Merge branch 'main' into user/alexander-soare/train_pusht
This commit is contained in:
@@ -81,7 +81,10 @@ class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
def set_transform(self, transform):
|
||||
if not isinstance(transform, Compose):
|
||||
# required since torchrl calls `len(self._transform)` downstream
|
||||
self._transform = Compose(transform)
|
||||
if isinstance(transform, list):
|
||||
self._transform = Compose(*transform)
|
||||
else:
|
||||
self._transform = Compose(transform)
|
||||
else:
|
||||
self._transform = transform
|
||||
|
||||
|
||||
@@ -73,11 +73,11 @@ def download(data_dir, dataset_id):
|
||||
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
gdown.download_folder(FOLDER_URLS[dataset_id], output=data_dir)
|
||||
gdown.download_folder(FOLDER_URLS[dataset_id], output=str(data_dir))
|
||||
|
||||
# because of the 50 files limit per directory, two files episode 48 and 49 were missing
|
||||
gdown.download(EP48_URLS[dataset_id], output=data_dir / "episode_48.hdf5", fuzzy=True)
|
||||
gdown.download(EP49_URLS[dataset_id], output=data_dir / "episode_49.hdf5", fuzzy=True)
|
||||
gdown.download(EP48_URLS[dataset_id], output=str(data_dir / "episode_48.hdf5"), fuzzy=True)
|
||||
gdown.download(EP49_URLS[dataset_id], output=str(data_dir / "episode_49.hdf5"), fuzzy=True)
|
||||
|
||||
|
||||
class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
@@ -124,9 +124,6 @@ class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
def image_keys(self) -> list:
|
||||
return [("observation", "image", cam) for cam in CAMERAS[self.dataset_id]]
|
||||
|
||||
# def _is_downloaded(self) -> bool:
|
||||
# return False
|
||||
|
||||
def _download_and_preproc(self):
|
||||
raw_dir = self.data_dir.parent / f"{self.data_dir.name}_raw"
|
||||
if not raw_dir.is_dir():
|
||||
|
||||
@@ -5,7 +5,7 @@ from pathlib import Path
|
||||
import torch
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
|
||||
|
||||
from lerobot.common.envs.transforms import NormalizeTransform
|
||||
from lerobot.common.envs.transforms import NormalizeTransform, Prod
|
||||
|
||||
DATA_DIR = Path(os.environ.get("DATA_DIR", "data"))
|
||||
|
||||
@@ -84,6 +84,16 @@ def make_offline_buffer(
|
||||
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||
)
|
||||
|
||||
if cfg.policy.name == "tdmpc":
|
||||
img_keys = []
|
||||
for key in offline_buffer.image_keys:
|
||||
img_keys.append(("next", *key))
|
||||
img_keys += offline_buffer.image_keys
|
||||
else:
|
||||
img_keys = offline_buffer.image_keys
|
||||
|
||||
transforms = [Prod(in_keys=img_keys, prod=1 / 255)]
|
||||
|
||||
if normalize:
|
||||
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
|
||||
stats = offline_buffer.compute_or_load_stats()
|
||||
@@ -92,11 +102,10 @@ def make_offline_buffer(
|
||||
in_keys = [("observation", "state"), ("action")]
|
||||
|
||||
if cfg.policy.name == "tdmpc":
|
||||
for key in offline_buffer.image_keys:
|
||||
# TODO(rcadene): imagenet normalization is applied inside diffusion policy, but no normalization inside tdmpc
|
||||
in_keys.append(key)
|
||||
# since we use next observations in tdmpc
|
||||
in_keys.append(("next", *key))
|
||||
# TODO(rcadene): we add img_keys to the keys to normalize for tdmpc only, since diffusion and act policies normalize the image inside the model for now
|
||||
in_keys += img_keys
|
||||
# TODO(racdene): since we use next observations in tdmpc, we also add them to the normalization. We are wasting a bit of compute on this for now.
|
||||
in_keys += [("next", *key) for key in img_keys]
|
||||
in_keys.append(("next", "observation", "state"))
|
||||
|
||||
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
|
||||
@@ -106,8 +115,11 @@ def make_offline_buffer(
|
||||
stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
|
||||
stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
|
||||
|
||||
transform = NormalizeTransform(stats, in_keys, mode="min_max")
|
||||
offline_buffer.set_transform(transform)
|
||||
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
|
||||
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
|
||||
transforms.append(NormalizeTransform(stats, in_keys, mode=normalization_mode))
|
||||
|
||||
offline_buffer.set_transform(transforms)
|
||||
|
||||
if not overwrite_sampler:
|
||||
index = torch.arange(0, offline_buffer.num_samples, 1)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import pickle
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
@@ -15,6 +16,22 @@ from torchrl.data.replay_buffers.writers import Writer
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
|
||||
|
||||
def download():
|
||||
raise NotImplementedError()
|
||||
import gdown
|
||||
|
||||
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
|
||||
download_path = "data.zip"
|
||||
gdown.download(url, download_path, quiet=False)
|
||||
print("Extracting...")
|
||||
with zipfile.ZipFile(download_path, "r") as zip_f:
|
||||
for member in zip_f.namelist():
|
||||
if member.startswith("data/xarm") and member.endswith(".pkl"):
|
||||
print(member)
|
||||
zip_f.extract(member=member)
|
||||
Path(download_path).unlink()
|
||||
|
||||
|
||||
class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
available_datasets = [
|
||||
"xarm_lift_medium",
|
||||
@@ -48,8 +65,8 @@ class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
)
|
||||
|
||||
def _download_and_preproc(self):
|
||||
# download
|
||||
# TODO(rcadene)
|
||||
# TODO(rcadene): finish download
|
||||
download()
|
||||
|
||||
dataset_path = self.data_dir / "buffer.pkl"
|
||||
print(f"Using offline dataset '{dataset_path}'")
|
||||
|
||||
80
lerobot/common/envs/abstract.py
Normal file
80
lerobot/common/envs/abstract.py
Normal file
@@ -0,0 +1,80 @@
|
||||
import abc
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
from tensordict import TensorDict
|
||||
from torchrl.envs import EnvBase
|
||||
|
||||
|
||||
class AbstractEnv(EnvBase):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.task = task
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
self.image_size = image_size
|
||||
self.num_prev_obs = num_prev_obs
|
||||
self.num_prev_action = num_prev_action
|
||||
self._rendering_hooks = []
|
||||
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
if from_pixels:
|
||||
assert image_size
|
||||
|
||||
self._make_env()
|
||||
self._make_spec()
|
||||
self._current_seed = self.set_seed(seed)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
|
||||
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
|
||||
if self.num_prev_action > 0:
|
||||
raise NotImplementedError()
|
||||
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
|
||||
|
||||
def register_rendering_hook(self, func):
|
||||
self._rendering_hooks.append(func)
|
||||
|
||||
def call_rendering_hooks(self):
|
||||
for func in self._rendering_hooks:
|
||||
func(self)
|
||||
|
||||
def reset_rendering_hooks(self):
|
||||
self._rendering_hooks = []
|
||||
|
||||
@abc.abstractmethod
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _step(self, tensordict: TensorDict):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_env(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_spec(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
raise NotImplementedError()
|
||||
@@ -0,0 +1,59 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
|
||||
<equality>
|
||||
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
</equality>
|
||||
|
||||
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
|
||||
<body name="peg" pos="0.2 0.5 0.05">
|
||||
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
<body name="socket" pos="-0.2 0.5 0.05">
|
||||
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -0,0 +1,48 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
|
||||
<equality>
|
||||
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
</equality>
|
||||
|
||||
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
|
||||
<body name="box" pos="0.2 0.5 0.05">
|
||||
<joint name="red_box_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -0,0 +1,53 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body name="peg" pos="0.2 0.5 0.05">
|
||||
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
<body name="socket" pos="-0.2 0.5 0.05">
|
||||
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -0,0 +1,42 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body name="box" pos="0.2 0.5 0.05">
|
||||
<joint name="red_box_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
38
lerobot/common/envs/aloha/assets/scene.xml
Normal file
38
lerobot/common/envs/aloha/assets/scene.xml
Normal file
@@ -0,0 +1,38 @@
|
||||
<mujocoinclude>
|
||||
<!-- <option timestep='0.0025' iterations="50" tolerance="1e-10" solver="Newton" jacobian="dense" cone="elliptic"/>-->
|
||||
|
||||
<asset>
|
||||
<mesh file="tabletop.stl" name="tabletop" scale="0.001 0.001 0.001"/>
|
||||
</asset>
|
||||
|
||||
<visual>
|
||||
<map fogstart="1.5" fogend="5" force="0.1" znear="0.1"/>
|
||||
<quality shadowsize="4096" offsamples="4"/>
|
||||
<headlight ambient="0.4 0.4 0.4"/>
|
||||
</visual>
|
||||
|
||||
<worldbody>
|
||||
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='-1 -1 1'
|
||||
dir='1 1 -1'/>
|
||||
<light directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='1 -1 1' dir='-1 1 -1'/>
|
||||
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='0 1 1'
|
||||
dir='0 -1 -1'/>
|
||||
|
||||
<body name="table" pos="0 .6 0">
|
||||
<geom group="1" mesh="tabletop" pos="0 0 0" type="mesh" conaffinity="1" contype="1" name="table" rgba="0.2 0.2 0.2 1" />
|
||||
</body>
|
||||
<body name="midair" pos="0 .6 0.2">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="midair" rgba="1 0 0 0"/>
|
||||
</body>
|
||||
|
||||
<camera name="left_pillar" pos="-0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="right_pillar" pos="0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="top" pos="0 0.6 0.8" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="angle" pos="0 0 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="front_close" pos="0 0.2 0.4" fovy="78" mode="targetbody" target="vx300s_left/camera_focus"/>
|
||||
|
||||
</worldbody>
|
||||
|
||||
|
||||
|
||||
</mujocoinclude>
|
||||
BIN
lerobot/common/envs/aloha/assets/tabletop.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/tabletop.stl
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_10_gripper_finger.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_10_gripper_finger.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_11_ar_tag.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_11_ar_tag.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_1_base.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_1_base.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_2_shoulder.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_2_shoulder.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_3_upper_arm.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_3_upper_arm.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_4_upper_forearm.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_4_upper_forearm.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_5_lower_forearm.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_5_lower_forearm.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_6_wrist.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_6_wrist.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_7_gripper.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_7_gripper.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_8_gripper_prop.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_8_gripper_prop.stl
Normal file
Binary file not shown.
BIN
lerobot/common/envs/aloha/assets/vx300s_9_gripper_bar.stl
Normal file
BIN
lerobot/common/envs/aloha/assets/vx300s_9_gripper_bar.stl
Normal file
Binary file not shown.
17
lerobot/common/envs/aloha/assets/vx300s_dependencies.xml
Normal file
17
lerobot/common/envs/aloha/assets/vx300s_dependencies.xml
Normal file
@@ -0,0 +1,17 @@
|
||||
<mujocoinclude>
|
||||
<compiler angle="radian" inertiafromgeom="auto" inertiagrouprange="4 5"/>
|
||||
<asset>
|
||||
<mesh name="vx300s_1_base" file="vx300s_1_base.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_2_shoulder" file="vx300s_2_shoulder.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_3_upper_arm" file="vx300s_3_upper_arm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_4_upper_forearm" file="vx300s_4_upper_forearm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_5_lower_forearm" file="vx300s_5_lower_forearm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_6_wrist" file="vx300s_6_wrist.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_7_gripper" file="vx300s_7_gripper.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_8_gripper_prop" file="vx300s_8_gripper_prop.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_9_gripper_bar" file="vx300s_9_gripper_bar.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_10_gripper_finger_left" file="vx300s_10_custom_finger_left.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_10_gripper_finger_right" file="vx300s_10_custom_finger_right.stl" scale="0.001 0.001 0.001" />
|
||||
</asset>
|
||||
|
||||
</mujocoinclude>
|
||||
59
lerobot/common/envs/aloha/assets/vx300s_left.xml
Normal file
59
lerobot/common/envs/aloha/assets/vx300s_left.xml
Normal file
@@ -0,0 +1,59 @@
|
||||
|
||||
<mujocoinclude>
|
||||
<body name="vx300s_left" pos="-0.469 0.5 0">
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_left/1_base" contype="0" conaffinity="0"/>
|
||||
<body name="vx300s_left/shoulder_link" pos="0 0 0.079">
|
||||
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
|
||||
<joint name="vx300s_left/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
|
||||
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_left/2_shoulder" />
|
||||
<body name="vx300s_left/upper_arm_link" pos="0 0 0.04805">
|
||||
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
|
||||
<joint name="vx300s_left/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_left/3_upper_arm"/>
|
||||
<body name="vx300s_left/upper_forearm_link" pos="0.05955 0 0.3">
|
||||
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
|
||||
<joint name="vx300s_left/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
|
||||
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_left/4_upper_forearm" />
|
||||
<body name="vx300s_left/lower_forearm_link" pos="0.2 0 0">
|
||||
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
|
||||
<joint name="vx300s_left/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_left/5_lower_forearm"/>
|
||||
<body name="vx300s_left/wrist_link" pos="0.1 0 0">
|
||||
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
|
||||
<joint name="vx300s_left/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_left/6_wrist" />
|
||||
<body name="vx300s_left/gripper_link" pos="0.069744 0 0">
|
||||
<body name="vx300s_left/camera_focus" pos="0.15 0 0.01">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="left_cam_focus" rgba="0 0 1 0"/>
|
||||
</body>
|
||||
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_left_site1" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_left_site2" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_left_site3" rgba="0 0 1 0"/>
|
||||
<camera name="left_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_left/camera_focus"/>
|
||||
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
|
||||
<joint name="vx300s_left/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_left/7_gripper" />
|
||||
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_left/9_gripper_bar" />
|
||||
<body name="vx300s_left/gripper_prop_link" pos="0.0485 0 0">
|
||||
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
|
||||
<!-- <joint name="vx300s_left/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
|
||||
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_left/8_gripper_prop" />
|
||||
</body>
|
||||
<body name="vx300s_left/left_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
|
||||
<joint name="vx300s_left/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_left/10_left_gripper_finger"/>
|
||||
</body>
|
||||
<body name="vx300s_left/right_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
|
||||
<joint name="vx300s_left/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_left/10_right_gripper_finger"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
||||
59
lerobot/common/envs/aloha/assets/vx300s_right.xml
Normal file
59
lerobot/common/envs/aloha/assets/vx300s_right.xml
Normal file
@@ -0,0 +1,59 @@
|
||||
|
||||
<mujocoinclude>
|
||||
<body name="vx300s_right" pos="0.469 0.5 0" euler="0 0 3.1416">
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_right/1_base" contype="0" conaffinity="0"/>
|
||||
<body name="vx300s_right/shoulder_link" pos="0 0 0.079">
|
||||
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
|
||||
<joint name="vx300s_right/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
|
||||
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_right/2_shoulder" />
|
||||
<body name="vx300s_right/upper_arm_link" pos="0 0 0.04805">
|
||||
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
|
||||
<joint name="vx300s_right/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_right/3_upper_arm"/>
|
||||
<body name="vx300s_right/upper_forearm_link" pos="0.05955 0 0.3">
|
||||
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
|
||||
<joint name="vx300s_right/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
|
||||
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_right/4_upper_forearm" />
|
||||
<body name="vx300s_right/lower_forearm_link" pos="0.2 0 0">
|
||||
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
|
||||
<joint name="vx300s_right/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_right/5_lower_forearm"/>
|
||||
<body name="vx300s_right/wrist_link" pos="0.1 0 0">
|
||||
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
|
||||
<joint name="vx300s_right/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_right/6_wrist" />
|
||||
<body name="vx300s_right/gripper_link" pos="0.069744 0 0">
|
||||
<body name="vx300s_right/camera_focus" pos="0.15 0 0.01">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="right_cam_focus" rgba="0 0 1 0"/>
|
||||
</body>
|
||||
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_right_site1" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_right_site2" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_right_site3" rgba="0 0 1 0"/>
|
||||
<camera name="right_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_right/camera_focus"/>
|
||||
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
|
||||
<joint name="vx300s_right/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_right/7_gripper" />
|
||||
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_right/9_gripper_bar" />
|
||||
<body name="vx300s_right/gripper_prop_link" pos="0.0485 0 0">
|
||||
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
|
||||
<!-- <joint name="vx300s_right/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
|
||||
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_right/8_gripper_prop" />
|
||||
</body>
|
||||
<body name="vx300s_right/left_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
|
||||
<joint name="vx300s_right/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_right/10_left_gripper_finger"/>
|
||||
</body>
|
||||
<body name="vx300s_right/right_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
|
||||
<joint name="vx300s_right/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_right/10_right_gripper_finger"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
||||
163
lerobot/common/envs/aloha/constants.py
Normal file
163
lerobot/common/envs/aloha/constants.py
Normal file
@@ -0,0 +1,163 @@
|
||||
from pathlib import Path
|
||||
|
||||
### Simulation envs fixed constants
|
||||
DT = 0.02 # 0.02 ms -> 1/0.2 = 50 hz
|
||||
FPS = 50
|
||||
|
||||
|
||||
JOINTS = [
|
||||
# absolute joint position
|
||||
"left_arm_waist",
|
||||
"left_arm_shoulder",
|
||||
"left_arm_elbow",
|
||||
"left_arm_forearm_roll",
|
||||
"left_arm_wrist_angle",
|
||||
"left_arm_wrist_rotate",
|
||||
# normalized gripper position 0: close, 1: open
|
||||
"left_arm_gripper",
|
||||
# absolute joint position
|
||||
"right_arm_waist",
|
||||
"right_arm_shoulder",
|
||||
"right_arm_elbow",
|
||||
"right_arm_forearm_roll",
|
||||
"right_arm_wrist_angle",
|
||||
"right_arm_wrist_rotate",
|
||||
# normalized gripper position 0: close, 1: open
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
ACTIONS = [
|
||||
# position and quaternion for end effector
|
||||
"left_arm_waist",
|
||||
"left_arm_shoulder",
|
||||
"left_arm_elbow",
|
||||
"left_arm_forearm_roll",
|
||||
"left_arm_wrist_angle",
|
||||
"left_arm_wrist_rotate",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"left_arm_gripper",
|
||||
"right_arm_waist",
|
||||
"right_arm_shoulder",
|
||||
"right_arm_elbow",
|
||||
"right_arm_forearm_roll",
|
||||
"right_arm_wrist_angle",
|
||||
"right_arm_wrist_rotate",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
|
||||
START_ARM_POSE = [
|
||||
0,
|
||||
-0.96,
|
||||
1.16,
|
||||
0,
|
||||
-0.3,
|
||||
0,
|
||||
0.02239,
|
||||
-0.02239,
|
||||
0,
|
||||
-0.96,
|
||||
1.16,
|
||||
0,
|
||||
-0.3,
|
||||
0,
|
||||
0.02239,
|
||||
-0.02239,
|
||||
]
|
||||
|
||||
ASSETS_DIR = Path(__file__).parent.resolve() / "assets" # note: absolute path
|
||||
|
||||
# Left finger position limits (qpos[7]), right_finger = -1 * left_finger
|
||||
MASTER_GRIPPER_POSITION_OPEN = 0.02417
|
||||
MASTER_GRIPPER_POSITION_CLOSE = 0.01244
|
||||
PUPPET_GRIPPER_POSITION_OPEN = 0.05800
|
||||
PUPPET_GRIPPER_POSITION_CLOSE = 0.01844
|
||||
|
||||
# Gripper joint limits (qpos[6])
|
||||
MASTER_GRIPPER_JOINT_OPEN = 0.3083
|
||||
MASTER_GRIPPER_JOINT_CLOSE = -0.6842
|
||||
PUPPET_GRIPPER_JOINT_OPEN = 1.4910
|
||||
PUPPET_GRIPPER_JOINT_CLOSE = -0.6213
|
||||
|
||||
MASTER_GRIPPER_JOINT_MID = (MASTER_GRIPPER_JOINT_OPEN + MASTER_GRIPPER_JOINT_CLOSE) / 2
|
||||
|
||||
############################ Helper functions ############################
|
||||
|
||||
|
||||
def normalize_master_gripper_position(x):
|
||||
return (x - MASTER_GRIPPER_POSITION_CLOSE) / (
|
||||
MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_position(x):
|
||||
return (x - PUPPET_GRIPPER_POSITION_CLOSE) / (
|
||||
PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def unnormalize_master_gripper_position(x):
|
||||
return x * (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE) + MASTER_GRIPPER_POSITION_CLOSE
|
||||
|
||||
|
||||
def unnormalize_puppet_gripper_position(x):
|
||||
return x * (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE) + PUPPET_GRIPPER_POSITION_CLOSE
|
||||
|
||||
|
||||
def convert_position_from_master_to_puppet(x):
|
||||
return unnormalize_puppet_gripper_position(normalize_master_gripper_position(x))
|
||||
|
||||
|
||||
def normalizer_master_gripper_joint(x):
|
||||
return (x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_joint(x):
|
||||
return (x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
|
||||
|
||||
def unnormalize_master_gripper_joint(x):
|
||||
return x * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE) + MASTER_GRIPPER_JOINT_CLOSE
|
||||
|
||||
|
||||
def unnormalize_puppet_gripper_joint(x):
|
||||
return x * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE) + PUPPET_GRIPPER_JOINT_CLOSE
|
||||
|
||||
|
||||
def convert_join_from_master_to_puppet(x):
|
||||
return unnormalize_puppet_gripper_joint(normalizer_master_gripper_joint(x))
|
||||
|
||||
|
||||
def normalize_master_gripper_velocity(x):
|
||||
return x / (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_velocity(x):
|
||||
return x / (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE)
|
||||
|
||||
|
||||
def convert_master_from_position_to_joint(x):
|
||||
return (
|
||||
normalize_master_gripper_position(x) * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
+ MASTER_GRIPPER_JOINT_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def convert_master_from_joint_to_position(x):
|
||||
return unnormalize_master_gripper_position(
|
||||
(x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
)
|
||||
|
||||
|
||||
def convert_puppet_from_position_to_join(x):
|
||||
return (
|
||||
normalize_puppet_gripper_position(x) * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
+ PUPPET_GRIPPER_JOINT_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def convert_puppet_from_joint_to_position(x):
|
||||
return unnormalize_puppet_gripper_position(
|
||||
(x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
)
|
||||
311
lerobot/common/envs/aloha/env.py
Normal file
311
lerobot/common/envs/aloha/env.py
Normal file
@@ -0,0 +1,311 @@
|
||||
import importlib
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.tensor_specs import (
|
||||
BoundedTensorSpec,
|
||||
CompositeSpec,
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
ACTIONS,
|
||||
ASSETS_DIR,
|
||||
DT,
|
||||
JOINTS,
|
||||
)
|
||||
from lerobot.common.envs.aloha.tasks.sim import BOX_POSE, InsertionTask, TransferCubeTask
|
||||
from lerobot.common.envs.aloha.tasks.sim_end_effector import (
|
||||
InsertionEndEffectorTask,
|
||||
TransferCubeEndEffectorTask,
|
||||
)
|
||||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
|
||||
|
||||
class AlohaEnv(AbstractEnv):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
|
||||
if not self.from_pixels:
|
||||
raise NotImplementedError()
|
||||
|
||||
self._env = self._make_env_task(self.task)
|
||||
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
# TODO(rcadene): render and visualizer several cameras (e.g. angle, front_close)
|
||||
image = self._env.physics.render(height=height, width=width, camera_id="top")
|
||||
return image
|
||||
|
||||
def _make_env_task(self, task_name):
|
||||
# time limit is controlled by StepCounter in env factory
|
||||
time_limit = float("inf")
|
||||
|
||||
if "sim_transfer_cube" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeTask(random=False)
|
||||
elif "sim_insertion" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionTask(random=False)
|
||||
elif "sim_end_effector_transfer_cube" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeEndEffectorTask(random=False)
|
||||
elif "sim_end_effector_insertion" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionEndEffectorTask(random=False)
|
||||
else:
|
||||
raise NotImplementedError(task_name)
|
||||
|
||||
env = control.Environment(
|
||||
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
)
|
||||
return env
|
||||
|
||||
def _format_raw_obs(self, raw_obs):
|
||||
if self.from_pixels:
|
||||
image = torch.from_numpy(raw_obs["images"]["top"].copy())
|
||||
image = einops.rearrange(image, "h w c -> c h w")
|
||||
assert image.dtype == torch.uint8
|
||||
obs = {"image": {"top": image}}
|
||||
|
||||
if not self.pixels_only:
|
||||
obs["state"] = torch.from_numpy(raw_obs["qpos"]).type(torch.float32)
|
||||
else:
|
||||
# TODO(rcadene):
|
||||
raise NotImplementedError()
|
||||
# obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
|
||||
|
||||
return obs
|
||||
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
td = tensordict
|
||||
if td is None or td.is_empty():
|
||||
# we need to handle seed iteration, since self._env.reset() rely an internal _seed.
|
||||
self._current_seed += 1
|
||||
self.set_seed(self._current_seed)
|
||||
|
||||
# TODO(rcadene): do not use global variable for this
|
||||
if "sim_transfer_cube" in self.task:
|
||||
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
||||
elif "sim_insertion" in self.task:
|
||||
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
||||
|
||||
raw_obs = self._env.reset()
|
||||
# TODO(rcadene): add assert
|
||||
# assert self._current_seed == self._env._seed
|
||||
|
||||
obs = self._format_raw_obs(raw_obs.observation)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
td = tensordict
|
||||
action = td["action"].numpy()
|
||||
# step expects shape=(4,) so we pad if necessary
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
sum_reward = 0
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
|
||||
num_action_steps = action.shape[0]
|
||||
for i in range(num_action_steps):
|
||||
_, reward, discount, raw_obs = self._env.step(action[i])
|
||||
del discount # not used
|
||||
|
||||
# TOOD(rcadene): add an enum
|
||||
success = done = reward == 4
|
||||
sum_reward += reward
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"]["top"])
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"reward": torch.tensor([sum_reward], dtype=torch.float32),
|
||||
# succes and done are true when coverage > self.success_threshold in env
|
||||
"done": torch.tensor([done], dtype=torch.bool),
|
||||
"success": torch.tensor([success], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
return td
|
||||
|
||||
def _make_spec(self):
|
||||
obs = {}
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
if self.from_pixels:
|
||||
if isinstance(self.image_size, int):
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
elif OmegaConf.is_list(self.image_size):
|
||||
assert len(self.image_size) == 3 # c h w
|
||||
assert self.image_size[0] == 3 # c is RGB
|
||||
image_shape = tuple(self.image_size)
|
||||
else:
|
||||
raise ValueError(self.image_size)
|
||||
if self.num_prev_obs > 0:
|
||||
image_shape = (self.num_prev_obs + 1, *image_shape)
|
||||
|
||||
obs["image"] = {
|
||||
"top": BoundedTensorSpec(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=image_shape,
|
||||
dtype=torch.uint8,
|
||||
device=self.device,
|
||||
)
|
||||
}
|
||||
if not self.pixels_only:
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
else:
|
||||
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
self.observation_spec = CompositeSpec({"observation": obs})
|
||||
|
||||
# TODO(rcadene): valid when controling end effector?
|
||||
# action_space = self._env.action_spec()
|
||||
# self.action_spec = BoundedTensorSpec(
|
||||
# low=action_space.minimum,
|
||||
# high=action_space.maximum,
|
||||
# shape=action_space.shape,
|
||||
# dtype=torch.float32,
|
||||
# device=self.device,
|
||||
# )
|
||||
|
||||
# TODO(rcaene): add bounds (where are they????)
|
||||
self.action_spec = BoundedTensorSpec(
|
||||
shape=(len(ACTIONS)),
|
||||
low=-1,
|
||||
high=1,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.reward_spec = UnboundedContinuousTensorSpec(
|
||||
shape=(1,),
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.done_spec = CompositeSpec(
|
||||
{
|
||||
"done": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
"success": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
set_seed(seed)
|
||||
# TODO(rcadene): seed the env
|
||||
# self._env.seed(seed)
|
||||
logging.warning("Aloha env is not seeded")
|
||||
219
lerobot/common/envs/aloha/tasks/sim.py
Normal file
219
lerobot/common/envs/aloha/tasks/sim.py
Normal file
@@ -0,0 +1,219 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from dm_control.suite import base
|
||||
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
|
||||
BOX_POSE = [None] # to be changed from outside
|
||||
|
||||
"""
|
||||
Environment for simulated robot bi-manual manipulation, with joint position control
|
||||
Action space: [left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
"""
|
||||
|
||||
|
||||
class BimanualViperXTask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
left_arm_action = action[:6]
|
||||
right_arm_action = action[7 : 7 + 6]
|
||||
normalized_left_gripper_action = action[6]
|
||||
normalized_right_gripper_action = action[7 + 6]
|
||||
|
||||
left_gripper_action = unnormalize_puppet_gripper_position(normalized_left_gripper_action)
|
||||
right_gripper_action = unnormalize_puppet_gripper_position(normalized_right_gripper_action)
|
||||
|
||||
full_left_gripper_action = [left_gripper_action, -left_gripper_action]
|
||||
full_right_gripper_action = [right_gripper_action, -right_gripper_action]
|
||||
|
||||
env_action = np.concatenate(
|
||||
[left_arm_action, full_left_gripper_action, right_arm_action, full_right_gripper_action]
|
||||
)
|
||||
super().before_step(env_action, physics)
|
||||
return
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7:] = BOX_POSE[0]
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7 * 2 :] = BOX_POSE[0] # two objects
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
263
lerobot/common/envs/aloha/tasks/sim_end_effector.py
Normal file
263
lerobot/common/envs/aloha/tasks/sim_end_effector.py
Normal file
@@ -0,0 +1,263 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from dm_control.suite import base
|
||||
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
|
||||
"""
|
||||
Environment for simulated robot bi-manual manipulation, with end-effector control.
|
||||
Action space: [left_arm_pose (7), # position and quaternion for end effector
|
||||
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_pose (7), # position and quaternion for end effector
|
||||
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
"""
|
||||
|
||||
|
||||
class BimanualViperXEndEffectorTask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
a_len = len(action) // 2
|
||||
action_left = action[:a_len]
|
||||
action_right = action[a_len:]
|
||||
|
||||
# set mocap position and quat
|
||||
# left
|
||||
np.copyto(physics.data.mocap_pos[0], action_left[:3])
|
||||
np.copyto(physics.data.mocap_quat[0], action_left[3:7])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], action_right[:3])
|
||||
np.copyto(physics.data.mocap_quat[1], action_right[3:7])
|
||||
|
||||
# set gripper
|
||||
g_left_ctrl = unnormalize_puppet_gripper_position(action_left[7])
|
||||
g_right_ctrl = unnormalize_puppet_gripper_position(action_right[7])
|
||||
np.copyto(physics.data.ctrl, np.array([g_left_ctrl, -g_left_ctrl, g_right_ctrl, -g_right_ctrl]))
|
||||
|
||||
def initialize_robots(self, physics):
|
||||
# reset joint position
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
|
||||
# reset mocap to align with end effector
|
||||
# to obtain these numbers:
|
||||
# (1) make an ee_sim env and reset to the same start_pose
|
||||
# (2) get env._physics.named.data.xpos['vx300s_left/gripper_link']
|
||||
# get env._physics.named.data.xquat['vx300s_left/gripper_link']
|
||||
# repeat the same for right side
|
||||
np.copyto(physics.data.mocap_pos[0], [-0.31718881, 0.5, 0.29525084])
|
||||
np.copyto(physics.data.mocap_quat[0], [1, 0, 0, 0])
|
||||
# right
|
||||
np.copyto(physics.data.mocap_pos[1], np.array([0.31718881, 0.49999888, 0.29525084]))
|
||||
np.copyto(physics.data.mocap_quat[1], [1, 0, 0, 0])
|
||||
|
||||
# reset gripper control
|
||||
close_gripper_control = np.array(
|
||||
[
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
-PUPPET_GRIPPER_POSITION_CLOSE,
|
||||
]
|
||||
)
|
||||
np.copyto(physics.data.ctrl, close_gripper_control)
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
# note: it is important to do .copy()
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
# used in scripted policy to obtain starting pose
|
||||
obs["mocap_pose_left"] = np.concatenate(
|
||||
[physics.data.mocap_pos[0], physics.data.mocap_quat[0]]
|
||||
).copy()
|
||||
obs["mocap_pose_right"] = np.concatenate(
|
||||
[physics.data.mocap_pos[1], physics.data.mocap_quat[1]]
|
||||
).copy()
|
||||
|
||||
# used when replaying joint trajectory
|
||||
obs["gripper_ctrl"] = physics.data.ctrl.copy()
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeEndEffectorTask(BimanualViperXEndEffectorTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize box position
|
||||
cube_pose = sample_box_pose()
|
||||
box_start_idx = physics.model.name2id("red_box_joint", "joint")
|
||||
np.copyto(physics.data.qpos[box_start_idx : box_start_idx + 7], cube_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionEndEffectorTask(BimanualViperXEndEffectorTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
self.initialize_robots(physics)
|
||||
# randomize peg and socket position
|
||||
peg_pose, socket_pose = sample_insertion_pose()
|
||||
|
||||
def id2index(j_id):
|
||||
return 16 + (j_id - 16) * 7 # first 16 is robot qpos, 7 is pose dim # hacky
|
||||
|
||||
peg_start_id = physics.model.name2id("red_peg_joint", "joint")
|
||||
peg_start_idx = id2index(peg_start_id)
|
||||
np.copyto(physics.data.qpos[peg_start_idx : peg_start_idx + 7], peg_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
socket_start_id = physics.model.name2id("blue_socket_joint", "joint")
|
||||
socket_start_idx = id2index(socket_start_id)
|
||||
np.copyto(physics.data.qpos[socket_start_idx : socket_start_idx + 7], socket_pose)
|
||||
# print(f"randomized cube position to {cube_position}")
|
||||
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
39
lerobot/common/envs/aloha/utils.py
Normal file
39
lerobot/common/envs/aloha/utils.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sample_box_pose():
|
||||
x_range = [0.0, 0.2]
|
||||
y_range = [0.4, 0.6]
|
||||
z_range = [0.05, 0.05]
|
||||
|
||||
ranges = np.vstack([x_range, y_range, z_range])
|
||||
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
||||
|
||||
cube_quat = np.array([1, 0, 0, 0])
|
||||
return np.concatenate([cube_position, cube_quat])
|
||||
|
||||
|
||||
def sample_insertion_pose():
|
||||
# Peg
|
||||
x_range = [0.1, 0.2]
|
||||
y_range = [0.4, 0.6]
|
||||
z_range = [0.05, 0.05]
|
||||
|
||||
ranges = np.vstack([x_range, y_range, z_range])
|
||||
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
||||
|
||||
peg_quat = np.array([1, 0, 0, 0])
|
||||
peg_pose = np.concatenate([peg_position, peg_quat])
|
||||
|
||||
# Socket
|
||||
x_range = [-0.2, -0.1]
|
||||
y_range = [0.4, 0.6]
|
||||
z_range = [0.05, 0.05]
|
||||
|
||||
ranges = np.vstack([x_range, y_range, z_range])
|
||||
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
|
||||
|
||||
socket_quat = np.array([1, 0, 0, 0])
|
||||
socket_pose = np.concatenate([socket_position, socket_quat])
|
||||
|
||||
return peg_pose, socket_pose
|
||||
@@ -23,6 +23,11 @@ def make_env(cfg, transform=None):
|
||||
# assert kwargs["seed"] > 200, "Seed 0-200 are used for the demonstration dataset, so we don't want to seed the eval env with this range."
|
||||
|
||||
clsfunc = PushtEnv
|
||||
elif cfg.env.name == "aloha":
|
||||
from lerobot.common.envs.aloha.env import AlohaEnv
|
||||
|
||||
kwargs["task"] = cfg.env.task
|
||||
clsfunc = AlohaEnv
|
||||
else:
|
||||
raise ValueError(cfg.env.name)
|
||||
|
||||
|
||||
@@ -11,61 +11,52 @@ from torchrl.data.tensor_specs import (
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
from torchrl.envs import EnvBase
|
||||
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
|
||||
|
||||
class PushtEnv(EnvBase):
|
||||
class PushtEnv(AbstractEnv):
|
||||
def __init__(
|
||||
self,
|
||||
task="pusht",
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=0,
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
self.image_size = image_size
|
||||
self.num_prev_obs = num_prev_obs
|
||||
self.num_prev_action = num_prev_action
|
||||
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
if from_pixels:
|
||||
assert image_size
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
|
||||
# TODO(rcadene) (PushTEnv is similar to PushTImageEnv, but without the image rendering, it's faster to iterate on)
|
||||
# from lerobot.common.envs.pusht.pusht_env import PushTEnv
|
||||
|
||||
if not from_pixels:
|
||||
if not self.from_pixels:
|
||||
raise NotImplementedError("Use PushTEnv, instead of PushTImageEnv")
|
||||
from lerobot.common.envs.pusht.pusht_image_env import PushTImageEnv
|
||||
|
||||
self._env = PushTImageEnv(render_size=self.image_size)
|
||||
|
||||
self._make_spec()
|
||||
self._current_seed = self.set_seed(seed)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
|
||||
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
|
||||
if self.num_prev_action > 0:
|
||||
raise NotImplementedError()
|
||||
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
|
||||
|
||||
def render(self, mode="rgb_array", width=384, height=384):
|
||||
if width != height:
|
||||
raise NotImplementedError()
|
||||
@@ -122,6 +113,8 @@ class PushtEnv(EnvBase):
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
@@ -154,6 +147,8 @@ class PushtEnv(EnvBase):
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
@@ -175,9 +170,9 @@ class PushtEnv(EnvBase):
|
||||
|
||||
obs["image"] = BoundedTensorSpec(
|
||||
low=0,
|
||||
high=1,
|
||||
high=255,
|
||||
shape=image_shape,
|
||||
dtype=torch.float32,
|
||||
dtype=torch.uint8,
|
||||
device=self.device,
|
||||
)
|
||||
if not self.pixels_only:
|
||||
|
||||
@@ -25,7 +25,7 @@ class PushTImageEnv(PushTEnv):
|
||||
img = super()._render_frame(mode="rgb_array")
|
||||
|
||||
agent_pos = np.array(self.agent.position)
|
||||
img_obs = np.moveaxis(img.astype(np.float32), -1, 0)
|
||||
img_obs = np.moveaxis(img, -1, 0)
|
||||
obs = {"image": img_obs, "agent_pos": agent_pos}
|
||||
|
||||
# draw action
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
import importlib
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from tensordict import TensorDict
|
||||
@@ -10,9 +12,9 @@ from torchrl.data.tensor_specs import (
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
from torchrl.envs import EnvBase
|
||||
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
MAX_NUM_ACTIONS = 4
|
||||
@@ -21,7 +23,7 @@ _has_gym = importlib.util.find_spec("gym") is not None
|
||||
_has_simxarm = importlib.util.find_spec("simxarm") is not None and _has_gym
|
||||
|
||||
|
||||
class SimxarmEnv(EnvBase):
|
||||
class SimxarmEnv(AbstractEnv):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
@@ -31,19 +33,22 @@ class SimxarmEnv(EnvBase):
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=0,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.task = task
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
self.image_size = image_size
|
||||
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
if from_pixels:
|
||||
assert image_size
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_simxarm:
|
||||
raise ImportError("Cannot import simxarm.")
|
||||
if not _has_gym:
|
||||
@@ -63,9 +68,6 @@ class SimxarmEnv(EnvBase):
|
||||
if "w" not in TASKS[self.task]["action_space"]:
|
||||
self._action_padding[-1] = 1.0
|
||||
|
||||
self._make_spec()
|
||||
self.set_seed(seed)
|
||||
|
||||
def render(self, mode="rgb_array", width=384, height=384):
|
||||
return self._env.render(mode, width=width, height=height)
|
||||
|
||||
@@ -90,15 +92,33 @@ class SimxarmEnv(EnvBase):
|
||||
if td is None or td.is_empty():
|
||||
raw_obs = self._env.reset()
|
||||
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": self._format_raw_obs(raw_obs),
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
@@ -108,10 +128,32 @@ class SimxarmEnv(EnvBase):
|
||||
action = np.concatenate([action, self._action_padding])
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
sum_reward = 0
|
||||
for _ in range(self.frame_skip):
|
||||
raw_obs, reward, done, info = self._env.step(action)
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
|
||||
num_action_steps = action.shape[0]
|
||||
for i in range(num_action_steps):
|
||||
raw_obs, reward, done, info = self._env.step(action[i])
|
||||
sum_reward += reward
|
||||
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"])
|
||||
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": self._format_raw_obs(raw_obs),
|
||||
@@ -126,23 +168,36 @@ class SimxarmEnv(EnvBase):
|
||||
def _make_spec(self):
|
||||
obs = {}
|
||||
if self.from_pixels:
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
if self.num_prev_obs > 0:
|
||||
image_shape = (self.num_prev_obs + 1, *image_shape)
|
||||
|
||||
obs["image"] = BoundedTensorSpec(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=(3, self.image_size, self.image_size),
|
||||
shape=image_shape,
|
||||
dtype=torch.uint8,
|
||||
device=self.device,
|
||||
)
|
||||
if not self.pixels_only:
|
||||
state_shape = (len(self._env.robot_state),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
shape=(len(self._env.robot_state),),
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
else:
|
||||
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
||||
state_shape = self._env.observation_space["observation"].shape
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
shape=self._env.observation_space["observation"].shape,
|
||||
# TODO:
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from typing import Sequence
|
||||
|
||||
import torch
|
||||
from tensordict import TensorDictBase
|
||||
from tensordict.nn import dispatch
|
||||
from tensordict.utils import NestedKey
|
||||
@@ -7,19 +8,45 @@ from torchrl.envs.transforms import ObservationTransform, Transform
|
||||
|
||||
|
||||
class Prod(ObservationTransform):
|
||||
invertible = True
|
||||
|
||||
def __init__(self, in_keys: Sequence[NestedKey], prod: float):
|
||||
super().__init__()
|
||||
self.in_keys = in_keys
|
||||
self.prod = prod
|
||||
self.original_dtypes = {}
|
||||
|
||||
def _reset(self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase) -> TensorDictBase:
|
||||
# _reset is called once when the environment reset to normalize the first observation
|
||||
tensordict_reset = self._call(tensordict_reset)
|
||||
return tensordict_reset
|
||||
|
||||
@dispatch(source="in_keys", dest="out_keys")
|
||||
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
|
||||
return self._call(tensordict)
|
||||
|
||||
def _call(self, td):
|
||||
for key in self.in_keys:
|
||||
td[key] *= self.prod
|
||||
if td.get(key, None) is None:
|
||||
continue
|
||||
self.original_dtypes[key] = td[key].dtype
|
||||
td[key] = td[key].type(torch.float32) * self.prod
|
||||
return td
|
||||
|
||||
def _inv_call(self, td: TensorDictBase) -> TensorDictBase:
|
||||
for key in self.in_keys:
|
||||
if td.get(key, None) is None:
|
||||
continue
|
||||
td[key] = (td[key] / self.prod).type(self.original_dtypes[key])
|
||||
return td
|
||||
|
||||
def transform_observation_spec(self, obs_spec):
|
||||
for key in self.in_keys:
|
||||
obs_spec[key].space.high *= self.prod
|
||||
if obs_spec.get(key, None) is None:
|
||||
continue
|
||||
obs_spec[key].space.high = obs_spec[key].space.high.type(torch.float32) * self.prod
|
||||
obs_spec[key].space.low = obs_spec[key].space.low.type(torch.float32) * self.prod
|
||||
obs_spec[key].dtype = torch.float32
|
||||
return obs_spec
|
||||
|
||||
|
||||
|
||||
115
lerobot/common/policies/act/backbone.py
Normal file
115
lerobot/common/policies/act/backbone.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
from torchvision.models._utils import IntermediateLayerGetter
|
||||
|
||||
from .position_encoding import build_position_encoding
|
||||
from .utils import NestedTensor, is_main_process
|
||||
|
||||
|
||||
class FrozenBatchNorm2d(torch.nn.Module):
|
||||
"""
|
||||
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
||||
|
||||
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
|
||||
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101]
|
||||
produce nans.
|
||||
"""
|
||||
|
||||
def __init__(self, n):
|
||||
super().__init__()
|
||||
self.register_buffer("weight", torch.ones(n))
|
||||
self.register_buffer("bias", torch.zeros(n))
|
||||
self.register_buffer("running_mean", torch.zeros(n))
|
||||
self.register_buffer("running_var", torch.ones(n))
|
||||
|
||||
def _load_from_state_dict(
|
||||
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||
):
|
||||
num_batches_tracked_key = prefix + "num_batches_tracked"
|
||||
if num_batches_tracked_key in state_dict:
|
||||
del state_dict[num_batches_tracked_key]
|
||||
|
||||
super()._load_from_state_dict(
|
||||
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# move reshapes to the beginning
|
||||
# to make it fuser-friendly
|
||||
w = self.weight.reshape(1, -1, 1, 1)
|
||||
b = self.bias.reshape(1, -1, 1, 1)
|
||||
rv = self.running_var.reshape(1, -1, 1, 1)
|
||||
rm = self.running_mean.reshape(1, -1, 1, 1)
|
||||
eps = 1e-5
|
||||
scale = w * (rv + eps).rsqrt()
|
||||
bias = b - rm * scale
|
||||
return x * scale + bias
|
||||
|
||||
|
||||
class BackboneBase(nn.Module):
|
||||
def __init__(
|
||||
self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool
|
||||
):
|
||||
super().__init__()
|
||||
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this?
|
||||
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
|
||||
# parameter.requires_grad_(False)
|
||||
if return_interm_layers:
|
||||
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
|
||||
else:
|
||||
return_layers = {"layer4": "0"}
|
||||
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
|
||||
self.num_channels = num_channels
|
||||
|
||||
def forward(self, tensor):
|
||||
xs = self.body(tensor)
|
||||
return xs
|
||||
# out: Dict[str, NestedTensor] = {}
|
||||
# for name, x in xs.items():
|
||||
# m = tensor_list.mask
|
||||
# assert m is not None
|
||||
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
|
||||
# out[name] = NestedTensor(x, mask)
|
||||
# return out
|
||||
|
||||
|
||||
class Backbone(BackboneBase):
|
||||
"""ResNet backbone with frozen BatchNorm."""
|
||||
|
||||
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
|
||||
backbone = getattr(torchvision.models, name)(
|
||||
replace_stride_with_dilation=[False, False, dilation],
|
||||
pretrained=is_main_process(),
|
||||
norm_layer=FrozenBatchNorm2d,
|
||||
) # pretrained # TODO do we want frozen batch_norm??
|
||||
num_channels = 512 if name in ("resnet18", "resnet34") else 2048
|
||||
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
|
||||
|
||||
|
||||
class Joiner(nn.Sequential):
|
||||
def __init__(self, backbone, position_embedding):
|
||||
super().__init__(backbone, position_embedding)
|
||||
|
||||
def forward(self, tensor_list: NestedTensor):
|
||||
xs = self[0](tensor_list)
|
||||
out: List[NestedTensor] = []
|
||||
pos = []
|
||||
for _, x in xs.items():
|
||||
out.append(x)
|
||||
# position encoding
|
||||
pos.append(self[1](x).to(x.dtype))
|
||||
|
||||
return out, pos
|
||||
|
||||
|
||||
def build_backbone(args):
|
||||
position_embedding = build_position_encoding(args)
|
||||
train_backbone = args.lr_backbone > 0
|
||||
return_interm_layers = args.masks
|
||||
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
|
||||
model = Joiner(backbone, position_embedding)
|
||||
model.num_channels = backbone.num_channels
|
||||
return model
|
||||
212
lerobot/common/policies/act/detr_vae.py
Normal file
212
lerobot/common/policies/act/detr_vae.py
Normal file
@@ -0,0 +1,212 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Variable
|
||||
|
||||
from .backbone import build_backbone
|
||||
from .transformer import TransformerEncoder, TransformerEncoderLayer, build_transformer
|
||||
|
||||
|
||||
def reparametrize(mu, logvar):
|
||||
std = logvar.div(2).exp()
|
||||
eps = Variable(std.data.new(std.size()).normal_())
|
||||
return mu + std * eps
|
||||
|
||||
|
||||
def get_sinusoid_encoding_table(n_position, d_hid):
|
||||
def get_position_angle_vec(position):
|
||||
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
||||
|
||||
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
||||
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
||||
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
||||
|
||||
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
||||
|
||||
|
||||
class DETRVAE(nn.Module):
|
||||
"""This is the DETR module that performs object detection"""
|
||||
|
||||
def __init__(
|
||||
self, backbones, transformer, encoder, state_dim, action_dim, num_queries, camera_names, vae
|
||||
):
|
||||
"""Initializes the model.
|
||||
Parameters:
|
||||
backbones: torch module of the backbone to be used. See backbone.py
|
||||
transformer: torch module of the transformer architecture. See transformer.py
|
||||
state_dim: robot state dimension of the environment
|
||||
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
|
||||
DETR can detect in a single image. For COCO, we recommend 100 queries.
|
||||
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_queries = num_queries
|
||||
self.camera_names = camera_names
|
||||
self.transformer = transformer
|
||||
self.encoder = encoder
|
||||
self.vae = vae
|
||||
hidden_dim = transformer.d_model
|
||||
self.action_head = nn.Linear(hidden_dim, action_dim)
|
||||
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
||||
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
||||
if backbones is not None:
|
||||
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
||||
self.backbones = nn.ModuleList(backbones)
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
else:
|
||||
# input_dim = 14 + 7 # robot_state + env_state
|
||||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
|
||||
# TODO(rcadene): understand what is env_state, and why it needs to be 7
|
||||
self.input_proj_env_state = nn.Linear(state_dim // 2, hidden_dim)
|
||||
self.pos = torch.nn.Embedding(2, hidden_dim)
|
||||
self.backbones = None
|
||||
|
||||
# encoder extra parameters
|
||||
self.latent_dim = 32 # final size of latent z # TODO tune
|
||||
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding
|
||||
self.encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding
|
||||
self.encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding
|
||||
self.latent_proj = nn.Linear(
|
||||
hidden_dim, self.latent_dim * 2
|
||||
) # project hidden state to latent std, var
|
||||
self.register_buffer(
|
||||
"pos_table", get_sinusoid_encoding_table(1 + 1 + num_queries, hidden_dim)
|
||||
) # [CLS], qpos, a_seq
|
||||
|
||||
# decoder extra parameters
|
||||
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding
|
||||
self.additional_pos_embed = nn.Embedding(
|
||||
2, hidden_dim
|
||||
) # learned position embedding for proprio and latent
|
||||
|
||||
def forward(self, qpos, image, env_state, actions=None, is_pad=None):
|
||||
"""
|
||||
qpos: batch, qpos_dim
|
||||
image: batch, num_cam, channel, height, width
|
||||
env_state: None
|
||||
actions: batch, seq, action_dim
|
||||
"""
|
||||
is_training = actions is not None # train or val
|
||||
bs, _ = qpos.shape
|
||||
### Obtain latent z from action sequence
|
||||
if self.vae and is_training:
|
||||
# project action sequence to embedding dim, and concat with a CLS token
|
||||
action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim)
|
||||
qpos_embed = self.encoder_joint_proj(qpos) # (bs, hidden_dim)
|
||||
qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim)
|
||||
cls_embed = self.cls_embed.weight # (1, hidden_dim)
|
||||
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim)
|
||||
encoder_input = torch.cat(
|
||||
[cls_embed, qpos_embed, action_embed], axis=1
|
||||
) # (bs, seq+1, hidden_dim)
|
||||
encoder_input = encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim)
|
||||
# do not mask cls token
|
||||
# cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding
|
||||
# is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1)
|
||||
# obtain position embedding
|
||||
pos_embed = self.pos_table.clone().detach()
|
||||
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
|
||||
# query model
|
||||
encoder_output = self.encoder(encoder_input, pos=pos_embed) # , src_key_padding_mask=is_pad)
|
||||
encoder_output = encoder_output[0] # take cls output only
|
||||
latent_info = self.latent_proj(encoder_output)
|
||||
mu = latent_info[:, : self.latent_dim]
|
||||
logvar = latent_info[:, self.latent_dim :]
|
||||
latent_sample = reparametrize(mu, logvar)
|
||||
latent_input = self.latent_out_proj(latent_sample)
|
||||
else:
|
||||
mu = logvar = None
|
||||
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device)
|
||||
latent_input = self.latent_out_proj(latent_sample)
|
||||
|
||||
if self.backbones is not None:
|
||||
# Image observation features and position embeddings
|
||||
all_cam_features = []
|
||||
all_cam_pos = []
|
||||
for cam_id, _ in enumerate(self.camera_names):
|
||||
features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED
|
||||
features = features[0] # take the last layer feature
|
||||
pos = pos[0]
|
||||
all_cam_features.append(self.input_proj(features))
|
||||
all_cam_pos.append(pos)
|
||||
# proprioception features
|
||||
proprio_input = self.input_proj_robot_state(qpos)
|
||||
# fold camera dimension into width dimension
|
||||
src = torch.cat(all_cam_features, axis=3)
|
||||
pos = torch.cat(all_cam_pos, axis=3)
|
||||
hs = self.transformer(
|
||||
src,
|
||||
None,
|
||||
self.query_embed.weight,
|
||||
pos,
|
||||
latent_input,
|
||||
proprio_input,
|
||||
self.additional_pos_embed.weight,
|
||||
)[0]
|
||||
else:
|
||||
qpos = self.input_proj_robot_state(qpos)
|
||||
env_state = self.input_proj_env_state(env_state)
|
||||
transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2
|
||||
hs = self.transformer(transformer_input, None, self.query_embed.weight, self.pos.weight)[0]
|
||||
a_hat = self.action_head(hs)
|
||||
is_pad_hat = self.is_pad_head(hs)
|
||||
return a_hat, is_pad_hat, [mu, logvar]
|
||||
|
||||
|
||||
def mlp(input_dim, hidden_dim, output_dim, hidden_depth):
|
||||
if hidden_depth == 0:
|
||||
mods = [nn.Linear(input_dim, output_dim)]
|
||||
else:
|
||||
mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||
for _ in range(hidden_depth - 1):
|
||||
mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)]
|
||||
mods.append(nn.Linear(hidden_dim, output_dim))
|
||||
trunk = nn.Sequential(*mods)
|
||||
return trunk
|
||||
|
||||
|
||||
def build_encoder(args):
|
||||
d_model = args.hidden_dim # 256
|
||||
dropout = args.dropout # 0.1
|
||||
nhead = args.nheads # 8
|
||||
dim_feedforward = args.dim_feedforward # 2048
|
||||
num_encoder_layers = args.enc_layers # 4 # TODO shared with VAE decoder
|
||||
normalize_before = args.pre_norm # False
|
||||
activation = "relu"
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
||||
encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
||||
|
||||
return encoder
|
||||
|
||||
|
||||
def build(args):
|
||||
# From state
|
||||
# backbone = None # from state for now, no need for conv nets
|
||||
# From image
|
||||
backbones = []
|
||||
backbone = build_backbone(args)
|
||||
backbones.append(backbone)
|
||||
|
||||
transformer = build_transformer(args)
|
||||
|
||||
encoder = build_encoder(args)
|
||||
|
||||
model = DETRVAE(
|
||||
backbones,
|
||||
transformer,
|
||||
encoder,
|
||||
state_dim=args.state_dim,
|
||||
action_dim=args.action_dim,
|
||||
num_queries=args.num_queries,
|
||||
camera_names=args.camera_names,
|
||||
vae=args.vae,
|
||||
)
|
||||
|
||||
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
print("number of parameters: {:.2f}M".format(n_parameters / 1e6))
|
||||
|
||||
return model
|
||||
217
lerobot/common/policies/act/policy.py
Normal file
217
lerobot/common/policies/act/policy.py
Normal file
@@ -0,0 +1,217 @@
|
||||
import logging
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
from lerobot.common.policies.act.detr_vae import build
|
||||
|
||||
|
||||
def build_act_model_and_optimizer(cfg):
|
||||
model = build(cfg)
|
||||
|
||||
param_dicts = [
|
||||
{"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
|
||||
"lr": cfg.lr_backbone,
|
||||
},
|
||||
]
|
||||
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
|
||||
|
||||
return model, optimizer
|
||||
|
||||
|
||||
def kl_divergence(mu, logvar):
|
||||
batch_size = mu.size(0)
|
||||
assert batch_size != 0
|
||||
if mu.data.ndimension() == 4:
|
||||
mu = mu.view(mu.size(0), mu.size(1))
|
||||
if logvar.data.ndimension() == 4:
|
||||
logvar = logvar.view(logvar.size(0), logvar.size(1))
|
||||
|
||||
klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
|
||||
total_kld = klds.sum(1).mean(0, True)
|
||||
dimension_wise_kld = klds.mean(0)
|
||||
mean_kld = klds.mean(1).mean(0, True)
|
||||
|
||||
return total_kld, dimension_wise_kld, mean_kld
|
||||
|
||||
|
||||
class ActionChunkingTransformerPolicy(nn.Module):
|
||||
def __init__(self, cfg, device, n_action_steps=1):
|
||||
super().__init__()
|
||||
self.cfg = cfg
|
||||
self.n_action_steps = n_action_steps
|
||||
self.device = device
|
||||
self.model, self.optimizer = build_act_model_and_optimizer(cfg)
|
||||
self.kl_weight = self.cfg.kl_weight
|
||||
logging.info(f"KL Weight {self.kl_weight}")
|
||||
self.to(self.device)
|
||||
|
||||
def update(self, replay_buffer, step):
|
||||
del step
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
self.train()
|
||||
|
||||
num_slices = self.cfg.batch_size
|
||||
batch_size = self.cfg.horizon * num_slices
|
||||
|
||||
assert batch_size % self.cfg.horizon == 0
|
||||
assert batch_size % num_slices == 0
|
||||
|
||||
def process_batch(batch, horizon, num_slices):
|
||||
# trajectory t = 64, horizon h = 16
|
||||
# (t h) ... -> t h ...
|
||||
batch = batch.reshape(num_slices, horizon)
|
||||
|
||||
image = batch["observation", "image", "top"]
|
||||
image = image[:, 0] # first observation t=0
|
||||
# batch, num_cam, channel, height, width
|
||||
image = image.unsqueeze(1)
|
||||
assert image.ndim == 5
|
||||
image = image.float()
|
||||
|
||||
state = batch["observation", "state"]
|
||||
state = state[:, 0] # first observation t=0
|
||||
# batch, qpos_dim
|
||||
assert state.ndim == 2
|
||||
|
||||
action = batch["action"]
|
||||
# batch, seq, action_dim
|
||||
assert action.ndim == 3
|
||||
assert action.shape[1] == horizon
|
||||
|
||||
if self.cfg.n_obs_steps > 1:
|
||||
raise NotImplementedError()
|
||||
# # keep first n observations of the slice corresponding to t=[-1,0]
|
||||
# image = image[:, : self.cfg.n_obs_steps]
|
||||
# state = state[:, : self.cfg.n_obs_steps]
|
||||
|
||||
out = {
|
||||
"obs": {
|
||||
"image": image.to(self.device, non_blocking=True),
|
||||
"agent_pos": state.to(self.device, non_blocking=True),
|
||||
},
|
||||
"action": action.to(self.device, non_blocking=True),
|
||||
}
|
||||
return out
|
||||
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
batch = process_batch(batch, self.cfg.horizon, num_slices)
|
||||
|
||||
data_s = time.time() - start_time
|
||||
|
||||
loss = self.compute_loss(batch)
|
||||
loss.backward()
|
||||
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
self.model.parameters(),
|
||||
self.cfg.grad_clip_norm,
|
||||
error_if_nonfinite=False,
|
||||
)
|
||||
|
||||
self.optimizer.step()
|
||||
self.optimizer.zero_grad()
|
||||
# self.lr_scheduler.step()
|
||||
|
||||
info = {
|
||||
"loss": loss.item(),
|
||||
"grad_norm": float(grad_norm),
|
||||
# "lr": self.lr_scheduler.get_last_lr()[0],
|
||||
"lr": self.cfg.lr,
|
||||
"data_s": data_s,
|
||||
"update_s": time.time() - start_time,
|
||||
}
|
||||
|
||||
return info
|
||||
|
||||
def save(self, fp):
|
||||
torch.save(self.state_dict(), fp)
|
||||
|
||||
def load(self, fp):
|
||||
d = torch.load(fp)
|
||||
self.load_state_dict(d)
|
||||
|
||||
def compute_loss(self, batch):
|
||||
loss_dict = self._forward(
|
||||
qpos=batch["obs"]["agent_pos"],
|
||||
image=batch["obs"]["image"],
|
||||
actions=batch["action"],
|
||||
)
|
||||
loss = loss_dict["loss"]
|
||||
return loss
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, observation, step_count):
|
||||
# TODO(rcadene): remove unused step_count
|
||||
del step_count
|
||||
|
||||
self.eval()
|
||||
|
||||
# TODO(rcadene): remove unsqueeze hack to add bsize=1
|
||||
observation["image", "top"] = observation["image", "top"].unsqueeze(0)
|
||||
# observation["state"] = observation["state"].unsqueeze(0)
|
||||
|
||||
# TODO(rcadene): remove hack
|
||||
# add 1 camera dimension
|
||||
observation["image", "top"] = observation["image", "top"].unsqueeze(1)
|
||||
|
||||
obs_dict = {
|
||||
"image": observation["image", "top"],
|
||||
"agent_pos": observation["state"],
|
||||
}
|
||||
action = self._forward(qpos=obs_dict["agent_pos"], image=obs_dict["image"])
|
||||
|
||||
if self.cfg.temporal_agg:
|
||||
# TODO(rcadene): implement temporal aggregation
|
||||
raise NotImplementedError()
|
||||
# all_time_actions[[t], t:t+num_queries] = action
|
||||
# actions_for_curr_step = all_time_actions[:, t]
|
||||
# actions_populated = torch.all(actions_for_curr_step != 0, axis=1)
|
||||
# actions_for_curr_step = actions_for_curr_step[actions_populated]
|
||||
# k = 0.01
|
||||
# exp_weights = np.exp(-k * np.arange(len(actions_for_curr_step)))
|
||||
# exp_weights = exp_weights / exp_weights.sum()
|
||||
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
|
||||
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
|
||||
|
||||
# remove bsize=1
|
||||
action = action.squeeze(0)
|
||||
|
||||
# take first predicted action or n first actions
|
||||
action = action[0] if self.n_action_steps == 1 else action[: self.n_action_steps]
|
||||
return action
|
||||
|
||||
def _forward(self, qpos, image, actions=None, is_pad=None):
|
||||
env_state = None
|
||||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
image = normalize(image)
|
||||
|
||||
is_training = actions is not None
|
||||
if is_training: # training time
|
||||
actions = actions[:, : self.model.num_queries]
|
||||
if is_pad is not None:
|
||||
is_pad = is_pad[:, : self.model.num_queries]
|
||||
|
||||
a_hat, is_pad_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad)
|
||||
|
||||
all_l1 = F.l1_loss(actions, a_hat, reduction="none")
|
||||
l1 = all_l1.mean() if is_pad is None else (all_l1 * ~is_pad.unsqueeze(-1)).mean()
|
||||
|
||||
loss_dict = {}
|
||||
loss_dict["l1"] = l1
|
||||
if self.cfg.vae:
|
||||
total_kld, dim_wise_kld, mean_kld = kl_divergence(mu, logvar)
|
||||
loss_dict["kl"] = total_kld[0]
|
||||
loss_dict["loss"] = loss_dict["l1"] + loss_dict["kl"] * self.kl_weight
|
||||
else:
|
||||
loss_dict["loss"] = loss_dict["l1"]
|
||||
return loss_dict
|
||||
else:
|
||||
action, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior
|
||||
return action
|
||||
101
lerobot/common/policies/act/position_encoding.py
Normal file
101
lerobot/common/policies/act/position_encoding.py
Normal file
@@ -0,0 +1,101 @@
|
||||
"""
|
||||
Various positional encodings for the transformer.
|
||||
"""
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .utils import NestedTensor
|
||||
|
||||
|
||||
class PositionEmbeddingSine(nn.Module):
|
||||
"""
|
||||
This is a more standard version of the position embedding, very similar to the one
|
||||
used by the Attention is all you need paper, generalized to work on images.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
||||
super().__init__()
|
||||
self.num_pos_feats = num_pos_feats
|
||||
self.temperature = temperature
|
||||
self.normalize = normalize
|
||||
if scale is not None and normalize is False:
|
||||
raise ValueError("normalize should be True if scale is passed")
|
||||
if scale is None:
|
||||
scale = 2 * math.pi
|
||||
self.scale = scale
|
||||
|
||||
def forward(self, tensor):
|
||||
x = tensor
|
||||
# mask = tensor_list.mask
|
||||
# assert mask is not None
|
||||
# not_mask = ~mask
|
||||
|
||||
not_mask = torch.ones_like(x[0, [0]])
|
||||
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
||||
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
||||
if self.normalize:
|
||||
eps = 1e-6
|
||||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
||||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
||||
|
||||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
||||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
||||
|
||||
pos_x = x_embed[:, :, :, None] / dim_t
|
||||
pos_y = y_embed[:, :, :, None] / dim_t
|
||||
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
||||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
||||
return pos
|
||||
|
||||
|
||||
class PositionEmbeddingLearned(nn.Module):
|
||||
"""
|
||||
Absolute pos embedding, learned.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats=256):
|
||||
super().__init__()
|
||||
self.row_embed = nn.Embedding(50, num_pos_feats)
|
||||
self.col_embed = nn.Embedding(50, num_pos_feats)
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
nn.init.uniform_(self.row_embed.weight)
|
||||
nn.init.uniform_(self.col_embed.weight)
|
||||
|
||||
def forward(self, tensor_list: NestedTensor):
|
||||
x = tensor_list.tensors
|
||||
h, w = x.shape[-2:]
|
||||
i = torch.arange(w, device=x.device)
|
||||
j = torch.arange(h, device=x.device)
|
||||
x_emb = self.col_embed(i)
|
||||
y_emb = self.row_embed(j)
|
||||
pos = (
|
||||
torch.cat(
|
||||
[
|
||||
x_emb.unsqueeze(0).repeat(h, 1, 1),
|
||||
y_emb.unsqueeze(1).repeat(1, w, 1),
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
.permute(2, 0, 1)
|
||||
.unsqueeze(0)
|
||||
.repeat(x.shape[0], 1, 1, 1)
|
||||
)
|
||||
return pos
|
||||
|
||||
|
||||
def build_position_encoding(args):
|
||||
n_steps = args.hidden_dim // 2
|
||||
if args.position_embedding in ("v2", "sine"):
|
||||
# TODO find a better way of exposing other arguments
|
||||
position_embedding = PositionEmbeddingSine(n_steps, normalize=True)
|
||||
elif args.position_embedding in ("v3", "learned"):
|
||||
position_embedding = PositionEmbeddingLearned(n_steps)
|
||||
else:
|
||||
raise ValueError(f"not supported {args.position_embedding}")
|
||||
|
||||
return position_embedding
|
||||
370
lerobot/common/policies/act/transformer.py
Normal file
370
lerobot/common/policies/act/transformer.py
Normal file
@@ -0,0 +1,370 @@
|
||||
"""
|
||||
DETR Transformer class.
|
||||
|
||||
Copy-paste from torch.nn.Transformer with modifications:
|
||||
* positional encodings are passed in MHattention
|
||||
* extra LN at the end of encoder is removed
|
||||
* decoder returns a stack of activations from all decoding layers
|
||||
"""
|
||||
import copy
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
from torch import Tensor, nn
|
||||
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model=512,
|
||||
nhead=8,
|
||||
num_encoder_layers=6,
|
||||
num_decoder_layers=6,
|
||||
dim_feedforward=2048,
|
||||
dropout=0.1,
|
||||
activation="relu",
|
||||
normalize_before=False,
|
||||
return_intermediate_dec=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
encoder_layer = TransformerEncoderLayer(
|
||||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
||||
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
||||
|
||||
decoder_layer = TransformerDecoderLayer(
|
||||
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
|
||||
)
|
||||
decoder_norm = nn.LayerNorm(d_model)
|
||||
self.decoder = TransformerDecoder(
|
||||
decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec
|
||||
)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
self.d_model = d_model
|
||||
self.nhead = nhead
|
||||
|
||||
def _reset_parameters(self):
|
||||
for p in self.parameters():
|
||||
if p.dim() > 1:
|
||||
nn.init.xavier_uniform_(p)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src,
|
||||
mask,
|
||||
query_embed,
|
||||
pos_embed,
|
||||
latent_input=None,
|
||||
proprio_input=None,
|
||||
additional_pos_embed=None,
|
||||
):
|
||||
# TODO flatten only when input has H and W
|
||||
if len(src.shape) == 4: # has H and W
|
||||
# flatten NxCxHxW to HWxNxC
|
||||
bs, c, h, w = src.shape
|
||||
src = src.flatten(2).permute(2, 0, 1)
|
||||
pos_embed = pos_embed.flatten(2).permute(2, 0, 1).repeat(1, bs, 1)
|
||||
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
# mask = mask.flatten(1)
|
||||
|
||||
additional_pos_embed = additional_pos_embed.unsqueeze(1).repeat(1, bs, 1) # seq, bs, dim
|
||||
pos_embed = torch.cat([additional_pos_embed, pos_embed], axis=0)
|
||||
|
||||
addition_input = torch.stack([latent_input, proprio_input], axis=0)
|
||||
src = torch.cat([addition_input, src], axis=0)
|
||||
else:
|
||||
assert len(src.shape) == 3
|
||||
# flatten NxHWxC to HWxNxC
|
||||
bs, hw, c = src.shape
|
||||
src = src.permute(1, 0, 2)
|
||||
pos_embed = pos_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
|
||||
|
||||
tgt = torch.zeros_like(query_embed)
|
||||
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
|
||||
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
|
||||
hs = hs.transpose(1, 2)
|
||||
return hs
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
super().__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
output = src
|
||||
|
||||
for layer in self.layers:
|
||||
output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerDecoder(nn.Module):
|
||||
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
self.return_intermediate = return_intermediate
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
output = tgt
|
||||
|
||||
intermediate = []
|
||||
|
||||
for layer in self.layers:
|
||||
output = layer(
|
||||
output,
|
||||
memory,
|
||||
tgt_mask=tgt_mask,
|
||||
memory_mask=memory_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
pos=pos,
|
||||
query_pos=query_pos,
|
||||
)
|
||||
if self.return_intermediate:
|
||||
intermediate.append(self.norm(output))
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
if self.return_intermediate:
|
||||
intermediate.pop()
|
||||
intermediate.append(output)
|
||||
|
||||
if self.return_intermediate:
|
||||
return torch.stack(intermediate)
|
||||
|
||||
return output.unsqueeze(0)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
|
||||
):
|
||||
super().__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
||||
src = src + self.dropout2(src2)
|
||||
src = self.norm2(src)
|
||||
return src
|
||||
|
||||
def forward_pre(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src2 = self.norm2(src)
|
||||
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
||||
src = src + self.dropout2(src2)
|
||||
return src
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
):
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||
|
||||
|
||||
class TransformerDecoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
|
||||
):
|
||||
super().__init__()
|
||||
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
||||
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
|
||||
self.activation = _get_activation_fn(activation)
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
q = k = self.with_pos_embed(tgt, query_pos)
|
||||
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt = self.norm1(tgt)
|
||||
tgt2 = self.multihead_attn(
|
||||
query=self.with_pos_embed(tgt, query_pos),
|
||||
key=self.with_pos_embed(memory, pos),
|
||||
value=memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt = self.norm2(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
tgt = self.norm3(tgt)
|
||||
return tgt
|
||||
|
||||
def forward_pre(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
tgt2 = self.norm1(tgt)
|
||||
q = k = self.with_pos_embed(tgt2, query_pos)
|
||||
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt2 = self.norm2(tgt)
|
||||
tgt2 = self.multihead_attn(
|
||||
query=self.with_pos_embed(tgt2, query_pos),
|
||||
key=self.with_pos_embed(memory, pos),
|
||||
value=memory,
|
||||
attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask,
|
||||
)[0]
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt2 = self.norm3(tgt)
|
||||
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
return tgt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask: Optional[Tensor] = None,
|
||||
memory_mask: Optional[Tensor] = None,
|
||||
tgt_key_padding_mask: Optional[Tensor] = None,
|
||||
memory_key_padding_mask: Optional[Tensor] = None,
|
||||
pos: Optional[Tensor] = None,
|
||||
query_pos: Optional[Tensor] = None,
|
||||
):
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(
|
||||
tgt,
|
||||
memory,
|
||||
tgt_mask,
|
||||
memory_mask,
|
||||
tgt_key_padding_mask,
|
||||
memory_key_padding_mask,
|
||||
pos,
|
||||
query_pos,
|
||||
)
|
||||
return self.forward_post(
|
||||
tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos
|
||||
)
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
||||
|
||||
|
||||
def build_transformer(args):
|
||||
return Transformer(
|
||||
d_model=args.hidden_dim,
|
||||
dropout=args.dropout,
|
||||
nhead=args.nheads,
|
||||
dim_feedforward=args.dim_feedforward,
|
||||
num_encoder_layers=args.enc_layers,
|
||||
num_decoder_layers=args.dec_layers,
|
||||
normalize_before=args.pre_norm,
|
||||
return_intermediate_dec=True,
|
||||
)
|
||||
|
||||
|
||||
def _get_activation_fn(activation):
|
||||
"""Return an activation function given a string"""
|
||||
if activation == "relu":
|
||||
return F.relu
|
||||
if activation == "gelu":
|
||||
return F.gelu
|
||||
if activation == "glu":
|
||||
return F.glu
|
||||
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
||||
477
lerobot/common/policies/act/utils.py
Normal file
477
lerobot/common/policies/act/utils.py
Normal file
@@ -0,0 +1,477 @@
|
||||
"""
|
||||
Misc functions, including distributed helpers.
|
||||
|
||||
Mostly copy-paste from torchvision references.
|
||||
"""
|
||||
import datetime
|
||||
import os
|
||||
import pickle
|
||||
import subprocess
|
||||
import time
|
||||
from collections import defaultdict, deque
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
# needed due to empty tensor bug in pytorch and torchvision 0.5
|
||||
import torchvision
|
||||
from packaging import version
|
||||
from torch import Tensor
|
||||
|
||||
if version.parse(torchvision.__version__) < version.parse("0.7"):
|
||||
from torchvision.ops import _new_empty_tensor
|
||||
from torchvision.ops.misc import _output_size
|
||||
|
||||
|
||||
class SmoothedValue:
|
||||
"""Track a series of values and provide access to smoothed values over a
|
||||
window or the global series average.
|
||||
"""
|
||||
|
||||
def __init__(self, window_size=20, fmt=None):
|
||||
if fmt is None:
|
||||
fmt = "{median:.4f} ({global_avg:.4f})"
|
||||
self.deque = deque(maxlen=window_size)
|
||||
self.total = 0.0
|
||||
self.count = 0
|
||||
self.fmt = fmt
|
||||
|
||||
def update(self, value, n=1):
|
||||
self.deque.append(value)
|
||||
self.count += n
|
||||
self.total += value * n
|
||||
|
||||
def synchronize_between_processes(self):
|
||||
"""
|
||||
Warning: does not synchronize the deque!
|
||||
"""
|
||||
if not is_dist_avail_and_initialized():
|
||||
return
|
||||
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
||||
dist.barrier()
|
||||
dist.all_reduce(t)
|
||||
t = t.tolist()
|
||||
self.count = int(t[0])
|
||||
self.total = t[1]
|
||||
|
||||
@property
|
||||
def median(self):
|
||||
d = torch.tensor(list(self.deque))
|
||||
return d.median().item()
|
||||
|
||||
@property
|
||||
def avg(self):
|
||||
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
||||
return d.mean().item()
|
||||
|
||||
@property
|
||||
def global_avg(self):
|
||||
return self.total / self.count
|
||||
|
||||
@property
|
||||
def max(self):
|
||||
return max(self.deque)
|
||||
|
||||
@property
|
||||
def value(self):
|
||||
return self.deque[-1]
|
||||
|
||||
def __str__(self):
|
||||
return self.fmt.format(
|
||||
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
|
||||
)
|
||||
|
||||
|
||||
def all_gather(data):
|
||||
"""
|
||||
Run all_gather on arbitrary picklable data (not necessarily tensors)
|
||||
Args:
|
||||
data: any picklable object
|
||||
Returns:
|
||||
list[data]: list of data gathered from each rank
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size == 1:
|
||||
return [data]
|
||||
|
||||
# serialized to a Tensor
|
||||
buffer = pickle.dumps(data)
|
||||
storage = torch.ByteStorage.from_buffer(buffer)
|
||||
tensor = torch.ByteTensor(storage).to("cuda")
|
||||
|
||||
# obtain Tensor size of each rank
|
||||
local_size = torch.tensor([tensor.numel()], device="cuda")
|
||||
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
|
||||
dist.all_gather(size_list, local_size)
|
||||
size_list = [int(size.item()) for size in size_list]
|
||||
max_size = max(size_list)
|
||||
|
||||
# receiving Tensor from all ranks
|
||||
# we pad the tensor because torch all_gather does not support
|
||||
# gathering tensors of different shapes
|
||||
tensor_list = []
|
||||
for _ in size_list:
|
||||
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
|
||||
if local_size != max_size:
|
||||
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
|
||||
tensor = torch.cat((tensor, padding), dim=0)
|
||||
dist.all_gather(tensor_list, tensor)
|
||||
|
||||
data_list = []
|
||||
for size, tensor in zip(size_list, tensor_list, strict=False):
|
||||
buffer = tensor.cpu().numpy().tobytes()[:size]
|
||||
data_list.append(pickle.loads(buffer))
|
||||
|
||||
return data_list
|
||||
|
||||
|
||||
def reduce_dict(input_dict, average=True):
|
||||
"""
|
||||
Args:
|
||||
input_dict (dict): all the values will be reduced
|
||||
average (bool): whether to do average or sum
|
||||
Reduce the values in the dictionary from all processes so that all processes
|
||||
have the averaged results. Returns a dict with the same fields as
|
||||
input_dict, after reduction.
|
||||
"""
|
||||
world_size = get_world_size()
|
||||
if world_size < 2:
|
||||
return input_dict
|
||||
with torch.no_grad():
|
||||
names = []
|
||||
values = []
|
||||
# sort the keys so that they are consistent across processes
|
||||
for k in sorted(input_dict.keys()):
|
||||
names.append(k)
|
||||
values.append(input_dict[k])
|
||||
values = torch.stack(values, dim=0)
|
||||
dist.all_reduce(values)
|
||||
if average:
|
||||
values /= world_size
|
||||
reduced_dict = {k: v for k, v in zip(names, values, strict=False)} # noqa: C416
|
||||
return reduced_dict
|
||||
|
||||
|
||||
class MetricLogger:
|
||||
def __init__(self, delimiter="\t"):
|
||||
self.meters = defaultdict(SmoothedValue)
|
||||
self.delimiter = delimiter
|
||||
|
||||
def update(self, **kwargs):
|
||||
for k, v in kwargs.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
v = v.item()
|
||||
assert isinstance(v, (float, int))
|
||||
self.meters[k].update(v)
|
||||
|
||||
def __getattr__(self, attr):
|
||||
if attr in self.meters:
|
||||
return self.meters[attr]
|
||||
if attr in self.__dict__:
|
||||
return self.__dict__[attr]
|
||||
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
|
||||
|
||||
def __str__(self):
|
||||
loss_str = []
|
||||
for name, meter in self.meters.items():
|
||||
loss_str.append("{}: {}".format(name, str(meter)))
|
||||
return self.delimiter.join(loss_str)
|
||||
|
||||
def synchronize_between_processes(self):
|
||||
for meter in self.meters.values():
|
||||
meter.synchronize_between_processes()
|
||||
|
||||
def add_meter(self, name, meter):
|
||||
self.meters[name] = meter
|
||||
|
||||
def log_every(self, iterable, print_freq, header=None):
|
||||
if not header:
|
||||
header = ""
|
||||
start_time = time.time()
|
||||
end = time.time()
|
||||
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
||||
data_time = SmoothedValue(fmt="{avg:.4f}")
|
||||
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
||||
if torch.cuda.is_available():
|
||||
log_msg = self.delimiter.join(
|
||||
[
|
||||
header,
|
||||
"[{0" + space_fmt + "}/{1}]",
|
||||
"eta: {eta}",
|
||||
"{meters}",
|
||||
"time: {time}",
|
||||
"data: {data}",
|
||||
"max mem: {memory:.0f}",
|
||||
]
|
||||
)
|
||||
else:
|
||||
log_msg = self.delimiter.join(
|
||||
[
|
||||
header,
|
||||
"[{0" + space_fmt + "}/{1}]",
|
||||
"eta: {eta}",
|
||||
"{meters}",
|
||||
"time: {time}",
|
||||
"data: {data}",
|
||||
]
|
||||
)
|
||||
mega_b = 1024.0 * 1024.0
|
||||
for i, obj in enumerate(iterable):
|
||||
data_time.update(time.time() - end)
|
||||
yield obj
|
||||
iter_time.update(time.time() - end)
|
||||
if i % print_freq == 0 or i == len(iterable) - 1:
|
||||
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
||||
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
||||
if torch.cuda.is_available():
|
||||
print(
|
||||
log_msg.format(
|
||||
i,
|
||||
len(iterable),
|
||||
eta=eta_string,
|
||||
meters=str(self),
|
||||
time=str(iter_time),
|
||||
data=str(data_time),
|
||||
memory=torch.cuda.max_memory_allocated() / mega_b,
|
||||
)
|
||||
)
|
||||
else:
|
||||
print(
|
||||
log_msg.format(
|
||||
i,
|
||||
len(iterable),
|
||||
eta=eta_string,
|
||||
meters=str(self),
|
||||
time=str(iter_time),
|
||||
data=str(data_time),
|
||||
)
|
||||
)
|
||||
end = time.time()
|
||||
total_time = time.time() - start_time
|
||||
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||||
print("{} Total time: {} ({:.4f} s / it)".format(header, total_time_str, total_time / len(iterable)))
|
||||
|
||||
|
||||
def get_sha():
|
||||
cwd = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
def _run(command):
|
||||
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
|
||||
|
||||
sha = "N/A"
|
||||
diff = "clean"
|
||||
branch = "N/A"
|
||||
try:
|
||||
sha = _run(["git", "rev-parse", "HEAD"])
|
||||
subprocess.check_output(["git", "diff"], cwd=cwd)
|
||||
diff = _run(["git", "diff-index", "HEAD"])
|
||||
diff = "has uncommited changes" if diff else "clean"
|
||||
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
|
||||
except Exception:
|
||||
pass
|
||||
message = f"sha: {sha}, status: {diff}, branch: {branch}"
|
||||
return message
|
||||
|
||||
|
||||
def collate_fn(batch):
|
||||
batch = list(zip(*batch, strict=False))
|
||||
batch[0] = nested_tensor_from_tensor_list(batch[0])
|
||||
return tuple(batch)
|
||||
|
||||
|
||||
def _max_by_axis(the_list):
|
||||
# type: (List[List[int]]) -> List[int]
|
||||
maxes = the_list[0]
|
||||
for sublist in the_list[1:]:
|
||||
for index, item in enumerate(sublist):
|
||||
maxes[index] = max(maxes[index], item)
|
||||
return maxes
|
||||
|
||||
|
||||
class NestedTensor:
|
||||
def __init__(self, tensors, mask: Optional[Tensor]):
|
||||
self.tensors = tensors
|
||||
self.mask = mask
|
||||
|
||||
def to(self, device):
|
||||
# type: (Device) -> NestedTensor # noqa
|
||||
cast_tensor = self.tensors.to(device)
|
||||
mask = self.mask
|
||||
if mask is not None:
|
||||
assert mask is not None
|
||||
cast_mask = mask.to(device)
|
||||
else:
|
||||
cast_mask = None
|
||||
return NestedTensor(cast_tensor, cast_mask)
|
||||
|
||||
def decompose(self):
|
||||
return self.tensors, self.mask
|
||||
|
||||
def __repr__(self):
|
||||
return str(self.tensors)
|
||||
|
||||
|
||||
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
|
||||
# TODO make this more general
|
||||
if tensor_list[0].ndim == 3:
|
||||
if torchvision._is_tracing():
|
||||
# nested_tensor_from_tensor_list() does not export well to ONNX
|
||||
# call _onnx_nested_tensor_from_tensor_list() instead
|
||||
return _onnx_nested_tensor_from_tensor_list(tensor_list)
|
||||
|
||||
# TODO make it support different-sized images
|
||||
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
|
||||
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
|
||||
batch_shape = [len(tensor_list)] + max_size
|
||||
b, c, h, w = batch_shape
|
||||
dtype = tensor_list[0].dtype
|
||||
device = tensor_list[0].device
|
||||
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
|
||||
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
|
||||
for img, pad_img, m in zip(tensor_list, tensor, mask, strict=False):
|
||||
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
||||
m[: img.shape[1], : img.shape[2]] = False
|
||||
else:
|
||||
raise ValueError("not supported")
|
||||
return NestedTensor(tensor, mask)
|
||||
|
||||
|
||||
# _onnx_nested_tensor_from_tensor_list() is an implementation of
|
||||
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
|
||||
@torch.jit.unused
|
||||
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
|
||||
max_size = []
|
||||
for i in range(tensor_list[0].dim()):
|
||||
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(
|
||||
torch.int64
|
||||
)
|
||||
max_size.append(max_size_i)
|
||||
max_size = tuple(max_size)
|
||||
|
||||
# work around for
|
||||
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
|
||||
# m[: img.shape[1], :img.shape[2]] = False
|
||||
# which is not yet supported in onnx
|
||||
padded_imgs = []
|
||||
padded_masks = []
|
||||
for img in tensor_list:
|
||||
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape), strict=False)]
|
||||
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
|
||||
padded_imgs.append(padded_img)
|
||||
|
||||
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
|
||||
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
|
||||
padded_masks.append(padded_mask.to(torch.bool))
|
||||
|
||||
tensor = torch.stack(padded_imgs)
|
||||
mask = torch.stack(padded_masks)
|
||||
|
||||
return NestedTensor(tensor, mask=mask)
|
||||
|
||||
|
||||
def setup_for_distributed(is_master):
|
||||
"""
|
||||
This function disables printing when not in master process
|
||||
"""
|
||||
import builtins as __builtin__
|
||||
|
||||
builtin_print = __builtin__.print
|
||||
|
||||
def print(*args, **kwargs):
|
||||
force = kwargs.pop("force", False)
|
||||
if is_master or force:
|
||||
builtin_print(*args, **kwargs)
|
||||
|
||||
__builtin__.print = print
|
||||
|
||||
|
||||
def is_dist_avail_and_initialized():
|
||||
if not dist.is_available():
|
||||
return False
|
||||
if not dist.is_initialized():
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def get_world_size():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 1
|
||||
return dist.get_world_size()
|
||||
|
||||
|
||||
def get_rank():
|
||||
if not is_dist_avail_and_initialized():
|
||||
return 0
|
||||
return dist.get_rank()
|
||||
|
||||
|
||||
def is_main_process():
|
||||
return get_rank() == 0
|
||||
|
||||
|
||||
def save_on_master(*args, **kwargs):
|
||||
if is_main_process():
|
||||
torch.save(*args, **kwargs)
|
||||
|
||||
|
||||
def init_distributed_mode(args):
|
||||
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
|
||||
args.rank = int(os.environ["RANK"])
|
||||
args.world_size = int(os.environ["WORLD_SIZE"])
|
||||
args.gpu = int(os.environ["LOCAL_RANK"])
|
||||
elif "SLURM_PROCID" in os.environ:
|
||||
args.rank = int(os.environ["SLURM_PROCID"])
|
||||
args.gpu = args.rank % torch.cuda.device_count()
|
||||
else:
|
||||
print("Not using distributed mode")
|
||||
args.distributed = False
|
||||
return
|
||||
|
||||
args.distributed = True
|
||||
|
||||
torch.cuda.set_device(args.gpu)
|
||||
args.dist_backend = "nccl"
|
||||
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
|
||||
torch.distributed.init_process_group(
|
||||
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
|
||||
)
|
||||
torch.distributed.barrier()
|
||||
setup_for_distributed(args.rank == 0)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def accuracy(output, target, topk=(1,)):
|
||||
"""Computes the precision@k for the specified values of k"""
|
||||
if target.numel() == 0:
|
||||
return [torch.zeros([], device=output.device)]
|
||||
maxk = max(topk)
|
||||
batch_size = target.size(0)
|
||||
|
||||
_, pred = output.topk(maxk, 1, True, True)
|
||||
pred = pred.t()
|
||||
correct = pred.eq(target.view(1, -1).expand_as(pred))
|
||||
|
||||
res = []
|
||||
for k in topk:
|
||||
correct_k = correct[:k].view(-1).float().sum(0)
|
||||
res.append(correct_k.mul_(100.0 / batch_size))
|
||||
return res
|
||||
|
||||
|
||||
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
||||
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
|
||||
"""
|
||||
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
|
||||
This will eventually be supported natively by PyTorch, and this
|
||||
class can go away.
|
||||
"""
|
||||
if version.parse(torchvision.__version__) < version.parse("0.7"):
|
||||
if input.numel() > 0:
|
||||
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)
|
||||
|
||||
output_shape = _output_size(2, input, size, scale_factor)
|
||||
output_shape = list(input.shape[:-2]) + list(output_shape)
|
||||
return _new_empty_tensor(input, output_shape)
|
||||
else:
|
||||
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
|
||||
@@ -17,6 +17,12 @@ def make_policy(cfg):
|
||||
n_action_steps=cfg.n_action_steps + cfg.n_latency_steps,
|
||||
**cfg.policy,
|
||||
)
|
||||
elif cfg.policy.name == "act":
|
||||
from lerobot.common.policies.act.policy import ActionChunkingTransformerPolicy
|
||||
|
||||
policy = ActionChunkingTransformerPolicy(
|
||||
cfg.policy, cfg.device, n_action_steps=cfg.n_action_steps + cfg.n_latency_steps
|
||||
)
|
||||
else:
|
||||
raise ValueError(cfg.policy.name)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user