- Added async_prefetch parameter to SACConfig for improved buffer management.
- Implemented get_iterator method in ReplayBuffer to support asynchronous prefetching of batches.
- Updated learner_server to utilize the new iterator for online and offline sampling, enhancing training efficiency.
- Cached encoder output in select_action method to reduce redundant computations.
- Updated action selection and grasp critic calls to utilize cached encoder features when available.
- Updated SACPolicy to conditionally compute grasp critic losses based on the presence of discrete actions.
- Refactored the forward method to handle grasp critic model selection and loss computation more clearly.
- Adjusted learner server to utilize optimized parameters for grasp critic during training.
- Improved action handling in the ManiskillMockGripperWrapper to accommodate both tuple and single action inputs.
- Cleaned up code formatting for better readability, including consistent spacing and removal of unnecessary blank lines.
- Consolidated continuous action dimension calculation to enhance clarity and maintainability.
- Simplified loss return statements in the forward method to improve code structure.
- Ensured grasp critic parameters are included conditionally based on configuration settings.
- Introduced mock_gripper parameter in ManiskillEnvConfig to enable gripper simulation.
- Added ManiskillMockGripperWrapper to adjust action space for environments with discrete actions.
- Updated SACPolicy to compute continuous action dimensions correctly, ensuring compatibility with the new gripper setup.
- Refactored action handling in the training loop to accommodate the changes in action dimensions.
- Updated SACPolicy to conditionally compute losses for grasp critic based on num_discrete_actions.
- Simplified forward method to return loss outputs as a dictionary for better clarity.
- Adjusted learner_server to handle both main and grasp critic losses during training.
- Ensured optimizers are created conditionally for grasp critic based on configuration settings.
- Removed GraspCriticNetworkConfig class and integrated its parameters into SACConfig.
- Added num_discrete_actions parameter to SACConfig for better action handling.
- Updated SACPolicy to conditionally create grasp critic networks based on num_discrete_actions.
- Enhanced grasp critic forward pass to handle discrete actions and compute losses accordingly.
- Integrated the grasp critic gradient update to the training loop in learner_server
- Added Adam optimizer and configured grasp critic learning rate in configuration_sac
- Added target critics networks update after the critics gradient step
Minor modifications in gym_manipulator to quantize the gripper actions
clamped the observations after F.resize in ConvertToLeRobotObservation wrapper due to a bug in F.resize, images were returned exceeding the maximum value of 1.0
- Enhanced type annotations for variables in the `SACPolicy` class to improve code clarity.
- Updated method calls to use keyword arguments for better readability.
- Streamlined the extraction of batch components, ensuring consistent typing across the class methods.