Compare commits

..

84 Commits

Author SHA1 Message Date
jess-moss
56858f36a6 Updated Solidworks files. Added STL files. Added Assembly instructions for Kock Arm. 2024-07-18 11:02:26 -05:00
jess-moss
5b7d603c94 Updated follower base with increase height of supports for DC converter. 2024-07-12 17:08:04 -05:00
jess-moss
057363be96 Updated SW files. 2024-07-12 14:03:32 -05:00
jess-moss
3c9e8df73e Removed soldering iron and changed voltage reducer. 2024-07-12 13:25:07 -05:00
jess-moss
26aa33cd8d Added SolidWorks Parts for Alexander Koch Robotic Arm. 2024-07-10 11:45:10 -05:00
jess-moss
a3379443ca added a combined table. 2024-07-10 11:01:57 -05:00
jess-moss
7e7b7e1c43 Added UK products. 2024-07-10 10:03:05 -05:00
Remi Cadene
39acef5d03 Add BOM markdown (WIP) 2024-07-09 00:23:44 +02:00
Alexander Soare
7bd5ab16d1 Fix generation of dataset test artifact (#306) 2024-07-05 11:02:26 +01:00
Simon Alibert
74362ac453 Add VQ-BeT copyrights (#299) 2024-07-04 13:02:31 +02:00
Simon Alibert
964f9e86d6 Cleanup config defaults (#300) 2024-07-04 11:53:29 +02:00
Nur Muhammad "Mahi" Shafiullah
7a5fc76b9f Added new credits and citations (#301) 2024-07-03 20:57:47 +02:00
Alexander Soare
342f429f1c Add test to make sure policy dataclass configs match yaml configs (#292) 2024-06-26 09:09:40 +01:00
Seungjae Lee
7d1542cae1 Add VQ-BeT (#166) 2024-06-26 08:55:02 +01:00
Alexander Soare
9aa4cdb976 Checkpoint on final step of training even when it doesn't coincide with save_freq. (#284) 2024-06-20 08:27:01 +01:00
Simon Alibert
2abef3bef9 Enable video_reader backend (#220)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-19 17:15:25 +02:00
Thomas Wolf
48951662f2 Bug fix: missing attention mask in VAE encoder in ACT policy (#279)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-19 12:07:21 +01:00
Thomas Wolf
56199fb76f Update readme to detail the lerobot dataset format (#275)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-18 13:40:03 +01:00
Thomas Wolf
11f1cb5dc9 Bug fix: fix setting different learning rates between backbone and main model in ACT policy (#280) 2024-06-18 13:31:35 +01:00
Jihoon Oh
b72d574891 fix Unet global_cond_dim to use state dim, not action dim (#278) 2024-06-17 15:17:28 +01:00
Alexander Soare
15dd682714 Add multi-image support to diffusion policy (#218) 2024-06-17 08:11:20 +01:00
Marina Barannikov
e28fa2344c added visualization for min and max transforms (#271)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-06-17 09:09:57 +02:00
Simon Alibert
a92d79fff2 Fix nightlies (#273) 2024-06-14 17:11:19 +01:00
Thomas Wolf
125bd93e29 Improve push_dataset_to_hub API + Add unit tests (#231)
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-13 15:18:02 +02:00
Marina Barannikov
c38f535c9f FIx make_dataset to match transforms config (#264)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-12 19:45:42 +02:00
Marina Barannikov
ff8f6aa6cd Add data augmentation in LeRobotDataset (#234)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: Remi Cadene <re.cadene@gmail.com>
2024-06-11 19:20:55 +02:00
Ikko Eltociear Ashimine
1cf050d412 chore: update 4_train_policy_with_script.md (#257)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-11 08:24:39 +01:00
Wael Karkoub
54c9776bde Improves Type Annotations (#252) 2024-06-10 19:09:48 +01:00
Luc Georges
a06598678c feat(ci): add trufflehog secrets detection (#254) 2024-06-10 14:25:43 +02:00
Thomas Lips
055a6f60c6 add root argument to the dataset visualizer to visualize local datasets (#249) 2024-06-10 10:44:32 +02:00
Simon Alibert
e54d6ea1eb Make display_sys_info.py install-agnostic (#253) 2024-06-07 15:02:17 +02:00
Alexander Soare
1eb4bfe2e4 Fix videos_dir documentation (#247) 2024-06-05 08:25:20 +01:00
Alexander Soare
21f222fa1d Add out_dir option to eval (#244) 2024-06-04 21:01:53 +02:00
amandip7
33362dbd17 Adding parameter dataloading_s to console logs and wandb for tracking… (#243)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-06-04 17:02:05 +01:00
Ruijie
b0d954c6e1 Fix bug in normalize to avoid divide by zero (#239)
Co-authored-by: rj <rj@teleopstrio-razer.lan>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-06-04 12:21:28 +02:00
Simon Alibert
bd3111f28b Fix visualize_dataset.py --help (#241) 2024-06-03 16:35:16 +02:00
Alexander Soare
cf15cba5fc Remove redundant slicing operation in Diffusion Policy (#240) 2024-06-03 13:04:24 +01:00
jganitzer
042e193995 Typo in examples\4_train_policy_with_script.md (#235) 2024-05-31 18:14:14 +01:00
Remi
d585c73f9f Add real-world support for ACT on Aloha/Aloha2 (#228)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-31 15:31:02 +02:00
Radek Osmulski
504d2aaf48 add EpisodeAwareSampler (#217)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-31 13:43:47 +01:00
Radek Osmulski
83f4f7f7e8 Add precision param to format_big_number (#232) 2024-05-31 10:19:01 +02:00
Alexander Soare
633115d861 Fix chaining in MultiLerobotDataset (#233) 2024-05-31 09:03:28 +01:00
Alexander Soare
57fb5fe8a6 Improve documentation on VAE encoder inputs (#215) 2024-05-30 19:16:44 +02:00
Alexander Soare
0b51a335bc Add a test for MultiLeRobotDataset making sure it produces all frames. (#230)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-30 17:46:25 +01:00
Alexander Soare
111cd58f8a Add MultiLerobotDataset for training with multiple LeRobotDatasets (#229) 2024-05-30 16:12:21 +01:00
Remi
265b0ec44d Refactor env to add key word arguments from config yaml (#223)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-05-30 13:45:22 +02:00
Remi
2c2e4e14ed Add aloha_dora_format.py (#201)
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
2024-05-30 11:26:39 +02:00
Simon Alibert
13310681b1 Enable cuda for end-to-end tests (#222) 2024-05-29 23:02:23 +02:00
Alexander Soare
3d625ae6d3 Handle crop_shape=None in Diffusion Policy (#219) 2024-05-28 18:27:33 +01:00
Alexander Soare
e3b9f1c19b Add resume training (#205)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-28 12:04:23 +01:00
Simon Alibert
7ec76ee235 Fix nightly builds (#216) 2024-05-28 10:43:34 +02:00
Radek Osmulski
3b86050ab0 throw an error if config.do_maks_loss and action_is_pad not provided in batch (#213)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-27 09:06:26 +01:00
Alexander Soare
6d39b73399 Adds a tutorial section on how to use arbitrary configuration files (#206) 2024-05-24 12:39:11 +01:00
Simon Alibert
aca424a481 Add dev docker image (#189)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-23 14:39:14 +02:00
Simon Alibert
35c1ce7a66 Fix install issues (#191) 2024-05-23 14:25:18 +02:00
Alexander Soare
e67da1d7a6 Add tutorials for using the training script and (#196)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-21 16:47:49 +01:00
Alexander Soare
b6c216b590 Add Automatic Mixed Precision option for training and evaluation. (#199) 2024-05-20 18:57:54 +01:00
Alexander Soare
2b270d085b Disable online training (#202)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-20 18:27:54 +01:00
Remi
c4da689171 Hot fix to compute validation loss example test (#200)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-20 18:30:11 +02:00
Radek Osmulski
9b62c25f6c Adds split_by_episodes to LeRobotDataset (#158) 2024-05-20 14:04:04 +02:00
Remi
01eae09ba6 Fix aloha real-world datasets (#175) 2024-05-20 13:48:09 +02:00
Alexander Soare
19dfb9144a Update the README to reflect WandB disabled by default (#198) 2024-05-20 09:02:24 +01:00
Alexander Soare
096149b118 Disable wandb by default (#195) 2024-05-17 18:01:39 +01:00
Alexander Soare
5ec0af62c6 Explain why n_encoder_layers=1 (#193) 2024-05-17 15:05:40 +01:00
Alexander Soare
625f0557ef Act temporal ensembling (#186) 2024-05-17 14:57:49 +01:00
Alexander Soare
4d7d41cdee Fix act action queue (#185) 2024-05-16 15:43:25 +01:00
Akshay Kashyap
c9069df9f1 Port SpatialSoftmax and remove Robomimic dependency (#182)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-16 15:34:10 +01:00
Alexander Soare
68c1b13406 Make policies compatible with other/multiple image keys (#149) 2024-05-16 13:51:53 +01:00
Simon Alibert
f52f4f2cd2 Add copyrights (#157) 2024-05-15 12:13:09 +02:00
Simon Alibert
89c6be84ca Limit datasets major update (#176)
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
Co-authored-by: Quentin Lhoest <lhoest.q@gmail.com>
2024-05-12 08:15:07 +02:00
AshisGhosh
fc5cf3d84a Fixes issue #152 - error with creating wandb artifact (#172)
Co-authored-by: Ashis Ghosh <ahsisghosh@live.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-05-12 08:13:12 +02:00
Simon Alibert
29a196c5dd Fix #173 - Require gym-pusht to be installed for test_examples_3_and_2 (#174) 2024-05-12 08:08:59 +02:00
Remi
ced3de4c94 Fix hanging in visualize_dataset.py when num_workers > 0 (#165) 2024-05-11 19:28:22 +03:00
Vincent Moens
7b47ab211b Remove torchrl acknowledgement (#177) 2024-05-11 14:45:51 +03:00
Alexander Soare
1249aee3ac Enable logging all the information returned by the forward methods of policies (#151) 2024-05-10 07:45:32 +01:00
Alexander Soare
b187942db4 Add context manager for seeding (#164) 2024-05-09 17:58:39 +01:00
Alexander Soare
473345fdf6 Fix stats override in ACT config (#161) 2024-05-09 15:16:47 +01:00
Alexander Soare
e89521dfa0 Enable tests for TD-MPC (#160) 2024-05-09 13:42:12 +01:00
Simon Alibert
7bb5b15f4c Remove dependencies upper bounds constraints (#145) 2024-05-08 17:23:10 +00:00
Simon Alibert
df914aa76c Update dev docker build (#148) 2024-05-08 17:21:58 +00:00
Ikko Eltociear Ashimine
0ea7a8b2a3 refactor: update configuration_tdmpc.py (#153)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-08 18:13:51 +01:00
Akshay Kashyap
460df2ccea Support for DDIMScheduler in Diffusion Policy (#146) 2024-05-08 18:05:16 +01:00
Alexander Soare
f5de57b385 Fix SpatialSoftmax input shape (#150) 2024-05-08 14:57:29 +01:00
Alexander Soare
47de07658c Override pretrained model config (#147) 2024-05-08 12:56:21 +01:00
727 changed files with 113407 additions and 2865 deletions

4
.gitattributes vendored
View File

@@ -1,2 +1,6 @@
*.memmap filter=lfs diff=lfs merge=lfs -text
*.stl filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.json filter=lfs diff=lfs merge=lfs -text

View File

@@ -10,7 +10,6 @@ on:
env:
PYTHON_VERSION: "3.10"
# CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
jobs:
latest-cpu:
@@ -35,6 +34,8 @@ jobs:
- name: Check out code
uses: actions/checkout@v4
with:
lfs: true
- name: Login to DockerHub
uses: docker/login-action@v3
@@ -51,34 +52,50 @@ jobs:
tags: huggingface/lerobot-cpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
# - name: Post to a Slack channel
# id: slack
# #uses: slackapi/slack-github-action@v1.25.0
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
# with:
# # Slack channel id, channel name, or user id to post message.
# # See also: https://api.slack.com/methods/chat.postMessage#channels
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
# # For posting a rich message using Block Kit
# payload: |
# {
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
# "blocks": [
# {
# "type": "section",
# "text": {
# "type": "mrkdwn",
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
# }
# }
# ]
# }
# env:
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-cuda:
name: GPU
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
sudo df -h
# sudo ls -l /usr/local/lib/
# sudo ls -l /usr/share/
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo du -sh /usr/local/lib/
sudo du -sh /usr/share/
sudo df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Check out code
uses: actions/checkout@v4
with:
lfs: true
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu/Dockerfile
push: true
tags: huggingface/lerobot-gpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
latest-cuda-dev:
name: GPU Dev
runs-on: ubuntu-latest
steps:
- name: Cleanup disk
run: |
@@ -104,36 +121,11 @@ jobs:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
- name: Build and Push GPU dev
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu/Dockerfile
file: ./docker/lerobot-gpu-dev/Dockerfile
push: true
tags: huggingface/lerobot-gpu
tags: huggingface/lerobot-gpu:dev
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
# - name: Post to a Slack channel
# id: slack
# #uses: slackapi/slack-github-action@v1.25.0
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
# with:
# # Slack channel id, channel name, or user id to post message.
# # See also: https://api.slack.com/methods/chat.postMessage#channels
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
# # For posting a rich message using Block Kit
# payload: |
# {
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
# "blocks": [
# {
# "type": "section",
# "text": {
# "type": "mrkdwn",
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
# }
# }
# ]
# }
# env:
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@@ -70,6 +70,8 @@ jobs:
# files: ./coverage.xml
# verbose: true
- name: Tests end-to-end
env:
DEVICE: cuda
run: make test-end-to-end
# - name: Generate Report

View File

@@ -10,6 +10,7 @@ on:
- "examples/**"
- ".github/**"
- "poetry.lock"
- "Makefile"
push:
branches:
- main
@@ -19,6 +20,7 @@ on:
- "examples/**"
- ".github/**"
- "poetry.lock"
- "Makefile"
jobs:
pytest:
@@ -29,9 +31,11 @@ jobs:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
- name: Install EGL
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
- name: Install apt dependencies
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev ffmpeg
- name: Install poetry
run: |
@@ -57,6 +61,43 @@ jobs:
&& rm -rf tests/outputs outputs
pytest-minimal:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
- name: Install apt dependencies
run: sudo apt-get update && sudo apt-get install -y ffmpeg
- name: Install poetry
run: |
pipx install poetry && poetry config virtualenvs.in-project true
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
- name: Set up Python 3.10
uses: actions/setup-python@v5
with:
python-version: "3.10"
- name: Install poetry dependencies
run: |
poetry install --extras "test"
- name: Test with pytest
run: |
pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
end-to-end:
name: End-to-end
runs-on: ubuntu-latest
@@ -65,8 +106,10 @@ jobs:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
- name: Install EGL
- name: Install apt dependencies
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
- name: Install poetry

18
.github/workflows/trufflehog.yml vendored Normal file
View File

@@ -0,0 +1,18 @@
on:
push:
name: Secret Leaks
permissions:
contents: read
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

31
.gitignore vendored
View File

@@ -2,12 +2,17 @@
logs
tmp
wandb
# Data
data
outputs
.vscode
rl
# Apple
.DS_Store
# VS Code
.vscode
# HPC
nautilus/*.yaml
*.key
@@ -90,6 +95,7 @@ instance/
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
@@ -102,13 +108,6 @@ ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
@@ -119,6 +118,14 @@ celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
@@ -136,3 +143,9 @@ dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/

60
BILL_OF_MATERIALS.md Normal file
View File

@@ -0,0 +1,60 @@
# Bill Of Materials (BOM)
## Alexander Koch arms
### Follower and Leader arm
| Part | Amount | Unit Cost (US) | Buy US | Unit Cost (EU) | Buy EU | Unit Cost (UK) | Buy UK |
|---|---|---|---|---|---|---|---|
| Dynamixel XL430-W250-T | 2 | $50 | [Robotis](https://www.robotis.us/dynamixel-xl430-w250-t) | 57-61€ | [MyBotShop](https://www.mybotshop.de/DYNAMIXEL-XL430-W250-T)-[GenRobots](https://www.generationrobots.com/en/402823-dynamixel-xl430-w250-t-servomotor.html) | £47 | [RoboSavvy](https://robosavvy.co.uk/dynamixel-xl430-w250-t.html)
| Dynamixel XL330-M288-T | 4 | $24 | [Robotis](https://www.robotis.us/dynamixel-xl330-m288-t) | 40-46€ | [MyBotShop](https://www.mybotshop.de/DYNAMIXEL-XL330-M288-T)-[GenRobots](https://www.generationrobots.com/en/403817-dynamixel-xl330-m288-t-servo-motor.html) | £27 | [RoboSavvy](https://robosavvy.co.uk/robotis-dynamixel-xl330-m288-t.html) |
| Dynamixel XL330-M077-T | 6 | $24 | [Robotis](https://www.robotis.us/dynamixel-xl330-m077-t) | 40-46€ | [MyBotShop](https://www.mybotshop.de/DYNAMIXEL-XL330-M077-T)-[GenRobots](https://www.generationrobots.com/en/403818-dynamixel-xl330-m077-t-servo-motor.html) | £27 | [RoboSavvy](https://robosavvy.co.uk/robotis-dynamixel-xl330-m077-t.html) |
| XL330 Frame and Idler Wheel 4pcs set | 2 | $10 | [Robotis](https://www.robotis.us/fpx330-h101-4pcs-set) | 12€ | [GenRobots](https://www.generationrobots.com/en/403860-FPX330-H101-hinge-frame-and-idler-set-dynamixel-xl330.html) | £10 | [RoboSavvy](https://robosavvy.co.uk/fpx330-h101-4pcs-set.html) |
| XL430 Idler Wheel set | 1 | $7 | [Robotis](https://www.robotis.us/hn11-i101-set) | 9€ | [GenRobots](https://www.generationrobots.com/en/403206-hn11-i101-horn-set.html) | £7 | [Robosavvy](https://robosavvy.co.uk/hn11-i101-set.html)|
| Waveshare Serial Bus Servo Driver Board | 2 | $10 | [Amazon](https://a.co/d/7C3RUYU) | 6€ | [Eckstein](https://eckstein-shop.de/WaveShare-Serial-Bus-Servo-Driver-Board-for-ST-SC-Serial-Bus-Servos-EN) | £8 | [Amazon](https://www.amazon.com/Waveshare-Integrates-Control-Circuit-Supports/dp/B0CTMM4LWK/)|
| Voltage Reducer | 1 | $14 | [Amazon](https://www.amazon.com/EPLZON-Converter-5V-5-3V-Transformer-Regulator/dp/B09R4DBZJK) | 7€ | [Amazon](https://www.amazon.fr/ICQUANZX-Converter-Transformer-Voltage-Regulator/dp/B07RGB2HB6) | £11 | [Amazon](https://www.amazon.com/EPLZON-Converter-5V-5-3V-Transformer-Regulator/dp/B09R4DBZJK) |
| 12V Power Supply | 1 | $12 | [Amazon](https://a.co/d/40o8uMN) | 15-36€ | [Amazon](https://www.amazon.fr/LEDMO-Alimentation-Adaptateur-Transformateurs-Chargeur/dp/B07PGLXK4X)-[GenRobots](https://www.generationrobots.com/en/400866-smps-charger-for-bioloid-and-dynamixel-robotis.html) | £9 | [Amazon](https://a.co/d/40o8uMN) |
| 5V Power Supply | 1 | $6 | [Amazon](https://a.co/d/5u90NVp) | 9€ | [Amazon](https://www.amazon.fr/LEYF-Alimentation-Universelle-Adaptateur-Enfichable/dp/B09NGVWBSY) | £4 | [Amazon](https://a.co/d/5u90NVp)|
| Jumper Wires 3*40 pcs set (M-M, M-F, F-F) | 1 | $7 | [Amazon](https://a.co/d/hQfk2cb) | 9€ | [Amazon](https://www.amazon.fr/AZDelivery-Jumper-Cavalier-C%C3%A2ble-Arduino/dp/B074P726ZR) | £5 | [Amazon](https://a.co/d/hQfk2cb) |
| Table Clamp 2pcs set | 1 | $9 | [Amazon](https://www.amazon.com/Mr-Pen-Carpenter-Clamp-6inch/dp/B092L925J4/?th=1) | n/a | n/a | £7 | [Amazon](https://www.amazon.com/Mr-Pen-Carpenter-Clamp-6inch/dp/B092L925J4/?th=1) |
| Table Clamp 4pcs set | 1 | n/a | n/a | 14€ | [Amazon](https://www.amazon.fr/CAUTIOUS-Serre-Joint-R%C3%A9glable-Serre-Joints/dp/B0CJMB3SKH) | n/a | n/a |
| 1.5mm Star/Cruciform Screwdriver 2pcs set | 1 | n/a | n/a | 7€ | [Amazon](https://www.amazon.fr/sourcing-map-Cruciforme-%C3%89lectroniques-R%C3%A9paration/dp/B0BQ69J2QF) | n/a | n/a |
| 1.5mm Star/Cruciform Screwdriver included in set | 1 | $6 | [Amazon](https://www.amazon.com/Choice-9-Piece-Precision-Screwdriver-Phillips/dp/B0747DYJJR) | n/a | n/a | £5 | [Amazon](https://www.amazon.com/Choice-9-Piece-Precision-Screwdriver-Phillips/dp/B0747DYJJR) |
| USB C-A or C-C 2pcs set | 1 | $9 | [Amazon](https://www.amazon.com/Charging-etguuds-Charger-Braided-Compatible/dp/B0B8NWLLW2/) | 7€ | [Amazon](https://www.amazon.fr/-/en/dp/B0CKPDZ3SK/) | £7 | [Amazon](https://www.amazon.com/Charging-etguuds-Charger-Braided-Compatible/dp/B0B8NWLLW2/)|
| Total | | $450 | | 618€ | | £455 | |
### Follower arm only
| Part | Amount | Unit Cost (US) | Buy US | Unit Cost (EU) | Buy EU | Unit Cost (UK) | Buy UK |
|---|---|---|---|---|---|---|---|
| Dynamixel XL430-W250-T | 2 | $50 | [Robotis](https://www.robotis.us/dynamixel-xl430-w250-t) | 57-61€ | [MyBotShop](https://www.mybotshop.de/DYNAMIXEL-XL430-W250-T)-[GenRobots](https://www.generationrobots.com/en/402823-dynamixel-xl430-w250-t-servomotor.html) | £47 | [RoboSavvy](https://robosavvy.co.uk/dynamixel-xl430-w250-t.html)
| Dynamixel XL330-M288-T | 4 | $24 | [Robotis](https://www.robotis.us/dynamixel-xl330-m288-t) | 40-46€ | [MyBotShop](https://www.mybotshop.de/DYNAMIXEL-XL330-M288-T)-[GenRobots](https://www.generationrobots.com/en/403817-dynamixel-xl330-m288-t-servo-motor.html) | £27 | [RoboSavvy](https://robosavvy.co.uk/robotis-dynamixel-xl330-m288-t.html) |
| XL330 Frame and Idler Wheel 4pcs set | 1 | $10 | [Robotis](https://www.robotis.us/fpx330-h101-4pcs-set) | 12€ | [GenRobots](https://www.generationrobots.com/en/403860-FPX330-H101-hinge-frame-and-idler-set-dynamixel-xl330.html) | £10 | [RoboSavvy](https://robosavvy.co.uk/fpx330-h101-4pcs-set.html) |
| XL430 Idler Wheel set | 1 | $7 | [Robotis](https://www.robotis.us/hn11-i101-set) | 9€ | [GenRobots](https://www.generationrobots.com/en/403206-hn11-i101-horn-set.html) | £7 | [Robosavvy](https://robosavvy.co.uk/hn11-i101-set.html)|
| Waveshare Serial Bus Servo Driver Board | 1 | $10 | [Amazon](https://a.co/d/7C3RUYU) | 6€ | [Eckstein](https://eckstein-shop.de/WaveShare-Serial-Bus-Servo-Driver-Board-for-ST-SC-Serial-Bus-Servos-EN) | £8 | [Amazon](https://www.amazon.com/Waveshare-Integrates-Control-Circuit-Supports/dp/B0CTMM4LWK/)|
| Voltage Reducer | 1 | $14 | [Amazon](https://www.amazon.com/EPLZON-Converter-5V-5-3V-Transformer-Regulator/dp/B09R4DBZJK) | 7€ | [Amazon](https://www.amazon.fr/ICQUANZX-Converter-Transformer-Voltage-Regulator/dp/B07RGB2HB6) | £11 | [Amazon](https://www.amazon.com/EPLZON-Converter-5V-5-3V-Transformer-Regulator/dp/B09R4DBZJK) |
| 12V Power Supply | 1 | $12 | [Amazon](https://a.co/d/40o8uMN) | 15-36€ | [Amazon](https://www.amazon.fr/LEDMO-Alimentation-Adaptateur-Transformateurs-Chargeur/dp/B07PGLXK4X)-[GenRobots](https://www.generationrobots.com/en/400866-smps-charger-for-bioloid-and-dynamixel-robotis.html) | £9 | [Amazon](https://a.co/d/40o8uMN) |
| Jumper Wires 3*40 pcs set (M-M, M-F, F-F) | 1 | $7 | [Amazon](https://a.co/d/hQfk2cb) | 9€ | [Amazon](https://www.amazon.fr/AZDelivery-Jumper-Cavalier-C%C3%A2ble-Arduino/dp/B074P726ZR) | £5 | [Amazon](https://a.co/d/hQfk2cb) |
| Table Clamp | 1 | $6 | [Amazon](https://a.co/d/4KEiYdV) | n/a | n/a | £5 | [Amazon](https://a.co/d/4KEiYdV) |
| Table Clamp 4pcs set (1 needed)| 1 | n/a | n/a | 14€ | [Amazon](https://www.amazon.fr/CAUTIOUS-Serre-Joint-R%C3%A9glable-Serre-Joints/dp/B0CJMB3SKH) | n/a | n/a |
| 1.5mm Star/Cruciform Screwdriver 2pcs set (1 pc needed) | 1 | n/a | n/a | 7€ | [Amazon](https://www.amazon.fr/sourcing-map-Cruciforme-%C3%89lectroniques-R%C3%A9paration/dp/B0BQ69J2QF) | n/a | n/a |
| 1.5mm Star/Cruciform Screwdriver included in set | 1 | $6 | [Amazon](https://www.amazon.com/Choice-9-Piece-Precision-Screwdriver-Phillips/dp/B0747DYJJR) | n/a | n/a | £5 | [Amazon](https://www.amazon.com/Choice-9-Piece-Precision-Screwdriver-Phillips/dp/B0747DYJJR) |
| USB C-A or C-C 2pcs set (1 pc needed) | 1 | $9 | [Amazon](https://www.amazon.com/Charging-etguuds-Charger-Braided-Compatible/dp/B0B8NWLLW2/) | 7€ | [Amazon](https://www.amazon.fr/-/en/dp/B0CKPDZ3SK/) | £7 | [Amazon](https://www.amazon.com/Charging-etguuds-Charger-Braided-Compatible/dp/B0B8NWLLW2/)|
| Total | | $277 | | 360€ | | £269 | |
### Leader arm only
| Part | Amount | Unit Cost (US) | Buy US | Unit Cost (EU) | Buy EU | Unit Cost (UK) | Buy UK |
|---|---|---|---|---|---|---|---|
| Dynamixel XL330-M077-T | 6 | $24 | [Robotis](https://www.robotis.us/dynamixel-xl330-m077-t) | 40-46€ | [MyBotShop](https://www.mybotshop.de/DYNAMIXEL-XL330-M077-T)-[GenRobots](https://www.generationrobots.com/en/403818-dynamixel-xl330-m077-t-servo-motor.html) | £27 | [RoboSavvy](https://robosavvy.co.uk/robotis-dynamixel-xl330-m077-t.html) |
| XL330 Frame and Idler Wheel 4pcs set | 1 | $10 | [Robotis](https://www.robotis.us/fpx330-h101-4pcs-set) | 12€ | [GenRobots](https://www.generationrobots.com/en/403860-FPX330-H101-hinge-frame-and-idler-set-dynamixel-xl330.html) | £10 | [RoboSavvy](https://robosavvy.co.uk/fpx330-h101-4pcs-set.html) |
| Waveshare Serial Bus Servo Driver Board | 1 | $10 | [Amazon](https://a.co/d/7C3RUYU) | 6€ | [GenRobots](https://eckstein-shop.de/WaveShare-Serial-Bus-Servo-Driver-Board-for-ST-SC-Serial-Bus-Servos-EN) | £8 | [Amazon](https://www.amazon.com/Waveshare-Integrates-Control-Circuit-Supports/dp/B0CTMM4LWK/) |
| 5V Power Supply | 1 | $6 | [Amazon](https://a.co/d/5u90NVp) | 9€ | [Amazon](https://www.amazon.fr/LEYF-Alimentation-Universelle-Adaptateur-Enfichable/dp/B09NGVWBSY) | £4 | [Amazon](https://a.co/d/5u90NVp)|
| Jumper Wires 3*40 pcs set (M-M, M-F, F-F) | 1 | $7 | [Amazon](https://a.co/d/hQfk2cb) | 9€ | [Amazon](https://www.amazon.fr/AZDelivery-Jumper-Cavalier-C%C3%A2ble-Arduino/dp/B074P726ZR) | £5 | [Amazon](https://a.co/d/hQfk2cb)|
| Table Clamp | 1 | $6 | [Amazon](https://a.co/d/4KEiYdV) | n/a | n/a | £5 | [Amazon](https://a.co/d/4KEiYdV) |
| Table Clamp 4pcs set | 1 | n/a | n/a | 14€ | [Amazon](https://www.amazon.fr/CAUTIOUS-Serre-Joint-R%C3%A9glable-Serre-Joints/dp/B0CJMB3SKH) | n/a | n/a |
| 1.5mm Star/Cruciform Screwdriver 2pcs set | 1 | n/a | n/a | 7€ | [Amazon](https://www.amazon.fr/sourcing-map-Cruciforme-%C3%89lectroniques-R%C3%A9paration/dp/B0BQ69J2QF) | n/a | n/a |
| 1.5mm Star/Cruciform Screwdriver included in set | 1 | $6 | [Amazon](https://www.amazon.com/Choice-9-Piece-Precision-Screwdriver-Phillips/dp/B0747DYJJR) | n/a | n/a | £5 | [Amazon](https://www.amazon.com/Choice-9-Piece-Precision-Screwdriver-Phillips/dp/B0747DYJJR)
| Total | | $189 | | 297€ | | £199 | |

View File

@@ -139,13 +139,11 @@ Follow these steps to start contributing:
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
```bash
pip install poetry
poetry install --sync --extras "dev test"
```
You can also install the project with all its dependencies (including environments):
```bash
pip install poetry
poetry install --sync --all-extras
```
@@ -197,6 +195,11 @@ Follow these steps to start contributing:
git commit
```
Note, if you already commited some changes that have a wrong formatting, you can use:
```bash
pre-commit run --all-files
```
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
It is a good idea to sync your copy of the code with the original

107
Makefile
View File

@@ -5,11 +5,12 @@ PYTHON_PATH := $(shell which python)
# If Poetry is installed, redefine PYTHON_PATH to use the Poetry-managed Python
POETRY_CHECK := $(shell command -v poetry)
ifneq ($(POETRY_CHECK),)
PYTHON_PATH := $(shell poetry run which python)
PYTHON_PATH := $(shell poetry run which python)
endif
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
DEVICE ?= cpu
build-cpu:
docker build -t lerobot:latest -f docker/lerobot-cpu/Dockerfile .
@@ -18,89 +19,127 @@ build-gpu:
docker build -t lerobot:latest -f docker/lerobot-gpu/Dockerfile .
test-end-to-end:
${MAKE} test-act-ete-train
${MAKE} test-act-ete-eval
${MAKE} test-diffusion-ete-train
${MAKE} test-diffusion-ete-eval
# TODO(rcadene, alexander-soare): enable end-to-end tests for tdmpc
# ${MAKE} test-tdmpc-ete-train
# ${MAKE} test-tdmpc-ete-eval
${MAKE} test-default-ete-eval
${MAKE} DEVICE=$(DEVICE) test-act-ete-train
${MAKE} DEVICE=$(DEVICE) test-act-ete-eval
${MAKE} DEVICE=$(DEVICE) test-act-ete-train-amp
${MAKE} DEVICE=$(DEVICE) test-act-ete-eval-amp
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-train
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-eval
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-train
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-eval
${MAKE} DEVICE=$(DEVICE) test-default-ete-eval
${MAKE} DEVICE=$(DEVICE) test-act-pusht-tutorial
test-act-ete-train:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=cpu \
training.save_model=true \
device=$(DEVICE) \
training.save_checkpoint=true \
training.save_freq=2 \
policy.n_action_steps=20 \
policy.chunk_size=20 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/act/
test-act-ete-eval:
python lerobot/scripts/eval.py \
-p tests/outputs/act/checkpoints/000002 \
-p tests/outputs/act/checkpoints/000002/pretrained_model \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
device=$(DEVICE) \
test-act-ete-train-amp:
python lerobot/scripts/train.py \
policy=act \
policy.dim_model=64 \
env=aloha \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=$(DEVICE) \
training.save_checkpoint=true \
training.save_freq=2 \
policy.n_action_steps=20 \
policy.chunk_size=20 \
training.batch_size=2 \
hydra.run.dir=tests/outputs/act_amp/ \
training.image_transforms.enable=true \
use_amp=true
test-act-ete-eval-amp:
python lerobot/scripts/eval.py \
-p tests/outputs/act_amp/checkpoints/000002/pretrained_model \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=$(DEVICE) \
use_amp=true
test-diffusion-ete-train:
python lerobot/scripts/train.py \
policy=diffusion \
policy.down_dims=\[64,128,256\] \
policy.diffusion_step_embed_dim=32 \
policy.num_inference_steps=10 \
env=pusht \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
device=cpu \
training.save_model=true \
device=$(DEVICE) \
training.save_checkpoint=true \
training.save_freq=2 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/diffusion/
test-diffusion-ete-eval:
python lerobot/scripts/eval.py \
-p tests/outputs/diffusion/checkpoints/000002 \
-p tests/outputs/diffusion/checkpoints/000002/pretrained_model \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
device=$(DEVICE) \
# TODO(alexander-soare): Restore online_steps to 2 when it is reinstated.
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
policy=tdmpc \
env=xarm \
env.task=XarmLift-v0 \
dataset_repo_id=lerobot/xarm_lift_medium_replay \
dataset_repo_id=lerobot/xarm_lift_medium \
wandb.enable=False \
training.offline_steps=2 \
training.online_steps=2 \
training.online_steps=0 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=2 \
device=cpu \
training.save_model=true \
device=$(DEVICE) \
training.save_checkpoint=true \
training.save_freq=2 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/tdmpc/
test-tdmpc-ete-eval:
python lerobot/scripts/eval.py \
-p tests/outputs/tdmpc/checkpoints/000002 \
-p tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
device=$(DEVICE) \
test-default-ete-eval:
python lerobot/scripts/eval.py \
@@ -108,4 +147,22 @@ test-default-ete-eval:
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=8 \
device=cpu \
device=$(DEVICE) \
test-act-pusht-tutorial:
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/created_by_Makefile.yaml
python lerobot/scripts/train.py \
policy=created_by_Makefile.yaml \
env=pusht \
wandb.enable=False \
training.offline_steps=2 \
eval.n_episodes=1 \
eval.batch_size=1 \
env.episode_length=2 \
device=$(DEVICE) \
training.save_model=true \
training.save_freq=2 \
training.batch_size=2 \
training.image_transforms.enable=true \
hydra.run.dir=tests/outputs/act_pusht/
rm lerobot/configs/policy/created_by_Makefile.yaml

170
README.md
View File

@@ -57,8 +57,8 @@
- Thanks to Tony Zaho, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
- Thanks to Vincent Moens and colleagues for open sourcing [TorchRL](https://github.com/pytorch/rl). It allowed for quick experimentations on the design of `LeRobot`.
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
- Thanks to [Seungjae (Jay) Lee](https://sjlee.cc/), [Mahi Shafiullah](https://mahis.life/) and colleagues for open sourcing [VQ-BeT](https://sjlee.cc/vq-bet/) policy and helping us adapt the codebase to our repository. The policy is adapted from [VQ-BeT repo](https://github.com/jayLEE0301/vq_bet_official).
## Installation
@@ -78,6 +78,10 @@ Install 🤗 LeRobot:
pip install .
```
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
you may need to install `cmake` and `build-essential` for building some of our dependencies.
On linux: `sudo apt-get install cmake build-essential`
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
@@ -93,11 +97,14 @@ To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tra
wandb login
```
(note: you will also need to enable WandB in the configuration. See below.)
## Walkthrough
```
.
├── examples # contains demonstration examples, start here to learn about LeRobot
| └── advanced # contains even more examples for those who have mastered the basics
├── lerobot
| ├── configs # contains hydra yaml files with all options that you can override in the command line
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
@@ -121,13 +128,21 @@ wandb login
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically download data from the Hugging Face hub.
You can also locally visualize episodes from a dataset by executing our script from the command line:
You can also locally visualize episodes from a dataset on the hub by executing our script from the command line:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0
```
or from a dataset in a local folder with the root `DATA_DIR` environment variable (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
```bash
DATA_DIR='./my_local_data_dir' python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0
```
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
@@ -135,6 +150,51 @@ https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-f
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
### The `LeRobotDataset` format
A dataset in `LeRobotDataset` format is very simple to use. It can be loaded from a repository on the Hugging Face hub or a local folder simply with e.g. `dataset = LeRobotDataset("lerobot/aloha_static_coffee")` and can be indexed into like any Hugging Face and PyTorch dataset. For instance `dataset[0]` will retrieve a single temporal frame from the dataset containing observation(s) and an action as PyTorch tensors ready to be fed to a model.
A specificity of `LeRobotDataset` is that, rather than retrieving a single frame by its index, we can retrieve several frames based on their temporal relationship with the indexed frame, by setting `delta_timestamps` to a list of relative times with respect to the indexed frame. For example, with `delta_timestamps = {"observation.image": [-1, -0.5, -0.2, 0]}` one can retrieve, for a given index, 4 frames: 3 "previous" frames 1 second, 0.5 seconds, and 0.2 seconds before the indexed frame, and the indexed frame itself (corresponding to the 0 entry). See example [1_load_lerobot_dataset.py](examples/1_load_lerobot_dataset.py) for more details on `delta_timestamps`.
Under the hood, the `LeRobotDataset` format makes use of several ways to serialize data which can be useful to understand if you plan to work more closely with this format. We tried to make a flexible yet simple dataset format that would cover most type of features and specificities present in reinforcement learning and robotics, in simulation and in real-world, with a focus on cameras and robot states but easily extended to other types of sensory inputs as long as they can be represented by a tensor.
Here are the important details and internal structure organization of a typical `LeRobotDataset` instantiated with `dataset = LeRobotDataset("lerobot/aloha_static_coffee")`. The exact features will change from dataset to dataset but not the main aspects:
```
dataset attributes:
├ hf_dataset: a Hugging Face dataset (backed by Arrow/parquet). Typical features example:
│ ├ observation.images.cam_high (VideoFrame):
│ │ VideoFrame = {'path': path to a mp4 video, 'timestamp' (float32): timestamp in the video}
│ ├ observation.state (list of float32): position of an arm joints (for instance)
│ ... (more observations)
│ ├ action (list of float32): goal position of an arm joints (for instance)
│ ├ episode_index (int64): index of the episode for this sample
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
│ ├ timestamp (float32): timestamp in the episode
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
│ └ index (int64): general index in the whole dataset
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
│ └ to: (1D int64 tensor): last frame index for each episode — shape (num episodes,)
├ stats: a dictionary of statistics (max, mean, min, std) for each feature in the dataset, for instance
│ ├ observation.images.cam_high: {'max': tensor with same number of dimensions (e.g. `(c, 1, 1)` for images, `(c,)` for states), etc.}
│ ...
├ info: a dictionary of metadata on the dataset
│ ├ fps (float): frame per second the dataset is recorded/synchronized to
│ └ video (bool): indicates if frames are encoded in mp4 video files to save space or stored as png files
├ videos_dir (Path): where the mp4 videos or png images are stored/accessed
└ camera_keys (list of string): the keys to access camera features in the item returned by the dataset (e.g. `["observation.images.cam_high", ...]`)
```
A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
- hf_dataset stored using Hugging Face datasets library serialization to parquet
- videos are stored in mp4 format to save space or png files
- episode_data_index saved using `safetensor` tensor serialization format
- stats saved using `safetensor` tensor serialization format
- info are saved using JSON
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can set the `DATA_DIR` environment variable to your root dataset folder as illustrated in the above section on dataset visualization.
### Evaluate a pretrained policy
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
@@ -148,24 +208,25 @@ python lerobot/scripts/eval.py \
```
Note: After training your own policy, you can re-evaluate the checkpoints with:
```bash
python lerobot/scripts/eval.py \
-p PATH/TO/TRAIN/OUTPUT/FOLDER
python lerobot/scripts/eval.py -p {OUTPUT_DIR}/checkpoints/last/pretrained_model
```
See `python lerobot/scripts/eval.py --help` for more instructions.
### Train your own policy
Check out [example 3](./examples/3_train_policy.py) that illustrates how to start training a model.
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
In general, you can use our training script to easily train any policy. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
In general, you can use our training script to easily train any policy. To use wandb for logging training and evaluation curves, make sure you ran `wandb login`. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
```bash
python lerobot/scripts/train.py \
policy=act \
env=aloha \
env.task=AlohaInsertion-v0 \
dataset_repo_id=lerobot/aloha_sim_insertion_human
dataset_repo_id=lerobot/aloha_sim_insertion_human \
```
The experiment directory is automatically generated and will show up in yellow in your terminal. It looks like `outputs/train/2024-05-05/20-21-12_aloha_act_default`. You can manually specify an experiment directory by adding this argument to the `train.py` python command:
@@ -173,17 +234,42 @@ The experiment directory is automatically generated and will show up in yellow i
hydra.run.dir=your/new/experiment/dir
```
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of logs from wandb:
![](media/wandb.png)
In the experiment directory there will be a folder called `checkpoints` which will have the following structure:
You can deactivate wandb by adding these arguments to the `train.py` python command:
```bash
wandb.disable_artifact=true \
wandb.enable=false
checkpoints
├── 000250 # checkpoint_dir for training step 250
│ ├── pretrained_model # Hugging Face pretrained model dir
│ │ ├── config.json # Hugging Face pretrained model config
│ │ ├── config.yaml # consolidated Hydra config
│ │ ├── model.safetensors # model weights
│ │ └── README.md # Hugging Face model card
│ └── training_state.pth # optimizer/scheduler/rng state and training step
```
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. After training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding:
```bash
wandb.enable=true
```
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser:
![](media/wandb.png)
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. You may use `eval.n_episodes=500` to evaluate on more episodes than the default. Or, after training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
#### Reproduce state-of-the-art (SOTA)
We have organized our configuration files (found under [`lerobot/configs`](./lerobot/configs)) such that they reproduce SOTA results from a given model variant in their respective original works. Simply running:
```bash
python lerobot/scripts/train.py policy=diffusion env=pusht
```
reproduces SOTA results for Diffusion Policy on the PushT task.
Pretrained policies, along with reproduction details, can be found under the "Models" section of https://huggingface.co/lerobot.
## Contribute
@@ -196,13 +282,13 @@ To add a dataset to the hub, you need to login using a write-access token, which
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then move your dataset folder in `data` directory (e.g. `data/aloha_ping_pong`), and push your dataset to the hub with:
Then point to your raw dataset folder (e.g. `data/aloha_static_pingpong_test_raw`), and push your dataset to the hub with:
```bash
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id aloha_ping_ping \
--raw-format aloha_hdf5 \
--community-id lerobot
--raw-dir data/aloha_static_pingpong_test_raw \
--out-dir data \
--repo-id lerobot/aloha_static_pingpong_test \
--raw-format aloha_hdf5
```
See `python lerobot/scripts/push_dataset_to_hub.py --help` for more instructions.
@@ -214,14 +300,14 @@ If your dataset format is not supported, implement your own in `lerobot/common/d
Once you have trained a policy you may upload it to the Hugging Face hub using a hub id that looks like `${hf_user}/${repo_name}` (e.g. [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht)).
You first need to find the checkpoint located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). It should contain:
You first need to find the checkpoint folder located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). Within that there is a `pretrained_model` directory which should contain:
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
- `config.yaml`: A consolidated Hydra training configuration containing the policy, environment, and dataset configs. The policy configuration should match `config.json` exactly. The environment config is useful for anyone who wants to evaluate your policy. The dataset config just serves as a paper trail for reproducibility.
To upload these to the hub, run the following:
```bash
huggingface-cli upload ${hf_user}/${repo_name} path/to/checkpoint/dir
huggingface-cli upload ${hf_user}/${repo_name} path/to/pretrained_model
```
See [eval.py](https://github.com/huggingface/lerobot/blob/main/lerobot/scripts/eval.py) for an example of how other people may use your policy.
@@ -254,7 +340,7 @@ with profile(
## Citation
If you want, you can cite this work with:
```
```bibtex
@misc{cadene2024lerobot,
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
@@ -262,3 +348,45 @@ If you want, you can cite this work with:
year = {2024}
}
```
Additionally, if you are using any of the particular policy architecture, pretrained models, or datasets, it is recommended to cite the original authors of the work as they appear below:
- [Diffusion Policy](https://diffusion-policy.cs.columbia.edu)
```bibtex
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
journal = {The International Journal of Robotics Research},
year = {2024},
}
```
- [ACT or ALOHA](https://tonyzhaozh.github.io/aloha)
```bibtex
@article{zhao2023learning,
title={Learning fine-grained bimanual manipulation with low-cost hardware},
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
journal={arXiv preprint arXiv:2304.13705},
year={2023}
}
```
- [TDMPC](https://www.nicklashansen.com/td-mpc/)
```bibtex
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
booktitle={ICML},
year={2022}
}
```
- [VQ-BeT](https://sjlee.cc/vq-bet/)
```bibtex
@article{lee2024behavior,
title={Behavior generation with latent actions},
author={Lee, Seungjae and Wang, Yibin and Etukuru, Haritheja and Kim, H Jin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal={arXiv preprint arXiv:2403.03181},
year={2024}
}
```

View File

@@ -8,7 +8,7 @@ ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create virtual environment

View File

@@ -0,0 +1,40 @@
FROM nvidia/cuda:12.2.2-devel-ubuntu22.04
# Configure image
ARG PYTHON_VERSION=3.10
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim less util-linux \
htop atop nvtop \
sed gawk grep curl wget zip unzip \
tcpdump sysstat screen tmux \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install gh cli tool
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
&& mkdir -p -m 755 /etc/apt/keyrings \
&& wget -qO- https://cli.github.com/packages/githubcli-archive-keyring.gpg | tee /etc/apt/keyrings/githubcli-archive-keyring.gpg > /dev/null \
&& chmod go+r /etc/apt/keyrings/githubcli-archive-keyring.gpg \
&& echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/packages stable main" | tee /etc/apt/sources.list.d/github-cli.list > /dev/null \
&& apt update \
&& apt install gh -y \
&& apt clean && rm -rf /var/lib/apt/lists/*
# Setup `python`
RUN ln -s /usr/bin/python3 /usr/bin/python
# Install poetry
RUN curl -sSL https://install.python-poetry.org | python -
ENV PATH="/root/.local/bin:$PATH"
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
RUN poetry config virtualenvs.create false
RUN poetry config virtualenvs.in-project true
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"

View File

@@ -4,13 +4,15 @@ FROM nvidia/cuda:12.4.1-base-ubuntu22.04
ARG PYTHON_VERSION=3.10
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create virtual environment
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
RUN python -m venv /opt/venv

View File

@@ -0,0 +1,183 @@
This tutorial will explain the training script, how to use it, and particularly the use of Hydra to configure everything needed for the training run.
## The training script
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
- Loads a Hydra configuration file for the following steps (more on Hydra in a moment).
- Makes a simulation environment.
- Makes a dataset corresponding to that simulation environment.
- Makes a policy.
- Runs a standard training loop with forward pass, backward pass, optimization step, and occasional logging, evaluation (of the policy on the environment), and checkpointing.
## Basics of how we use Hydra
Explaining the ins and outs of [Hydra](https://hydra.cc/docs/intro/) is beyond the scope of this document, but here we'll share the main points you need to know.
First, `lerobot/configs` has a directory structure like this:
```
.
├── default.yaml
├── env
│ ├── aloha.yaml
│ ├── pusht.yaml
│ └── xarm.yaml
└── policy
├── act.yaml
├── diffusion.yaml
└── tdmpc.yaml
```
**_For brevity, in the rest of this document we'll drop the leading `lerobot/configs` path. So `default.yaml` really refers to `lerobot/configs/default.yaml`._**
When you run the training script with
```python
python lerobot/scripts/train.py
```
Hydra is set up to read `default.yaml` (via the `@hydra.main` decorator). If you take a look at the `@hydra.main`'s arguments you will see `config_path="../configs", config_name="default"`. At the top of `default.yaml`, is a `defaults` section which looks likes this:
```yaml
defaults:
- _self_
- env: pusht
- policy: diffusion
```
This logic tells Hydra to incorporate configuration parameters from `env/pusht.yaml` and `policy/diffusion.yaml`. _Note: Be aware of the order as any configuration parameters with the same name will be overidden. Thus, `default.yaml` is overridden by `env/pusht.yaml` which is overidden by `policy/diffusion.yaml`_.
Then, `default.yaml` also contains common configuration parameters such as `device: cuda` or `use_amp: false` (for enabling fp16 training). Some other parameters are set to `???` which indicates that they are expected to be set in additional yaml files. For instance, `training.offline_steps: ???` in `default.yaml` is set to `200000` in `diffusion.yaml`.
Thanks to this `defaults` section in `default.yaml`, if you want to train Diffusion Policy with PushT, you really only need to run:
```bash
python lerobot/scripts/train.py
```
However, you can be more explicit and launch the exact same Diffusion Policy training on PushT with:
```bash
python lerobot/scripts/train.py policy=diffusion env=pusht
```
This way of overriding defaults via the CLI is especially useful when you want to change the policy and/or environment. For instance, you can train ACT on the default Aloha environment with:
```bash
python lerobot/scripts/train.py policy=act env=aloha
```
There are two things to note here:
- Config overrides are passed as `param_name=param_value`.
- Here we have overridden the defaults section. `policy=act` tells Hydra to use `policy/act.yaml`, and `env=aloha` tells Hydra to use `env/aloha.yaml`.
_As an aside: we've set up all of our configurations so that they reproduce state-of-the-art results from papers in the literature._
## Overriding configuration parameters in the CLI
Now let's say that we want to train on a different task in the Aloha environment. If you look in `env/aloha.yaml` you will see something like:
```yaml
# lerobot/configs/env/aloha.yaml
env:
task: AlohaInsertion-v0
```
And if you look in `policy/act.yaml` you will see something like:
```yaml
# lerobot/configs/policy/act.yaml
dataset_repo_id: lerobot/aloha_sim_insertion_human
```
But our Aloha environment actually supports a cube transfer task as well. To train for this task, you could manually modify the two yaml configuration files respectively.
First, we'd need to switch to using the cube transfer task for the ALOHA environment.
```diff
# lerobot/configs/env/aloha.yaml
env:
- task: AlohaInsertion-v0
+ task: AlohaTransferCube-v0
```
Then, we'd also need to switch to using the cube transfer dataset.
```diff
# lerobot/configs/policy/act.yaml
-dataset_repo_id: lerobot/aloha_sim_insertion_human
+dataset_repo_id: lerobot/aloha_sim_transfer_cube_human
```
Then, you'd be able to run:
```bash
python lerobot/scripts/train.py policy=act env=aloha
```
and you'd be training and evaluating on the cube transfer task.
An alternative approach to editing the yaml configuration files, would be to override the defaults via the command line:
```bash
python lerobot/scripts/train.py \
policy=act \
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
env=aloha \
env.task=AlohaTransferCube-v0
```
There's something new here. Notice the `.` delimiter used to traverse the configuration hierarchy. _But be aware that the `defaults` section is an exception. As you saw above, we didn't need to write `defaults.policy=act` in the CLI. `policy=act` was enough._
Putting all that knowledge together, here's the command that was used to train https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human.
```bash
python lerobot/scripts/train.py \
hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human \
device=cuda
env=aloha \
env.task=AlohaTransferCube-v0 \
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
policy=act \
training.eval_freq=10000 \
training.log_freq=250 \
training.offline_steps=100000 \
training.save_model=true \
training.save_freq=25000 \
eval.n_episodes=50 \
eval.batch_size=50 \
wandb.enable=false \
```
There's one new thing here: `hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human`, which specifies where to save the training output.
## Using a configuration file not in `lerobot/configs`
Above we discusses the our training script is set up such that Hydra looks for `default.yaml` in `lerobot/configs`. But, if you have a configuration file elsewhere in your filesystem you may use:
```bash
python lerobot/scripts/train.py --config-dir PARENT/PATH --config-name FILE_NAME_WITHOUT_EXTENSION
```
Note: here we use regular syntax for providing CLI arguments to a Python script, not Hydra's `param_name=param_value` syntax.
As a concrete example, this becomes particularly handy when you have a folder with training outputs, and would like to re-run the training. For example, say you previously ran the training script with one of the earlier commands and have `outputs/train/my_experiment/checkpoints/pretrained_model/config.yaml`. This `config.yaml` file will have the full set of configuration parameters within it. To run the training with the same configuration again, do:
```bash
python lerobot/scripts/train.py --config-dir outputs/train/my_experiment/checkpoints/last/pretrained_model --config-name config
```
Note that you may still use the regular syntax for config parameter overrides (eg: by adding `training.offline_steps=200000`).
---
So far we've seen how to train Diffusion Policy for PushT and ACT for ALOHA. Now, what if we want to train ACT for PushT? Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
```bash
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
```
Please, head on over to our [advanced tutorial on adapting policy configuration to various environments](./advanced/train_act_pusht/train_act_pusht.md) to learn more.
Or in the meantime, happy coding! 🤗

View File

@@ -0,0 +1,37 @@
This tutorial explains how to resume a training run that you've started with the training script. If you don't know how our training script and configuration system works, please read [4_train_policy_with_script.md](./4_train_policy_with_script.md) first.
## Basic training resumption
Let's consider the example of training ACT for one of the ALOHA tasks. Here's a command that can achieve that:
```bash
python lerobot/scripts/train.py \
hydra.run.dir=outputs/train/run_resumption \
policy=act \
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
env=aloha \
env.task=AlohaTransferCube-v0 \
training.log_freq=25 \
training.save_checkpoint=true \
training.save_freq=100
```
Here we're using the default dataset and environment for ACT, and we've taken care to set up the log frequency and checkpointing frequency to low numbers so we can test resumption. You should be able to see some logging and have a first checkpoint within 1 minute. Please interrupt the training after the first checkpoint.
To resume, all that we have to do is run the training script, providing the run directory, and the resume option:
```bash
python lerobot/scripts/train.py \
hydra.run.dir=outputs/train/run_resumption \
resume=true
```
You should see from the logging that your training picks up from where it left off.
Note that with `resume=true`, the configuration file from the last checkpoint in the training output directory is loaded. So it doesn't matter that we haven't provided all the other configuration parameters from our previous command (although there may be warnings to notify you that your command has a different configuration than than the checkpoint).
---
Now you should know how to resume your training run in case it gets interrupted or you want to extend a finished training run.
Happy coding! 🤗

View File

@@ -0,0 +1,52 @@
"""
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and
transforms are applied to the observation images before they are returned in the dataset's __get_item__.
"""
from pathlib import Path
from torchvision.transforms import ToPILImage, v2
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
dataset_repo_id = "lerobot/aloha_static_tape"
# Create a LeRobotDataset with no transformations
dataset = LeRobotDataset(dataset_repo_id)
# This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)`
# Get the index of the first observation in the first episode
first_idx = dataset.episode_data_index["from"][0].item()
# Get the frame corresponding to the first camera
frame = dataset[first_idx][dataset.camera_keys[0]]
# Define the transformations
transforms = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 1.5)),
v2.ColorJitter(contrast=(0.5, 1.5)),
v2.RandomAdjustSharpness(sharpness_factor=2, p=1),
]
)
# Create another LeRobotDataset with the defined transformations
transformed_dataset = LeRobotDataset(dataset_repo_id, image_transforms=transforms)
# Get a frame from the transformed dataset
transformed_frame = transformed_dataset[first_idx][transformed_dataset.camera_keys[0]]
# Create a directory to store output images
output_dir = Path("outputs/image_transforms")
output_dir.mkdir(parents=True, exist_ok=True)
# Save the original frame
to_pil = ToPILImage()
to_pil(frame).save(output_dir / "original_frame.png", quality=100)
print(f"Original frame saved to {output_dir / 'original_frame.png'}.")
# Save the transformed frame
to_pil(transformed_frame).save(output_dir / "transformed_frame.png", quality=100)
print(f"Transformed frame saved to {output_dir / 'transformed_frame.png'}.")

View File

@@ -0,0 +1,87 @@
# @package _global_
# Change the seed to match what PushT eval uses
# (to avoid evaluating on seeds used for generating the training data).
seed: 100000
# Change the dataset repository to the PushT one.
dataset_repo_id: lerobot/pusht
override_dataset_stats:
observation.image:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
online_steps: 0
eval_freq: 10000
save_freq: 100000
log_freq: 250
save_model: true
batch_size: 8
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
online_steps_between_rollouts: 1
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
eval:
n_episodes: 50
batch_size: 50
# See `configuration_act.py` for more details.
policy:
name: act
# Input / output structure.
n_obs_steps: 1
chunk_size: 100 # chunk_size
n_action_steps: 100
input_shapes:
observation.image: [3, 96, 96]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.image: mean_std
# Use min_max normalization just because it's more standard.
observation.state: min_max
output_normalization_modes:
# Use min_max normalization just because it's more standard.
action: min_max
# Architecture.
# Vision backbone.
vision_backbone: resnet18
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
replace_final_stride_with_dilation: false
# Transformer layers.
pre_norm: false
dim_model: 512
n_heads: 8
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1
# VAE.
use_vae: true
latent_dim: 32
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_momentum: null
# Training and loss computation.
dropout: 0.1
kl_weight: 10.0

View File

@@ -0,0 +1,70 @@
In this tutorial we will learn how to adapt a policy configuration to be compatible with a new environment and dataset. As a concrete example, we will adapt the default configuration for ACT to be compatible with the PushT environment and dataset.
If you haven't already read our tutorial on the [training script and configuration tooling](../4_train_policy_with_script.md) please do so prior to tackling this tutorial.
Let's get started!
Suppose we want to train ACT for PushT. Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
```bash
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
```
We need to adapt the parameters of the ACT policy configuration to the PushT environment. The most important ones are the image keys.
ALOHA's datasets and environments typically use a variable number of cameras. In `lerobot/configs/policy/act.yaml` you may notice two relevant sections. Here we show you the minimal diff needed to adjust to PushT:
```diff
override_dataset_stats:
- observation.images.top:
+ observation.image:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
policy:
input_shapes:
- observation.images.top: [3, 480, 640]
+ observation.image: [3, 96, 96]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
input_normalization_modes:
- observation.images.top: mean_std
+ observation.image: mean_std
observation.state: min_max
output_normalization_modes:
action: min_max
```
Here we've accounted for the following:
- PushT uses "observation.image" for its image key.
- PushT provides smaller images.
_Side note: technically we could override these via the CLI, but with many changes it gets a bit messy, and we also have a bit of a challenge in that we're using `.` in our observation keys which is treated by Hydra as a hierarchical separator_.
For your convenience, we provide [`act_pusht.yaml`](./act_pusht.yaml) in this directory. It contains the diff above, plus some other (optional) ones that are explained within. Please copy it into `lerobot/configs/policy` with:
```bash
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/act_pusht.yaml
```
(remember from a [previous tutorial](../4_train_policy_with_script.md) that Hydra will look in the `lerobot/configs` directory). Now try running the following.
<!-- Note to contributor: are you changing this command? Note that it's tested in `Makefile`, so change it there too! -->
```bash
python lerobot/scripts/train.py policy=act_pusht env=pusht
```
Notice that this is much the same as the command that failed at the start of the tutorial, only:
- Now we are using `policy=act_pusht` to point to our new configuration file.
- We can drop `dataset_repo_id=lerobot/pusht` as the change is incorporated in our new configuration file.
Hurrah! You're now training ACT for the PushT environment.
---
The bottom line of this tutorial is that when training policies for different environments and datasets you will need to understand what parts of the policy configuration are specific to those and make changes accordingly.
Happy coding! 🤗

View File

@@ -0,0 +1,90 @@
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy
is learning effectively.
Furthermore, relying on validation loss to evaluate performance is generally not considered a good practice,
especially in the context of imitation learning. The most reliable approach is to evaluate the policy directly
on the target environment, whether that be in simulation or the real world.
"""
import math
from pathlib import Path
import torch
from huggingface_hub import snapshot_download
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
device = torch.device("cuda")
# Download the diffusion policy for pusht environment
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy.eval()
policy.to(device)
# Set up the dataset.
delta_timestamps = {
# Load the previous image and state at -0.1 seconds before current frame,
# then load current image and state corresponding to 0.0 second.
"observation.image": [-0.1, 0.0],
"observation.state": [-0.1, 0.0],
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to calculate the loss.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
# Load the last 10% of episodes of the dataset as a validation set.
# - Load full dataset
full_dataset = LeRobotDataset("lerobot/pusht", split="train")
# - Calculate train and val subsets
num_train_episodes = math.floor(full_dataset.num_episodes * 90 / 100)
num_val_episodes = full_dataset.num_episodes - num_train_episodes
print(f"Number of episodes in full dataset: {full_dataset.num_episodes}")
print(f"Number of episodes in training dataset (90% subset): {num_train_episodes}")
print(f"Number of episodes in validation dataset (10% subset): {num_val_episodes}")
# - Get first frame index of the validation set
first_val_frame_index = full_dataset.episode_data_index["from"][num_train_episodes].item()
# - Load frames subset belonging to validation set using the `split` argument.
# It utilizes the `datasets` library's syntax for slicing datasets.
# For more information on the Slice API, please see:
# https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
train_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[:{first_val_frame_index}]", delta_timestamps=delta_timestamps
)
val_dataset = LeRobotDataset(
"lerobot/pusht", split=f"train[{first_val_frame_index}:]", delta_timestamps=delta_timestamps
)
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")
# Create dataloader for evaluation.
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
num_workers=4,
batch_size=64,
shuffle=False,
pin_memory=device != torch.device("cpu"),
drop_last=False,
)
# Run validation loop.
loss_cumsum = 0
n_examples_evaluated = 0
for batch in val_dataloader:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
output_dict = policy.forward(batch)
loss_cumsum += output_dict["loss"].item()
n_examples_evaluated += batch["index"].shape[0]
# Calculate the average loss over the validation set.
average_loss = loss_cumsum / n_examples_evaluated
print(f"Average loss on validation set: {average_loss:.4f}")

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains lists of available environments, dataset and policies to reflect the current state of LeRobot library.
We do not want to import all the dependencies, but instead we keep it lightweight to ensure fast access to these variables.
@@ -30,6 +45,9 @@ import itertools
from lerobot.__version__ import __version__ # noqa: F401
# TODO(rcadene): Improve policies and envs. As of now, an item in `available_policies`
# refers to a yaml file AND a modeling name. Same for `available_envs` which refers to
# a yaml file AND a environment name. The difference should be more obvious.
available_tasks_per_env = {
"aloha": [
"AlohaInsertion-v0",
@@ -37,6 +55,7 @@ available_tasks_per_env = {
],
"pusht": ["PushT-v0"],
"xarm": ["XarmLift-v0"],
"dora_aloha_real": ["DoraAloha-v0", "DoraKoch-v0", "DoraReachy2-v0"],
}
available_envs = list(available_tasks_per_env.keys())
@@ -46,13 +65,38 @@ available_datasets_per_env = {
"lerobot/aloha_sim_insertion_scripted",
"lerobot/aloha_sim_transfer_cube_human",
"lerobot/aloha_sim_transfer_cube_scripted",
"lerobot/aloha_sim_insertion_human_image",
"lerobot/aloha_sim_insertion_scripted_image",
"lerobot/aloha_sim_transfer_cube_human_image",
"lerobot/aloha_sim_transfer_cube_scripted_image",
],
"pusht": ["lerobot/pusht"],
"pusht": ["lerobot/pusht", "lerobot/pusht_image"],
"xarm": [
"lerobot/xarm_lift_medium",
"lerobot/xarm_lift_medium_replay",
"lerobot/xarm_push_medium",
"lerobot/xarm_push_medium_replay",
"lerobot/xarm_lift_medium_image",
"lerobot/xarm_lift_medium_replay_image",
"lerobot/xarm_push_medium_image",
"lerobot/xarm_push_medium_replay_image",
],
"dora_aloha_real": [
"lerobot/aloha_static_battery",
"lerobot/aloha_static_candy",
"lerobot/aloha_static_coffee",
"lerobot/aloha_static_coffee_new",
"lerobot/aloha_static_cups_open",
"lerobot/aloha_static_fork_pick_up",
"lerobot/aloha_static_pingpong_test",
"lerobot/aloha_static_pro_pencil",
"lerobot/aloha_static_screw_driver",
"lerobot/aloha_static_tape",
"lerobot/aloha_static_thread_velcro",
"lerobot/aloha_static_towel",
"lerobot/aloha_static_vinh_cup",
"lerobot/aloha_static_vinh_cup_left",
"lerobot/aloha_static_ziploc_slide",
],
}
@@ -85,16 +129,20 @@ available_datasets = list(
itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets)
)
# lists all available policies from `lerobot/common/policies` by their class attribute: `name`.
available_policies = [
"act",
"diffusion",
"tdmpc",
"vqbet",
]
# keys and values refer to yaml files
available_policies_per_env = {
"aloha": ["act"],
"pusht": ["diffusion"],
"pusht": ["diffusion", "vqbet"],
"xarm": ["tdmpc"],
"dora_aloha_real": ["act_real"],
}
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""To enable `lerobot.__version__`"""
from importlib.metadata import PackageNotFoundError, version

View File

@@ -0,0 +1,90 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Capture video feed from a camera as raw images."""
import argparse
import datetime as dt
from pathlib import Path
import cv2
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int):
now = dt.datetime.now()
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
if not capture_dir.exists():
capture_dir.mkdir(parents=True, exist_ok=True)
# Opens the default webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Could not open video stream.")
return
cap.set(cv2.CAP_PROP_FPS, fps)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
frame_index = 0
while True:
ret, frame = cap.read()
if not ret:
print("Error: Could not read frame.")
break
cv2.imshow("Video Stream", frame)
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
frame_index += 1
# Break the loop on 'q' key press
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Release the capture and destroy all windows
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
type=Path,
default=Path("outputs/cam_capture/"),
help="Directory where the capture images are written. A subfolder named with the current date & time will be created inside it for each capture.",
)
parser.add_argument(
"--fps",
type=int,
default=30,
help="Frames Per Second of the capture.",
)
parser.add_argument(
"--width",
type=int,
default=1280,
help="Width of the captured images.",
)
parser.add_argument(
"--height",
type=int,
default=720,
help="Height of the captured images.",
)
args = parser.parse_args()
display_and_save_video_stream(**vars(args))

View File

@@ -1,3 +1,35 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Assess the performance of video decoding in various configurations.
This script will run different video decoding benchmarks where one parameter varies at a time.
These parameters and theirs values are specified in the BENCHMARKS dict.
All of these benchmarks are evaluated within different timestamps modes corresponding to different frame-loading scenarios:
- `1_frame`: 1 single frame is loaded.
- `2_frames`: 2 consecutive frames are loaded.
- `2_frames_4_space`: 2 frames separated by 4 frames are loaded.
- `6_frames`: 6 consecutive frames are loaded.
These values are more or less arbitrary and based on possible future usage.
These benchmarks are run on the first episode of each dataset specified in DATASET_REPO_IDS.
Note: These datasets need to be image datasets, not video datasets.
"""
import json
import random
import shutil
@@ -6,15 +38,38 @@ import time
from pathlib import Path
import einops
import numpy
import numpy as np
import PIL
import torch
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import (
decode_video_frames_torchvision,
)
OUTPUT_DIR = Path("tmp/run_video_benchmark")
DRY_RUN = False
DATASET_REPO_IDS = [
"lerobot/pusht_image",
"aliberts/aloha_mobile_shrimp_image",
"aliberts/paris_street",
"aliberts/kitchen",
]
TIMESTAMPS_MODES = [
"1_frame",
"2_frames",
"2_frames_4_space",
"6_frames",
]
BENCHMARKS = {
# "pix_fmt": ["yuv420p", "yuv444p"],
# "g": [1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None],
# "crf": [0, 5, 10, 15, 20, None, 25, 30, 40, 50],
"backend": ["pyav", "video_reader"],
}
def get_directory_size(directory):
total_size = 0
@@ -41,6 +96,10 @@ def run_video_benchmark(
# TODO(rcadene): rewrite with hardcoding of original images and episodes
dataset = LeRobotDataset(repo_id)
if dataset.video:
raise ValueError(
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
)
# Get fps
fps = dataset.fps
@@ -53,10 +112,11 @@ def run_video_benchmark(
if not imgs_dir.exists():
imgs_dir.mkdir(parents=True, exist_ok=True)
hf_dataset = dataset.hf_dataset.with_format(None)
imgs_dataset = hf_dataset.select_columns("observation.image")
img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")]
imgs_dataset = hf_dataset.select_columns(img_keys[0])
for i, item in enumerate(imgs_dataset):
img = item["observation.image"]
img = item[img_keys[0]]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
if i >= ep_num_images - 1:
@@ -92,7 +152,7 @@ def run_video_benchmark(
decoder = cfg["decoder"]
decoder_kwgs = cfg["decoder_kwgs"]
device = cfg["device"]
backend = cfg["backend"]
if decoder == "torchvision":
decode_frames_fn = decode_video_frames_torchvision
@@ -101,12 +161,12 @@ def run_video_benchmark(
# Estimate average loading time
def load_original_frames(imgs_dir, timestamps):
def load_original_frames(imgs_dir, timestamps) -> torch.Tensor:
frames = []
for ts in timestamps:
idx = int(ts * fps)
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
frame = torch.from_numpy(numpy.array(frame))
frame = torch.from_numpy(np.array(frame))
frame = frame.type(torch.float32) / 255
frame = einops.rearrange(frame, "h w c -> c h w")
frames.append(frame)
@@ -115,6 +175,9 @@ def run_video_benchmark(
list_avg_load_time = []
list_avg_load_time_from_images = []
per_pixel_l2_errors = []
psnr_values = []
ssim_values = []
mse_values = []
random.seed(seed)
@@ -127,7 +190,7 @@ def run_video_benchmark(
elif timestamps_mode == "2_frames":
timestamps = [ts - 1 / fps, ts]
elif timestamps_mode == "2_frames_4_space":
timestamps = [ts - 4 / fps, ts]
timestamps = [ts - 5 / fps, ts]
elif timestamps_mode == "6_frames":
timestamps = [ts - i / fps for i in range(6)][::-1]
else:
@@ -137,7 +200,7 @@ def run_video_benchmark(
start_time_s = time.monotonic()
frames = decode_frames_fn(
video_path, timestamps=timestamps, tolerance_s=1e-4, device=device, **decoder_kwgs
video_path, timestamps=timestamps, tolerance_s=1e-4, backend=backend, **decoder_kwgs
)
avg_load_time = (time.monotonic() - start_time_s) / num_frames
list_avg_load_time.append(avg_load_time)
@@ -147,11 +210,19 @@ def run_video_benchmark(
avg_load_time_from_images = (time.monotonic() - start_time_s) / num_frames
list_avg_load_time_from_images.append(avg_load_time_from_images)
# Estimate average L2 error between original frames and decoded frames
# Estimate reconstruction error between original frames and decoded frames with various metrics
for i, ts in enumerate(timestamps):
# are_close = torch.allclose(frames[i], original_frames[i], atol=0.02)
num_pixels = original_frames[i].numel()
per_pixel_l2_error = torch.norm(frames[i] - original_frames[i], p=2).item() / num_pixels
per_pixel_l2_errors.append(per_pixel_l2_error)
frame_np, original_frame_np = frames[i].numpy(), original_frames[i].numpy()
psnr_values.append(peak_signal_noise_ratio(original_frame_np, frame_np, data_range=1.0))
ssim_values.append(
structural_similarity(original_frame_np, frame_np, data_range=1.0, channel_axis=0)
)
mse_values.append(mean_squared_error(original_frame_np, frame_np))
# save decoded frames
if t == 0:
@@ -164,15 +235,18 @@ def run_video_benchmark(
original_frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
original_frame.save(output_dir / f"original_frame_{i:06d}.png")
per_pixel_l2_errors.append(per_pixel_l2_error)
avg_load_time = float(numpy.array(list_avg_load_time).mean())
avg_load_time_from_images = float(numpy.array(list_avg_load_time_from_images).mean())
avg_per_pixel_l2_error = float(numpy.array(per_pixel_l2_errors).mean())
image_size = tuple(dataset[0][dataset.camera_keys[0]].shape[-2:])
avg_load_time = float(np.array(list_avg_load_time).mean())
avg_load_time_from_images = float(np.array(list_avg_load_time_from_images).mean())
avg_per_pixel_l2_error = float(np.array(per_pixel_l2_errors).mean())
avg_psnr = float(np.mean(psnr_values))
avg_ssim = float(np.mean(ssim_values))
avg_mse = float(np.mean(mse_values))
# Save benchmark info
info = {
"image_size": image_size,
"sum_original_frames_size_bytes": sum_original_frames_size_bytes,
"video_size_bytes": video_size_bytes,
"avg_load_time_from_images": avg_load_time_from_images,
@@ -180,6 +254,9 @@ def run_video_benchmark(
"compression_factor": sum_original_frames_size_bytes / video_size_bytes,
"load_time_factor": avg_load_time_from_images / avg_load_time,
"avg_per_pixel_l2_error": avg_per_pixel_l2_error,
"avg_psnr": avg_psnr,
"avg_ssim": avg_ssim,
"avg_mse": avg_mse,
}
with open(output_dir / "info.json", "w") as f:
@@ -219,138 +296,113 @@ def load_info(out_dir):
return info
def main():
out_dir = Path("tmp/run_video_benchmark")
dry_run = False
repo_ids = ["lerobot/pusht", "lerobot/umi_cup_in_the_wild"]
timestamps_modes = [
"1_frame",
"2_frames",
"2_frames_4_space",
"6_frames",
def one_variable_study(
var_name: str, var_values: list, repo_ids: list, bench_dir: Path, timestamps_mode: str, dry_run: bool
):
print(f"**`{var_name}`**")
headers = [
"repo_id",
"image_size",
var_name,
"compression_factor",
"load_time_factor",
"avg_per_pixel_l2_error",
"avg_psnr",
"avg_ssim",
"avg_mse",
]
for timestamps_mode in timestamps_modes:
bench_dir = out_dir / timestamps_mode
rows = []
base_cfg = {
"repo_id": None,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": "yuv444p",
# video decoding
"backend": "pyav",
"decoder": "torchvision",
"decoder_kwgs": {},
}
for repo_id in repo_ids:
for val in var_values:
cfg = base_cfg.copy()
cfg["repo_id"] = repo_id
cfg[var_name] = val
if not dry_run:
run_video_benchmark(
bench_dir / repo_id / f"torchvision_{var_name}_{val}", cfg, timestamps_mode
)
info = load_info(bench_dir / repo_id / f"torchvision_{var_name}_{val}")
width, height = info["image_size"][0], info["image_size"][1]
rows.append(
[
repo_id,
f"{width} x {height}",
val,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
info["avg_psnr"],
info["avg_ssim"],
info["avg_mse"],
]
)
display_markdown_table(headers, rows)
def best_study(repo_ids: list, bench_dir: Path, timestamps_mode: str, dry_run: bool):
"""Change the config once you deciced what's best based on one-variable-studies"""
print("**best**")
headers = [
"repo_id",
"image_size",
"compression_factor",
"load_time_factor",
"avg_per_pixel_l2_error",
"avg_psnr",
"avg_ssim",
"avg_mse",
]
rows = []
for repo_id in repo_ids:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": "yuv444p",
# video decoding
"backend": "video_reader",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / "torchvision_best", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / "torchvision_best")
width, height = info["image_size"][0], info["image_size"][1]
rows.append(
[
repo_id,
f"{width} x {height}",
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
def main():
for timestamps_mode in TIMESTAMPS_MODES:
bench_dir = OUTPUT_DIR / timestamps_mode
print(f"### `{timestamps_mode}`")
print()
print("**`pix_fmt`**")
headers = ["repo_id", "pix_fmt", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for pix_fmt in ["yuv420p", "yuv444p"]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": pix_fmt,
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_{pix_fmt}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_{pix_fmt}")
rows.append(
[
repo_id,
pix_fmt,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
for name, values in BENCHMARKS.items():
one_variable_study(name, values, DATASET_REPO_IDS, bench_dir, timestamps_mode, DRY_RUN)
print("**`g`**")
headers = ["repo_id", "g", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for g in [1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": g,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_g_{g}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_g_{g}")
rows.append(
[
repo_id,
g,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**`crf`**")
headers = ["repo_id", "crf", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
for crf in [0, 5, 10, 15, 20, None, 25, 30, 40, 50]:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": crf,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / f"torchvision_crf_{crf}", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / f"torchvision_crf_{crf}")
rows.append(
[
repo_id,
crf,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
print("**best**")
headers = ["repo_id", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
rows = []
for repo_id in repo_ids:
cfg = {
"repo_id": repo_id,
# video encoding
"g": 2,
"crf": None,
"pix_fmt": "yuv444p",
# video decoding
"device": "cpu",
"decoder": "torchvision",
"decoder_kwgs": {},
}
if not dry_run:
run_video_benchmark(bench_dir / repo_id / "torchvision_best", cfg, timestamps_mode)
info = load_info(bench_dir / repo_id / "torchvision_best")
rows.append(
[
repo_id,
info["compression_factor"],
info["load_time_factor"],
info["avg_per_pixel_l2_error"],
]
)
display_markdown_table(headers, rows)
# best_study(DATASET_REPO_IDS, bench_dir, timestamps_mode, DRY_RUN)
if __name__ == "__main__":

View File

@@ -1,17 +1,30 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from copy import deepcopy
from math import ceil
import datasets
import einops
import torch
import tqdm
from datasets import Image
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import VideoFrame
def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_workers=0):
def get_stats_einops_patterns(dataset, num_workers=0):
"""These einops patterns will be used to aggregate batches and compute statistics.
Note: We assume the images are in channel first format
@@ -51,9 +64,8 @@ def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_wo
return stats_patterns
def compute_stats(
dataset: LeRobotDataset | datasets.Dataset, batch_size=32, num_workers=16, max_num_samples=None
):
def compute_stats(dataset, batch_size=32, num_workers=16, max_num_samples=None):
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
if max_num_samples is None:
max_num_samples = len(dataset)
@@ -144,3 +156,54 @@ def compute_stats(
"min": min[key],
}
return stats
def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
"""Aggregate stats of multiple LeRobot datasets into one set of stats without recomputing from scratch.
The final stats will have the union of all data keys from each of the datasets.
The final stats will have the union of all data keys from each of the datasets. For instance:
- new_max = max(max_dataset_0, max_dataset_1, ...)
- new_min = min(min_dataset_0, min_dataset_1, ...)
- new_mean = (mean of all data)
- new_std = (std of all data)
"""
data_keys = set()
for dataset in ls_datasets:
data_keys.update(dataset.stats.keys())
stats = {k: {} for k in data_keys}
for data_key in data_keys:
for stat_key in ["min", "max"]:
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
stats[data_key][stat_key] = einops.reduce(
torch.stack([d.stats[data_key][stat_key] for d in ls_datasets if data_key in d.stats], dim=0),
"n ... -> ...",
stat_key,
)
total_samples = sum(d.num_samples for d in ls_datasets if data_key in d.stats)
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
# dataset, then divide by total_samples to get the overall "mean".
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["mean"] = sum(
d.stats[data_key]["mean"] * (d.num_samples / total_samples)
for d in ls_datasets
if data_key in d.stats
)
# The derivation for standard deviation is a little more involved but is much in the same spirit as
# the computation of the mean.
# Given two sets of data where the statistics are known:
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
# numerical overflow!
stats[data_key]["std"] = torch.sqrt(
sum(
(d.stats[data_key]["std"] ** 2 + (d.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2)
* (d.num_samples / total_samples)
for d in ls_datasets
if data_key in d.stats
)
)
return stats

View File

@@ -1,34 +1,111 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import torch
from omegaconf import OmegaConf
from omegaconf import ListConfig, OmegaConf
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, MultiLeRobotDataset
from lerobot.common.datasets.transforms import get_image_transforms
def make_dataset(
cfg,
split="train",
):
if cfg.env.name not in cfg.dataset_repo_id:
logging.warning(
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
f"environment ({cfg.env.name=})."
)
def resolve_delta_timestamps(cfg):
"""Resolves delta_timestamps config key (in-place) by using `eval`.
Doesn't do anything if delta_timestamps is not specified or has already been resolve (as evidenced by
the data type of its values).
"""
delta_timestamps = cfg.training.get("delta_timestamps")
if delta_timestamps is not None:
for key in delta_timestamps:
if isinstance(delta_timestamps[key], str):
delta_timestamps[key] = eval(delta_timestamps[key])
# TODO(rcadene, alexander-soare): remove `eval` to avoid exploit
cfg.training.delta_timestamps[key] = eval(delta_timestamps[key])
# TODO(rcadene): add data augmentations
dataset = LeRobotDataset(
cfg.dataset_repo_id,
split=split,
delta_timestamps=delta_timestamps,
)
def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotDataset:
"""
Args:
cfg: A Hydra config as per the LeRobot config scheme.
split: Select the data subset used to create an instance of LeRobotDataset.
All datasets hosted on [lerobot](https://huggingface.co/lerobot) contain only one subset: "train".
Thus, by default, `split="train"` selects all the available data. `split` aims to work like the
slicer in the hugging face datasets:
https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
As of now, it only supports `split="train[:n]"` to load the first n frames of the dataset or
`split="train[n:]"` to load the last n frames. For instance `split="train[:1000]"`.
Returns:
The LeRobotDataset.
"""
if not isinstance(cfg.dataset_repo_id, (str, ListConfig)):
raise ValueError(
"Expected cfg.dataset_repo_id to be either a single string to load one dataset or a list of "
"strings to load multiple datasets."
)
# A soft check to warn if the environment matches the dataset. Don't check if we are using a real world env (dora).
if cfg.env.name != "dora":
if isinstance(cfg.dataset_repo_id, str):
dataset_repo_ids = [cfg.dataset_repo_id] # single dataset
else:
dataset_repo_ids = cfg.dataset_repo_id # multiple datasets
for dataset_repo_id in dataset_repo_ids:
if cfg.env.name not in dataset_repo_id:
logging.warning(
f"There might be a mismatch between your training dataset ({dataset_repo_id=}) and your "
f"environment ({cfg.env.name=})."
)
resolve_delta_timestamps(cfg)
image_transforms = None
if cfg.training.image_transforms.enable:
cfg_tf = cfg.training.image_transforms
image_transforms = get_image_transforms(
brightness_weight=cfg_tf.brightness.weight,
brightness_min_max=cfg_tf.brightness.min_max,
contrast_weight=cfg_tf.contrast.weight,
contrast_min_max=cfg_tf.contrast.min_max,
saturation_weight=cfg_tf.saturation.weight,
saturation_min_max=cfg_tf.saturation.min_max,
hue_weight=cfg_tf.hue.weight,
hue_min_max=cfg_tf.hue.min_max,
sharpness_weight=cfg_tf.sharpness.weight,
sharpness_min_max=cfg_tf.sharpness.min_max,
max_num_transforms=cfg_tf.max_num_transforms,
random_order=cfg_tf.random_order,
)
if isinstance(cfg.dataset_repo_id, str):
dataset = LeRobotDataset(
cfg.dataset_repo_id,
split=split,
delta_timestamps=cfg.training.get("delta_timestamps"),
image_transforms=image_transforms,
video_backend=cfg.video_backend,
)
else:
dataset = MultiLeRobotDataset(
cfg.dataset_repo_id,
split=split,
delta_timestamps=cfg.training.get("delta_timestamps"),
image_transforms=image_transforms,
video_backend=cfg.video_backend,
)
if cfg.get("override_dataset_stats"):
for key, stats_dict in cfg.override_dataset_stats.items():

View File

@@ -1,21 +1,42 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from pathlib import Path
from typing import Callable
import datasets
import torch
import torch.utils
from lerobot.common.datasets.compute_stats import aggregate_stats
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
load_episode_data_index,
load_hf_dataset,
load_info,
load_previous_and_future_frames,
load_stats,
load_videos,
reset_episode_index,
)
from lerobot.common.datasets.video_utils import VideoFrame, load_from_videos
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
CODEBASE_VERSION = "v1.3"
CODEBASE_VERSION = "v1.4"
class LeRobotDataset(torch.utils.data.Dataset):
@@ -25,25 +46,31 @@ class LeRobotDataset(torch.utils.data.Dataset):
version: str | None = CODEBASE_VERSION,
root: Path | None = DATA_DIR,
split: str = "train",
transform: callable = None,
image_transforms: Callable | None = None,
delta_timestamps: dict[list[float]] | None = None,
video_backend: str | None = None,
):
super().__init__()
self.repo_id = repo_id
self.version = version
self.root = root
self.split = split
self.transform = transform
self.image_transforms = image_transforms
self.delta_timestamps = delta_timestamps
# load data from hub or locally when root is provided
# TODO(rcadene, aliberts): implement faster transfer
# https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads
self.hf_dataset = load_hf_dataset(repo_id, version, root, split)
self.episode_data_index = load_episode_data_index(repo_id, version, root)
if split == "train":
self.episode_data_index = load_episode_data_index(repo_id, version, root)
else:
self.episode_data_index = calculate_episode_data_index(self.hf_dataset)
self.hf_dataset = reset_episode_index(self.hf_dataset)
self.stats = load_stats(repo_id, version, root)
self.info = load_info(repo_id, version, root)
if self.video:
self.videos_dir = load_videos(repo_id, version, root)
self.video_backend = video_backend if video_backend is not None else "pyav"
@property
def fps(self) -> int:
@@ -124,10 +151,12 @@ class LeRobotDataset(torch.utils.data.Dataset):
self.video_frame_keys,
self.videos_dir,
self.tolerance_s,
self.video_backend,
)
if self.transform is not None:
item = self.transform(item)
if self.image_transforms is not None:
for cam in self.camera_keys:
item[cam] = self.image_transforms(item[cam])
return item
@@ -143,14 +172,14 @@ class LeRobotDataset(torch.utils.data.Dataset):
f" Recorded Frames per Second: {self.fps},\n"
f" Camera Keys: {self.camera_keys},\n"
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
f" Transformations: {self.transform},\n"
f" Transformations: {self.image_transforms},\n"
f")"
)
@classmethod
def from_preloaded(
cls,
repo_id: str,
repo_id: str = "from_preloaded",
version: str | None = CODEBASE_VERSION,
root: Path | None = None,
split: str = "train",
@@ -162,18 +191,218 @@ class LeRobotDataset(torch.utils.data.Dataset):
stats=None,
info=None,
videos_dir=None,
):
video_backend=None,
) -> "LeRobotDataset":
"""Create a LeRobot Dataset from existing data and attributes instead of loading from the filesystem.
It is especially useful when converting raw data into LeRobotDataset before saving the dataset
on the filesystem or uploading to the hub.
Note: Meta-data attributes like `repo_id`, `version`, `root`, etc are optional and potentially
meaningless depending on the downstream usage of the return dataset.
"""
# create an empty object of type LeRobotDataset
obj = cls.__new__(cls)
obj.repo_id = repo_id
obj.version = version
obj.root = root
obj.split = split
obj.transform = transform
obj.image_transforms = transform
obj.delta_timestamps = delta_timestamps
obj.hf_dataset = hf_dataset
obj.episode_data_index = episode_data_index
obj.stats = stats
obj.info = info
obj.info = info if info is not None else {}
obj.videos_dir = videos_dir
obj.video_backend = video_backend if video_backend is not None else "pyav"
return obj
class MultiLeRobotDataset(torch.utils.data.Dataset):
"""A dataset consisting of multiple underlying `LeRobotDataset`s.
The underlying `LeRobotDataset`s are effectively concatenated, and this class adopts much of the API
structure of `LeRobotDataset`.
"""
def __init__(
self,
repo_ids: list[str],
version: str | None = CODEBASE_VERSION,
root: Path | None = DATA_DIR,
split: str = "train",
image_transforms: Callable | None = None,
delta_timestamps: dict[list[float]] | None = None,
video_backend: str | None = None,
):
super().__init__()
self.repo_ids = repo_ids
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
# are handled by this class.
self._datasets = [
LeRobotDataset(
repo_id,
version=version,
root=root,
split=split,
delta_timestamps=delta_timestamps,
image_transforms=image_transforms,
video_backend=video_backend,
)
for repo_id in repo_ids
]
# Check that some properties are consistent across datasets. Note: We may relax some of these
# consistency requirements in future iterations of this class.
for repo_id, dataset in zip(self.repo_ids, self._datasets, strict=True):
if dataset.info != self._datasets[0].info:
raise ValueError(
f"Detected a mismatch in dataset info between {self.repo_ids[0]} and {repo_id}. This is "
"not yet supported."
)
# Disable any data keys that are not common across all of the datasets. Note: we may relax this
# restriction in future iterations of this class. For now, this is necessary at least for being able
# to use PyTorch's default DataLoader collate function.
self.disabled_data_keys = set()
intersection_data_keys = set(self._datasets[0].hf_dataset.features)
for dataset in self._datasets:
intersection_data_keys.intersection_update(dataset.hf_dataset.features)
if len(intersection_data_keys) == 0:
raise RuntimeError(
"Multiple datasets were provided but they had no keys common to all of them. The "
"multi-dataset functionality currently only keeps common keys."
)
for repo_id, dataset in zip(self.repo_ids, self._datasets, strict=True):
extra_keys = set(dataset.hf_dataset.features).difference(intersection_data_keys)
logging.warning(
f"keys {extra_keys} of {repo_id} were disabled as they are not contained in all the "
"other datasets."
)
self.disabled_data_keys.update(extra_keys)
self.version = version
self.root = root
self.split = split
self.image_transforms = image_transforms
self.delta_timestamps = delta_timestamps
self.stats = aggregate_stats(self._datasets)
@property
def repo_id_to_index(self):
"""Return a mapping from dataset repo_id to a dataset index automatically created by this class.
This index is incorporated as a data key in the dictionary returned by `__getitem__`.
"""
return {repo_id: i for i, repo_id in enumerate(self.repo_ids)}
@property
def repo_index_to_id(self):
"""Return the inverse mapping if repo_id_to_index."""
return {v: k for k, v in self.repo_id_to_index}
@property
def fps(self) -> int:
"""Frames per second used during data collection.
NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
"""
return self._datasets[0].info["fps"]
@property
def video(self) -> bool:
"""Returns True if this dataset loads video frames from mp4 files.
Returns False if it only loads images from png files.
NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
"""
return self._datasets[0].info.get("video", False)
@property
def features(self) -> datasets.Features:
features = {}
for dataset in self._datasets:
features.update({k: v for k, v in dataset.features.items() if k not in self.disabled_data_keys})
return features
@property
def camera_keys(self) -> list[str]:
"""Keys to access image and video stream from cameras."""
keys = []
for key, feats in self.features.items():
if isinstance(feats, (datasets.Image, VideoFrame)):
keys.append(key)
return keys
@property
def video_frame_keys(self) -> list[str]:
"""Keys to access video frames that requires to be decoded into images.
Note: It is empty if the dataset contains images only,
or equal to `self.cameras` if the dataset contains videos only,
or can even be a subset of `self.cameras` in a case of a mixed image/video dataset.
"""
video_frame_keys = []
for key, feats in self.features.items():
if isinstance(feats, VideoFrame):
video_frame_keys.append(key)
return video_frame_keys
@property
def num_samples(self) -> int:
"""Number of samples/frames."""
return sum(d.num_samples for d in self._datasets)
@property
def num_episodes(self) -> int:
"""Number of episodes."""
return sum(d.num_episodes for d in self._datasets)
@property
def tolerance_s(self) -> float:
"""Tolerance in seconds used to discard loaded frames when their timestamps
are not close enough from the requested frames. It is only used when `delta_timestamps`
is provided or when loading video frames from mp4 files.
"""
# 1e-4 to account for possible numerical error
return 1 / self.fps - 1e-4
def __len__(self):
return self.num_samples
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
if idx >= len(self):
raise IndexError(f"Index {idx} out of bounds.")
# Determine which dataset to get an item from based on the index.
start_idx = 0
dataset_idx = 0
for dataset in self._datasets:
if idx >= start_idx + dataset.num_samples:
start_idx += dataset.num_samples
dataset_idx += 1
continue
break
else:
raise AssertionError("We expect the loop to break out as long as the index is within bounds.")
item = self._datasets[dataset_idx][idx - start_idx]
item["dataset_index"] = torch.tensor(dataset_idx)
for data_key in self.disabled_data_keys:
if data_key in item:
del item[data_key]
return item
def __repr__(self):
return (
f"{self.__class__.__name__}(\n"
f" Repository IDs: '{self.repo_ids}',\n"
f" Version: '{self.version}',\n"
f" Split: '{self.split}',\n"
f" Number of Samples: {self.num_samples},\n"
f" Number of Episodes: {self.num_episodes},\n"
f" Type: {'video (.mp4)' if self.video else 'image (.png)'},\n"
f" Recorded Frames per Second: {self.fps},\n"
f" Camera Keys: {self.camera_keys},\n"
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
f" Transformations: {self.image_transforms},\n"
f")"
)

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper code for loading PushT dataset from Diffusion Policy (https://diffusion-policy.cs.columbia.edu/)
Copied from the original Diffusion Policy repository and used in our `download_and_upload_dataset.py` script.

View File

@@ -1,170 +1,132 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains all obsolete download scripts. They are centralized here to not have to load
useless dependencies when using datasets.
This file contains download scripts for raw datasets.
Example of usage:
```
python lerobot/common/datasets/push_dataset_to_hub/_download_raw.py \
--raw-dir data/cadene/pusht_raw \
--repo-id cadene/pusht_raw
```
"""
import io
import argparse
import logging
import shutil
import warnings
from pathlib import Path
import tqdm
ALOHA_RAW_URLS_DIR = "lerobot/common/datasets/push_dataset_to_hub/_aloha_raw_urls"
from huggingface_hub import snapshot_download
def download_raw(raw_dir, dataset_id):
if "pusht" in dataset_id:
download_pusht(raw_dir)
elif "xarm" in dataset_id:
download_xarm(raw_dir)
elif "aloha" in dataset_id:
download_aloha(raw_dir, dataset_id)
elif "umi" in dataset_id:
download_umi(raw_dir)
else:
raise ValueError(dataset_id)
def download_raw(raw_dir: Path, repo_id: str):
# Check repo_id is well formated
if len(repo_id.split("/")) != 2:
raise ValueError(
f"`repo_id` is expected to contain a community or user id `/` the name of the dataset (e.g. 'lerobot/pusht'), but contains '{repo_id}'."
)
user_id, dataset_id = repo_id.split("/")
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
import zipfile
import requests
print(f"downloading from {url}")
response = requests.get(url, stream=True)
if response.status_code == 200:
total_size = int(response.headers.get("content-length", 0))
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
zip_file = io.BytesIO()
for chunk in response.iter_content(chunk_size=1024):
if chunk:
zip_file.write(chunk)
progress_bar.update(len(chunk))
progress_bar.close()
zip_file.seek(0)
with zipfile.ZipFile(zip_file, "r") as zip_ref:
zip_ref.extractall(destination_folder)
def download_pusht(raw_dir: str):
pusht_url = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(pusht_url, raw_dir)
# file is created inside a useful "pusht" directory, so we move it out and delete the dir
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
shutil.move(raw_dir / "pusht" / "pusht_cchi_v7_replay.zarr", zarr_path)
shutil.rmtree(raw_dir / "pusht")
def download_xarm(raw_dir: Path):
"""Download all xarm datasets at once"""
import zipfile
import gdown
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
# from https://github.com/fyhMer/fowm/blob/main/scripts/download_datasets.py
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
zip_path = raw_dir / "data.zip"
gdown.download(url, str(zip_path), quiet=False)
print("Extracting...")
with zipfile.ZipFile(str(zip_path), "r") as zip_f:
for pkl_path in zip_f.namelist():
if pkl_path.startswith("data/xarm") and pkl_path.endswith(".pkl"):
zip_f.extract(member=pkl_path)
# move to corresponding raw directory
extract_dir = pkl_path.replace("/buffer.pkl", "")
raw_pkl_path = raw_dir / "buffer.pkl"
shutil.move(pkl_path, raw_pkl_path)
shutil.rmtree(extract_dir)
zip_path.unlink()
def download_aloha(raw_dir: Path, dataset_id: str):
import gdown
subset_id = dataset_id.replace("aloha_", "")
urls_path = Path(ALOHA_RAW_URLS_DIR) / f"{subset_id}.txt"
assert urls_path.exists(), f"{subset_id}.txt not found in '{ALOHA_RAW_URLS_DIR}' directory."
with open(urls_path) as f:
# strip lines and ignore empty lines
urls = [url.strip() for url in f if url.strip()]
# sanity check
for url in urls:
assert (
"drive.google.com/drive/folders" in url or "drive.google.com/file" in url
), f"Wrong url provided '{url}' in file '{urls_path}'."
if not dataset_id.endswith("_raw"):
warnings.warn(
f"`dataset_id` ({dataset_id}) doesn't end with '_raw' (e.g. 'lerobot/pusht_raw'). Following this naming convention by renaming your repository is advised, but not mandatory.",
stacklevel=1,
)
raw_dir = Path(raw_dir)
# Send warning if raw_dir isn't well formated
if raw_dir.parts[-2] != user_id or raw_dir.parts[-1] != dataset_id:
warnings.warn(
f"`raw_dir` ({raw_dir}) doesn't contain a community or user id `/` the name of the dataset that match the `repo_id` (e.g. 'data/lerobot/pusht_raw'). Following this naming convention is advised, but not mandatory.",
stacklevel=1,
)
raw_dir.mkdir(parents=True, exist_ok=True)
logging.info(f"Start downloading from google drive for {dataset_id}")
for url in urls:
if "drive.google.com/drive/folders" in url:
# when a folder url is given, download up to 50 files from the folder
gdown.download_folder(url, output=str(raw_dir), remaining_ok=True)
elif "drive.google.com/file" in url:
# because of the 50 files limit per folder, we download the remaining files (file by file)
gdown.download(url, output=str(raw_dir), fuzzy=True)
logging.info(f"End downloading from google drive for {dataset_id}")
logging.info(f"Start downloading from huggingface.co/{user_id} for {dataset_id}")
snapshot_download(f"{repo_id}", repo_type="dataset", local_dir=raw_dir)
logging.info(f"Finish downloading from huggingface.co/{user_id} for {dataset_id}")
def download_umi(raw_dir: Path):
url_cup_in_the_wild = "https://real.stanford.edu/umi/data/zarr_datasets/cup_in_the_wild.zarr.zip"
zarr_path = raw_dir / "cup_in_the_wild.zarr"
def download_all_raw_datasets():
data_dir = Path("data")
repo_ids = [
"cadene/pusht_image_raw",
"cadene/xarm_lift_medium_image_raw",
"cadene/xarm_lift_medium_replay_image_raw",
"cadene/xarm_push_medium_image_raw",
"cadene/xarm_push_medium_replay_image_raw",
"cadene/aloha_sim_insertion_human_image_raw",
"cadene/aloha_sim_insertion_scripted_image_raw",
"cadene/aloha_sim_transfer_cube_human_image_raw",
"cadene/aloha_sim_transfer_cube_scripted_image_raw",
"cadene/pusht_raw",
"cadene/xarm_lift_medium_raw",
"cadene/xarm_lift_medium_replay_raw",
"cadene/xarm_push_medium_raw",
"cadene/xarm_push_medium_replay_raw",
"cadene/aloha_sim_insertion_human_raw",
"cadene/aloha_sim_insertion_scripted_raw",
"cadene/aloha_sim_transfer_cube_human_raw",
"cadene/aloha_sim_transfer_cube_scripted_raw",
"cadene/aloha_mobile_cabinet_raw",
"cadene/aloha_mobile_chair_raw",
"cadene/aloha_mobile_elevator_raw",
"cadene/aloha_mobile_shrimp_raw",
"cadene/aloha_mobile_wash_pan_raw",
"cadene/aloha_mobile_wipe_wine_raw",
"cadene/aloha_static_battery_raw",
"cadene/aloha_static_candy_raw",
"cadene/aloha_static_coffee_raw",
"cadene/aloha_static_coffee_new_raw",
"cadene/aloha_static_cups_open_raw",
"cadene/aloha_static_fork_pick_up_raw",
"cadene/aloha_static_pingpong_test_raw",
"cadene/aloha_static_pro_pencil_raw",
"cadene/aloha_static_screw_driver_raw",
"cadene/aloha_static_tape_raw",
"cadene/aloha_static_thread_velcro_raw",
"cadene/aloha_static_towel_raw",
"cadene/aloha_static_vinh_cup_raw",
"cadene/aloha_static_vinh_cup_left_raw",
"cadene/aloha_static_ziploc_slide_raw",
"cadene/umi_cup_in_the_wild_raw",
]
for repo_id in repo_ids:
raw_dir = data_dir / repo_id
download_raw(raw_dir, repo_id)
raw_dir = Path(raw_dir)
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(url_cup_in_the_wild, zarr_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--raw-dir",
type=Path,
required=True,
help="Directory containing input raw datasets (e.g. `data/aloha_mobile_chair_raw` or `data/pusht_raw).",
)
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset (e.g. `lerobot/pusht_raw`, `cadene/aloha_sim_insertion_human_raw`).",
)
args = parser.parse_args()
download_raw(**vars(args))
if __name__ == "__main__":
data_dir = Path("data")
dataset_ids = [
"pusht",
"xarm_lift_medium",
"xarm_lift_medium_replay",
"xarm_push_medium",
"xarm_push_medium_replay",
"aloha_mobile_cabinet",
"aloha_mobile_chair",
"aloha_mobile_elevator",
"aloha_mobile_shrimp",
"aloha_mobile_wash_pan",
"aloha_mobile_wipe_wine",
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
"aloha_static_battery",
"aloha_static_candy",
"aloha_static_coffee",
"aloha_static_coffee_new",
"aloha_static_cups_open",
"aloha_static_fork_pick_up",
"aloha_static_pingpong_test",
"aloha_static_pro_pencil",
"aloha_static_screw_driver",
"aloha_static_tape",
"aloha_static_thread_velcro",
"aloha_static_towel",
"aloha_static_vinh_cup",
"aloha_static_vinh_cup_left",
"aloha_static_ziploc_slide",
"umi_cup_in_the_wild",
]
for dataset_id in dataset_ids:
raw_dir = data_dir / f"{dataset_id}_raw"
download_raw(raw_dir, dataset_id)
main()

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# imagecodecs/numcodecs.py
# Copyright (c) 2021-2022, Christoph Gohlke

View File

@@ -1,8 +1,23 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains utilities to process raw data format of HDF5 files like in: https://github.com/tonyzhaozh/act
"""
import re
import gc
import shutil
from pathlib import Path
@@ -15,6 +30,7 @@ from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
@@ -55,19 +71,18 @@ def check_format(raw_dir) -> bool:
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
# only frames from simulation are uncompressed
compressed_images = "sim" not in raw_dir.name
hdf5_files = list(raw_dir.glob("*.hdf5"))
hdf5_files = sorted(raw_dir.glob("episode_*.hdf5"))
num_episodes = len(hdf5_files)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for ep_path in tqdm.tqdm(hdf5_files, total=len(hdf5_files)):
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx in tqdm.tqdm(ep_ids):
ep_path = hdf5_files[ep_idx]
with h5py.File(ep_path, "r") as ep:
ep_idx = int(re.search(r"episode_(\d+)", ep_path.name).group(1))
num_frames = ep["/action"].shape[0]
# last step of demonstration is considered done
@@ -76,6 +91,10 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
state = torch.from_numpy(ep["/observations/qpos"][:])
action = torch.from_numpy(ep["/action"][:])
if "/observations/qvel" in ep:
velocity = torch.from_numpy(ep["/observations/qvel"][:])
if "/observations/effort" in ep:
effort = torch.from_numpy(ep["/observations/effort"][:])
ep_dict = {}
@@ -97,12 +116,12 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
@@ -116,6 +135,10 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict["observation.state"] = state
if "/observations/velocity" in ep:
ep_dict["observation.velocity"] = velocity
if "/observations/effort" in ep:
ep_dict["observation.effort"] = effort
ep_dict["action"] = action
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
@@ -126,17 +149,13 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
assert isinstance(ep_idx, int)
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# process first episode only
if debug:
break
gc.collect()
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video) -> Dataset:
@@ -152,6 +171,14 @@ def to_hf_dataset(data_dict, video) -> Dataset:
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.velocity" in data_dict:
features["observation.velocity"] = Sequence(
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.effort" in data_dict:
features["observation.effort"] = Sequence(
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
@@ -166,16 +193,22 @@ def to_hf_dataset(data_dict, video) -> Dataset:
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 50
data_dir, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
hf_dataset = to_hf_dataset(data_dir, video)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"fps": fps,
"video": video,

View File

@@ -0,0 +1,101 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains utilities to process raw data format of png images files recorded with capture_camera_feed.py
"""
from pathlib import Path
import torch
from datasets import Dataset, Features, Image, Value
from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes
from lerobot.common.datasets.utils import calculate_episode_data_index, hf_transform_to_torch
from lerobot.common.datasets.video_utils import VideoFrame
def check_format(raw_dir: Path) -> bool:
image_paths = list(raw_dir.glob("frame_*.png"))
if len(image_paths) == 0:
raise ValueError
def load_from_raw(raw_dir: Path, fps: int, episodes: list[int] | None = None):
if episodes is not None:
# TODO(aliberts): add support for multi-episodes.
raise NotImplementedError()
ep_dict = {}
ep_idx = 0
image_paths = sorted(raw_dir.glob("frame_*.png"))
num_frames = len(image_paths)
ep_dict["observation.image"] = [PILImage.open(x) for x in image_paths]
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dicts = [ep_dict]
data_dict = concatenate_episodes(ep_dicts)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video) -> Dataset:
features = {}
if video:
features["observation.image"] = VideoFrame()
else:
features["observation.image"] = Image()
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["index"] = Value(dtype="int64", id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
):
if video or episodes is not None:
# TODO(aliberts): support this
raise NotImplementedError
# sanity check
check_format(raw_dir)
if fps is None:
fps = 30
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -0,0 +1,220 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains utilities to process raw data format from dora-record
"""
import re
from pathlib import Path
import pandas as pd
import torch
from datasets import Dataset, Features, Image, Sequence, Value
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame
def check_format(raw_dir) -> bool:
assert raw_dir.exists()
leader_file = list(raw_dir.glob("*.parquet"))
if len(leader_file) == 0:
raise ValueError(f"Missing parquet files in '{raw_dir}'")
return True
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
# Load data stream that will be used as reference for the timestamps synchronization
reference_files = list(raw_dir.glob("observation.images.cam_*.parquet"))
if len(reference_files) == 0:
raise ValueError(f"Missing reference files for camera, starting with in '{raw_dir}'")
# select first camera in alphanumeric order
reference_key = sorted(reference_files)[0].stem
reference_df = pd.read_parquet(raw_dir / f"{reference_key}.parquet")
reference_df = reference_df[["timestamp_utc", reference_key]]
# Merge all data stream using nearest backward strategy
df = reference_df
for path in raw_dir.glob("*.parquet"):
key = path.stem # action or observation.state or ...
if key == reference_key:
continue
if "failed_episode_index" in key:
# TODO(rcadene): add support for removing episodes that are tagged as "failed"
continue
modality_df = pd.read_parquet(path)
modality_df = modality_df[["timestamp_utc", key]]
df = pd.merge_asof(
df,
modality_df,
on="timestamp_utc",
# "nearest" is the best option over "backward", since the latter can desynchronizes camera timestamps by
# matching timestamps that are too far appart, in order to fit the backward constraints. It's not the case for "nearest".
# However, note that "nearest" might synchronize the reference camera with other cameras on slightly future timestamps.
# are too far appart.
direction="nearest",
tolerance=pd.Timedelta(f"{1/fps} seconds"),
)
# Remove rows with episode_index -1 which indicates data that correspond to in-between episodes
df = df[df["episode_index"] != -1]
image_keys = [key for key in df if "observation.images." in key]
def get_episode_index(row):
episode_index_per_cam = {}
for key in image_keys:
path = row[key][0]["path"]
match = re.search(r"_(\d{6}).mp4", path)
if not match:
raise ValueError(path)
episode_index = int(match.group(1))
episode_index_per_cam[key] = episode_index
if len(set(episode_index_per_cam.values())) != 1:
raise ValueError(
f"All cameras are expected to belong to the same episode, but getting {episode_index_per_cam}"
)
return episode_index
df["episode_index"] = df.apply(get_episode_index, axis=1)
# dora only use arrays, so single values are encapsulated into a list
df["frame_index"] = df.groupby("episode_index").cumcount()
df = df.reset_index()
df["index"] = df.index
# set 'next.done' to True for the last frame of each episode
df["next.done"] = False
df.loc[df.groupby("episode_index").tail(1).index, "next.done"] = True
df["timestamp"] = df["timestamp_utc"].map(lambda x: x.timestamp())
# each episode starts with timestamp 0 to match the ones from the video
df["timestamp"] = df.groupby("episode_index")["timestamp"].transform(lambda x: x - x.iloc[0])
del df["timestamp_utc"]
# sanity check
has_nan = df.isna().any().any()
if has_nan:
raise ValueError("Dataset contains Nan values.")
# sanity check episode indices go from 0 to n-1
ep_ids = [ep_idx for ep_idx, _ in df.groupby("episode_index")]
expected_ep_ids = list(range(df["episode_index"].max() + 1))
if ep_ids != expected_ep_ids:
raise ValueError(f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}")
# Create symlink to raw videos directory (that needs to be absolute not relative)
videos_dir.parent.mkdir(parents=True, exist_ok=True)
videos_dir.symlink_to((raw_dir / "videos").absolute())
# sanity check the video paths are well formated
for key in df:
if "observation.images." not in key:
continue
for ep_idx in ep_ids:
video_path = videos_dir / f"{key}_episode_{ep_idx:06d}.mp4"
if not video_path.exists():
raise ValueError(f"Video file not found in {video_path}")
data_dict = {}
for key in df:
# is video frame
if "observation.images." in key:
# we need `[0] because dora only use arrays, so single values are encapsulated into a list.
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
# sanity check the video path is well formated
video_path = videos_dir.parent / data_dict[key][0]["path"]
if not video_path.exists():
raise ValueError(f"Video file not found in {video_path}")
# is number
elif df[key].iloc[0].ndim == 0 or df[key].iloc[0].shape[0] == 1:
data_dict[key] = torch.from_numpy(df[key].values)
# is vector
elif df[key].iloc[0].shape[0] > 1:
data_dict[key] = torch.stack([torch.from_numpy(x.copy()) for x in df[key].values])
else:
raise ValueError(key)
return data_dict
def to_hf_dataset(data_dict, video) -> Dataset:
features = {}
keys = [key for key in data_dict if "observation.images." in key]
for key in keys:
if video:
features[key] = VideoFrame()
else:
features[key] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.velocity" in data_dict:
features["observation.velocity"] = Sequence(
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.effort" in data_dict:
features["observation.effort"] = Sequence(
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
features["timestamp"] = Value(dtype="float32", id=None)
features["next.done"] = Value(dtype="bool", id=None)
features["index"] = Value(dtype="int64", id=None)
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
hf_dataset.set_transform(hf_transform_to_torch)
return hf_dataset
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 30
else:
raise NotImplementedError()
if not video:
raise NotImplementedError()
data_df = load_from_raw(raw_dir, videos_dir, fps, episodes)
hf_dataset = to_hf_dataset(data_df, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"fps": fps,
"video": video,
}
return hf_dataset, episode_data_index, info

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Process zarr files formatted like in: https://github.com/real-stanford/diffusion_policy"""
import shutil
@@ -12,6 +27,7 @@ from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
@@ -38,7 +54,7 @@ def check_format(raw_dir):
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
try:
import pymunk
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
@@ -56,7 +72,6 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
episode_ids = torch.from_numpy(zarr_data.get_episode_idxs())
num_episodes = zarr_data.meta["episode_ends"].shape[0]
assert len(
{zarr_data[key].shape[0] for key in zarr_data.keys()} # noqa: SIM118
), "Some data type dont have the same number of total frames."
@@ -69,25 +84,34 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
states = torch.from_numpy(zarr_data["state"])
actions = torch.from_numpy(zarr_data["action"])
ep_dicts = []
episode_data_index = {"from": [], "to": []}
# load data indices from which each episode starts and ends
from_ids, to_ids = [], []
from_idx = 0
for to_idx in zarr_data.meta["episode_ends"]:
from_ids.append(from_idx)
to_ids.append(to_idx)
from_idx = to_idx
id_from = 0
for ep_idx in tqdm.tqdm(range(num_episodes)):
id_to = zarr_data.meta["episode_ends"][ep_idx]
num_frames = id_to - id_from
num_episodes = len(from_ids)
ep_dicts = []
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
from_idx = from_ids[selected_ep_idx]
to_idx = to_ids[selected_ep_idx]
num_frames = to_idx - from_idx
# sanity check
assert (episode_ids[id_from:id_to] == ep_idx).all()
assert (episode_ids[from_idx:to_idx] == ep_idx).all()
# get image
image = imgs[id_from:id_to]
image = imgs[from_idx:to_idx]
assert image.min() >= 0.0
assert image.max() <= 255.0
image = image.type(torch.uint8)
# get state
state = states[id_from:id_to]
state = states[from_idx:to_idx]
agent_pos = state[:, :2]
block_pos = state[:, 2:4]
block_angle = state[:, 4]
@@ -128,12 +152,12 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
@@ -145,7 +169,7 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
ep_dict["observation.state"] = agent_pos
ep_dict["action"] = actions[id_from:id_to]
ep_dict["action"] = actions[from_idx:to_idx]
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
@@ -157,17 +181,11 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
ep_dict["next.success"] = torch.cat([success[1:], success[[-1]]])
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video):
@@ -197,16 +215,22 @@ def to_hf_dataset(data_dict, video):
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 10
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"fps": fps,
"video": video,

View File

@@ -1,10 +1,24 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Process UMI (Universal Manipulation Interface) data stored in Zarr format like in: https://github.com/real-stanford/universal_manipulation_interface"""
import logging
import shutil
from pathlib import Path
import numpy as np
import torch
import tqdm
import zarr
@@ -14,6 +28,7 @@ from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
@@ -44,23 +59,7 @@ def check_format(raw_dir) -> bool:
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
def get_episode_idxs(episode_ends: np.ndarray) -> np.ndarray:
# Optimized and simplified version of this function: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/common/replay_buffer.py#L374
from numba import jit
@jit(nopython=True)
def _get_episode_idxs(episode_ends):
result = np.zeros((episode_ends[-1],), dtype=np.int64)
start_idx = 0
for episode_number, end_idx in enumerate(episode_ends):
result[start_idx:end_idx] = episode_number
start_idx = end_idx
return result
return _get_episode_idxs(episode_ends)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
zarr_path = raw_dir / "cup_in_the_wild.zarr"
zarr_data = zarr.open(zarr_path, mode="r")
@@ -77,39 +76,41 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
episode_ends = zarr_data["meta/episode_ends"][:]
num_episodes = episode_ends.shape[0]
episode_ids = torch.from_numpy(get_episode_idxs(episode_ends))
# We convert it in torch tensor later because the jit function does not support torch tensors
episode_ends = torch.from_numpy(episode_ends)
# load data indices from which each episode starts and ends
from_ids, to_ids = [], []
from_idx = 0
for to_idx in episode_ends:
from_ids.append(from_idx)
to_ids.append(to_idx)
from_idx = to_idx
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
for ep_idx in tqdm.tqdm(range(num_episodes)):
id_to = episode_ends[ep_idx]
num_frames = id_to - id_from
# sanity heck
assert (episode_ids[id_from:id_to] == ep_idx).all()
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
from_idx = from_ids[selected_ep_idx]
to_idx = to_ids[selected_ep_idx]
num_frames = to_idx - from_idx
# TODO(rcadene): save temporary images of the episode?
state = states[id_from:id_to]
state = states[from_idx:to_idx]
ep_dict = {}
# load 57MB of images in RAM (400x224x224x3 uint8)
imgs_array = zarr_data["data/camera0_rgb"][id_from:id_to]
imgs_array = zarr_data["data/camera0_rgb"][from_idx:to_idx]
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
@@ -124,27 +125,18 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
ep_dict["episode_data_index_from"] = torch.tensor([id_from] * num_frames)
ep_dict["episode_data_index_to"] = torch.tensor([id_from + num_frames] * num_frames)
ep_dict["end_pose"] = end_pose[id_from:id_to]
ep_dict["start_pos"] = start_pos[id_from:id_to]
ep_dict["gripper_width"] = gripper_width[id_from:id_to]
ep_dict["episode_data_index_from"] = torch.tensor([from_idx] * num_frames)
ep_dict["episode_data_index_to"] = torch.tensor([from_idx + num_frames] * num_frames)
ep_dict["end_pose"] = end_pose[from_idx:to_idx]
ep_dict["start_pos"] = start_pos[from_idx:to_idx]
ep_dict["gripper_width"] = gripper_width[from_idx:to_idx]
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from += num_frames
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
total_frames = id_from
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict, episode_data_index
return data_dict
def to_hf_dataset(data_dict, video):
@@ -184,7 +176,13 @@ def to_hf_dataset(data_dict, video):
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
):
# sanity check
check_format(raw_dir)
@@ -197,9 +195,9 @@ def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=Tru
"Generating UMI dataset without `video=True` creates ~150GB on disk and requires ~80GB in RAM."
)
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"fps": fps,
"video": video,

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Process pickle files formatted like in: https://github.com/fyhMer/fowm"""
import pickle
@@ -12,6 +27,7 @@ from PIL import Image as PILImage
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
@@ -39,37 +55,42 @@ def check_format(raw_dir):
assert all(len(nested_dict[subkey]) == expected_len for subkey in subkeys if subkey in nested_dict)
def load_from_raw(raw_dir, out_dir, fps, video, debug):
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
pkl_path = raw_dir / "buffer.pkl"
with open(pkl_path, "rb") as f:
pkl_data = pickle.load(f)
ep_dicts = []
episode_data_index = {"from": [], "to": []}
id_from = 0
id_to = 0
ep_idx = 0
total_frames = pkl_data["actions"].shape[0]
for i in tqdm.tqdm(range(total_frames)):
id_to += 1
if not pkl_data["dones"][i]:
# load data indices from which each episode starts and ends
from_ids, to_ids = [], []
from_idx, to_idx = 0, 0
for done in pkl_data["dones"]:
to_idx += 1
if not done:
continue
from_ids.append(from_idx)
to_ids.append(to_idx)
from_idx = to_idx
num_frames = id_to - id_from
num_episodes = len(from_ids)
image = torch.tensor(pkl_data["observations"]["rgb"][id_from:id_to])
ep_dicts = []
ep_ids = episodes if episodes else range(num_episodes)
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
from_idx = from_ids[selected_ep_idx]
to_idx = to_ids[selected_ep_idx]
num_frames = to_idx - from_idx
image = torch.tensor(pkl_data["observations"]["rgb"][from_idx:to_idx])
image = einops.rearrange(image, "b c h w -> b h w c")
state = torch.tensor(pkl_data["observations"]["state"][id_from:id_to])
action = torch.tensor(pkl_data["actions"][id_from:id_to])
state = torch.tensor(pkl_data["observations"]["state"][from_idx:to_idx])
action = torch.tensor(pkl_data["actions"][from_idx:to_idx])
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
# it is critical to have this frame for tdmpc to predict a "done observation/state"
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][id_from:id_to])
# next_state = torch.tensor(pkl_data["next_observations"]["state"][id_from:id_to])
next_reward = torch.tensor(pkl_data["rewards"][id_from:id_to])
next_done = torch.tensor(pkl_data["dones"][id_from:id_to])
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][from_idx:to_idx])
# next_state = torch.tensor(pkl_data["next_observations"]["state"][from_idx:to_idx])
next_reward = torch.tensor(pkl_data["rewards"][from_idx:to_idx])
next_done = torch.tensor(pkl_data["dones"][from_idx:to_idx])
ep_dict = {}
@@ -77,12 +98,12 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
img_key = "observation.image"
if video:
# save png images in temporary directory
tmp_imgs_dir = out_dir / "tmp_images"
tmp_imgs_dir = videos_dir / "tmp_images"
save_images_concurrently(imgs_array, tmp_imgs_dir)
# encode images to a mp4 video
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
video_path = out_dir / "videos" / fname
video_path = videos_dir / fname
encode_video_frames(tmp_imgs_dir, video_path, fps)
# clean temporary images directory
@@ -104,18 +125,11 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
ep_dict["next.done"] = next_done
ep_dicts.append(ep_dict)
episode_data_index["from"].append(id_from)
episode_data_index["to"].append(id_from + num_frames)
id_from = id_to
ep_idx += 1
# process first episode only
if debug:
break
data_dict = concatenate_episodes(ep_dicts)
return data_dict, episode_data_index
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def to_hf_dataset(data_dict, video):
@@ -146,16 +160,22 @@ def to_hf_dataset(data_dict, video):
return hf_dataset
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
def from_raw_to_lerobot_format(
raw_dir: Path,
videos_dir: Path,
fps: int | None = None,
video: bool = True,
episodes: list[int] | None = None,
):
# sanity check
check_format(raw_dir)
if fps is None:
fps = 15
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
hf_dataset = to_hf_dataset(data_dict, video)
episode_data_index = calculate_episode_data_index(hf_dataset)
info = {
"fps": fps,
"video": video,

View File

@@ -0,0 +1,61 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterator, Union
import torch
class EpisodeAwareSampler:
def __init__(
self,
episode_data_index: dict,
episode_indices_to_use: Union[list, None] = None,
drop_n_first_frames: int = 0,
drop_n_last_frames: int = 0,
shuffle: bool = False,
):
"""Sampler that optionally incorporates episode boundary information.
Args:
episode_data_index: Dictionary with keys 'from' and 'to' containing the start and end indices of each episode.
episode_indices_to_use: List of episode indices to use. If None, all episodes are used.
Assumes that episodes are indexed from 0 to N-1.
drop_n_first_frames: Number of frames to drop from the start of each episode.
drop_n_last_frames: Number of frames to drop from the end of each episode.
shuffle: Whether to shuffle the indices.
"""
indices = []
for episode_idx, (start_index, end_index) in enumerate(
zip(episode_data_index["from"], episode_data_index["to"], strict=True)
):
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
indices.extend(
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
)
self.indices = indices
self.shuffle = shuffle
def __iter__(self) -> Iterator[int]:
if self.shuffle:
for i in torch.randperm(len(self.indices)):
yield self.indices[i]
else:
for i in self.indices:
yield i
def __len__(self) -> int:
return len(self.indices)

View File

@@ -0,0 +1,197 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from typing import Any, Callable, Dict, Sequence
import torch
from torchvision.transforms import v2
from torchvision.transforms.v2 import Transform
from torchvision.transforms.v2 import functional as F # noqa: N812
class RandomSubsetApply(Transform):
"""Apply a random subset of N transformations from a list of transformations.
Args:
transforms: list of transformations.
p: represents the multinomial probabilities (with no replacement) used for sampling the transform.
If the sum of the weights is not 1, they will be normalized. If ``None`` (default), all transforms
have the same probability.
n_subset: number of transformations to apply. If ``None``, all transforms are applied.
Must be in [1, len(transforms)].
random_order: apply transformations in a random order.
"""
def __init__(
self,
transforms: Sequence[Callable],
p: list[float] | None = None,
n_subset: int | None = None,
random_order: bool = False,
) -> None:
super().__init__()
if not isinstance(transforms, Sequence):
raise TypeError("Argument transforms should be a sequence of callables")
if p is None:
p = [1] * len(transforms)
elif len(p) != len(transforms):
raise ValueError(
f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
)
if n_subset is None:
n_subset = len(transforms)
elif not isinstance(n_subset, int):
raise TypeError("n_subset should be an int or None")
elif not (1 <= n_subset <= len(transforms)):
raise ValueError(f"n_subset should be in the interval [1, {len(transforms)}]")
self.transforms = transforms
total = sum(p)
self.p = [prob / total for prob in p]
self.n_subset = n_subset
self.random_order = random_order
def forward(self, *inputs: Any) -> Any:
needs_unpacking = len(inputs) > 1
selected_indices = torch.multinomial(torch.tensor(self.p), self.n_subset)
if not self.random_order:
selected_indices = selected_indices.sort().values
selected_transforms = [self.transforms[i] for i in selected_indices]
for transform in selected_transforms:
outputs = transform(*inputs)
inputs = outputs if needs_unpacking else (outputs,)
return outputs
def extra_repr(self) -> str:
return (
f"transforms={self.transforms}, "
f"p={self.p}, "
f"n_subset={self.n_subset}, "
f"random_order={self.random_order}"
)
class SharpnessJitter(Transform):
"""Randomly change the sharpness of an image or video.
Similar to a v2.RandomAdjustSharpness with p=1 and a sharpness_factor sampled randomly.
While v2.RandomAdjustSharpness applies — with a given probability — a fixed sharpness_factor to an image,
SharpnessJitter applies a random sharpness_factor each time. This is to have a more diverse set of
augmentations as a result.
A sharpness_factor of 0 gives a blurred image, 1 gives the original image while 2 increases the sharpness
by a factor of 2.
If the input is a :class:`torch.Tensor`,
it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
Args:
sharpness: How much to jitter sharpness. sharpness_factor is chosen uniformly from
[max(0, 1 - sharpness), 1 + sharpness] or the given
[min, max]. Should be non negative numbers.
"""
def __init__(self, sharpness: float | Sequence[float]) -> None:
super().__init__()
self.sharpness = self._check_input(sharpness)
def _check_input(self, sharpness):
if isinstance(sharpness, (int, float)):
if sharpness < 0:
raise ValueError("If sharpness is a single number, it must be non negative.")
sharpness = [1.0 - sharpness, 1.0 + sharpness]
sharpness[0] = max(sharpness[0], 0.0)
elif isinstance(sharpness, collections.abc.Sequence) and len(sharpness) == 2:
sharpness = [float(v) for v in sharpness]
else:
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
if not 0.0 <= sharpness[0] <= sharpness[1]:
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
return float(sharpness[0]), float(sharpness[1])
def _generate_value(self, left: float, right: float) -> float:
return torch.empty(1).uniform_(left, right).item()
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
sharpness_factor = self._generate_value(self.sharpness[0], self.sharpness[1])
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
def get_image_transforms(
brightness_weight: float = 1.0,
brightness_min_max: tuple[float, float] | None = None,
contrast_weight: float = 1.0,
contrast_min_max: tuple[float, float] | None = None,
saturation_weight: float = 1.0,
saturation_min_max: tuple[float, float] | None = None,
hue_weight: float = 1.0,
hue_min_max: tuple[float, float] | None = None,
sharpness_weight: float = 1.0,
sharpness_min_max: tuple[float, float] | None = None,
max_num_transforms: int | None = None,
random_order: bool = False,
):
def check_value(name, weight, min_max):
if min_max is not None:
if len(min_max) != 2:
raise ValueError(
f"`{name}_min_max` is expected to be a tuple of 2 dimensions, but {min_max} provided."
)
if weight < 0.0:
raise ValueError(
f"`{name}_weight` is expected to be 0 or positive, but is negative ({weight})."
)
check_value("brightness", brightness_weight, brightness_min_max)
check_value("contrast", contrast_weight, contrast_min_max)
check_value("saturation", saturation_weight, saturation_min_max)
check_value("hue", hue_weight, hue_min_max)
check_value("sharpness", sharpness_weight, sharpness_min_max)
weights = []
transforms = []
if brightness_min_max is not None and brightness_weight > 0.0:
weights.append(brightness_weight)
transforms.append(v2.ColorJitter(brightness=brightness_min_max))
if contrast_min_max is not None and contrast_weight > 0.0:
weights.append(contrast_weight)
transforms.append(v2.ColorJitter(contrast=contrast_min_max))
if saturation_min_max is not None and saturation_weight > 0.0:
weights.append(saturation_weight)
transforms.append(v2.ColorJitter(saturation=saturation_min_max))
if hue_min_max is not None and hue_weight > 0.0:
weights.append(hue_weight)
transforms.append(v2.ColorJitter(hue=hue_min_max))
if sharpness_min_max is not None and sharpness_weight > 0.0:
weights.append(sharpness_weight)
transforms.append(SharpnessJitter(sharpness=sharpness_min_max))
n_subset = len(transforms)
if max_num_transforms is not None:
n_subset = min(n_subset, max_num_transforms)
if n_subset == 0:
return v2.Identity()
else:
# TODO(rcadene, aliberts): add v2.ToDtype float16?
return RandomSubsetApply(transforms, p=weights, n_subset=n_subset, random_order=random_order)

View File

@@ -1,5 +1,22 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
from pathlib import Path
from typing import Dict
import datasets
import torch
@@ -42,7 +59,7 @@ def unflatten_dict(d, sep="/"):
return outdict
def hf_transform_to_torch(items_dict):
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
a channel last representation (h w c) of uint8 type, to a torch image representation
@@ -56,6 +73,8 @@ def hf_transform_to_torch(items_dict):
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
# video frame will be processed downstream
pass
elif first_item is None:
pass
else:
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
return items_dict
@@ -64,7 +83,23 @@ def hf_transform_to_torch(items_dict):
def load_hf_dataset(repo_id, version, root, split) -> datasets.Dataset:
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
if root is not None:
hf_dataset = load_from_disk(str(Path(root) / repo_id / split))
hf_dataset = load_from_disk(str(Path(root) / repo_id / "train"))
# TODO(rcadene): clean this which enables getting a subset of dataset
if split != "train":
if "%" in split:
raise NotImplementedError(f"We dont support splitting based on percentage for now ({split}).")
match_from = re.search(r"train\[(\d+):\]", split)
match_to = re.search(r"train\[:(\d+)\]", split)
if match_from:
from_frame_index = int(match_from.group(1))
hf_dataset = hf_dataset.select(range(from_frame_index, len(hf_dataset)))
elif match_to:
to_frame_index = int(match_to.group(1))
hf_dataset = hf_dataset.select(range(to_frame_index))
else:
raise ValueError(
f'`split` ({split}) should either be "train", "train[INT:]", or "train[:INT]"'
)
else:
hf_dataset = load_dataset(repo_id, revision=version, split=split)
hf_dataset.set_transform(hf_transform_to_torch)
@@ -230,6 +265,84 @@ def load_previous_and_future_frames(
return item
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
"""Reset the `episode_index` of the provided HuggingFace Dataset.
`episode_data_index` (and related functionality such as `load_previous_and_future_frames`) requires the
`episode_index` to be sorted, continuous (1,1,1 and not 1,2,1) and start at 0.
This brings the `episode_index` to the required format.
"""
if len(hf_dataset) == 0:
return hf_dataset
unique_episode_idxs = torch.stack(hf_dataset["episode_index"]).unique().tolist()
episode_idx_to_reset_idx_mapping = {
ep_id: reset_ep_id for reset_ep_id, ep_id in enumerate(unique_episode_idxs)
}
def modify_ep_idx_func(example):
example["episode_index"] = episode_idx_to_reset_idx_mapping[example["episode_index"].item()]
return example
hf_dataset = hf_dataset.map(modify_ep_idx_func)
return hf_dataset
def cycle(iterable):
"""The equivalent of itertools.cycle, but safe for Pytorch dataloaders.

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import subprocess
import warnings
@@ -12,7 +27,11 @@ from datasets.features.features import register_feature
def load_from_videos(
item: dict[str, torch.Tensor], video_frame_keys: list[str], videos_dir: Path, tolerance_s: float
item: dict[str, torch.Tensor],
video_frame_keys: list[str],
videos_dir: Path,
tolerance_s: float,
backend: str = "pyav",
):
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a Segmentation Fault.
@@ -31,14 +50,14 @@ def load_from_videos(
raise NotImplementedError("All video paths are expected to be the same for now.")
video_path = data_dir / paths[0]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
item[key] = frames
else:
# load one frame
timestamps = [item[key]["timestamp"]]
video_path = data_dir / item[key]["path"]
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
item[key] = frames[0]
return item
@@ -48,11 +67,23 @@ def decode_video_frames_torchvision(
video_path: str,
timestamps: list[float],
tolerance_s: float,
device: str = "cpu",
backend: str = "pyav",
log_loaded_timestamps: bool = False,
):
"""Loads frames associated to the requested timestamps of a video
The backend can be either "pyav" (default) or "video_reader".
"video_reader" requires installing torchvision from source, see:
https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
(note that you need to compile against ffmpeg<4.3)
While both use cpu, "video_reader" is faster than "pyav" but requires additional setup.
See our benchmark results for more info on performance:
https://github.com/huggingface/lerobot/pull/220
See torchvision doc for more info on these two backends:
https://pytorch.org/vision/0.18/index.html?highlight=backend#torchvision.set_video_backend
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
@@ -63,21 +94,9 @@ def decode_video_frames_torchvision(
# set backend
keyframes_only = False
if device == "cpu":
# explicitely use pyav
torchvision.set_video_backend("pyav")
torchvision.set_video_backend(backend)
if backend == "pyav":
keyframes_only = True # pyav doesnt support accuracte seek
elif device == "cuda":
# TODO(rcadene, aliberts): implement video decoding with GPU
# torchvision.set_video_backend("cuda")
# torchvision.set_video_backend("video_reader")
# requires installing torchvision from source, see: https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
# check possible bug: https://github.com/pytorch/vision/issues/7745
raise NotImplementedError(
"Video decoding on gpu with cuda is currently not supported. Use `device='cpu'`."
)
else:
raise ValueError(device)
# set a video stream reader
# TODO(rcadene): also load audio stream at the same time
@@ -105,7 +124,9 @@ def decode_video_frames_torchvision(
if current_ts >= last_ts:
break
reader.container.close()
if backend == "pyav":
reader.container.close()
reader = None
query_ts = torch.tensor(timestamps)

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import gymnasium as gym
@@ -12,14 +27,6 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
if n_envs is not None and n_envs < 1:
raise ValueError("`n_envs must be at least 1")
kwargs = {
"obs_type": "pixels_agent_pos",
"render_mode": "rgb_array",
"max_episode_steps": cfg.env.episode_length,
"visualization_width": 384,
"visualization_height": 384,
}
package_name = f"gym_{cfg.env.name}"
try:
@@ -31,12 +38,16 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
raise e
gym_handle = f"{package_name}/{cfg.env.task}"
gym_kwgs = dict(cfg.env.get("gym", {}))
if cfg.env.get("episode_length"):
gym_kwgs["max_episode_steps"] = cfg.env.episode_length
# batched version of the env that returns an observation of shape (b, c)
env_cls = gym.vector.AsyncVectorEnv if cfg.eval.use_async_envs else gym.vector.SyncVectorEnv
env = env_cls(
[
lambda: gym.make(gym_handle, disable_env_checker=True, **kwargs)
lambda: gym.make(gym_handle, disable_env_checker=True, **gym_kwgs)
for _ in range(n_envs if n_envs is not None else cfg.eval.batch_size)
]
)

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import einops
import numpy as np
import torch

View File

@@ -1,22 +1,45 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Borrowed from https://github.com/fyhMer/fowm/blob/main/src/logger.py
# TODO(rcadene, alexander-soare): clean this file
"""Borrowed from https://github.com/fyhMer/fowm/blob/main/src/logger.py"""
"""
import logging
import os
import re
from glob import glob
from pathlib import Path
import torch
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
from omegaconf import OmegaConf
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
from lerobot.common.policies.policy_protocol import Policy
from lerobot.common.utils.utils import get_global_random_state, set_global_random_state
def log_output_dir(out_dir):
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
def cfg_to_group(cfg, return_list=False):
def cfg_to_group(cfg: DictConfig, return_list: bool = False) -> list[str] | str:
"""Return a group name for logging. Optionally returns group name as list."""
lst = [
f"policy:{cfg.policy.name}",
@@ -27,22 +50,54 @@ def cfg_to_group(cfg, return_list=False):
return lst if return_list else "-".join(lst)
class Logger:
"""Primary logger object. Logs either locally or using wandb."""
def get_wandb_run_id_from_filesystem(checkpoint_dir: Path) -> str:
# Get the WandB run ID.
paths = glob(str(checkpoint_dir / "../wandb/latest-run/run-*"))
if len(paths) != 1:
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
match = re.search(r"run-([^\.]+).wandb", paths[0].split("/")[-1])
if match is None:
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
wandb_run_id = match.groups(0)[0]
return wandb_run_id
def __init__(self, log_dir, job_name, cfg):
self._log_dir = Path(log_dir)
self._log_dir.mkdir(parents=True, exist_ok=True)
self._job_name = job_name
self._model_dir = self._log_dir / "checkpoints"
self._buffer_dir = self._log_dir / "buffers"
self._save_model = cfg.training.save_model
self._disable_wandb_artifact = cfg.wandb.disable_artifact
self._save_buffer = cfg.training.get("save_buffer", False)
self._group = cfg_to_group(cfg)
self._seed = cfg.seed
class Logger:
"""Primary logger object. Logs either locally or using wandb.
The logger creates the following directory structure:
provided_log_dir
├── .hydra # hydra's configuration cache
├── checkpoints
├── specific_checkpoint_name
│ ├── pretrained_model # Hugging Face pretrained model directory
│ │ │ ├── ...
│ │ └── training_state.pth # optimizer, scheduler, and random states + training step
| ├── another_specific_checkpoint_name
│ │ ├── ...
| ├── ...
│ └── last # a softlink to the last logged checkpoint
"""
pretrained_model_dir_name = "pretrained_model"
training_state_file_name = "training_state.pth"
def __init__(self, cfg: DictConfig, log_dir: str, wandb_job_name: str | None = None):
"""
Args:
log_dir: The directory to save all logs and training outputs to.
job_name: The WandB job name.
"""
self._cfg = cfg
self._eval = []
self.log_dir = Path(log_dir)
self.log_dir.mkdir(parents=True, exist_ok=True)
self.checkpoints_dir = self.get_checkpoints_dir(log_dir)
self.last_checkpoint_dir = self.get_last_checkpoint_dir(log_dir)
self.last_pretrained_model_dir = self.get_last_pretrained_model_dir(log_dir)
# Set up WandB.
self._group = cfg_to_group(cfg)
project = cfg.get("wandb", {}).get("project")
entity = cfg.get("wandb", {}).get("entity")
enable_wandb = cfg.get("wandb", {}).get("enable", False)
@@ -54,73 +109,138 @@ class Logger:
os.environ["WANDB_SILENT"] = "true"
import wandb
wandb_run_id = None
if cfg.resume:
wandb_run_id = get_wandb_run_id_from_filesystem(self.checkpoints_dir)
wandb.init(
id=wandb_run_id,
project=project,
entity=entity,
name=job_name,
name=wandb_job_name,
notes=cfg.get("wandb", {}).get("notes"),
# group=self._group,
tags=cfg_to_group(cfg, return_list=True),
dir=self._log_dir,
dir=log_dir,
config=OmegaConf.to_container(cfg, resolve=True),
# TODO(rcadene): try set to True
save_code=False,
# TODO(rcadene): split train and eval, and run async eval with job_type="eval"
job_type="train_eval",
# TODO(rcadene): add resume option
resume=None,
resume="must" if cfg.resume else None,
)
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
self._wandb = wandb
def save_model(self, policy: Policy, identifier):
if self._save_model:
self._model_dir.mkdir(parents=True, exist_ok=True)
save_dir = self._model_dir / str(identifier)
policy.save_pretrained(save_dir)
# Also save the full Hydra config for the env configuration.
OmegaConf.save(self._cfg, save_dir / "config.yaml")
if self._wandb and not self._disable_wandb_artifact:
# note wandb artifact does not accept ":" in its name
artifact = self._wandb.Artifact(
self._group.replace(":", "_").replace("/", "__")
+ "-"
+ str(self._seed)
+ "-"
+ str(identifier),
type="model",
)
artifact.add_file(save_dir / SAFETENSORS_SINGLE_FILE)
self._wandb.log_artifact(artifact)
@classmethod
def get_checkpoints_dir(cls, log_dir: str | Path) -> Path:
"""Given the log directory, get the sub-directory in which checkpoints will be saved."""
return Path(log_dir) / "checkpoints"
def save_buffer(self, buffer, identifier):
self._buffer_dir.mkdir(parents=True, exist_ok=True)
fp = self._buffer_dir / f"{str(identifier)}.pkl"
buffer.save(fp)
if self._wandb:
artifact = self._wandb.Artifact(
self._group + "-" + str(self._seed) + "-" + str(identifier),
type="buffer",
)
artifact.add_file(fp)
@classmethod
def get_last_checkpoint_dir(cls, log_dir: str | Path) -> Path:
"""Given the log directory, get the sub-directory in which the last checkpoint will be saved."""
return cls.get_checkpoints_dir(log_dir) / "last"
@classmethod
def get_last_pretrained_model_dir(cls, log_dir: str | Path) -> Path:
"""
Given the log directory, get the sub-directory in which the last checkpoint's pretrained weights will
be saved.
"""
return cls.get_last_checkpoint_dir(log_dir) / cls.pretrained_model_dir_name
def save_model(self, save_dir: Path, policy: Policy, wandb_artifact_name: str | None = None):
"""Save the weights of the Policy model using PyTorchModelHubMixin.
The weights are saved in a folder called "pretrained_model" under the checkpoint directory.
Optionally also upload the model to WandB.
"""
self.checkpoints_dir.mkdir(parents=True, exist_ok=True)
policy.save_pretrained(save_dir)
# Also save the full Hydra config for the env configuration.
OmegaConf.save(self._cfg, save_dir / "config.yaml")
if self._wandb and not self._cfg.wandb.disable_artifact:
# note wandb artifact does not accept ":" or "/" in its name
artifact = self._wandb.Artifact(wandb_artifact_name, type="model")
artifact.add_file(save_dir / SAFETENSORS_SINGLE_FILE)
self._wandb.log_artifact(artifact)
if self.last_checkpoint_dir.exists():
os.remove(self.last_checkpoint_dir)
def finish(self, agent, buffer):
if self._save_model:
self.save_model(agent, identifier="final")
if self._save_buffer:
self.save_buffer(buffer, identifier="buffer")
if self._wandb:
self._wandb.finish()
def save_training_state(
self,
save_dir: Path,
train_step: int,
optimizer: Optimizer,
scheduler: LRScheduler | None,
):
"""Checkpoint the global training_step, optimizer state, scheduler state, and random state.
All of these are saved as "training_state.pth" under the checkpoint directory.
"""
training_state = {
"step": train_step,
"optimizer": optimizer.state_dict(),
**get_global_random_state(),
}
if scheduler is not None:
training_state["scheduler"] = scheduler.state_dict()
torch.save(training_state, save_dir / self.training_state_file_name)
def save_checkpont(
self,
train_step: int,
policy: Policy,
optimizer: Optimizer,
scheduler: LRScheduler | None,
identifier: str,
):
"""Checkpoint the model weights and the training state."""
checkpoint_dir = self.checkpoints_dir / str(identifier)
wandb_artifact_name = (
None
if self._wandb is None
else f"{self._group.replace(':', '_').replace('/', '_')}-{self._cfg.seed}-{identifier}"
)
self.save_model(
checkpoint_dir / self.pretrained_model_dir_name, policy, wandb_artifact_name=wandb_artifact_name
)
self.save_training_state(checkpoint_dir, train_step, optimizer, scheduler)
os.symlink(checkpoint_dir.absolute(), self.last_checkpoint_dir)
def load_last_training_state(self, optimizer: Optimizer, scheduler: LRScheduler | None) -> int:
"""
Given the last checkpoint in the logging directory, load the optimizer state, scheduler state, and
random state, and return the global training step.
"""
training_state = torch.load(self.last_checkpoint_dir / self.training_state_file_name)
optimizer.load_state_dict(training_state["optimizer"])
if scheduler is not None:
scheduler.load_state_dict(training_state["scheduler"])
elif "scheduler" in training_state:
raise ValueError(
"The checkpoint contains a scheduler state_dict, but no LRScheduler was provided."
)
# Small hack to get the expected keys: use `get_global_random_state`.
set_global_random_state({k: training_state[k] for k in get_global_random_state()})
return training_state["step"]
def log_dict(self, d, step, mode="train"):
assert mode in {"train", "eval"}
# TODO(alexander-soare): Add local text log.
if self._wandb is not None:
for k, v in d.items():
if not isinstance(v, (int, float, str)):
logging.warning(
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
)
continue
self._wandb.log({f"{mode}/{k}": v}, step=step)
def log_video(self, video_path: str, step: int, mode: str = "train"):
assert mode in {"train", "eval"}
assert self._wandb is not None
wandb_video = self._wandb.Video(video_path, fps=self._cfg.fps, format="mp4")
self._wandb.log({f"{mode}/video": wandb_video}, step=step)

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@@ -10,6 +25,13 @@ class ACTConfig:
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
Those are: `input_shapes` and 'output_shapes`.
Notes on the inputs and outputs:
- At least one key starting with "observation.image is required as an input.
- If there are multiple keys beginning with "observation.images." they are treated as multiple camera
views. Right now we only support all images having the same shape.
- May optionally work without an "observation.state" key for the proprioceptive robot state.
- "action" is required as an output key.
Args:
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
current step and additional steps going back).
@@ -18,15 +40,15 @@ class ACTConfig:
This should be no greater than the chunk size. For example, if the chunk size size 100, you may
set this to 50. This would mean that the model predicts 100 steps worth of actions, runs 50 in the
environment, and throws the other 50 out.
input_shapes: A dictionary defining the shapes of the input data for the policy.
The key represents the input data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "observation.images.top" refers to an input from the
"top" camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
Importantly, shapes doesn't include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy.
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesn't include batch dimension or temporal dimension.
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
the input data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
the output data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
@@ -51,8 +73,12 @@ class ACTConfig:
documentation in the policy class).
latent_dim: The VAE's latent dimension.
n_vae_encoder_layers: The number of transformer layers to use for the VAE's encoder.
use_temporal_aggregation: Whether to blend the actions of multiple policy invocations for any given
environment step.
temporal_ensemble_momentum: Exponential moving average (EMA) momentum parameter (α) for ensembling
actions for a given time step over multiple policy invocations. Updates are calculated as:
x⁻ₙ = αx⁻ₙ₋₁ + (1-α)xₙ. Note that the ACT paper and original ACT code describes a different
parameter here: they refer to a weighting scheme wᵢ = exp(-m⋅i) and set m = 0.01. With our
formulation, this is equivalent to α = exp(-0.01) ≈ 0.99. When this parameter is provided, we
require `n_action_steps == 1` (since we need to query the policy every step anyway).
dropout: Dropout to use in the transformer layers (see code for details).
kl_weight: The weight to use for the KL-divergence component of the loss if the variational objective
is enabled. Loss is then calculated as: `reconstruction_loss + kl_weight * kld_loss`.
@@ -100,6 +126,9 @@ class ACTConfig:
dim_feedforward: int = 3200
feedforward_activation: str = "relu"
n_encoder_layers: int = 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: int = 1
# VAE.
use_vae: bool = True
@@ -107,7 +136,7 @@ class ACTConfig:
n_vae_encoder_layers: int = 4
# Inference.
use_temporal_aggregation: bool = False
temporal_ensemble_momentum: float | None = None
# Training and loss computation.
dropout: float = 0.1
@@ -119,8 +148,11 @@ class ACTConfig:
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
if self.use_temporal_aggregation:
raise NotImplementedError("Temporal aggregation is not yet implemented.")
if self.temporal_ensemble_momentum is not None and self.n_action_steps > 1:
raise NotImplementedError(
"`n_action_steps` must be 1 when using temporal ensembling. This is "
"because the policy needs to be queried every step to compute the ensembled action."
)
if self.n_action_steps > self.chunk_size:
raise ValueError(
f"The chunk size is the upper bound for the number of action steps per model invocation. Got "
@@ -130,10 +162,3 @@ class ACTConfig:
raise ValueError(
f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`"
)
# Check that there is only one image.
# TODO(alexander-soare): generalize this to multiple images.
if (
sum(k.startswith("observation.images.") for k in self.input_shapes) != 1
or "observation.images.top" not in self.input_shapes
):
raise ValueError('For now, only "observation.images.top" is accepted for an image input.')

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Action Chunking Transformer Policy
As per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware (https://arxiv.org/abs/2304.13705).
@@ -46,7 +61,8 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
super().__init__()
if config is None:
config = ACTConfig()
self.config = config
self.config: ACTConfig = config
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
@@ -56,11 +72,18 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.model = ACT(config)
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
if self.config.n_action_steps is not None:
if self.config.temporal_ensemble_momentum is not None:
self._ensembled_actions = None
else:
self._action_queue = deque([], maxlen=self.config.n_action_steps)
@torch.no_grad
@@ -71,37 +94,56 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
assert "observation.images.top" in batch
assert "observation.state" in batch
self.eval()
batch = self.normalize_inputs(batch)
self._stack_images(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
# If we are doing temporal ensembling, keep track of the exponential moving average (EMA), and return
# the first action.
if self.config.temporal_ensemble_momentum is not None:
actions = self.model(batch)[0] # (batch_size, chunk_size, action_dim)
actions = self.unnormalize_outputs({"action": actions})["action"]
if self._ensembled_actions is None:
# Initializes `self._ensembled_action` to the sequence of actions predicted during the first
# time step of the episode.
self._ensembled_actions = actions.clone()
else:
# self._ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
# the EMA update for those entries.
alpha = self.config.temporal_ensemble_momentum
self._ensembled_actions = alpha * self._ensembled_actions + (1 - alpha) * actions[:, :-1]
# The last action, which has no prior moving average, needs to get concatenated onto the end.
self._ensembled_actions = torch.cat([self._ensembled_actions, actions[:, -1:]], dim=1)
# "Consume" the first action.
action, self._ensembled_actions = self._ensembled_actions[:, 0], self._ensembled_actions[:, 1:]
return action
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
actions = self.model(batch)[0][: self.config.n_action_steps]
actions = self.model(batch)[0][:, : self.config.n_action_steps]
# TODO(rcadene): make _forward return output dictionary?
actions = self.unnormalize_outputs({"action": actions})["action"]
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
batch = self.normalize_targets(batch)
self._stack_images(batch)
actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)
l1_loss = (
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
).mean()
loss_dict = {"l1_loss": l1_loss}
loss_dict = {"l1_loss": l1_loss.item()}
if self.config.use_vae:
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
# each dimension independently, we sum over the latent dimension to get the total
@@ -110,28 +152,13 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
mean_kld = (
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
)
loss_dict["kld_loss"] = mean_kld
loss_dict["kld_loss"] = mean_kld.item()
loss_dict["loss"] = l1_loss + mean_kld * self.config.kl_weight
else:
loss_dict["loss"] = l1_loss
return loss_dict
def _stack_images(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Stacks all the images in a batch and puts them in a new key: "observation.images".
This function expects `batch` to have (at least):
{
"observation.state": (B, state_dim) batch of robot states.
"observation.images.{name}": (B, C, H, W) tensor of images.
}
"""
# Stack images in the order dictated by input_shapes.
batch["observation.images"] = torch.stack(
[batch[k] for k in self.config.input_shapes if k.startswith("observation.images.")],
dim=-4,
)
class ACT(nn.Module):
"""Action Chunking Transformer: The underlying neural network for ACTPolicy.
@@ -161,37 +188,41 @@ class ACT(nn.Module):
│ encoder │ │ │ │Transf.│ │
│ │ │ │ │encoder│ │
└───▲─────┘ │ │ │ │ │
│ │ │ └──▲──┘ │
│ │ │
inputs └─────┼─────┘
│ │ │ └──▲──┘ │
│ │ │
inputs └─────┼──┘ │ image emb.
state emb.
└───────────────────────┘
"""
def __init__(self, config: ACTConfig):
super().__init__()
self.config = config
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
# BERT style VAE encoder with input tokens [cls, robot_state, *action_sequence].
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
self.use_input_state = "observation.state" in config.input_shapes
if self.config.use_vae:
self.vae_encoder = ACTEncoder(config)
self.vae_encoder_cls_embed = nn.Embedding(1, config.dim_model)
# Projection layer for joint-space configuration to hidden dimension.
self.vae_encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
)
if self.use_input_state:
self.vae_encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
)
# Projection layer for action (joint-space target) to hidden dimension.
self.vae_encoder_action_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
config.output_shapes["action"][0], config.dim_model
)
self.latent_dim = config.latent_dim
# Projection layer from the VAE encoder's output to the latent distribution's parameter space.
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, self.latent_dim * 2)
# Fixed sinusoidal positional embedding the whole input to the VAE encoder. Unsqueeze for batch
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, config.latent_dim * 2)
# Fixed sinusoidal positional embedding for the input to the VAE encoder. Unsqueeze for batch
# dimension.
num_input_token_encoder = 1 + config.chunk_size
if self.use_input_state:
num_input_token_encoder += 1
self.register_buffer(
"vae_encoder_pos_enc",
create_sinusoidal_pos_embedding(1 + 1 + config.chunk_size, config.dim_model).unsqueeze(0),
create_sinusoidal_pos_embedding(num_input_token_encoder, config.dim_model).unsqueeze(0),
)
# Backbone for image feature extraction.
@@ -211,15 +242,17 @@ class ACT(nn.Module):
# Transformer encoder input projections. The tokens will be structured like
# [latent, robot_state, image_feature_map_pixels].
self.encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
)
self.encoder_latent_input_proj = nn.Linear(self.latent_dim, config.dim_model)
if self.use_input_state:
self.encoder_robot_state_input_proj = nn.Linear(
config.input_shapes["observation.state"][0], config.dim_model
)
self.encoder_latent_input_proj = nn.Linear(config.latent_dim, config.dim_model)
self.encoder_img_feat_input_proj = nn.Conv2d(
backbone_model.fc.in_features, config.dim_model, kernel_size=1
)
# Transformer encoder positional embeddings.
self.encoder_robot_and_latent_pos_embed = nn.Embedding(2, config.dim_model)
num_input_token_decoder = 2 if self.use_input_state else 1
self.encoder_robot_and_latent_pos_embed = nn.Embedding(num_input_token_decoder, config.dim_model)
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
# Transformer decoder.
@@ -258,7 +291,7 @@ class ACT(nn.Module):
"action" in batch
), "actions must be provided when using the variational objective in training mode."
batch_size = batch["observation.state"].shape[0]
batch_size = batch["observation.images"].shape[0]
# Prepare the latent for input to the transformer encoder.
if self.config.use_vae and "action" in batch:
@@ -266,31 +299,51 @@ class ACT(nn.Module):
cls_embed = einops.repeat(
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
) # (B, 1, D)
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"]).unsqueeze(
1
) # (B, 1, D)
if self.use_input_state:
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"])
robot_state_embed = robot_state_embed.unsqueeze(1) # (B, 1, D)
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
vae_encoder_input = torch.cat([cls_embed, robot_state_embed, action_embed], axis=1) # (B, S+2, D)
if self.use_input_state:
vae_encoder_input = [cls_embed, robot_state_embed, action_embed] # (B, S+2, D)
else:
vae_encoder_input = [cls_embed, action_embed]
vae_encoder_input = torch.cat(vae_encoder_input, axis=1)
# Prepare fixed positional embedding.
# Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
pos_embed = self.vae_encoder_pos_enc.clone().detach() # (1, S+2, D)
# Prepare key padding mask for the transformer encoder. We have 1 or 2 extra tokens at the start of the
# sequence depending whether we use the input states or not (cls and robot state)
# False means not a padding token.
cls_joint_is_pad = torch.full(
(batch_size, 2 if self.use_input_state else 1),
False,
device=batch["observation.state"].device,
)
key_padding_mask = torch.cat(
[cls_joint_is_pad, batch["action_is_pad"]], axis=1
) # (bs, seq+1 or 2)
# Forward pass through VAE encoder to get the latent PDF parameters.
cls_token_out = self.vae_encoder(
vae_encoder_input.permute(1, 0, 2), pos_embed=pos_embed.permute(1, 0, 2)
vae_encoder_input.permute(1, 0, 2),
pos_embed=pos_embed.permute(1, 0, 2),
key_padding_mask=key_padding_mask,
)[0] # select the class token, with shape (B, D)
latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out)
mu = latent_pdf_params[:, : self.latent_dim]
mu = latent_pdf_params[:, : self.config.latent_dim]
# This is 2log(sigma). Done this way to match the original implementation.
log_sigma_x2 = latent_pdf_params[:, self.latent_dim :]
log_sigma_x2 = latent_pdf_params[:, self.config.latent_dim :]
# Sample the latent with the reparameterization trick.
latent_sample = mu + log_sigma_x2.div(2).exp() * torch.randn_like(mu)
else:
# When not using the VAE encoder, we set the latent to be all zeros.
mu = log_sigma_x2 = None
latent_sample = torch.zeros([batch_size, self.latent_dim], dtype=torch.float32).to(
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
latent_sample = torch.zeros([batch_size, self.config.latent_dim], dtype=torch.float32).to(
batch["observation.state"].device
)
@@ -299,25 +352,29 @@ class ACT(nn.Module):
all_cam_features = []
all_cam_pos_embeds = []
images = batch["observation.images"]
for cam_index in range(images.shape[-4]):
cam_features = self.backbone(images[:, cam_index])["feature_map"]
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
all_cam_features.append(cam_features)
all_cam_pos_embeds.append(cam_pos_embed)
# Concatenate camera observation feature maps and positional embeddings along the width dimension.
encoder_in = torch.cat(all_cam_features, axis=3)
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=3)
encoder_in = torch.cat(all_cam_features, axis=-1)
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=-1)
# Get positional embeddings for robot state and latent.
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"])
latent_embed = self.encoder_latent_input_proj(latent_sample)
if self.use_input_state:
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"]) # (B, C)
latent_embed = self.encoder_latent_input_proj(latent_sample) # (B, C)
# Stack encoder input and positional embeddings moving to (S, B, C).
encoder_in_feats = [latent_embed, robot_state_embed] if self.use_input_state else [latent_embed]
encoder_in = torch.cat(
[
torch.stack([latent_embed, robot_state_embed], axis=0),
encoder_in.flatten(2).permute(2, 0, 1),
torch.stack(encoder_in_feats, axis=0),
einops.rearrange(encoder_in, "b c h w -> (h w) b c"),
]
)
pos_embed = torch.cat(
@@ -330,6 +387,7 @@ class ACT(nn.Module):
# Forward pass through the transformer modules.
encoder_out = self.encoder(encoder_in, pos_embed=pos_embed)
# TODO(rcadene, alexander-soare): remove call to `device` ; precompute and use buffer
decoder_in = torch.zeros(
(self.config.chunk_size, batch_size, self.config.dim_model),
dtype=pos_embed.dtype,
@@ -358,9 +416,11 @@ class ACTEncoder(nn.Module):
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(config.n_encoder_layers)])
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
def forward(self, x: Tensor, pos_embed: Tensor | None = None) -> Tensor:
def forward(
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
) -> Tensor:
for layer in self.layers:
x = layer(x, pos_embed=pos_embed)
x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
x = self.norm(x)
return x
@@ -383,12 +443,13 @@ class ACTEncoderLayer(nn.Module):
self.activation = get_activation_fn(config.feedforward_activation)
self.pre_norm = config.pre_norm
def forward(self, x, pos_embed: Tensor | None = None) -> Tensor:
def forward(self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None) -> Tensor:
skip = x
if self.pre_norm:
x = self.norm1(x)
q = k = x if pos_embed is None else x + pos_embed
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights
x = self.self_attn(q, k, value=x, key_padding_mask=key_padding_mask)
x = x[0] # note: [0] to select just the output, not the attention weights
x = skip + self.dropout1(x)
if self.pre_norm:
skip = x

View File

@@ -1,3 +1,19 @@
#!/usr/bin/env python
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@@ -10,21 +26,28 @@ class DiffusionConfig:
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
Those are: `input_shapes` and `output_shapes`.
Notes on the inputs and outputs:
- "observation.state" is required as an input key.
- At least one key starting with "observation.image is required as an input.
- If there are multiple keys beginning with "observation.image" they are treated as multiple camera
views. Right now we only support all images having the same shape.
- "action" is required as an output key.
Args:
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
current step and additional steps going back).
horizon: Diffusion model action prediction size as detailed in `DiffusionPolicy.select_action`.
n_action_steps: The number of action steps to run in the environment for one invocation of the policy.
See `DiffusionPolicy.select_action` for more details.
input_shapes: A dictionary defining the shapes of the input data for the policy.
The key represents the input data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "observation.image" refers to an input from
a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
Importantly, shapes doesnt include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy.
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
the input data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
the output data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
@@ -51,6 +74,7 @@ class DiffusionConfig:
use_film_scale_modulation: FiLM (https://arxiv.org/abs/1709.07871) is used for the Unet conditioning.
Bias modulation is used be default, while this parameter indicates whether to also use scale
modulation.
noise_scheduler_type: Name of the noise scheduler to use. Supported options: ["DDPM", "DDIM"].
num_train_timesteps: Number of diffusion steps for the forward diffusion schedule.
beta_schedule: Name of the diffusion beta schedule as per DDPMScheduler from Hugging Face diffusers.
beta_start: Beta value for the first forward-diffusion step.
@@ -110,6 +134,7 @@ class DiffusionConfig:
diffusion_step_embed_dim: int = 128
use_film_scale_modulation: bool = True
# Noise scheduler.
noise_scheduler_type: str = "DDPM"
num_train_timesteps: int = 100
beta_schedule: str = "squaredcos_cap_v2"
beta_start: float = 0.0001
@@ -130,17 +155,34 @@ class DiffusionConfig:
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
if (
self.crop_shape[0] > self.input_shapes["observation.image"][1]
or self.crop_shape[1] > self.input_shapes["observation.image"][2]
):
raise ValueError(
f'`crop_shape` should fit within `input_shapes["observation.image"]`. Got {self.crop_shape} '
f'for `crop_shape` and {self.input_shapes["observation.image"]} for '
'`input_shapes["observation.image"]`.'
)
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if self.crop_shape is not None:
for image_key in image_keys:
if (
self.crop_shape[0] > self.input_shapes[image_key][1]
or self.crop_shape[1] > self.input_shapes[image_key][2]
):
raise ValueError(
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
f"for `crop_shape` and {self.input_shapes[image_key]} for "
"`input_shapes[{image_key}]`."
)
# Check that all input images have the same shape.
first_image_key = next(iter(image_keys))
for image_key in image_keys:
if self.input_shapes[image_key] != self.input_shapes[first_image_key]:
raise ValueError(
f"`input_shapes[{image_key}]` does not match `input_shapes[{first_image_key}]`, but we "
"expect all image shapes to match."
)
supported_prediction_types = ["epsilon", "sample"]
if self.prediction_type not in supported_prediction_types:
raise ValueError(
f"`prediction_type` must be one of {supported_prediction_types}. Got {self.prediction_type}."
)
supported_noise_schedulers = ["DDPM", "DDIM"]
if self.noise_scheduler_type not in supported_noise_schedulers:
raise ValueError(
f"`noise_scheduler_type` must be one of {supported_noise_schedulers}. "
f"Got {self.noise_scheduler_type}."
)

View File

@@ -1,7 +1,22 @@
#!/usr/bin/env python
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
TODO(alexander-soare):
- Remove reliance on Robomimic for SpatialSoftmax.
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
"""
@@ -10,12 +25,13 @@ from collections import deque
from typing import Callable
import einops
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from huggingface_hub import PyTorchModelHubMixin
from robomimic.models.base_nets import SpatialSoftmax
from torch import Tensor, nn
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
@@ -66,12 +82,14 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
self.diffusion = DiffusionModel(config)
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
self.reset()
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
"""
"""Clear observation and action queues. Should be called on `env.reset()`"""
self._queues = {
"observation.image": deque(maxlen=self.config.n_obs_steps),
"observation.images": deque(maxlen=self.config.n_obs_steps),
"observation.state": deque(maxlen=self.config.n_obs_steps),
"action": deque(maxlen=self.config.n_action_steps),
}
@@ -98,16 +116,14 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
"horizon" may not the best name to describe what the variable actually means, because this period is
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
"""
assert "observation.image" in batch
assert "observation.state" in batch
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
# Note: It's important that this happens after stacking the images into a single key.
self._queues = populate_queues(self._queues, batch)
if len(self._queues["action"]) == 0:
# stack n latest observations from the queue
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.diffusion.generate_actions(batch)
# TODO(rcadene): make above methods return output dictionary?
@@ -121,29 +137,46 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
batch = self.normalize_targets(batch)
loss = self.diffusion.compute_loss(batch)
return {"loss": loss}
def _make_noise_scheduler(name: str, **kwargs: dict) -> DDPMScheduler | DDIMScheduler:
"""
Factory for noise scheduler instances of the requested type. All kwargs are passed
to the scheduler.
"""
if name == "DDPM":
return DDPMScheduler(**kwargs)
elif name == "DDIM":
return DDIMScheduler(**kwargs)
else:
raise ValueError(f"Unsupported noise scheduler type {name}")
class DiffusionModel(nn.Module):
def __init__(self, config: DiffusionConfig):
super().__init__()
self.config = config
self.rgb_encoder = DiffusionRgbEncoder(config)
num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
self.unet = DiffusionConditionalUnet1d(
config,
global_cond_dim=(config.output_shapes["action"][0] + self.rgb_encoder.feature_dim)
global_cond_dim=(
config.input_shapes["observation.state"][0] + self.rgb_encoder.feature_dim * num_images
)
* config.n_obs_steps,
)
self.noise_scheduler = DDPMScheduler(
self.noise_scheduler = _make_noise_scheduler(
config.noise_scheduler_type,
num_train_timesteps=config.num_train_timesteps,
beta_start=config.beta_start,
beta_end=config.beta_end,
beta_schedule=config.beta_schedule,
variance_type="fixed_small",
clip_sample=config.clip_sample,
clip_sample_range=config.clip_sample_range,
prediction_type=config.prediction_type,
@@ -183,30 +216,38 @@ class DiffusionModel(nn.Module):
return sample
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
# Extract image feature (first combine batch, sequence, and camera index dims).
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the feature
# dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
# Concatenate state and image features then flatten to (B, global_cond_dim).
return torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
def generate_actions(self, batch: dict[str, Tensor]) -> Tensor:
"""
This function expects `batch` to have (at least):
This function expects `batch` to have:
{
"observation.state": (B, n_obs_steps, state_dim)
"observation.image": (B, n_obs_steps, C, H, W)
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
}
"""
assert set(batch).issuperset({"observation.state", "observation.image"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert n_obs_steps == self.config.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
# Separate batch and sequence dims.
img_features = einops.rearrange(img_features, "(b n) ... -> b n ...", b=batch_size)
# Concatenate state and image features then flatten to (B, global_cond_dim).
global_cond = torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
# Encode image features and concatenate them all together along with the state vector.
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
# run sampling
sample = self.conditional_sample(batch_size, global_cond=global_cond)
actions = self.conditional_sample(batch_size, global_cond=global_cond)
# `horizon` steps worth of actions (from the first observation).
actions = sample[..., : self.config.output_shapes["action"][0]]
# Extract `n_action_steps` steps worth of actions (from the current observation).
start = n_obs_steps - 1
end = start + self.config.n_action_steps
@@ -219,28 +260,23 @@ class DiffusionModel(nn.Module):
This function expects `batch` to have (at least):
{
"observation.state": (B, n_obs_steps, state_dim)
"observation.image": (B, n_obs_steps, C, H, W)
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
"action": (B, horizon, action_dim)
"action_is_pad": (B, horizon)
}
"""
# Input validation.
assert set(batch).issuperset({"observation.state", "observation.image", "action", "action_is_pad"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert set(batch).issuperset({"observation.state", "observation.images", "action", "action_is_pad"})
n_obs_steps = batch["observation.state"].shape[1]
horizon = batch["action"].shape[1]
assert horizon == self.config.horizon
assert n_obs_steps == self.config.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
# Separate batch and sequence dims.
img_features = einops.rearrange(img_features, "(b n) ... -> b n ...", b=batch_size)
# Concatenate state and image features then flatten to (B, global_cond_dim).
global_cond = torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
trajectory = batch["action"]
# Encode image features and concatenate them all together along with the state vector.
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
# Forward diffusion.
trajectory = batch["action"]
# Sample noise to add to the trajectory.
eps = torch.randn(trajectory.shape, device=trajectory.device)
# Sample a random noising timestep for each item in the batch.
@@ -268,13 +304,89 @@ class DiffusionModel(nn.Module):
loss = F.mse_loss(pred, target, reduction="none")
# Mask loss wherever the action is padded with copies (edges of the dataset trajectory).
if self.config.do_mask_loss_for_padding and "action_is_pad" in batch:
if self.config.do_mask_loss_for_padding:
if "action_is_pad" not in batch:
raise ValueError(
"You need to provide 'action_is_pad' in the batch when "
f"{self.config.do_mask_loss_for_padding=}."
)
in_episode_bound = ~batch["action_is_pad"]
loss = loss * in_episode_bound.unsqueeze(-1)
return loss.mean()
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
-----------------------------------------------------
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
| ... | ... | ... | ... |
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
-----------------------------------------------------
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
linear mapping (in_channels, H, W) -> (num_kp, H, W).
"""
def __init__(self, input_shape, num_kp=None):
"""
Args:
input_shape (list): (C, H, W) input feature map shape.
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
"""
super().__init__()
assert len(input_shape) == 3
self._in_c, self._in_h, self._in_w = input_shape
if num_kp is not None:
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
self._out_c = num_kp
else:
self.nets = None
self._out_c = self._in_c
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
# and causes a small degradation in pc_success of pre-trained models.
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
# register as buffer so it's moved to the correct device.
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
def forward(self, features: Tensor) -> Tensor:
"""
Args:
features: (B, C, H, W) input feature maps.
Returns:
(B, K, 2) image-space coordinates of keypoints.
"""
if self.nets is not None:
features = self.nets(features)
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
features = features.reshape(-1, self._in_h * self._in_w)
# 2d softmax normalization
attention = F.softmax(features, dim=-1)
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
expected_xy = attention @ self.pos_grid
# reshape to [B, K, 2]
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
return feature_keypoints
class DiffusionRgbEncoder(nn.Module):
"""Encoder an RGB image into a 1D feature vector.
@@ -315,11 +427,20 @@ class DiffusionRgbEncoder(nn.Module):
# Set up pooling and final layers.
# Use a dry run to get the feature map shape.
# The dummy input should take the number of image channels from `config.input_shapes` and it should
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
# height and width from `config.input_shapes`.
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
# Note: we have a check in the config class to make sure all images have the same shape.
image_key = image_keys[0]
dummy_input_h_w = (
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]
)
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *dummy_input_h_w))
with torch.inference_mode():
feat_map_shape = tuple(
self.backbone(torch.zeros(size=(1, *config.input_shapes["observation.image"]))).shape[1:]
)
self.pool = SpatialSoftmax(feat_map_shape, num_kp=config.spatial_softmax_num_keypoints)
dummy_feature_map = self.backbone(dummy_input)
feature_map_shape = tuple(dummy_feature_map.shape[1:])
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
self.feature_dim = config.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
self.relu = nn.ReLU()

View File

@@ -1,4 +1,20 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import logging
from omegaconf import DictConfig, OmegaConf
@@ -8,12 +24,19 @@ from lerobot.common.utils.utils import get_safe_torch_device
def _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg):
expected_kwargs = set(inspect.signature(policy_cfg_class).parameters)
assert set(hydra_cfg.policy).issuperset(
expected_kwargs
), f"Hydra config is missing arguments: {set(expected_kwargs).difference(hydra_cfg.policy)}"
if not set(hydra_cfg.policy).issuperset(expected_kwargs):
logging.warning(
f"Hydra config is missing arguments: {set(expected_kwargs).difference(hydra_cfg.policy)}"
)
# OmegaConf.to_container returns lists where sequences are found, but our dataclasses use tuples to avoid
# issues with mutable defaults. This filter changes all lists to tuples.
def list_to_tuple(item):
return tuple(item) if isinstance(item, list) else item
policy_cfg = policy_cfg_class(
**{
k: v
k: list_to_tuple(v)
for k, v in OmegaConf.to_container(hydra_cfg.policy, resolve=True).items()
if k in expected_kwargs
}
@@ -38,6 +61,11 @@ def get_policy_and_config_classes(name: str) -> tuple[Policy, object]:
from lerobot.common.policies.act.modeling_act import ACTPolicy
return ACTPolicy, ACTConfig
elif name == "vqbet":
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTPolicy
return VQBeTPolicy, VQBeTConfig
else:
raise NotImplementedError(f"Policy with name {name} is not implemented.")
@@ -58,15 +86,25 @@ def make_policy(
policy. Therefore, this argument is mutually exclusive with `pretrained_policy_name_or_path`.
"""
if not (pretrained_policy_name_or_path is None) ^ (dataset_stats is None):
raise ValueError("Only one of `pretrained_policy_name_or_path` and `dataset_stats` may be provided.")
raise ValueError(
"Exactly one of `pretrained_policy_name_or_path` and `dataset_stats` must be provided."
)
policy_cls, policy_cfg_class = get_policy_and_config_classes(hydra_cfg.policy.name)
policy_cfg = _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg)
if pretrained_policy_name_or_path is None:
policy_cfg = _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg)
# Make a fresh policy.
policy = policy_cls(policy_cfg, dataset_stats)
else:
policy = policy_cls.from_pretrained(pretrained_policy_name_or_path)
# Load a pretrained policy and override the config if needed (for example, if there are inference-time
# hyperparameters that we want to vary).
# TODO(alexander-soare): This hack makes use of huggingface_hub's tooling to load the policy with,
# pretrained weights which are then loaded into a fresh policy with the desired config. This PR in
# huggingface_hub should make it possible to avoid the hack:
# https://github.com/huggingface/huggingface_hub/pull/2274.
policy = policy_cls(policy_cfg)
policy.load_state_dict(policy_cls.from_pretrained(pretrained_policy_name_or_path).state_dict())
policy.to(get_safe_torch_device(hydra_cfg.device))

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import Tensor, nn
@@ -132,7 +147,7 @@ class Normalize(nn.Module):
assert not torch.isinf(min).any(), _no_stats_error_str("min")
assert not torch.isinf(max).any(), _no_stats_error_str("max")
# normalize to [0,1]
batch[key] = (batch[key] - min) / (max - min)
batch[key] = (batch[key] - min) / (max - min + 1e-8)
# normalize to [-1, 1]
batch[key] = batch[key] * 2 - 1
else:

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A protocol that all policies should follow.
This provides a mechanism for type-hinting and isinstance checks without requiring the policies classes
@@ -38,10 +53,11 @@ class Policy(Protocol):
def forward(self, batch: dict[str, Tensor]) -> dict:
"""Run the batch through the model and compute the loss for training or validation.
Returns a dictionary with "loss" and maybe other information.
Returns a dictionary with "loss" and potentially other information. Apart from "loss" which is a Tensor, all
other items should be logging-friendly, native Python types.
"""
def select_action(self, batch: dict[str, Tensor]):
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Return one action to run in the environment (potentially in batch mode).
When the model uses a history of observations, or outputs a sequence of actions, this method deals

View File

@@ -1,3 +1,19 @@
#!/usr/bin/env python
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@@ -15,6 +31,15 @@ class TDMPCConfig:
n_action_repeats: The number of times to repeat the action returned by the planning. (hint: Google
action repeats in Q-learning or ask your favorite chatbot)
horizon: Horizon for model predictive control.
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
the input data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
the output data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
@@ -47,7 +72,7 @@ class TDMPCConfig:
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
elites, when updating the gaussian parameters for CEM.
gaussian_mean_momentum: Momentum (α) used for EMA updates of the mean parameter μ of the gaussian
paramters optimized in CEM. Updates are calculated as μ⁻ ← αμ⁻ + (1-α)μ.
parameters optimized in CEM. Updates are calculated as μ⁻ ← αμ⁻ + (1-α)μ.
max_random_shift_ratio: Maximum random shift (as a proportion of the image size) to apply to the
image(s) (in units of pixels) for training-time augmentation. If set to 0, no such augmentation
is applied. Note that the input images are assumed to be square for this augmentation.
@@ -131,12 +156,18 @@ class TDMPCConfig:
def __post_init__(self):
"""Input validation (not exhaustive)."""
if self.input_shapes["observation.image"][-2] != self.input_shapes["observation.image"][-1]:
# There should only be one image key.
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if len(image_keys) != 1:
raise ValueError(
f"{self.__class__.__name__} only handles one image for now. Got image keys {image_keys}."
)
image_key = next(iter(image_keys))
if self.input_shapes[image_key][-2] != self.input_shapes[image_key][-1]:
# TODO(alexander-soare): This limitation is solely because of code in the random shift
# augmentation. It should be able to be removed.
raise ValueError(
"Only square images are handled now. Got image shape "
f"{self.input_shapes['observation.image']}."
f"Only square images are handled now. Got image shape {self.input_shapes[image_key]}."
)
if self.n_gaussian_samples <= 0:
raise ValueError(

View File

@@ -1,3 +1,19 @@
#!/usr/bin/env python
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of Finetuning Offline World Models in the Real World.
The comments in this code may sometimes refer to these references:
@@ -96,13 +112,12 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
config.output_shapes, config.output_normalization_modes, dataset_stats
)
def save(self, fp):
"""Save state dict of TOLD model to filepath."""
torch.save(self.state_dict(), fp)
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
assert len(image_keys) == 1
self.input_image_key = image_keys[0]
def load(self, fp):
"""Load a saved state dict from filepath into current agent."""
self.load_state_dict(torch.load(fp))
self.reset()
def reset(self):
"""
@@ -119,12 +134,10 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
self._prev_mean: torch.Tensor | None = None
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]):
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations."""
assert "observation.image" in batch
assert "observation.state" in batch
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
self._queues = populate_queues(self._queues, batch)
@@ -303,13 +316,11 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
device = get_device_from_parameters(self)
batch = self.normalize_inputs(batch)
batch["observation.image"] = batch[self.input_image_key]
batch = self.normalize_targets(batch)
info = {}
# TODO(alexander-soare): Refactor TDMPC and make it comply with the policy interface documentation.
batch_size = batch["index"].shape[0]
# (b, t) -> (t, b)
for key in batch:
if batch[key].ndim > 1:
@@ -337,6 +348,7 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
# Run latent rollout using the latent dynamics model and policy model.
# Note this has shape `horizon+1` because there are `horizon` actions and a current `z`. Each action
# gives us a next `z`.
batch_size = batch["index"].shape[0]
z_preds = torch.empty(horizon + 1, batch_size, self.config.latent_dim, device=device)
z_preds[0] = self.model.encode(current_observation)
reward_preds = torch.empty_like(reward, device=device)

View File

@@ -1,9 +1,28 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
def populate_queues(queues, batch):
for key in batch:
# Ignore keys not in the queues already (leaving the responsibility to the caller to make sure the
# queues have the keys they want).
if key not in queues:
continue
if len(queues[key]) != queues[key].maxlen:
# initialize by copying the first observation several times until the queue is full
while len(queues[key]) != queues[key].maxlen:

View File

@@ -0,0 +1,167 @@
#!/usr/bin/env python
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class VQBeTConfig:
"""Configuration class for VQ-BeT.
Defaults are configured for training with PushT providing proprioceptive and single camera observations.
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
Those are: `input_shapes` and `output_shapes`.
Notes on the inputs and outputs:
- "observation.state" is required as an input key.
- At least one key starting with "observation.image is required as an input.
- If there are multiple keys beginning with "observation.image" they are treated as multiple camera
views. Right now we only support all images having the same shape.
- "action" is required as an output key.
Args:
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
current step and additional steps going back).
n_action_pred_token: Total number of current token and future tokens that VQ-BeT predicts.
action_chunk_size: Action chunk size of each action prediction token.
input_shapes: A dictionary defining the shapes of the input data for the policy.
The key represents the input data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "observation.image" refers to an input from
a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
Importantly, shapes doesnt include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy.
The key represents the output data name, and the value is a list indicating the dimensions
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
[-1, 1] range.
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
original scale. Note that this is also used for normalizing the training targets.
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit
within the image size. If None, no cropping is done.
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
mode).
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
`None` means no pretrained weights.
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
n_vqvae_training_steps: Number of optimization steps for training Residual VQ.
vqvae_n_embed: Number of embedding vectors in the RVQ dictionary (each layer).
vqvae_embedding_dim: Dimension of each embedding vector in the RVQ dictionary.
vqvae_enc_hidden_dim: Size of hidden dimensions of Encoder / Decoder part of Residaul VQ-VAE
gpt_block_size: Max block size of minGPT (should be larger than the number of input tokens)
gpt_input_dim: Size of output input of GPT. This is also used as the dimension of observation features.
gpt_output_dim: Size of output dimension of GPT. This is also used as a input dimension of offset / bin prediction headers.
gpt_n_layer: Number of layers of GPT
gpt_n_head: Number of headers of GPT
gpt_hidden_dim: Size of hidden dimensions of GPT
dropout: Dropout rate for GPT
mlp_hidden_dim: Size of hidden dimensions of offset header / bin prediction headers parts of VQ-BeT
offset_loss_weight: A constant that is multiplied to the offset loss
primary_code_loss_weight: A constant that is multiplied to the primary code prediction loss
secondary_code_loss_weight: A constant that is multiplied to the secondary code prediction loss
bet_softmax_temperature: Sampling temperature of code for rollout with VQ-BeT
sequentially_select: Whether select code of primary / secondary as sequentially (pick primary code,
and then select secodnary code), or at the same time.
"""
# Inputs / output structure.
n_obs_steps: int = 5
n_action_pred_token: int = 3
action_chunk_size: int = 5
input_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"observation.image": [3, 96, 96],
"observation.state": [2],
}
)
output_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"action": [2],
}
)
# Normalization / Unnormalization
input_normalization_modes: dict[str, str] = field(
default_factory=lambda: {
"observation.image": "mean_std",
"observation.state": "min_max",
}
)
output_normalization_modes: dict[str, str] = field(default_factory=lambda: {"action": "min_max"})
# Architecture / modeling.
# Vision backbone.
vision_backbone: str = "resnet18"
crop_shape: tuple[int, int] | None = (84, 84)
crop_is_random: bool = True
pretrained_backbone_weights: str | None = None
use_group_norm: bool = True
spatial_softmax_num_keypoints: int = 32
# VQ-VAE
n_vqvae_training_steps: int = 20000
vqvae_n_embed: int = 16
vqvae_embedding_dim: int = 256
vqvae_enc_hidden_dim: int = 128
# VQ-BeT
gpt_block_size: int = 500
gpt_input_dim: int = 512
gpt_output_dim: int = 512
gpt_n_layer: int = 8
gpt_n_head: int = 8
gpt_hidden_dim: int = 512
dropout: float = 0.1
mlp_hidden_dim: int = 1024
offset_loss_weight: float = 10000.0
primary_code_loss_weight: float = 5.0
secondary_code_loss_weight: float = 0.5
bet_softmax_temperature: float = 0.1
sequentially_select: bool = False
def __post_init__(self):
"""Input validation (not exhaustive)."""
if not self.vision_backbone.startswith("resnet"):
raise ValueError(
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
)
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if self.crop_shape is not None:
for image_key in image_keys:
if (
self.crop_shape[0] > self.input_shapes[image_key][1]
or self.crop_shape[1] > self.input_shapes[image_key][2]
):
raise ValueError(
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
f"for `crop_shape` and {self.input_shapes[image_key]} for "
"`input_shapes[{image_key}]`."
)
# Check that all input images have the same shape.
first_image_key = next(iter(image_keys))
for image_key in image_keys:
if self.input_shapes[image_key] != self.input_shapes[first_image_key]:
raise ValueError(
f"`input_shapes[{image_key}]` does not match `input_shapes[{first_image_key}]`, but we "
"expect all image shapes to match."
)

View File

@@ -0,0 +1,950 @@
#!/usr/bin/env python
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from collections import deque
from typing import Callable, List
import einops
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor, nn
from torch.optim.lr_scheduler import LambdaLR
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.utils import get_device_from_parameters, populate_queues
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.common.policies.vqbet.vqbet_utils import GPT, ResidualVQ
# ruff: noqa: N806
class VQBeTPolicy(nn.Module, PyTorchModelHubMixin):
"""
VQ-BeT Policy as per "Behavior Generation with Latent Actions"
"""
name = "vqbet"
def __init__(
self,
config: VQBeTConfig | None = None,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__()
if config is None:
config = VQBeTConfig()
self.config = config
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.vqbet = VQBeTModel(config)
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
self.reset()
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
queues are populated during rollout of the policy, they contain the n latest observations and actions
"""
self._queues = {
"observation.images": deque(maxlen=self.config.n_obs_steps),
"observation.state": deque(maxlen=self.config.n_obs_steps),
"action": deque(maxlen=self.config.action_chunk_size),
}
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
# Note: It's important that this happens after stacking the images into a single key.
self._queues = populate_queues(self._queues, batch)
if not self.vqbet.action_head.vqvae_model.discretized.item():
warnings.warn(
"To evaluate in the environment, your VQ-BeT model should contain a pretrained Residual VQ.",
stacklevel=1,
)
if len(self._queues["action"]) == 0:
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.vqbet(batch, rollout=True)[:, : self.config.action_chunk_size]
# the dimension of returned action is (batch_size, action_chunk_size, action_dim)
actions = self.unnormalize_outputs({"action": actions})["action"]
# since the data in the action queue's dimension is (action_chunk_size, batch_size, action_dim), we transpose the action and fill the queue
self._queues["action"].extend(actions.transpose(0, 1))
action = self._queues["action"].popleft()
return action
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
batch = self.normalize_targets(batch)
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://arxiv.org/pdf/2403.03181)
if not self.vqbet.action_head.vqvae_model.discretized.item():
# loss: total loss of training RVQ
# n_different_codes: how many of the total possible VQ codes are being used in single batch (how many of them have at least one encoder embedding as a nearest neighbor). This can be at most `vqvae_n_embed * number of layers of RVQ (=2)`.
# n_different_combinations: how many different code combinations are being used out of all possible combinations in single batch. This can be at most `vqvae_n_embed ^ number of layers of RVQ (=2)` (hint consider the RVQ as a decision tree).
loss, n_different_codes, n_different_combinations, recon_l1_error = (
self.vqbet.action_head.discretize(self.config.n_vqvae_training_steps, batch["action"])
)
return {
"loss": loss,
"n_different_codes": n_different_codes,
"n_different_combinations": n_different_combinations,
"recon_l1_error": recon_l1_error,
}
# if Residual VQ is already trained, VQ-BeT trains its GPT and bin prediction head / offset prediction head parts.
_, loss_dict = self.vqbet(batch, rollout=False)
return loss_dict
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
-----------------------------------------------------
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
| ... | ... | ... | ... |
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
-----------------------------------------------------
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
linear mapping (in_channels, H, W) -> (num_kp, H, W).
"""
def __init__(self, input_shape, num_kp=None):
"""
Args:
input_shape (list): (C, H, W) input feature map shape.
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
"""
super().__init__()
assert len(input_shape) == 3
self._in_c, self._in_h, self._in_w = input_shape
if num_kp is not None:
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
self._out_c = num_kp
else:
self.nets = None
self._out_c = self._in_c
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
# and causes a small degradation in pc_success of pre-trained models.
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
# register as buffer so it's moved to the correct device.
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
def forward(self, features: Tensor) -> Tensor:
"""
Args:
features: (B, C, H, W) input feature maps.
Returns:
(B, K, 2) image-space coordinates of keypoints.
"""
if self.nets is not None:
features = self.nets(features)
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
features = features.reshape(-1, self._in_h * self._in_w)
# 2d softmax normalization
attention = F.softmax(features, dim=-1)
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
expected_xy = attention @ self.pos_grid
# reshape to [B, K, 2]
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
return feature_keypoints
class VQBeTModel(nn.Module):
"""VQ-BeT: The underlying neural network for VQ-BeT
Note: In this code we use the terms `rgb_encoder`, 'policy', `action_head`. The meanings are as follows.
- The `rgb_encoder` process rgb-style image observations to one-dimensional embedding vectors
- A `policy` is a minGPT architecture, that takes observation sequences and action query tokens to generate `features`.
- These `features` pass through the action head, which passes through the code prediction, offset prediction head,
and finally generates a prediction for the action chunks.
-------------------------------** legend **-------------------------------
│ n = n_obs_steps, p = n_action_pred_token, c = action_chunk_size) │
│ o_{t} : visual observation at timestep {t}
│ s_{t} : state observation at timestep {t}
│ a_{t} : action at timestep {t}
│ A_Q : action_query_token │
--------------------------------------------------------------------------
Training Phase 1. Discretize action using Residual VQ (for config.n_vqvae_training_steps steps)
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ RVQ encoder │ ─► │ Residual │ ─► │ RVQ Decoder │
│ (a_{t}~a_{t+p}) │ │ Code Quantizer │ │ │
│ │ │ │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Training Phase 2.
timestep {t-n+1} timestep {t-n+2} timestep {t}
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
o_{t-n+1} o_{t-n+2} ... o_{t}
│ │ │
│ s_{t-n+1} │ s_{t-n+2} ... │ s_{t} p
│ │ │ │ │ │ ┌───────┴───────┐
│ │ A_Q │ │ A_Q ... │ │ A_Q ... A_Q
│ │ │ │ │ │ │ │ │ │
┌───▼─────▼─────▼─────▼─────▼─────▼─────────────────▼─────▼─────▼───────────────▼───┐
│ │
│ GPT │ => policy
│ │
└───────────────▼─────────────────▼─────────────────────────────▼───────────────▼───┘
│ │ │ │
┌───┴───┐ ┌───┴───┐ ┌───┴───┐ ┌───┴───┐
code offset code offset code offset code offset
▼ │ ▼ │ ▼ │ ▼ │ => action_head
RVQ Decoder │ RVQ Decoder │ RVQ Decoder │ RVQ Decoder │
└── + ──┘ └── + ──┘ └── + ──┘ └── + ──┘
▼ ▼ ▼ ▼
action chunk action chunk action chunk action chunk
a_{t-n+1} ~ a_{t-n+2} ~ a_{t} ~ ... a_{t+p-1} ~
a_{t-n+c} a_{t-n+c+1} a_{t+c-1} a_{t+p+c-1}
ONLY this chunk is used in rollout!
"""
def __init__(self, config: VQBeTConfig):
super().__init__()
self.config = config
self.rgb_encoder = VQBeTRgbEncoder(config)
self.num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
# This action query token is used as a prompt for querying action chunks. Please refer to "A_Q" in the image above.
# Note: During the forward pass, this token is repeated as many times as needed. The authors also experimented with initializing the necessary number of tokens independently and observed inferior results.
self.action_token = nn.Parameter(torch.randn(1, 1, self.config.gpt_input_dim))
# To input state and observation features into GPT layers, we first project the features to fit the shape of input size of GPT.
self.state_projector = MLP(
config.output_shapes["action"][0], hidden_channels=[self.config.gpt_input_dim]
)
self.rgb_feature_projector = MLP(
self.rgb_encoder.feature_dim, hidden_channels=[self.config.gpt_input_dim]
)
# GPT part of VQ-BeT
self.policy = GPT(config)
# bin prediction head / offset prediction head part of VQ-BeT
self.action_head = VQBeTHead(config)
num_tokens = self.config.n_action_pred_token + self.config.action_chunk_size - 1
self.register_buffer(
"select_target_actions_indices",
torch.row_stack([torch.arange(i, i + self.config.action_chunk_size) for i in range(num_tokens)]),
)
def forward(self, batch: dict[str, Tensor], rollout: bool) -> Tensor:
# Input validation.
assert set(batch).issuperset({"observation.state", "observation.images"})
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert n_obs_steps == self.config.n_obs_steps
# Extract image feature (first combine batch and sequence dims).
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch and sequence dims.
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s n ...", b=batch_size, s=n_obs_steps, n=self.num_images
)
# Arrange prior and current observation step tokens as shown in the class docstring.
# First project features to token dimension.
rgb_tokens = self.rgb_feature_projector(
img_features
) # (batch, obs_step, number of different cameras, projection dims)
input_tokens = [rgb_tokens[:, :, i] for i in range(rgb_tokens.size(2))]
input_tokens.append(
self.state_projector(batch["observation.state"])
) # (batch, obs_step, projection dims)
input_tokens.append(einops.repeat(self.action_token, "1 1 d -> b n d", b=batch_size, n=n_obs_steps))
# Interleave tokens by stacking and rearranging.
input_tokens = torch.stack(input_tokens, dim=2)
input_tokens = einops.rearrange(input_tokens, "b n t d -> b (n t) d")
len_additional_action_token = self.config.n_action_pred_token - 1
future_action_tokens = self.action_token.repeat(batch_size, len_additional_action_token, 1)
# add additional action query tokens for predicting future action chunks
input_tokens = torch.cat([input_tokens, future_action_tokens], dim=1)
# get action features (pass through GPT)
features = self.policy(input_tokens)
# len(self.config.input_shapes) is the number of different observation modes. this line gets the index of action prompt tokens.
historical_act_pred_index = np.arange(0, n_obs_steps) * (len(self.config.input_shapes) + 1) + len(
self.config.input_shapes
)
# only extract the output tokens at the position of action query:
# Behavior Transformer (BeT), and VQ-BeT are both sequence-to-sequence prediction models, mapping sequential observation to sequential action (please refer to section 2.2 in BeT paper https://arxiv.org/pdf/2206.11251).
# Thus, it predict historical action sequence, in addition to current and future actions (predicting future actions : optional).
features = torch.cat(
[features[:, historical_act_pred_index], features[:, -len_additional_action_token:]], dim=1
)
# pass through action head
action_head_output = self.action_head(features)
# if rollout, VQ-BeT don't calculate loss
if rollout:
return action_head_output["predicted_action"][:, n_obs_steps - 1, :].reshape(
batch_size, self.config.action_chunk_size, -1
)
# else, it calculate overall loss (bin prediction loss, and offset loss)
else:
output = batch["action"][:, self.select_target_actions_indices]
loss = self.action_head.loss_fn(action_head_output, output, reduction="mean")
return action_head_output, loss
class VQBeTHead(nn.Module):
def __init__(self, config: VQBeTConfig):
"""
VQBeTHead takes output of GPT layers, and pass the feature through bin prediction head (`self.map_to_cbet_preds_bin`), and offset prediction head (`self.map_to_cbet_preds_offset`)
self.map_to_cbet_preds_bin: outputs probability of each code (for each layer).
The input dimension of `self.map_to_cbet_preds_bin` is same with the output of GPT,
and the output dimension of `self.map_to_cbet_preds_bin` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed`.
if the agent select the code sequentially, we use self.map_to_cbet_preds_primary_bin and self.map_to_cbet_preds_secondary_bin instead of self._map_to_cbet_preds_bin.
self.map_to_cbet_preds_offset: output the predicted offsets for all the codes in all the layers.
The input dimension of ` self.map_to_cbet_preds_offset` is same with the output of GPT,
and the output dimension of ` self.map_to_cbet_preds_offset` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed * config.action_chunk_size * config.output_shapes["action"][0]`.
"""
super().__init__()
self.config = config
# init vqvae
self.vqvae_model = VqVae(config)
if config.sequentially_select:
self.map_to_cbet_preds_primary_bin = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[self.config.vqvae_n_embed],
)
self.map_to_cbet_preds_secondary_bin = MLP(
in_channels=config.gpt_output_dim + self.config.vqvae_n_embed,
hidden_channels=[self.config.vqvae_n_embed],
)
else:
self.map_to_cbet_preds_bin = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[self.vqvae_model.vqvae_num_layers * self.config.vqvae_n_embed],
)
self.map_to_cbet_preds_offset = MLP(
in_channels=config.gpt_output_dim,
hidden_channels=[
self.vqvae_model.vqvae_num_layers
* self.config.vqvae_n_embed
* config.action_chunk_size
* config.output_shapes["action"][0],
],
)
# loss
self._focal_loss_fn = FocalLoss(gamma=2.0)
def discretize(self, n_vqvae_training_steps, actions):
# Resize the action sequence data to fit the action chunk size using a sliding window approach.
actions = torch.cat(
[
actions[:, j : j + self.config.action_chunk_size, :]
for j in range(actions.shape[1] + 1 - self.config.action_chunk_size)
],
dim=0,
)
# `actions` is a tensor of shape (new_batch, action_chunk_size, action_dim) where new_batch is the number of possible chunks created from the original sequences using the sliding window.
loss, metric = self.vqvae_model.vqvae_forward(actions)
n_different_codes = sum(
[len(torch.unique(metric[2][:, i])) for i in range(self.vqvae_model.vqvae_num_layers)]
)
n_different_combinations = len(torch.unique(metric[2], dim=0))
recon_l1_error = metric[0].detach().cpu().item()
self.vqvae_model.optimized_steps += 1
# if we updated RVQ more than `n_vqvae_training_steps` steps, we freeze the RVQ part.
if self.vqvae_model.optimized_steps >= n_vqvae_training_steps:
self.vqvae_model.discretized = torch.tensor(True)
self.vqvae_model.vq_layer.freeze_codebook = torch.tensor(True)
print("Finished discretizing action data!")
self.vqvae_model.eval()
for param in self.vqvae_model.vq_layer.parameters():
param.requires_grad = False
return loss, n_different_codes, n_different_combinations, recon_l1_error
def forward(self, x, **kwargs):
# N is the batch size, and T is number of action query tokens, which are process through same GPT
N, T, _ = x.shape
# we calculate N and T side parallely. Thus, the dimensions would be
# (batch size * number of action query tokens, action chunk size, action dimension)
x = einops.rearrange(x, "N T WA -> (N T) WA")
# sample offsets
cbet_offsets = self.map_to_cbet_preds_offset(x)
cbet_offsets = einops.rearrange(
cbet_offsets,
"(NT) (G C WA) -> (NT) G C WA",
G=self.vqvae_model.vqvae_num_layers,
C=self.config.vqvae_n_embed,
)
# if self.config.sequentially_select is True, bin prediction head first sample the primary code, and then sample secondary code
if self.config.sequentially_select:
cbet_primary_logits = self.map_to_cbet_preds_primary_bin(x)
# select primary bin first
cbet_primary_probs = torch.softmax(
cbet_primary_logits / self.config.bet_softmax_temperature, dim=-1
)
NT, choices = cbet_primary_probs.shape
sampled_primary_centers = einops.rearrange(
torch.multinomial(cbet_primary_probs.view(-1, choices), num_samples=1),
"(NT) 1 -> NT",
NT=NT,
)
cbet_secondary_logits = self.map_to_cbet_preds_secondary_bin(
torch.cat(
(x, F.one_hot(sampled_primary_centers, num_classes=self.config.vqvae_n_embed)),
axis=1,
)
)
cbet_secondary_probs = torch.softmax(
cbet_secondary_logits / self.config.bet_softmax_temperature, dim=-1
)
sampled_secondary_centers = einops.rearrange(
torch.multinomial(cbet_secondary_probs.view(-1, choices), num_samples=1),
"(NT) 1 -> NT",
NT=NT,
)
sampled_centers = torch.stack((sampled_primary_centers, sampled_secondary_centers), axis=1)
cbet_logits = torch.stack([cbet_primary_logits, cbet_secondary_logits], dim=1)
# if self.config.sequentially_select is False, bin prediction head samples primary and secondary code at once.
else:
cbet_logits = self.map_to_cbet_preds_bin(x)
cbet_logits = einops.rearrange(
cbet_logits, "(NT) (G C) -> (NT) G C", G=self.vqvae_model.vqvae_num_layers
)
cbet_probs = torch.softmax(cbet_logits / self.config.bet_softmax_temperature, dim=-1)
NT, G, choices = cbet_probs.shape
sampled_centers = einops.rearrange(
torch.multinomial(cbet_probs.view(-1, choices), num_samples=1),
"(NT G) 1 -> NT G",
NT=NT,
)
device = get_device_from_parameters(self)
indices = (
torch.arange(NT, device=device).unsqueeze(1),
torch.arange(self.vqvae_model.vqvae_num_layers, device=device).unsqueeze(0),
sampled_centers,
)
# Use advanced indexing to sample the values (Extract the only offsets corresponding to the sampled codes.)
sampled_offsets = cbet_offsets[indices]
# Then, sum the offsets over the RVQ layers to get a net offset for the bin prediction
sampled_offsets = sampled_offsets.sum(dim=1)
with torch.no_grad():
# Get the centroids (= vectors corresponding to the codes) of each layer to pass it through RVQ decoder
return_decoder_input = self.vqvae_model.get_embeddings_from_code(sampled_centers).clone().detach()
# pass the centroids through decoder to get actions.
decoded_action = self.vqvae_model.get_action_from_latent(return_decoder_input).clone().detach()
# reshaped extracted offset to match with decoded centroids
sampled_offsets = einops.rearrange(
sampled_offsets, "NT (W A) -> NT W A", W=self.config.action_chunk_size
)
# add offset and decoded centroids
predicted_action = decoded_action + sampled_offsets
predicted_action = einops.rearrange(
predicted_action,
"(N T) W A -> N T (W A)",
N=N,
T=T,
W=self.config.action_chunk_size,
)
return {
"cbet_logits": cbet_logits,
"predicted_action": predicted_action,
"sampled_centers": sampled_centers,
"decoded_action": decoded_action,
}
def loss_fn(self, pred, target, **kwargs):
"""
for given ground truth action values (target), and prediction (pred) this function calculates the overall loss.
predicted_action: predicted action chunk (offset + decoded centroids)
sampled_centers: sampled centroids (code of RVQ)
decoded_action: decoded action, which is produced by passing sampled_centers through RVQ decoder
NT: batch size * T
T: number of action query tokens, which are process through same GPT
cbet_logits: probability of all codes in each layer
"""
action_seq = target
predicted_action = pred["predicted_action"]
sampled_centers = pred["sampled_centers"]
decoded_action = pred["decoded_action"]
NT = predicted_action.shape[0] * predicted_action.shape[1]
cbet_logits = pred["cbet_logits"]
predicted_action = einops.rearrange(
predicted_action, "N T (W A) -> (N T) W A", W=self.config.action_chunk_size
)
action_seq = einops.rearrange(action_seq, "N T W A -> (N T) W A")
# Figure out the loss for the actions.
# First, we need to find the closest cluster center for each ground truth action.
with torch.no_grad():
state_vq, action_bins = self.vqvae_model.get_code(action_seq) # action_bins: NT, G
# Now we can compute the loss.
# offset loss is L1 distance between the predicted action and ground truth action
offset_loss = F.l1_loss(action_seq, predicted_action)
# calculate primary code prediction loss
cbet_loss1 = self._focal_loss_fn(
cbet_logits[:, 0, :],
action_bins[:, 0],
)
# calculate secondary code prediction loss
cbet_loss2 = self._focal_loss_fn(
cbet_logits[:, 1, :],
action_bins[:, 1],
)
# add all the prediction loss
cbet_loss = (
cbet_loss1 * self.config.primary_code_loss_weight
+ cbet_loss2 * self.config.secondary_code_loss_weight
)
equal_primary_code_rate = torch.sum((action_bins[:, 0] == sampled_centers[:, 0]).int()) / (NT)
equal_secondary_code_rate = torch.sum((action_bins[:, 1] == sampled_centers[:, 1]).int()) / (NT)
action_mse_error = torch.mean((action_seq - predicted_action) ** 2)
vq_action_error = torch.mean(torch.abs(action_seq - decoded_action))
offset_action_error = torch.mean(torch.abs(action_seq - predicted_action))
action_error_max = torch.max(torch.abs(action_seq - predicted_action))
loss = cbet_loss + self.config.offset_loss_weight * offset_loss
loss_dict = {
"loss": loss,
"classification_loss": cbet_loss.detach().cpu().item(),
"offset_loss": offset_loss.detach().cpu().item(),
"equal_primary_code_rate": equal_primary_code_rate.detach().cpu().item(),
"equal_secondary_code_rate": equal_secondary_code_rate.detach().cpu().item(),
"vq_action_error": vq_action_error.detach().cpu().item(),
"offset_action_error": offset_action_error.detach().cpu().item(),
"action_error_max": action_error_max.detach().cpu().item(),
"action_mse_error": action_mse_error.detach().cpu().item(),
}
return loss_dict
class VQBeTOptimizer(torch.optim.Adam):
def __init__(self, policy, cfg):
vqvae_params = (
list(policy.vqbet.action_head.vqvae_model.encoder.parameters())
+ list(policy.vqbet.action_head.vqvae_model.decoder.parameters())
+ list(policy.vqbet.action_head.vqvae_model.vq_layer.parameters())
)
decay_params, no_decay_params = policy.vqbet.policy.configure_parameters()
decay_params = (
decay_params
+ list(policy.vqbet.rgb_encoder.parameters())
+ list(policy.vqbet.state_projector.parameters())
+ list(policy.vqbet.rgb_feature_projector.parameters())
+ [policy.vqbet.action_token]
+ list(policy.vqbet.action_head.map_to_cbet_preds_offset.parameters())
)
if cfg.policy.sequentially_select:
decay_params = (
decay_params
+ list(policy.vqbet.action_head.map_to_cbet_preds_primary_bin.parameters())
+ list(policy.vqbet.action_head.map_to_cbet_preds_secondary_bin.parameters())
)
else:
decay_params = decay_params + list(policy.vqbet.action_head.map_to_cbet_preds_bin.parameters())
optim_groups = [
{
"params": decay_params,
"weight_decay": cfg.training.adam_weight_decay,
"lr": cfg.training.lr,
},
{
"params": vqvae_params,
"weight_decay": 0.0001,
"lr": cfg.training.vqvae_lr,
},
{
"params": no_decay_params,
"weight_decay": 0.0,
"lr": cfg.training.lr,
},
]
super().__init__(
optim_groups,
cfg.training.lr,
cfg.training.adam_betas,
cfg.training.adam_eps,
)
class VQBeTScheduler(nn.Module):
def __init__(self, optimizer, cfg):
super().__init__()
n_vqvae_training_steps = cfg.training.n_vqvae_training_steps
num_warmup_steps = cfg.training.lr_warmup_steps
num_training_steps = cfg.training.offline_steps
num_cycles = 0.5
def lr_lambda(current_step):
if current_step < n_vqvae_training_steps:
return float(1)
else:
current_step = current_step - n_vqvae_training_steps
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
self.lr_scheduler = LambdaLR(optimizer, lr_lambda, -1)
def step(self):
self.lr_scheduler.step()
class VQBeTRgbEncoder(nn.Module):
"""Encode an RGB image into a 1D feature vector.
Includes the ability to normalize and crop the image first.
Same with DiffusionRgbEncoder from modeling_diffusion.py
"""
def __init__(self, config: VQBeTConfig):
super().__init__()
# Set up optional preprocessing.
if config.crop_shape is not None:
self.do_crop = True
# Always use center crop for eval
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
if config.crop_is_random:
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
else:
self.maybe_random_crop = self.center_crop
else:
self.do_crop = False
# Set up backbone.
backbone_model = getattr(torchvision.models, config.vision_backbone)(
weights=config.pretrained_backbone_weights
)
# Note: This assumes that the layer4 feature map is children()[-3]
# TODO(alexander-soare): Use a safer alternative.
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
if config.use_group_norm:
if config.pretrained_backbone_weights:
raise ValueError(
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
)
self.backbone = _replace_submodules(
root_module=self.backbone,
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
func=lambda x: nn.GroupNorm(num_groups=x.num_features // 16, num_channels=x.num_features),
)
# Set up pooling and final layers.
# Use a dry run to get the feature map shape.
# The dummy input should take the number of image channels from `config.input_shapes` and it should
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
# height and width from `config.input_shapes`.
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
assert len(image_keys) == 1
image_key = image_keys[0]
dummy_input_h_w = (
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]
)
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *dummy_input_h_w))
with torch.inference_mode():
dummy_feature_map = self.backbone(dummy_input)
feature_map_shape = tuple(dummy_feature_map.shape[1:])
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
self.feature_dim = config.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
self.relu = nn.ReLU()
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: (B, C, H, W) image tensor with pixel values in [0, 1].
Returns:
(B, D) image feature.
"""
# Preprocess: maybe crop (if it was set up in the __init__).
if self.do_crop:
if self.training: # noqa: SIM108
x = self.maybe_random_crop(x)
else:
# Always use center crop for eval.
x = self.center_crop(x)
# Extract backbone feature.
x = torch.flatten(self.pool(self.backbone(x)), start_dim=1)
# Final linear layer with non-linearity.
x = self.relu(self.out(x))
return x
def _replace_submodules(
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
) -> nn.Module:
"""
Args:
root_module: The module for which the submodules need to be replaced
predicate: Takes a module as an argument and must return True if the that module is to be replaced.
func: Takes a module as an argument and returns a new module to replace it with.
Returns:
The root module with its submodules replaced.
"""
if predicate(root_module):
return func(root_module)
replace_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
for *parents, k in replace_list:
parent_module = root_module
if len(parents) > 0:
parent_module = root_module.get_submodule(".".join(parents))
if isinstance(parent_module, nn.Sequential):
src_module = parent_module[int(k)]
else:
src_module = getattr(parent_module, k)
tgt_module = func(src_module)
if isinstance(parent_module, nn.Sequential):
parent_module[int(k)] = tgt_module
else:
setattr(parent_module, k, tgt_module)
# verify that all BN are replaced
assert not any(predicate(m) for _, m in root_module.named_modules(remove_duplicate=True))
return root_module
class VqVae(nn.Module):
def __init__(
self,
config: VQBeTConfig,
):
"""
VQ-VAE is composed of three parts: encoder, vq_layer, and decoder.
Encoder and decoder are MLPs consisting of an input, output layer, and hidden layer, respectively.
The vq_layer uses residual VQs.
This class contains functions for training the encoder and decoder along with the residual VQ layer (for trainign phase 1),
as well as functions to help BeT training part in training phase 2.
"""
super().__init__()
self.config = config
# 'discretized' indicates whether the Residual VQ part is trained or not. (After finishing the training, we set discretized=True)
self.register_buffer("discretized", torch.tensor(False))
self.optimized_steps = 0
# we use the fixed number of layers for Residual VQ across all environments.
self.vqvae_num_layers = 2
self.vq_layer = ResidualVQ(
dim=config.vqvae_embedding_dim,
num_quantizers=self.vqvae_num_layers,
codebook_size=config.vqvae_n_embed,
)
self.encoder = MLP(
in_channels=self.config.output_shapes["action"][0] * self.config.action_chunk_size,
hidden_channels=[
config.vqvae_enc_hidden_dim,
config.vqvae_enc_hidden_dim,
config.vqvae_embedding_dim,
],
)
self.decoder = MLP(
in_channels=config.vqvae_embedding_dim,
hidden_channels=[
config.vqvae_enc_hidden_dim,
config.vqvae_enc_hidden_dim,
self.config.output_shapes["action"][0] * self.config.action_chunk_size,
],
)
def get_embeddings_from_code(self, encoding_indices):
# This function gets code indices as inputs, and outputs embedding vectors corresponding to the code indices.
with torch.no_grad():
z_embed = self.vq_layer.get_codebook_vector_from_indices(encoding_indices)
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
z_embed = z_embed.sum(dim=0)
return z_embed
def get_action_from_latent(self, latent):
# given latent vector, this function outputs the decoded action.
output = self.decoder(latent)
if self.config.action_chunk_size == 1:
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
else:
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
def get_code(self, state):
# in phase 2 of VQ-BeT training, we need a `ground truth labels of action data` to calculate the Focal loss for code prediction head. (please refer to section 3.3 in the paper https://arxiv.org/pdf/2403.03181)
# this function outputs the `GT code` of given action using frozen encoder and quantization layers. (please refer to Figure 2. in the paper https://arxiv.org/pdf/2403.03181)
state = einops.rearrange(state, "N T A -> N (T A)")
with torch.no_grad():
state_rep = self.encoder(state)
state_rep_shape = state_rep.shape[:-1]
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
state_vq = state_rep_flat.view(*state_rep_shape, -1)
vq_code = vq_code.view(*state_rep_shape, -1)
vq_loss_state = torch.sum(vq_loss_state)
return state_vq, vq_code
def vqvae_forward(self, state):
# This function passes the given data through Residual VQ with Encoder and Decoder. Please refer to section 3.2 in the paper https://arxiv.org/pdf/2403.03181).
state = einops.rearrange(state, "N T A -> N (T A)")
# We start with passing action (or action chunk) at:t+n through the encoder ϕ.
state_rep = self.encoder(state)
state_rep_shape = state_rep.shape[:-1]
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
# The resulting latent embedding vector x = ϕ(at:t+n) is then mapped to an embedding vector in the codebook of the RVQ layers by the nearest neighbor look-up.
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
state_vq = state_rep_flat.view(*state_rep_shape, -1)
vq_code = vq_code.view(*state_rep_shape, -1)
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
vq_loss_state = torch.sum(vq_loss_state)
# Then, the discretized vector zq(x) is reconstructed as ψ(zq(x)) by passing through the decoder ψ.
dec_out = self.decoder(state_vq)
# Calculate L1 reconstruction loss
encoder_loss = (state - dec_out).abs().mean()
# add encoder reconstruction loss and commitment loss
rep_loss = encoder_loss + vq_loss_state * 5
metric = (
encoder_loss.clone().detach(),
vq_loss_state.clone().detach(),
vq_code,
rep_loss.item(),
)
return rep_loss, metric
class FocalLoss(nn.Module):
"""
From https://github.com/notmahi/miniBET/blob/main/behavior_transformer/bet.py
"""
def __init__(self, gamma: float = 0, size_average: bool = True):
super().__init__()
self.gamma = gamma
self.size_average = size_average
def forward(self, input, target):
if len(input.shape) == 3:
N, T, _ = input.shape
logpt = F.log_softmax(input, dim=-1)
logpt = logpt.gather(-1, target.view(N, T, 1)).view(N, T)
elif len(input.shape) == 2:
logpt = F.log_softmax(input, dim=-1)
logpt = logpt.gather(-1, target.view(-1, 1)).view(-1)
pt = logpt.exp()
loss = -1 * (1 - pt) ** self.gamma * logpt
if self.size_average:
return loss.mean()
else:
return loss.sum()
class MLP(torch.nn.Sequential):
def __init__(
self,
in_channels: int,
hidden_channels: List[int],
):
layers = []
in_dim = in_channels
for hidden_dim in hidden_channels[:-1]:
layers.append(torch.nn.Linear(in_dim, hidden_dim))
layers.append(torch.nn.ReLU())
in_dim = hidden_dim
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1]))
super().__init__(*layers)

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import logging

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import imageio

View File

@@ -1,8 +1,25 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os.path as osp
import random
from contextlib import contextmanager
from datetime import datetime
from pathlib import Path
from typing import Any, Generator
import hydra
import numpy as np
@@ -31,12 +48,57 @@ def get_safe_torch_device(cfg_device: str, log: bool = False) -> torch.device:
return device
def get_global_random_state() -> dict[str, Any]:
"""Get the random state for `random`, `numpy`, and `torch`."""
random_state_dict = {
"random_state": random.getstate(),
"numpy_random_state": np.random.get_state(),
"torch_random_state": torch.random.get_rng_state(),
}
if torch.cuda.is_available():
random_state_dict["torch_cuda_random_state"] = torch.cuda.random.get_rng_state()
return random_state_dict
def set_global_random_state(random_state_dict: dict[str, Any]):
"""Set the random state for `random`, `numpy`, and `torch`.
Args:
random_state_dict: A dictionary of the form returned by `get_global_random_state`.
"""
random.setstate(random_state_dict["random_state"])
np.random.set_state(random_state_dict["numpy_random_state"])
torch.random.set_rng_state(random_state_dict["torch_random_state"])
if torch.cuda.is_available():
torch.cuda.random.set_rng_state(random_state_dict["torch_cuda_random_state"])
def set_global_seed(seed):
"""Set seed for reproducibility."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
@contextmanager
def seeded_context(seed: int) -> Generator[None, None, None]:
"""Set the seed when entering a context, and restore the prior random state at exit.
Example usage:
```
a = random.random() # produces some random number
with seeded_context(1337):
b = random.random() # produces some other random number
c = random.random() # produces yet another random number, but the same it would have if we never made `b`
```
"""
random_state_dict = get_global_random_state()
set_global_seed(seed)
yield None
set_global_random_state(random_state_dict)
def init_logging():
@@ -58,13 +120,13 @@ def init_logging():
logging.getLogger().addHandler(console_handler)
def format_big_number(num):
def format_big_number(num, precision=0):
suffixes = ["", "K", "M", "B", "T", "Q"]
divisor = 1000.0
for suffix in suffixes:
if abs(num) < divisor:
return f"{num:.0f}{suffix}"
return f"{num:.{precision}f}{suffix}"
num /= divisor
return num

View File

@@ -5,27 +5,80 @@ defaults:
hydra:
run:
# Set `dir` to where you would like to save all of the run outputs. If you run another training session
# with the same value for `dir` its contents will be overwritten unless you set `resume` to true.
dir: outputs/train/${now:%Y-%m-%d}/${now:%H-%M-%S}_${env.name}_${policy.name}_${hydra.job.name}
job:
name: default
# Set `resume` to true to resume a previous run. In order for this to work, you will need to make sure
# `hydra.run.dir` is the directory of an existing run with at least one checkpoint in it.
# Note that when resuming a run, the default behavior is to use the configuration from the checkpoint,
# regardless of what's provided with the training command at the time of resumption.
resume: false
device: cuda # cpu
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
# automatic gradient scaling is used.
use_amp: false
# `seed` is used for training (eg: model initialization, dataset shuffling)
# AND for the evaluation environments.
seed: ???
# You may provide a list of datasets here. `train.py` creates them all and concatenates them. Note: only data
# keys common between the datasets are kept. Each dataset gets and additional transform that inserts the
# "dataset_index" into the returned item. The index mapping is made according to the order in which the
# datsets are provided.
dataset_repo_id: lerobot/pusht
video_backend: pyav
training:
offline_steps: ???
# NOTE: `online_steps` is not implemented yet. It's here as a placeholder.
online_steps: ???
online_steps_between_rollouts: ???
online_sampling_ratio: 0.5
# `online_env_seed` is used for environments for online training data rollouts.
online_env_seed: ???
eval_freq: ???
log_freq: 200
save_checkpoint: true
# Checkpoint is saved every `save_freq` training iterations and after the last training step.
save_freq: ???
log_freq: 250
save_model: true
num_workers: 4
batch_size: ???
image_transforms:
# These transforms are all using standard torchvision.transforms.v2
# You can find out how these transformations affect images here:
# https://pytorch.org/vision/0.18/auto_examples/transforms/plot_transforms_illustrations.html
# We use a custom RandomSubsetApply container to sample them.
# For each transform, the following parameters are available:
# weight: This represents the multinomial probability (with no replacement)
# used for sampling the transform. If the sum of the weights is not 1,
# they will be normalized.
# min_max: Lower & upper bound respectively used for sampling the transform's parameter
# (following uniform distribution) when it's applied.
# Set this flag to `true` to enable transforms during training
enable: false
# This is the maximum number of transforms (sampled from these below) that will be applied to each frame.
# It's an integer in the interval [1, number of available transforms].
max_num_transforms: 3
# By default, transforms are applied in Torchvision's suggested order (shown below).
# Set this to True to apply them in a random order.
random_order: false
brightness:
weight: 1
min_max: [0.8, 1.2]
contrast:
weight: 1
min_max: [0.8, 1.2]
saturation:
weight: 1
min_max: [0.5, 1.5]
hue:
weight: 1
min_max: [-0.05, 0.05]
sharpness:
weight: 1
min_max: [0.8, 1.2]
eval:
n_episodes: 1
@@ -35,8 +88,8 @@ eval:
use_async_envs: false
wandb:
enable: true
# Set to true to disable saving an artifact despite save_model == True
enable: false
# Set to true to disable saving an artifact despite save_checkpoint == True
disable_artifact: false
project: lerobot
notes: ""

View File

@@ -5,10 +5,10 @@ fps: 50
env:
name: aloha
task: AlohaInsertion-v0
from_pixels: True
pixels_only: False
image_size: [3, 480, 640]
episode_length: 400
fps: ${fps}
state_dim: 14
action_dim: 14
fps: ${fps}
episode_length: 400
gym:
obs_type: pixels_agent_pos
render_mode: rgb_array

View File

@@ -0,0 +1,13 @@
# @package _global_
fps: 30
env:
name: dora
task: DoraAloha-v0
state_dim: 14
action_dim: 14
fps: ${fps}
episode_length: 400
gym:
fps: ${fps}

View File

@@ -5,10 +5,13 @@ fps: 10
env:
name: pusht
task: PushT-v0
from_pixels: True
pixels_only: False
image_size: 96
episode_length: 300
fps: ${fps}
state_dim: 2
action_dim: 2
fps: ${fps}
episode_length: 300
gym:
obs_type: pixels_agent_pos
render_mode: rgb_array
visualization_width: 384
visualization_height: 384

View File

@@ -5,10 +5,13 @@ fps: 15
env:
name: xarm
task: XarmLift-v0
from_pixels: True
pixels_only: False
image_size: 84
episode_length: 25
fps: ${fps}
state_dim: 4
action_dim: 4
fps: ${fps}
episode_length: 25
gym:
obs_type: pixels_agent_pos
render_mode: rgb_array
visualization_width: 384
visualization_height: 384

View File

@@ -3,13 +3,18 @@
seed: 1000
dataset_repo_id: lerobot/aloha_sim_insertion_human
override_dataset_stats:
observation.images.top:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
offline_steps: 100000
online_steps: 0
eval_freq: 10000
save_freq: 100000
log_freq: 250
save_model: true
eval_freq: 20000
save_freq: 20000
save_checkpoint: true
batch_size: 8
lr: 1e-5
@@ -18,12 +23,6 @@ training:
grad_clip_norm: 10
online_steps_between_rollouts: 1
override_dataset_stats:
observation.images.top:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
@@ -66,6 +65,9 @@ policy:
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1
# VAE.
use_vae: true
@@ -73,7 +75,7 @@ policy:
n_vae_encoder_layers: 4
# Inference.
use_temporal_aggregation: false
temporal_ensemble_momentum: null
# Training and loss computation.
dropout: 0.1

View File

@@ -0,0 +1,114 @@
# @package _global_
# Use `act_real.yaml` to train on real-world Aloha/Aloha2 datasets.
# Compared to `act.yaml`, it contains 4 cameras (i.e. cam_right_wrist, cam_left_wrist, images,
# cam_low) instead of 1 camera (i.e. top). Also, `training.eval_freq` is set to -1. This config is used
# to evaluate checkpoints at a certain frequency of training steps. When it is set to -1, it deactivates evaluation.
# This is because real-world evaluation is done through [dora-lerobot](https://github.com/dora-rs/dora-lerobot).
# Look at its README for more information on how to evaluate a checkpoint in the real-world.
#
# Example of usage for training:
# ```bash
# python lerobot/scripts/train.py \
# policy=act_real \
# env=dora_aloha_real
# ```
seed: 1000
dataset_repo_id: lerobot/aloha_static_vinh_cup
override_dataset_stats:
observation.images.cam_right_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_left_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_high:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_low:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 100000
online_steps: 0
eval_freq: -1
save_freq: 20000
save_checkpoint: true
batch_size: 8
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
online_steps_between_rollouts: 1
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
eval:
n_episodes: 50
batch_size: 50
# See `configuration_act.py` for more details.
policy:
name: act
# Input / output structure.
n_obs_steps: 1
chunk_size: 100 # chunk_size
n_action_steps: 100
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.cam_right_wrist: [3, 480, 640]
observation.images.cam_left_wrist: [3, 480, 640]
observation.images.cam_high: [3, 480, 640]
observation.images.cam_low: [3, 480, 640]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.images.cam_right_wrist: mean_std
observation.images.cam_left_wrist: mean_std
observation.images.cam_high: mean_std
observation.images.cam_low: mean_std
observation.state: mean_std
output_normalization_modes:
action: mean_std
# Architecture.
# Vision backbone.
vision_backbone: resnet18
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
replace_final_stride_with_dilation: false
# Transformer layers.
pre_norm: false
dim_model: 512
n_heads: 8
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1
# VAE.
use_vae: true
latent_dim: 32
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_momentum: null
# Training and loss computation.
dropout: 0.1
kl_weight: 10.0

View File

@@ -0,0 +1,110 @@
# @package _global_
# Use `act_real_no_state.yaml` to train on real-world Aloha/Aloha2 datasets when cameras are moving (e.g. wrist cameras)
# Compared to `act_real.yaml`, it is camera only and does not use the state as input which is vector of robot joint positions.
# We validated experimentaly that not using state reaches better success rate. Our hypothesis is that `act_real.yaml` might
# overfits to the state, because the images are more complex to learn from since they are moving.
#
# Example of usage for training:
# ```bash
# python lerobot/scripts/train.py \
# policy=act_real_no_state \
# env=dora_aloha_real
# ```
seed: 1000
dataset_repo_id: lerobot/aloha_static_vinh_cup
override_dataset_stats:
observation.images.cam_right_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_left_wrist:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_high:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.cam_low:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 100000
online_steps: 0
eval_freq: -1
save_freq: 20000
save_checkpoint: true
batch_size: 8
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
online_steps_between_rollouts: 1
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
eval:
n_episodes: 50
batch_size: 50
# See `configuration_act.py` for more details.
policy:
name: act
# Input / output structure.
n_obs_steps: 1
chunk_size: 100 # chunk_size
n_action_steps: 100
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.cam_right_wrist: [3, 480, 640]
observation.images.cam_left_wrist: [3, 480, 640]
observation.images.cam_high: [3, 480, 640]
observation.images.cam_low: [3, 480, 640]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.images.cam_right_wrist: mean_std
observation.images.cam_left_wrist: mean_std
observation.images.cam_high: mean_std
observation.images.cam_low: mean_std
output_normalization_modes:
action: mean_std
# Architecture.
# Vision backbone.
vision_backbone: resnet18
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
replace_final_stride_with_dilation: false
# Transformer layers.
pre_norm: false
dim_model: 512
n_heads: 8
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1
# VAE.
use_vae: true
latent_dim: 32
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_momentum: null
# Training and loss computation.
dropout: 0.1
kl_weight: 10.0

View File

@@ -7,13 +7,26 @@
seed: 100000
dataset_repo_id: lerobot/pusht
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
observation.image:
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
# from the original codebase, but we should remove these and train our own pretrained model
observation.state:
min: [13.456424, 32.938293]
max: [496.14618, 510.9579]
action:
min: [12.0, 25.0]
max: [511.0, 511.0]
training:
offline_steps: 200000
online_steps: 0
eval_freq: 5000
save_freq: 5000
log_freq: 250
save_model: true
eval_freq: 25000
save_freq: 25000
save_checkpoint: true
batch_size: 64
grad_clip_norm: 10
@@ -30,24 +43,14 @@ training:
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1 - ${policy.n_obs_steps} + ${policy.horizon})]"
# The original implementation doesn't sample frames for the last 7 steps,
# which avoids excessive padding and leads to improved training results.
drop_n_last_frames: 7 # ${policy.horizon} - ${policy.n_action_steps} - ${policy.n_obs_steps} + 1
eval:
n_episodes: 50
batch_size: 50
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
observation.image:
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
# from the original codebase, but we should remove these and train our own pretrained model
observation.state:
min: [13.456424, 32.938293]
max: [496.14618, 510.9579]
action:
min: [12.0, 25.0]
max: [511.0, 511.0]
policy:
name: diffusion
@@ -85,6 +88,7 @@ policy:
diffusion_step_embed_dim: 128
use_film_scale_modulation: True
# Noise scheduler.
noise_scheduler_type: DDPM
num_train_timesteps: 100
beta_schedule: squaredcos_cap_v2
beta_start: 0.0001
@@ -94,7 +98,7 @@ policy:
clip_sample_range: 1.0
# Inference
num_inference_steps: 100
num_inference_steps: null # if not provided, defaults to `num_train_timesteps`
# Loss computation
do_mask_loss_for_padding: false

View File

@@ -1,15 +1,17 @@
# @package _global_
seed: 1
dataset_repo_id: lerobot/xarm_lift_medium_replay
dataset_repo_id: lerobot/xarm_lift_medium
training:
offline_steps: 25000
online_steps: 25000
# TODO(alexander-soare): uncomment when online training gets reinstated
online_steps: 0 # 25000 not implemented yet
eval_freq: 5000
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: 10000
log_freq: 100
batch_size: 256
grad_clip_norm: 10.0
@@ -53,7 +55,7 @@ policy:
discount: 0.9
# Inference.
use_mpc: false
use_mpc: true
cem_iterations: 6
max_std: 2.0
min_std: 0.05

View File

@@ -0,0 +1,103 @@
# @package _global_
# Defaults for training for the PushT dataset.
seed: 100000
dataset_repo_id: lerobot/pusht
override_dataset_stats:
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
observation.image:
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
# from the original codebase, but we should remove these and train our own pretrained model
observation.state:
min: [13.456424, 32.938293]
max: [496.14618, 510.9579]
action:
min: [12.0, 25.0]
max: [511.0, 511.0]
training:
offline_steps: 250000
online_steps: 0
eval_freq: 25000
save_freq: 25000
save_checkpoint: true
batch_size: 64
grad_clip_norm: 10
lr: 1.0e-4
lr_scheduler: cosine
lr_warmup_steps: 500
adam_betas: [0.95, 0.999]
adam_eps: 1.0e-8
adam_weight_decay: 1.0e-6
online_steps_between_rollouts: 1
# VQ-BeT specific
vqvae_lr: 1.0e-3
n_vqvae_training_steps: 20000
bet_weight_decay: 2e-4
bet_learning_rate: 5.5e-5
bet_betas: [0.9, 0.999]
delta_timestamps:
observation.image: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
observation.state: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, 1)]"
action: "[i / ${fps} for i in range(1 - ${policy.n_obs_steps}, ${policy.n_action_pred_token} + ${policy.action_chunk_size} - 1)]"
eval:
n_episodes: 50
batch_size: 50
policy:
name: vqbet
# Input / output structure.
n_obs_steps: 5
n_action_pred_token: 7
action_chunk_size: 5
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.image: [3, 96, 96]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.image: mean_std
observation.state: min_max
output_normalization_modes:
action: min_max
# Architecture / modeling.
# Vision backbone.
vision_backbone: resnet18
crop_shape: [84, 84]
crop_is_random: True
pretrained_backbone_weights: null
use_group_norm: True
spatial_softmax_num_keypoints: 32
# VQ-VAE
n_vqvae_training_steps: ${training.n_vqvae_training_steps}
vqvae_n_embed: 16
vqvae_embedding_dim: 256
vqvae_enc_hidden_dim: 128
# VQ-BeT
gpt_block_size: 500
gpt_input_dim: 512
gpt_output_dim: 512
gpt_n_layer: 8
gpt_n_head: 8
gpt_hidden_dim: 512
dropout: 0.1
mlp_hidden_dim: 1024
offset_loss_weight: 10000.
primary_code_loss_weight: 5.0
secondary_code_loss_weight: 0.5
bet_softmax_temperature: 0.1
sequentially_select: False

View File

@@ -1,36 +1,83 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Use this script to get a quick summary of your system config.
It should be able to run without any of LeRobot's dependencies or LeRobot itself installed.
"""
import platform
import huggingface_hub
HAS_HF_HUB = True
HAS_HF_DATASETS = True
HAS_NP = True
HAS_TORCH = True
HAS_LEROBOT = True
# import dataset
import numpy as np
import torch
try:
import huggingface_hub
except ImportError:
HAS_HF_HUB = False
from lerobot import __version__ as version
try:
import datasets
except ImportError:
HAS_HF_DATASETS = False
pt_version = torch.__version__
pt_cuda_available = torch.cuda.is_available()
pt_cuda_available = torch.cuda.is_available()
cuda_version = torch._C._cuda_getCompiledVersion() if torch.version.cuda is not None else "N/A"
try:
import numpy as np
except ImportError:
HAS_NP = False
try:
import torch
except ImportError:
HAS_TORCH = False
try:
import lerobot
except ImportError:
HAS_LEROBOT = False
lerobot_version = lerobot.__version__ if HAS_LEROBOT else "N/A"
hf_hub_version = huggingface_hub.__version__ if HAS_HF_HUB else "N/A"
hf_datasets_version = datasets.__version__ if HAS_HF_DATASETS else "N/A"
np_version = np.__version__ if HAS_NP else "N/A"
torch_version = torch.__version__ if HAS_TORCH else "N/A"
torch_cuda_available = torch.cuda.is_available() if HAS_TORCH else "N/A"
cuda_version = torch._C._cuda_getCompiledVersion() if HAS_TORCH and torch.version.cuda is not None else "N/A"
# TODO(aliberts): refactor into an actual command `lerobot env`
def display_sys_info() -> dict:
"""Run this to get basic system info to help for tracking issues & bugs."""
info = {
"`lerobot` version": version,
"`lerobot` version": lerobot_version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
# TODO(aliberts): Add dataset when https://github.com/huggingface/lerobot/pull/73 is merged
# "Dataset version": dataset.__version__,
"Numpy version": np.__version__,
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"Huggingface_hub version": hf_hub_version,
"Dataset version": hf_datasets_version,
"Numpy version": np_version,
"PyTorch version (GPU?)": f"{torch_version} ({torch_cuda_available})",
"Cuda version": cuda_version,
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
# "Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the last point.\n")
print(format_dict(info))
return info

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluate a policy on an environment by running rollouts and computing metrics.
Usage examples:
@@ -13,7 +28,7 @@ OR, you want to evaluate a model checkpoint from the LeRobot training script for
```
python lerobot/scripts/eval.py \
-p outputs/train/diffusion_pusht/checkpoints/005000 \
-p outputs/train/diffusion_pusht/checkpoints/005000/pretrained_model \
eval.n_episodes=10
```
@@ -31,6 +46,7 @@ import json
import logging
import threading
import time
from contextlib import nullcontext
from copy import deepcopy
from datetime import datetime as dt
from pathlib import Path
@@ -45,7 +61,7 @@ from huggingface_hub import snapshot_download
from huggingface_hub.utils._errors import RepositoryNotFoundError
from huggingface_hub.utils._validators import HFValidationError
from PIL import Image as PILImage
from torch import Tensor
from torch import Tensor, nn
from tqdm import trange
from lerobot.common.datasets.factory import make_dataset
@@ -83,13 +99,13 @@ def rollout(
"reward": A (batch, sequence) tensor of rewards received for applying the actions.
"success": A (batch, sequence) tensor of success conditions (the only time this can be True is upon
environment termination/truncation).
"don": A (batch, sequence) tensor of **cumulative** done conditions. For any given batch element,
"done": A (batch, sequence) tensor of **cumulative** done conditions. For any given batch element,
the first True is followed by True's all the way till the end. This can be used for masking
extraneous elements from the sequences above.
Args:
env: The batch of environments.
policy: The policy.
policy: The policy. Must be a PyTorch nn module.
seeds: The environments are seeded once at the start of the rollout. If provided, this argument
specifies the seeds for each of the environments.
return_observations: Whether to include all observations in the returned rollout data. Observations
@@ -100,6 +116,7 @@ def rollout(
Returns:
The dictionary described above.
"""
assert isinstance(policy, nn.Module), "Policy must be a PyTorch nn module."
device = get_device_from_parameters(policy)
# Reset the policy and environments.
@@ -193,7 +210,7 @@ def eval_policy(
policy: torch.nn.Module,
n_episodes: int,
max_episodes_rendered: int = 0,
video_dir: Path | None = None,
videos_dir: Path | None = None,
return_episode_data: bool = False,
start_seed: int | None = None,
enable_progbar: bool = False,
@@ -205,7 +222,7 @@ def eval_policy(
policy: The policy.
n_episodes: The number of episodes to evaluate.
max_episodes_rendered: Maximum number of episodes to render into videos.
video_dir: Where to save rendered videos.
videos_dir: Where to save rendered videos.
return_episode_data: Whether to return episode data for online training. Incorporates the data into
the "episodes" key of the returned dictionary.
start_seed: The first seed to use for the first individual rollout. For all subsequent rollouts the
@@ -215,6 +232,10 @@ def eval_policy(
Returns:
Dictionary with metrics and data regarding the rollouts.
"""
if max_episodes_rendered > 0 and not videos_dir:
raise ValueError("If max_episodes_rendered > 0, videos_dir must be provided.")
assert isinstance(policy, Policy)
start = time.time()
policy.eval()
@@ -255,11 +276,16 @@ def eval_policy(
if max_episodes_rendered > 0:
ep_frames: list[np.ndarray] = []
seeds = range(start_seed + (batch_ix * env.num_envs), start_seed + ((batch_ix + 1) * env.num_envs))
if start_seed is None:
seeds = None
else:
seeds = range(
start_seed + (batch_ix * env.num_envs), start_seed + ((batch_ix + 1) * env.num_envs)
)
rollout_data = rollout(
env,
policy,
seeds=seeds,
seeds=list(seeds) if seeds else None,
return_observations=return_episode_data,
render_callback=render_frame if max_episodes_rendered > 0 else None,
enable_progbar=enable_inner_progbar,
@@ -269,7 +295,8 @@ def eval_policy(
# this won't be included).
n_steps = rollout_data["done"].shape[1]
# Note: this relies on a property of argmax: that it returns the first occurrence as a tiebreaker.
done_indices = torch.argmax(rollout_data["done"].to(int), axis=1) # (batch_size, rollout_steps)
done_indices = torch.argmax(rollout_data["done"].to(int), dim=1)
# Make a mask with shape (batch, n_steps) to mask out rollout data after the first done
# (batch-element-wise). Note the `done_indices + 1` to make sure to keep the data from the done step.
mask = (torch.arange(n_steps) <= einops.repeat(done_indices + 1, "b -> b s", s=n_steps)).int()
@@ -280,8 +307,12 @@ def eval_policy(
max_rewards.extend(batch_max_rewards.tolist())
batch_successes = einops.reduce((rollout_data["success"] * mask), "b n -> b", "any")
all_successes.extend(batch_successes.tolist())
all_seeds.extend(seeds)
if seeds:
all_seeds.extend(seeds)
else:
all_seeds.append(None)
# FIXME: episode_data is either None or it doesn't exist
if return_episode_data:
this_episode_data = _compile_episode_data(
rollout_data,
@@ -331,8 +362,9 @@ def eval_policy(
):
if n_episodes_rendered >= max_episodes_rendered:
break
video_dir.mkdir(parents=True, exist_ok=True)
video_path = video_dir / f"eval_episode_{n_episodes_rendered}.mp4"
videos_dir.mkdir(parents=True, exist_ok=True)
video_path = videos_dir / f"eval_episode_{n_episodes_rendered}.mp4"
video_paths.append(str(video_path))
thread = threading.Thread(
target=write_video,
@@ -487,25 +519,23 @@ def _compile_episode_data(
}
def eval(
pretrained_policy_path: str | None = None,
def main(
pretrained_policy_path: Path | None = None,
hydra_cfg_path: str | None = None,
out_dir: str | None = None,
config_overrides: list[str] | None = None,
):
assert (pretrained_policy_path is None) ^ (hydra_cfg_path is None)
if hydra_cfg_path is None:
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", config_overrides)
if pretrained_policy_path is not None:
hydra_cfg = init_hydra_config(str(pretrained_policy_path / "config.yaml"), config_overrides)
else:
hydra_cfg = init_hydra_config(hydra_cfg_path, config_overrides)
out_dir = (
f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{hydra_cfg.env.name}_{hydra_cfg.policy.name}"
)
if out_dir is None:
raise NotImplementedError()
out_dir = f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{hydra_cfg.env.name}_{hydra_cfg.policy.name}"
# Check device is available
get_safe_torch_device(hydra_cfg.device, log=True)
device = get_safe_torch_device(hydra_cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
@@ -518,22 +548,25 @@ def eval(
logging.info("Making policy.")
if hydra_cfg_path is None:
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=pretrained_policy_path)
policy = make_policy(hydra_cfg=hydra_cfg, pretrained_policy_name_or_path=str(pretrained_policy_path))
else:
# Note: We need the dataset stats to pass to the policy's normalization modules.
policy = make_policy(hydra_cfg=hydra_cfg, dataset_stats=make_dataset(hydra_cfg).stats)
assert isinstance(policy, nn.Module)
policy.eval()
info = eval_policy(
env,
policy,
hydra_cfg.eval.n_episodes,
max_episodes_rendered=10,
video_dir=Path(out_dir) / "eval",
start_seed=hydra_cfg.seed,
enable_progbar=True,
enable_inner_progbar=True,
)
with torch.no_grad(), torch.autocast(device_type=device.type) if hydra_cfg.use_amp else nullcontext():
info = eval_policy(
env,
policy,
hydra_cfg.eval.n_episodes,
max_episodes_rendered=10,
videos_dir=Path(out_dir) / "videos",
start_seed=hydra_cfg.seed,
enable_progbar=True,
enable_inner_progbar=True,
)
print(info["aggregated"])
# Save info
@@ -569,6 +602,13 @@ if __name__ == "__main__":
),
)
parser.add_argument("--revision", help="Optionally provide the Hugging Face Hub revision ID.")
parser.add_argument(
"--out-dir",
help=(
"Where to save the evaluation outputs. If not provided, outputs are saved in "
"outputs/eval/{timestamp}_{env_name}_{policy_name}"
),
)
parser.add_argument(
"overrides",
nargs="*",
@@ -577,7 +617,7 @@ if __name__ == "__main__":
args = parser.parse_args()
if args.pretrained_policy_name_or_path is None:
eval(hydra_cfg_path=args.config, config_overrides=args.overrides)
main(hydra_cfg_path=args.config, out_dir=args.out_dir, config_overrides=args.overrides)
else:
try:
pretrained_policy_path = Path(
@@ -601,4 +641,8 @@ if __name__ == "__main__":
"repo ID, nor is it an existing local directory."
)
eval(pretrained_policy_path=pretrained_policy_path, config_overrides=args.overrides)
main(
pretrained_policy_path=pretrained_policy_path,
out_dir=args.out_dir,
config_overrides=args.overrides,
)

View File

@@ -1,87 +1,87 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Use this script to convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub,
or store it locally. LeRobot dataset format is lightweight, fast to load from, and does not require any
installation of neural net specific packages like pytorch, tensorflow, jax.
Example:
Example of how to download raw datasets, convert them into LeRobotDataset format, and push them to the hub:
```
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id pusht \
--raw-dir data/pusht_raw \
--raw-format pusht_zarr \
--community-id lerobot \
--revision v1.2 \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
--repo-id lerobot/pusht
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id xarm_lift_medium \
--raw-dir data/xarm_lift_medium_raw \
--raw-format xarm_pkl \
--community-id lerobot \
--revision v1.2 \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
--repo-id lerobot/xarm_lift_medium
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id aloha_sim_insertion_scripted \
--raw-dir data/aloha_sim_insertion_scripted_raw \
--raw-format aloha_hdf5 \
--community-id lerobot \
--revision v1.2 \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
--repo-id lerobot/aloha_sim_insertion_scripted
python lerobot/scripts/push_dataset_to_hub.py \
--data-dir data \
--dataset-id umi_cup_in_the_wild \
--raw-dir data/umi_cup_in_the_wild_raw \
--raw-format umi_zarr \
--community-id lerobot \
--revision v1.2 \
--dry-run 1 \
--save-to-disk 1 \
--save-tests-to-disk 0 \
--debug 1
--repo-id lerobot/umi_cup_in_the_wild
```
"""
import argparse
import json
import shutil
import warnings
from pathlib import Path
from typing import Any
import torch
from huggingface_hub import HfApi
from huggingface_hub import HfApi, create_branch
from safetensors.torch import save_file
from lerobot.common.datasets.compute_stats import compute_stats
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
from lerobot.common.datasets.push_dataset_to_hub.compute_stats import compute_stats
from lerobot.common.datasets.utils import flatten_dict
def get_from_raw_to_lerobot_format_fn(raw_format):
def get_from_raw_to_lerobot_format_fn(raw_format: str):
if raw_format == "pusht_zarr":
from lerobot.common.datasets.push_dataset_to_hub.pusht_zarr_format import from_raw_to_lerobot_format
elif raw_format == "umi_zarr":
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import from_raw_to_lerobot_format
elif raw_format == "aloha_hdf5":
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import from_raw_to_lerobot_format
elif raw_format == "dora_parquet":
from lerobot.common.datasets.push_dataset_to_hub.dora_parquet_format import from_raw_to_lerobot_format
elif raw_format == "xarm_pkl":
from lerobot.common.datasets.push_dataset_to_hub.xarm_pkl_format import from_raw_to_lerobot_format
elif raw_format == "cam_png":
from lerobot.common.datasets.push_dataset_to_hub.cam_png_format import from_raw_to_lerobot_format
else:
raise ValueError(raw_format)
raise ValueError(
f"The selected {raw_format} can't be found. Did you add it to `lerobot/scripts/push_dataset_to_hub.py::get_from_raw_to_lerobot_format_fn`?"
)
return from_raw_to_lerobot_format
def save_meta_data(info, stats, episode_data_index, meta_data_dir):
def save_meta_data(
info: dict[str, Any], stats: dict, episode_data_index: dict[str, list], meta_data_dir: Path
):
meta_data_dir.mkdir(parents=True, exist_ok=True)
# save info
@@ -99,7 +99,7 @@ def save_meta_data(info, stats, episode_data_index, meta_data_dir):
save_file(episode_data_index, ep_data_idx_path)
def push_meta_data_to_hub(repo_id, meta_data_dir, revision):
def push_meta_data_to_hub(repo_id: str, meta_data_dir: str | Path, revision: str | None):
"""Expect all meta data files to be all stored in a single "meta_data" directory.
On the hugging face repositery, they will be uploaded in a "meta_data" directory at the root.
"""
@@ -113,7 +113,7 @@ def push_meta_data_to_hub(repo_id, meta_data_dir, revision):
)
def push_videos_to_hub(repo_id, videos_dir, revision):
def push_videos_to_hub(repo_id: str, videos_dir: str | Path, revision: str | None):
"""Expect mp4 files to be all stored in a single "videos" directory.
On the hugging face repositery, they will be uploaded in a "videos" directory at the root.
"""
@@ -129,55 +129,73 @@ def push_videos_to_hub(repo_id, videos_dir, revision):
def push_dataset_to_hub(
data_dir: Path,
dataset_id: str,
raw_format: str | None,
community_id: str,
revision: str,
dry_run: bool,
save_to_disk: bool,
tests_data_dir: Path,
save_tests_to_disk: bool,
fps: int | None,
video: bool,
batch_size: int,
num_workers: int,
debug: bool,
raw_dir: Path,
raw_format: str,
repo_id: str,
push_to_hub: bool = True,
local_dir: Path | None = None,
fps: int | None = None,
video: bool = True,
batch_size: int = 32,
num_workers: int = 8,
episodes: list[int] | None = None,
force_override: bool = False,
cache_dir: Path = Path("/tmp"),
tests_data_dir: Path | None = None,
):
repo_id = f"{community_id}/{dataset_id}"
raw_dir = data_dir / f"{dataset_id}_raw"
out_dir = data_dir / repo_id
meta_data_dir = out_dir / "meta_data"
videos_dir = out_dir / "videos"
tests_out_dir = tests_data_dir / repo_id
tests_meta_data_dir = tests_out_dir / "meta_data"
tests_videos_dir = tests_out_dir / "videos"
if out_dir.exists():
shutil.rmtree(out_dir)
if tests_out_dir.exists() and save_tests_to_disk:
shutil.rmtree(tests_out_dir)
# Check repo_id is well formated
if len(repo_id.split("/")) != 2:
raise ValueError(
f"`repo_id` is expected to contain a community or user id `/` the name of the dataset (e.g. 'lerobot/pusht'), but instead contains '{repo_id}'."
)
user_id, dataset_id = repo_id.split("/")
# Robustify when `raw_dir` is str instead of Path
raw_dir = Path(raw_dir)
if not raw_dir.exists():
download_raw(raw_dir, dataset_id)
raise NotADirectoryError(
f"{raw_dir} does not exists. Check your paths or run this command to download an existing raw dataset on the hub:"
f"python lerobot/common/datasets/push_dataset_to_hub/_download_raw.py --raw-dir your/raw/dir --repo-id your/repo/id_raw"
)
if local_dir:
# Robustify when `local_dir` is str instead of Path
local_dir = Path(local_dir)
# Send warning if local_dir isn't well formated
if local_dir.parts[-2] != user_id or local_dir.parts[-1] != dataset_id:
warnings.warn(
f"`local_dir` ({local_dir}) doesn't contain a community or user id `/` the name of the dataset that match the `repo_id` (e.g. 'data/lerobot/pusht'). Following this naming convention is advised, but not mandatory.",
stacklevel=1,
)
# Check we don't override an existing `local_dir` by mistake
if local_dir.exists():
if force_override:
shutil.rmtree(local_dir)
else:
raise ValueError(f"`local_dir` already exists ({local_dir}). Use `--force-override 1`.")
meta_data_dir = local_dir / "meta_data"
videos_dir = local_dir / "videos"
else:
# Temporary directory used to store images, videos, meta_data
meta_data_dir = Path(cache_dir) / "meta_data"
videos_dir = Path(cache_dir) / "videos"
if raw_format is None:
# TODO(rcadene, adilzouitine): implement auto_find_raw_format
raise NotImplementedError()
# raw_format = auto_find_raw_format(raw_dir)
from_raw_to_lerobot_format = get_from_raw_to_lerobot_format_fn(raw_format)
# convert dataset from original raw format to LeRobot format
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(raw_dir, out_dir, fps, video, debug)
from_raw_to_lerobot_format = get_from_raw_to_lerobot_format_fn(raw_format)
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(
raw_dir, videos_dir, fps, video, episodes
)
lerobot_dataset = LeRobotDataset.from_preloaded(
repo_id=repo_id,
version=revision,
hf_dataset=hf_dataset,
episode_data_index=episode_data_index,
info=info,
@@ -185,99 +203,81 @@ def push_dataset_to_hub(
)
stats = compute_stats(lerobot_dataset, batch_size, num_workers)
if save_to_disk:
if local_dir:
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
hf_dataset.save_to_disk(str(out_dir / "train"))
hf_dataset.save_to_disk(str(local_dir / "train"))
if not dry_run or save_to_disk:
if push_to_hub or local_dir:
# mandatory for upload
save_meta_data(info, stats, episode_data_index, meta_data_dir)
if not dry_run:
hf_dataset.push_to_hub(repo_id, token=True, revision="main")
hf_dataset.push_to_hub(repo_id, token=True, revision=revision)
if push_to_hub:
hf_dataset.push_to_hub(repo_id, revision="main")
push_meta_data_to_hub(repo_id, meta_data_dir, revision="main")
push_meta_data_to_hub(repo_id, meta_data_dir, revision=revision)
if video:
push_videos_to_hub(repo_id, videos_dir, revision="main")
push_videos_to_hub(repo_id, videos_dir, revision=revision)
create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION)
if save_tests_to_disk:
if tests_data_dir:
# get the first episode
num_items_first_ep = episode_data_index["to"][0] - episode_data_index["from"][0]
test_hf_dataset = hf_dataset.select(range(num_items_first_ep))
episode_data_index = {k: v[:1] for k, v in episode_data_index.items()}
test_hf_dataset = test_hf_dataset.with_format(None)
test_hf_dataset.save_to_disk(str(tests_out_dir / "train"))
test_hf_dataset.save_to_disk(str(tests_data_dir / repo_id / "train"))
# copy meta data to tests directory
shutil.copytree(meta_data_dir, tests_meta_data_dir)
tests_meta_data = tests_data_dir / repo_id / "meta_data"
save_meta_data(info, stats, episode_data_index, tests_meta_data)
# copy videos of first episode to tests directory
episode_index = 0
tests_videos_dir = tests_data_dir / repo_id / "videos"
tests_videos_dir.mkdir(parents=True, exist_ok=True)
for key in lerobot_dataset.video_frame_keys:
fname = f"{key}_episode_{episode_index:06d}.mp4"
shutil.copy(videos_dir / fname, tests_videos_dir / fname)
if local_dir is None:
# clear cache
shutil.rmtree(meta_data_dir)
shutil.rmtree(videos_dir)
return lerobot_dataset
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data-dir",
"--raw-dir",
type=Path,
required=True,
help="Root directory containing datasets (e.g. `data` or `tmp/data` or `/tmp/lerobot/data`).",
)
parser.add_argument(
"--dataset-id",
type=str,
required=True,
help="Name of the dataset (e.g. `pusht`, `aloha_sim_insertion_human`), which matches the folder where the data is stored (e.g. `data/pusht`).",
help="Directory containing input raw datasets (e.g. `data/aloha_mobile_chair_raw` or `data/pusht_raw).",
)
# TODO(rcadene): add automatic detection of the format
parser.add_argument(
"--raw-format",
type=str,
help="Dataset type (e.g. `pusht_zarr`, `umi_zarr`, `aloha_hdf5`, `xarm_pkl`). If not provided, will be detected automatically.",
required=True,
help="Dataset type (e.g. `pusht_zarr`, `umi_zarr`, `aloha_hdf5`, `xarm_pkl`, `dora_parquet`).",
)
parser.add_argument(
"--community-id",
"--repo-id",
type=str,
default="lerobot",
help="Community or user ID under which the dataset will be hosted on the Hub.",
required=True,
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset (e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
)
parser.add_argument(
"--revision",
type=str,
default=CODEBASE_VERSION,
help="Codebase version used to generate the dataset.",
)
parser.add_argument(
"--dry-run",
type=int,
default=0,
help="Run everything without uploading to hub, for testing purposes or storing a dataset locally.",
)
parser.add_argument(
"--save-to-disk",
type=int,
default=1,
help="Save the dataset in the directory specified by `--data-dir`.",
)
parser.add_argument(
"--tests-data-dir",
"--local-dir",
type=Path,
default="tests/data",
help="Directory containing tests artifacts datasets.",
help="When provided, writes the dataset converted to LeRobotDataset format in this directory (e.g. `data/lerobot/aloha_mobile_chair`).",
)
parser.add_argument(
"--save-tests-to-disk",
"--push-to-hub",
type=int,
default=1,
help="Save the dataset with 1 episode used for unit tests in the directory specified by `--tests-data-dir`.",
help="Upload to hub.",
)
parser.add_argument(
"--fps",
@@ -299,14 +299,25 @@ def main():
parser.add_argument(
"--num-workers",
type=int,
default=16,
default=8,
help="Number of processes of Dataloader for computing the dataset statistics.",
)
parser.add_argument(
"--debug",
"--episodes",
type=int,
nargs="*",
help="When provided, only converts the provided episodes (e.g `--episodes 2 3 4`). Useful to test the code on 1 episode.",
)
parser.add_argument(
"--force-override",
type=int,
default=0,
help="Debug mode process the first episode only.",
help="When set to 1, removes provided output directory if it already exists. By default, raises a ValueError exception.",
)
parser.add_argument(
"--tests-data-dir",
type=Path,
help="When provided, save tests artifacts into the given directory for (e.g. `--tests-data-dir tests/data/lerobot/pusht`).",
)
args = parser.parse_args()

View File

@@ -1,23 +1,45 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from copy import deepcopy
from contextlib import nullcontext
from pathlib import Path
from pprint import pformat
import datasets
import hydra
import torch
from datasets import concatenate_datasets
from datasets.utils import disable_progress_bars, enable_progress_bars
from deepdiff import DeepDiff
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
from torch import nn
from torch.cuda.amp import GradScaler
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.factory import make_dataset, resolve_delta_timestamps
from lerobot.common.datasets.lerobot_dataset import MultiLeRobotDataset
from lerobot.common.datasets.sampler import EpisodeAwareSampler
from lerobot.common.datasets.utils import cycle
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.policy_protocol import PolicyWithUpdate
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
init_hydra_config,
init_logging,
set_global_seed,
)
@@ -31,12 +53,14 @@ def make_optimizer_and_scheduler(cfg, policy):
"params": [
p
for n, p in policy.named_parameters()
if not n.startswith("backbone") and p.requires_grad
if not n.startswith("model.backbone") and p.requires_grad
]
},
{
"params": [
p for n, p in policy.named_parameters() if n.startswith("backbone") and p.requires_grad
p
for n, p in policy.named_parameters()
if n.startswith("model.backbone") and p.requires_grad
],
"lr": cfg.training.lr_backbone,
},
@@ -53,7 +77,6 @@ def make_optimizer_and_scheduler(cfg, policy):
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
assert cfg.training.online_steps == 0, "Diffusion Policy does not handle online training."
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
@@ -65,26 +88,51 @@ def make_optimizer_and_scheduler(cfg, policy):
elif policy.name == "tdmpc":
optimizer = torch.optim.Adam(policy.parameters(), cfg.training.lr)
lr_scheduler = None
elif cfg.policy.name == "vqbet":
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTOptimizer, VQBeTScheduler
optimizer = VQBeTOptimizer(policy, cfg)
lr_scheduler = VQBeTScheduler(optimizer, cfg)
else:
raise NotImplementedError()
return optimizer, lr_scheduler
def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
start_time = time.time()
def update_policy(
policy,
batch,
optimizer,
grad_clip_norm,
grad_scaler: GradScaler,
lr_scheduler=None,
use_amp: bool = False,
):
"""Returns a dictionary of items for logging."""
start_time = time.perf_counter()
device = get_device_from_parameters(policy)
policy.train()
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
loss.backward()
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
output_dict = policy.forward(batch)
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
loss = output_dict["loss"]
grad_scaler.scale(loss).backward()
# Unscale the graident of the optimzer's assigned params in-place **prior to gradient clipping**.
grad_scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(
policy.parameters(),
grad_clip_norm,
error_if_nonfinite=False,
)
optimizer.step()
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
grad_scaler.step(optimizer)
# Updates the scale for next iteration.
grad_scaler.update()
optimizer.zero_grad()
if lr_scheduler is not None:
@@ -98,35 +146,19 @@ def update_policy(policy, batch, optimizer, grad_clip_norm, lr_scheduler=None):
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": optimizer.param_groups[0]["lr"],
"update_s": time.time() - start_time,
"update_s": time.perf_counter() - start_time,
**{k: v for k, v in output_dict.items() if k != "loss"},
}
return info
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
def log_train_info(logger, info, step, cfg, dataset, is_offline):
def log_train_info(logger: Logger, info, step, cfg, dataset, is_offline):
loss = info["loss"]
grad_norm = info["grad_norm"]
lr = info["lr"]
update_s = info["update_s"]
dataloading_s = info["dataloading_s"]
# A sample is an (observation,action) pair, where observation and action
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
@@ -147,6 +179,7 @@ def log_train_info(logger, info, step, cfg, dataset, is_offline):
f"lr:{lr:0.1e}",
# in seconds
f"updt_s:{update_s:.3f}",
f"data_s:{dataloading_s:.3f}", # if not ~0, you are bottlenecked by cpu or io
]
logging.info(" ".join(log_items))
@@ -193,104 +226,7 @@ def log_eval_info(logger, info, step, cfg, dataset, is_offline):
logger.log_dict(info, step, mode="eval")
def calculate_online_sample_weight(n_off: int, n_on: int, pc_on: float):
"""
Calculate the sampling weight to be assigned to samples so that a specified percentage of the batch comes from online dataset (on average).
Parameters:
- n_off (int): Number of offline samples, each with a sampling weight of 1.
- n_on (int): Number of online samples.
- pc_on (float): Desired percentage of online samples in decimal form (e.g., 50% as 0.5).
The total weight of offline samples is n_off * 1.0.
The total weight of offline samples is n_on * w.
The total combined weight of all samples is n_off + n_on * w.
The fraction of the weight that is online is n_on * w / (n_off + n_on * w).
We want this fraction to equal pc_on, so we set up the equation n_on * w / (n_off + n_on * w) = pc_on.
The solution is w = - (n_off * pc_on) / (n_on * (pc_on - 1))
"""
assert 0.0 <= pc_on <= 1.0
return -(n_off * pc_on) / (n_on * (pc_on - 1))
def add_episodes_inplace(
online_dataset: torch.utils.data.Dataset,
concat_dataset: torch.utils.data.ConcatDataset,
sampler: torch.utils.data.WeightedRandomSampler,
hf_dataset: datasets.Dataset,
episode_data_index: dict[str, torch.Tensor],
pc_online_samples: float,
):
"""
Modifies the online_dataset, concat_dataset, and sampler in place by integrating
new episodes from hf_dataset into the online_dataset, updating the concatenated
dataset's structure and adjusting the sampling strategy based on the specified
percentage of online samples.
Parameters:
- online_dataset (torch.utils.data.Dataset): The existing online dataset to be updated.
- concat_dataset (torch.utils.data.ConcatDataset): The concatenated dataset that combines
offline and online datasets, used for sampling purposes.
- sampler (torch.utils.data.WeightedRandomSampler): A sampler that will be updated to
reflect changes in the dataset sizes and specified sampling weights.
- hf_dataset (datasets.Dataset): A Hugging Face dataset containing the new episodes to be added.
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
They indicate the start index and end index of each episode in the dataset.
- pc_online_samples (float): The target percentage of samples that should come from
the online dataset during sampling operations.
Raises:
- AssertionError: If the first episode_id or index in hf_dataset is not 0
"""
first_episode_idx = hf_dataset.select_columns("episode_index")[0]["episode_index"].item()
last_episode_idx = hf_dataset.select_columns("episode_index")[-1]["episode_index"].item()
first_index = hf_dataset.select_columns("index")[0]["index"].item()
last_index = hf_dataset.select_columns("index")[-1]["index"].item()
# sanity check
assert first_episode_idx == 0, f"{first_episode_idx=} is not 0"
assert first_index == 0, f"{first_index=} is not 0"
assert first_index == episode_data_index["from"][first_episode_idx].item()
assert last_index == episode_data_index["to"][last_episode_idx].item() - 1
if len(online_dataset) == 0:
# initialize online dataset
online_dataset.hf_dataset = hf_dataset
online_dataset.episode_data_index = episode_data_index
else:
# get the starting indices of the new episodes and frames to be added
start_episode_idx = last_episode_idx + 1
start_index = last_index + 1
def shift_indices(episode_index, index):
# note: we dont shift "frame_index" since it represents the index of the frame in the episode it belongs to
example = {"episode_index": episode_index + start_episode_idx, "index": index + start_index}
return example
disable_progress_bars() # map has a tqdm progress bar
hf_dataset = hf_dataset.map(shift_indices, input_columns=["episode_index", "index"])
enable_progress_bars()
episode_data_index["from"] += start_index
episode_data_index["to"] += start_index
# extend online dataset
online_dataset.hf_dataset = concatenate_datasets([online_dataset.hf_dataset, hf_dataset])
# update the concatenated dataset length used during sampling
concat_dataset.cumulative_sizes = concat_dataset.cumsum(concat_dataset.datasets)
# update the sampling weights for each frame so that online frames get sampled a certain percentage of times
len_online = len(online_dataset)
len_offline = len(concat_dataset) - len_online
weight_offline = 1.0
weight_online = calculate_online_sample_weight(len_offline, len_online, pc_online_samples)
sampler.weights = torch.tensor([weight_offline] * len_offline + [weight_online] * len(online_dataset))
# update the total number of samples used during sampling
sampler.num_samples = len(concat_dataset)
def train(cfg: dict, out_dir=None, job_name=None):
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
@@ -298,35 +234,97 @@ def train(cfg: dict, out_dir=None, job_name=None):
init_logging()
if cfg.training.online_steps > 0 and cfg.eval.batch_size > 1:
logging.warning("eval.batch_size > 1 not supported for online training steps")
# If we are resuming a run, we need to check that a checkpoint exists in the log directory, and we need
# to check for any differences between the provided config and the checkpoint's config.
if cfg.resume:
if not Logger.get_last_checkpoint_dir(out_dir).exists():
raise RuntimeError(
"You have set resume=True, but there is no model checkpoint in "
f"{Logger.get_last_checkpoint_dir(out_dir)}"
)
checkpoint_cfg_path = str(Logger.get_last_pretrained_model_dir(out_dir) / "config.yaml")
logging.info(
colored(
"You have set resume=True, indicating that you wish to resume a run",
color="yellow",
attrs=["bold"],
)
)
# Get the configuration file from the last checkpoint.
checkpoint_cfg = init_hydra_config(checkpoint_cfg_path)
# Check for differences between the checkpoint configuration and provided configuration.
# Hack to resolve the delta_timestamps ahead of time in order to properly diff.
resolve_delta_timestamps(cfg)
diff = DeepDiff(OmegaConf.to_container(checkpoint_cfg), OmegaConf.to_container(cfg))
# Ignore the `resume` and parameters.
if "values_changed" in diff and "root['resume']" in diff["values_changed"]:
del diff["values_changed"]["root['resume']"]
# Log a warning about differences between the checkpoint configuration and the provided
# configuration.
if len(diff) > 0:
logging.warning(
"At least one difference was detected between the checkpoint configuration and "
f"the provided configuration: \n{pformat(diff)}\nNote that the checkpoint configuration "
"takes precedence.",
)
# Use the checkpoint config instead of the provided config (but keep `resume` parameter).
cfg = checkpoint_cfg
cfg.resume = True
elif Logger.get_last_checkpoint_dir(out_dir).exists():
raise RuntimeError(
f"The configured output directory {Logger.get_last_checkpoint_dir(out_dir)} already exists."
)
# log metrics to terminal and wandb
logger = Logger(cfg, out_dir, wandb_job_name=job_name)
if cfg.training.online_steps > 0:
raise NotImplementedError("Online training is not implemented yet.")
set_global_seed(cfg.seed)
# Check device is available
get_safe_torch_device(cfg.device, log=True)
device = get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_global_seed(cfg.seed)
logging.info("make_dataset")
offline_dataset = make_dataset(cfg)
if isinstance(offline_dataset, MultiLeRobotDataset):
logging.info(
"Multiple datasets were provided. Applied the following index mapping to the provided datasets: "
f"{pformat(offline_dataset.repo_id_to_index , indent=2)}"
)
logging.info("make_env")
eval_env = make_env(cfg)
# Create environment used for evaluating checkpoints during training on simulation data.
# On real-world data, no need to create an environment as evaluations are done outside train.py,
# using the eval.py instead, with gym_dora environment and dora-rs.
eval_env = None
if cfg.training.eval_freq > 0:
logging.info("make_env")
eval_env = make_env(cfg)
logging.info("make_policy")
policy = make_policy(hydra_cfg=cfg, dataset_stats=offline_dataset.stats)
policy = make_policy(
hydra_cfg=cfg,
dataset_stats=offline_dataset.stats if not cfg.resume else None,
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
)
assert isinstance(policy, nn.Module)
# Create optimizer and scheduler
# Temporary hack to move optimizer out of policy
optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
grad_scaler = GradScaler(enabled=cfg.use_amp)
step = 0 # number of policy updates (forward + backward + optim)
if cfg.resume:
step = logger.load_last_training_state(optimizer, lr_scheduler)
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
# log metrics to terminal and wandb
logger = Logger(out_dir, job_name, cfg)
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.training.offline_steps=} ({format_big_number(cfg.training.offline_steps)})")
@@ -338,60 +336,90 @@ def train(cfg: dict, out_dir=None, job_name=None):
# Note: this helper will be used in offline and online training loops.
def evaluate_and_checkpoint_if_needed(step):
if step % cfg.training.eval_freq == 0:
_num_digits = max(6, len(str(cfg.training.offline_steps + cfg.training.online_steps)))
step_identifier = f"{step:0{_num_digits}d}"
if cfg.training.eval_freq > 0 and step % cfg.training.eval_freq == 0:
logging.info(f"Eval policy at step {step}")
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
video_dir=Path(out_dir) / "eval",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline)
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.use_amp else nullcontext():
assert eval_env is not None
eval_info = eval_policy(
eval_env,
policy,
cfg.eval.n_episodes,
videos_dir=Path(out_dir) / "eval" / f"videos_step_{step_identifier}",
max_episodes_rendered=4,
start_seed=cfg.seed,
)
log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_offline=True)
if cfg.wandb.enable:
logger.log_video(eval_info["video_paths"][0], step, mode="eval")
logging.info("Resume training")
if cfg.training.save_model and step % cfg.training.save_freq == 0:
if cfg.training.save_checkpoint and (
step % cfg.training.save_freq == 0
or step == cfg.training.offline_steps + cfg.training.online_steps
):
logging.info(f"Checkpoint policy after step {step}")
# Note: Save with step as the identifier, and format it to have at least 6 digits but more if
# needed (choose 6 as a minimum for consistency without being overkill).
logger.save_model(
logger.save_checkpont(
step,
policy,
identifier=str(step).zfill(
max(6, len(str(cfg.training.offline_steps + cfg.training.online_steps)))
),
optimizer,
lr_scheduler,
identifier=step_identifier,
)
logging.info("Resume training")
# create dataloader for offline training
if cfg.training.get("drop_n_last_frames"):
shuffle = False
sampler = EpisodeAwareSampler(
offline_dataset.episode_data_index,
drop_n_last_frames=cfg.training.drop_n_last_frames,
shuffle=True,
)
else:
shuffle = True
sampler = None
dataloader = torch.utils.data.DataLoader(
offline_dataset,
num_workers=4,
num_workers=cfg.training.num_workers,
batch_size=cfg.training.batch_size,
shuffle=True,
pin_memory=cfg.device != "cpu",
shuffle=shuffle,
sampler=sampler,
pin_memory=device.type != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
policy.train()
step = 0 # number of policy update (forward + backward + optim)
is_offline = True
for offline_step in range(cfg.training.offline_steps):
if offline_step == 0:
for _ in range(step, cfg.training.offline_steps):
if step == 0:
logging.info("Start offline training on a fixed dataset")
start_time = time.perf_counter()
batch = next(dl_iter)
dataloading_s = time.perf_counter() - start_time
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
batch[key] = batch[key].to(device, non_blocking=True)
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
train_info = update_policy(
policy,
batch,
optimizer,
cfg.training.grad_clip_norm,
grad_scaler=grad_scaler,
lr_scheduler=lr_scheduler,
use_amp=cfg.use_amp,
)
train_info["dataloading_s"] = dataloading_s
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
if step % cfg.training.log_freq == 0:
log_train_info(logger, train_info, step, cfg, offline_dataset, is_offline)
log_train_info(logger, train_info, step, cfg, offline_dataset, is_offline=True)
# Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
# so we pass in step + 1.
@@ -399,79 +427,28 @@ def train(cfg: dict, out_dir=None, job_name=None):
step += 1
# create an env dedicated to online episodes collection from policy rollout
online_training_env = make_env(cfg, n_envs=1)
# create an empty online dataset similar to offline dataset
online_dataset = deepcopy(offline_dataset)
online_dataset.hf_dataset = {}
online_dataset.episode_data_index = {}
# create dataloader for online training
concat_dataset = torch.utils.data.ConcatDataset([offline_dataset, online_dataset])
weights = [1.0] * len(concat_dataset)
sampler = torch.utils.data.WeightedRandomSampler(
weights, num_samples=len(concat_dataset), replacement=True
)
dataloader = torch.utils.data.DataLoader(
concat_dataset,
num_workers=4,
batch_size=cfg.training.batch_size,
sampler=sampler,
pin_memory=cfg.device != "cpu",
drop_last=False,
)
dl_iter = cycle(dataloader)
online_step = 0
is_offline = False
for env_step in range(cfg.training.online_steps):
if env_step == 0:
logging.info("Start online training by interacting with environment")
policy.eval()
with torch.no_grad():
eval_info = eval_policy(
online_training_env,
policy,
n_episodes=1,
return_episode_data=True,
start_seed=cfg.training.online_env_seed,
enable_progbar=True,
)
add_episodes_inplace(
online_dataset,
concat_dataset,
sampler,
hf_dataset=eval_info["episodes"]["hf_dataset"],
episode_data_index=eval_info["episodes"]["episode_data_index"],
pc_online_samples=cfg.training.online_sampling_ratio,
)
policy.train()
for _ in range(cfg.training.online_steps_between_rollouts):
batch = next(dl_iter)
for key in batch:
batch[key] = batch[key].to(cfg.device, non_blocking=True)
train_info = update_policy(policy, batch, optimizer, cfg.training.grad_clip_norm, lr_scheduler)
if step % cfg.training.log_freq == 0:
log_train_info(logger, train_info, step, cfg, online_dataset, is_offline)
# Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
# so we pass in step + 1.
evaluate_and_checkpoint_if_needed(step + 1)
step += 1
online_step += 1
eval_env.close()
online_training_env.close()
if eval_env:
eval_env.close()
logging.info("End of training")
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
if __name__ == "__main__":
train_cli()

View File

@@ -1,3 +1,18 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset.
Note: The last frame of the episode doesnt always correspond to a final state.
@@ -47,31 +62,35 @@ local$ rerun ws://localhost:9087
"""
import argparse
import gc
import logging
import time
from pathlib import Path
from typing import Iterator
import numpy as np
import rerun as rr
import torch
import torch.utils.data
import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
class EpisodeSampler(torch.utils.data.Sampler):
def __init__(self, dataset, episode_index):
def __init__(self, dataset: LeRobotDataset, episode_index: int):
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()
self.frame_ids = range(from_idx, to_idx)
def __iter__(self):
def __iter__(self) -> Iterator:
return iter(self.frame_ids)
def __len__(self):
def __len__(self) -> int:
return len(self.frame_ids)
def to_hwc_uint8_numpy(chw_float32_torch):
def to_hwc_uint8_numpy(chw_float32_torch: torch.Tensor) -> np.ndarray:
assert chw_float32_torch.dtype == torch.float32
assert chw_float32_torch.ndim == 3
c, h, w = chw_float32_torch.shape
@@ -90,6 +109,7 @@ def visualize_dataset(
ws_port: int = 9087,
save: bool = False,
output_dir: Path | None = None,
root: Path | None = None,
) -> Path | None:
if save:
assert (
@@ -97,7 +117,7 @@ def visualize_dataset(
), "Set an output directory where to write .rrd files with `--output-dir path/to/directory`."
logging.info("Loading dataset")
dataset = LeRobotDataset(repo_id)
dataset = LeRobotDataset(repo_id, root=root)
logging.info("Loading dataloader")
episode_sampler = EpisodeSampler(dataset, episode_index)
@@ -115,15 +135,17 @@ def visualize_dataset(
spawn_local_viewer = mode == "local" and not save
rr.init(f"{repo_id}/episode_{episode_index}", spawn=spawn_local_viewer)
# Manually call python garbage collector after `rr.init` to avoid hanging in a blocking flush
# when iterating on a dataloader with `num_workers` > 0
# TODO(rcadene): remove `gc.collect` when rerun version 0.16 is out, which includes a fix
gc.collect()
if mode == "distant":
rr.serve(open_browser=False, web_port=web_port, ws_port=ws_port)
logging.info("Logging to Rerun")
if num_workers > 0:
# TODO(rcadene): fix data workers hanging when `rr.init` is called
logging.warning("If data loader is hanging, try `--num-workers 0`.")
for batch in tqdm.tqdm(dataloader, total=len(dataloader)):
# iterate over the batch
for i in range(len(batch["index"])):
@@ -196,7 +218,7 @@ def main():
parser.add_argument(
"--num-workers",
type=int,
default=0,
default=4,
help="Number of processes of Dataloader for loading the data.",
)
parser.add_argument(
@@ -206,7 +228,8 @@ def main():
help=(
"Mode of viewing between 'local' or 'distant'. "
"'local' requires data to be on a local machine. It spawns a viewer to visualize the data locally. "
"'distant' creates a server on the distant machine where the data is stored. Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine."
"'distant' creates a server on the distant machine where the data is stored. "
"Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine."
),
)
parser.add_argument(
@@ -227,8 +250,8 @@ def main():
default=0,
help=(
"Save a .rrd file in the directory provided by `--output-dir`. "
"It also deactivates the spawning of a viewer. ",
"Visualize the data by running `rerun path/to/file.rrd` on your local machine.",
"It also deactivates the spawning of a viewer. "
"Visualize the data by running `rerun path/to/file.rrd` on your local machine."
),
)
parser.add_argument(
@@ -237,6 +260,12 @@ def main():
help="Directory path to write a .rrd file when `--save 1` is set.",
)
parser.add_argument(
"--root",
type=str,
help="Root directory for a dataset stored on a local machine.",
)
args = parser.parse_args()
visualize_dataset(**vars(args))

View File

@@ -0,0 +1,175 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Visualize effects of image transforms for a given configuration.
This script will generate examples of transformed images as they are output by LeRobot dataset.
Additionally, each individual transform can be visualized separately as well as examples of combined transforms
--- Usage Examples ---
Increase hue jitter
```
python lerobot/scripts/visualize_image_transforms.py \
dataset_repo_id=lerobot/aloha_mobile_shrimp \
training.image_transforms.hue.min_max=[-0.25,0.25]
```
Increase brightness & brightness weight
```
python lerobot/scripts/visualize_image_transforms.py \
dataset_repo_id=lerobot/aloha_mobile_shrimp \
training.image_transforms.brightness.weight=10.0 \
training.image_transforms.brightness.min_max=[1.0,2.0]
```
Blur images and disable saturation & hue
```
python lerobot/scripts/visualize_image_transforms.py \
dataset_repo_id=lerobot/aloha_mobile_shrimp \
training.image_transforms.sharpness.weight=10.0 \
training.image_transforms.sharpness.min_max=[0.0,1.0] \
training.image_transforms.saturation.weight=0.0 \
training.image_transforms.hue.weight=0.0
```
Use all transforms with random order
```
python lerobot/scripts/visualize_image_transforms.py \
dataset_repo_id=lerobot/aloha_mobile_shrimp \
training.image_transforms.max_num_transforms=5 \
training.image_transforms.random_order=true
```
"""
from pathlib import Path
import hydra
from torchvision.transforms import ToPILImage
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.transforms import get_image_transforms
OUTPUT_DIR = Path("outputs/image_transforms")
to_pil = ToPILImage()
def save_config_all_transforms(cfg, original_frame, output_dir, n_examples):
tf = get_image_transforms(
brightness_weight=cfg.brightness.weight,
brightness_min_max=cfg.brightness.min_max,
contrast_weight=cfg.contrast.weight,
contrast_min_max=cfg.contrast.min_max,
saturation_weight=cfg.saturation.weight,
saturation_min_max=cfg.saturation.min_max,
hue_weight=cfg.hue.weight,
hue_min_max=cfg.hue.min_max,
sharpness_weight=cfg.sharpness.weight,
sharpness_min_max=cfg.sharpness.min_max,
max_num_transforms=cfg.max_num_transforms,
random_order=cfg.random_order,
)
output_dir_all = output_dir / "all"
output_dir_all.mkdir(parents=True, exist_ok=True)
for i in range(1, n_examples + 1):
transformed_frame = tf(original_frame)
to_pil(transformed_frame).save(output_dir_all / f"{i}.png", quality=100)
print("Combined transforms examples saved to:")
print(f" {output_dir_all}")
def save_config_single_transforms(cfg, original_frame, output_dir, n_examples):
transforms = [
"brightness",
"contrast",
"saturation",
"hue",
"sharpness",
]
print("Individual transforms examples saved to:")
for transform in transforms:
# Apply one transformation with random value in min_max range
kwargs = {
f"{transform}_weight": cfg[f"{transform}"].weight,
f"{transform}_min_max": cfg[f"{transform}"].min_max,
}
tf = get_image_transforms(**kwargs)
output_dir_single = output_dir / f"{transform}"
output_dir_single.mkdir(parents=True, exist_ok=True)
for i in range(1, n_examples + 1):
transformed_frame = tf(original_frame)
to_pil(transformed_frame).save(output_dir_single / f"{i}.png", quality=100)
# Apply min transformation
min_value, max_value = cfg[f"{transform}"].min_max
kwargs = {
f"{transform}_weight": cfg[f"{transform}"].weight,
f"{transform}_min_max": (min_value, min_value),
}
tf = get_image_transforms(**kwargs)
transformed_frame = tf(original_frame)
to_pil(transformed_frame).save(output_dir_single / "min.png", quality=100)
# Apply max transformation
kwargs = {
f"{transform}_weight": cfg[f"{transform}"].weight,
f"{transform}_min_max": (max_value, max_value),
}
tf = get_image_transforms(**kwargs)
transformed_frame = tf(original_frame)
to_pil(transformed_frame).save(output_dir_single / "max.png", quality=100)
# Apply mean transformation
mean_value = (min_value + max_value) / 2
kwargs = {
f"{transform}_weight": cfg[f"{transform}"].weight,
f"{transform}_min_max": (mean_value, mean_value),
}
tf = get_image_transforms(**kwargs)
transformed_frame = tf(original_frame)
to_pil(transformed_frame).save(output_dir_single / "mean.png", quality=100)
print(f" {output_dir_single}")
def visualize_transforms(cfg, output_dir: Path, n_examples: int = 5):
dataset = LeRobotDataset(cfg.dataset_repo_id)
output_dir = output_dir / cfg.dataset_repo_id.split("/")[-1]
output_dir.mkdir(parents=True, exist_ok=True)
# Get 1st frame from 1st camera of 1st episode
original_frame = dataset[0][dataset.camera_keys[0]]
to_pil(original_frame).save(output_dir / "original_frame.png", quality=100)
print("\nOriginal frame saved to:")
print(f" {output_dir / 'original_frame.png'}.")
save_config_all_transforms(cfg.training.image_transforms, original_frame, output_dir, n_examples)
save_config_single_transforms(cfg.training.image_transforms, original_frame, output_dir, n_examples)
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
def visualize_transforms_cli(cfg):
visualize_transforms(cfg, output_dir=OUTPUT_DIR)
if __name__ == "__main__":
visualize_transforms()

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

44
media/koch/README.md Normal file
View File

@@ -0,0 +1,44 @@
# Alexander Koch Arm V1.1
This folder the instructions to assembly a slightly modified version of the [Alexander Koch Arms](https://github.com/AlexanderKoch-Koch/low_cost_robot).
## Assembly Instructions
### Leader Arm
Video of the Assembly: #TODO: What is the best format to put this video? I'm thinking Youtube?
1. Order all off the shelf parts from the BILL_OF_MATERIALS.md.
2. Print all parts with a 3D printer.
1. Precision: 0.2mm minimum height layer
2. Material: PLA, ABS, PETG or other reasonably strong plastics.
3. Suggested: Prusa Mini+, Bambu P1, Ender3, etc.
3. Scan each motor. #TODO: Check this-- should I add more information?
4. Follower the video to in assembling the mechanical structure. #TODO(jess-moss): Should I add more info here?
5. Use the electrical diagram to wire the robot
1. Using 6 Dynamixel motor cables, daisy chain each motor to the one after it. Tip: Each Dynamixel has two ports, but they are electrically identical.
2. Get three male to female wires. Plug them into the D, V, and G of the PCB.
3. Connect these to the motor cable of the first (shoulder rotation) Dynamixel with G being connected to Pin 1, V to Pin 2, and D to Pin 3. (Hint: The cable connector has a small 1, 2, and 3 on it so you can identify each pin).
4. Plug in the PWR using the 5V power source, and connect the USB-C connector to your computers.
![Leader Electrical Diagram](./Leader_Arm_Electrical_Diagram.png)
### Follower Arm
Video of the Assembly: #TODO: What is the best format to put this video? I'm thinking Youtube?
1. Order all off the shelf parts from the BILL_OF_MATERIALS.md.
2. Print all parts with a 3D printer.
1. Precision: 0.2mm minimum height layer
2. Material: PLA, ABS, PETG or other reasonably strong plastics.
3. Suggested: Prusa Mini+, Bambu P1, Ender3, etc.
3. Scan each motor. #TODO: Check this-- should I add more information?
4. Follower the video to in assembling the mechanical structure. #TODO(jess-moss): Should I add more info here?
5. Use the electrical diagram to wire the robot
1. Use the 6 Dynamixel motor cables to daisy chain the four XL330 motors together and the two XL430 motors together. Do not connect the XL430 motor to the XL 330 motor.
2. Get three male to female wires. Plug them into the D, V, and G of the PCB.
3. Connect these to the motor cable of the first (shoulder rotation) Dynamixel XL430 with G being connected to Pin 1, V to Pin 2, and D to Pin 3. (Hint: The cable connector has a small 1, 2, and 3 on it so you can identify each pin).
4. Get three more male to female wires. Plug them into the second port D, V, and G of the PCB.
5. Connect the V to IN+ and G to IN- of the DC Converter.
6. Connect the motor cable of the first Dynamixel XL330 (i.e. wrist extention rotation) by connecting Pin 1 to OUT- of the DC converter, Pin 2 connected to OUT+ of the DC converter and Pin 3 connected to D from the second port of the PCB.
7. Plug in the PWR using the 12V power source, and connect the USB-C connector to your computers.
![Follower Diagram](./Follower_Arm_Electrical_Diagram.png)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More