarray]]:
"""Aggregate stats from multiple compute_stats outputs into a single set of stats.
The final stats will have the union of all data keys from each of the stats dicts.

View File

@@ -49,7 +49,7 @@ def resolve_delta_timestamps(
"observation.state": [-0.04, -0.02, 0]
"observation.action": [-0.02, 0, 0.02]
}
returns `None` if the resulting dict is empty.
returns `None` if the the resulting dict is empty.
"""
delta_timestamps = {}
for key in ds_meta.features:

View File

@@ -106,7 +106,7 @@ def worker_process(queue: queue.Queue, num_threads: int):
class AsyncImageWriter:
"""
This class abstract away the initialisation of processes or/and threads to
save images on disk asynchronously, which is critical to control a robot and record data
save images on disk asynchrounously, which is critical to control a robot and record data
at a high frame rate.
When `num_processes=0`, it creates a threads pool of size `num_threads`.

View File

@@ -318,7 +318,7 @@ class LeRobotDatasetMetadata:
obj.root.mkdir(parents=True, exist_ok=False)
if robot is not None:
features = get_features_from_robot(robot, use_videos)
features = {**(features or {}), **get_features_from_robot(robot)}
robot_type = robot.robot_type
if not all(cam.fps == fps for cam in robot.cameras.values()):
logging.warning(
@@ -821,7 +821,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
if self.features[key]["dtype"] in ["image", "video"]:
img_path = self._get_image_file_path(
episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
episode_index=self.episode_buffer["episode_index"],
image_key=key,
frame_index=frame_index,
)
if frame_index == 0:
img_path.parent.mkdir(parents=True, exist_ok=True)
@@ -867,7 +869,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
for key, ft in self.features.items():
# index, episode_index, task_index are already processed above, and image and video
# are processed separately by storing image path and frame info as meta data
if key in ["index", "episode_index", "task_index"] or ft["dtype"] in ["image", "video"]:
if key in ["index", "episode_index", "task_index"] or ft["dtype"] in [
"image",
"video",
]:
continue
episode_buffer[key] = np.stack(episode_buffer[key])
@@ -944,7 +949,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
def stop_image_writer(self) -> None:
"""
Whenever wrapping this dataset inside a parallelized DataLoader, this needs to be called first to
remove the image_writer in order for the LeRobotDataset object to be picklable and parallelized.
remove the image_writer in order for the LeRobotDataset object to be pickleable and parallelized.
"""
if self.image_writer is not None:
self.image_writer.stop()
@@ -1053,7 +1058,7 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
super().__init__()
self.repo_ids = repo_ids
self.root = Path(root) if root else HF_LEROBOT_HOME
self.tolerances_s = tolerances_s if tolerances_s else dict.fromkeys(repo_ids, 0.0001)
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
# are handled by this class.
self._datasets = [

View File

@@ -154,14 +154,32 @@ class OnlineBuffer(torch.utils.data.Dataset):
OnlineBuffer.NEXT_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": ()},
# Since the memmap is initialized with all-zeros, this keeps track of which indices are occupied
# with real data rather than the dummy initialization.
OnlineBuffer.OCCUPANCY_MASK_KEY: {"dtype": np.dtype("?"), "shape": (buffer_capacity,)},
OnlineBuffer.INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.FRAME_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.EPISODE_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.TIMESTAMP_KEY: {"dtype": np.dtype("float64"), "shape": (buffer_capacity,)},
OnlineBuffer.OCCUPANCY_MASK_KEY: {
"dtype": np.dtype("?"),
"shape": (buffer_capacity,),
},
OnlineBuffer.INDEX_KEY: {
"dtype": np.dtype("int64"),
"shape": (buffer_capacity,),
},
OnlineBuffer.FRAME_INDEX_KEY: {
"dtype": np.dtype("int64"),
"shape": (buffer_capacity,),
},
OnlineBuffer.EPISODE_INDEX_KEY: {
"dtype": np.dtype("int64"),
"shape": (buffer_capacity,),
},
OnlineBuffer.TIMESTAMP_KEY: {
"dtype": np.dtype("float64"),
"shape": (buffer_capacity,),
},
}
for k, v in data_spec.items():
complete_data_spec[k] = {"dtype": v["dtype"], "shape": (buffer_capacity, *v["shape"])}
complete_data_spec[k] = {
"dtype": v["dtype"],
"shape": (buffer_capacity, *v["shape"]),
}
return complete_data_spec
def add_data(self, data: dict[str, np.ndarray]):

View File

@@ -77,7 +77,9 @@ def check_repo_id(repo_id: str) -> None:
# TODO(aliberts): remove
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
def calculate_episode_data_index(
hf_dataset: datasets.Dataset,
) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.

View File

@@ -43,7 +43,10 @@ class EpisodeAwareSampler:
):
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
indices.extend(
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
range(
start_index.item() + drop_n_first_frames,
end_index.item() - drop_n_last_frames,
)
)
self.indices = indices

View File

@@ -128,7 +128,7 @@ class SharpnessJitter(Transform):
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
if not 0.0 <= sharpness[0] <= sharpness[1]:
raise ValueError(f"sharpness values should be between (0., inf), but got {sharpness}.")
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
return float(sharpness[0]), float(sharpness[1])

View File

@@ -225,7 +225,10 @@ def load_episodes(local_dir: Path) -> dict:
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
# is a dictionary of stats and not an integer.
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
episode_stats = {
"episode_index": episode_index,
"stats": serialize_dict(episode_stats),
}
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
@@ -240,7 +243,7 @@ def load_episodes_stats(local_dir: Path) -> dict:
def backward_compatible_episodes_stats(
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
) -> dict[str, dict[str, np.ndarray]]:
return dict.fromkeys(episodes, stats)
return {ep_idx: stats for ep_idx in episodes}
def load_image_as_numpy(
@@ -409,7 +412,7 @@ def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFea
names = ft["names"]
# Backward compatibility for "channel" which is an error introduced in LeRobotDataset v2.0 for ported datasets.
if names[2] in ["channel", "channels"]: # (h, w, c) -> (c, h, w)
if names is not None and names[2] in ["channel", "channels"]: # (h, w, c) -> (c, h, w)
shape = (shape[2], shape[0], shape[1])
elif key == "observation.environment_state":
type = FeatureType.ENV
@@ -540,7 +543,10 @@ def check_timestamps_sync(
def check_delta_timestamps(
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
delta_timestamps: dict[str, list[float]],
fps: int,
tolerance_s: float,
raise_value_error: bool = True,
) -> bool:
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be

View File

@@ -118,7 +118,10 @@ DATASETS = {
"single_task": "Place the battery into the slot of the remote controller.",
**ALOHA_STATIC_INFO,
},
"aloha_static_candy": {"single_task": "Pick up the candy and unwrap it.", **ALOHA_STATIC_INFO},
"aloha_static_candy": {
"single_task": "Pick up the candy and unwrap it.",
**ALOHA_STATIC_INFO,
},
"aloha_static_coffee": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray, then push the 'Hot Water' and 'Travel Mug' buttons.",
**ALOHA_STATIC_INFO,
@@ -167,13 +170,22 @@ DATASETS = {
"single_task": "Pick up the plastic cup with the left arm, then pop its lid open with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_ziploc_slide": {"single_task": "Slide open the ziploc bag.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_static_ziploc_slide": {
"single_task": "Slide open the ziploc bag.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_scripted": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_scripted_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_human": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_human": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_human_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
@@ -194,10 +206,19 @@ DATASETS = {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"pusht": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"pusht_image": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"pusht": {
"single_task": "Push the T-shaped block onto the T-shaped target.",
**PUSHT_INFO,
},
"pusht_image": {
"single_task": "Push the T-shaped block onto the T-shaped target.",
**PUSHT_INFO,
},
"unitreeh1_fold_clothes": {"single_task": "Fold the sweatshirt.", **UNITREEH_INFO},
"unitreeh1_rearrange_objects": {"single_task": "Put the object into the bin.", **UNITREEH_INFO},
"unitreeh1_rearrange_objects": {
"single_task": "Put the object into the bin.",
**UNITREEH_INFO,
},
"unitreeh1_two_robot_greeting": {
"single_task": "Greet the other robot with a high five.",
**UNITREEH_INFO,
@@ -207,13 +228,31 @@ DATASETS = {
**UNITREEH_INFO,
},
"xarm_lift_medium": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_image": {
"single_task": "Pick up the cube and lift it.",
**XARM_INFO,
},
"xarm_lift_medium_replay": {
"single_task": "Pick up the cube and lift it.",
**XARM_INFO,
},
"xarm_lift_medium_replay_image": {
"single_task": "Pick up the cube and lift it.",
**XARM_INFO,
},
"xarm_push_medium": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_image": {
"single_task": "Push the cube onto the target.",
**XARM_INFO,
},
"xarm_push_medium_replay": {
"single_task": "Push the cube onto the target.",
**XARM_INFO,
},
"xarm_push_medium_replay_image": {
"single_task": "Push the cube onto the target.",
**XARM_INFO,
},
"umi_cup_in_the_wild": {
"single_task": "Put the cup on the plate.",
"license": "apache-2.0",

View File

@@ -379,7 +379,12 @@ def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]
for i in range(0, len(lfs_untracked_videos), 100):
files = lfs_untracked_videos[i : i + 100]
try:
subprocess.run(["git", "rm", "--cached", *files], cwd=work_dir, capture_output=True, check=True)
subprocess.run(
["git", "rm", "--cached", *files],
cwd=work_dir,
capture_output=True,
check=True,
)
except subprocess.CalledProcessError as e:
print("git rm --cached ERROR:")
print(e.stderr)
@@ -402,7 +407,17 @@ def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
repo_url = f"https://huggingface.co/datasets/{repo_id}"
env = {"GIT_LFS_SKIP_SMUDGE": "1"} # Prevent downloading LFS files
subprocess.run(
["git", "clone", "--branch", branch, "--single-branch", "--depth", "1", repo_url, str(work_dir)],
[
"git",
"clone",
"--branch",
branch,
"--single-branch",
"--depth",
"1",
repo_url,
str(work_dir),
],
check=True,
env=env,
)
@@ -410,7 +425,11 @@ def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
def _get_lfs_untracked_videos(work_dir: Path, video_files: list[str]) -> list[str]:
lfs_tracked_files = subprocess.run(
["git", "lfs", "ls-files", "-n"], cwd=work_dir, capture_output=True, text=True, check=True
["git", "lfs", "ls-files", "-n"],
cwd=work_dir,
capture_output=True,
text=True,
check=True,
)
lfs_tracked_files = set(lfs_tracked_files.stdout.splitlines())
return [f for f in video_files if f not in lfs_tracked_files]
@@ -424,7 +443,11 @@ def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str], branch
]
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", local_dir=local_dir, revision=branch, allow_patterns=video_files
repo_id=repo_id,
repo_type="dataset",
local_dir=local_dir,
revision=branch,
allow_patterns=video_files,
)
videos_info_dict = {}
for vid_key, vid_path in zip(video_keys, video_files, strict=True):
@@ -451,7 +474,11 @@ def convert_dataset(
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", revision=v1, local_dir=v1x_dir, ignore_patterns="videos*/"
repo_id=repo_id,
repo_type="dataset",
revision=v1,
local_dir=v1x_dir,
ignore_patterns="videos*/",
)
branch = "main"
if test_branch:
@@ -481,7 +508,7 @@ def convert_dataset(
# Tasks
if single_task:
tasks_by_episodes = dict.fromkeys(episode_indices, single_task)
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices}
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_path:
@@ -509,12 +536,21 @@ def convert_dataset(
dataset = dataset.remove_columns(video_keys)
clean_gitattr = Path(
hub_api.hf_hub_download(
repo_id=GITATTRIBUTES_REF, repo_type="dataset", local_dir=local_dir, filename=".gitattributes"
repo_id=GITATTRIBUTES_REF,
repo_type="dataset",
local_dir=local_dir,
filename=".gitattributes",
)
).absolute()
with tempfile.TemporaryDirectory() as tmp_video_dir:
move_videos(
repo_id, video_keys, total_episodes, total_chunks, Path(tmp_video_dir), clean_gitattr, branch
repo_id,
video_keys,
total_episodes,
total_chunks,
Path(tmp_video_dir),
clean_gitattr,
branch,
)
videos_info = get_videos_info(repo_id, v1x_dir, video_keys=video_keys, branch=branch)
for key in video_keys:
@@ -543,7 +579,11 @@ def convert_dataset(
# Episodes
episodes = [
{"episode_index": ep_idx, "tasks": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
{
"episode_index": ep_idx,
"tasks": tasks_by_episodes[ep_idx],
"length": episode_lengths[ep_idx],
}
for ep_idx in episode_indices
]
write_jsonlines(episodes, v20_dir / EPISODES_PATH)
@@ -572,7 +612,12 @@ def convert_dataset(
hub_api.delete_folder(repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta_data", repo_type="dataset", revision=branch)
hub_api.delete_folder(
repo_id=repo_id,
path_in_repo="meta_data",
repo_type="dataset",
revision=branch,
)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta", repo_type="dataset", revision=branch)

View File

@@ -37,8 +37,16 @@ import logging
from huggingface_hub import HfApi
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats
from lerobot.common.datasets.utils import (
EPISODES_STATS_PATH,
STATS_PATH,
load_stats,
write_info,
)
from lerobot.common.datasets.v21.convert_stats import (
check_aggregate_stats,
convert_stats,
)
V20 = "v2.0"
V21 = "v2.1"
@@ -79,10 +87,16 @@ def convert_dataset(
hub_api = HfApi()
if hub_api.file_exists(
repo_id=dataset.repo_id, filename=STATS_PATH, revision=branch, repo_type="dataset"
repo_id=dataset.repo_id,
filename=STATS_PATH,
revision=branch,
repo_type="dataset",
):
hub_api.delete_file(
path_in_repo=STATS_PATH, repo_id=dataset.repo_id, revision=branch, repo_type="dataset"
path_in_repo=STATS_PATH,
repo_id=dataset.repo_id,
revision=branch,
repo_type="dataset",
)
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")

View File

@@ -17,7 +17,11 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
from tqdm import tqdm
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
from lerobot.common.datasets.compute_stats import (
aggregate_stats,
get_feature_stats,
sample_indices,
)
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import write_episode_stats
@@ -95,5 +99,9 @@ def check_aggregate_stats(
if key in reference_stats and stat in reference_stats[key]:
err_msg = f"feature='{key}' stats='{stat}'"
np.testing.assert_allclose(
val, reference_stats[key][stat], rtol=rtol, atol=atol, err_msg=err_msg
val,
reference_stats[key][stat],
rtol=rtol,
atol=atol,
err_msg=err_msg,
)

View File

@@ -13,15 +13,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import importlib
import json
import logging
import subprocess
import warnings
from collections import OrderedDict
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, ClassVar
import av
import pyarrow as pa
import torch
import torchvision
@@ -101,7 +102,7 @@ def decode_video_frames_torchvision(
keyframes_only = False
torchvision.set_video_backend(backend)
if backend == "pyav":
keyframes_only = True # pyav doesn't support accurate seek
keyframes_only = True # pyav doesnt support accuracte seek
# set a video stream reader
# TODO(rcadene): also load audio stream at the same time
@@ -251,83 +252,51 @@ def encode_video_frames(
g: int | None = 2,
crf: int | None = 30,
fast_decode: int = 0,
log_level: int | None = av.logging.ERROR,
log_level: str | None = "error",
overwrite: bool = False,
) -> None:
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
# Check encoder availability
if vcodec not in ["h264", "hevc", "libsvtav1"]:
raise ValueError(f"Unsupported video codec: {vcodec}. Supported codecs are: h264, hevc, libsvtav1.")
video_path = Path(video_path)
imgs_dir = Path(imgs_dir)
video_path.parent.mkdir(parents=True, exist_ok=True)
video_path.parent.mkdir(parents=True, exist_ok=overwrite)
# Encoders/pixel formats incompatibility check
if (vcodec == "libsvtav1" or vcodec == "hevc") and pix_fmt == "yuv444p":
logging.warning(
f"Incompatible pixel format 'yuv444p' for codec {vcodec}, auto-selecting format 'yuv420p'"
)
pix_fmt = "yuv420p"
# Get input frames
template = "frame_" + ("[0-9]" * 6) + ".png"
input_list = sorted(
glob.glob(str(imgs_dir / template)), key=lambda x: int(x.split("_")[-1].split(".")[0])
ffmpeg_args = OrderedDict(
[
("-f", "image2"),
("-r", str(fps)),
("-i", str(imgs_dir / "frame_%06d.png")),
("-vcodec", vcodec),
("-pix_fmt", pix_fmt),
]
)
# Define video output frame size (assuming all input frames are the same size)
if len(input_list) == 0:
raise FileNotFoundError(f"No images found in {imgs_dir}.")
dummy_image = Image.open(input_list[0])
width, height = dummy_image.size
# Define video codec options
video_options = {}
if g is not None:
video_options["g"] = str(g)
ffmpeg_args["-g"] = str(g)
if crf is not None:
video_options["crf"] = str(crf)
ffmpeg_args["-crf"] = str(crf)
if fast_decode:
key = "svtav1-params" if vcodec == "libsvtav1" else "tune"
key = "-svtav1-params" if vcodec == "libsvtav1" else "-tune"
value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode"
video_options[key] = value
ffmpeg_args[key] = value
# Set logging level
if log_level is not None:
# "While less efficient, it is generally preferable to modify logging with Pythons logging"
logging.getLogger("libav").setLevel(log_level)
ffmpeg_args["-loglevel"] = str(log_level)
# Create and open output file (overwrite by default)
with av.open(str(video_path), "w") as output:
output_stream = output.add_stream(vcodec, fps, options=video_options)
output_stream.pix_fmt = pix_fmt
output_stream.width = width
output_stream.height = height
ffmpeg_args = [item for pair in ffmpeg_args.items() for item in pair]
if overwrite:
ffmpeg_args.append("-y")
# Loop through input frames and encode them
for input_data in input_list:
input_image = Image.open(input_data).convert("RGB")
input_frame = av.VideoFrame.from_image(input_image)
packet = output_stream.encode(input_frame)
if packet:
output.mux(packet)
# Flush the encoder
packet = output_stream.encode()
if packet:
output.mux(packet)
# Reset logging level
if log_level is not None:
av.logging.restore_default_callback()
ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)]
# redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal
subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL)
if not video_path.exists():
raise OSError(f"Video encoding did not work. File not found: {video_path}.")
raise OSError(
f"Video encoding did not work. File not found: {video_path}. "
f"Try running the command manually to debug: `{''.join(ffmpeg_cmd)}`"
)
@dataclass
@@ -363,68 +332,78 @@ with warnings.catch_warnings():
def get_audio_info(video_path: Path | str) -> dict:
# Set logging level
logging.getLogger("libav").setLevel(av.logging.ERROR)
ffprobe_audio_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"a:0",
"-show_entries",
"stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
# Getting audio stream information
audio_info = {}
with av.open(str(video_path), "r") as audio_file:
try:
audio_stream = audio_file.streams.audio[0]
except IndexError:
# Reset logging level
av.logging.restore_default_callback()
return {"has_audio": False}
info = json.loads(result.stdout)
audio_stream_info = info["streams"][0] if info.get("streams") else None
if audio_stream_info is None:
return {"has_audio": False}
audio_info["audio.channels"] = audio_stream.channels
audio_info["audio.codec"] = audio_stream.codec.canonical_name
# In an ideal loseless case : bit depth x sample rate x channels = bit rate.
# In an actual compressed case, the bit rate is set according to the compression level : the lower the bit rate, the more compression is applied.
audio_info["audio.bit_rate"] = audio_stream.bit_rate
audio_info["audio.sample_rate"] = audio_stream.sample_rate # Number of samples per second
# In an ideal loseless case : fixed number of bits per sample.
# In an actual compressed case : variable number of bits per sample (often reduced to match a given depth rate).
audio_info["audio.bit_depth"] = audio_stream.format.bits
audio_info["audio.channel_layout"] = audio_stream.layout.name
audio_info["has_audio"] = True
# Reset logging level
av.logging.restore_default_callback()
return audio_info
# Return the information, defaulting to None if no audio stream is present
return {
"has_audio": True,
"audio.channels": audio_stream_info.get("channels", None),
"audio.codec": audio_stream_info.get("codec_name", None),
"audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
"audio.sample_rate": int(audio_stream_info["sample_rate"])
if audio_stream_info.get("sample_rate")
else None,
"audio.bit_depth": audio_stream_info.get("bit_depth", None),
"audio.channel_layout": audio_stream_info.get("channel_layout", None),
}
def get_video_info(video_path: Path | str) -> dict:
# Set logging level
logging.getLogger("libav").setLevel(av.logging.ERROR)
ffprobe_video_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
# Getting video stream information
video_info = {}
with av.open(str(video_path), "r") as video_file:
try:
video_stream = video_file.streams.video[0]
except IndexError:
# Reset logging level
av.logging.restore_default_callback()
return {}
info = json.loads(result.stdout)
video_stream_info = info["streams"][0]
video_info["video.height"] = video_stream.height
video_info["video.width"] = video_stream.width
video_info["video.codec"] = video_stream.codec.canonical_name
video_info["video.pix_fmt"] = video_stream.pix_fmt
video_info["video.is_depth_map"] = False
# Calculate fps from r_frame_rate
r_frame_rate = video_stream_info["r_frame_rate"]
num, denom = map(int, r_frame_rate.split("/"))
fps = num / denom
# Calculate fps from r_frame_rate
video_info["video.fps"] = int(video_stream.base_rate)
pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"])
pixel_channels = get_video_pixel_channels(video_stream.pix_fmt)
video_info["video.channels"] = pixel_channels
# Reset logging level
av.logging.restore_default_callback()
# Adding audio stream information
video_info.update(**get_audio_info(video_path))
video_info = {
"video.fps": fps,
"video.height": video_stream_info["height"],
"video.width": video_stream_info["width"],
"video.channels": pixel_channels,
"video.codec": video_stream_info["codec_name"],
"video.pix_fmt": video_stream_info["pix_fmt"],
"video.is_depth_map": False,
**get_audio_info(video_path),
}
return video_info

View File

@@ -14,10 +14,12 @@
import abc
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple
import draccus
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.configs.types import FeatureType, PolicyFeature
@@ -154,3 +156,135 @@ class XarmEnv(EnvConfig):
"visualization_height": self.visualization_height,
"max_episode_steps": self.episode_length,
}
@dataclass
class VideoRecordConfig:
"""Configuration for video recording in ManiSkill environments."""
enabled: bool = False
record_dir: str = "videos"
trajectory_name: str = "trajectory"
@dataclass
class WrapperConfig:
"""Configuration for environment wrappers."""
joint_masking_action_space: list[bool] | None = None
@dataclass
class EEActionSpaceConfig:
"""Configuration parameters for end-effector action space."""
x_step_size: float
y_step_size: float
z_step_size: float
bounds: Dict[str, Any] # Contains 'min' and 'max' keys with position bounds
use_gamepad: bool = False
@dataclass
class EnvWrapperConfig:
"""Configuration for environment wrappers."""
display_cameras: bool = False
use_relative_joint_positions: bool = True
add_joint_velocity_to_observation: bool = False
add_ee_pose_to_observation: bool = False
crop_params_dict: Optional[Dict[str, Tuple[int, int, int, int]]] = None
resize_size: Optional[Tuple[int, int]] = None
control_time_s: float = 20.0
fixed_reset_joint_positions: Optional[Any] = None
reset_time_s: float = 5.0
joint_masking_action_space: Optional[Any] = None
ee_action_space_params: Optional[EEActionSpaceConfig] = None
use_gripper: bool = False
gripper_quantization_threshold: float | None = 0.8
gripper_penalty: float = 0.0
gripper_penalty_in_reward: bool = False
open_gripper_on_reset: bool = False
@EnvConfig.register_subclass(name="gym_manipulator")
@dataclass
class HILSerlRobotEnvConfig(EnvConfig):
"""Configuration for the HILSerlRobotEnv environment."""
robot: Optional[RobotConfig] = None
wrapper: Optional[EnvWrapperConfig] = None
fps: int = 10
name: str = "real_robot"
mode: str = None # Either "record", "replay", None
repo_id: Optional[str] = None
dataset_root: Optional[str] = None
task: str = ""
num_episodes: int = 10 # only for record mode
episode: int = 0
device: str = "cuda"
push_to_hub: bool = True
pretrained_policy_name_or_path: Optional[str] = None
reward_classifier: dict[str, str | None] = field(
default_factory=lambda: {
"pretrained_path": None,
"config_path": None,
}
)
def gym_kwargs(self) -> dict:
return {}
@EnvConfig.register_subclass("maniskill_push")
@dataclass
class ManiskillEnvConfig(EnvConfig):
"""Configuration for the ManiSkill environment."""
name: str = "maniskill/pushcube"
task: str = "PushCube-v1"
image_size: int = 64
control_mode: str = "pd_ee_delta_pose"
state_dim: int = 25
action_dim: int = 7
fps: int = 200
episode_length: int = 50
obs_type: str = "rgb"
render_mode: str = "rgb_array"
render_size: int = 64
device: str = "cuda"
robot: str = "so100" # This is a hack to make the robot config work
video_record: VideoRecordConfig = field(default_factory=VideoRecordConfig)
wrapper: WrapperConfig = field(default_factory=WrapperConfig)
mock_gripper: bool = False
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(7,)),
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 64, 64)),
"observation.state": PolicyFeature(type=FeatureType.STATE, shape=(25,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"observation.image": OBS_IMAGE,
"observation.state": OBS_ROBOT,
}
)
reward_classifier: dict[str, str | None] = field(
default_factory=lambda: {
"pretrained_path": None,
"config_path": None,
}
)
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"max_episode_steps": self.episode_length,
"control_mode": self.control_mode,
"sensor_configs": {"width": self.image_size, "height": self.image_size},
"num_envs": 1,
}

View File

@@ -13,11 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any
import einops
import gymnasium as gym
import numpy as np
import torch
from torch import Tensor
@@ -37,29 +33,35 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
"""
# map to expected inputs for the policy
return_observations = {}
if "pixels" in observations:
if isinstance(observations["pixels"], dict):
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
else:
imgs = {"observation.image": observations["pixels"]}
# TODO: You have to merge all tensors from agent key and extra key
# You don't keep sensor param key in the observation
# And you keep sensor data rgb
for key, img in observations.items():
if "images" not in key:
continue
for imgkey, img in imgs.items():
# TODO(aliberts, rcadene): use transforms.ToTensor()?
# TODO(aliberts, rcadene): use transforms.ToTensor()?
if not torch.is_tensor(img):
img = torch.from_numpy(img)
# sanity check that images are channel last
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
if img.ndim == 3:
img = img.unsqueeze(0)
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
# sanity check that images are channel last
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
return_observations[imgkey] = img
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
return_observations[key] = img
# obs state agent qpos and qvel
# image
if "environment_state" in observations:
return_observations["observation.environment_state"] = torch.from_numpy(
@@ -68,7 +70,8 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing
# requirement for "agent_pos"
return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
# return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
return_observations["observation.state"] = observations["observation.state"].float()
return return_observations
@@ -86,42 +89,44 @@ def env_to_policy_features(env_cfg: EnvConfig) -> dict[str, PolicyFeature]:
else:
feature = ft
policy_key = env_cfg.features_map[key]
policy_key = env_cfg.features_map.get(key, key)
policy_features[policy_key] = feature
return policy_features
def are_all_envs_same_type(env: gym.vector.VectorEnv) -> bool:
first_type = type(env.envs[0]) # Get type of first env
return all(type(e) is first_type for e in env.envs) # Fast type check
def preprocess_maniskill_observation(
observations: dict[str, np.ndarray],
) -> dict[str, Tensor]:
"""Convert environment observation to LeRobot format observation.
Args:
observation: Dictionary of observation batches from a Gym vector environment.
Returns:
Dictionary of observation batches with keys renamed to LeRobot format and values as tensors.
"""
# map to expected inputs for the policy
return_observations = {}
# TODO: You have to merge all tensors from agent key and extra key
# You don't keep sensor param key in the observation
# And you keep sensor data rgb
q_pos = observations["agent"]["qpos"]
q_vel = observations["agent"]["qvel"]
tcp_pos = observations["extra"]["tcp_pose"]
img = observations["sensor_data"]["base_camera"]["rgb"]
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
def check_env_attributes_and_types(env: gym.vector.VectorEnv) -> None:
with warnings.catch_warnings():
warnings.simplefilter("once", UserWarning) # Apply filter only in this function
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
if not (hasattr(env.envs[0], "task_description") and hasattr(env.envs[0], "task")):
warnings.warn(
"The environment does not have 'task_description' and 'task'. Some policies require these features.",
UserWarning,
stacklevel=2,
)
if not are_all_envs_same_type(env):
warnings.warn(
"The environments have different types. Make sure you infer the right task from each environment. Empty task will be passed instead.",
UserWarning,
stacklevel=2,
)
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
state = torch.cat([q_pos, q_vel, tcp_pos], dim=-1)
def add_envs_task(env: gym.vector.VectorEnv, observation: dict[str, Any]) -> dict[str, Any]:
"""Adds task feature to the observation dict with respect to the first environment attribute."""
if hasattr(env.envs[0], "task_description"):
observation["task"] = env.call("task_description")
elif hasattr(env.envs[0], "task"):
observation["task"] = env.call("task")
else: # For envs without language instructions, e.g. aloha transfer cube and etc.
num_envs = observation[list(observation.keys())[0]].shape[0]
observation["task"] = ["" for _ in range(num_envs)]
return observation
return_observations["observation.image"] = img
return_observations["observation.state"] = state
return return_observations

View File

@@ -14,8 +14,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import asdict, dataclass
from dataclasses import asdict, dataclass, field
from pathlib import Path
from typing import Any
import draccus
import torch
@@ -44,7 +45,7 @@ class OptimizerConfig(draccus.ChoiceRegistry, abc.ABC):
return "adam"
@abc.abstractmethod
def build(self) -> torch.optim.Optimizer:
def build(self) -> torch.optim.Optimizer | dict[str, torch.optim.Optimizer]:
raise NotImplementedError
@@ -94,7 +95,76 @@ class SGDConfig(OptimizerConfig):
return torch.optim.SGD(params, **kwargs)
def save_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> None:
@OptimizerConfig.register_subclass("multi_adam")
@dataclass
class MultiAdamConfig(OptimizerConfig):
"""Configuration for multiple Adam optimizers with different parameter groups.
This creates a dictionary of Adam optimizers, each with its own hyperparameters.
Args:
lr: Default learning rate (used if not specified for a group)
weight_decay: Default weight decay (used if not specified for a group)
optimizer_groups: Dictionary mapping parameter group names to their hyperparameters
grad_clip_norm: Gradient clipping norm
"""
lr: float = 1e-3
weight_decay: float = 0.0
grad_clip_norm: float = 10.0
optimizer_groups: dict[str, dict[str, Any]] = field(default_factory=dict)
def build(self, params_dict: dict[str, list]) -> dict[str, torch.optim.Optimizer]:
"""Build multiple Adam optimizers.
Args:
params_dict: Dictionary mapping parameter group names to lists of parameters
The keys should match the keys in optimizer_groups
Returns:
Dictionary mapping parameter group names to their optimizers
"""
optimizers = {}
for name, params in params_dict.items():
# Get group-specific hyperparameters or use defaults
group_config = self.optimizer_groups.get(name, {})
# Create optimizer with merged parameters (defaults + group-specific)
optimizer_kwargs = {
"lr": group_config.get("lr", self.lr),
"betas": group_config.get("betas", (0.9, 0.999)),
"eps": group_config.get("eps", 1e-5),
"weight_decay": group_config.get("weight_decay", self.weight_decay),
}
optimizers[name] = torch.optim.Adam(params, **optimizer_kwargs)
return optimizers
def save_optimizer_state(
optimizer: torch.optim.Optimizer | dict[str, torch.optim.Optimizer], save_dir: Path
) -> None:
"""Save optimizer state to disk.
Args:
optimizer: Either a single optimizer or a dictionary of optimizers.
save_dir: Directory to save the optimizer state.
"""
if isinstance(optimizer, dict):
# Handle dictionary of optimizers
for name, opt in optimizer.items():
optimizer_dir = save_dir / name
optimizer_dir.mkdir(exist_ok=True, parents=True)
_save_single_optimizer_state(opt, optimizer_dir)
else:
# Handle single optimizer
_save_single_optimizer_state(optimizer, save_dir)
def _save_single_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> None:
"""Save a single optimizer's state to disk."""
state = optimizer.state_dict()
param_groups = state.pop("param_groups")
flat_state = flatten_dict(state)
@@ -102,11 +172,44 @@ def save_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> No
write_json(param_groups, save_dir / OPTIMIZER_PARAM_GROUPS)
def load_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> torch.optim.Optimizer:
def load_optimizer_state(
optimizer: torch.optim.Optimizer | dict[str, torch.optim.Optimizer], save_dir: Path
) -> torch.optim.Optimizer | dict[str, torch.optim.Optimizer]:
"""Load optimizer state from disk.
Args:
optimizer: Either a single optimizer or a dictionary of optimizers.
save_dir: Directory to load the optimizer state from.
Returns:
The updated optimizer(s) with loaded state.
"""
if isinstance(optimizer, dict):
# Handle dictionary of optimizers
loaded_optimizers = {}
for name, opt in optimizer.items():
optimizer_dir = save_dir / name
if optimizer_dir.exists():
loaded_optimizers[name] = _load_single_optimizer_state(opt, optimizer_dir)
else:
loaded_optimizers[name] = opt
return loaded_optimizers
else:
# Handle single optimizer
return _load_single_optimizer_state(optimizer, save_dir)
def _load_single_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> torch.optim.Optimizer:
"""Load a single optimizer's state from disk."""
current_state_dict = optimizer.state_dict()
flat_state = load_file(save_dir / OPTIMIZER_STATE)
state = unflatten_dict(flat_state)
loaded_state_dict = {"state": {int(k): v for k, v in state["state"].items()}}
# Handle case where 'state' key might not exist (for newly created optimizers)
if "state" in state:
loaded_state_dict = {"state": {int(k): v for k, v in state["state"].items()}}
else:
loaded_state_dict = {"state": {}}
if "param_groups" in current_state_dict:
param_groups = deserialize_json_into_object(

View File

@@ -49,7 +49,11 @@ class DiffuserSchedulerConfig(LRSchedulerConfig):
def build(self, optimizer: Optimizer, num_training_steps: int) -> LambdaLR:
from diffusers.optimization import get_scheduler
kwargs = {**asdict(self), "num_training_steps": num_training_steps, "optimizer": optimizer}
kwargs = {
**asdict(self),
"num_training_steps": num_training_steps,
"optimizer": optimizer,
}
return get_scheduler(**kwargs)
@@ -71,7 +75,10 @@ class VQBeTSchedulerConfig(LRSchedulerConfig):
progress = float(adjusted_step - self.num_warmup_steps) / float(
max(1, num_training_steps - self.num_warmup_steps)
)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(self.num_cycles) * 2.0 * progress)))
return max(
0.0,
0.5 * (1.0 + math.cos(math.pi * float(self.num_cycles) * 2.0 * progress)),
)
return LambdaLR(optimizer, lr_lambda, -1)

View File

@@ -15,6 +15,5 @@
from .act.configuration_act import ACTConfig as ACTConfig
from .diffusion.configuration_diffusion import DiffusionConfig as DiffusionConfig
from .pi0.configuration_pi0 import PI0Config as PI0Config
from .smolvla.configuration_smolvla import SmolVLAConfig as SmolVLAConfig
from .tdmpc.configuration_tdmpc import TDMPCConfig as TDMPCConfig
from .vqbet.configuration_vqbet import VQBeTConfig as VQBeTConfig

View File

@@ -241,7 +241,9 @@ class ACTTemporalEnsembler:
# Note: The last dimension is unsqueeze to make sure we can broadcast properly for tensor
# operations later.
self.ensembled_actions_count = torch.ones(
(self.chunk_size, 1), dtype=torch.long, device=self.ensembled_actions.device
(self.chunk_size, 1),
dtype=torch.long,
device=self.ensembled_actions.device,
)
else:
# self.ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
@@ -253,7 +255,10 @@ class ACTTemporalEnsembler:
# The last action, which has no prior online average, needs to get concatenated onto the end.
self.ensembled_actions = torch.cat([self.ensembled_actions, actions[:, -1:]], dim=1)
self.ensembled_actions_count = torch.cat(
[self.ensembled_actions_count, torch.ones_like(self.ensembled_actions_count[-1:])]
[
self.ensembled_actions_count,
torch.ones_like(self.ensembled_actions_count[-1:]),
]
)
# "Consume" the first action.
action, self.ensembled_actions, self.ensembled_actions_count = (
@@ -333,7 +338,11 @@ class ACT(nn.Module):
# Backbone for image feature extraction.
if self.config.image_features:
backbone_model = getattr(torchvision.models, config.vision_backbone)(
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
replace_stride_with_dilation=[
False,
False,
config.replace_final_stride_with_dilation,
],
weights=config.pretrained_backbone_weights,
norm_layer=FrozenBatchNorm2d,
)
@@ -427,7 +436,11 @@ class ACT(nn.Module):
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
if self.config.robot_state_feature:
vae_encoder_input = [cls_embed, robot_state_embed, action_embed] # (B, S+2, D)
vae_encoder_input = [
cls_embed,
robot_state_embed,
action_embed,
] # (B, S+2, D)
else:
vae_encoder_input = [cls_embed, action_embed]
vae_encoder_input = torch.cat(vae_encoder_input, axis=1)
@@ -540,7 +553,10 @@ class ACTEncoder(nn.Module):
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
def forward(
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
self,
x: Tensor,
pos_embed: Tensor | None = None,
key_padding_mask: Tensor | None = None,
) -> Tensor:
for layer in self.layers:
x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
@@ -603,7 +619,10 @@ class ACTDecoder(nn.Module):
) -> Tensor:
for layer in self.layers:
x = layer(
x, encoder_out, decoder_pos_embed=decoder_pos_embed, encoder_pos_embed=encoder_pos_embed
x,
encoder_out,
decoder_pos_embed=decoder_pos_embed,
encoder_pos_embed=encoder_pos_embed,
)
if self.norm is not None:
x = self.norm(x)

View File

@@ -209,7 +209,10 @@ class DiffusionModel(nn.Module):
# ========= inference ============
def conditional_sample(
self, batch_size: int, global_cond: Tensor | None = None, generator: torch.Generator | None = None
self,
batch_size: int,
global_cond: Tensor | None = None,
generator: torch.Generator | None = None,
) -> Tensor:
device = get_device_from_parameters(self)
dtype = get_dtype_from_parameters(self)
@@ -254,7 +257,10 @@ class DiffusionModel(nn.Module):
# Separate batch and sequence dims back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features_list, "(n b s) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
img_features_list,
"(n b s) ... -> b s (n ...)",
b=batch_size,
s=n_obs_steps,
)
else:
# Combine batch, sequence, and "which camera" dims before passing to shared encoder.
@@ -264,7 +270,10 @@ class DiffusionModel(nn.Module):
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
img_features,
"(b s n) ... -> b s (n ...)",
b=batch_size,
s=n_obs_steps,
)
global_cond_feats.append(img_features)
@@ -515,7 +524,9 @@ class DiffusionRgbEncoder(nn.Module):
def _replace_submodules(
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
root_module: nn.Module,
predicate: Callable[[nn.Module], bool],
func: Callable[[nn.Module], nn.Module],
) -> nn.Module:
"""
Args:
@@ -633,10 +644,14 @@ class DiffusionConditionalUnet1d(nn.Module):
self.mid_modules = nn.ModuleList(
[
DiffusionConditionalResidualBlock1d(
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
config.down_dims[-1],
config.down_dims[-1],
**common_res_block_kwargs,
),
DiffusionConditionalResidualBlock1d(
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
config.down_dims[-1],
config.down_dims[-1],
**common_res_block_kwargs,
),
]
)

View File

@@ -24,10 +24,9 @@ from lerobot.common.envs.configs import EnvConfig
from lerobot.common.envs.utils import env_to_policy_features
from lerobot.common.policies.act.configuration_act import ACTConfig
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.hilserl.classifier.configuration_classifier import ClassifierConfig
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
from lerobot.common.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.smolvla.configuration_smolvla import SmolVLAConfig
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.configs.policies import PreTrainedConfig
@@ -56,14 +55,14 @@ def get_policy_class(name: str) -> PreTrainedPolicy:
from lerobot.common.policies.pi0.modeling_pi0 import PI0Policy
return PI0Policy
elif name == "pi0fast":
from lerobot.common.policies.pi0fast.modeling_pi0fast import PI0FASTPolicy
elif name == "sac":
from lerobot.common.policies.sac.modeling_sac import SACPolicy
return PI0FASTPolicy
elif name == "smolvla":
from lerobot.common.policies.smolvla.modeling_smolvla import SmolVLAPolicy
return SACPolicy
elif name == "hilserl_classifier":
from lerobot.common.policies.hilserl.classifier.modeling_classifier import Classifier
return SmolVLAPolicy
return Classifier
else:
raise NotImplementedError(f"Policy with name {name} is not implemented.")
@@ -79,10 +78,8 @@ def make_policy_config(policy_type: str, **kwargs) -> PreTrainedConfig:
return VQBeTConfig(**kwargs)
elif policy_type == "pi0":
return PI0Config(**kwargs)
elif policy_type == "pi0fast":
return PI0FASTConfig(**kwargs)
elif policy_type == "smolvla":
return SmolVLAConfig(**kwargs)
elif policy_type == "hilserl_classifier":
return ClassifierConfig(**kwargs)
else:
raise ValueError(f"Policy type '{policy_type}' is not available.")

View File

@@ -0,0 +1,53 @@
from dataclasses import dataclass
from typing import List
from lerobot.common.optim.optimizers import AdamWConfig, OptimizerConfig
from lerobot.common.optim.schedulers import LRSchedulerConfig
from lerobot.configs.policies import PreTrainedConfig
@PreTrainedConfig.register_subclass(name="hilserl_classifier")
@dataclass
class ClassifierConfig(PreTrainedConfig):
"""Configuration for the Classifier model."""
name: str = "hilserl_classifier"
num_classes: int = 2
hidden_dim: int = 256
dropout_rate: float = 0.1
model_name: str = "helper2424/resnet10"
device: str = "cpu"
model_type: str = "cnn" # "transformer" or "cnn"
num_cameras: int = 2
learning_rate: float = 1e-4
normalization_mode = None
# output_features: Dict[str, PolicyFeature] = field(
# default_factory=lambda: {"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(1,))}
# )
@property
def observation_delta_indices(self) -> List | None:
return None
@property
def action_delta_indices(self) -> List | None:
return None
@property
def reward_delta_indices(self) -> List | None:
return None
def get_optimizer_preset(self) -> OptimizerConfig:
return AdamWConfig(
lr=self.learning_rate,
weight_decay=0.01,
grad_clip_norm=1.0,
)
def get_scheduler_preset(self) -> LRSchedulerConfig | None:
return None
def validate_features(self) -> None:
"""Validate feature configurations."""
# Classifier doesn't need specific feature validation
pass

View File

@@ -0,0 +1,237 @@
import logging
from typing import Dict, Optional, Tuple
import torch
from torch import Tensor, nn
from lerobot.common.constants import OBS_IMAGE
from lerobot.common.policies.hilserl.classifier.configuration_classifier import (
ClassifierConfig,
)
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
class ClassifierOutput:
"""Wrapper for classifier outputs with additional metadata."""
def __init__(
self,
logits: Tensor,
probabilities: Optional[Tensor] = None,
hidden_states: Optional[Tensor] = None,
):
self.logits = logits
self.probabilities = probabilities
self.hidden_states = hidden_states
def __repr__(self):
return (
f"ClassifierOutput(logits={self.logits}, "
f"probabilities={self.probabilities}, "
f"hidden_states={self.hidden_states})"
)
class Classifier(PreTrainedPolicy):
"""Image classifier built on top of a pre-trained encoder."""
name = "hilserl_classifier"
config_class = ClassifierConfig
def __init__(
self,
config: ClassifierConfig,
dataset_stats: Dict[str, Dict[str, Tensor]] | None = None,
):
from transformers import AutoModel
super().__init__(config)
self.config = config
# Initialize normalization (standardized with the policy framework)
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
# Set up encoder
encoder = AutoModel.from_pretrained(self.config.model_name, trust_remote_code=True)
# Extract vision model if we're given a multimodal model
if hasattr(encoder, "vision_model"):
logging.info("Multimodal model detected - using vision encoder only")
self.encoder = encoder.vision_model
self.vision_config = encoder.config.vision_config
else:
self.encoder = encoder
self.vision_config = getattr(encoder, "config", None)
# Model type from config
self.is_cnn = self.config.model_type == "cnn"
# For CNNs, initialize backbone
if self.is_cnn:
self._setup_cnn_backbone()
self._freeze_encoder()
self._build_classifier_head()
def _setup_cnn_backbone(self):
"""Set up CNN encoder"""
if hasattr(self.encoder, "fc"):
self.feature_dim = self.encoder.fc.in_features
self.encoder = nn.Sequential(*list(self.encoder.children())[:-1])
elif hasattr(self.encoder.config, "hidden_sizes"):
self.feature_dim = self.encoder.config.hidden_sizes[-1] # Last channel dimension
else:
raise ValueError("Unsupported CNN architecture")
def _freeze_encoder(self) -> None:
"""Freeze the encoder parameters."""
for param in self.encoder.parameters():
param.requires_grad = False
def _build_classifier_head(self) -> None:
"""Initialize the classifier head architecture."""
# Get input dimension based on model type
if self.is_cnn:
input_dim = self.feature_dim
else: # Transformer models
if hasattr(self.encoder.config, "hidden_size"):
input_dim = self.encoder.config.hidden_size
else:
raise ValueError("Unsupported transformer architecture since hidden_size is not found")
self.classifier_head = nn.Sequential(
nn.Linear(input_dim * self.config.num_cameras, self.config.hidden_dim),
nn.Dropout(self.config.dropout_rate),
nn.LayerNorm(self.config.hidden_dim),
nn.ReLU(),
nn.Linear(
self.config.hidden_dim,
1 if self.config.num_classes == 2 else self.config.num_classes,
),
)
def _get_encoder_output(self, x: torch.Tensor) -> torch.Tensor:
"""Extract the appropriate output from the encoder."""
with torch.no_grad():
if self.is_cnn:
# The HF ResNet applies pooling internally
outputs = self.encoder(x)
# Get pooled output directly
features = outputs.pooler_output
if features.dim() > 2:
features = features.squeeze(-1).squeeze(-1)
return features
else: # Transformer models
outputs = self.encoder(x)
if hasattr(outputs, "pooler_output") and outputs.pooler_output is not None:
return outputs.pooler_output
return outputs.last_hidden_state[:, 0, :]
def extract_images_and_labels(self, batch: Dict[str, Tensor]) -> Tuple[list, Tensor]:
"""Extract image tensors and label tensors from batch."""
# Find image keys in input features
image_keys = [key for key in self.config.input_features if key.startswith(OBS_IMAGE)]
# Extract the images and labels
images = [batch[key] for key in image_keys]
labels = batch["next.reward"]
return images, labels
def predict(self, xs: list) -> ClassifierOutput:
"""Forward pass of the classifier for inference."""
encoder_outputs = torch.hstack([self._get_encoder_output(x) for x in xs])
logits = self.classifier_head(encoder_outputs)
if self.config.num_classes == 2:
logits = logits.squeeze(-1)
probabilities = torch.sigmoid(logits)
else:
probabilities = torch.softmax(logits, dim=-1)
return ClassifierOutput(logits=logits, probabilities=probabilities, hidden_states=encoder_outputs)
def forward(self, batch: Dict[str, Tensor]) -> Tuple[Tensor, Dict[str, Tensor]]:
"""Standard forward pass for training compatible with train.py."""
# Normalize inputs if needed
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
# Extract images and labels
images, labels = self.extract_images_and_labels(batch)
# Get predictions
outputs = self.predict(images)
# Calculate loss
if self.config.num_classes == 2:
# Binary classification
loss = nn.functional.binary_cross_entropy_with_logits(outputs.logits, labels)
predictions = (torch.sigmoid(outputs.logits) > 0.5).float()
else:
# Multi-class classification
loss = nn.functional.cross_entropy(outputs.logits, labels.long())
predictions = torch.argmax(outputs.logits, dim=1)
# Calculate accuracy for logging
correct = (predictions == labels).sum().item()
total = labels.size(0)
accuracy = 100 * correct / total
# Return loss and metrics for logging
output_dict = {
"accuracy": accuracy,
"correct": correct,
"total": total,
}
return loss, output_dict
def predict_reward(self, batch, threshold=0.6):
"""Legacy method for compatibility."""
images, _ = self.extract_images_and_labels(batch)
if self.config.num_classes == 2:
probs = self.predict(images).probabilities
logging.debug(f"Predicted reward images: {probs}")
return (probs > threshold).float()
else:
return torch.argmax(self.predict(images).probabilities, dim=1)
# Methods required by PreTrainedPolicy abstract class
def get_optim_params(self) -> dict:
"""Return optimizer parameters for the policy."""
return {
"params": self.parameters(),
"lr": getattr(self.config, "learning_rate", 1e-4),
"weight_decay": getattr(self.config, "weight_decay", 0.01),
}
def reset(self):
"""Reset any stateful components (required by PreTrainedPolicy)."""
# Classifier doesn't have stateful components that need resetting
pass
def select_action(self, batch: Dict[str, Tensor]) -> Tensor:
"""Return action (class prediction) based on input observation."""
images, _ = self.extract_images_and_labels(batch)
with torch.no_grad():
outputs = self.predict(images)
if self.config.num_classes == 2:
# For binary classification return 0 or 1
return (outputs.probabilities > 0.5).float()
else:
# For multi-class return the predicted class
return torch.argmax(outputs.probabilities, dim=1)

View File

@@ -0,0 +1,23 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
@dataclass
class HILSerlConfig:
pass

View File

@@ -0,0 +1,29 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
class HILSerlPolicy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "hilserl"],
):
pass

View File

@@ -79,28 +79,46 @@ def create_stats_buffers(
)
# TODO(aliberts, rcadene): harmonize this to only use one framework (np or torch)
if stats:
if isinstance(stats[key]["mean"], np.ndarray):
if norm_mode is NormalizationMode.MEAN_STD:
if stats and key in stats:
if norm_mode is NormalizationMode.MEAN_STD:
if "mean" not in stats[key] or "std" not in stats[key]:
raise ValueError(
f"Missing 'mean' or 'std' in stats for key {key} with MEAN_STD normalization"
)
if isinstance(stats[key]["mean"], np.ndarray):
buffer["mean"].data = torch.from_numpy(stats[key]["mean"]).to(dtype=torch.float32)
buffer["std"].data = torch.from_numpy(stats[key]["std"]).to(dtype=torch.float32)
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32)
buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32)
elif isinstance(stats[key]["mean"], torch.Tensor):
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
if norm_mode is NormalizationMode.MEAN_STD:
elif isinstance(stats[key]["mean"], torch.Tensor):
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32)
buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32)
elif norm_mode is NormalizationMode.MIN_MAX:
else:
type_ = type(stats[key]["mean"])
raise ValueError(
f"np.ndarray or torch.Tensor expected for 'mean', but type is '{type_}' instead."
)
elif norm_mode is NormalizationMode.MIN_MAX:
if "min" not in stats[key] or "max" not in stats[key]:
raise ValueError(
f"Missing 'min' or 'max' in stats for key {key} with MIN_MAX normalization"
)
if isinstance(stats[key]["min"], np.ndarray):
buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32)
buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32)
elif isinstance(stats[key]["min"], torch.Tensor):
buffer["min"].data = stats[key]["min"].clone().to(dtype=torch.float32)
buffer["max"].data = stats[key]["max"].clone().to(dtype=torch.float32)
else:
type_ = type(stats[key]["mean"])
raise ValueError(f"np.ndarray or torch.Tensor expected, but type is '{type_}' instead.")
else:
type_ = type(stats[key]["min"])
raise ValueError(
f"np.ndarray or torch.Tensor expected for 'min', but type is '{type_}' instead."
)
stats_buffers[key] = buffer
return stats_buffers
@@ -149,12 +167,13 @@ class Normalize(nn.Module):
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
# @torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, ft in self.features.items():
if key not in batch:
# FIXME(aliberts, rcadene): This might lead to silent fail!
# NOTE: (azouitine) This continues help us for instantiation SACPolicy
continue
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
@@ -223,7 +242,7 @@ class Unnormalize(nn.Module):
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
@torch.no_grad
# @torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, ft in self.features.items():

View File

@@ -61,7 +61,11 @@ from lerobot.common.policies.pi0.conversion_scripts.conversion_utils import (
)
from lerobot.common.policies.pi0.modeling_pi0 import PI0Policy
PRECISIONS = {"bfloat16": torch.bfloat16, "float32": torch.float32, "float16": torch.float16}
PRECISIONS = {
"bfloat16": torch.bfloat16,
"float32": torch.float32,
"float16": torch.float16,
}
def slice_paligemma_state_dict(state_dict, config):

View File

@@ -48,18 +48,32 @@ def flex_attention_forward(
key_states = key_states[:, :, :, None, :]
key_states = key_states.expand(
batch_size, key_states.shape[1], num_key_value_heads, num_key_value_groups, head_dim
batch_size,
key_states.shape[1],
num_key_value_heads,
num_key_value_groups,
head_dim,
)
key_states = key_states.reshape(
batch_size, key_states.shape[1], num_key_value_heads * num_key_value_groups, head_dim
batch_size,
key_states.shape[1],
num_key_value_heads * num_key_value_groups,
head_dim,
)
value_states = value_states[:, :, :, None, :]
value_states = value_states.expand(
batch_size, value_states.shape[1], num_key_value_heads, num_key_value_groups, head_dim
batch_size,
value_states.shape[1],
num_key_value_heads,
num_key_value_groups,
head_dim,
)
value_states = value_states.reshape(
batch_size, value_states.shape[1], num_key_value_heads * num_key_value_groups, head_dim
batch_size,
value_states.shape[1],
num_key_value_heads * num_key_value_groups,
head_dim,
)
query_states = query_states.transpose(1, 2)

View File

@@ -24,7 +24,7 @@ Designed by Physical Intelligence. Ported from Jax by Hugging Face.
Install pi0 extra dependencies:
```bash
pip install -e ".[pi0]"
pip install --no-binary=av -e ".[pi0]"
```
Example of finetuning the pi0 pretrained model (`pi0_base` in `openpi`):
@@ -69,7 +69,11 @@ from lerobot.common.utils.utils import get_safe_dtype
def create_sinusoidal_pos_embedding(
time: torch.tensor, dimension: int, min_period: float, max_period: float, device="cpu"
time: torch.tensor,
dimension: int,
min_period: float,
max_period: float,
device="cpu",
) -> Tensor:
"""Computes sine-cosine positional embedding vectors for scalar positions."""
if dimension % 2 != 0:
@@ -357,7 +361,7 @@ class PI0Policy(PreTrainedPolicy):
if self.config.resize_imgs_with_padding is not None:
img = resize_with_pad(img, *self.config.resize_imgs_with_padding, pad_value=0)
# Normalize from range [0,1] to [-1,1] as expected by siglip
# Normalize from range [0,1] to [-1,1] as expacted by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]
@@ -577,7 +581,11 @@ class PI0FlowMatching(nn.Module):
# Embed timestep using sine-cosine positional encoding with sensitivity in the range [0, 1]
time_emb = create_sinusoidal_pos_embedding(
timestep, self.config.proj_width, min_period=4e-3, max_period=4.0, device=device
timestep,
self.config.proj_width,
min_period=4e-3,
max_period=4.0,
device=device,
)
time_emb = time_emb.type(dtype=dtype)
@@ -609,7 +617,15 @@ class PI0FlowMatching(nn.Module):
return embs, pad_masks, att_masks
def forward(
self, images, img_masks, lang_tokens, lang_masks, state, actions, noise=None, time=None
self,
images,
img_masks,
lang_tokens,
lang_masks,
state,
actions,
noise=None,
time=None,
) -> Tensor:
"""Do a full training forward pass and compute the loss (batch_size x num_steps x num_motors)"""
if noise is None:
@@ -655,7 +671,11 @@ class PI0FlowMatching(nn.Module):
device = state.device
if noise is None:
actions_shape = (bsize, self.config.n_action_steps, self.config.max_action_dim)
actions_shape = (
bsize,
self.config.n_action_steps,
self.config.max_action_dim,
)
noise = self.sample_noise(actions_shape, device)
prefix_embs, prefix_pad_masks, prefix_att_masks = self.embed_prefix(

View File

@@ -293,12 +293,18 @@ class PaliGemmaWithExpertModel(PreTrainedModel):
# in `transformers`. (molbap)
key_states = torch.cat([past_key_values[layer_idx]["key_states"], key_states], dim=1)
value_states = torch.cat(
[past_key_values[layer_idx]["value_states"], value_states], dim=1
[past_key_values[layer_idx]["value_states"], value_states],
dim=1,
)
attention_interface = self.get_attention_interface()
att_output = attention_interface(
attention_mask, batch_size, head_dim, query_states, key_states, value_states
attention_mask,
batch_size,
head_dim,
query_states,
key_states,
value_states,
)
att_output = att_output.to(dtype=torch.bfloat16)
@@ -358,12 +364,24 @@ class PaliGemmaWithExpertModel(PreTrainedModel):
return attention_interface
def flash_attention_forward(
self, attention_mask, batch_size, head_dim, query_states, key_states, value_states
self,
attention_mask,
batch_size,
head_dim,
query_states,
key_states,
value_states,
):
raise NotImplementedError("FA2 is not implemented (yet)")
def eager_attention_forward(
self, attention_mask, batch_size, head_dim, query_states, key_states, value_states
self,
attention_mask,
batch_size,
head_dim,
query_states,
key_states,
value_states,
):
num_att_heads = self.config.paligemma_config.text_config.num_attention_heads
num_key_value_heads = self.config.paligemma_config.text_config.num_key_value_heads
@@ -375,17 +393,31 @@ class PaliGemmaWithExpertModel(PreTrainedModel):
sequence_length = key_states.shape[1]
key_states = key_states[:, :, :, None, :].expand(
batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
batch_size,
sequence_length,
num_key_value_heads,
num_key_value_groups,
head_dim,
)
key_states = key_states.reshape(
batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
batch_size,
sequence_length,
num_key_value_heads * num_key_value_groups,
head_dim,
)
value_states = value_states[:, :, :, None, :].expand(
batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
batch_size,
sequence_length,
num_key_value_heads,
num_key_value_groups,
head_dim,
)
value_states = value_states.reshape(
batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
batch_size,
sequence_length,
num_key_value_heads * num_key_value_groups,
head_dim,
)
# Attention here is upcasted to float32 to match the original eager implementation.

View File

@@ -1,136 +0,0 @@
from dataclasses import dataclass, field
from lerobot.common.optim.optimizers import AdamWConfig
from lerobot.common.optim.schedulers import (
CosineDecayWithWarmupSchedulerConfig,
)
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
@PreTrainedConfig.register_subclass("pi0fast")
@dataclass
class PI0FASTConfig(PreTrainedConfig):
# Input / output structure.
n_obs_steps: int = 1
chunk_size: int = 10
n_action_steps: int = 5
normalization_mapping: dict[str, NormalizationMode] = field(
default_factory=lambda: {
"VISUAL": NormalizationMode.IDENTITY,
"STATE": NormalizationMode.MEAN_STD,
"ACTION": NormalizationMode.MEAN_STD,
}
)
# Shorter state and action vectors will be padded
max_state_dim: int = 32 # 32
max_action_dim: int = 32 # 32
# Image preprocessing
resize_imgs_with_padding: tuple[int, int] = (224, 224)
interpolate_like_pi: bool = False
# Add empty images. Used by pi0_aloha_sim which adds the empty
# left and right wrist cameras in addition to the top camera.
empty_cameras: int = 0
# Converts the joint and gripper values from the standard Aloha space to
# the space used by the pi internal runtime which was used to train the base model.
adapt_to_pi_aloha: bool = False
# Converts joint dimensions to deltas with respect to the current state before passing to the model.
# Gripper dimensions will remain in absolute values.
use_delta_joint_actions_aloha: bool = False
# Tokenizer
tokenizer_max_length: int = 48
# Projector
proj_width: int = 1024
# Decoding
max_decoding_steps: int = 256
fast_skip_tokens: int = 128 # Skip last 128 tokens in PaliGemma vocab since they are special tokens
max_input_seq_len: int = 256 # 512
# Utils
use_cache: bool = True
# Frozen parameters
freeze_vision_encoder: bool = True
freeze_lm_head: bool = True
# Training presets
optimizer_lr: float = 1e-4
optimizer_betas: tuple[float, float] = (0.9, 0.95)
optimizer_eps: float = 1e-8
optimizer_weight_decay: float = 1e-5
scheduler_warmup_steps: int = 1_000
scheduler_decay_steps: int = 30_000
scheduler_decay_lr: float = 2.5e-6
checkpoint_path: str = None
padding_side: str = "right"
precision: str = "bfloat16"
grad_clip_norm: float = 1
# Allows padding/truncation of generated action tokens during detokenization to ensure decoding.
# In the original version, tensors of 0s were generated if shapes didn't match for stable decoding.
relaxed_action_decoding: bool = True
def __post_init__(self):
super().__post_init__()
"""Input validation (not exhaustive)."""
if self.n_action_steps > self.chunk_size:
raise ValueError(
f"The chunk size is the upper bound for the number of action steps per model invocation. Got "
f"{self.n_action_steps} for `n_action_steps` and {self.chunk_size} for `chunk_size`."
)
if self.n_obs_steps != 1:
raise ValueError(
f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`"
)
def validate_features(self) -> None:
for i in range(self.empty_cameras):
key = f"observation.images.empty_camera_{i}"
empty_camera = PolicyFeature(
type=FeatureType.VISUAL,
shape=(3, 480, 640),
)
self.input_features[key] = empty_camera
def get_optimizer_preset(self) -> AdamWConfig:
return AdamWConfig(
lr=self.optimizer_lr,
betas=self.optimizer_betas,
eps=self.optimizer_eps,
weight_decay=self.optimizer_weight_decay,
grad_clip_norm=self.grad_clip_norm,
)
def get_scheduler_preset(self):
return CosineDecayWithWarmupSchedulerConfig(
peak_lr=self.optimizer_lr,
decay_lr=self.scheduler_decay_lr,
num_warmup_steps=self.scheduler_warmup_steps,
num_decay_steps=self.scheduler_decay_steps,
)
@property
def observation_delta_indices(self) -> None:
return None
@property
def action_delta_indices(self) -> list:
return list(range(self.chunk_size))
@property
def reward_delta_indices(self) -> None:
return None

View File

@@ -1,973 +0,0 @@
#!/usr/bin/env python
# Copyright 2025 Physical Intelligence and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
π0+FAST: Efficient Action Tokenization for Vision-Language-Action Models
[Paper](https://arxiv.org/abs/2501.09747)
[Jax code](https://github.com/Physical-Intelligence/openpi)
Designed by Physical Intelligence. Ported from Jax by Hugging Face.
Example of finetuning the pi0+FAST pretrained model (`pi0_fast_base` in `openpi`):
```bash
python lerobot/scripts/train.py \
--policy.path=lerobot/pi0fast_base \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of training the pi0+FAST neural network with from scratch:
```bash
python lerobot/scripts/train.py \
--policy.type=pi0fast \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of using the pi0 pretrained model outside LeRobot training framework:
```python
policy = PI0FASTPolicy.from_pretrained("lerobot/pi0fast_base")
```
"""
from collections import deque
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
from PIL import Image
from scipy.fft import idct
from torch import Tensor, nn
from transformers import AutoProcessor, AutoTokenizer, PaliGemmaForConditionalGeneration
from transformers.cache_utils import HybridCache, StaticCache
from transformers.models.auto import CONFIG_MAPPING
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
from lerobot.common.policies.pretrained import PreTrainedPolicy
PRECISION = {
"float16": torch.float16,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
def normalize(x, min_val, max_val):
return (x - min_val) / (max_val - min_val)
def unnormalize(x, min_val, max_val):
return x * (max_val - min_val) + min_val
def safe_arcsin(value):
# This ensures that the input stays within
# [1,1] to avoid invalid values for arcsin
return torch.arcsin(torch.clamp(value, -1.0, 1.0))
def aloha_gripper_to_angular(value):
# Aloha transforms the gripper positions into a linear space. The following code
# reverses this transformation to be consistent with pi0 which is pretrained in
# angular space.
#
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_POSITION_OPEN, PUPPET_GRIPPER_POSITION_CLOSED
value = unnormalize(value, min_val=0.01844, max_val=0.05800)
# This is the inverse of the angular to linear transformation inside the Interbotix code.
def linear_to_radian(linear_position, arm_length, horn_radius):
value = (horn_radius**2 + linear_position**2 - arm_length**2) / (2 * horn_radius * linear_position)
return safe_arcsin(value)
# The constants are taken from the Interbotix code.
value = linear_to_radian(value, arm_length=0.036, horn_radius=0.022)
# Normalize to [0, 1].
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
return normalize(value, min_val=0.4, max_val=1.5)
def aloha_gripper_from_angular(value):
# Convert from the gripper position used by pi0 to the gripper position that is used by Aloha.
# Note that the units are still angular but the range is different.
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
value = unnormalize(value, min_val=0.4, max_val=1.5)
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_JOINT_OPEN, PUPPET_GRIPPER_JOINT_CLOSE
return normalize(value, min_val=-0.6213, max_val=1.4910)
def aloha_gripper_from_angular_inv(value):
# Directly inverts the gripper_from_angular function.
value = unnormalize(value, min_val=-0.6213, max_val=1.4910)
return normalize(value, min_val=0.4, max_val=1.5)
class PI0FASTPolicy(PreTrainedPolicy):
"""Wrapper class around PI0FAST tokenizer and model to train and run inference within LeRobot."""
config_class = PI0FASTConfig
name = "pi0fast"
def __init__(
self,
config: PI0FASTConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
self.model = PI0FAST(config)
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
self._action_queue = deque([], maxlen=self.config.n_action_steps)
def get_optim_params(self) -> dict:
return self.parameters()
def _pi_aloha_decode_state(self, state):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
state[:, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
state[:, motor_idx] = aloha_gripper_to_angular(state[:, motor_idx])
return state
def _pi_aloha_encode_actions(self, actions):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular(actions[:, :, motor_idx])
return actions
def _pi_aloha_encode_actions_inv(self, actions):
# Flip the joints again.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular_inv(actions[:, :, motor_idx])
return actions
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch = self.normalize_inputs(batch)
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
actions = self.model.generate_actions(batch)
actions = actions[:, : self.config.n_action_steps]
original_action_dim = self.config.action_feature.shape[
0
] # self.config.max_action_dim # self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
loss_dict = self.model.forward(batch)
return loss_dict["loss"], loss_dict
def block_causal_update_causal_mask(
attention_mask,
token_type_ids=None,
past_key_values=None,
cache_position=None,
input_tensor=None,
attn_implementation: str = "eager",
dtype: torch.dtype = "float32",
):
"""
Update the causal mask during training and generation. It can be customized to different attention masks.
"""
if attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(dtype).min
if input_tensor is None:
input_tensor = attention_mask
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache or isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
# Handle precomputed attention masks
if attention_mask is not None and attention_mask.dim() == 4:
return attention_mask
# Causal mask initialization
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
# Standard causal masking (triu ensures tokens can only attend to past)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
# Apply block causal mask
if token_type_ids is not None:
token_type_ids = token_type_ids.to(causal_mask.device).bool()
cumsum = torch.cumsum(token_type_ids, dim=1)
block_causal_mask = cumsum[:, None, :] <= cumsum[:, :, None]
# Combine causal_mask with block-wise attention mask
causal_mask = torch.where(block_causal_mask, 0.0, causal_mask)
causal_mask = causal_mask[:, None, :, :]
else:
# Apply past cache position constraint
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
-1, 1
)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
else:
# Apply past cache position constraint
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
-1, 1
)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # Copy to contiguous memory for in-place edits
mask_length = attention_mask.shape[-1]
# Apply padding mask
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def prepare_inputs_for_generation(
# self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
attention_mask=None,
token_type_ids=None,
use_cache=True,
num_logits_to_keep=None,
labels=None,
self=None,
**kwargs,
):
# create block causal attention
if cache_position[0] > 0 and input_ids.shape[1] > 0:
input_tensor = input_ids[:, -1:]
new_positions = (
torch.ones(
(position_ids.shape[0], input_ids.shape[1]),
dtype=position_ids.dtype,
device=position_ids.device,
).cumsum(-1)
+ position_ids[:, -1:]
)
position_ids = torch.cat([position_ids, new_positions], dim=-1)
else:
input_tensor = inputs_embeds
attention_mask = block_causal_update_causal_mask(
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
input_tensor=input_tensor,
token_type_ids=token_type_ids,
dtype=self.dtype,
attn_implementation=self.config.text_config._attn_implementation,
)
# Overwritten -- custom `position_ids` and `pixel_values` handling
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
num_logits_to_keep=num_logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# Position_ids in Paligemma are 1-indexed
if model_inputs.get("position_ids") is not None:
model_inputs["position_ids"] += 1
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
is_training = token_type_ids is not None and labels is not None
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
)
model_inputs["attention_mask"] = causal_mask
return model_inputs
class PI0FAST(nn.Module):
def __init__(self, config: PI0FASTConfig):
super().__init__()
self.config = config
# TODO: move tokenizers in Policy
fast_tokenizer_path = "physical-intelligence/fast"
pi0_paligemma_path = "google/paligemma-3b-pt-224"
self.paligemma_tokenizer = AutoTokenizer.from_pretrained(pi0_paligemma_path)
self.processor = AutoProcessor.from_pretrained(pi0_paligemma_path)
self.fast_tokenizer = AutoProcessor.from_pretrained(fast_tokenizer_path, trust_remote_code=True)
self.fast_skip_tokens = self.config.fast_skip_tokens
self.max_input_seq_len = self.config.max_input_seq_len
self.action_horizon = self.config.chunk_size
self.action_dim = self.config.action_feature.shape[
0
] # self.config.max_action_dim # self.config.action_feature.shape[0]
precision = config.precision
torch_precision = PRECISION.get(precision, torch.float32)
self.pad_token_id = (
self.paligemma_tokenizer.pad_token_id
if hasattr(self.paligemma_tokenizer, "pad_token_id")
else self.paligemma_tokenizer.eos_token_id
)
paligemma_config = CONFIG_MAPPING["paligemma"](
transformers_version="4.48.1",
_vocab_size=257152,
bos_token_id=2,
eos_token_id=1,
hidden_size=2048,
image_token_index=257152,
model_type="paligemma",
pad_token_id=0,
projection_dim=2048,
text_config={
"hidden_activation": "gelu_pytorch_tanh",
"hidden_size": 2048,
"intermediate_size": 16384,
"model_type": "gemma",
"num_attention_heads": 8,
"num_hidden_layers": 18,
"num_image_tokens": 256,
"num_key_value_heads": 1,
"torch_dtype": precision,
"vocab_size": 257152,
"_attn_implementation": "eager",
},
vision_config={
"hidden_size": 1152,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"num_image_tokens": 256,
"patch_size": 14,
"projection_dim": 2048,
"projector_hidden_act": "gelu_pytorch_tanh",
"torch_dtype": precision,
"vision_use_head": False,
},
)
self.pi0_paligemma = PaliGemmaForConditionalGeneration(config=paligemma_config)
self.pi0_paligemma.prepare_inputs_for_generation = partial(
prepare_inputs_for_generation, self=self.pi0_paligemma
)
# change important stuff in bf16
params_to_change_dtype = [
"language_model",
"vision_tower",
"multi_modal",
]
for name, param in self.pi0_paligemma.named_parameters():
if any(selector in name for selector in params_to_change_dtype):
param.data = param.data.to(dtype=torch_precision)
self.set_requires_grad()
self.image_keys = self.config.image_features.keys()
self.ignore_index = self.pi0_paligemma.config.ignore_index
self.padding_side = self.config.padding_side
def set_requires_grad(self):
if self.config.freeze_vision_encoder:
self.pi0_paligemma.vision_tower.eval()
for params in self.pi0_paligemma.vision_tower.parameters():
params.requires_grad = False
# To avoid unused params issue with distributed training
if self.config.freeze_lm_head:
for name, params in self.pi0_paligemma.named_parameters():
if "embed_tokens" in name: # lm heads and embedding layer are tied
params.requires_grad = False
def embed_tokens(self, tokens: torch.Tensor):
return self.pi0_paligemma.language_model.model.embed_tokens(tokens)
def prepare_inputs_for_generation(self, *args, **kwargs):
return self.pi0_paligemma.prepare_inputs_for_generation(*args, **kwargs)
def prepare_images(self, batch):
"""Preprocess LeRobot batch into Pi0 inputs"""
images = []
img_masks = []
present_img_keys = [key for key in self.image_keys if key in batch]
if len(present_img_keys) == 0:
raise ValueError(
f"All image features are missing from the batch. At least one expected. (batch: {batch.keys()}) (image_features:{self.config.image_features})"
)
# Preprocess image features present in the batch
num_empty_cameras = 0
for key in self.image_keys:
if key in present_img_keys:
img = batch[key]
if self.config.resize_imgs_with_padding is not None:
img = resize_with_pad(
img,
*self.config.resize_imgs_with_padding,
pad_value=0,
interpolate_like_pi=self.config.interpolate_like_pi,
)
# Normalize from range [0,1] to [-1,1] as expected by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]
device = img.device
mask = torch.ones(bsize, dtype=torch.bool, device=device)
else:
if num_empty_cameras >= self.config.empty_cameras:
continue
img = torch.ones_like(img) * -1
bsize = img.shape[0]
device = img.device
mask = torch.ones(bsize, dtype=torch.bool, device=device)
num_empty_cameras += 1
images.append(img)
img_masks.append(mask)
return images, img_masks
def normalize_actions(self, actions: torch.Tensor) -> torch.Tensor:
mins = actions.amin(dim=(1, 2), keepdim=True) # [0]
maxs = actions.amax(dim=(1, 2), keepdim=True) # [0]
return 2 * (actions - mins) / (maxs - mins + 1e-8) - 1
def _act_tokens_to_paligemma_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
out = self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens - tokens
return out
def fast_tokenizer_wrapper(self, actions_norm):
"""
A wrapper for self.fast_tokenizer that ensures batch processing,
conversion to PyTorch tensors, and returns a dictionary without padding.
"""
batch_tokens = self.fast_tokenizer(actions_norm)
fast_out = self.processor.tokenizer.pad({"input_ids": batch_tokens}, return_tensors="pt")
return fast_out
def create_token_type_ids(self, padded_mask: torch.Tensor, prefix_len: int) -> torch.Tensor:
token_type_ids = torch.zeros_like(padded_mask, dtype=torch.bool)
# Compute cumulative sum mask
cumsum_mask = (padded_mask != 0).cumsum(dim=1)
# Suffix block (everything after prefix_len)
suffix_mask = cumsum_mask > prefix_len
token_type_ids = suffix_mask
return token_type_ids
def create_input_tokens(self, state, lang_text, actions=None):
bsize = state.shape[0]
device = state.device
bins = torch.linspace(-1, 1, 256 + 1, device=device)[:-1]
discretized = torch.bucketize(state, bins) - 1
discretized = discretized[:, :32]
prefix_texts = []
state_text = []
for txt, disc in zip(lang_text, discretized, strict=False):
cleaned = txt.lower().strip().replace("_", " ")
state_str = " ".join(str(val.item()) for val in disc)
prefix_texts.append(f"Task: {cleaned}, State: {state_str};\n")
state_text.append(f"State: {state_str};\n")
prefix_out = self.paligemma_tokenizer(
prefix_texts, add_special_tokens=True, return_tensors="pt", padding="longest", truncation=False
)
prefix_ids = prefix_out["input_ids"].to(device)
prefix_mask = prefix_out["attention_mask"].to(device)
prefix_lens = prefix_mask.sum(dim=1)[:, None].cpu()
if actions is not None:
actions_norm = self.normalize_actions(actions)
actions_pad = F.pad(
actions_norm, (0, max(0, self.config.max_action_dim - actions_norm.shape[2])), value=0
)[:, :, : self.config.max_action_dim]
fast_out = self.fast_tokenizer_wrapper(
actions_pad.cpu(),
)
act_ids = fast_out["input_ids"]
act_mask = fast_out["attention_mask"].to(device)
act_ids = self._act_tokens_to_paligemma_tokens(act_ids).to(device)
# Replace action with 0 to pad tokens
act_ids = torch.where(
act_ids == self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens,
self.pad_token_id,
act_ids,
)
eos_token = torch.tensor(
[self.paligemma_tokenizer.eos_token_id], dtype=torch.long, device=device
).expand(bsize, -1)
eos_mask = torch.tensor([1], dtype=torch.long, device=device).expand(bsize, -1)
bos = self.paligemma_tokenizer("Action: ", add_special_tokens=False, return_tensors="pt")
bos_token = bos["input_ids"].expand(act_ids.shape[0], -1).to(device)
bos_mask = bos["attention_mask"].expand(act_ids.shape[0], -1).to(device)
act_ids = torch.cat([bos_token, act_ids, eos_token], dim=1)
act_mask = torch.cat([bos_mask, act_mask, eos_mask], dim=1)
act_mask = act_mask.to(device)
else:
act_ids = torch.empty(bsize, self.pad_token_id, dtype=torch.long, device=device)
act_mask = torch.empty(bsize, 0, dtype=torch.long, device=device)
final_ids = torch.cat([prefix_ids, act_ids], dim=1)
final_mask = torch.cat([prefix_mask, act_mask], dim=1)
batch_inputs = {"input_ids": final_ids.tolist(), "attention_mask": final_mask.tolist()}
# Use tokenizer pad function
padded_output = self.paligemma_tokenizer.pad(
batch_inputs, padding="longest", max_length=180, return_tensors="pt"
)
padded_mask = padded_output["attention_mask"]
# define tensor of padding lengths
att_mask = (padded_mask != 0).cumsum(dim=1) > prefix_lens
token_type_ids = self.create_token_type_ids(padded_mask=padded_mask, prefix_len=prefix_lens)
padded_output["padded_mask"] = padded_output.pop("attention_mask")
padded_output["attention_mask"] = att_mask
# loss is computed not on prefix, and not on padding
padded_output["loss_mask"] = att_mask & padded_output["padded_mask"]
padded_output["token_type_ids"] = token_type_ids
return padded_output
def shift_padding_side(
self,
tokens: torch.Tensor,
ar_mask: torch.Tensor,
padding_mask: torch.Tensor,
loss_mask: torch.Tensor,
targets: torch.Tensor,
token_type_ids: torch.Tensor,
padding_side: str = "right",
) -> tuple[torch.Tensor]:
if padding_side not in ["right", "left"]:
return tokens, ar_mask, padding_mask, loss_mask, targets, token_type_ids
new_tokens = torch.empty_like(tokens)
new_ar_masks = torch.empty_like(ar_mask)
new_padding_mask = torch.empty_like(padding_mask)
new_loss_mask = torch.empty_like(loss_mask)
new_targets = torch.empty_like(targets)
new_token_type_ids = torch.empty_like(token_type_ids)
batch_size = tokens.shape[0]
for i in range(batch_size):
padding_indices = torch.where(padding_mask[i] == 0)[0]
non_padding_indices = torch.where(padding_mask[i] == 1)[0]
if padding_side == "left":
new_indices = torch.cat((padding_indices, non_padding_indices), dim=0)
else:
new_indices = torch.cat((non_padding_indices, padding_indices), dim=0)
new_tokens[i] = tokens[i].index_select(0, new_indices)
new_ar_masks[i] = ar_mask[i].index_select(0, new_indices)
new_padding_mask[i] = padding_mask[i].index_select(0, new_indices)
new_loss_mask[i] = loss_mask[i].index_select(0, new_indices)
new_targets[i] = targets[i].index_select(0, new_indices)
new_token_type_ids[i] = token_type_ids[i].index_select(0, new_indices)
return new_tokens, new_ar_masks, new_padding_mask, new_loss_mask, new_targets, new_token_type_ids
def forward(self, batch: dict[str, Tensor]):
device = batch[OBS_ROBOT].device
# TODO: keep like this or move to the policy .forward
images, img_masks = self.prepare_images(batch)
padded_outs = self.create_input_tokens(
state=batch[OBS_ROBOT],
lang_text=batch["task"],
actions=batch[ACTION],
)
embs, pad_masks, _, targets, loss_mask, token_type_ids = self.embed_inputs(
images,
img_masks,
padded_outs["input_ids"],
padded_outs["padded_mask"],
padded_outs["attention_mask"],
padded_outs["loss_mask"],
padded_outs["token_type_ids"],
padding_side=self.padding_side,
)
position_ids = torch.cumsum(pad_masks, dim=1) - 1
token_type_ids = token_type_ids.to(dtype=torch.int64)
past_seen_tokens = 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + embs.shape[1], device=embs.device)
pad_masks = block_causal_update_causal_mask(
attention_mask=pad_masks,
past_key_values=None,
cache_position=cache_position,
input_tensor=embs,
token_type_ids=token_type_ids,
dtype=self.pi0_paligemma.dtype,
attn_implementation=self.pi0_paligemma.config.text_config._attn_implementation,
)
outputs = self.pi0_paligemma.forward(
input_ids=None,
token_type_ids=None,
attention_mask=pad_masks,
position_ids=position_ids,
past_key_values=None,
inputs_embeds=embs,
use_cache=False,
labels=None,
)
logits = outputs.logits
loss_fct = nn.CrossEntropyLoss(reduction="none")
# Shift left for next-step prediction
logits = logits[:, :-1, :]
targets = targets[:, 1:].to(device) # Shift targets
loss_mask = loss_mask[:, 1:].to(device) # Ensure correct shape
# Compute per-token loss
token_loss = loss_fct(logits.reshape(-1, logits.shape[-1]), targets.reshape(-1))
# Apply loss mask
token_loss = token_loss * loss_mask.reshape(-1)
# Compute final loss
loss = token_loss.sum() / torch.clamp(loss_mask.sum(), min=1)
# Return loss dictionary
loss_dict = {"ce_loss": loss.item(), "loss": loss}
return loss_dict
def decode_actions_with_fast(
self,
tokens: list[list[int]],
*,
time_horizon: int | None = None,
action_dim: int | None = None,
relaxed_decoding: bool = True,
) -> np.array:
"""
Adapt original decoding in FAST to always return actions instead of zeros.
"""
self.time_horizon = (
time_horizon or self.fast_tokenizer.time_horizon or self.fast_tokenizer.called_time_horizon
)
self.action_dim = (
action_dim or self.fast_tokenizer.action_dim or self.fast_tokenizer.called_action_dim
)
# Cache the time horizon and action dimension for the next call
self.called_time_horizon = self.time_horizon
self.called_action_dim = self.action_dim
assert self.time_horizon is not None and self.action_dim is not None, (
"Tokenizer not initialized, call encode() once or pass in time_horizon and action_dim."
)
decoded_actions = []
for token in tokens:
try:
decoded_tokens = self.fast_tokenizer.bpe_tokenizer.decode(token)
decoded_dct_coeff = np.array(list(map(ord, decoded_tokens))) + self.fast_tokenizer.min_token
if relaxed_decoding:
# Expected sequence length
expected_seq_len = self.time_horizon * self.action_dim
diff = expected_seq_len - decoded_dct_coeff.shape[0]
# Apply truncation if too long
if diff < 0:
decoded_dct_coeff = decoded_dct_coeff[:expected_seq_len] # Truncate on the right
# Apply padding if too short
elif diff > 0:
decoded_dct_coeff = np.pad(
decoded_dct_coeff, (0, diff), mode="constant", constant_values=0
)
decoded_dct_coeff = decoded_dct_coeff.reshape(-1, self.action_dim)
assert decoded_dct_coeff.shape == (
self.time_horizon,
self.action_dim,
), (
f"Decoded DCT coefficients have shape {decoded_dct_coeff.shape}, expected ({self.time_horizon}, {self.action_dim})"
)
except Exception as e:
print(f"Error decoding tokens: {e}")
print(f"Tokens: {token}")
decoded_dct_coeff = np.zeros((self.time_horizon, self.action_dim))
decoded_actions.append(idct(decoded_dct_coeff / self.fast_tokenizer.scale, axis=0, norm="ortho"))
return np.stack(decoded_actions)
def extract_actions(self, tokens: torch.Tensor, action_horizon: int, action_dim: int) -> torch.Tensor:
"""
Extracts actions from predicted output tokens using the FAST model.
Args:
tokens (torch.Tensor): The input tensor of tokenized outputs.
action_horizon (int): The number of timesteps for actions.
action_dim (int): The dimensionality of each action.
Returns:
torch.Tensor: The extracted actions as a tensor of shape (action_horizon, action_dim).
"""
# Decode predicted output tokens
decoded_tokens = self.paligemma_tokenizer.batch_decode(tokens, skip_special_tokens=True)
cleaned_tokens = [
tokens_sequence.replace("Action:", "").replace(":", "").strip().split("|")[0].strip()
for tokens_sequence in decoded_tokens
]
raw_action_tokens = [
self.processor.tokenizer.encode(sample_tokens, return_tensors="pt", padding=False)
for sample_tokens in cleaned_tokens
] # something like this should be robust #looks good
action_tokens = [
self._act_tokens_to_paligemma_tokens(raw_action_token) for raw_action_token in raw_action_tokens
]
# returns the tensor of decoded actions per sample in a list
decoded_actions = [
torch.tensor(
self.decode_actions_with_fast(
tok.tolist(),
time_horizon=action_horizon,
action_dim=action_dim,
relaxed_decoding=self.config.relaxed_action_decoding,
),
device=tokens.device,
).squeeze(0)
for tok in action_tokens
]
return torch.stack(
decoded_actions,
dim=0,
)
def generate_actions(self, batch: dict[str, Tensor]):
# TODO: keep like this or move to the policy .forward
images, img_masks = self.prepare_images(batch)
padded_outs = self.create_input_tokens(state=batch[OBS_ROBOT], lang_text=batch["task"], actions=None)
embs, pad_masks, att_masks2, targets, loss_mask, token_type_ids = self.embed_inputs(
images,
img_masks,
padded_outs["input_ids"],
padded_outs["padded_mask"],
padded_outs["attention_mask"],
padded_outs["loss_mask"],
padded_outs["token_type_ids"],
padding_side="left",
)
token_type_ids = token_type_ids.to(dtype=torch.int64)
prefix_position_ids = torch.cumsum(pad_masks, dim=1) - 1
output_tokens = self.pi0_paligemma.generate(
input_ids=None,
attention_mask=pad_masks,
position_ids=prefix_position_ids,
past_key_values=None,
inputs_embeds=embs,
use_cache=self.config.use_cache,
max_new_tokens=self.config.max_decoding_steps,
do_sample=False,
num_beams=1,
token_type_ids=token_type_ids,
)
actions = self.extract_actions(output_tokens, self.action_horizon, self.action_dim)
return actions
def embed_image(self, image: torch.Tensor):
return self.pi0_paligemma.get_image_features(image)
def embed_inputs(
self,
images,
img_masks,
tokens,
pad_mask,
ar_mask,
loss_mask,
token_type_ids,
padding_side: str = "right",
):
# TODO: avoid list in python and torch.cat ; prefer pre-allocation with torch.empty
# images are a list of same size
# vectorizing everything!
device = images[0].device
image_embedding_dim = images[0].shape[-1] # TODO should be from self.config
all_images = torch.stack(images, dim=1).to(device)
b, n, c, h, w = all_images.shape
all_images = all_images.view(b * n, c, h, w)
embedded = self.embed_image(all_images).to(device)
b_n, p, image_embedding_dim = embedded.shape # Extract current dimensions
m = b_n // b # Compute the number of images per sample dynamically
# Reshape dynamically
embedded = embedded.view(b, m, p, image_embedding_dim)
tokens_embs = self.embed_tokens(tokens.to(device))
img_masks = torch.stack(img_masks, dim=1).unsqueeze(-1).to(device)
num_img_emb = embedded.shape[2]
img_pad_masks = img_masks.repeat(1, 1, num_img_emb).view(b, -1)
img_att_masks = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
image_target_tokens = (
torch.ones((b, n, num_img_emb), dtype=torch.long, device=device) * self.pad_token_id
).reshape(b, -1)
image_loss_mask = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
embedded = embedded.reshape(b, n * num_img_emb, image_embedding_dim) # Shape: (B, N*P, D)
embs = torch.cat([embedded, tokens_embs], dim=1).to(device)
pad_masks = torch.cat([img_pad_masks, pad_mask.to(device)], dim=1)
att_masks = torch.cat([img_att_masks, ar_mask.to(device)], dim=1)
loss_masks = torch.cat([image_loss_mask, loss_mask.to(device)], dim=1)
targets = torch.cat([image_target_tokens, tokens.to(device)], dim=1)
token_type_ids = torch.cat([img_att_masks, token_type_ids.to(device)], dim=1)
# Shift pad tokens to the left (.generate()) or right (.train())
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids = self.shift_padding_side(
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids, padding_side=padding_side
)
targets = torch.where(targets == self.pad_token_id, self.ignore_index, targets)
return embs, pad_masks, att_masks, targets, loss_masks, token_type_ids
def resize_with_pad(img, width, height, pad_value=0, interpolate_like_pi=True):
# assume no-op when width height fits already
if img.ndim != 4:
raise ValueError(f"(b,c,h,w) expected, but {img.shape}")
cur_height, cur_width = img.shape[2:]
ratio = max(cur_width / width, cur_height / height)
resized_height = int(cur_height / ratio)
resized_width = int(cur_width / ratio)
if interpolate_like_pi:
img = (img * 255.0).to(dtype=torch.uint8)
img = img.permute(0, 2, 3, 1)
original_device = img.device
img = img.to(device="cpu").numpy()
imgs = []
for sub_img in img:
sub_img = Image.fromarray(sub_img)
resized_img = sub_img.resize((resized_width, resized_height), resample=2)
resized_img = torch.from_numpy(np.array(resized_img))
imgs.append(resized_img)
img = torch.stack(imgs, dim=0)
img = img.permute(0, 3, 1, 2)
resized_img = img.to(device=original_device, dtype=torch.float32) / 255.0
else:
resized_img = F.interpolate(
img, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
pad_height = max(0, int(height - resized_height))
pad_width = max(0, int(width - resized_width))
# pad on left and top of image
padded_img = F.pad(resized_img, (pad_width, 0, pad_height, 0), value=pad_value)
return padded_img

View File

@@ -0,0 +1,229 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.optim.optimizers import MultiAdamConfig
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import NormalizationMode
@dataclass
class ConcurrencyConfig:
actor: str = "threads"
learner: str = "threads"
@dataclass
class ActorLearnerConfig:
learner_host: str = "127.0.0.1"
learner_port: int = 50051
policy_parameters_push_frequency: int = 4
@dataclass
class CriticNetworkConfig:
hidden_dims: list[int] = field(default_factory=lambda: [256, 256])
activate_final: bool = True
final_activation: str | None = None
@dataclass
class ActorNetworkConfig:
hidden_dims: list[int] = field(default_factory=lambda: [256, 256])
activate_final: bool = True
@dataclass
class PolicyConfig:
use_tanh_squash: bool = True
log_std_min: float = 1e-5
log_std_max: float = 10.0
init_final: float = 0.05
@PreTrainedConfig.register_subclass("sac")
@dataclass
class SACConfig(PreTrainedConfig):
"""Soft Actor-Critic (SAC) configuration.
SAC is an off-policy actor-critic deep RL algorithm based on the maximum entropy
reinforcement learning framework. It learns a policy and a Q-function simultaneously
using experience collected from the environment.
This configuration class contains all the parameters needed to define a SAC agent,
including network architectures, optimization settings, and algorithm-specific
hyperparameters.
Args:
actor_network: Configuration for the actor network architecture.
critic_network: Configuration for the critic network architecture.
policy: Configuration for the policy parameters.
n_obs_steps: Number of observation steps to consider.
normalization_mapping: Mapping of feature types to normalization modes.
dataset_stats: Statistics for normalizing different types of inputs.
input_features: Dictionary of input features with their types and shapes.
output_features: Dictionary of output features with their types and shapes.
camera_number: Number of cameras used for visual observations.
device: Device to run the model on (e.g., "cuda", "cpu").
storage_device: Device to store the model on.
vision_encoder_name: Name of the vision encoder model.
freeze_vision_encoder: Whether to freeze the vision encoder during training.
image_encoder_hidden_dim: Hidden dimension size for the image encoder.
shared_encoder: Whether to use a shared encoder for actor and critic.
num_discrete_actions: Number of discrete actions, eg for gripper actions.
image_embedding_pooling_dim: Dimension of the image embedding pooling.
concurrency: Configuration for concurrency settings.
actor_learner: Configuration for actor-learner architecture.
online_steps: Number of steps for online training.
online_env_seed: Seed for the online environment.
online_buffer_capacity: Capacity of the online replay buffer.
offline_buffer_capacity: Capacity of the offline replay buffer.
async_prefetch: Whether to use asynchronous prefetching for the buffers.
online_step_before_learning: Number of steps before learning starts.
policy_update_freq: Frequency of policy updates.
discount: Discount factor for the SAC algorithm.
temperature_init: Initial temperature value.
num_critics: Number of critics in the ensemble.
num_subsample_critics: Number of subsampled critics for training.
critic_lr: Learning rate for the critic network.
actor_lr: Learning rate for the actor network.
temperature_lr: Learning rate for the temperature parameter.
critic_target_update_weight: Weight for the critic target update.
utd_ratio: Update-to-data ratio for the UTD algorithm.
state_encoder_hidden_dim: Hidden dimension size for the state encoder.
latent_dim: Dimension of the latent space.
target_entropy: Target entropy for the SAC algorithm.
use_backup_entropy: Whether to use backup entropy for the SAC algorithm.
grad_clip_norm: Gradient clipping norm for the SAC algorithm.
"""
normalization_mapping: dict[str, NormalizationMode] = field(
default_factory=lambda: {
"VISUAL": NormalizationMode.MEAN_STD,
"STATE": NormalizationMode.MIN_MAX,
"ENV": NormalizationMode.MIN_MAX,
"ACTION": NormalizationMode.MIN_MAX,
}
)
dataset_stats: dict[str, dict[str, list[float]]] | None = field(
default_factory=lambda: {
"observation.image": {
"mean": [0.485, 0.456, 0.406],
"std": [0.229, 0.224, 0.225],
},
"observation.state": {
"min": [0.0, 0.0],
"max": [1.0, 1.0],
},
"action": {
"min": [0.0, 0.0, 0.0],
"max": [1.0, 1.0, 1.0],
},
}
)
# Architecture specifics
camera_number: int = 1
device: str = "cuda"
storage_device: str = "cpu"
# Set to "helper2424/resnet10" for hil serl
vision_encoder_name: str | None = None
freeze_vision_encoder: bool = True
image_encoder_hidden_dim: int = 32
shared_encoder: bool = True
num_discrete_actions: int | None = None
image_embedding_pooling_dim: int = 8
# Training parameter
online_steps: int = 1000000
online_env_seed: int = 10000
online_buffer_capacity: int = 100000
offline_buffer_capacity: int = 100000
async_prefetch: bool = False
online_step_before_learning: int = 100
policy_update_freq: int = 1
# SAC algorithm parameters
discount: float = 0.99
temperature_init: float = 1.0
num_critics: int = 2
num_subsample_critics: int | None = None
critic_lr: float = 3e-4
actor_lr: float = 3e-4
temperature_lr: float = 3e-4
critic_target_update_weight: float = 0.005
utd_ratio: int = 1 # If you want enable utd_ratio, you need to set it to >1
state_encoder_hidden_dim: int = 256
latent_dim: int = 256
target_entropy: float | None = None
use_backup_entropy: bool = True
grad_clip_norm: float = 40.0
# Network configuration
critic_network_kwargs: CriticNetworkConfig = field(default_factory=CriticNetworkConfig)
actor_network_kwargs: ActorNetworkConfig = field(default_factory=ActorNetworkConfig)
policy_kwargs: PolicyConfig = field(default_factory=PolicyConfig)
grasp_critic_network_kwargs: CriticNetworkConfig = field(default_factory=CriticNetworkConfig)
actor_learner_config: ActorLearnerConfig = field(default_factory=ActorLearnerConfig)
concurrency: ConcurrencyConfig = field(default_factory=ConcurrencyConfig)
def __post_init__(self):
super().__post_init__()
# Any validation specific to SAC configuration
def get_optimizer_preset(self) -> MultiAdamConfig:
return MultiAdamConfig(
weight_decay=0.0,
optimizer_groups={
"actor": {"lr": self.actor_lr},
"critic": {"lr": self.critic_lr},
"temperature": {"lr": self.temperature_lr},
},
)
def get_scheduler_preset(self) -> None:
return None
def validate_features(self) -> None:
has_image = any(key.startswith("observation.image") for key in self.input_features)
has_state = "observation.state" in self.input_features
if not (has_state or has_image):
raise ValueError(
"You must provide either 'observation.state' or an image observation (key starting with 'observation.image') in the input features"
)
if "action" not in self.output_features:
raise ValueError("You must provide 'action' in the output features")
@property
def image_features(self) -> list[str]:
return [key for key in self.input_features if "image" in key]
@property
def observation_delta_indices(self) -> list:
return None
@property
def action_delta_indices(self) -> list:
return None # SAC typically predicts one action at a time
@property
def reward_delta_indices(self) -> None:
return None

File diff suppressed because it is too large Load Diff

View File

@@ -1,154 +0,0 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.optim.optimizers import AdamWConfig
from lerobot.common.optim.schedulers import (
CosineDecayWithWarmupSchedulerConfig,
)
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
@PreTrainedConfig.register_subclass("smolvla")
@dataclass
class SmolVLAConfig(PreTrainedConfig):
# Input / output structure.
n_obs_steps: int = 1
chunk_size: int = 50
n_action_steps: int = 50
normalization_mapping: dict[str, NormalizationMode] = field(
default_factory=lambda: {
"VISUAL": NormalizationMode.IDENTITY,
"STATE": NormalizationMode.MEAN_STD,
"ACTION": NormalizationMode.MEAN_STD,
}
)
# Shorter state and action vectors will be padded
max_state_dim: int = 32
max_action_dim: int = 32
# Image preprocessing
resize_imgs_with_padding: tuple[int, int] = (512, 512)
# Add empty images. Used by smolvla_aloha_sim which adds the empty
# left and right wrist cameras in addition to the top camera.
empty_cameras: int = 0
# Converts the joint and gripper values from the standard Aloha space to
# the space used by the pi internal runtime which was used to train the base model.
adapt_to_pi_aloha: bool = False
# Converts joint dimensions to deltas with respect to the current state before passing to the model.
# Gripper dimensions will remain in absolute values.
use_delta_joint_actions_aloha: bool = False
# Tokenizer
tokenizer_max_length: int = 48
# Decoding
num_steps: int = 10
# Attention utils
use_cache: bool = True
# Finetuning settings
freeze_vision_encoder: bool = True
train_expert_only: bool = True
train_state_proj: bool = True
# Training presets
optimizer_lr: float = 1e-4
optimizer_betas: tuple[float, float] = (0.9, 0.95)
optimizer_eps: float = 1e-8
optimizer_weight_decay: float = 1e-10
optimizer_grad_clip_norm: float = 10
scheduler_warmup_steps: int = 1_000
scheduler_decay_steps: int = 30_000
scheduler_decay_lr: float = 2.5e-6
vlm_model_name: str = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct" # Select the VLM backbone.
load_vlm_weights: bool = False # Set to True in case of training the expert from scratch. True when init from pretrained SmolVLA weights
add_image_special_tokens: bool = False # Whether to use special image tokens around image features.
attention_mode: str = "cross_attn"
prefix_length: int = -1
pad_language_to: str = "longest" # "max_length"
num_expert_layers: int = -1 # Less or equal to 0 is the default where the action expert has the same number of layers of VLM. Otherwise the expert have less layers.
num_vlm_layers: int = 16 # Number of layers used in the VLM (first num_vlm_layers layers)
self_attn_every_n_layers: int = 2 # Interleave SA layers each self_attn_every_n_layers
expert_width_multiplier: float = 0.75 # The action expert hidden size (wrt to the VLM)
min_period: float = 4e-3 # sensitivity range for the timestep used in sine-cosine positional encoding
max_period: float = 4.0
def __post_init__(self):
super().__post_init__()
"""Input validation (not exhaustive)."""
if self.n_action_steps > self.chunk_size:
raise ValueError(
f"The chunk size is the upper bound for the number of action steps per model invocation. Got "
f"{self.n_action_steps} for `n_action_steps` and {self.chunk_size} for `chunk_size`."
)
if self.use_delta_joint_actions_aloha:
raise NotImplementedError(
"`use_delta_joint_actions_aloha` is used by smolvla for aloha real models. It is not ported yet in LeRobot."
)
def validate_features(self) -> None:
for i in range(self.empty_cameras):
key = f"observation.images.empty_camera_{i}"
empty_camera = PolicyFeature(
type=FeatureType.VISUAL,
shape=(3, 480, 640),
)
self.input_features[key] = empty_camera
def get_optimizer_preset(self) -> AdamWConfig:
return AdamWConfig(
lr=self.optimizer_lr,
betas=self.optimizer_betas,
eps=self.optimizer_eps,
weight_decay=self.optimizer_weight_decay,
grad_clip_norm=self.optimizer_grad_clip_norm,
)
def get_scheduler_preset(self):
return CosineDecayWithWarmupSchedulerConfig(
peak_lr=self.optimizer_lr,
decay_lr=self.scheduler_decay_lr,
num_warmup_steps=self.scheduler_warmup_steps,
num_decay_steps=self.scheduler_decay_steps,
)
@property
def observation_delta_indices(self) -> list:
return [0]
@property
def action_delta_indices(self) -> list:
return list(range(self.chunk_size))
@property
def reward_delta_indices(self) -> None:
return None

View File

@@ -1,801 +0,0 @@
#!/usr/bin/env python
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
SmolVLA:
[Paper](https://huggingface.co/papers/2506.01844)
Designed by Hugging Face.
Install smolvla extra dependencies:
```bash
pip install -e ".[smolvla]"
```
Example of finetuning the smolvla pretrained model (`smolvla_base`):
```bash
python lerobot/scripts/train.py \
--policy.path=lerobot/smolvla_base \
--dataset.repo_id=danaaubakirova/svla_so100_task1_v3 \
--batch_size=64 \
--steps=200000
```
Example of finetuning a smolVLA. SmolVLA is composed of a pretrained VLM,
and an action expert.
```bash
python lerobot/scripts/train.py \
--policy.type=smolvla \
--dataset.repo_id=danaaubakirova/svla_so100_task1_v3 \
--batch_size=64 \
--steps=200000
```
Example of using the smolvla pretrained model outside LeRobot training framework:
```python
policy = SmolVLAPolicy.from_pretrained("lerobot/smolvla_base")
```
"""
import math
from collections import deque
import torch
import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoProcessor
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.policies.normalize import (
Normalize,
Unnormalize,
)
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.smolvla.configuration_smolvla import SmolVLAConfig
from lerobot.common.policies.smolvla.smolvlm_with_expert import SmolVLMWithExpertModel
from lerobot.common.policies.utils import (
populate_queues,
)
from lerobot.common.utils.utils import get_safe_dtype
def create_sinusoidal_pos_embedding(
time: torch.tensor, dimension: int, min_period: float, max_period: float, device="cpu"
) -> Tensor:
"""Computes sine-cosine positional embedding vectors for scalar positions."""
if dimension % 2 != 0:
raise ValueError(f"dimension ({dimension}) must be divisible by 2")
if time.ndim != 1:
raise ValueError("The time tensor is expected to be of shape `(batch_size, )`.")
dtype = get_safe_dtype(torch.float64, device.type)
fraction = torch.linspace(0.0, 1.0, dimension // 2, dtype=dtype, device=device)
period = min_period * (max_period / min_period) ** fraction
# Compute the outer product
scaling_factor = 1.0 / period * 2 * math.pi
sin_input = scaling_factor[None, :] * time[:, None]
pos_emb = torch.cat([torch.sin(sin_input), torch.cos(sin_input)], dim=1)
return pos_emb
def sample_beta(alpha, beta, bsize, device):
gamma1 = torch.empty((bsize,), device=device).uniform_(0, 1).pow(1 / alpha)
gamma2 = torch.empty((bsize,), device=device).uniform_(0, 1).pow(1 / beta)
return gamma1 / (gamma1 + gamma2)
def make_att_2d_masks(pad_masks, att_masks):
"""Copied from big_vision.
Tokens can attend to valid inputs tokens which have a cumulative mask_ar
smaller or equal to theirs. This way `mask_ar` int[B, N] can be used to
setup several types of attention, for example:
[[1 1 1 1 1 1]]: pure causal attention.
[[0 0 0 1 1 1]]: prefix-lm attention. The first 3 tokens can attend between
themselves and the last 3 tokens have a causal attention. The first
entry could also be a 1 without changing behaviour.
[[1 0 1 0 1 0 0 1 0 0]]: causal attention between 4 blocks. Tokens of a
block can attend all previous blocks and all tokens on the same block.
Args:
input_mask: bool[B, N] true if its part of the input, false if padding.
mask_ar: int32[B, N] mask that's 1 where previous tokens cannot depend on
it and 0 where it shares the same attention mask as the previous token.
"""
if att_masks.ndim != 2:
raise ValueError(att_masks.ndim)
if pad_masks.ndim != 2:
raise ValueError(pad_masks.ndim)
cumsum = torch.cumsum(att_masks, dim=1)
att_2d_masks = cumsum[:, None, :] <= cumsum[:, :, None]
pad_2d_masks = pad_masks[:, None, :] * pad_masks[:, :, None]
att_2d_masks = att_2d_masks & pad_2d_masks
return att_2d_masks
def resize_with_pad(img, width, height, pad_value=-1):
# assume no-op when width height fits already
if img.ndim != 4:
raise ValueError(f"(b,c,h,w) expected, but {img.shape}")
cur_height, cur_width = img.shape[2:]
ratio = max(cur_width / width, cur_height / height)
resized_height = int(cur_height / ratio)
resized_width = int(cur_width / ratio)
resized_img = F.interpolate(
img, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
pad_height = max(0, int(height - resized_height))
pad_width = max(0, int(width - resized_width))
# pad on left and top of image
padded_img = F.pad(resized_img, (pad_width, 0, pad_height, 0), value=pad_value)
return padded_img
def pad_vector(vector, new_dim):
"""Can be (batch_size x sequence_length x features_dimension)
or (batch_size x features_dimension)
"""
if vector.shape[-1] == new_dim:
return vector
shape = list(vector.shape)
current_dim = shape[-1]
shape[-1] = new_dim
new_vector = torch.zeros(*shape, dtype=vector.dtype, device=vector.device)
new_vector[..., :current_dim] = vector
return new_vector
def normalize(x, min_val, max_val):
return (x - min_val) / (max_val - min_val)
def unnormalize(x, min_val, max_val):
return x * (max_val - min_val) + min_val
def safe_arcsin(value):
# This ensures that the input stays within
# [1,1] to avoid invalid values for arcsin
return torch.arcsin(torch.clamp(value, -1.0, 1.0))
def aloha_gripper_to_angular(value):
# Aloha transforms the gripper positions into a linear space. The following code
# reverses this transformation to be consistent with smolvla which is pretrained in
# angular space.
#
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_POSITION_OPEN, PUPPET_GRIPPER_POSITION_CLOSED
value = unnormalize(value, min_val=0.01844, max_val=0.05800)
# This is the inverse of the angular to linear transformation inside the Interbotix code.
def linear_to_radian(linear_position, arm_length, horn_radius):
value = (horn_radius**2 + linear_position**2 - arm_length**2) / (2 * horn_radius * linear_position)
return safe_arcsin(value)
# The constants are taken from the Interbotix code.
value = linear_to_radian(value, arm_length=0.036, horn_radius=0.022)
# Normalize to [0, 1].
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
return normalize(value, min_val=0.4, max_val=1.5)
def aloha_gripper_from_angular(value):
# Convert from the gripper position used by smolvla to the gripper position that is used by Aloha.
# Note that the units are still angular but the range is different.
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
value = unnormalize(value, min_val=0.4, max_val=1.5)
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_JOINT_OPEN, PUPPET_GRIPPER_JOINT_CLOSE
return normalize(value, min_val=-0.6213, max_val=1.4910)
def aloha_gripper_from_angular_inv(value):
# Directly inverts the gripper_from_angular function.
value = unnormalize(value, min_val=-0.6213, max_val=1.4910)
return normalize(value, min_val=0.4, max_val=1.5)
class SmolVLAPolicy(PreTrainedPolicy):
"""Wrapper class around VLAFlowMatching model to train and run inference within LeRobot."""
config_class = SmolVLAConfig
name = "smolvla"
def __init__(
self,
config: SmolVLAConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoProcessor.from_pretrained(self.config.vlm_model_name).tokenizer
self.model = VLAFlowMatching(config)
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
self._queues = {
ACTION: deque(maxlen=self.config.n_action_steps),
}
def get_optim_params(self) -> dict:
return self.parameters()
@torch.no_grad
def select_action(self, batch: dict[str, Tensor], noise: Tensor | None = None) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch = self.normalize_inputs(batch)
self._queues = populate_queues(self._queues, batch, exclude_keys=[ACTION])
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._queues[ACTION]) == 0:
for k in batch:
if k in self._queues:
batch[k] = torch.stack(list(self._queues[k]), dim=1)
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
actions = self.model.sample_actions(
images, img_masks, lang_tokens, lang_masks, state, noise=noise
)
# Unpad actions
original_action_dim = self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
self._queues[ACTION].extend(actions.transpose(0, 1)[: self.config.n_action_steps])
return self._queues[ACTION].popleft()
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> dict[str, Tensor]:
"""Do a full training forward pass to compute the loss"""
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
images, img_masks = self.prepare_images(batch)
state = self.prepare_state(batch)
lang_tokens, lang_masks = self.prepare_language(batch)
actions = self.prepare_action(batch)
actions_is_pad = batch.get("actions_id_pad")
loss_dict = {}
losses = self.model.forward(images, img_masks, lang_tokens, lang_masks, state, actions, noise, time)
loss_dict["losses_after_forward"] = losses.clone()
if actions_is_pad is not None:
in_episode_bound = ~actions_is_pad
losses = losses * in_episode_bound.unsqueeze(-1)
loss_dict["losses_after_in_ep_bound"] = losses.clone()
# Remove padding
losses = losses[:, :, : self.config.max_action_dim]
loss_dict["losses_after_rm_padding"] = losses.clone()
# For backward pass
loss = losses.mean()
# For backward pass
loss_dict["loss"] = loss
return loss, loss_dict
def prepare_images(self, batch):
"""Apply SmolVLA preprocessing to the images, like resizing to 224x224 and padding to keep aspect ratio, and
convert pixel range from [0.0, 1.0] to [-1.0, 1.0] as requested by SigLIP.
"""
images = []
img_masks = []
present_img_keys = [key for key in self.config.image_features if key in batch]
missing_img_keys = [key for key in self.config.image_features if key not in batch]
if len(present_img_keys) == 0:
raise ValueError(
f"All image features are missing from the batch. At least one expected. (batch: {batch.keys()}) (image_features:{self.config.image_features})"
)
# Preprocess image features present in the batch
for key in present_img_keys:
img = batch[key][:, -1, :, :, :] if batch[key].ndim == 5 else batch[key]
if self.config.resize_imgs_with_padding is not None:
img = resize_with_pad(img, *self.config.resize_imgs_with_padding, pad_value=0)
# Normalize from range [0,1] to [-1,1] as expacted by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]
device = img.device
if f"{key}_padding_mask" in batch:
mask = batch[f"{key}_padding_mask"].bool()
else:
mask = torch.ones(bsize, dtype=torch.bool, device=device)
images.append(img)
img_masks.append(mask)
# Create image features not present in the batch
# as fully 0 padded images.
for num_empty_cameras in range(len(missing_img_keys)):
if num_empty_cameras >= self.config.empty_cameras:
break
img = torch.ones_like(img) * -1
mask = torch.zeros_like(mask)
images.append(img)
img_masks.append(mask)
return images, img_masks
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_ROBOT].device
tasks = batch["task"]
if len(tasks) == 1:
tasks = [tasks[0] for _ in range(batch[OBS_ROBOT].shape[0])]
tasks = [task if task.endswith("\n") else f"{task}\n" for task in tasks]
tokenized_prompt = self.language_tokenizer.__call__(
tasks,
padding=self.config.pad_language_to,
padding_side="right",
max_length=self.config.tokenizer_max_length,
return_tensors="pt",
)
lang_tokens = tokenized_prompt["input_ids"].to(device=device)
lang_masks = tokenized_prompt["attention_mask"].to(device=device, dtype=torch.bool)
return lang_tokens, lang_masks
def _pi_aloha_decode_state(self, state):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
state[:, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
state[:, motor_idx] = aloha_gripper_to_angular(state[:, motor_idx])
return state
def _pi_aloha_encode_actions(self, actions):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular(actions[:, :, motor_idx])
return actions
def _pi_aloha_encode_actions_inv(self, actions):
# Flip the joints again.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular_inv(actions[:, :, motor_idx])
return actions
def prepare_state(self, batch):
"""Pad state"""
state = batch[OBS_ROBOT][:, -1, :] if batch[OBS_ROBOT].ndim > 2 else batch[OBS_ROBOT]
state = pad_vector(state, self.config.max_state_dim)
return state
def prepare_action(self, batch):
"""Pad action"""
actions = pad_vector(batch[ACTION], self.config.max_action_dim)
return actions
def pad_tensor(tensor, max_len, pad_value=0):
"""
Efficiently pads a tensor along sequence dimension to match max_len.
Args:
tensor (torch.Tensor): Shape (B, L, ...) or (B, L).
max_len (int): Fixed sequence length.
pad_value (int/float): Value for padding.
Returns:
torch.Tensor: Shape (B, max_len, ...) or (B, max_len).
"""
b, d = tensor.shape[:2]
# Create a padded tensor of max_len and copy the existing values
padded_tensor = torch.full(
(b, max_len, *tensor.shape[2:]), pad_value, dtype=tensor.dtype, device=tensor.device
)
padded_tensor[:, :d] = tensor # Efficient in-place copy
return padded_tensor
class VLAFlowMatching(nn.Module):
"""
SmolVLA
[Paper]()
Designed by Hugging Face.
┌──────────────────────────────┐
│ actions │
│ ▲ │
│ ┌─────────┐ ┌─|────┐ │
│ | │────► │ │ │
│ | │ kv │ │ │
│ | │────► │Action│ │
│ | VLM │cache │Expert│ |
│ │ │────► | │ │
│ │ │ │ │ │
│ └▲──▲───▲─┘ └───▲──┘ |
│ │ | | │ |
│ | | | noise │
│ │ │ state │
│ │ language tokens │
│ image(s) │
└──────────────────────────────┘
"""
def __init__(self, config):
super().__init__()
self.config = config
self.vlm_with_expert = SmolVLMWithExpertModel(
model_id=self.config.vlm_model_name,
freeze_vision_encoder=self.config.freeze_vision_encoder,
train_expert_only=self.config.train_expert_only,
load_vlm_weights=self.config.load_vlm_weights,
attention_mode=self.config.attention_mode,
num_expert_layers=self.config.num_expert_layers,
num_vlm_layers=self.config.num_vlm_layers,
self_attn_every_n_layers=self.config.self_attn_every_n_layers,
expert_width_multiplier=self.config.expert_width_multiplier,
)
self.state_proj = nn.Linear(
self.config.max_state_dim, self.vlm_with_expert.config.text_config.hidden_size
)
self.action_in_proj = nn.Linear(self.config.max_action_dim, self.vlm_with_expert.expert_hidden_size)
self.action_out_proj = nn.Linear(self.vlm_with_expert.expert_hidden_size, self.config.max_action_dim)
self.action_time_mlp_in = nn.Linear(
self.vlm_with_expert.expert_hidden_size * 2, self.vlm_with_expert.expert_hidden_size
)
self.action_time_mlp_out = nn.Linear(
self.vlm_with_expert.expert_hidden_size, self.vlm_with_expert.expert_hidden_size
)
self.set_requires_grad()
self.fake_image_token = self.vlm_with_expert.processor.tokenizer.fake_image_token_id
self.global_image_token = self.vlm_with_expert.processor.tokenizer.global_image_token_id
self.global_image_start_token = torch.tensor(
[self.fake_image_token, self.global_image_token], dtype=torch.long
)
self.add_image_special_tokens = self.config.add_image_special_tokens
self.image_end_token = torch.tensor([self.fake_image_token], dtype=torch.long)
self.prefix_length = self.config.prefix_length
def set_requires_grad(self):
for params in self.state_proj.parameters():
params.requires_grad = self.config.train_state_proj
def sample_noise(self, shape, device):
noise = torch.normal(
mean=0.0,
std=1.0,
size=shape,
dtype=torch.float32,
device=device,
)
return noise
def sample_time(self, bsize, device):
time_beta = sample_beta(1.5, 1.0, bsize, device)
time = time_beta * 0.999 + 0.001
return time.to(dtype=torch.float32, device=device)
def embed_prefix(
self, images, img_masks, lang_tokens, lang_masks, state: torch.Tensor = None
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Embed images with SigLIP and language tokens with embedding layer to prepare
for SmolVLM transformer processing.
"""
embs = []
pad_masks = []
att_masks = []
for _img_idx, (
img,
img_mask,
) in enumerate(zip(images, img_masks, strict=False)):
if self.add_image_special_tokens:
image_start_token = (
self.vlm_with_expert.embed_language_tokens(
self.global_image_start_token.to(device=self.vlm_with_expert.vlm.device)
)
.unsqueeze(0)
.expand(img.shape[0], -1, -1)
)
image_start_mask = torch.ones_like(
image_start_token[:, :, 0], dtype=torch.bool, device=image_start_token.device
)
att_masks += [0] * (image_start_mask.shape[-1])
embs.append(image_start_token)
pad_masks.append(image_start_mask)
img_emb = self.vlm_with_expert.embed_image(img)
img_emb = img_emb
# Normalize image embeddings
img_emb_dim = img_emb.shape[-1]
img_emb = img_emb * torch.tensor(img_emb_dim**0.5, dtype=img_emb.dtype, device=img_emb.device)
bsize, num_img_embs = img_emb.shape[:2]
img_mask = img_mask[:, None].expand(bsize, num_img_embs)
embs.append(img_emb)
pad_masks.append(img_mask)
att_masks += [0] * (num_img_embs)
if self.add_image_special_tokens:
image_end_token = (
self.vlm_with_expert.embed_language_tokens(
self.image_end_token.to(device=self.vlm_with_expert.vlm.device)
)
.unsqueeze(0)
.expand(img.shape[0], -1, -1)
)
image_end_mask = torch.ones_like(
image_end_token[:, :, 0], dtype=torch.bool, device=image_end_token.device
)
embs.append(image_end_token)
pad_masks.append(image_end_mask)
att_masks += [0] * (image_end_mask.shape[1])
lang_emb = self.vlm_with_expert.embed_language_tokens(lang_tokens)
# Normalize language embeddings
lang_emb_dim = lang_emb.shape[-1]
lang_emb = lang_emb * math.sqrt(lang_emb_dim)
embs.append(lang_emb)
pad_masks.append(lang_masks)
num_lang_embs = lang_emb.shape[1]
att_masks += [0] * num_lang_embs
state_emb = self.state_proj(state)
state_emb = state_emb[:, None, :] if state_emb.ndim == 2 else state_emb
embs.append(state_emb)
bsize = state_emb.shape[0]
device = state_emb.device
states_seq_len = state_emb.shape[1]
state_mask = torch.ones(bsize, states_seq_len, dtype=torch.bool, device=device)
pad_masks.append(state_mask)
# Set attention masks so that image and language inputs do not attend to state or actions
att_masks += [1] * (states_seq_len)
embs = torch.cat(embs, dim=1)
pad_masks = torch.cat(pad_masks, dim=1)
att_masks = torch.tensor(att_masks, dtype=torch.bool, device=pad_masks.device)
att_masks = att_masks[None, :]
seq_len = pad_masks.shape[1]
if seq_len < self.prefix_length:
embs = pad_tensor(embs, self.prefix_length, pad_value=0)
pad_masks = pad_tensor(pad_masks, self.prefix_length, pad_value=0)
att_masks = pad_tensor(att_masks, self.prefix_length, pad_value=0)
att_masks = att_masks.expand(bsize, -1)
return embs, pad_masks, att_masks
def embed_suffix(self, noisy_actions, timestep):
"""Embed state, noisy_actions, timestep to prepare for Expert Gemma processing."""
embs = []
pad_masks = []
att_masks = []
# Fuse timestep + action information using an MLP
action_emb = self.action_in_proj(noisy_actions)
device = action_emb.device
bsize = action_emb.shape[0]
dtype = action_emb.dtype
# Embed timestep using sine-cosine positional encoding with sensitivity in the range [0, 1]
time_emb = create_sinusoidal_pos_embedding(
timestep,
self.vlm_with_expert.expert_hidden_size,
self.config.min_period,
self.config.max_period,
device=device,
)
time_emb = time_emb.type(dtype=dtype)
time_emb = time_emb[:, None, :].expand_as(action_emb)
action_time_emb = torch.cat([action_emb, time_emb], dim=2)
action_time_emb = self.action_time_mlp_in(action_time_emb)
action_time_emb = F.silu(action_time_emb) # swish == silu
action_time_emb = self.action_time_mlp_out(action_time_emb)
# Add to input tokens
embs.append(action_time_emb)
bsize, action_time_dim = action_time_emb.shape[:2]
action_time_mask = torch.ones(bsize, action_time_dim, dtype=torch.bool, device=device)
pad_masks.append(action_time_mask)
# Set attention masks so that image, language and state inputs do not attend to action tokens
att_masks += [1] * self.config.chunk_size
embs = torch.cat(embs, dim=1)
pad_masks = torch.cat(pad_masks, dim=1)
att_masks = torch.tensor(att_masks, dtype=embs.dtype, device=embs.device)
att_masks = att_masks[None, :].expand(bsize, len(att_masks))
return embs, pad_masks, att_masks
def forward(
self, images, img_masks, lang_tokens, lang_masks, state, actions, noise=None, time=None
) -> Tensor:
"""Do a full training forward pass and compute the loss (batch_size x num_steps x num_motors)"""
if noise is None:
noise = self.sample_noise(actions.shape, actions.device)
if time is None:
time = self.sample_time(actions.shape[0], actions.device)
time_expanded = time[:, None, None]
x_t = time_expanded * noise + (1 - time_expanded) * actions
u_t = noise - actions
prefix_embs, prefix_pad_masks, prefix_att_masks = self.embed_prefix(
images, img_masks, lang_tokens, lang_masks, state=state
)
suffix_embs, suffix_pad_masks, suffix_att_masks = self.embed_suffix(x_t, time)
pad_masks = torch.cat([prefix_pad_masks, suffix_pad_masks], dim=1)
att_masks = torch.cat([prefix_att_masks, suffix_att_masks], dim=1)
att_2d_masks = make_att_2d_masks(pad_masks, att_masks)
position_ids = torch.cumsum(pad_masks, dim=1) - 1
(_, suffix_out), _ = self.vlm_with_expert.forward(
attention_mask=att_2d_masks,
position_ids=position_ids,
past_key_values=None,
inputs_embeds=[prefix_embs, suffix_embs],
use_cache=False,
fill_kv_cache=False,
)
suffix_out = suffix_out[:, -self.config.chunk_size :]
# Original openpi code, upcast attention output
suffix_out = suffix_out.to(dtype=torch.float32)
v_t = self.action_out_proj(suffix_out)
losses = F.mse_loss(u_t, v_t, reduction="none")
return losses
def sample_actions(self, images, img_masks, lang_tokens, lang_masks, state, noise=None) -> Tensor:
"""Do a full inference forward and compute the action (batch_size x num_steps x num_motors)"""
bsize = state.shape[0]
device = state.device
if noise is None:
actions_shape = (bsize, self.config.chunk_size, self.config.max_action_dim)
noise = self.sample_noise(actions_shape, device)
prefix_embs, prefix_pad_masks, prefix_att_masks = self.embed_prefix(
images, img_masks, lang_tokens, lang_masks, state=state
)
prefix_att_2d_masks = make_att_2d_masks(prefix_pad_masks, prefix_att_masks)
prefix_position_ids = torch.cumsum(prefix_pad_masks, dim=1) - 1
# Compute image and language key value cache
_, past_key_values = self.vlm_with_expert.forward(
attention_mask=prefix_att_2d_masks,
position_ids=prefix_position_ids,
past_key_values=None,
inputs_embeds=[prefix_embs, None],
use_cache=self.config.use_cache,
fill_kv_cache=True,
)
dt = -1.0 / self.config.num_steps
dt = torch.tensor(dt, dtype=torch.float32, device=device)
x_t = noise
time = torch.tensor(1.0, dtype=torch.float32, device=device)
while time >= -dt / 2:
expanded_time = time.expand(bsize)
v_t = self.denoise_step(
prefix_pad_masks,
past_key_values,
x_t,
expanded_time,
)
# Euler step
x_t += dt * v_t
time += dt
return x_t
def denoise_step(
self,
prefix_pad_masks,
past_key_values,
x_t,
timestep,
):
"""Apply one denoising step of the noise `x_t` at a given timestep."""
suffix_embs, suffix_pad_masks, suffix_att_masks = self.embed_suffix(x_t, timestep)
suffix_len = suffix_pad_masks.shape[1]
batch_size = prefix_pad_masks.shape[0]
prefix_len = prefix_pad_masks.shape[1]
prefix_pad_2d_masks = prefix_pad_masks[:, None, :].expand(batch_size, suffix_len, prefix_len)
suffix_att_2d_masks = make_att_2d_masks(suffix_pad_masks, suffix_att_masks)
full_att_2d_masks = torch.cat([prefix_pad_2d_masks, suffix_att_2d_masks], dim=2)
prefix_offsets = torch.sum(prefix_pad_masks, dim=-1)[:, None]
position_ids = prefix_offsets + torch.cumsum(suffix_pad_masks, dim=1) - 1
outputs_embeds, _ = self.vlm_with_expert.forward(
attention_mask=full_att_2d_masks,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=[None, suffix_embs],
use_cache=self.config.use_cache,
fill_kv_cache=False,
)
suffix_out = outputs_embeds[1]
suffix_out = suffix_out[:, -self.config.chunk_size :]
suffix_out = suffix_out.to(dtype=torch.float32)
v_t = self.action_out_proj(suffix_out)
return v_t

View File

@@ -1,550 +0,0 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import List, Optional
import torch
from torch import nn
from transformers import (
AutoConfig,
AutoModel,
AutoModelForImageTextToText,
AutoProcessor,
SmolVLMForConditionalGeneration,
)
def apply_rope(x, positions, max_wavelength=10_000):
"""
Applies RoPE positions [B, L] to x [B, L, H, D].
"""
d_half = x.shape[-1] // 2
device = x.device
dtype = x.dtype
x = x.to(torch.float32)
freq_exponents = (2.0 / x.shape[-1]) * torch.arange(d_half, dtype=torch.float32, device=device)
timescale = max_wavelength**freq_exponents
radians = positions[..., None].to(torch.float32) / timescale[None, None, :].to(torch.float32)
radians = radians[..., None, :]
sin = torch.sin(radians) # .to(dtype=dtype)
cos = torch.cos(radians) # .to(dtype=dtype)
x1, x2 = x.split(d_half, dim=-1)
res = torch.empty_like(x)
res[..., :d_half] = x1 * cos - x2 * sin
res[..., d_half:] = x2 * cos + x1 * sin
return res.to(dtype)
def get_intermediate_size(hidden_dim, ffn_dim_multiplier=4, multiple_of=256):
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
return hidden_dim
class SmolVLMWithExpertModel(nn.Module):
def __init__(
self,
model_id: str = "HuggingFaceTB/SmolVLM2-500M-Video-Instruct",
load_vlm_weights: bool = True,
train_expert_only: bool = True,
freeze_vision_encoder: bool = False,
attention_mode: str = "self_attn",
num_expert_layers: int = -1,
num_vlm_layers: int = -1,
self_attn_every_n_layers: int = -1,
expert_width_multiplier: float = 0.5,
):
super().__init__()
if load_vlm_weights:
print(f"Loading {model_id} weights ...")
self.vlm = AutoModelForImageTextToText.from_pretrained(
model_id,
device_map="auto",
torch_dtype="bfloat16",
low_cpu_mem_usage=True,
)
config = self.vlm.config
else:
config = AutoConfig.from_pretrained(model_id)
self.vlm = SmolVLMForConditionalGeneration(config=config)
self.processor = AutoProcessor.from_pretrained(model_id)
if num_vlm_layers > 0:
print(f"Reducing the number of VLM layers to {num_vlm_layers} ...")
self.get_vlm_model().text_model.layers = self.get_vlm_model().text_model.layers[:num_vlm_layers]
self.num_vlm_layers = len(self.get_vlm_model().text_model.layers)
self.config = config
# Smaller lm expert
lm_expert_config = copy.deepcopy(config.text_config)
hidden_size = lm_expert_config.hidden_size
lm_expert_config.hidden_size = int(hidden_size * expert_width_multiplier) # hidden_size // 2
lm_expert_config.intermediate_size = get_intermediate_size(int(hidden_size * expert_width_multiplier))
lm_expert_config.num_hidden_layers = self.num_vlm_layers
if num_expert_layers > 0:
assert len(self.get_vlm_model().text_model.layers) % num_expert_layers == 0, (
f"Number of layers in the VLM {len(self.get_vlm_model().text_model.layers)} are not multiple of num_expert_layers {num_expert_layers}"
)
lm_expert_config.num_hidden_layers = num_expert_layers
self.lm_expert = AutoModel.from_config(lm_expert_config)
self.num_expert_layers = len(self.lm_expert.layers)
self.self_attn_every_n_layers = self_attn_every_n_layers
if "cross" in attention_mode:
# Reshape qkv projections to have the same input dimension as the vlm
for layer_idx in range(len(self.lm_expert.layers)):
if self.self_attn_every_n_layers > 0 and layer_idx % self.self_attn_every_n_layers == 0:
continue
self.lm_expert.layers[layer_idx].self_attn.k_proj = nn.Linear(
config.text_config.num_key_value_heads * config.text_config.head_dim,
lm_expert_config.num_key_value_heads * lm_expert_config.head_dim,
bias=lm_expert_config.attention_bias,
)
self.lm_expert.layers[layer_idx].self_attn.v_proj = nn.Linear(
config.text_config.num_key_value_heads * config.text_config.head_dim,
lm_expert_config.num_key_value_heads * lm_expert_config.head_dim,
bias=lm_expert_config.attention_bias,
)
# Remove unused embed_tokens
self.lm_expert.embed_tokens = None
self.num_attention_heads = self.config.text_config.num_attention_heads
self.num_key_value_heads = self.config.text_config.num_key_value_heads
self.freeze_vision_encoder = freeze_vision_encoder
self.train_expert_only = train_expert_only
self.attention_mode = attention_mode
self.expert_hidden_size = lm_expert_config.hidden_size
self.set_requires_grad()
def get_vlm_model(self):
return self.vlm.model
def set_requires_grad(self):
if self.freeze_vision_encoder:
self.get_vlm_model().vision_model.eval()
for params in self.get_vlm_model().vision_model.parameters():
params.requires_grad = False
if self.train_expert_only:
self.vlm.eval()
for params in self.vlm.parameters():
params.requires_grad = False
else:
# To avoid unused params issue with distributed training
last_layers = [self.num_vlm_layers - 1]
if (
self.num_vlm_layers != self.num_expert_layers
and self.num_vlm_layers % self.num_expert_layers == 0
):
last_layers.append(self.num_vlm_layers - 2)
frozen_layers = [
"lm_head",
"text_model.model.norm.weight",
]
for layer in last_layers:
frozen_layers.append(f"text_model.model.layers.{layer}.")
for name, params in self.vlm.named_parameters():
if any(k in name for k in frozen_layers):
params.requires_grad = False
# To avoid unused params issue with distributed training
for name, params in self.lm_expert.named_parameters():
if "lm_head" in name:
params.requires_grad = False
def train(self, mode: bool = True):
super().train(mode)
if self.freeze_vision_encoder:
self.get_vlm_model().vision_model.eval()
if self.train_expert_only:
self.vlm.eval()
def embed_image(self, image: torch.Tensor):
patch_attention_mask = None
# Get sequence from the vision encoder
image_hidden_states = (
self.get_vlm_model()
.vision_model(
pixel_values=image.to(dtype=self.get_vlm_model().vision_model.dtype),
patch_attention_mask=patch_attention_mask,
)
.last_hidden_state
)
# Modality projection & resampling
image_hidden_states = self.get_vlm_model().connector(image_hidden_states)
return image_hidden_states
def embed_language_tokens(self, tokens: torch.Tensor):
return self.get_vlm_model().text_model.get_input_embeddings()(tokens)
def forward_attn_layer(
self,
model_layers,
inputs_embeds,
layer_idx,
position_ids,
attention_mask,
batch_size,
head_dim,
use_cache: bool = True,
fill_kv_cache: bool = True,
past_key_values=None,
) -> list[torch.Tensor]:
query_states = []
key_states = []
value_states = []
for i, hidden_states in enumerate(inputs_embeds):
layer = model_layers[i][layer_idx]
if hidden_states is None or layer is None:
continue
hidden_states = layer.input_layernorm(hidden_states)
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, layer.self_attn.head_dim)
hidden_states = hidden_states.to(dtype=layer.self_attn.q_proj.weight.dtype)
query_state = layer.self_attn.q_proj(hidden_states).view(hidden_shape)
key_state = layer.self_attn.k_proj(hidden_states).view(hidden_shape)
value_state = layer.self_attn.v_proj(hidden_states).view(hidden_shape)
query_states.append(query_state)
key_states.append(key_state)
value_states.append(value_state)
# B,L,H,D with L sequence length, H number of heads, D head dim
# concatenate on the number of embeddings/tokens
query_states = torch.cat(query_states, dim=1)
key_states = torch.cat(key_states, dim=1)
value_states = torch.cat(value_states, dim=1)
seq_len = query_states.shape[1]
if seq_len < position_ids.shape[1]:
_position_ids = position_ids[:, :seq_len]
_attention_mask = attention_mask[:, :seq_len, :seq_len]
else:
_position_ids = position_ids
_attention_mask = attention_mask
attention_mask_ = _attention_mask
position_ids_ = _position_ids
query_states = apply_rope(query_states, position_ids_)
key_states = apply_rope(key_states, position_ids_)
if use_cache and past_key_values is None:
past_key_values = {}
if use_cache:
if fill_kv_cache:
past_key_values[layer_idx] = {
"key_states": key_states,
"value_states": value_states,
}
else:
# TODO here, some optimization can be done - similar to a `StaticCache` we can declare the `max_len` before.
# so we create an empty cache, with just one cuda malloc, and if (in autoregressive case) we reach
# the max len, then we (for instance) double the cache size. This implementation already exists
# in `transformers`. (molbap)
key_states = torch.cat([past_key_values[layer_idx]["key_states"], key_states], dim=1)
value_states = torch.cat([past_key_values[layer_idx]["value_states"], value_states], dim=1)
attention_interface = self.get_attention_interface()
att_output = attention_interface(
attention_mask_, batch_size, head_dim, query_states, key_states, value_states
)
return [att_output], past_key_values
def forward_cross_attn_layer(
self,
model_layers,
inputs_embeds,
layer_idx,
position_ids,
attention_mask,
batch_size,
head_dim,
use_cache: bool = True,
fill_kv_cache: bool = True,
past_key_values=None,
) -> list[torch.Tensor]:
attention_interface = self.get_attention_interface()
att_outputs = []
assert len(inputs_embeds) == 2 or (use_cache and past_key_values is not None and not fill_kv_cache), (
f"Both len(inputs_embeds) == {len(inputs_embeds)} and past_key_values is {past_key_values}"
)
if len(inputs_embeds) == 2 and not past_key_values:
# Prefix attention
seq_len = inputs_embeds[0].shape[1]
position_id, expert_position_id = position_ids[:, :seq_len], position_ids[:, seq_len:]
prefix_attention_mask = attention_mask[:, :seq_len, :seq_len]
layer = model_layers[0][layer_idx]
hidden_states = layer.input_layernorm(inputs_embeds[0])
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, layer.self_attn.head_dim)
hidden_states = hidden_states.to(dtype=layer.self_attn.q_proj.weight.dtype)
query_state = layer.self_attn.q_proj(hidden_states).view(hidden_shape)
key_state = layer.self_attn.k_proj(hidden_states).view(hidden_shape)
value_states = layer.self_attn.v_proj(hidden_states).view(hidden_shape)
# B,L,H,D with L sequence length, H number of heads, D head dim
query_states = apply_rope(query_state, position_id)
key_states = apply_rope(key_state, position_id)
att_output = attention_interface(
prefix_attention_mask, batch_size, head_dim, query_states, key_states, value_states
)
att_outputs.append(att_output)
else:
expert_position_id = position_ids
if use_cache and past_key_values is None:
past_key_values = {}
if use_cache:
if fill_kv_cache:
past_key_values[layer_idx] = {
"key_states": key_states,
"value_states": value_states,
}
else:
# TODO here, some optimization can be done - similar to a `StaticCache` we can declare the `max_len` before.
# so we create an empty cache, with just one cuda malloc, and if (in autoregressive case) we reach
# the max len, then we (for instance) double the cache size. This implementation already exists
# in `transformers`. (molbap)
key_states = past_key_values[layer_idx]["key_states"]
value_states = past_key_values[layer_idx]["value_states"]
# Expert
expert_layer = model_layers[1][layer_idx]
if expert_layer is not None:
expert_hidden_states = expert_layer.input_layernorm(inputs_embeds[1])
expert_input_shape = expert_hidden_states.shape[:-1]
expert_hidden_shape = (*expert_input_shape, -1, expert_layer.self_attn.head_dim)
expert_hidden_states = expert_hidden_states.to(dtype=expert_layer.self_attn.q_proj.weight.dtype)
expert_query_state = expert_layer.self_attn.q_proj(expert_hidden_states).view(expert_hidden_shape)
_key_states = key_states.to(dtype=expert_layer.self_attn.k_proj.weight.dtype).view(
*key_states.shape[:2], -1
)
expert_key_states = expert_layer.self_attn.k_proj(_key_states).view(
*_key_states.shape[:-1], -1, expert_layer.self_attn.head_dim
) # k_proj should have same dim as kv
_value_states = value_states.to(dtype=expert_layer.self_attn.v_proj.weight.dtype).view(
*value_states.shape[:2], -1
)
expert_value_states = expert_layer.self_attn.v_proj(_value_states).view(
*_value_states.shape[:-1], -1, expert_layer.self_attn.head_dim
)
expert_position_id = (
expert_position_id - torch.min(expert_position_id, dim=1, keepdim=True).values
) # start from 0
expert_attention_mask = attention_mask[
:, -inputs_embeds[1].shape[1] :, : expert_key_states.shape[1] :
] # take into account kv
expert_query_states = apply_rope(expert_query_state, expert_position_id)
att_output = attention_interface(
expert_attention_mask,
batch_size,
head_dim,
expert_query_states,
expert_key_states,
expert_value_states,
)
att_outputs.append(att_output)
else:
att_outputs.append(None)
# att_output = att_output.to(dtype=models[i].dtype)
return att_outputs, past_key_values
def get_model_layers(self, models: list) -> list:
vlm_layers = []
expert_layers = []
multiple_of = self.num_vlm_layers // self.num_expert_layers
for i in range(self.num_vlm_layers):
if multiple_of > 0 and i > 0 and i % multiple_of != 0:
expert_layer = None
else:
expert_layer_index = i // multiple_of if multiple_of > 0 else i
expert_layer = models[1].layers[expert_layer_index]
vlm_layers.append(models[0].layers[i])
expert_layers.append(expert_layer)
return [vlm_layers, expert_layers]
def forward(
self,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: List[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
fill_kv_cache: Optional[bool] = None,
):
models = [self.get_vlm_model().text_model, self.lm_expert]
model_layers = self.get_model_layers(models)
for hidden_states in inputs_embeds:
# TODO this is very inefficient
# dtype is always the same, batch size too (if > 1 len)
# device could be trickier in multi gpu edge cases but that's it
if hidden_states is None:
continue
batch_size = hidden_states.shape[0]
# RMSNorm
num_layers = self.num_vlm_layers
head_dim = self.vlm.config.text_config.head_dim
for layer_idx in range(num_layers):
if (
fill_kv_cache
or "cross" not in self.attention_mode
or (self.self_attn_every_n_layers > 0 and layer_idx % self.self_attn_every_n_layers == 0)
):
att_outputs, past_key_values = self.forward_attn_layer(
model_layers,
inputs_embeds,
layer_idx,
position_ids,
attention_mask,
batch_size,
head_dim,
use_cache=use_cache,
fill_kv_cache=fill_kv_cache,
past_key_values=past_key_values,
)
else:
att_outputs, past_key_values = self.forward_cross_attn_layer(
model_layers,
inputs_embeds,
layer_idx,
position_ids,
attention_mask,
batch_size,
head_dim,
use_cache=use_cache,
fill_kv_cache=fill_kv_cache,
past_key_values=past_key_values,
)
outputs_embeds = []
start = 0
for i, hidden_states in enumerate(inputs_embeds):
layer = model_layers[i][layer_idx]
att_output = (
att_outputs[i] if i < len(att_outputs) else att_outputs[0]
) # in case of self_attn
if hidden_states is not None:
if layer is None:
outputs_embeds.append(hidden_states)
continue
end = start + hidden_states.shape[1]
if att_output.dtype != layer.self_attn.o_proj.weight.dtype:
att_output = att_output.to(layer.self_attn.o_proj.weight.dtype)
att_out = att_output[:, start:end]
out_emb = layer.self_attn.o_proj(att_out)
out_emb += hidden_states
after_first_residual = out_emb.clone()
out_emb = layer.post_attention_layernorm(out_emb)
out_emb = layer.mlp(out_emb)
out_emb += after_first_residual
outputs_embeds.append(out_emb)
start = end if len(att_outputs) == 1 else 0
else:
outputs_embeds.append(None)
inputs_embeds = outputs_embeds
# final norm
outputs_embeds = []
for i, hidden_states in enumerate(inputs_embeds):
if hidden_states is not None:
out_emb = models[i].norm(hidden_states)
outputs_embeds.append(out_emb)
else:
outputs_embeds.append(None)
return outputs_embeds, past_key_values
def get_attention_interface(self):
attention_interface = self.eager_attention_forward
return attention_interface
def eager_attention_forward(
self, attention_mask, batch_size, head_dim, query_states, key_states, value_states
):
num_att_heads = self.num_attention_heads
num_key_value_heads = self.num_key_value_heads
num_key_value_groups = num_att_heads // num_key_value_heads
sequence_length = key_states.shape[1]
key_states = key_states[:, :, :, None, :].expand(
batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
)
key_states = key_states.reshape(
batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
)
value_states = value_states[:, :, :, None, :].expand(
batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
)
value_states = value_states.reshape(
batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
)
# Attention here is upcasted to float32 to match the original eager implementation.
query_states = query_states.to(dtype=torch.float32)
key_states = key_states.to(dtype=torch.float32)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
att_weights = torch.matmul(query_states, key_states.transpose(2, 3))
att_weights *= head_dim**-0.5
att_weights = att_weights.to(dtype=torch.float32)
big_neg = torch.finfo(att_weights.dtype).min # -2.3819763e38 # See gemma/modules.py
masked_att_weights = torch.where(attention_mask[:, None, :, :], att_weights, big_neg)
probs = nn.functional.softmax(masked_att_weights, dim=-1)
probs = probs.to(dtype=value_states.dtype)
att_output = torch.matmul(probs, value_states.permute(0, 2, 1, 3))
att_output = att_output.permute(0, 2, 1, 3)
# we use -1 because sequence length can change
att_output = att_output.reshape(batch_size, -1, num_key_value_heads * num_key_value_groups * head_dim)
return att_output

View File

@@ -39,7 +39,11 @@ from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.common.policies.utils import get_device_from_parameters, get_output_shape, populate_queues
from lerobot.common.policies.utils import (
get_device_from_parameters,
get_output_shape,
populate_queues,
)
class TDMPCPolicy(PreTrainedPolicy):
@@ -63,7 +67,11 @@ class TDMPCPolicy(PreTrainedPolicy):
config_class = TDMPCConfig
name = "tdmpc"
def __init__(self, config: TDMPCConfig, dataset_stats: dict[str, dict[str, Tensor]] | None = None):
def __init__(
self,
config: TDMPCConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
@@ -122,7 +130,7 @@ class TDMPCPolicy(PreTrainedPolicy):
# When the action queue is depleted, populate it again by querying the policy.
if len(self._queues["action"]) == 0:
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch if key in self._queues}
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
# Remove the time dimensions as it is not handled yet.
for key in batch:
@@ -189,13 +197,20 @@ class TDMPCPolicy(PreTrainedPolicy):
# In the CEM loop we will need this for a call to estimate_value with the gaussian sampled
# trajectories.
z = einops.repeat(z, "b d -> n b d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
z = einops.repeat(
z,
"b d -> n b d",
n=self.config.n_gaussian_samples + self.config.n_pi_samples,
)
# Model Predictive Path Integral (MPPI) with the cross-entropy method (CEM) as the optimization
# algorithm.
# The initial mean and standard deviation for the cross-entropy method (CEM).
mean = torch.zeros(
self.config.horizon, batch_size, self.config.action_feature.shape[0], device=device
self.config.horizon,
batch_size,
self.config.action_feature.shape[0],
device=device,
)
# Maybe warm start CEM with the mean from the previous step.
if self._prev_mean is not None:
@@ -291,9 +306,10 @@ class TDMPCPolicy(PreTrainedPolicy):
if self.config.q_ensemble_size > 2:
G += (
running_discount
* torch.min(terminal_values[torch.randint(0, self.config.q_ensemble_size, size=(2,))], dim=0)[
0
]
* torch.min(
terminal_values[torch.randint(0, self.config.q_ensemble_size, size=(2,))],
dim=0,
)[0]
)
else:
G += running_discount * torch.min(terminal_values, dim=0)[0]
@@ -329,7 +345,10 @@ class TDMPCPolicy(PreTrainedPolicy):
# Apply random image augmentations.
if self.config.image_features and self.config.max_random_shift_ratio > 0:
observations["observation.image"] = flatten_forward_unflatten(
partial(random_shifts_aug, max_random_shift_ratio=self.config.max_random_shift_ratio),
partial(
random_shifts_aug,
max_random_shift_ratio=self.config.max_random_shift_ratio,
),
observations["observation.image"],
)
@@ -553,7 +572,10 @@ class TDMPCTOLD(nn.Module):
self._Qs = nn.ModuleList(
[
nn.Sequential(
nn.Linear(config.latent_dim + config.action_feature.shape[0], config.mlp_dim),
nn.Linear(
config.latent_dim + config.action_feature.shape[0],
config.mlp_dim,
),
nn.LayerNorm(config.mlp_dim),
nn.Tanh(),
nn.Linear(config.mlp_dim, config.mlp_dim),
@@ -702,11 +724,26 @@ class TDMPCObservationEncoder(nn.Module):
stride=2,
),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
nn.Conv2d(
config.image_encoder_hidden_dim,
config.image_encoder_hidden_dim,
5,
stride=2,
),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.Conv2d(
config.image_encoder_hidden_dim,
config.image_encoder_hidden_dim,
3,
stride=2,
),
nn.ReLU(),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.Conv2d(
config.image_encoder_hidden_dim,
config.image_encoder_hidden_dim,
3,
stride=2,
),
nn.ReLU(),
)
dummy_shape = (1, *next(iter(config.image_features.values())).shape)
@@ -749,7 +786,8 @@ class TDMPCObservationEncoder(nn.Module):
if self.config.image_features:
feat.append(
flatten_forward_unflatten(
self.image_enc_layers, obs_dict[next(iter(self.config.image_features))]
self.image_enc_layers,
obs_dict[next(iter(self.config.image_features))],
)
)
if self.config.env_state_feature:
@@ -796,7 +834,9 @@ def update_ema_parameters(ema_net: nn.Module, net: nn.Module, alpha: float):
"""Update EMA parameters in place with ema_param <- alpha * ema_param + (1 - alpha) * param."""
for ema_module, module in zip(ema_net.modules(), net.modules(), strict=True):
for (n_p_ema, p_ema), (n_p, p) in zip(
ema_module.named_parameters(recurse=False), module.named_parameters(recurse=False), strict=True
ema_module.named_parameters(recurse=False),
module.named_parameters(recurse=False),
strict=True,
):
assert n_p_ema == n_p, "Parameter names don't match for EMA model update"
if isinstance(p, dict):

View File

@@ -193,7 +193,12 @@ class VQBeTConfig(PreTrainedConfig):
@property
def action_delta_indices(self) -> list:
return list(range(1 - self.n_obs_steps, self.n_action_pred_token + self.action_chunk_size - 1))
return list(
range(
1 - self.n_obs_steps,
self.n_action_pred_token + self.action_chunk_size - 1,
)
)
@property
def reward_delta_indices(self) -> None:

View File

@@ -29,7 +29,11 @@ from torch import Tensor, nn
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.utils import get_device_from_parameters, get_output_shape, populate_queues
from lerobot.common.policies.utils import (
get_device_from_parameters,
get_output_shape,
populate_queues,
)
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.common.policies.vqbet.vqbet_utils import GPT, ResidualVQ
@@ -324,7 +328,8 @@ class VQBeTModel(nn.Module):
# To input state and observation features into GPT layers, we first project the features to fit the shape of input size of GPT.
self.state_projector = MLP(
config.robot_state_feature.shape[0], hidden_channels=[self.config.gpt_input_dim]
config.robot_state_feature.shape[0],
hidden_channels=[self.config.gpt_input_dim],
)
self.rgb_feature_projector = MLP(
self.rgb_encoder.feature_dim, hidden_channels=[self.config.gpt_input_dim]
@@ -354,7 +359,11 @@ class VQBeTModel(nn.Module):
)
# Separate batch and sequence dims.
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s n ...", b=batch_size, s=n_obs_steps, n=self.num_images
img_features,
"(b s n) ... -> b s n ...",
b=batch_size,
s=n_obs_steps,
n=self.num_images,
)
# Arrange prior and current observation step tokens as shown in the class docstring.
@@ -391,7 +400,11 @@ class VQBeTModel(nn.Module):
# Thus, it predicts a historical action sequence, in addition to current and future actions (predicting future actions : optional).
if len_additional_action_token > 0:
features = torch.cat(
[features[:, historical_act_pred_index], features[:, -len_additional_action_token:]], dim=1
[
features[:, historical_act_pred_index],
features[:, -len_additional_action_token:],
],
dim=1,
)
else:
features = features[:, historical_act_pred_index]
@@ -514,7 +527,13 @@ class VQBeTHead(nn.Module):
cbet_secondary_logits = self.map_to_cbet_preds_secondary_bin(
torch.cat(
(x, F.one_hot(sampled_primary_centers, num_classes=self.config.vqvae_n_embed)),
(
x,
F.one_hot(
sampled_primary_centers,
num_classes=self.config.vqvae_n_embed,
),
),
axis=1,
)
)
@@ -532,7 +551,9 @@ class VQBeTHead(nn.Module):
else:
cbet_logits = self.map_to_cbet_preds_bin(x)
cbet_logits = einops.rearrange(
cbet_logits, "(NT) (G C) -> (NT) G C", G=self.vqvae_model.vqvae_num_layers
cbet_logits,
"(NT) (G C) -> (NT) G C",
G=self.vqvae_model.vqvae_num_layers,
)
cbet_probs = torch.softmax(cbet_logits / self.config.bet_softmax_temperature, dim=-1)
NT, G, choices = cbet_probs.shape
@@ -730,7 +751,9 @@ class VQBeTRgbEncoder(nn.Module):
def _replace_submodules(
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
root_module: nn.Module,
predicate: Callable[[nn.Module], bool],
func: Callable[[nn.Module], nn.Module],
) -> nn.Module:
"""
Args:

View File

@@ -377,7 +377,10 @@ class ResidualVQ(nn.Module):
self.layers = nn.ModuleList(
[
VectorQuantize(
dim=codebook_dim, codebook_dim=codebook_dim, accept_image_fmap=accept_image_fmap, **kwargs
dim=codebook_dim,
codebook_dim=codebook_dim,
accept_image_fmap=accept_image_fmap,
**kwargs,
)
for _ in range(num_quantizers)
]

View File

@@ -297,7 +297,11 @@ class IntelRealSenseCamera:
if self.fps and self.capture_width and self.capture_height:
# TODO(rcadene): can we set rgb8 directly?
config.enable_stream(
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
rs.stream.color,
self.capture_width,
self.capture_height,
rs.format.rgb8,
self.fps,
)
else:
config.enable_stream(rs.stream.color)
@@ -305,7 +309,11 @@ class IntelRealSenseCamera:
if self.use_depth:
if self.fps and self.capture_width and self.capture_height:
config.enable_stream(
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
rs.stream.depth,
self.capture_width,
self.capture_height,
rs.format.z16,
self.fps,
)
else:
config.enable_stream(rs.stream.depth)
@@ -512,13 +520,13 @@ if __name__ == "__main__":
)
parser.add_argument(
"--width",
type=int,
type=str,
default=640,
help="Set the width for all cameras. If not provided, use the default width of each camera.",
)
parser.add_argument(
"--height",
type=int,
type=str,
default=480,
help="Set the height for all cameras. If not provided, use the default height of each camera.",
)

View File

@@ -492,13 +492,13 @@ if __name__ == "__main__":
)
parser.add_argument(
"--width",
type=int,
type=str,
default=None,
help="Set the width for all cameras. If not provided, use the default width of each camera.",
)
parser.add_argument(
"--height",
type=int,
type=str,
default=None,
help="Set the height for all cameras. If not provided, use the default height of each camera.",
)

View File

@@ -41,7 +41,9 @@ def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[C
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
from lerobot.common.robot_devices.cameras.intelrealsense import (
IntelRealSenseCamera,
)
cameras[key] = IntelRealSenseCamera(cfg)
else:
@@ -58,7 +60,9 @@ def make_camera(camera_type, **kwargs) -> Camera:
return OpenCVCamera(config)
elif camera_type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
from lerobot.common.robot_devices.cameras.intelrealsense import (
IntelRealSenseCamera,
)
config = IntelRealSenseCameraConfig(**kwargs)
return IntelRealSenseCamera(config)

View File

@@ -41,7 +41,7 @@ class TeleoperateControlConfig(ControlConfig):
fps: int | None = None
teleop_time_s: float | None = None
# Display all cameras on screen
display_data: bool = False
display_cameras: bool = True
@ControlConfig.register_subclass("record")
@@ -82,11 +82,13 @@ class RecordControlConfig(ControlConfig):
# Not enough threads might cause low camera fps.
num_image_writer_threads_per_camera: int = 4
# Display all cameras on screen
display_data: bool = False
display_cameras: bool = True
# Use vocal synthesis to read events.
play_sounds: bool = True
# Resume recording on an existing dataset.
resume: bool = False
# Reset follower arms to an initial configuration.
reset_follower_arms: bool = True
def __post_init__(self):
# HACK: We parse again the cli args here to get the pretrained path if there was one.
@@ -116,11 +118,6 @@ class ReplayControlConfig(ControlConfig):
@dataclass
class RemoteRobotConfig(ControlConfig):
log_interval: int = 100
# Display all cameras on screen
display_data: bool = False
# Rerun configuration for remote robot (https://ref.rerun.io/docs/python/0.22.1/common/initialization_functions/#rerun.connect_tcp)
viewer_ip: str | None = None
viewer_port: str | None = None
@dataclass

View File

@@ -24,7 +24,8 @@ from contextlib import nullcontext
from copy import copy
from functools import cache
import rerun as rr
import cv2
import numpy as np
import torch
from deepdiff import DeepDiff
from termcolor import colored
@@ -58,7 +59,7 @@ def log_control_info(robot: Robot, dt_s, episode_index=None, frame_index=None, f
log_dt("dt", dt_s)
# TODO(aliberts): move robot-specific logs logic in robot.print_logs()
if not robot.robot_type.startswith(("stretch", "realman")):
if not robot.robot_type.startswith("stretch"):
for name in robot.leader_arms:
key = f"read_leader_{name}_pos_dt_s"
if key in robot.logs:
@@ -109,10 +110,6 @@ def predict_action(observation, policy, device, use_amp):
):
# Convert to pytorch format: channel first and float32 in [0,1] with batch dimension
for name in observation:
# Skip all observations that are not tensors (e.g. text)
if not isinstance(observation[name], torch.Tensor):
continue
if "image" in name:
observation[name] = observation[name].type(torch.float32) / 255
observation[name] = observation[name].permute(2, 0, 1).contiguous()
@@ -132,14 +129,22 @@ def predict_action(observation, policy, device, use_amp):
return action
def init_keyboard_listener():
# Allow to exit early while recording an episode or resetting the environment,
# by tapping the right arrow key '->'. This might require a sudo permission
# to allow your terminal to monitor keyboard events.
def init_keyboard_listener(assign_rewards=False):
"""
Initializes a keyboard listener to enable early termination of an episode
or environment reset by pressing the right arrow key ('->'). This may require
sudo permissions to allow the terminal to monitor keyboard events.
Args:
assign_rewards (bool): If True, allows annotating the collected trajectory
with a binary reward at the end of the episode to indicate success.
"""
events = {}
events["exit_early"] = False
events["rerecord_episode"] = False
events["stop_recording"] = False
if assign_rewards:
events["next.reward"] = 0
if is_headless():
logging.warning(
@@ -164,6 +169,13 @@ def init_keyboard_listener():
print("Escape key pressed. Stopping data recording...")
events["stop_recording"] = True
events["exit_early"] = True
elif assign_rewards and key == keyboard.Key.space:
events["next.reward"] = 1 if events["next.reward"] == 0 else 0
print(
"Space key pressed. Assigning new reward to the subsequent frames. New reward:",
events["next.reward"],
)
except Exception as e:
print(f"Error handling key press: {e}")
@@ -178,13 +190,13 @@ def warmup_record(
events,
enable_teleoperation,
warmup_time_s,
display_data,
display_cameras,
fps,
):
control_loop(
robot=robot,
control_time_s=warmup_time_s,
display_data=display_data,
display_cameras=display_cameras,
events=events,
fps=fps,
teleoperate=enable_teleoperation,
@@ -196,7 +208,7 @@ def record_episode(
dataset,
events,
episode_time_s,
display_data,
display_cameras,
policy,
fps,
single_task,
@@ -204,7 +216,7 @@ def record_episode(
control_loop(
robot=robot,
control_time_s=episode_time_s,
display_data=display_data,
display_cameras=display_cameras,
dataset=dataset,
events=events,
policy=policy,
@@ -219,7 +231,7 @@ def control_loop(
robot,
control_time_s=None,
teleoperate=False,
display_data=False,
display_cameras=False,
dataset: LeRobotDataset | None = None,
events=None,
policy: PreTrainedPolicy = None,
@@ -247,24 +259,22 @@ def control_loop(
timestamp = 0
start_episode_t = time.perf_counter()
# Controls starts, if policy is given it needs cleaning up
if policy is not None:
policy.reset()
while timestamp < control_time_s:
start_loop_t = time.perf_counter()
current_joint_positions = robot.follower_arms["main"].read("Present_Position")
if teleoperate:
observation, action = robot.teleop_step(record_data=True)
else:
observation = robot.capture_observation()
action = None
observation["task"] = [single_task]
observation["robot_type"] = [policy.robot_type] if hasattr(policy, "robot_type") else [""]
if policy is not None:
pred_action = predict_action(
observation, policy, get_safe_torch_device(policy.config.device), policy.config.use_amp
observation,
policy,
get_safe_torch_device(policy.config.device),
policy.config.use_amp,
)
# Action can eventually be clipped using `max_relative_target`,
# so action actually sent is saved in the dataset.
@@ -272,20 +282,17 @@ def control_loop(
action = {"action": action}
if dataset is not None:
observation = {k: v for k, v in observation.items() if k not in ["task", "robot_type"]}
frame = {**observation, **action, "task": single_task}
dataset.add_frame(frame)
# TODO(Steven): This should be more general (for RemoteRobot instead of checking the name, but anyways it will change soon)
if (display_data and not is_headless()) or (display_data and robot.robot_type.startswith("lekiwi")):
if action is not None:
for k, v in action.items():
for i, vv in enumerate(v):
rr.log(f"sent_{k}_{i}", rr.Scalar(vv.numpy()))
# if frame["next.done"]:
# break
if display_cameras and not is_headless():
image_keys = [key for key in observation if "image" in key]
for key in image_keys:
rr.log(key, rr.Image(observation[key].numpy()), static=True)
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
cv2.waitKey(1)
if fps is not None:
dt_s = time.perf_counter() - start_loop_t
@@ -314,11 +321,25 @@ def reset_environment(robot, events, reset_time_s, fps):
)
def stop_recording(robot, listener, display_data):
def reset_follower_position(robot: Robot, target_position):
current_position = robot.follower_arms["main"].read("Present_Position")
trajectory = torch.from_numpy(
np.linspace(current_position, target_position, 50)
) # NOTE: 30 is just an aribtrary number
for pose in trajectory:
robot.send_action(pose)
busy_wait(0.015)
def stop_recording(robot, listener, display_cameras):
robot.disconnect()
if not is_headless() and listener is not None:
listener.stop()
if not is_headless():
if listener is not None:
listener.stop()
if display_cameras:
cv2.destroyAllWindows()
def sanity_check_dataset_name(repo_id, policy_cfg):
@@ -340,12 +361,20 @@ def sanity_check_dataset_name(repo_id, policy_cfg):
def sanity_check_dataset_robot_compatibility(
dataset: LeRobotDataset, robot: Robot, fps: int, use_videos: bool
dataset: LeRobotDataset,
robot: Robot,
fps: int,
use_videos: bool,
extra_features: dict = None,
) -> None:
features_from_robot = get_features_from_robot(robot, use_videos)
if extra_features is not None:
features_from_robot.update(extra_features)
fields = [
("robot_type", dataset.meta.robot_type, robot.robot_type),
("fps", dataset.fps, fps),
("features", dataset.features, get_features_from_robot(robot, use_videos)),
("features", dataset.features, features_from_robot),
]
mismatches = []

View File

@@ -39,12 +39,3 @@ class FeetechMotorsBusConfig(MotorsBusConfig):
port: str
motors: dict[str, tuple[int, str]]
mock: bool = False
@MotorsBusConfig.register_subclass("realman")
@dataclass
class RealmanMotorsBusConfig(MotorsBusConfig):
ip: str
port: int
motors: dict[str, tuple[int, str]]
init_joint: dict[str, list]

View File

@@ -23,7 +23,10 @@ import numpy as np
import tqdm
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
)
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 2.0
@@ -784,7 +787,12 @@ class DynamixelMotorsBus:
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
def write(
self,
data_name,
values: int | float | np.ndarray,
motor_names: str | list[str] | None = None,
):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."

View File

@@ -23,7 +23,10 @@ import numpy as np
import tqdm
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
)
from lerobot.common.utils.utils import capture_timestamp_utc
PROTOCOL_VERSION = 0
@@ -809,7 +812,12 @@ class FeetechMotorsBus:
f"{self.packet_handler.getTxRxResult(comm)}"
)
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
def write(
self,
data_name,
values: int | float | np.ndarray,
motor_names: str | list[str] | None = None,
):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."

View File

@@ -1,150 +0,0 @@
import time
from typing import Dict
from lerobot.common.robot_devices.motors.configs import RealmanMotorsBusConfig
from Robotic_Arm.rm_robot_interface import *
class RealmanMotorsBus:
"""
对Realman SDK的二次封装
"""
def __init__(self,
config: RealmanMotorsBusConfig):
self.rmarm = RoboticArm(rm_thread_mode_e.RM_TRIPLE_MODE_E)
self.handle = self.rmarm.rm_create_robot_arm(config.ip, config.port)
self.motors = config.motors
self.init_joint_position = config.init_joint['joint'] # [6 joints + 1 gripper]
self.safe_disable_position = config.init_joint['joint']
self.rmarm.rm_movej(self.init_joint_position[:-1], 5, 0, 0, 1)
time.sleep(3)
ret = self.rmarm.rm_get_current_arm_state()
self.init_pose = ret[1]['pose']
@property
def motor_names(self) -> list[str]:
return list(self.motors.keys())
@property
def motor_models(self) -> list[str]:
return [model for _, model in self.motors.values()]
@property
def motor_indices(self) -> list[int]:
return [idx for idx, _ in self.motors.values()]
def connect(self, enable=True) -> bool:
'''
使能机械臂并检测使能状态,尝试5s,如果使能超时则退出程序
'''
enable_flag = False
loop_flag = False
# 设置超时时间(秒)
timeout = 5
# 记录进入循环前的时间
start_time = time.time()
elapsed_time_flag = False
while not loop_flag:
elapsed_time = time.time() - start_time
print("--------------------")
if enable:
# 获取机械臂状态
ret = self.rmarm.rm_get_current_arm_state()
if ret[0] == 0: # 成功获取状态
enable_flag = True
else:
enable_flag = False
# 断开所有连接,销毁线程
RoboticArm.rm_destory()
print("使能状态:", enable_flag)
print("--------------------")
if(enable_flag == enable):
loop_flag = True
enable_flag = True
else:
loop_flag = False
enable_flag = False
# 检查是否超过超时时间
if elapsed_time > timeout:
print("超时....")
elapsed_time_flag = True
enable_flag = True
break
time.sleep(1)
resp = enable_flag
print(f"Returning response: {resp}")
return resp
def motor_names(self):
return
def set_calibration(self):
return
def revert_calibration(self):
return
def apply_calibration(self):
"""
移动到初始位置
"""
self.write(target_joint=self.init_joint_position)
def write(self, target_joint:list):
# self.rmarm.rm_movej(target_joint[:-1], 50, 0, 0, 1)
self.rmarm.rm_movej_follow(target_joint[:-1])
self.rmarm.rm_set_gripper_position(target_joint[-1], block=False, timeout=2)
def write_endpose(self, target_endpose: list, gripper: int):
self.rmarm.rm_movej_p(target_endpose, 50, 0, 0, 1)
self.rmarm.rm_set_gripper_position(gripper, block=False, timeout=2)
def write_joint_slow(self, target_joint: list):
self.rmarm.rm_movej(target_joint, 5, 0, 0, 0)
def write_joint_canfd(self, target_joint: list):
self.rmarm.rm_movej_canfd(target_joint, False)
def write_endpose_canfd(self, target_pose: list):
self.rmarm.rm_movep_canfd(target_pose, False)
def write_gripper(self, gripper: int):
self.rmarm.rm_set_gripper_position(gripper, False, 2)
def read(self) -> Dict:
"""
- 机械臂关节消息,单位1度;[-1, 1]
- 机械臂夹爪消息,[-1, 1]
"""
joint_msg = self.rmarm.rm_get_current_arm_state()[1]
joint_state = joint_msg['joint']
gripper_msg = self.rmarm.rm_get_gripper_state()[1]
gripper_state = gripper_msg['actpos']
return {
"joint_1": joint_state[0]/180,
"joint_2": joint_state[1]/180,
"joint_3": joint_state[2]/180,
"joint_4": joint_state[3]/180,
"joint_5": joint_state[4]/180,
"joint_6": joint_state[5]/180,
"gripper": (gripper_state-500)/500
}
def read_current_arm_joint_state(self):
return self.rmarm.rm_get_current_arm_state()[1]['joint']
def read_current_arm_endpose_state(self):
return self.rmarm.rm_get_current_arm_state()[1]['pose']
def safe_disconnect(self):
"""
Move to safe disconnect position
"""
self.write(target_joint=self.safe_disable_position)
# 断开所有连接,销毁线程
RoboticArm.rm_destory()

View File

@@ -30,7 +30,9 @@ class MotorsBus(Protocol):
def write(self): ...
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
def make_motors_buses_from_configs(
motors_bus_configs: dict[str, MotorsBusConfig],
) -> list[MotorsBus]:
motors_buses = {}
for key, cfg in motors_bus_configs.items():
@@ -44,11 +46,6 @@ def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig
motors_buses[key] = FeetechMotorsBus(cfg)
elif cfg.type == "realman":
from lerobot.common.robot_devices.motors.realman import RealmanMotorsBus
motors_buses[key] = RealmanMotorsBus(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
@@ -70,7 +67,3 @@ def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
else:
raise ValueError(f"The motor type '{motor_type}' is not valid.")
def get_motor_names(arm: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arm.items() for motor in bus.motors]

View File

@@ -27,7 +27,6 @@ from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
RealmanMotorsBusConfig
)
@@ -432,69 +431,6 @@ class MossRobotConfig(ManipulatorRobotConfig):
mock: bool = False
@RobotConfig.register_subclass("so101")
@dataclass
class So101RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so101"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"laptop": OpenCVCameraConfig(
camera_index=0,
fps=30,
width=640,
height=480,
),
"phone": OpenCVCameraConfig(
camera_index=1,
fps=30,
width=640,
height=480,
),
}
)
mock: bool = False
@RobotConfig.register_subclass("so100")
@dataclass
class So100RobotConfig(ManipulatorRobotConfig):
@@ -507,7 +443,7 @@ class So100RobotConfig(ManipulatorRobotConfig):
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091",
port="/dev/tty.usbmodem58760433331",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
@@ -524,7 +460,7 @@ class So100RobotConfig(ManipulatorRobotConfig):
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891",
port="/dev/tty.usbmodem58760431631",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
@@ -675,91 +611,3 @@ class LeKiwiRobotConfig(RobotConfig):
)
mock: bool = False
@RobotConfig.register_subclass("realman")
@dataclass
class RealmanRobotConfig(RobotConfig):
inference_time: bool = False
max_gripper: int = 990
min_gripper: int = 10
servo_config_file: str = "/home/maic/LYT/lerobot/lerobot/common/robot_devices/teleop/servo_arm.yaml"
left_follower_arm: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": RealmanMotorsBusConfig(
ip = "192.168.3.18",
port = 8080,
motors={
# name: (index, model)
"joint_1": [1, "realman"],
"joint_2": [2, "realman"],
"joint_3": [3, "realman"],
"joint_4": [4, "realman"],
"joint_5": [5, "realman"],
"joint_6": [6, "realman"],
"gripper": [7, "realman"],
},
init_joint = {'joint': [-90, 90, 90, 90, 90, -90, 10]}
)
}
)
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
# "one": OpenCVCameraConfig(
# camera_index=4,
# fps=30,
# width=640,
# height=480,
# ),
"left": IntelRealSenseCameraConfig(
serial_number="153122077516",
fps=30,
width=640,
height=480,
use_depth=False
),
# "right": IntelRealSenseCameraConfig(
# serial_number="405622075165",
# fps=30,
# width=640,
# height=480,
# use_depth=False
# ),
"front": IntelRealSenseCameraConfig(
serial_number="145422072751",
fps=30,
width=640,
height=480,
use_depth=False
),
"high": IntelRealSenseCameraConfig(
serial_number="145422072193",
fps=30,
width=640,
height=480,
use_depth=False
),
}
)
# right_follower_arm: dict[str, MotorsBusConfig] = field(
# default_factory=lambda: {
# "main": RealmanMotorsBusConfig(
# ip = "192.168.3.19",
# port = 8080,
# motors={
# # name: (index, model)
# "joint_1": [1, "realman"],
# "joint_2": [2, "realman"],
# "joint_3": [3, "realman"],
# "joint_4": [4, "realman"],
# "joint_5": [5, "realman"],
# "joint_6": [6, "realman"],
# "gripper": (7, "realman"),
# },
# )
# }
# )

View File

@@ -36,12 +36,6 @@ ZERO_POSITION_DEGREE = 0
ROTATED_POSITION_DEGREE = 90
def reset_middle_positions(arm: MotorsBus):
input("Please move the robot to the new middle position for calibration, then press Enter...")
# Write 128 to Torque_Enable for all motors.
arm.write("Torque_Enable", 128)
def assert_drive_mode(drive_mode):
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
if not np.all(np.isin(drive_mode, [0, 1])):
@@ -213,7 +207,10 @@ def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: st
print("Calibrate elbow_flex")
calib["elbow_flex"] = move_to_calibrate(
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
arm,
"elbow_flex",
positive_first=False,
in_between_move_hook=in_between_move_hook,
)
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
@@ -245,7 +242,11 @@ def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: st
}
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
arm.write(
"Goal_Position",
round(calib["shoulder_lift"]["zero_pos"] - 1600),
"shoulder_lift",
)
time.sleep(2)
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
time.sleep(2)
@@ -256,7 +257,11 @@ def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: st
print("Calibrate wrist_roll")
calib["wrist_roll"] = move_to_calibrate(
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
arm,
"wrist_roll",
invert_drive_mode=True,
positive_first=False,
while_move_hook=while_move_hook,
)
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
@@ -445,8 +450,6 @@ def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, a
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
reset_middle_positions(arm)
print("\nMove arm to zero position")
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
input("Press Enter to continue...")

View File

@@ -61,7 +61,9 @@ def calibrate_follower_arm(motors_bus, calib_dir_str):
calib_dir.mkdir(parents=True, exist_ok=True)
calib_file = calib_dir / "main_follower.json"
try:
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_arm_manual_calibration,
)
except ImportError:
print("[WARNING] Calibration function not available. Skipping calibration.")
return
@@ -116,7 +118,14 @@ def run_lekiwi(robot_config):
robot = LeKiwi(motors_bus)
# Define the expected arm motor IDs.
arm_motor_ids = ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"]
arm_motor_ids = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
]
# Disable torque for each arm motor.
for motor in arm_motor_ids:
@@ -130,7 +139,9 @@ def run_lekiwi(robot_config):
images_lock = threading.Lock()
stop_event = threading.Event()
cam_thread = threading.Thread(
target=run_camera_capture, args=(cameras, images_lock, latest_images_dict, stop_event), daemon=True
target=run_camera_capture,
args=(cameras, images_lock, latest_images_dict, stop_event),
daemon=True,
)
cam_thread.start()

View File

@@ -28,14 +28,22 @@ import numpy as np
import torch
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.motors.utils import (
MotorsBus,
make_motors_buses_from_configs,
)
from lerobot.common.robot_devices.robots.configs import ManipulatorRobotConfig
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
)
def ensure_safe_goal_position(
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
goal_pos: torch.Tensor,
present_pos: torch.Tensor,
max_relative_target: float | list[float],
):
# Cap relative action target magnitude for safety.
diff = goal_pos - present_pos
@@ -45,7 +53,7 @@ def ensure_safe_goal_position(
safe_goal_pos = present_pos + safe_diff
if not torch.allclose(goal_pos, safe_goal_pos):
logging.warning(
logging.debug(
"Relative goal position magnitude had to be clamped to be safe.\n"
f" requested relative goal position target: {diff}\n"
f" clamped relative goal position target: {safe_diff}"
@@ -243,7 +251,7 @@ class ManipulatorRobot:
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
elif self.robot_type in ["so100", "so101", "moss", "lekiwi"]:
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.robot_devices.motors.feetech import TorqueMode
# We assume that at connection time, arms are in a rest position, and torque can
@@ -260,7 +268,7 @@ class ManipulatorRobot:
self.set_koch_robot_preset()
elif self.robot_type == "aloha":
self.set_aloha_robot_preset()
elif self.robot_type in ["so100", "so101", "moss", "lekiwi"]:
elif self.robot_type in ["so100", "moss", "lekiwi"]:
self.set_so100_robot_preset()
# Enable torque on all motors of the follower arms
@@ -309,11 +317,13 @@ class ManipulatorRobot:
print(f"Missing calibration file '{arm_calib_path}'")
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
from lerobot.common.robot_devices.robots.dynamixel_calibration import (
run_arm_calibration,
)
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
elif self.robot_type in ["so100", "so101", "moss", "lekiwi"]:
elif self.robot_type in ["so100", "moss", "lekiwi"]:
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_arm_manual_calibration,
)
@@ -464,6 +474,14 @@ class ManipulatorRobot:
before_fwrite_t = time.perf_counter()
goal_pos = leader_pos[name]
# If specified, clip the goal positions within predefined bounds specified in the config of the robot
# if self.config.joint_position_relative_bounds is not None:
# goal_pos = torch.clamp(
# goal_pos,
# self.config.joint_position_relative_bounds["min"],
# self.config.joint_position_relative_bounds["max"],
# )
# Cap goal position when too far away from present position.
# Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
@@ -585,6 +603,14 @@ class ManipulatorRobot:
goal_pos = action[from_idx:to_idx]
from_idx = to_idx
# If specified, clip the goal positions within predefined bounds specified in the config of the robot
# if self.config.joint_position_relative_bounds is not None:
# goal_pos = torch.clamp(
# goal_pos,
# self.config.joint_position_relative_bounds["min"],
# self.config.joint_position_relative_bounds["max"],
# )
# Cap goal position when too far away from present position.
# Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:

View File

@@ -25,9 +25,14 @@ import zmq
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.motors.feetech import TorqueMode
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
from lerobot.common.robot_devices.motors.utils import (
MotorsBus,
make_motors_buses_from_configs,
)
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
from lerobot.common.robot_devices.robots.feetech_calibration import (
run_arm_manual_calibration,
)
from lerobot.common.robot_devices.robots.utils import get_arm_id
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError
@@ -324,7 +329,11 @@ class MobileManipulator:
socks = dict(poller.poll(15))
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return (
self.last_frames,
self.last_present_speed,
self.last_remote_arm_state,
)
# Drain all messages, keep only the last
last_msg = None
@@ -337,7 +346,11 @@ class MobileManipulator:
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return (
self.last_frames,
self.last_present_speed,
self.last_remote_arm_state,
)
# Decode only the final message
try:
@@ -375,7 +388,11 @@ class MobileManipulator:
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return (
self.last_frames,
self.last_present_speed,
self.last_remote_arm_state,
)
return frames, present_speed, remote_arm_state_tensor
@@ -461,7 +478,11 @@ class MobileManipulator:
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
body_state_mm = (
body_state[0] * 1000.0,
body_state[1] * 1000.0,
body_state[2],
) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
@@ -620,7 +641,11 @@ class MobileManipulator:
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
return {
"left_wheel": wheel_raw[0],
"back_wheel": wheel_raw[1],
"right_wheel": wheel_raw[2],
}
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125

View File

@@ -1,292 +0,0 @@
"""
Teleoperation Realman with a PS5 controller and
"""
import time
import torch
import numpy as np
from dataclasses import dataclass, field, replace
from collections import deque
from lerobot.common.robot_devices.teleop.gamepad import HybridController
from lerobot.common.robot_devices.motors.utils import get_motor_names, make_motors_buses_from_configs
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
from lerobot.common.robot_devices.robots.configs import RealmanRobotConfig
class RealmanRobot:
def __init__(self, config: RealmanRobotConfig | None = None, **kwargs):
if config is None:
config = RealmanRobotConfig()
# Overwrite config arguments using kwargs
self.config = replace(config, **kwargs)
self.robot_type = self.config.type
self.inference_time = self.config.inference_time # if it is inference time
# build cameras
self.cameras = make_cameras_from_configs(self.config.cameras)
# build realman motors
self.piper_motors = make_motors_buses_from_configs(self.config.left_follower_arm)
self.arm = self.piper_motors['main']
# build init teleop info
self.init_info = {
'init_joint': self.arm.init_joint_position,
'init_pose': self.arm.init_pose,
'max_gripper': config.max_gripper,
'min_gripper': config.min_gripper,
'servo_config_file': config.servo_config_file
}
# build state-action cache
self.joint_queue = deque(maxlen=2)
self.last_endpose = self.arm.init_pose
# build gamepad teleop
if not self.inference_time:
self.teleop = HybridController(self.init_info)
else:
self.teleop = None
self.logs = {}
self.is_connected = False
@property
def camera_features(self) -> dict:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
action_names = get_motor_names(self.piper_motors)
state_names = get_motor_names(self.piper_motors)
return {
"action": {
"dtype": "float32",
"shape": (len(action_names),),
"names": action_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(state_names),),
"names": state_names,
},
}
@property
def has_camera(self):
return len(self.cameras) > 0
@property
def num_cameras(self):
return len(self.cameras)
def connect(self) -> None:
"""Connect RealmanArm and cameras"""
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
"RealmanArm is already connected. Do not run `robot.connect()` twice."
)
# connect RealmanArm
self.arm.connect(enable=True)
print("RealmanArm conneted")
# connect cameras
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = self.is_connected and self.cameras[name].is_connected
print(f"camera {name} conneted")
print("All connected")
self.is_connected = True
self.run_calibration()
def disconnect(self) -> None:
"""move to home position, disenable piper and cameras"""
# move piper to home position, disable
if not self.inference_time:
self.teleop.stop()
# disconnect piper
self.arm.safe_disconnect()
print("RealmanArm disable after 5 seconds")
time.sleep(5)
self.arm.connect(enable=False)
# disconnect cameras
if len(self.cameras) > 0:
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
def run_calibration(self):
"""move piper to the home position"""
if not self.is_connected:
raise ConnectionError()
self.arm.apply_calibration()
if not self.inference_time:
self.teleop.reset()
def teleop_step(
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise ConnectionError()
if self.teleop is None and self.inference_time:
self.teleop = HybridController(self.init_info)
# read target pose state as
before_read_t = time.perf_counter()
state = self.arm.read() # read current joint position from robot
action = self.teleop.get_action() # target joint position and pose end pos from gamepad
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
if action['control_mode'] == 'joint':
# 关节控制模式(主模式)
current_pose = self.arm.read_current_arm_endpose_state()
self.teleop.update_endpose_state(current_pose)
target_joints = action['joint_angles'][:-1]
self.arm.write_gripper(action['gripper'])
print(action['gripper'])
if action['master_controller_status']['infrared'] == 1:
if action['master_controller_status']['button'] == 1:
self.arm.write_joint_canfd(target_joints)
else:
self.arm.write_joint_slow(target_joints)
# do action
before_write_t = time.perf_counter()
self.joint_queue.append(list(self.arm.read().values()))
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
else:
target_pose = list(action['end_pose'])
# do action
before_write_t = time.perf_counter()
if self.last_endpose != target_pose:
self.arm.write_endpose_canfd(target_pose)
self.last_endpose = target_pose
self.arm.write_gripper(action['gripper'])
target_joints = self.arm.read_current_arm_joint_state()
self.joint_queue.append(list(self.arm.read().values()))
self.teleop.update_joint_state(target_joints)
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
if not record_data:
return
state = torch.as_tensor(list(self.joint_queue[0]), dtype=torch.float32)
action = torch.as_tensor(list(self.joint_queue[-1]), dtype=torch.float32)
# Capture images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries
obs_dict, action_dict = {}, {}
obs_dict["observation.state"] = state
action_dict["action"] = action
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict, action_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
"""Write the predicted actions from policy to the motors"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"Piper is not connected. You need to run `robot.connect()`."
)
# send to motors, torch to list
target_joints = action.tolist()
len_joint = len(target_joints) - 1
target_joints = [target_joints[i]*180 for i in range(len_joint)] + [target_joints[-1]]
target_joints[-1] = int(target_joints[-1]*500 + 500)
self.arm.write(target_joints)
return action
def capture_observation(self) -> dict:
"""capture current images and joint positions"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
"Piper is not connected. You need to run `robot.connect()`."
)
# read current joint positions
before_read_t = time.perf_counter()
state = self.arm.read() # 6 joints + 1 gripper
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
state = torch.as_tensor(list(state.values()), dtype=torch.float32)
# read images from cameras
images = {}
for name in self.cameras:
before_camread_t = time.perf_counter()
images[name] = self.cameras[name].async_read()
images[name] = torch.from_numpy(images[name])
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
# Populate output dictionnaries and format to pytorch
obs_dict = {}
obs_dict["observation.state"] = state
for name in self.cameras:
obs_dict[f"observation.images.{name}"] = images[name]
return obs_dict
def teleop_safety_stop(self):
""" move to home position after record one episode """
self.run_calibration()
def __del__(self):
if self.is_connected:
self.disconnect()
if not self.inference_time:
self.teleop.stop()
if __name__ == '__main__':
robot = RealmanRobot()
robot.connect()
# robot.run_calibration()
while True:
robot.teleop_step(record_data=True)
robot.capture_observation()
dummy_action = torch.Tensor([-0.40586111280653214, 0.5522833506266276, 0.4998166826036241, -0.3539944542778863, -0.524433347913954, 0.9064999898274739, 0.482])
robot.send_action(dummy_action)
robot.disconnect()
print('ok')

View File

@@ -23,9 +23,7 @@ from lerobot.common.robot_devices.robots.configs import (
MossRobotConfig,
RobotConfig,
So100RobotConfig,
So101RobotConfig,
StretchRobotConfig,
RealmanRobotConfig
)
@@ -60,15 +58,10 @@ def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
return MossRobotConfig(**kwargs)
elif robot_type == "so100":
return So100RobotConfig(**kwargs)
elif robot_type == "so101":
return So101RobotConfig(**kwargs)
elif robot_type == "stretch":
return StretchRobotConfig(**kwargs)
elif robot_type == "lekiwi":
return LeKiwiRobotConfig(**kwargs)
elif robot_type == 'realman':
return RealmanRobotConfig(**kwargs)
else:
raise ValueError(f"Robot type '{robot_type}' is not available.")
@@ -79,15 +72,11 @@ def make_robot_from_config(config: RobotConfig):
return ManipulatorRobot(config)
elif isinstance(config, LeKiwiRobotConfig):
from lerobot.common.robot_devices.robots.mobile_manipulator import MobileManipulator
from lerobot.common.robot_devices.robots.mobile_manipulator import (
MobileManipulator,
)
return MobileManipulator(config)
elif isinstance(config, RealmanRobotConfig):
from lerobot.common.robot_devices.robots.realman import RealmanRobot
return RealmanRobot(config)
else:
from lerobot.common.robot_devices.robots.stretch import StretchRobot

View File

@@ -1,466 +0,0 @@
import pygame
import threading
import time
import serial
import binascii
import logging
import yaml
from typing import Dict
from Robotic_Arm.rm_robot_interface import *
class ServoArm:
def __init__(self, config_file="config.yaml"):
"""初始化机械臂的串口连接并发送初始数据。
Args:
config_file (str): 配置文件的路径。
"""
self.config = self._load_config(config_file)
self.port = self.config["port"]
self.baudrate = self.config["baudrate"]
self.joint_hex_data = self.config["joint_hex_data"]
self.control_hex_data = self.config["control_hex_data"]
self.arm_axis = self.config.get("arm_axis", 7)
try:
self.serial_conn = serial.Serial(self.port, self.baudrate, timeout=0)
self.bytes_to_send = binascii.unhexlify(self.joint_hex_data.replace(" ", ""))
self.serial_conn.write(self.bytes_to_send)
time.sleep(1)
self.connected = True
logging.info(f"串口连接成功: {self.port}")
except Exception as e:
logging.error(f"串口连接失败: {e}")
self.connected = False
def _load_config(self, config_file):
"""加载配置文件。
Args:
config_file (str): 配置文件的路径。
Returns:
dict: 配置文件内容。
"""
try:
with open(config_file, "r") as file:
config = yaml.safe_load(file)
return config
except Exception as e:
logging.error(f"配置文件加载失败: {e}")
# 返回默认配置
return {
"port": "/dev/ttyUSB0",
"baudrate": 460800,
"joint_hex_data": "55 AA 02 00 00 67",
"control_hex_data": "55 AA 08 00 00 B9",
"arm_axis": 6
}
def _bytes_to_signed_int(self, byte_data):
"""将字节数据转换为有符号整数。
Args:
byte_data (bytes): 字节数据。
Returns:
int: 有符号整数。
"""
return int.from_bytes(byte_data, byteorder="little", signed=True)
def _parse_joint_data(self, hex_received):
"""解析接收到的十六进制数据并提取关节数据。
Args:
hex_received (str): 接收到的十六进制字符串数据。
Returns:
dict: 解析后的关节数据。
"""
logging.debug(f"hex_received: {hex_received}")
joints = {}
for i in range(self.arm_axis):
start = 14 + i * 10
end = start + 8
joint_hex = hex_received[start:end]
joint_byte_data = bytearray.fromhex(joint_hex)
joint_value = self._bytes_to_signed_int(joint_byte_data) / 10000.0
joints[f"joint_{i+1}"] = joint_value
grasp_start = 14 + self.arm_axis*10
grasp_hex = hex_received[grasp_start:grasp_start+8]
grasp_byte_data = bytearray.fromhex(grasp_hex)
# 夹爪进行归一化处理
grasp_value = self._bytes_to_signed_int(grasp_byte_data)/1000
joints["grasp"] = grasp_value
return joints
def _parse_controller_data(self, hex_received):
status = {
'infrared': 0,
'button': 0
}
if len(hex_received) == 18:
status['infrared'] = self._bytes_to_signed_int(bytearray.fromhex(hex_received[12:14]))
status['button'] = self._bytes_to_signed_int(bytearray.fromhex(hex_received[14:16]))
# print(infrared)
return status
def get_joint_actions(self):
"""从串口读取数据并解析关节动作。
Returns:
dict: 包含关节数据的字典。
"""
if not self.connected:
return {}
try:
self.serial_conn.write(self.bytes_to_send)
time.sleep(0.02)
bytes_received = self.serial_conn.read(self.serial_conn.inWaiting())
if len(bytes_received) == 0:
return {}
hex_received = binascii.hexlify(bytes_received).decode("utf-8").upper()
actions = self._parse_joint_data(hex_received)
return actions
except Exception as e:
logging.error(f"读取串口数据错误: {e}")
return {}
def get_controller_status(self):
bytes_to_send = binascii.unhexlify(self.control_hex_data.replace(" ", ""))
self.serial_conn.write(bytes_to_send)
time.sleep(0.02)
bytes_received = self.serial_conn.read(self.serial_conn.inWaiting())
hex_received = binascii.hexlify(bytes_received).decode("utf-8").upper()
# print("control status:", hex_received)
status = self._parse_controller_data(hex_received)
return status
def close(self):
"""关闭串口连接"""
if self.connected and hasattr(self, 'serial_conn'):
self.serial_conn.close()
self.connected = False
logging.info("串口连接已关闭")
class HybridController:
def __init__(self, init_info):
# 初始化pygame和手柄
pygame.init()
pygame.joystick.init()
# 检查是否有连接的手柄
if pygame.joystick.get_count() == 0:
raise Exception("未检测到手柄")
# 初始化手柄
self.joystick = pygame.joystick.Joystick(0)
self.joystick.init()
# 摇杆死区
self.deadzone = 0.15
# 控制模式: True为关节控制主模式False为末端控制
self.joint_control_mode = True
# 精细控制模式
self.fine_control_mode = False
# 初始化末端姿态和关节角度
self.init_joint = init_info['init_joint']
self.init_pose = init_info.get('init_pose', [0]*6)
self.max_gripper = init_info['max_gripper']
self.min_gripper = init_info['min_gripper']
servo_config_file = init_info['servo_config_file']
self.joint = self.init_joint.copy()
self.pose = self.init_pose.copy()
self.pose_speeds = [0.0] * 6
self.joint_speeds = [0.0] * 6
self.tozero = False
# 主臂关节状态
self.master_joint_actions = {}
self.master_controller_status = {}
self.use_master_arm = False
# 末端位姿限制
self.pose_limits = [
(-0.800, 0.800), # X (m)
(-0.800, 0.800), # Y (m)
(-0.800, 0.800), # Z (m)
(-3.14, 3.14), # RX (rad)
(-3.14, 3.14), # RY (rad)
(-3.14, 3.14) # RZ (rad)
]
# 关节角度限制 (度)
self.joint_limits = [
(-180, 180), # joint 1
(-180, 180), # joint 2
(-180, 180), # joint 3
(-180, 180), # joint 4
(-180, 180), # joint 5
(-180, 180) # joint 6
]
# 控制参数
self.linear_step = 0.002 # 线性移动步长(m)
self.angular_step = 0.01 # 角度步长(rad)
# 夹爪状态和速度
self.gripper_speed = 10
self.gripper = self.min_gripper
# 初始化串口通信(主臂关节状态获取)
self.servo_arm = None
if servo_config_file:
try:
self.servo_arm = ServoArm(servo_config_file)
self.use_master_arm = True
logging.info("串口主臂连接成功,启用主从控制模式")
except Exception as e:
logging.error(f"串口主臂连接失败: {e}")
self.use_master_arm = False
# 启动更新线程
self.running = True
self.thread = threading.Thread(target=self.update_controller)
self.thread.start()
print("混合控制器已启动")
print("主控制模式: 关节控制")
if self.use_master_arm:
print("主从控制: 启用")
print("Back按钮: 切换控制模式(关节/末端)")
print("L3按钮: 切换精细控制模式")
print("Start按钮: 重置到初始位置")
def _apply_nonlinear_mapping(self, value):
"""应用非线性映射以提高控制精度"""
sign = 1 if value >= 0 else -1
return sign * (abs(value) ** 2)
def _normalize_angle(self, angle):
"""将角度归一化到[-π, π]范围内"""
import math
while angle > math.pi:
angle -= 2 * math.pi
while angle < -math.pi:
angle += 2 * math.pi
return angle
def update_controller(self):
while self.running:
try:
pygame.event.pump()
except Exception as e:
print(f"控制器错误: {e}")
self.stop()
continue
# 检查控制模式切换 (Back按钮)
if self.joystick.get_button(6): # Back按钮
self.joint_control_mode = not self.joint_control_mode
mode_str = "关节控制" if self.joint_control_mode else "末端位姿控制"
print(f"切换到{mode_str}模式")
time.sleep(0.3) # 防止多次触发
# 检查精细控制模式切换 (L3按钮)
if self.joystick.get_button(10): # L3按钮
self.fine_control_mode = not self.fine_control_mode
print(f"切换到{'精细' if self.fine_control_mode else '普通'}控制模式")
time.sleep(0.3) # 防止多次触发
# 检查重置按钮 (Start按钮)
if self.joystick.get_button(7): # Start按钮
print("重置机械臂到初始位置...")
# print("init_joint", self.init_joint.copy())
self.tozero = True
self.joint = self.init_joint.copy()
self.pose = self.init_pose.copy()
self.pose_speeds = [0.0] * 6
self.joint_speeds = [0.0] * 6
self.gripper_speed = 10
self.gripper = self.min_gripper
print("机械臂已重置到初始位置")
time.sleep(0.3) # 防止多次触发
# 从串口获取主臂关节状态
if self.servo_arm and self.servo_arm.connected:
try:
self.master_joint_actions = self.servo_arm.get_joint_actions()
self.master_controller_status = self.servo_arm.get_controller_status()
if self.master_joint_actions:
logging.debug(f"主臂关节状态: {self.master_joint_actions}")
except Exception as e:
logging.error(f"获取主臂状态错误: {e}")
self.master_joint_actions = {}
# print(self.master_joint_actions)
# 根据控制模式更新相应的控制逻辑
if self.joint_control_mode:
# 关节控制模式下优先使用主臂数据Xbox作为辅助
self.update_joint_control()
else:
# 末端控制模式使用Xbox控制
self.update_end_pose()
time.sleep(0.02)
# print('gripper:', self.gripper)
def update_joint_control(self):
"""更新关节角度控制 - 优先使用主臂数据"""
if self.use_master_arm and self.master_joint_actions:
# 主从控制模式:直接使用主臂的关节角度
try:
# 将主臂关节角度映射到从臂
for i in range(6): # 假设只有6个关节需要控制
joint_key = f"joint_{i+1}"
if joint_key in self.master_joint_actions:
# 直接使用主臂的关节角度(已经是度数)
self.joint[i] = self.master_joint_actions[joint_key]
# 应用关节限制
min_val, max_val = self.joint_limits[i]
self.joint[i] = max(min_val, min(max_val, self.joint[i]))
# print(self.joint)
logging.debug(f"主臂关节映射到从臂: {self.joint[:6]}")
except Exception as e:
logging.error(f"主臂数据映射错误: {e}")
# 如果有主臂夹爪数据,使用主臂夹爪状态
if self.use_master_arm and "grasp" in self.master_joint_actions:
self.gripper = self.master_joint_actions["grasp"] * 1000
self.joint[-1] = self.gripper
def update_end_pose(self):
"""更新末端位姿控制"""
# 根据控制模式调整步长
current_linear_step = self.linear_step * (0.1 if self.fine_control_mode else 1.0)
current_angular_step = self.angular_step * (0.1 if self.fine_control_mode else 1.0)
# 方向键控制XY
hat = self.joystick.get_hat(0)
hat_up = hat[1] == 1 # Y+
hat_down = hat[1] == -1 # Y-
hat_left = hat[0] == -1 # X-
hat_right = hat[0] == 1 # X+
# 右摇杆控制Z
right_y_raw = -self.joystick.get_axis(4)
# 左摇杆控制RZ
left_y_raw = -self.joystick.get_axis(1)
# 应用死区
right_y = 0.0 if abs(right_y_raw) < self.deadzone else right_y_raw
left_y = 0.0 if abs(left_y_raw) < self.deadzone else left_y_raw
# 计算各轴速度
self.pose_speeds[1] = current_linear_step if hat_up else (-current_linear_step if hat_down else 0.0) # Y
self.pose_speeds[0] = -current_linear_step if hat_left else (current_linear_step if hat_right else 0.0) # X
# 设置Z速度右摇杆Y轴控制
z_mapping = self._apply_nonlinear_mapping(right_y)
self.pose_speeds[2] = z_mapping * current_linear_step # Z
# L1/R1控制RX旋转
LB = self.joystick.get_button(4) # RX-
RB = self.joystick.get_button(5) # RX+
self.pose_speeds[3] = (-current_angular_step if LB else (current_angular_step if RB else 0.0))
# △/□控制RY旋转
triangle = self.joystick.get_button(2) # RY+
square = self.joystick.get_button(3) # RY-
self.pose_speeds[4] = (current_angular_step if triangle else (-current_angular_step if square else 0.0))
# 左摇杆Y轴控制RZ旋转
rz_mapping = self._apply_nonlinear_mapping(left_y)
self.pose_speeds[5] = rz_mapping * current_angular_step * 2 # RZ
# 夹爪控制(圈/叉)
circle = self.joystick.get_button(1) # 夹爪开
cross = self.joystick.get_button(0) # 夹爪关
if circle:
self.gripper = min(self.max_gripper, self.gripper + self.gripper_speed)
elif cross:
self.gripper = max(self.min_gripper, self.gripper - self.gripper_speed)
# 更新末端位姿
for i in range(6):
self.pose[i] += self.pose_speeds[i]
# 角度归一化处理
for i in range(3, 6):
self.pose[i] = self._normalize_angle(self.pose[i])
def update_joint_state(self, joint):
self.joint = joint
# self.tozero = False
def update_endpose_state(self, end_pose):
self.pose = end_pose
# self.tozero = False
def update_tozero_state(self, tozero):
self.tozero = tozero
def get_action(self) -> Dict:
"""获取当前控制命令"""
return {
'control_mode': 'joint' if self.joint_control_mode else 'end_pose',
'use_master_arm': self.use_master_arm,
'master_joint_actions': self.master_joint_actions,
'master_controller_status': self.master_controller_status,
'end_pose': self.pose,
'joint_angles': self.joint,
'gripper': int(self.gripper),
'tozero': self.tozero
}
def stop(self):
"""停止控制器"""
self.running = False
if self.thread.is_alive():
self.thread.join()
if self.servo_arm:
self.servo_arm.close()
pygame.quit()
print("混合控制器已退出")
def reset(self):
"""重置到初始状态"""
self.joint = self.init_joint.copy()
self.pose = self.init_pose.copy()
self.pose_speeds = [0.0] * 6
self.joint_speeds = [0.0] * 6
self.gripper_speed = 10
self.gripper = self.min_gripper
print("已重置到初始状态")
# 使用示例
if __name__ == "__main__":
# 初始化睿尔曼机械臂
arm = RoboticArm(rm_thread_mode_e.RM_TRIPLE_MODE_E)
# 创建机械臂连接
handle = arm.rm_create_robot_arm("192.168.3.18", 8080)
print(f"机械臂连接ID: {handle.id}")
init_pose = arm.rm_get_current_arm_state()[1]['pose']
with open('/home/maic/LYT/lerobot/lerobot/common/robot_devices/teleop/realman_mix.yaml', "r") as file:
config = yaml.safe_load(file)
config['init_pose'] = init_pose
arm_controller = HybridController(config)
try:
while True:
print(arm_controller.get_action())
time.sleep(0.1)
except KeyboardInterrupt:
arm_controller.stop()

View File

@@ -1,4 +0,0 @@
init_joint: [-90, 90, 90, -90, -90, 90]
max_gripper: 990
min_gripper: 10
servo_config_file: "/home/maic/LYT/lerobot/lerobot/common/robot_devices/teleop/servo_arm.yaml"

View File

@@ -1,6 +0,0 @@
port: /dev/ttyUSB0
right_port: /dev/ttyUSB1
baudrate: 460800
joint_hex_data: "55 AA 02 00 00 67"
control_hex_data: "55 AA 08 00 00 B9"
arm_axis: 6

View File

@@ -48,7 +48,8 @@ class RobotDeviceNotConnectedError(Exception):
"""Exception raised when the robot device is not connected."""
def __init__(
self, message="This robot device is not connected. Try calling `robot_device.connect()` first."
self,
message="This robot device is not connected. Try calling `robot_device.connect()` first.",
):
self.message = message
super().__init__(self.message)

View File

@@ -28,7 +28,9 @@ def write_video(video_path, stacked_frames, fps):
# Filter out DeprecationWarnings raised from pkg_resources
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", "pkg_resources is deprecated as an API", category=DeprecationWarning
"ignore",
"pkg_resources is deprecated as an API",
category=DeprecationWarning,
)
imageio.mimsave(video_path, stacked_frames, fps=fps)

View File

@@ -94,7 +94,7 @@ class MetricsTracker:
metrics: dict[str, AverageMeter],
initial_step: int = 0,
):
self.__dict__.update(dict.fromkeys(self.__keys__))
self.__dict__.update({k: None for k in self.__keys__})
self._batch_size = batch_size
self._num_frames = num_frames
self._avg_samples_per_ep = num_frames / num_episodes

Some files were not shown because too many files have changed in this diff Show More