forked from tangger/lerobot
Compare commits
212 Commits
thom-fixes
...
user/rcade
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
82df3feaee | ||
|
|
2a8a9dc25a | ||
|
|
dc08c3bfa4 | ||
|
|
68fff561de | ||
|
|
1a343c3591 | ||
|
|
433e950348 | ||
|
|
26f97cfd17 | ||
|
|
e58e59411a | ||
|
|
3369d351a7 | ||
|
|
8b89d03d74 | ||
|
|
77ba43d25b | ||
|
|
9b76ee9eb0 | ||
|
|
48911e0cd3 | ||
|
|
5c73bec913 | ||
|
|
1de04e4756 | ||
|
|
83cfe60783 | ||
|
|
0e63f7c1b5 | ||
|
|
bc479cb2d4 | ||
|
|
2c9defabdd | ||
|
|
cc5c623179 | ||
|
|
88c2ed419e | ||
|
|
2e694fcf8f | ||
|
|
9dea00ee9e | ||
|
|
50a979d6de | ||
|
|
76cc47956a | ||
|
|
675d4286c8 | ||
|
|
da1888a378 | ||
|
|
3f9f3dd027 | ||
|
|
c704eb94c0 | ||
|
|
0352c61b00 | ||
|
|
e499d60742 | ||
|
|
81f17d505e | ||
|
|
bf7e906b70 | ||
|
|
a7350d9b65 | ||
|
|
8da08935d4 | ||
|
|
7450adc72b | ||
|
|
e66900e387 | ||
|
|
89b2b7397e | ||
|
|
48be576cc6 | ||
|
|
395720a5de | ||
|
|
8a7b5c45c7 | ||
|
|
b6b7fda5f8 | ||
|
|
8b36223832 | ||
|
|
a236382590 | ||
|
|
3cb85bcd4b | ||
|
|
f2b1842d69 | ||
|
|
500d505bf6 | ||
|
|
72f402d44b | ||
|
|
2c0171632f | ||
|
|
bded8cbbe9 | ||
|
|
6377d2a96c | ||
|
|
558420115e | ||
|
|
bcf27b8c01 | ||
|
|
f0452c222a | ||
|
|
1bf284562e | ||
|
|
886923a890 | ||
|
|
92573486a8 | ||
|
|
c712d68f6a | ||
|
|
adc8dc9bfb | ||
|
|
624551bea9 | ||
|
|
6636db5b51 | ||
|
|
ccc0586d45 | ||
|
|
bab19d9b1d | ||
|
|
783b78ae9a | ||
|
|
e47856add6 | ||
|
|
f431a08efa | ||
|
|
beaa427504 | ||
|
|
a88dd602d9 | ||
|
|
6c0324f467 | ||
|
|
3f993d5250 | ||
|
|
cd4d2257d3 | ||
|
|
53ebf9cf9f | ||
|
|
4151630c24 | ||
|
|
bc0e691280 | ||
|
|
e1763aa906 | ||
|
|
3bd5ea4d7a | ||
|
|
44b8394365 | ||
|
|
2469c99053 | ||
|
|
a60d27b132 | ||
|
|
9c463661c1 | ||
|
|
4255655618 | ||
|
|
96cc2433d6 | ||
|
|
f17d9a2ba1 | ||
|
|
9ff829a3a1 | ||
|
|
d6516f0e03 | ||
|
|
b0b8612eff | ||
|
|
1072a055db | ||
|
|
9c9f5cac90 | ||
|
|
9d0c6fe419 | ||
|
|
54ac25cfc9 | ||
|
|
150a292795 | ||
|
|
429a463aff | ||
|
|
27ba2951d1 | ||
|
|
b2896d38f5 | ||
|
|
c0da806232 | ||
|
|
114e09f570 | ||
|
|
04a995e7d1 | ||
|
|
4806336816 | ||
|
|
1ce418e4a1 | ||
|
|
eb4c505cff | ||
|
|
aad59e6b6b | ||
|
|
9ce98bb93c | ||
|
|
97086cdcdf | ||
|
|
9c7649f140 | ||
|
|
a2592a5563 | ||
|
|
b5ad79a7d3 | ||
|
|
996468bcce | ||
|
|
f98200297d | ||
|
|
86bbd16d43 | ||
|
|
0f6e0f6d74 | ||
|
|
fc3e545e03 | ||
|
|
b98ea415c1 | ||
|
|
bbe9057225 | ||
|
|
8c4643687c | ||
|
|
fab037f78d | ||
|
|
03d647269e | ||
|
|
2252b42337 | ||
|
|
bc6384bb80 | ||
|
|
8df7e63d61 | ||
|
|
7a3cb1ad34 | ||
|
|
f8a6574698 | ||
|
|
abbb1d2367 | ||
|
|
0b21210d72 | ||
|
|
461d5472d3 | ||
|
|
c75ea789a8 | ||
|
|
ee200e86cb | ||
|
|
8865e19c12 | ||
|
|
5f5efe7cb9 | ||
|
|
c0101f0948 | ||
|
|
5e54e39795 | ||
|
|
5ffcb48a9a | ||
|
|
471eab3d7e | ||
|
|
64425d5e00 | ||
|
|
e410e5d711 | ||
|
|
cc2f6e7404 | ||
|
|
a4d77b99f0 | ||
|
|
7bd5ab16d1 | ||
|
|
74362ac453 | ||
|
|
964f9e86d6 | ||
|
|
7a5fc76b9f | ||
|
|
342f429f1c | ||
|
|
7d1542cae1 | ||
|
|
9aa4cdb976 | ||
|
|
2abef3bef9 | ||
|
|
48951662f2 | ||
|
|
56199fb76f | ||
|
|
11f1cb5dc9 | ||
|
|
b72d574891 | ||
|
|
15dd682714 | ||
|
|
e28fa2344c | ||
|
|
a92d79fff2 | ||
|
|
125bd93e29 | ||
|
|
c38f535c9f | ||
|
|
ff8f6aa6cd | ||
|
|
1cf050d412 | ||
|
|
54c9776bde | ||
|
|
a06598678c | ||
|
|
055a6f60c6 | ||
|
|
e54d6ea1eb | ||
|
|
1eb4bfe2e4 | ||
|
|
21f222fa1d | ||
|
|
33362dbd17 | ||
|
|
b0d954c6e1 | ||
|
|
bd3111f28b | ||
|
|
cf15cba5fc | ||
|
|
042e193995 | ||
|
|
d585c73f9f | ||
|
|
504d2aaf48 | ||
|
|
83f4f7f7e8 | ||
|
|
633115d861 | ||
|
|
57fb5fe8a6 | ||
|
|
0b51a335bc | ||
|
|
111cd58f8a | ||
|
|
265b0ec44d | ||
|
|
2c2e4e14ed | ||
|
|
13310681b1 | ||
|
|
3d625ae6d3 | ||
|
|
e3b9f1c19b | ||
|
|
7ec76ee235 | ||
|
|
3b86050ab0 | ||
|
|
6d39b73399 | ||
|
|
aca424a481 | ||
|
|
35c1ce7a66 | ||
|
|
e67da1d7a6 | ||
|
|
b6c216b590 | ||
|
|
2b270d085b | ||
|
|
c4da689171 | ||
|
|
9b62c25f6c | ||
|
|
01eae09ba6 | ||
|
|
19dfb9144a | ||
|
|
096149b118 | ||
|
|
5ec0af62c6 | ||
|
|
625f0557ef | ||
|
|
4d7d41cdee | ||
|
|
c9069df9f1 | ||
|
|
68c1b13406 | ||
|
|
f52f4f2cd2 | ||
|
|
89c6be84ca | ||
|
|
fc5cf3d84a | ||
|
|
29a196c5dd | ||
|
|
ced3de4c94 | ||
|
|
7b47ab211b | ||
|
|
1249aee3ac | ||
|
|
b187942db4 | ||
|
|
473345fdf6 | ||
|
|
e89521dfa0 | ||
|
|
7bb5b15f4c | ||
|
|
df914aa76c | ||
|
|
0ea7a8b2a3 | ||
|
|
460df2ccea | ||
|
|
f5de57b385 | ||
|
|
47de07658c |
68
.cache/calibration/aloha_default/left_follower.json
Normal file
68
.cache/calibration/aloha_default/left_follower.json
Normal file
@@ -0,0 +1,68 @@
|
||||
{
|
||||
"homing_offset": [
|
||||
2048,
|
||||
3072,
|
||||
3072,
|
||||
-1024,
|
||||
-1024,
|
||||
2048,
|
||||
-2048,
|
||||
2048,
|
||||
-2048
|
||||
],
|
||||
"drive_mode": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0
|
||||
],
|
||||
"start_pos": [
|
||||
2015,
|
||||
3058,
|
||||
3061,
|
||||
1071,
|
||||
1071,
|
||||
2035,
|
||||
2152,
|
||||
2029,
|
||||
2499
|
||||
],
|
||||
"end_pos": [
|
||||
-1008,
|
||||
-1963,
|
||||
-1966,
|
||||
2141,
|
||||
2143,
|
||||
-971,
|
||||
3043,
|
||||
-1077,
|
||||
3144
|
||||
],
|
||||
"calib_mode": [
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"LINEAR"
|
||||
],
|
||||
"motor_names": [
|
||||
"waist",
|
||||
"shoulder",
|
||||
"shoulder_shadow",
|
||||
"elbow",
|
||||
"elbow_shadow",
|
||||
"forearm_roll",
|
||||
"wrist_angle",
|
||||
"wrist_rotate",
|
||||
"gripper"
|
||||
]
|
||||
}
|
||||
68
.cache/calibration/aloha_default/left_leader.json
Normal file
68
.cache/calibration/aloha_default/left_leader.json
Normal file
@@ -0,0 +1,68 @@
|
||||
{
|
||||
"homing_offset": [
|
||||
2048,
|
||||
3072,
|
||||
3072,
|
||||
-1024,
|
||||
-1024,
|
||||
2048,
|
||||
-2048,
|
||||
2048,
|
||||
-1024
|
||||
],
|
||||
"drive_mode": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0
|
||||
],
|
||||
"start_pos": [
|
||||
2035,
|
||||
3024,
|
||||
3019,
|
||||
979,
|
||||
981,
|
||||
1982,
|
||||
2166,
|
||||
2124,
|
||||
1968
|
||||
],
|
||||
"end_pos": [
|
||||
-990,
|
||||
-2017,
|
||||
-2015,
|
||||
2078,
|
||||
2076,
|
||||
-1030,
|
||||
3117,
|
||||
-1016,
|
||||
2556
|
||||
],
|
||||
"calib_mode": [
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"LINEAR"
|
||||
],
|
||||
"motor_names": [
|
||||
"waist",
|
||||
"shoulder",
|
||||
"shoulder_shadow",
|
||||
"elbow",
|
||||
"elbow_shadow",
|
||||
"forearm_roll",
|
||||
"wrist_angle",
|
||||
"wrist_rotate",
|
||||
"gripper"
|
||||
]
|
||||
}
|
||||
68
.cache/calibration/aloha_default/right_follower.json
Normal file
68
.cache/calibration/aloha_default/right_follower.json
Normal file
@@ -0,0 +1,68 @@
|
||||
{
|
||||
"homing_offset": [
|
||||
2048,
|
||||
3072,
|
||||
3072,
|
||||
-1024,
|
||||
-1024,
|
||||
2048,
|
||||
-2048,
|
||||
2048,
|
||||
-2048
|
||||
],
|
||||
"drive_mode": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0
|
||||
],
|
||||
"start_pos": [
|
||||
2056,
|
||||
2895,
|
||||
2896,
|
||||
1191,
|
||||
1190,
|
||||
2018,
|
||||
2051,
|
||||
2056,
|
||||
2509
|
||||
],
|
||||
"end_pos": [
|
||||
-1040,
|
||||
-2004,
|
||||
-2006,
|
||||
2126,
|
||||
2127,
|
||||
-1010,
|
||||
3050,
|
||||
-1117,
|
||||
3143
|
||||
],
|
||||
"calib_mode": [
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"LINEAR"
|
||||
],
|
||||
"motor_names": [
|
||||
"waist",
|
||||
"shoulder",
|
||||
"shoulder_shadow",
|
||||
"elbow",
|
||||
"elbow_shadow",
|
||||
"forearm_roll",
|
||||
"wrist_angle",
|
||||
"wrist_rotate",
|
||||
"gripper"
|
||||
]
|
||||
}
|
||||
68
.cache/calibration/aloha_default/right_leader.json
Normal file
68
.cache/calibration/aloha_default/right_leader.json
Normal file
@@ -0,0 +1,68 @@
|
||||
{
|
||||
"homing_offset": [
|
||||
2048,
|
||||
3072,
|
||||
3072,
|
||||
-1024,
|
||||
-1024,
|
||||
2048,
|
||||
-2048,
|
||||
2048,
|
||||
-2048
|
||||
],
|
||||
"drive_mode": [
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
0
|
||||
],
|
||||
"start_pos": [
|
||||
2068,
|
||||
3034,
|
||||
3030,
|
||||
1038,
|
||||
1041,
|
||||
1991,
|
||||
1948,
|
||||
2090,
|
||||
1985
|
||||
],
|
||||
"end_pos": [
|
||||
-1025,
|
||||
-2014,
|
||||
-2015,
|
||||
2058,
|
||||
2060,
|
||||
-955,
|
||||
3091,
|
||||
-940,
|
||||
2576
|
||||
],
|
||||
"calib_mode": [
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"DEGREE",
|
||||
"LINEAR"
|
||||
],
|
||||
"motor_names": [
|
||||
"waist",
|
||||
"shoulder",
|
||||
"shoulder_shadow",
|
||||
"elbow",
|
||||
"elbow_shadow",
|
||||
"forearm_roll",
|
||||
"wrist_angle",
|
||||
"wrist_rotate",
|
||||
"gripper"
|
||||
]
|
||||
}
|
||||
4
.gitattributes
vendored
4
.gitattributes
vendored
@@ -1,2 +1,6 @@
|
||||
*.memmap filter=lfs diff=lfs merge=lfs -text
|
||||
*.stl filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.json !text !filter !merge !diff
|
||||
|
||||
116
.github/workflows/build-docker-images.yml
vendored
116
.github/workflows/build-docker-images.yml
vendored
@@ -10,31 +10,26 @@ on:
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
# CI_SLACK_CHANNEL: ${{ secrets.CI_DOCKER_CHANNEL }}
|
||||
|
||||
jobs:
|
||||
latest-cpu:
|
||||
name: CPU
|
||||
runs-on: ubuntu-latest
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
- name: Install Git LFS
|
||||
run: |
|
||||
sudo df -h
|
||||
# sudo ls -l /usr/local/lib/
|
||||
# sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo df -h
|
||||
sudo apt-get update
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
@@ -51,52 +46,25 @@ jobs:
|
||||
tags: huggingface/lerobot-cpu
|
||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||
|
||||
# - name: Post to a Slack channel
|
||||
# id: slack
|
||||
# #uses: slackapi/slack-github-action@v1.25.0
|
||||
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
# with:
|
||||
# # Slack channel id, channel name, or user id to post message.
|
||||
# # See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
|
||||
# # For posting a rich message using Block Kit
|
||||
# payload: |
|
||||
# {
|
||||
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
|
||||
# "blocks": [
|
||||
# {
|
||||
# "type": "section",
|
||||
# "text": {
|
||||
# "type": "mrkdwn",
|
||||
# "text": "lerobot-cpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
||||
# }
|
||||
# }
|
||||
# ]
|
||||
# }
|
||||
# env:
|
||||
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-cuda:
|
||||
name: GPU
|
||||
runs-on: ubuntu-latest
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
- name: Install Git LFS
|
||||
run: |
|
||||
sudo df -h
|
||||
# sudo ls -l /usr/local/lib/
|
||||
# sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo df -h
|
||||
sudo apt-get update
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
@@ -113,27 +81,29 @@ jobs:
|
||||
tags: huggingface/lerobot-gpu
|
||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||
|
||||
# - name: Post to a Slack channel
|
||||
# id: slack
|
||||
# #uses: slackapi/slack-github-action@v1.25.0
|
||||
# uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
# with:
|
||||
# # Slack channel id, channel name, or user id to post message.
|
||||
# # See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
# channel-id: ${{ env.CI_SLACK_CHANNEL }}
|
||||
# # For posting a rich message using Block Kit
|
||||
# payload: |
|
||||
# {
|
||||
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
|
||||
# "blocks": [
|
||||
# {
|
||||
# "type": "section",
|
||||
# "text": {
|
||||
# "type": "mrkdwn",
|
||||
# "text": "lerobot-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
||||
# }
|
||||
# }
|
||||
# ]
|
||||
# }
|
||||
# env:
|
||||
# SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
latest-cuda-dev:
|
||||
name: GPU Dev
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
- name: Build and Push GPU dev
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
file: ./docker/lerobot-gpu-dev/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/lerobot-gpu:dev
|
||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||
|
||||
8
.github/workflows/nightly-tests.yml
vendored
8
.github/workflows/nightly-tests.yml
vendored
@@ -16,7 +16,8 @@ jobs:
|
||||
name: CPU
|
||||
strategy:
|
||||
fail-fast: false
|
||||
runs-on: ubuntu-latest
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
container:
|
||||
image: huggingface/lerobot-cpu:latest
|
||||
options: --shm-size "16gb"
|
||||
@@ -43,7 +44,8 @@ jobs:
|
||||
name: GPU
|
||||
strategy:
|
||||
fail-fast: false
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
TEST_TYPE: "single_gpu"
|
||||
@@ -70,6 +72,8 @@ jobs:
|
||||
# files: ./coverage.xml
|
||||
# verbose: true
|
||||
- name: Tests end-to-end
|
||||
env:
|
||||
DEVICE: cuda
|
||||
run: make test-end-to-end
|
||||
|
||||
# - name: Generate Report
|
||||
|
||||
28
.github/workflows/quality.yml
vendored
28
.github/workflows/quality.yml
vendored
@@ -54,3 +54,31 @@ jobs:
|
||||
|
||||
- name: Poetry check
|
||||
run: poetry check
|
||||
|
||||
|
||||
poetry_relax:
|
||||
name: Poetry relax
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install poetry
|
||||
run: pipx install poetry
|
||||
|
||||
- name: Install poetry-relax
|
||||
run: poetry self add poetry-relax
|
||||
|
||||
- name: Poetry relax
|
||||
id: poetry_relax
|
||||
run: |
|
||||
output=$(poetry relax --check 2>&1)
|
||||
if echo "$output" | grep -q "Proposing updates"; then
|
||||
echo "$output"
|
||||
echo ""
|
||||
echo "Some dependencies have caret '^' version requirement added by poetry by default."
|
||||
echo "Please replace them with '>='. You can do this by hand or use poetry-relax to do this."
|
||||
exit 1
|
||||
else
|
||||
echo "$output"
|
||||
fi
|
||||
|
||||
16
.github/workflows/test-docker-build.yml
vendored
16
.github/workflows/test-docker-build.yml
vendored
@@ -42,26 +42,14 @@ jobs:
|
||||
build_modified_dockerfiles:
|
||||
name: Build modified Docker images
|
||||
needs: get_changed_files
|
||||
runs-on: ubuntu-latest
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
if: ${{ needs.get_changed_files.outputs.matrix }} != ''
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo df -h
|
||||
# sudo ls -l /usr/local/lib/
|
||||
# sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo df -h
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
|
||||
58
.github/workflows/test.yml
vendored
58
.github/workflows/test.yml
vendored
@@ -10,6 +10,8 @@ on:
|
||||
- "examples/**"
|
||||
- ".github/**"
|
||||
- "poetry.lock"
|
||||
- "Makefile"
|
||||
- ".cache/**"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
@@ -19,6 +21,8 @@ on:
|
||||
- "examples/**"
|
||||
- ".github/**"
|
||||
- "poetry.lock"
|
||||
- "Makefile"
|
||||
- ".cache/**"
|
||||
|
||||
jobs:
|
||||
pytest:
|
||||
@@ -29,9 +33,14 @@ jobs:
|
||||
MUJOCO_GL: egl
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
|
||||
- name: Install EGL
|
||||
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
|
||||
- name: Install apt dependencies
|
||||
# portaudio19-dev is needed to install pyaudio
|
||||
run: |
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
@@ -56,6 +65,42 @@ jobs:
|
||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||
&& rm -rf tests/outputs outputs
|
||||
|
||||
pytest-minimal:
|
||||
name: Pytest (minimal install)
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
DATA_DIR: tests/data
|
||||
MUJOCO_GL: egl
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
|
||||
- name: Install apt dependencies
|
||||
run: sudo apt-get update && sudo apt-get install -y ffmpeg
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry && poetry config virtualenvs.in-project true
|
||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install poetry dependencies
|
||||
run: |
|
||||
poetry install --extras "test"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest tests -v --cov=./lerobot --durations=0 \
|
||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||
&& rm -rf tests/outputs outputs
|
||||
|
||||
|
||||
end-to-end:
|
||||
name: End-to-end
|
||||
@@ -65,9 +110,14 @@ jobs:
|
||||
MUJOCO_GL: egl
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
|
||||
- name: Install EGL
|
||||
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
|
||||
- name: Install apt dependencies
|
||||
# portaudio19-dev is needed to install pyaudio
|
||||
run: |
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
|
||||
20
.github/workflows/trufflehog.yml
vendored
Normal file
20
.github/workflows/trufflehog.yml
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
on:
|
||||
push:
|
||||
|
||||
name: Secret Leaks
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
trufflehog:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Secret Scanning
|
||||
uses: trufflesecurity/trufflehog@main
|
||||
with:
|
||||
extra_args: --only-verified
|
||||
37
.gitignore
vendored
37
.gitignore
vendored
@@ -2,12 +2,17 @@
|
||||
logs
|
||||
tmp
|
||||
wandb
|
||||
|
||||
# Data
|
||||
data
|
||||
outputs
|
||||
.vscode
|
||||
rl
|
||||
|
||||
# Apple
|
||||
.DS_Store
|
||||
|
||||
# VS Code
|
||||
.vscode
|
||||
|
||||
# HPC
|
||||
nautilus/*.yaml
|
||||
*.key
|
||||
@@ -61,7 +66,6 @@ htmlcov/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
@@ -69,6 +73,11 @@ coverage.xml
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Ignore .cache except calibration
|
||||
.cache/*
|
||||
!.cache/calibration/
|
||||
!.cache/calibration/**
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
@@ -90,6 +99,7 @@ instance/
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
@@ -102,13 +112,6 @@ ipython_config.py
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
@@ -119,6 +122,14 @@ celerybeat.pid
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
@@ -136,3 +147,9 @@ dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
@@ -14,11 +14,11 @@ repos:
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.15.2
|
||||
rev: v3.16.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.4.3
|
||||
rev: v0.5.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
@@ -31,3 +31,7 @@ repos:
|
||||
args:
|
||||
- "--check"
|
||||
- "--no-update"
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.18.4
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
@@ -20,7 +20,7 @@ Some of the ways you can contribute to 🤗 LeRobot:
|
||||
* Contributing to the examples or to the documentation.
|
||||
* Submitting issues related to bugs or desired new features.
|
||||
|
||||
Following the guides below, feel free to open issues and PRs and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](remi.cadene@huggingface.co).
|
||||
Following the guides below, feel free to open issues and PRs and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](mailto:remi.cadene@huggingface.co).
|
||||
|
||||
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/orgs/huggingface/projects/46)
|
||||
|
||||
@@ -195,6 +195,11 @@ Follow these steps to start contributing:
|
||||
git commit
|
||||
```
|
||||
|
||||
Note, if you already commited some changes that have a wrong formatting, you can use:
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
|
||||
|
||||
It is a good idea to sync your copy of the code with the original
|
||||
|
||||
129
Makefile
129
Makefile
@@ -5,11 +5,12 @@ PYTHON_PATH := $(shell which python)
|
||||
# If Poetry is installed, redefine PYTHON_PATH to use the Poetry-managed Python
|
||||
POETRY_CHECK := $(shell command -v poetry)
|
||||
ifneq ($(POETRY_CHECK),)
|
||||
PYTHON_PATH := $(shell poetry run which python)
|
||||
PYTHON_PATH := $(shell poetry run which python)
|
||||
endif
|
||||
|
||||
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
|
||||
|
||||
DEVICE ?= cpu
|
||||
|
||||
build-cpu:
|
||||
docker build -t lerobot:latest -f docker/lerobot-cpu/Dockerfile .
|
||||
@@ -18,89 +19,149 @@ build-gpu:
|
||||
docker build -t lerobot:latest -f docker/lerobot-gpu/Dockerfile .
|
||||
|
||||
test-end-to-end:
|
||||
${MAKE} test-act-ete-train
|
||||
${MAKE} test-act-ete-eval
|
||||
${MAKE} test-diffusion-ete-train
|
||||
${MAKE} test-diffusion-ete-eval
|
||||
# TODO(rcadene, alexander-soare): enable end-to-end tests for tdmpc
|
||||
# ${MAKE} test-tdmpc-ete-train
|
||||
# ${MAKE} test-tdmpc-ete-eval
|
||||
${MAKE} test-default-ete-eval
|
||||
${MAKE} DEVICE=$(DEVICE) test-act-ete-train
|
||||
${MAKE} DEVICE=$(DEVICE) test-act-ete-eval
|
||||
${MAKE} DEVICE=$(DEVICE) test-act-ete-train-amp
|
||||
${MAKE} DEVICE=$(DEVICE) test-act-ete-eval-amp
|
||||
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-train
|
||||
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-eval
|
||||
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-train
|
||||
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-train-with-online
|
||||
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-eval
|
||||
${MAKE} DEVICE=$(DEVICE) test-default-ete-eval
|
||||
${MAKE} DEVICE=$(DEVICE) test-act-pusht-tutorial
|
||||
|
||||
test-act-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
policy.dim_model=64 \
|
||||
env=aloha \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
device=$(DEVICE) \
|
||||
training.save_checkpoint=true \
|
||||
training.save_freq=2 \
|
||||
policy.n_action_steps=20 \
|
||||
policy.chunk_size=20 \
|
||||
training.batch_size=2 \
|
||||
training.image_transforms.enable=true \
|
||||
hydra.run.dir=tests/outputs/act/
|
||||
|
||||
test-act-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/act/checkpoints/000002 \
|
||||
-p tests/outputs/act/checkpoints/000002/pretrained_model \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
device=$(DEVICE) \
|
||||
|
||||
test-act-ete-train-amp:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
policy.dim_model=64 \
|
||||
env=aloha \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
device=$(DEVICE) \
|
||||
training.save_checkpoint=true \
|
||||
training.save_freq=2 \
|
||||
policy.n_action_steps=20 \
|
||||
policy.chunk_size=20 \
|
||||
training.batch_size=2 \
|
||||
hydra.run.dir=tests/outputs/act_amp/ \
|
||||
training.image_transforms.enable=true \
|
||||
use_amp=true
|
||||
|
||||
test-act-ete-eval-amp:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/act_amp/checkpoints/000002/pretrained_model \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=$(DEVICE) \
|
||||
use_amp=true
|
||||
|
||||
test-diffusion-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=diffusion \
|
||||
policy.down_dims=\[64,128,256\] \
|
||||
policy.diffusion_step_embed_dim=32 \
|
||||
policy.num_inference_steps=10 \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
device=$(DEVICE) \
|
||||
training.save_checkpoint=true \
|
||||
training.save_freq=2 \
|
||||
training.batch_size=2 \
|
||||
training.image_transforms.enable=true \
|
||||
hydra.run.dir=tests/outputs/diffusion/
|
||||
|
||||
test-diffusion-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/diffusion/checkpoints/000002 \
|
||||
-p tests/outputs/diffusion/checkpoints/000002/pretrained_model \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
device=$(DEVICE) \
|
||||
|
||||
test-tdmpc-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=tdmpc \
|
||||
env=xarm \
|
||||
env.task=XarmLift-v0 \
|
||||
dataset_repo_id=lerobot/xarm_lift_medium_replay \
|
||||
dataset_repo_id=lerobot/xarm_lift_medium \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=2 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
device=$(DEVICE) \
|
||||
training.save_checkpoint=true \
|
||||
training.save_freq=2 \
|
||||
training.batch_size=2 \
|
||||
training.image_transforms.enable=true \
|
||||
hydra.run.dir=tests/outputs/tdmpc/
|
||||
|
||||
test-tdmpc-ete-train-with-online:
|
||||
python lerobot/scripts/train.py \
|
||||
env=pusht \
|
||||
env.gym.obs_type=environment_state_agent_pos \
|
||||
policy=tdmpc_pusht_keypoints \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=10 \
|
||||
device=$(DEVICE) \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=20 \
|
||||
training.save_checkpoint=false \
|
||||
training.save_freq=10 \
|
||||
training.batch_size=2 \
|
||||
training.online_rollout_n_episodes=2 \
|
||||
training.online_rollout_batch_size=2 \
|
||||
training.online_steps_between_rollouts=10 \
|
||||
training.online_buffer_capacity=15 \
|
||||
eval.use_async_envs=true \
|
||||
hydra.run.dir=tests/outputs/tdmpc_online/
|
||||
|
||||
|
||||
test-tdmpc-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/tdmpc/checkpoints/000002 \
|
||||
-p tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
|
||||
device=$(DEVICE) \
|
||||
|
||||
test-default-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
@@ -108,4 +169,22 @@ test-default-ete-eval:
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
device=$(DEVICE) \
|
||||
|
||||
test-act-pusht-tutorial:
|
||||
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/created_by_Makefile.yaml
|
||||
python lerobot/scripts/train.py \
|
||||
policy=created_by_Makefile.yaml \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=2 \
|
||||
device=$(DEVICE) \
|
||||
training.save_model=true \
|
||||
training.save_freq=2 \
|
||||
training.batch_size=2 \
|
||||
training.image_transforms.enable=true \
|
||||
hydra.run.dir=tests/outputs/act_pusht/
|
||||
rm lerobot/configs/policy/created_by_Makefile.yaml
|
||||
|
||||
207
README.md
207
README.md
@@ -22,8 +22,22 @@
|
||||
|
||||
</div>
|
||||
|
||||
<h2 align="center">
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md">Hot new tutorial: Getting started with real-world robots</a></p>
|
||||
</h2>
|
||||
|
||||
<div align="center">
|
||||
<img src="media/tutorial/koch_v1_1_leader_follower.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="50%">
|
||||
<p>We just dropped an in-depth tutorial on how to build your own robot!</p>
|
||||
<p>Teach it new skills by showing it a few moves with just a laptop.</p>
|
||||
<p>Then watch your homemade robot act autonomously 🤯</p>
|
||||
<p>For more info, see <a href="https://x.com/RemiCadene/status/1825455895561859185">our thread on X</a> or <a href="https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md">our tutorial page</a>.</p>
|
||||
</div>
|
||||
|
||||
<br/>
|
||||
|
||||
<h3 align="center">
|
||||
<p>State-of-the-art Machine Learning for real-world robotics</p>
|
||||
<p>LeRobot: State-of-the-art AI for real-world robotics</p>
|
||||
</h3>
|
||||
|
||||
---
|
||||
@@ -57,27 +71,33 @@
|
||||
- Thanks to Tony Zaho, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
|
||||
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
|
||||
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
|
||||
- Thanks to Vincent Moens and colleagues for open sourcing [TorchRL](https://github.com/pytorch/rl). It allowed for quick experimentations on the design of `LeRobot`.
|
||||
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
|
||||
- Thanks to [Seungjae (Jay) Lee](https://sjlee.cc/), [Mahi Shafiullah](https://mahis.life/) and colleagues for open sourcing [VQ-BeT](https://sjlee.cc/vq-bet/) policy and helping us adapt the codebase to our repository. The policy is adapted from [VQ-BeT repo](https://github.com/jayLEE0301/vq_bet_official).
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
Download our source code:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git && cd lerobot
|
||||
git clone https://github.com/huggingface/lerobot.git
|
||||
cd lerobot
|
||||
```
|
||||
|
||||
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/free/miniconda/index.html):
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10 && conda activate lerobot
|
||||
conda create -y -n lerobot python=3.10
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
pip install .
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
|
||||
you may need to install `cmake` and `build-essential` for building some of our dependencies.
|
||||
On linux: `sudo apt-get install cmake build-essential`
|
||||
|
||||
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
||||
- [aloha](https://github.com/huggingface/gym-aloha)
|
||||
- [xarm](https://github.com/huggingface/gym-xarm)
|
||||
@@ -85,7 +105,7 @@ For simulations, 🤗 LeRobot comes with gymnasium environments that can be inst
|
||||
|
||||
For instance, to install 🤗 LeRobot with aloha and pusht, use:
|
||||
```bash
|
||||
pip install ".[aloha, pusht]"
|
||||
pip install -e ".[aloha, pusht]"
|
||||
```
|
||||
|
||||
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
|
||||
@@ -93,11 +113,14 @@ To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tra
|
||||
wandb login
|
||||
```
|
||||
|
||||
(note: you will also need to enable WandB in the configuration. See below.)
|
||||
|
||||
## Walkthrough
|
||||
|
||||
```
|
||||
.
|
||||
├── examples # contains demonstration examples, start here to learn about LeRobot
|
||||
| └── advanced # contains even more examples for those who have mastered the basics
|
||||
├── lerobot
|
||||
| ├── configs # contains hydra yaml files with all options that you can override in the command line
|
||||
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
|
||||
@@ -107,10 +130,12 @@ wandb login
|
||||
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
|
||||
| | ├── envs # various sim environments: aloha, pusht, xarm
|
||||
| | ├── policies # various policies: act, diffusion, tdmpc
|
||||
| | ├── robot_devices # various real devices: dynamixel motors, opencv cameras, koch robots
|
||||
| | └── utils # various utilities
|
||||
| └── scripts # contains functions to execute via command line
|
||||
| ├── eval.py # load policy and evaluate it on an environment
|
||||
| ├── train.py # train a policy via imitation learning and/or reinforcement learning
|
||||
| ├── control_robot.py # teleoperate a real robot, record data, run a policy
|
||||
| ├── push_dataset_to_hub.py # convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub
|
||||
| └── visualize_dataset.py # load a dataset and render its demonstrations
|
||||
├── outputs # contains results of scripts execution: logs, videos, model checkpoints
|
||||
@@ -121,13 +146,21 @@ wandb login
|
||||
|
||||
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically download data from the Hugging Face hub.
|
||||
|
||||
You can also locally visualize episodes from a dataset by executing our script from the command line:
|
||||
You can also locally visualize episodes from a dataset on the hub by executing our script from the command line:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
or from a dataset in a local folder with the root `DATA_DIR` environment variable (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
|
||||
```bash
|
||||
DATA_DIR='./my_local_data_dir' python lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
|
||||
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
|
||||
|
||||
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
|
||||
@@ -135,6 +168,53 @@ https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-f
|
||||
|
||||
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
|
||||
|
||||
### The `LeRobotDataset` format
|
||||
|
||||
A dataset in `LeRobotDataset` format is very simple to use. It can be loaded from a repository on the Hugging Face hub or a local folder simply with e.g. `dataset = LeRobotDataset("lerobot/aloha_static_coffee")` and can be indexed into like any Hugging Face and PyTorch dataset. For instance `dataset[0]` will retrieve a single temporal frame from the dataset containing observation(s) and an action as PyTorch tensors ready to be fed to a model.
|
||||
|
||||
A specificity of `LeRobotDataset` is that, rather than retrieving a single frame by its index, we can retrieve several frames based on their temporal relationship with the indexed frame, by setting `delta_timestamps` to a list of relative times with respect to the indexed frame. For example, with `delta_timestamps = {"observation.image": [-1, -0.5, -0.2, 0]}` one can retrieve, for a given index, 4 frames: 3 "previous" frames 1 second, 0.5 seconds, and 0.2 seconds before the indexed frame, and the indexed frame itself (corresponding to the 0 entry). See example [1_load_lerobot_dataset.py](examples/1_load_lerobot_dataset.py) for more details on `delta_timestamps`.
|
||||
|
||||
Under the hood, the `LeRobotDataset` format makes use of several ways to serialize data which can be useful to understand if you plan to work more closely with this format. We tried to make a flexible yet simple dataset format that would cover most type of features and specificities present in reinforcement learning and robotics, in simulation and in real-world, with a focus on cameras and robot states but easily extended to other types of sensory inputs as long as they can be represented by a tensor.
|
||||
|
||||
Here are the important details and internal structure organization of a typical `LeRobotDataset` instantiated with `dataset = LeRobotDataset("lerobot/aloha_static_coffee")`. The exact features will change from dataset to dataset but not the main aspects:
|
||||
|
||||
```
|
||||
dataset attributes:
|
||||
├ hf_dataset: a Hugging Face dataset (backed by Arrow/parquet). Typical features example:
|
||||
│ ├ observation.images.cam_high (VideoFrame):
|
||||
│ │ VideoFrame = {'path': path to a mp4 video, 'timestamp' (float32): timestamp in the video}
|
||||
│ ├ observation.state (list of float32): position of an arm joints (for instance)
|
||||
│ ... (more observations)
|
||||
│ ├ action (list of float32): goal position of an arm joints (for instance)
|
||||
│ ├ episode_index (int64): index of the episode for this sample
|
||||
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
|
||||
│ ├ timestamp (float32): timestamp in the episode
|
||||
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
|
||||
│ └ index (int64): general index in the whole dataset
|
||||
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
|
||||
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
|
||||
│ └ to: (1D int64 tensor): last frame index for each episode — shape (num episodes,)
|
||||
├ stats: a dictionary of statistics (max, mean, min, std) for each feature in the dataset, for instance
|
||||
│ ├ observation.images.cam_high: {'max': tensor with same number of dimensions (e.g. `(c, 1, 1)` for images, `(c,)` for states), etc.}
|
||||
│ ...
|
||||
├ info: a dictionary of metadata on the dataset
|
||||
│ ├ codebase_version (str): this is to keep track of the codebase version the dataset was created with
|
||||
│ ├ fps (float): frame per second the dataset is recorded/synchronized to
|
||||
│ ├ video (bool): indicates if frames are encoded in mp4 video files to save space or stored as png files
|
||||
│ └ encoding (dict): if video, this documents the main options that were used with ffmpeg to encode the videos
|
||||
├ videos_dir (Path): where the mp4 videos or png images are stored/accessed
|
||||
└ camera_keys (list of string): the keys to access camera features in the item returned by the dataset (e.g. `["observation.images.cam_high", ...]`)
|
||||
```
|
||||
|
||||
A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
|
||||
- hf_dataset stored using Hugging Face datasets library serialization to parquet
|
||||
- videos are stored in mp4 format to save space or png files
|
||||
- episode_data_index saved using `safetensor` tensor serialization format
|
||||
- stats saved using `safetensor` tensor serialization format
|
||||
- info are saved using JSON
|
||||
|
||||
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can set the `DATA_DIR` environment variable to your root dataset folder as illustrated in the above section on dataset visualization.
|
||||
|
||||
### Evaluate a pretrained policy
|
||||
|
||||
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
|
||||
@@ -148,24 +228,25 @@ python lerobot/scripts/eval.py \
|
||||
```
|
||||
|
||||
Note: After training your own policy, you can re-evaluate the checkpoints with:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
-p PATH/TO/TRAIN/OUTPUT/FOLDER
|
||||
python lerobot/scripts/eval.py -p {OUTPUT_DIR}/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||
|
||||
### Train your own policy
|
||||
|
||||
Check out [example 3](./examples/3_train_policy.py) that illustrates how to start training a model.
|
||||
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
|
||||
|
||||
In general, you can use our training script to easily train any policy. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
|
||||
|
||||
In general, you can use our training script to easily train any policy. To use wandb for logging training and evaluation curves, make sure you ran `wandb login`. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
env=aloha \
|
||||
env.task=AlohaInsertion-v0 \
|
||||
dataset_repo_id=lerobot/aloha_sim_insertion_human
|
||||
dataset_repo_id=lerobot/aloha_sim_insertion_human \
|
||||
```
|
||||
|
||||
The experiment directory is automatically generated and will show up in yellow in your terminal. It looks like `outputs/train/2024-05-05/20-21-12_aloha_act_default`. You can manually specify an experiment directory by adding this argument to the `train.py` python command:
|
||||
@@ -173,17 +254,49 @@ The experiment directory is automatically generated and will show up in yellow i
|
||||
hydra.run.dir=your/new/experiment/dir
|
||||
```
|
||||
|
||||
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of logs from wandb:
|
||||

|
||||
In the experiment directory there will be a folder called `checkpoints` which will have the following structure:
|
||||
|
||||
You can deactivate wandb by adding these arguments to the `train.py` python command:
|
||||
```bash
|
||||
wandb.disable_artifact=true \
|
||||
wandb.enable=false
|
||||
checkpoints
|
||||
├── 000250 # checkpoint_dir for training step 250
|
||||
│ ├── pretrained_model # Hugging Face pretrained model dir
|
||||
│ │ ├── config.json # Hugging Face pretrained model config
|
||||
│ │ ├── config.yaml # consolidated Hydra config
|
||||
│ │ ├── model.safetensors # model weights
|
||||
│ │ └── README.md # Hugging Face model card
|
||||
│ └── training_state.pth # optimizer/scheduler/rng state and training step
|
||||
```
|
||||
|
||||
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. After training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||
To resume training from a checkpoint, you can add these to the `train.py` python command:
|
||||
```bash
|
||||
hydra.run.dir=your/original/experiment/dir resume=true
|
||||
```
|
||||
|
||||
It will load the pretrained model, optimizer and scheduler states for training. For more information please see our tutorial on training resumption [here](https://github.com/huggingface/lerobot/blob/main/examples/5_resume_training.md).
|
||||
|
||||
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding:
|
||||
|
||||
```bash
|
||||
wandb.enable=true
|
||||
```
|
||||
|
||||
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser. Please also check [here](https://github.com/huggingface/lerobot/blob/main/examples/4_train_policy_with_script.md#typical-logs-and-metrics) for the explaination of some commonly used metrics in logs.
|
||||
|
||||

|
||||
|
||||
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. You may use `eval.n_episodes=500` to evaluate on more episodes than the default. Or, after training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||
|
||||
#### Reproduce state-of-the-art (SOTA)
|
||||
|
||||
We have organized our configuration files (found under [`lerobot/configs`](./lerobot/configs)) such that they reproduce SOTA results from a given model variant in their respective original works. Simply running:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=diffusion env=pusht
|
||||
```
|
||||
|
||||
reproduces SOTA results for Diffusion Policy on the PushT task.
|
||||
|
||||
Pretrained policies, along with reproduction details, can be found under the "Models" section of https://huggingface.co/lerobot.
|
||||
|
||||
## Contribute
|
||||
|
||||
@@ -196,13 +309,13 @@ To add a dataset to the hub, you need to login using a write-access token, which
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Then move your dataset folder in `data` directory (e.g. `data/aloha_ping_pong`), and push your dataset to the hub with:
|
||||
Then point to your raw dataset folder (e.g. `data/aloha_static_pingpong_test_raw`), and push your dataset to the hub with:
|
||||
```bash
|
||||
python lerobot/scripts/push_dataset_to_hub.py \
|
||||
--data-dir data \
|
||||
--dataset-id aloha_ping_ping \
|
||||
--raw-format aloha_hdf5 \
|
||||
--community-id lerobot
|
||||
--raw-dir data/aloha_static_pingpong_test_raw \
|
||||
--out-dir data \
|
||||
--repo-id lerobot/aloha_static_pingpong_test \
|
||||
--raw-format aloha_hdf5
|
||||
```
|
||||
|
||||
See `python lerobot/scripts/push_dataset_to_hub.py --help` for more instructions.
|
||||
@@ -214,14 +327,14 @@ If your dataset format is not supported, implement your own in `lerobot/common/d
|
||||
|
||||
Once you have trained a policy you may upload it to the Hugging Face hub using a hub id that looks like `${hf_user}/${repo_name}` (e.g. [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht)).
|
||||
|
||||
You first need to find the checkpoint located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). It should contain:
|
||||
You first need to find the checkpoint folder located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). Within that there is a `pretrained_model` directory which should contain:
|
||||
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
|
||||
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
|
||||
- `config.yaml`: A consolidated Hydra training configuration containing the policy, environment, and dataset configs. The policy configuration should match `config.json` exactly. The environment config is useful for anyone who wants to evaluate your policy. The dataset config just serves as a paper trail for reproducibility.
|
||||
|
||||
To upload these to the hub, run the following:
|
||||
```bash
|
||||
huggingface-cli upload ${hf_user}/${repo_name} path/to/checkpoint/dir
|
||||
huggingface-cli upload ${hf_user}/${repo_name} path/to/pretrained_model
|
||||
```
|
||||
|
||||
See [eval.py](https://github.com/huggingface/lerobot/blob/main/lerobot/scripts/eval.py) for an example of how other people may use your policy.
|
||||
@@ -254,7 +367,7 @@ with profile(
|
||||
## Citation
|
||||
|
||||
If you want, you can cite this work with:
|
||||
```
|
||||
```bibtex
|
||||
@misc{cadene2024lerobot,
|
||||
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
|
||||
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
|
||||
@@ -262,3 +375,45 @@ If you want, you can cite this work with:
|
||||
year = {2024}
|
||||
}
|
||||
```
|
||||
|
||||
Additionally, if you are using any of the particular policy architecture, pretrained models, or datasets, it is recommended to cite the original authors of the work as they appear below:
|
||||
|
||||
- [Diffusion Policy](https://diffusion-policy.cs.columbia.edu)
|
||||
```bibtex
|
||||
@article{chi2024diffusionpolicy,
|
||||
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
|
||||
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
|
||||
journal = {The International Journal of Robotics Research},
|
||||
year = {2024},
|
||||
}
|
||||
```
|
||||
- [ACT or ALOHA](https://tonyzhaozh.github.io/aloha)
|
||||
```bibtex
|
||||
@article{zhao2023learning,
|
||||
title={Learning fine-grained bimanual manipulation with low-cost hardware},
|
||||
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
|
||||
journal={arXiv preprint arXiv:2304.13705},
|
||||
year={2023}
|
||||
}
|
||||
```
|
||||
|
||||
- [TDMPC](https://www.nicklashansen.com/td-mpc/)
|
||||
|
||||
```bibtex
|
||||
@inproceedings{Hansen2022tdmpc,
|
||||
title={Temporal Difference Learning for Model Predictive Control},
|
||||
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
|
||||
booktitle={ICML},
|
||||
year={2022}
|
||||
}
|
||||
```
|
||||
|
||||
- [VQ-BeT](https://sjlee.cc/vq-bet/)
|
||||
```bibtex
|
||||
@article{lee2024behavior,
|
||||
title={Behavior generation with latent actions},
|
||||
author={Lee, Seungjae and Wang, Yibin and Etukuru, Haritheja and Kim, H Jin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
|
||||
journal={arXiv preprint arXiv:2403.03181},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
|
||||
271
benchmarks/video/README.md
Normal file
271
benchmarks/video/README.md
Normal file
@@ -0,0 +1,271 @@
|
||||
# Video benchmark
|
||||
|
||||
|
||||
## Questions
|
||||
What is the optimal trade-off between:
|
||||
- maximizing loading time with random access,
|
||||
- minimizing memory space on disk,
|
||||
- maximizing success rate of policies,
|
||||
- compatibility across devices/platforms for decoding videos (e.g. video players, web browsers).
|
||||
|
||||
How to encode videos?
|
||||
- Which video codec (`-vcodec`) to use? h264, h265, AV1?
|
||||
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
|
||||
- How much compression (`-crf`)? No compression with `0`, intermediate compression with `25` or extreme with `50+`?
|
||||
- Which frequency to chose for key frames (`-g`)? A key frame every `10` frames?
|
||||
|
||||
How to decode videos?
|
||||
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
|
||||
- What scenarios to use for the requesting timestamps during benchmark? (`timestamps_mode`)
|
||||
|
||||
|
||||
## Variables
|
||||
**Image content & size**
|
||||
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an appartment, or in a factory, or outdoor, or with lots of moving objects in the scene, etc. Similarly, loading times might not vary linearly with the image size (resolution).
|
||||
For these reasons, we run this benchmark on four representative datasets:
|
||||
- `lerobot/pusht_image`: (96 x 96 pixels) simulation with simple geometric shapes, fixed camera.
|
||||
- `aliberts/aloha_mobile_shrimp_image`: (480 x 640 pixels) real-world indoor, moving camera.
|
||||
- `aliberts/paris_street`: (720 x 1280 pixels) real-world outdoor, moving camera.
|
||||
- `aliberts/kitchen`: (1080 x 1920 pixels) real-world indoor, fixed camera.
|
||||
|
||||
Note: The datasets used for this benchmark need to be image datasets, not video datasets.
|
||||
|
||||
**Data augmentations**
|
||||
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
|
||||
|
||||
### Encoding parameters
|
||||
| parameter | values |
|
||||
|-------------|--------------------------------------------------------------|
|
||||
| **vcodec** | `libx264`, `libx265`, `libsvtav1` |
|
||||
| **pix_fmt** | `yuv444p`, `yuv420p` |
|
||||
| **g** | `1`, `2`, `3`, `4`, `5`, `6`, `10`, `15`, `20`, `40`, `None` |
|
||||
| **crf** | `0`, `5`, `10`, `15`, `20`, `25`, `30`, `40`, `50`, `None` |
|
||||
|
||||
Note that `crf` value might be interpreted differently by various video codecs. In other words, the same value used with one codec doesn't necessarily translate into the same compression level with another codec. In fact, the default value (`None`) isn't the same amongst the different video codecs. Importantly, it is also the case for many other ffmpeg arguments like `g` which specifies the frequency of the key frames.
|
||||
|
||||
For a comprehensive list and documentation of these parameters, see the ffmpeg documentation depending on the video codec used:
|
||||
- h264: https://trac.ffmpeg.org/wiki/Encode/H.264
|
||||
- h265: https://trac.ffmpeg.org/wiki/Encode/H.265
|
||||
- AV1: https://trac.ffmpeg.org/wiki/Encode/AV1
|
||||
|
||||
### Decoding parameters
|
||||
**Decoder**
|
||||
We tested two video decoding backends from torchvision:
|
||||
- `pyav` (default)
|
||||
- `video_reader` (requires to build torchvision from source)
|
||||
|
||||
**Requested timestamps**
|
||||
Given the way video decoding works, once a keyframe has been loaded, the decoding of subsequent frames is fast.
|
||||
This of course is affected by the `-g` parameter during encoding, which specifies the frequency of the keyframes. Given our typical use cases in robotics policies which might request a few timestamps in different random places, we want to replicate these use cases with the following scenarios:
|
||||
- `1_frame`: 1 frame,
|
||||
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
|
||||
- `6_frames`: 6 consecutive frames (e.g. `[t + i / fps for i in range(6)]`)
|
||||
|
||||
Note that this differs significantly from a typical use case like watching a movie, in which every frame is loaded sequentially from the beginning to the end and it's acceptable to have big values for `-g`.
|
||||
|
||||
Additionally, because some policies might request single timestamps that are a few frames appart, we also have the following scenario:
|
||||
- `2_frames_4_space`: 2 frames with 4 consecutive frames of spacing in between (e.g `[t, t + 5 / fps]`),
|
||||
|
||||
However, due to how video decoding is implemented with `pyav`, we don't have access to an accurate seek so in practice this scenario is essentially the same as `6_frames` since all 6 frames between `t` and `t + 5 / fps` will be decoded.
|
||||
|
||||
|
||||
## Metrics
|
||||
**Data compression ratio (lower is better)**
|
||||
`video_images_size_ratio` is the ratio of the memory space on disk taken by the encoded video over the memory space taken by the original images. For instance, `video_images_size_ratio=25%` means that the video takes 4 times less memory space on disk compared to the original images.
|
||||
|
||||
**Loading time ratio (lower is better)**
|
||||
`video_images_load_time_ratio` is the ratio of the time it takes to decode frames from the video at a given timestamps over the time it takes to load the exact same original images. Lower is better. For instance, `video_images_load_time_ratio=200%` means that decoding from video is 2 times slower than loading the original images.
|
||||
|
||||
**Average Mean Square Error (lower is better)**
|
||||
`avg_mse` is the average mean square error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
|
||||
|
||||
**Average Peak Signal to Noise Ratio (higher is better)**
|
||||
`avg_psnr` measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. Higher PSNR indicates better quality.
|
||||
|
||||
**Average Structural Similarity Index Measure (higher is better)**
|
||||
`avg_ssim` evaluates the perceived quality of images by comparing luminance, contrast, and structure. SSIM values range from -1 to 1, where 1 indicates perfect similarity.
|
||||
|
||||
One aspect that can't be measured here with those metrics is the compatibility of the encoding accross platforms, in particular on web browser, for visualization purposes.
|
||||
h264, h265 and AV1 are all commonly used codecs and should not be pose an issue. However, the chroma subsampling (`pix_fmt`) format might affect compatibility:
|
||||
- `yuv420p` is more widely supported across various platforms, including web browsers.
|
||||
- `yuv444p` offers higher color fidelity but might not be supported as broadly.
|
||||
|
||||
|
||||
<!-- **Loss of a pretrained policy (higher is better)** (not available)
|
||||
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
|
||||
|
||||
**Success rate after retraining (higher is better)** (not available)
|
||||
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best. -->
|
||||
|
||||
|
||||
## How the benchmark works
|
||||
The benchmark evaluates both encoding and decoding of video frames on the first episode of each dataset.
|
||||
|
||||
**Encoding:** for each `vcodec` and `pix_fmt` pair, we use a default value for `g` and `crf` upon which we change a single value (either `g` or `crf`) to one of the specified values (we don't test every combination of those as this would be computationally too heavy).
|
||||
This gives a unique set of encoding parameters which is used to encode the episode.
|
||||
|
||||
**Decoding:** Then, for each of those unique encodings, we iterate through every combination of the decoding parameters `backend` and `timestamps_mode`. For each of them, we record the metrics of a number of samples (given by `--num-samples`). This is parallelized for efficiency and the number of processes can be controlled with `--num-workers`. Ideally, it's best to have a `--num-samples` that is divisible by `--num-workers`.
|
||||
|
||||
Intermediate results saved for each `vcodec` and `pix_fmt` combination in csv tables.
|
||||
These are then all concatenated to a single table ready for analysis.
|
||||
|
||||
## Caveats
|
||||
We tried to measure the most impactful parameters for both encoding and decoding. However, for computational reasons we can't test out every combination.
|
||||
|
||||
Additional encoding parameters exist that are not included in this benchmark. In particular:
|
||||
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
|
||||
- `-tune` which allows to optimize the encoding for certains aspects (e.g. film quality, fast decoding, etc.).
|
||||
|
||||
See the documentation mentioned above for more detailled info on these settings and for a more comprehensive list of other parameters.
|
||||
|
||||
Similarly on the decoding side, other decoders exist but are not implemented in our current benchmark. To name a few:
|
||||
- `torchaudio`
|
||||
- `ffmpegio`
|
||||
- `decord`
|
||||
- `nvc`
|
||||
|
||||
Note as well that since we are mostly interested in the performance at decoding time (also because encoding is done only once before uploading a dataset), we did not measure encoding times nor have any metrics regarding encoding.
|
||||
However, besides the necessity to build ffmpeg from source, encoding did not pose any issue and it didn't take a significant amount of time during this benchmark.
|
||||
|
||||
|
||||
## Install
|
||||
Building ffmpeg from source is required to include libx265 and libaom/libsvtav1 (av1) video codecs ([compilation guide](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu)).
|
||||
|
||||
**Note:** While you still need to build torchvision with a conda-installed `ffmpeg<4.3` to use the `video_reader` decoder (as described in [#220](https://github.com/huggingface/lerobot/pull/220)), you also need another version which is custom-built with all the video codecs for encoding. For the script to then use that version, you can prepend the command above with `PATH="$HOME/bin:$PATH"`, which is where ffmpeg should be built.
|
||||
|
||||
|
||||
## Adding a video decoder
|
||||
Right now, we're only benchmarking the two video decoder available with torchvision: `pyav` and `video_reader`.
|
||||
You can easily add a new decoder to benchmark by adding it to this function in the script:
|
||||
```diff
|
||||
def decode_video_frames(
|
||||
video_path: str,
|
||||
timestamps: list[float],
|
||||
tolerance_s: float,
|
||||
backend: str,
|
||||
) -> torch.Tensor:
|
||||
if backend in ["pyav", "video_reader"]:
|
||||
return decode_video_frames_torchvision(
|
||||
video_path, timestamps, tolerance_s, backend
|
||||
)
|
||||
+ elif backend == ["your_decoder"]:
|
||||
+ return your_decoder_function(
|
||||
+ video_path, timestamps, tolerance_s, backend
|
||||
+ )
|
||||
else:
|
||||
raise NotImplementedError(backend)
|
||||
```
|
||||
|
||||
|
||||
## Example
|
||||
For a quick run, you can try these parameters:
|
||||
```bash
|
||||
python benchmark/video/run_video_benchmark.py \
|
||||
--output-dir outputs/video_benchmark \
|
||||
--repo-ids \
|
||||
lerobot/pusht_image \
|
||||
aliberts/aloha_mobile_shrimp_image \
|
||||
--vcodec libx264 libx265 \
|
||||
--pix-fmt yuv444p yuv420p \
|
||||
--g 2 20 None \
|
||||
--crf 10 40 None \
|
||||
--timestamps-modes 1_frame 2_frames \
|
||||
--backends pyav video_reader \
|
||||
--num-samples 5 \
|
||||
--num-workers 5 \
|
||||
--save-frames 0
|
||||
```
|
||||
|
||||
|
||||
## Results
|
||||
|
||||
### Reproduce
|
||||
We ran the benchmark with the following parameters:
|
||||
```bash
|
||||
# h264 and h265 encodings
|
||||
python benchmark/video/run_video_benchmark.py \
|
||||
--output-dir outputs/video_benchmark \
|
||||
--repo-ids \
|
||||
lerobot/pusht_image \
|
||||
aliberts/aloha_mobile_shrimp_image \
|
||||
aliberts/paris_street \
|
||||
aliberts/kitchen \
|
||||
--vcodec libx264 libx265 \
|
||||
--pix-fmt yuv444p yuv420p \
|
||||
--g 1 2 3 4 5 6 10 15 20 40 None \
|
||||
--crf 0 5 10 15 20 25 30 40 50 None \
|
||||
--timestamps-modes 1_frame 2_frames 6_frames \
|
||||
--backends pyav video_reader \
|
||||
--num-samples 50 \
|
||||
--num-workers 5 \
|
||||
--save-frames 1
|
||||
|
||||
# av1 encoding (only compatible with yuv420p and pyav decoder)
|
||||
python benchmark/video/run_video_benchmark.py \
|
||||
--output-dir outputs/video_benchmark \
|
||||
--repo-ids \
|
||||
lerobot/pusht_image \
|
||||
aliberts/aloha_mobile_shrimp_image \
|
||||
aliberts/paris_street \
|
||||
aliberts/kitchen \
|
||||
--vcodec libsvtav1 \
|
||||
--pix-fmt yuv420p \
|
||||
--g 1 2 3 4 5 6 10 15 20 40 None \
|
||||
--crf 0 5 10 15 20 25 30 40 50 None \
|
||||
--timestamps-modes 1_frame 2_frames 6_frames \
|
||||
--backends pyav \
|
||||
--num-samples 50 \
|
||||
--num-workers 5 \
|
||||
--save-frames 1
|
||||
```
|
||||
|
||||
The full results are available [here](https://docs.google.com/spreadsheets/d/1OYJB43Qu8fC26k_OyoMFgGBBKfQRCi4BIuYitQnq3sw/edit?usp=sharing)
|
||||
|
||||
|
||||
### Parameters selected for LeRobotDataset
|
||||
Considering these results, we chose what we think is the best set of encoding parameter:
|
||||
- vcodec: `libsvtav1`
|
||||
- pix-fmt: `yuv420p`
|
||||
- g: `2`
|
||||
- crf: `30`
|
||||
|
||||
Since we're using av1 encoding, we're choosing the `pyav` decoder as `video_reader` does not support it (and `pyav` doesn't require a custom build of `torchvision`).
|
||||
|
||||
### Summary
|
||||
|
||||
These tables show the results for `g=2` and `crf=30`, using `timestamps-modes=6_frames` and `backend=pyav`
|
||||
|
||||
| video_images_size_ratio | vcodec | pix_fmt | | | |
|
||||
|------------------------------------|------------|---------|-----------|-----------|-----------|
|
||||
| | libx264 | | libx265 | | libsvtav1 |
|
||||
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
|
||||
| lerobot/pusht_image | **16.97%** | 17.58% | 18.57% | 18.86% | 22.06% |
|
||||
| aliberts/aloha_mobile_shrimp_image | 2.14% | 2.11% | 1.38% | **1.37%** | 5.59% |
|
||||
| aliberts/paris_street | 2.12% | 2.13% | **1.54%** | **1.54%** | 4.43% |
|
||||
| aliberts/kitchen | 1.40% | 1.39% | **1.00%** | **1.00%** | 2.52% |
|
||||
|
||||
| video_images_load_time_ratio | vcodec | pix_fmt | | | |
|
||||
|------------------------------------|---------|---------|----------|---------|-----------|
|
||||
| | libx264 | | libx265 | | libsvtav1 |
|
||||
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
|
||||
| lerobot/pusht_image | 6.45 | 5.19 | **1.90** | 2.12 | 2.47 |
|
||||
| aliberts/aloha_mobile_shrimp_image | 11.80 | 7.92 | 0.71 | 0.85 | **0.48** |
|
||||
| aliberts/paris_street | 2.21 | 2.05 | 0.36 | 0.49 | **0.30** |
|
||||
| aliberts/kitchen | 1.46 | 1.46 | 0.28 | 0.51 | **0.26** |
|
||||
|
||||
| | | vcodec | pix_fmt | | | |
|
||||
|------------------------------------|----------|----------|--------------|----------|-----------|--------------|
|
||||
| | | libx264 | | libx265 | | libsvtav1 |
|
||||
| repo_id | metric | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
|
||||
| lerobot/pusht_image | avg_mse | 2.90E-04 | **2.03E-04** | 3.13E-04 | 2.29E-04 | 2.19E-04 |
|
||||
| | avg_psnr | 35.44 | 37.07 | 35.49 | **37.30** | 37.20 |
|
||||
| | avg_ssim | 98.28% | **98.85%** | 98.31% | 98.84% | 98.72% |
|
||||
| aliberts/aloha_mobile_shrimp_image | avg_mse | 2.76E-04 | 2.59E-04 | 3.17E-04 | 3.06E-04 | **1.30E-04** |
|
||||
| | avg_psnr | 35.91 | 36.21 | 35.88 | 36.09 | **40.17** |
|
||||
| | avg_ssim | 95.19% | 95.18% | 95.00% | 95.05% | **97.73%** |
|
||||
| aliberts/paris_street | avg_mse | 6.89E-04 | 6.70E-04 | 4.03E-03 | 4.02E-03 | **3.09E-04** |
|
||||
| | avg_psnr | 33.48 | 33.68 | 32.05 | 32.15 | **35.40** |
|
||||
| | avg_ssim | 93.76% | 93.75% | 89.46% | 89.46% | **95.46%** |
|
||||
| aliberts/kitchen | avg_mse | 2.50E-04 | 2.24E-04 | 4.28E-04 | 4.18E-04 | **1.53E-04** |
|
||||
| | avg_psnr | 36.73 | 37.33 | 36.56 | 36.75 | **39.12** |
|
||||
| | avg_ssim | 95.47% | 95.58% | 95.52% | 95.53% | **96.82%** |
|
||||
90
benchmarks/video/capture_camera_feed.py
Normal file
90
benchmarks/video/capture_camera_feed.py
Normal file
@@ -0,0 +1,90 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Capture video feed from a camera as raw images."""
|
||||
|
||||
import argparse
|
||||
import datetime as dt
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
|
||||
|
||||
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int):
|
||||
now = dt.datetime.now()
|
||||
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
|
||||
if not capture_dir.exists():
|
||||
capture_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Opens the default webcam
|
||||
cap = cv2.VideoCapture(0)
|
||||
if not cap.isOpened():
|
||||
print("Error: Could not open video stream.")
|
||||
return
|
||||
|
||||
cap.set(cv2.CAP_PROP_FPS, fps)
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
||||
|
||||
frame_index = 0
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
|
||||
if not ret:
|
||||
print("Error: Could not read frame.")
|
||||
break
|
||||
|
||||
cv2.imshow("Video Stream", frame)
|
||||
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
|
||||
frame_index += 1
|
||||
|
||||
# Break the loop on 'q' key press
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# Release the capture and destroy all windows
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=Path,
|
||||
default=Path("outputs/cam_capture/"),
|
||||
help="Directory where the capture images are written. A subfolder named with the current date & time will be created inside it for each capture.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Frames Per Second of the capture.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=int,
|
||||
default=1280,
|
||||
help="Width of the captured images.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=int,
|
||||
default=720,
|
||||
help="Height of the captured images.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
display_and_save_video_stream(**vars(args))
|
||||
490
benchmarks/video/run_video_benchmark.py
Normal file
490
benchmarks/video/run_video_benchmark.py
Normal file
@@ -0,0 +1,490 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Assess the performance of video decoding in various configurations.
|
||||
|
||||
This script will benchmark different video encoding and decoding parameters.
|
||||
See the provided README.md or run `python benchmark/video/run_video_benchmark.py --help` for usage info.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import datetime as dt
|
||||
import random
|
||||
import shutil
|
||||
from collections import OrderedDict
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import PIL
|
||||
import torch
|
||||
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
|
||||
from tqdm import tqdm
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.video_utils import (
|
||||
decode_video_frames_torchvision,
|
||||
encode_video_frames,
|
||||
)
|
||||
from lerobot.common.utils.benchmark import TimeBenchmark
|
||||
|
||||
BASE_ENCODING = OrderedDict(
|
||||
[
|
||||
("vcodec", "libx264"),
|
||||
("pix_fmt", "yuv444p"),
|
||||
("g", 2),
|
||||
("crf", None),
|
||||
# TODO(aliberts): Add fastdecode
|
||||
# ("fastdecode", 0),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# TODO(rcadene, aliberts): move to `utils.py` folder when we want to refactor
|
||||
def parse_int_or_none(value) -> int | None:
|
||||
if value.lower() == "none":
|
||||
return None
|
||||
try:
|
||||
return int(value)
|
||||
except ValueError as e:
|
||||
raise argparse.ArgumentTypeError(f"Invalid int or None: {value}") from e
|
||||
|
||||
|
||||
def check_datasets_formats(repo_ids: list) -> None:
|
||||
for repo_id in repo_ids:
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
if dataset.video:
|
||||
raise ValueError(
|
||||
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
|
||||
)
|
||||
|
||||
|
||||
def get_directory_size(directory: Path) -> int:
|
||||
total_size = 0
|
||||
for item in directory.rglob("*"):
|
||||
if item.is_file():
|
||||
total_size += item.stat().st_size
|
||||
return total_size
|
||||
|
||||
|
||||
def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> torch.Tensor:
|
||||
frames = []
|
||||
for ts in timestamps:
|
||||
idx = int(ts * fps)
|
||||
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
|
||||
frame = torch.from_numpy(np.array(frame))
|
||||
frame = frame.type(torch.float32) / 255
|
||||
frame = einops.rearrange(frame, "h w c -> c h w")
|
||||
frames.append(frame)
|
||||
return torch.stack(frames)
|
||||
|
||||
|
||||
def save_decoded_frames(
|
||||
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int
|
||||
) -> None:
|
||||
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
|
||||
return
|
||||
|
||||
save_dir.mkdir(parents=True, exist_ok=True)
|
||||
for i, ts in enumerate(timestamps):
|
||||
idx = int(ts * fps)
|
||||
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
|
||||
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
|
||||
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")
|
||||
|
||||
|
||||
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
|
||||
ep_num_images = dataset.episode_data_index["to"][0].item()
|
||||
if imgs_dir.exists() and len(list(imgs_dir.glob("frame_*.png"))) == ep_num_images:
|
||||
return
|
||||
|
||||
imgs_dir.mkdir(parents=True, exist_ok=True)
|
||||
hf_dataset = dataset.hf_dataset.with_format(None)
|
||||
|
||||
# We only save images from the first camera
|
||||
img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")]
|
||||
imgs_dataset = hf_dataset.select_columns(img_keys[0])
|
||||
|
||||
for i, item in enumerate(
|
||||
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
|
||||
):
|
||||
img = item[img_keys[0]]
|
||||
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
|
||||
|
||||
if i >= ep_num_images - 1:
|
||||
break
|
||||
|
||||
|
||||
def sample_timestamps(timestamps_mode: str, ep_num_images: int, fps: int) -> list[float]:
|
||||
# Start at 5 to allow for 2_frames_4_space and 6_frames
|
||||
idx = random.randint(5, ep_num_images - 1)
|
||||
match timestamps_mode:
|
||||
case "1_frame":
|
||||
frame_indexes = [idx]
|
||||
case "2_frames":
|
||||
frame_indexes = [idx - 1, idx]
|
||||
case "2_frames_4_space":
|
||||
frame_indexes = [idx - 5, idx]
|
||||
case "6_frames":
|
||||
frame_indexes = [idx - i for i in range(6)][::-1]
|
||||
case _:
|
||||
raise ValueError(timestamps_mode)
|
||||
|
||||
return [idx / fps for idx in frame_indexes]
|
||||
|
||||
|
||||
def decode_video_frames(
|
||||
video_path: str,
|
||||
timestamps: list[float],
|
||||
tolerance_s: float,
|
||||
backend: str,
|
||||
) -> torch.Tensor:
|
||||
if backend in ["pyav", "video_reader"]:
|
||||
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
|
||||
else:
|
||||
raise NotImplementedError(backend)
|
||||
|
||||
|
||||
def benchmark_decoding(
|
||||
imgs_dir: Path,
|
||||
video_path: Path,
|
||||
timestamps_mode: str,
|
||||
backend: str,
|
||||
ep_num_images: int,
|
||||
fps: int,
|
||||
num_samples: int = 50,
|
||||
num_workers: int = 4,
|
||||
save_frames: bool = False,
|
||||
) -> dict:
|
||||
def process_sample(sample: int):
|
||||
time_benchmark = TimeBenchmark()
|
||||
timestamps = sample_timestamps(timestamps_mode, ep_num_images, fps)
|
||||
num_frames = len(timestamps)
|
||||
result = {
|
||||
"psnr_values": [],
|
||||
"ssim_values": [],
|
||||
"mse_values": [],
|
||||
}
|
||||
|
||||
with time_benchmark:
|
||||
frames = decode_video_frames(video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend)
|
||||
result["load_time_video_ms"] = time_benchmark.result_ms / num_frames
|
||||
|
||||
with time_benchmark:
|
||||
original_frames = load_original_frames(imgs_dir, timestamps, fps)
|
||||
result["load_time_images_ms"] = time_benchmark.result_ms / num_frames
|
||||
|
||||
frames_np, original_frames_np = frames.numpy(), original_frames.numpy()
|
||||
for i in range(num_frames):
|
||||
result["mse_values"].append(mean_squared_error(original_frames_np[i], frames_np[i]))
|
||||
result["psnr_values"].append(
|
||||
peak_signal_noise_ratio(original_frames_np[i], frames_np[i], data_range=1.0)
|
||||
)
|
||||
result["ssim_values"].append(
|
||||
structural_similarity(original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0)
|
||||
)
|
||||
|
||||
if save_frames and sample == 0:
|
||||
save_dir = video_path.with_suffix("") / f"{timestamps_mode}_{backend}"
|
||||
save_decoded_frames(imgs_dir, save_dir, frames, timestamps, fps)
|
||||
|
||||
return result
|
||||
|
||||
load_times_video_ms = []
|
||||
load_times_images_ms = []
|
||||
mse_values = []
|
||||
psnr_values = []
|
||||
ssim_values = []
|
||||
|
||||
# A sample is a single set of decoded frames specified by timestamps_mode (e.g. a single frame, 2 frames, etc.).
|
||||
# For each sample, we record metrics (loading time and quality metrics) which are then averaged over all samples.
|
||||
# As these samples are independent, we run them in parallel threads to speed up the benchmark.
|
||||
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
||||
futures = [executor.submit(process_sample, i) for i in range(num_samples)]
|
||||
for future in tqdm(as_completed(futures), total=num_samples, desc="samples", leave=False):
|
||||
result = future.result()
|
||||
load_times_video_ms.append(result["load_time_video_ms"])
|
||||
load_times_images_ms.append(result["load_time_images_ms"])
|
||||
psnr_values.extend(result["psnr_values"])
|
||||
ssim_values.extend(result["ssim_values"])
|
||||
mse_values.extend(result["mse_values"])
|
||||
|
||||
avg_load_time_video_ms = float(np.array(load_times_video_ms).mean())
|
||||
avg_load_time_images_ms = float(np.array(load_times_images_ms).mean())
|
||||
video_images_load_time_ratio = avg_load_time_video_ms / avg_load_time_images_ms
|
||||
|
||||
return {
|
||||
"avg_load_time_video_ms": avg_load_time_video_ms,
|
||||
"avg_load_time_images_ms": avg_load_time_images_ms,
|
||||
"video_images_load_time_ratio": video_images_load_time_ratio,
|
||||
"avg_mse": float(np.mean(mse_values)),
|
||||
"avg_psnr": float(np.mean(psnr_values)),
|
||||
"avg_ssim": float(np.mean(ssim_values)),
|
||||
}
|
||||
|
||||
|
||||
def benchmark_encoding_decoding(
|
||||
dataset: LeRobotDataset,
|
||||
video_path: Path,
|
||||
imgs_dir: Path,
|
||||
encoding_cfg: dict,
|
||||
decoding_cfg: dict,
|
||||
num_samples: int,
|
||||
num_workers: int,
|
||||
save_frames: bool,
|
||||
overwrite: bool = False,
|
||||
seed: int = 1337,
|
||||
) -> list[dict]:
|
||||
fps = dataset.fps
|
||||
|
||||
if overwrite or not video_path.is_file():
|
||||
tqdm.write(f"encoding {video_path}")
|
||||
encode_video_frames(
|
||||
imgs_dir=imgs_dir,
|
||||
video_path=video_path,
|
||||
fps=fps,
|
||||
vcodec=encoding_cfg["vcodec"],
|
||||
pix_fmt=encoding_cfg["pix_fmt"],
|
||||
g=encoding_cfg.get("g"),
|
||||
crf=encoding_cfg.get("crf"),
|
||||
# fast_decode=encoding_cfg.get("fastdecode"),
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
ep_num_images = dataset.episode_data_index["to"][0].item()
|
||||
width, height = tuple(dataset[0][dataset.camera_keys[0]].shape[-2:])
|
||||
num_pixels = width * height
|
||||
video_size_bytes = video_path.stat().st_size
|
||||
images_size_bytes = get_directory_size(imgs_dir)
|
||||
video_images_size_ratio = video_size_bytes / images_size_bytes
|
||||
|
||||
random.seed(seed)
|
||||
benchmark_table = []
|
||||
for timestamps_mode in tqdm(
|
||||
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
|
||||
):
|
||||
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
|
||||
benchmark_row = benchmark_decoding(
|
||||
imgs_dir,
|
||||
video_path,
|
||||
timestamps_mode,
|
||||
backend,
|
||||
ep_num_images,
|
||||
fps,
|
||||
num_samples,
|
||||
num_workers,
|
||||
save_frames,
|
||||
)
|
||||
benchmark_row.update(
|
||||
**{
|
||||
"repo_id": dataset.repo_id,
|
||||
"resolution": f"{width} x {height}",
|
||||
"num_pixels": num_pixels,
|
||||
"video_size_bytes": video_size_bytes,
|
||||
"images_size_bytes": images_size_bytes,
|
||||
"video_images_size_ratio": video_images_size_ratio,
|
||||
"timestamps_mode": timestamps_mode,
|
||||
"backend": backend,
|
||||
},
|
||||
**encoding_cfg,
|
||||
)
|
||||
benchmark_table.append(benchmark_row)
|
||||
|
||||
return benchmark_table
|
||||
|
||||
|
||||
def main(
|
||||
output_dir: Path,
|
||||
repo_ids: list[str],
|
||||
vcodec: list[str],
|
||||
pix_fmt: list[str],
|
||||
g: list[int],
|
||||
crf: list[int],
|
||||
# fastdecode: list[int],
|
||||
timestamps_modes: list[str],
|
||||
backends: list[str],
|
||||
num_samples: int,
|
||||
num_workers: int,
|
||||
save_frames: bool,
|
||||
):
|
||||
check_datasets_formats(repo_ids)
|
||||
encoding_benchmarks = {
|
||||
"g": g,
|
||||
"crf": crf,
|
||||
# "fastdecode": fastdecode,
|
||||
}
|
||||
decoding_benchmarks = {
|
||||
"timestamps_modes": timestamps_modes,
|
||||
"backends": backends,
|
||||
}
|
||||
headers = ["repo_id", "resolution", "num_pixels"]
|
||||
headers += list(BASE_ENCODING.keys())
|
||||
headers += [
|
||||
"timestamps_mode",
|
||||
"backend",
|
||||
"video_size_bytes",
|
||||
"images_size_bytes",
|
||||
"video_images_size_ratio",
|
||||
"avg_load_time_video_ms",
|
||||
"avg_load_time_images_ms",
|
||||
"video_images_load_time_ratio",
|
||||
"avg_mse",
|
||||
"avg_psnr",
|
||||
"avg_ssim",
|
||||
]
|
||||
file_paths = []
|
||||
for video_codec in tqdm(vcodec, desc="encodings (vcodec)"):
|
||||
for pixel_format in tqdm(pix_fmt, desc="encodings (pix_fmt)", leave=False):
|
||||
benchmark_table = []
|
||||
for repo_id in tqdm(repo_ids, desc="encodings (datasets)", leave=False):
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
imgs_dir = output_dir / "images" / dataset.repo_id.replace("/", "_")
|
||||
# We only use the first episode
|
||||
save_first_episode(imgs_dir, dataset)
|
||||
for key, values in tqdm(encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False):
|
||||
for value in tqdm(values, desc=f"encodings ({key})", leave=False):
|
||||
encoding_cfg = BASE_ENCODING.copy()
|
||||
encoding_cfg["vcodec"] = video_codec
|
||||
encoding_cfg["pix_fmt"] = pixel_format
|
||||
encoding_cfg[key] = value
|
||||
args_path = Path("_".join(str(value) for value in encoding_cfg.values()))
|
||||
video_path = output_dir / "videos" / args_path / f"{repo_id.replace('/', '_')}.mp4"
|
||||
benchmark_table += benchmark_encoding_decoding(
|
||||
dataset,
|
||||
video_path,
|
||||
imgs_dir,
|
||||
encoding_cfg,
|
||||
decoding_benchmarks,
|
||||
num_samples,
|
||||
num_workers,
|
||||
save_frames,
|
||||
)
|
||||
|
||||
# Save intermediate results
|
||||
benchmark_df = pd.DataFrame(benchmark_table, columns=headers)
|
||||
now = dt.datetime.now()
|
||||
csv_path = (
|
||||
output_dir
|
||||
/ f"{now:%Y-%m-%d}_{now:%H-%M-%S}_{video_codec}_{pixel_format}_{num_samples}-samples.csv"
|
||||
)
|
||||
benchmark_df.to_csv(csv_path, header=True, index=False)
|
||||
file_paths.append(csv_path)
|
||||
del benchmark_df
|
||||
|
||||
# Concatenate all results
|
||||
df_list = [pd.read_csv(csv_path) for csv_path in file_paths]
|
||||
concatenated_df = pd.concat(df_list, ignore_index=True)
|
||||
concatenated_path = output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv"
|
||||
concatenated_df.to_csv(concatenated_path, header=True, index=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=Path,
|
||||
default=Path("outputs/video_benchmark"),
|
||||
help="Directory where the video benchmark outputs are written.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-ids",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=[
|
||||
"lerobot/pusht_image",
|
||||
"aliberts/aloha_mobile_shrimp_image",
|
||||
"aliberts/paris_street",
|
||||
"aliberts/kitchen",
|
||||
],
|
||||
help="Datasets repo-ids to test against. First episodes only are used. Must be images.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vcodec",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=["libx264", "libx265", "libsvtav1"],
|
||||
help="Video codecs to be tested",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pix-fmt",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=["yuv444p", "yuv420p"],
|
||||
help="Pixel formats (chroma subsampling) to be tested",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--g",
|
||||
type=parse_int_or_none,
|
||||
nargs="*",
|
||||
default=[1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None],
|
||||
help="Group of pictures sizes to be tested.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--crf",
|
||||
type=parse_int_or_none,
|
||||
nargs="*",
|
||||
default=[0, 5, 10, 15, 20, 25, 30, 40, 50, None],
|
||||
help="Constant rate factors to be tested.",
|
||||
)
|
||||
# parser.add_argument(
|
||||
# "--fastdecode",
|
||||
# type=int,
|
||||
# nargs="*",
|
||||
# default=[0, 1],
|
||||
# help="Use the fastdecode tuning option. 0 disables it. "
|
||||
# "For libx264 and libx265, only 1 is possible. "
|
||||
# "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
|
||||
# )
|
||||
parser.add_argument(
|
||||
"--timestamps-modes",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=[
|
||||
"1_frame",
|
||||
"2_frames",
|
||||
"2_frames_4_space",
|
||||
"6_frames",
|
||||
],
|
||||
help="Timestamps scenarios to be tested.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--backends",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=["pyav", "video_reader"],
|
||||
help="Torchvision decoding backend to be tested.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-samples",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of samples for each encoding x decoding config.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=10,
|
||||
help="Number of processes for parallelized sample processing.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-frames",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Whether to save decoded frames or not. Enter a non-zero number for true.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
main(**vars(args))
|
||||
@@ -8,7 +8,8 @@ ARG DEBIAN_FRONTEND=noninteractive
|
||||
# Install apt dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||
speech-dispatcher \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Create virtual environment
|
||||
@@ -21,7 +22,7 @@ RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
COPY . /lerobot
|
||||
WORKDIR /lerobot
|
||||
RUN pip install --upgrade --no-cache-dir pip
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]" \
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
|
||||
68
docker/lerobot-gpu-dev/Dockerfile
Normal file
68
docker/lerobot-gpu-dev/Dockerfile
Normal file
@@ -0,0 +1,68 @@
|
||||
FROM nvidia/cuda:12.2.2-devel-ubuntu22.04
|
||||
|
||||
# Configure image
|
||||
ARG PYTHON_VERSION=3.10
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install apt dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake \
|
||||
git git-lfs openssh-client \
|
||||
nano vim less util-linux tree \
|
||||
htop atop nvtop \
|
||||
sed gawk grep curl wget zip unzip \
|
||||
tcpdump sysstat screen tmux \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||
speech-dispatcher \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install ffmpeg build dependencies. See:
|
||||
# https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
|
||||
# TODO(aliberts): create image to build dependencies from source instead
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
autoconf automake yasm \
|
||||
libass-dev \
|
||||
libfreetype6-dev \
|
||||
libgnutls28-dev \
|
||||
libunistring-dev \
|
||||
libmp3lame-dev \
|
||||
libtool \
|
||||
libvorbis-dev \
|
||||
meson \
|
||||
ninja-build \
|
||||
pkg-config \
|
||||
texinfo \
|
||||
yasm \
|
||||
zlib1g-dev \
|
||||
nasm \
|
||||
libx264-dev \
|
||||
libx265-dev libnuma-dev \
|
||||
libvpx-dev \
|
||||
libfdk-aac-dev \
|
||||
libopus-dev \
|
||||
libsvtav1-dev libsvtav1enc-dev libsvtav1dec-dev \
|
||||
libdav1d-dev
|
||||
|
||||
# Install gh cli tool
|
||||
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
|
||||
&& mkdir -p -m 755 /etc/apt/keyrings \
|
||||
&& wget -qO- https://cli.github.com/packages/githubcli-archive-keyring.gpg | tee /etc/apt/keyrings/githubcli-archive-keyring.gpg > /dev/null \
|
||||
&& chmod go+r /etc/apt/keyrings/githubcli-archive-keyring.gpg \
|
||||
&& echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/packages stable main" | tee /etc/apt/sources.list.d/github-cli.list > /dev/null \
|
||||
&& apt update \
|
||||
&& apt install gh -y \
|
||||
&& apt clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Setup `python`
|
||||
RUN ln -s /usr/bin/python3 /usr/bin/python
|
||||
|
||||
# Install poetry
|
||||
RUN curl -sSL https://install.python-poetry.org | python -
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
|
||||
RUN poetry config virtualenvs.create false
|
||||
RUN poetry config virtualenvs.in-project true
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
@@ -4,13 +4,16 @@ FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
||||
ARG PYTHON_VERSION=3.10
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
|
||||
# Install apt dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||
speech-dispatcher \
|
||||
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
# Create virtual environment
|
||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
||||
RUN python -m venv /opt/venv
|
||||
@@ -21,7 +24,7 @@ RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
COPY . /lerobot
|
||||
WORKDIR /lerobot
|
||||
RUN pip install --upgrade --no-cache-dir pip
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
|
||||
@@ -18,8 +18,6 @@ from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
output_directory = Path("outputs/eval/example_pusht_diffusion")
|
||||
output_directory.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
device = torch.device("cuda")
|
||||
|
||||
# Download the diffusion policy for pusht environment
|
||||
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
|
||||
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
|
||||
@@ -27,6 +25,17 @@ pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
|
||||
|
||||
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
|
||||
policy.eval()
|
||||
|
||||
# Check if GPU is available
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
print("GPU is available. Device set to:", device)
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
print(f"GPU is not available. Device set to: {device}. Inference will be slower than on GPU.")
|
||||
# Decrease the number of reverse-diffusion steps (trades off a bit of quality for 10x speed)
|
||||
policy.diffusion.num_inference_steps = 10
|
||||
|
||||
policy.to(device)
|
||||
|
||||
# Initialize evaluation environment to render two observation types:
|
||||
|
||||
213
examples/4_train_policy_with_script.md
Normal file
213
examples/4_train_policy_with_script.md
Normal file
@@ -0,0 +1,213 @@
|
||||
This tutorial will explain the training script, how to use it, and particularly the use of Hydra to configure everything needed for the training run.
|
||||
|
||||
## The training script
|
||||
|
||||
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
|
||||
|
||||
- Loads a Hydra configuration file for the following steps (more on Hydra in a moment).
|
||||
- Makes a simulation environment.
|
||||
- Makes a dataset corresponding to that simulation environment.
|
||||
- Makes a policy.
|
||||
- Runs a standard training loop with forward pass, backward pass, optimization step, and occasional logging, evaluation (of the policy on the environment), and checkpointing.
|
||||
|
||||
## Basics of how we use Hydra
|
||||
|
||||
Explaining the ins and outs of [Hydra](https://hydra.cc/docs/intro/) is beyond the scope of this document, but here we'll share the main points you need to know.
|
||||
|
||||
First, `lerobot/configs` has a directory structure like this:
|
||||
|
||||
```
|
||||
.
|
||||
├── default.yaml
|
||||
├── env
|
||||
│ ├── aloha.yaml
|
||||
│ ├── pusht.yaml
|
||||
│ └── xarm.yaml
|
||||
└── policy
|
||||
├── act.yaml
|
||||
├── diffusion.yaml
|
||||
└── tdmpc.yaml
|
||||
```
|
||||
|
||||
**_For brevity, in the rest of this document we'll drop the leading `lerobot/configs` path. So `default.yaml` really refers to `lerobot/configs/default.yaml`._**
|
||||
|
||||
When you run the training script with
|
||||
|
||||
```python
|
||||
python lerobot/scripts/train.py
|
||||
```
|
||||
|
||||
Hydra is set up to read `default.yaml` (via the `@hydra.main` decorator). If you take a look at the `@hydra.main`'s arguments you will see `config_path="../configs", config_name="default"`. At the top of `default.yaml`, is a `defaults` section which looks likes this:
|
||||
|
||||
```yaml
|
||||
defaults:
|
||||
- _self_
|
||||
- env: pusht
|
||||
- policy: diffusion
|
||||
```
|
||||
|
||||
This logic tells Hydra to incorporate configuration parameters from `env/pusht.yaml` and `policy/diffusion.yaml`. _Note: Be aware of the order as any configuration parameters with the same name will be overidden. Thus, `default.yaml` is overridden by `env/pusht.yaml` which is overidden by `policy/diffusion.yaml`_.
|
||||
|
||||
Then, `default.yaml` also contains common configuration parameters such as `device: cuda` or `use_amp: false` (for enabling fp16 training). Some other parameters are set to `???` which indicates that they are expected to be set in additional yaml files. For instance, `training.offline_steps: ???` in `default.yaml` is set to `200000` in `diffusion.yaml`.
|
||||
|
||||
Thanks to this `defaults` section in `default.yaml`, if you want to train Diffusion Policy with PushT, you really only need to run:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py
|
||||
```
|
||||
|
||||
However, you can be more explicit and launch the exact same Diffusion Policy training on PushT with:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=diffusion env=pusht
|
||||
```
|
||||
|
||||
This way of overriding defaults via the CLI is especially useful when you want to change the policy and/or environment. For instance, you can train ACT on the default Aloha environment with:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=aloha
|
||||
```
|
||||
|
||||
There are two things to note here:
|
||||
- Config overrides are passed as `param_name=param_value`.
|
||||
- Here we have overridden the defaults section. `policy=act` tells Hydra to use `policy/act.yaml`, and `env=aloha` tells Hydra to use `env/aloha.yaml`.
|
||||
|
||||
_As an aside: we've set up all of our configurations so that they reproduce state-of-the-art results from papers in the literature._
|
||||
|
||||
## Overriding configuration parameters in the CLI
|
||||
|
||||
Now let's say that we want to train on a different task in the Aloha environment. If you look in `env/aloha.yaml` you will see something like:
|
||||
|
||||
```yaml
|
||||
# lerobot/configs/env/aloha.yaml
|
||||
env:
|
||||
task: AlohaInsertion-v0
|
||||
```
|
||||
|
||||
And if you look in `policy/act.yaml` you will see something like:
|
||||
|
||||
```yaml
|
||||
# lerobot/configs/policy/act.yaml
|
||||
dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||
```
|
||||
|
||||
But our Aloha environment actually supports a cube transfer task as well. To train for this task, you could manually modify the two yaml configuration files respectively.
|
||||
|
||||
First, we'd need to switch to using the cube transfer task for the ALOHA environment.
|
||||
|
||||
```diff
|
||||
# lerobot/configs/env/aloha.yaml
|
||||
env:
|
||||
- task: AlohaInsertion-v0
|
||||
+ task: AlohaTransferCube-v0
|
||||
```
|
||||
|
||||
Then, we'd also need to switch to using the cube transfer dataset.
|
||||
|
||||
```diff
|
||||
# lerobot/configs/policy/act.yaml
|
||||
-dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||
+dataset_repo_id: lerobot/aloha_sim_transfer_cube_human
|
||||
```
|
||||
|
||||
Then, you'd be able to run:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=aloha
|
||||
```
|
||||
|
||||
and you'd be training and evaluating on the cube transfer task.
|
||||
|
||||
An alternative approach to editing the yaml configuration files, would be to override the defaults via the command line:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||
env=aloha \
|
||||
env.task=AlohaTransferCube-v0
|
||||
```
|
||||
|
||||
There's something new here. Notice the `.` delimiter used to traverse the configuration hierarchy. _But be aware that the `defaults` section is an exception. As you saw above, we didn't need to write `defaults.policy=act` in the CLI. `policy=act` was enough._
|
||||
|
||||
Putting all that knowledge together, here's the command that was used to train https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human \
|
||||
device=cuda
|
||||
env=aloha \
|
||||
env.task=AlohaTransferCube-v0 \
|
||||
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||
policy=act \
|
||||
training.eval_freq=10000 \
|
||||
training.log_freq=250 \
|
||||
training.offline_steps=100000 \
|
||||
training.save_model=true \
|
||||
training.save_freq=25000 \
|
||||
eval.n_episodes=50 \
|
||||
eval.batch_size=50 \
|
||||
wandb.enable=false \
|
||||
```
|
||||
|
||||
There's one new thing here: `hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human`, which specifies where to save the training output.
|
||||
|
||||
## Using a configuration file not in `lerobot/configs`
|
||||
|
||||
Above we discusses the our training script is set up such that Hydra looks for `default.yaml` in `lerobot/configs`. But, if you have a configuration file elsewhere in your filesystem you may use:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py --config-dir PARENT/PATH --config-name FILE_NAME_WITHOUT_EXTENSION
|
||||
```
|
||||
|
||||
Note: here we use regular syntax for providing CLI arguments to a Python script, not Hydra's `param_name=param_value` syntax.
|
||||
|
||||
As a concrete example, this becomes particularly handy when you have a folder with training outputs, and would like to re-run the training. For example, say you previously ran the training script with one of the earlier commands and have `outputs/train/my_experiment/checkpoints/pretrained_model/config.yaml`. This `config.yaml` file will have the full set of configuration parameters within it. To run the training with the same configuration again, do:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py --config-dir outputs/train/my_experiment/checkpoints/last/pretrained_model --config-name config
|
||||
```
|
||||
|
||||
Note that you may still use the regular syntax for config parameter overrides (eg: by adding `training.offline_steps=200000`).
|
||||
|
||||
## Typical logs and metrics
|
||||
|
||||
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you config it correctly and your config is not overrided by other files. The final configuration will also be saved with the checkpoint.
|
||||
|
||||
After that, you will see training log like this one:
|
||||
|
||||
```
|
||||
INFO 2024-08-14 13:35:12 ts/train.py:192 step:0 smpl:64 ep:1 epch:0.00 loss:1.112 grdn:15.387 lr:2.0e-07 updt_s:1.738 data_s:4.774
|
||||
```
|
||||
|
||||
or evaluation log like:
|
||||
|
||||
```
|
||||
INFO 2024-08-14 13:38:45 ts/train.py:226 step:100 smpl:6K ep:52 epch:0.25 ∑rwrd:20.693 success:0.0% eval_s:120.266
|
||||
```
|
||||
|
||||
These logs will also be saved in wandb if `wandb.enable` is set to `true`. Here are the meaning of some abbreviations:
|
||||
|
||||
- `smpl`: number of samples seen during training.
|
||||
- `ep`: number of episodes seen during training. An episode contains multiple samples in a complete manipulation task.
|
||||
- `epch`: number of time all unique samples are seen (epoch).
|
||||
- `grdn`: gradient norm.
|
||||
- `∑rwrd`: compute the sum of rewards in every evaluation episode and then take an average of them.
|
||||
- `success`: average success rate of eval episodes. Reward and success are usually different except for the sparsing reward setting, where reward=1 only when the task is completed successfully.
|
||||
- `eval_s`: time to evaluate the policy in the environment, in second.
|
||||
- `updt_s`: time to update the network parameters, in second.
|
||||
- `data_s`: time to load a batch of data, in second.
|
||||
|
||||
Some metrics are useful for initial performance profiling. For example, if you find the current GPU utilization is low via the `nvidia-smi` command and `data_s` sometimes is too high, you may need to modify batch size or number of dataloading workers to accelerate dataloading. We also recommend [pytorch profiler](https://github.com/huggingface/lerobot?tab=readme-ov-file#improve-your-code-with-profiling) for detailed performance probing.
|
||||
|
||||
---
|
||||
|
||||
So far we've seen how to train Diffusion Policy for PushT and ACT for ALOHA. Now, what if we want to train ACT for PushT? Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
|
||||
```
|
||||
|
||||
Please, head on over to our [advanced tutorial on adapting policy configuration to various environments](./advanced/train_act_pusht/train_act_pusht.md) to learn more.
|
||||
|
||||
Or in the meantime, happy coding! 🤗
|
||||
37
examples/5_resume_training.md
Normal file
37
examples/5_resume_training.md
Normal file
@@ -0,0 +1,37 @@
|
||||
This tutorial explains how to resume a training run that you've started with the training script. If you don't know how our training script and configuration system works, please read [4_train_policy_with_script.md](./4_train_policy_with_script.md) first.
|
||||
|
||||
## Basic training resumption
|
||||
|
||||
Let's consider the example of training ACT for one of the ALOHA tasks. Here's a command that can achieve that:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.run.dir=outputs/train/run_resumption \
|
||||
policy=act \
|
||||
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||
env=aloha \
|
||||
env.task=AlohaTransferCube-v0 \
|
||||
training.log_freq=25 \
|
||||
training.save_checkpoint=true \
|
||||
training.save_freq=100
|
||||
```
|
||||
|
||||
Here we're using the default dataset and environment for ACT, and we've taken care to set up the log frequency and checkpointing frequency to low numbers so we can test resumption. You should be able to see some logging and have a first checkpoint within 1 minute. Please interrupt the training after the first checkpoint.
|
||||
|
||||
To resume, all that we have to do is run the training script, providing the run directory, and the resume option:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.run.dir=outputs/train/run_resumption \
|
||||
resume=true
|
||||
```
|
||||
|
||||
You should see from the logging that your training picks up from where it left off.
|
||||
|
||||
Note that with `resume=true`, the configuration file from the last checkpoint in the training output directory is loaded. So it doesn't matter that we haven't provided all the other configuration parameters from our previous command (although there may be warnings to notify you that your command has a different configuration than than the checkpoint).
|
||||
|
||||
---
|
||||
|
||||
Now you should know how to resume your training run in case it gets interrupted or you want to extend a finished training run.
|
||||
|
||||
Happy coding! 🤗
|
||||
52
examples/6_add_image_transforms.py
Normal file
52
examples/6_add_image_transforms.py
Normal file
@@ -0,0 +1,52 @@
|
||||
"""
|
||||
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
|
||||
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and
|
||||
transforms are applied to the observation images before they are returned in the dataset's __get_item__.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from torchvision.transforms import ToPILImage, v2
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
dataset_repo_id = "lerobot/aloha_static_tape"
|
||||
|
||||
# Create a LeRobotDataset with no transformations
|
||||
dataset = LeRobotDataset(dataset_repo_id)
|
||||
# This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)`
|
||||
|
||||
# Get the index of the first observation in the first episode
|
||||
first_idx = dataset.episode_data_index["from"][0].item()
|
||||
|
||||
# Get the frame corresponding to the first camera
|
||||
frame = dataset[first_idx][dataset.camera_keys[0]]
|
||||
|
||||
|
||||
# Define the transformations
|
||||
transforms = v2.Compose(
|
||||
[
|
||||
v2.ColorJitter(brightness=(0.5, 1.5)),
|
||||
v2.ColorJitter(contrast=(0.5, 1.5)),
|
||||
v2.RandomAdjustSharpness(sharpness_factor=2, p=1),
|
||||
]
|
||||
)
|
||||
|
||||
# Create another LeRobotDataset with the defined transformations
|
||||
transformed_dataset = LeRobotDataset(dataset_repo_id, image_transforms=transforms)
|
||||
|
||||
# Get a frame from the transformed dataset
|
||||
transformed_frame = transformed_dataset[first_idx][transformed_dataset.camera_keys[0]]
|
||||
|
||||
# Create a directory to store output images
|
||||
output_dir = Path("outputs/image_transforms")
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Save the original frame
|
||||
to_pil = ToPILImage()
|
||||
to_pil(frame).save(output_dir / "original_frame.png", quality=100)
|
||||
print(f"Original frame saved to {output_dir / 'original_frame.png'}.")
|
||||
|
||||
# Save the transformed frame
|
||||
to_pil(transformed_frame).save(output_dir / "transformed_frame.png", quality=100)
|
||||
print(f"Transformed frame saved to {output_dir / 'transformed_frame.png'}.")
|
||||
1019
examples/7_get_started_with_real_robot.md
Normal file
1019
examples/7_get_started_with_real_robot.md
Normal file
File diff suppressed because it is too large
Load Diff
158
examples/8_use_stretch.md
Normal file
158
examples/8_use_stretch.md
Normal file
@@ -0,0 +1,158 @@
|
||||
This tutorial explains how to use [Stretch 3](https://hello-robot.com/stretch-3-product) with LeRobot.
|
||||
|
||||
## Setup
|
||||
|
||||
Familiarize yourself with Stretch by following its [tutorials](https://docs.hello-robot.com/0.3/getting_started/hello_robot/) (recommended).
|
||||
|
||||
To use LeRobot on Stretch, 3 options are available:
|
||||
- [tethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup)
|
||||
- [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup)
|
||||
- ssh directly into Stretch (you will first need to install and configure openssh-server on stretch using one of the two above setups)
|
||||
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
On Stretch's CLI, follow these steps:
|
||||
|
||||
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
|
||||
```bash
|
||||
mkdir -p ~/miniconda3
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
~/miniconda3/bin/conda init bash
|
||||
```
|
||||
|
||||
2. Comment out these lines in `~/.profile` (this can mess up paths used by conda and ~/.local/bin should already be in your PATH)
|
||||
```
|
||||
# set PATH so it includes user's private bin if it exists
|
||||
if [ -d "$HOME/.local/bin" ] ; then
|
||||
PATH="$HOME/.local/bin:$PATH"
|
||||
fi
|
||||
```
|
||||
|
||||
3. Restart shell or `source ~/.bashrc`
|
||||
|
||||
4. Create and activate a fresh conda environment for lerobot
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10 && conda activate lerobot
|
||||
```
|
||||
|
||||
5. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
6. Install LeRobot with stretch dependencies:
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[stretch]"
|
||||
```
|
||||
|
||||
> **Note:** If you get this message, you can ignore it: `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.`
|
||||
|
||||
And install extra dependencies for recording datasets on Linux:
|
||||
```bash
|
||||
conda install -y -c conda-forge ffmpeg
|
||||
pip uninstall -y opencv-python
|
||||
conda install -y -c conda-forge "opencv>=4.10.0"
|
||||
```
|
||||
|
||||
7. Run a [system check](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#system-check) to make sure your robot is ready:
|
||||
```bash
|
||||
stretch_system_check.py
|
||||
```
|
||||
|
||||
> **Note:** You may need to free the "robot process" after booting Stretch by running `stretch_free_robot_process.py`. For more info this Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#turning-off-gamepad-teleoperation).
|
||||
|
||||
You should get something like this:
|
||||
```bash
|
||||
For use with S T R E T C H (R) from Hello Robot Inc.
|
||||
---------------------------------------------------------------------
|
||||
|
||||
Model = Stretch 3
|
||||
Tool = DexWrist 3 w/ Gripper
|
||||
Serial Number = stretch-se3-3054
|
||||
|
||||
---- Checking Hardware ----
|
||||
[Pass] Comms are ready
|
||||
[Pass] Actuators are ready
|
||||
[Warn] Sensors not ready (IMU AZ = -10.19 out of range -10.1 to -9.5)
|
||||
[Pass] Battery voltage is 13.6 V
|
||||
|
||||
---- Checking Software ----
|
||||
[Pass] Ubuntu 22.04 is ready
|
||||
[Pass] All APT pkgs are setup correctly
|
||||
[Pass] Firmware is up-to-date
|
||||
[Pass] Python pkgs are up-to-date
|
||||
[Pass] ROS2 Humble is ready
|
||||
```
|
||||
|
||||
## Teleoperate, record a dataset and run a policy
|
||||
|
||||
**Calibrate (Optional)**
|
||||
Before operating Stretch, you need to [home](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#homing) it first. Be mindful about giving Stretch some space as this procedure will move the robot's arm and gripper. Now run this command:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py calibrate \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml
|
||||
```
|
||||
This is equivalent to running `stretch_robot_home.py`
|
||||
|
||||
> **Note:** If you run any of the LeRobot scripts below and Stretch is not poperly homed, it will automatically home/calibrate first.
|
||||
|
||||
**Teleoperate**
|
||||
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
|
||||
|
||||
Now try out teleoperation (see above documentation to learn about the gamepad controls):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml
|
||||
```
|
||||
This is essentially the same as running `stretch_gamepad_teleop.py`
|
||||
|
||||
**Record a dataset**
|
||||
Once you're familiar with the gamepad controls and after a bit of practice, you can try to record your first dataset with Stretch.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record one episode:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml \
|
||||
--fps 20 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/stretch_test \
|
||||
--tags stretch tutorial \
|
||||
--warmup-time-s 3 \
|
||||
--episode-time-s 40 \
|
||||
--reset-time-s 10 \
|
||||
--num-episodes 1 \
|
||||
--push-to-hub 0
|
||||
```
|
||||
|
||||
> **Note:** If you're using ssh to connect to Stretch and run this script, you won't be able to visualize its cameras feed (though they will still be recording). To see the cameras stream, use [tethered](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup) or [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup).
|
||||
|
||||
**Replay an episode**
|
||||
Now try to replay this episode (make sure the robot's initial position is the same):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py replay \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml \
|
||||
--fps 20 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/stretch_test \
|
||||
--episode 0
|
||||
```
|
||||
|
||||
Follow [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) to train a policy on your data and run inference on your robot. You will need to adapt the code for Stretch.
|
||||
|
||||
> TODO(rcadene, aliberts): Add already setup environment and policy yaml configuration files
|
||||
|
||||
If you need help, please reach out on Discord in the channel `#stretch3-mobile-arm`.
|
||||
87
examples/advanced/1_train_act_pusht/act_pusht.yaml
Normal file
87
examples/advanced/1_train_act_pusht/act_pusht.yaml
Normal file
@@ -0,0 +1,87 @@
|
||||
# @package _global_
|
||||
|
||||
# Change the seed to match what PushT eval uses
|
||||
# (to avoid evaluating on seeds used for generating the training data).
|
||||
seed: 100000
|
||||
# Change the dataset repository to the PushT one.
|
||||
dataset_repo_id: lerobot/pusht
|
||||
|
||||
override_dataset_stats:
|
||||
observation.image:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
online_steps: 0
|
||||
eval_freq: 10000
|
||||
save_freq: 100000
|
||||
log_freq: 250
|
||||
save_model: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100 # chunk_size
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
observation.image: [3, 96, 96]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.image: mean_std
|
||||
# Use min_max normalization just because it's more standard.
|
||||
observation.state: min_max
|
||||
output_normalization_modes:
|
||||
# Use min_max normalization just because it's more standard.
|
||||
action: min_max
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_coeff: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
70
examples/advanced/1_train_act_pusht/train_act_pusht.md
Normal file
70
examples/advanced/1_train_act_pusht/train_act_pusht.md
Normal file
@@ -0,0 +1,70 @@
|
||||
In this tutorial we will learn how to adapt a policy configuration to be compatible with a new environment and dataset. As a concrete example, we will adapt the default configuration for ACT to be compatible with the PushT environment and dataset.
|
||||
|
||||
If you haven't already read our tutorial on the [training script and configuration tooling](../4_train_policy_with_script.md) please do so prior to tackling this tutorial.
|
||||
|
||||
Let's get started!
|
||||
|
||||
Suppose we want to train ACT for PushT. Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
|
||||
```
|
||||
|
||||
We need to adapt the parameters of the ACT policy configuration to the PushT environment. The most important ones are the image keys.
|
||||
|
||||
ALOHA's datasets and environments typically use a variable number of cameras. In `lerobot/configs/policy/act.yaml` you may notice two relevant sections. Here we show you the minimal diff needed to adjust to PushT:
|
||||
|
||||
```diff
|
||||
override_dataset_stats:
|
||||
- observation.images.top:
|
||||
+ observation.image:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
policy:
|
||||
input_shapes:
|
||||
- observation.images.top: [3, 480, 640]
|
||||
+ observation.image: [3, 96, 96]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
input_normalization_modes:
|
||||
- observation.images.top: mean_std
|
||||
+ observation.image: mean_std
|
||||
observation.state: min_max
|
||||
output_normalization_modes:
|
||||
action: min_max
|
||||
```
|
||||
|
||||
Here we've accounted for the following:
|
||||
- PushT uses "observation.image" for its image key.
|
||||
- PushT provides smaller images.
|
||||
|
||||
_Side note: technically we could override these via the CLI, but with many changes it gets a bit messy, and we also have a bit of a challenge in that we're using `.` in our observation keys which is treated by Hydra as a hierarchical separator_.
|
||||
|
||||
For your convenience, we provide [`act_pusht.yaml`](./act_pusht.yaml) in this directory. It contains the diff above, plus some other (optional) ones that are explained within. Please copy it into `lerobot/configs/policy` with:
|
||||
|
||||
```bash
|
||||
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/act_pusht.yaml
|
||||
```
|
||||
|
||||
(remember from a [previous tutorial](../4_train_policy_with_script.md) that Hydra will look in the `lerobot/configs` directory). Now try running the following.
|
||||
|
||||
<!-- Note to contributor: are you changing this command? Note that it's tested in `Makefile`, so change it there too! -->
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act_pusht env=pusht
|
||||
```
|
||||
|
||||
Notice that this is much the same as the command that failed at the start of the tutorial, only:
|
||||
- Now we are using `policy=act_pusht` to point to our new configuration file.
|
||||
- We can drop `dataset_repo_id=lerobot/pusht` as the change is incorporated in our new configuration file.
|
||||
|
||||
Hurrah! You're now training ACT for the PushT environment.
|
||||
|
||||
---
|
||||
|
||||
The bottom line of this tutorial is that when training policies for different environments and datasets you will need to understand what parts of the policy configuration are specific to those and make changes accordingly.
|
||||
|
||||
Happy coding! 🤗
|
||||
90
examples/advanced/2_calculate_validation_loss.py
Normal file
90
examples/advanced/2_calculate_validation_loss.py
Normal file
@@ -0,0 +1,90 @@
|
||||
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
|
||||
|
||||
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy
|
||||
is learning effectively.
|
||||
|
||||
Furthermore, relying on validation loss to evaluate performance is generally not considered a good practice,
|
||||
especially in the context of imitation learning. The most reliable approach is to evaluate the policy directly
|
||||
on the target environment, whether that be in simulation or the real world.
|
||||
"""
|
||||
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
|
||||
device = torch.device("cuda")
|
||||
|
||||
# Download the diffusion policy for pusht environment
|
||||
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
|
||||
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
|
||||
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
|
||||
|
||||
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
|
||||
policy.eval()
|
||||
policy.to(device)
|
||||
|
||||
# Set up the dataset.
|
||||
delta_timestamps = {
|
||||
# Load the previous image and state at -0.1 seconds before current frame,
|
||||
# then load current image and state corresponding to 0.0 second.
|
||||
"observation.image": [-0.1, 0.0],
|
||||
"observation.state": [-0.1, 0.0],
|
||||
# Load the previous action (-0.1), the next action to be executed (0.0),
|
||||
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
|
||||
# used to calculate the loss.
|
||||
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
|
||||
}
|
||||
|
||||
# Load the last 10% of episodes of the dataset as a validation set.
|
||||
# - Load full dataset
|
||||
full_dataset = LeRobotDataset("lerobot/pusht", split="train")
|
||||
# - Calculate train and val subsets
|
||||
num_train_episodes = math.floor(full_dataset.num_episodes * 90 / 100)
|
||||
num_val_episodes = full_dataset.num_episodes - num_train_episodes
|
||||
print(f"Number of episodes in full dataset: {full_dataset.num_episodes}")
|
||||
print(f"Number of episodes in training dataset (90% subset): {num_train_episodes}")
|
||||
print(f"Number of episodes in validation dataset (10% subset): {num_val_episodes}")
|
||||
# - Get first frame index of the validation set
|
||||
first_val_frame_index = full_dataset.episode_data_index["from"][num_train_episodes].item()
|
||||
# - Load frames subset belonging to validation set using the `split` argument.
|
||||
# It utilizes the `datasets` library's syntax for slicing datasets.
|
||||
# For more information on the Slice API, please see:
|
||||
# https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
|
||||
train_dataset = LeRobotDataset(
|
||||
"lerobot/pusht", split=f"train[:{first_val_frame_index}]", delta_timestamps=delta_timestamps
|
||||
)
|
||||
val_dataset = LeRobotDataset(
|
||||
"lerobot/pusht", split=f"train[{first_val_frame_index}:]", delta_timestamps=delta_timestamps
|
||||
)
|
||||
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
|
||||
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")
|
||||
|
||||
# Create dataloader for evaluation.
|
||||
val_dataloader = torch.utils.data.DataLoader(
|
||||
val_dataset,
|
||||
num_workers=4,
|
||||
batch_size=64,
|
||||
shuffle=False,
|
||||
pin_memory=device != torch.device("cpu"),
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
# Run validation loop.
|
||||
loss_cumsum = 0
|
||||
n_examples_evaluated = 0
|
||||
for batch in val_dataloader:
|
||||
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
||||
output_dict = policy.forward(batch)
|
||||
|
||||
loss_cumsum += output_dict["loss"].item()
|
||||
n_examples_evaluated += batch["index"].shape[0]
|
||||
|
||||
# Calculate the average loss over the validation set.
|
||||
average_loss = loss_cumsum / n_examples_evaluated
|
||||
|
||||
print(f"Average loss on validation set: {average_loss:.4f}")
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This file contains lists of available environments, dataset and policies to reflect the current state of LeRobot library.
|
||||
We do not want to import all the dependencies, but instead we keep it lightweight to ensure fast access to these variables.
|
||||
@@ -12,6 +27,9 @@ Example:
|
||||
print(lerobot.available_real_world_datasets)
|
||||
print(lerobot.available_policies)
|
||||
print(lerobot.available_policies_per_env)
|
||||
print(lerobot.available_robots)
|
||||
print(lerobot.available_cameras)
|
||||
print(lerobot.available_motors)
|
||||
```
|
||||
|
||||
When implementing a new dataset loadable with LeRobotDataset follow these steps:
|
||||
@@ -30,6 +48,9 @@ import itertools
|
||||
|
||||
from lerobot.__version__ import __version__ # noqa: F401
|
||||
|
||||
# TODO(rcadene): Improve policies and envs. As of now, an item in `available_policies`
|
||||
# refers to a yaml file AND a modeling name. Same for `available_envs` which refers to
|
||||
# a yaml file AND a environment name. The difference should be more obvious.
|
||||
available_tasks_per_env = {
|
||||
"aloha": [
|
||||
"AlohaInsertion-v0",
|
||||
@@ -37,6 +58,7 @@ available_tasks_per_env = {
|
||||
],
|
||||
"pusht": ["PushT-v0"],
|
||||
"xarm": ["XarmLift-v0"],
|
||||
"dora_aloha_real": ["DoraAloha-v0", "DoraKoch-v0", "DoraReachy2-v0"],
|
||||
}
|
||||
available_envs = list(available_tasks_per_env.keys())
|
||||
|
||||
@@ -46,13 +68,40 @@ available_datasets_per_env = {
|
||||
"lerobot/aloha_sim_insertion_scripted",
|
||||
"lerobot/aloha_sim_transfer_cube_human",
|
||||
"lerobot/aloha_sim_transfer_cube_scripted",
|
||||
"lerobot/aloha_sim_insertion_human_image",
|
||||
"lerobot/aloha_sim_insertion_scripted_image",
|
||||
"lerobot/aloha_sim_transfer_cube_human_image",
|
||||
"lerobot/aloha_sim_transfer_cube_scripted_image",
|
||||
],
|
||||
"pusht": ["lerobot/pusht"],
|
||||
# TODO(alexander-soare): Add "lerobot/pusht_keypoints". Right now we can't because this is too tightly
|
||||
# coupled with tests.
|
||||
"pusht": ["lerobot/pusht", "lerobot/pusht_image"],
|
||||
"xarm": [
|
||||
"lerobot/xarm_lift_medium",
|
||||
"lerobot/xarm_lift_medium_replay",
|
||||
"lerobot/xarm_push_medium",
|
||||
"lerobot/xarm_push_medium_replay",
|
||||
"lerobot/xarm_lift_medium_image",
|
||||
"lerobot/xarm_lift_medium_replay_image",
|
||||
"lerobot/xarm_push_medium_image",
|
||||
"lerobot/xarm_push_medium_replay_image",
|
||||
],
|
||||
"dora_aloha_real": [
|
||||
"lerobot/aloha_static_battery",
|
||||
"lerobot/aloha_static_candy",
|
||||
"lerobot/aloha_static_coffee",
|
||||
"lerobot/aloha_static_coffee_new",
|
||||
"lerobot/aloha_static_cups_open",
|
||||
"lerobot/aloha_static_fork_pick_up",
|
||||
"lerobot/aloha_static_pingpong_test",
|
||||
"lerobot/aloha_static_pro_pencil",
|
||||
"lerobot/aloha_static_screw_driver",
|
||||
"lerobot/aloha_static_tape",
|
||||
"lerobot/aloha_static_thread_velcro",
|
||||
"lerobot/aloha_static_towel",
|
||||
"lerobot/aloha_static_vinh_cup",
|
||||
"lerobot/aloha_static_vinh_cup_left",
|
||||
"lerobot/aloha_static_ziploc_slide",
|
||||
],
|
||||
}
|
||||
|
||||
@@ -79,22 +128,97 @@ available_real_world_datasets = [
|
||||
"lerobot/aloha_static_vinh_cup_left",
|
||||
"lerobot/aloha_static_ziploc_slide",
|
||||
"lerobot/umi_cup_in_the_wild",
|
||||
"lerobot/unitreeh1_fold_clothes",
|
||||
"lerobot/unitreeh1_rearrange_objects",
|
||||
"lerobot/unitreeh1_two_robot_greeting",
|
||||
"lerobot/unitreeh1_warehouse",
|
||||
"lerobot/nyu_rot_dataset",
|
||||
"lerobot/utokyo_saytap",
|
||||
"lerobot/imperialcollege_sawyer_wrist_cam",
|
||||
"lerobot/utokyo_xarm_bimanual",
|
||||
"lerobot/tokyo_u_lsmo",
|
||||
"lerobot/utokyo_pr2_opening_fridge",
|
||||
"lerobot/cmu_franka_exploration_dataset",
|
||||
"lerobot/cmu_stretch",
|
||||
"lerobot/asu_table_top",
|
||||
"lerobot/utokyo_pr2_tabletop_manipulation",
|
||||
"lerobot/utokyo_xarm_pick_and_place",
|
||||
"lerobot/ucsd_kitchen_dataset",
|
||||
"lerobot/austin_buds_dataset",
|
||||
"lerobot/dlr_sara_grid_clamp",
|
||||
"lerobot/conq_hose_manipulation",
|
||||
"lerobot/columbia_cairlab_pusht_real",
|
||||
"lerobot/dlr_sara_pour",
|
||||
"lerobot/dlr_edan_shared_control",
|
||||
"lerobot/ucsd_pick_and_place_dataset",
|
||||
"lerobot/berkeley_cable_routing",
|
||||
"lerobot/nyu_franka_play_dataset",
|
||||
"lerobot/austin_sirius_dataset",
|
||||
"lerobot/cmu_play_fusion",
|
||||
"lerobot/berkeley_gnm_sac_son",
|
||||
"lerobot/nyu_door_opening_surprising_effectiveness",
|
||||
"lerobot/berkeley_fanuc_manipulation",
|
||||
"lerobot/jaco_play",
|
||||
"lerobot/viola",
|
||||
"lerobot/kaist_nonprehensile",
|
||||
"lerobot/berkeley_mvp",
|
||||
"lerobot/uiuc_d3field",
|
||||
"lerobot/berkeley_gnm_recon",
|
||||
"lerobot/austin_sailor_dataset",
|
||||
"lerobot/utaustin_mutex",
|
||||
"lerobot/roboturk",
|
||||
"lerobot/stanford_hydra_dataset",
|
||||
"lerobot/berkeley_autolab_ur5",
|
||||
"lerobot/stanford_robocook",
|
||||
"lerobot/toto",
|
||||
"lerobot/fmb",
|
||||
"lerobot/droid_100",
|
||||
"lerobot/berkeley_rpt",
|
||||
"lerobot/stanford_kuka_multimodal_dataset",
|
||||
"lerobot/iamlab_cmu_pickup_insert",
|
||||
"lerobot/taco_play",
|
||||
"lerobot/berkeley_gnm_cory_hall",
|
||||
"lerobot/usc_cloth_sim",
|
||||
]
|
||||
|
||||
available_datasets = list(
|
||||
itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets)
|
||||
)
|
||||
|
||||
# lists all available policies from `lerobot/common/policies`
|
||||
available_policies = [
|
||||
"act",
|
||||
"diffusion",
|
||||
"tdmpc",
|
||||
"vqbet",
|
||||
]
|
||||
|
||||
# lists all available robots from `lerobot/common/robot_devices/robots`
|
||||
available_robots = [
|
||||
# "koch",
|
||||
# "koch_bimanual",
|
||||
"aloha",
|
||||
]
|
||||
|
||||
# lists all available cameras from `lerobot/common/robot_devices/cameras`
|
||||
available_cameras = [
|
||||
"opencv",
|
||||
"intelrealsense",
|
||||
]
|
||||
|
||||
# lists all available motors from `lerobot/common/robot_devices/motors`
|
||||
available_motors = [
|
||||
"dynamixel",
|
||||
]
|
||||
|
||||
# keys and values refer to yaml files
|
||||
available_policies_per_env = {
|
||||
"aloha": ["act"],
|
||||
"pusht": ["diffusion"],
|
||||
"pusht": ["diffusion", "vqbet"],
|
||||
"xarm": ["tdmpc"],
|
||||
"koch_real": ["act_koch_real"],
|
||||
"aloha_real": ["act_aloha_real"],
|
||||
"dora_aloha_real": ["act_aloha_real"],
|
||||
}
|
||||
|
||||
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""To enable `lerobot.__version__`"""
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
@@ -1,334 +0,0 @@
|
||||
# Video benchmark
|
||||
|
||||
|
||||
## Questions
|
||||
|
||||
What is the optimal trade-off between:
|
||||
- maximizing loading time with random access,
|
||||
- minimizing memory space on disk,
|
||||
- maximizing success rate of policies?
|
||||
|
||||
How to encode videos?
|
||||
- How much compression (`-crf`)? Low compression with `0`, normal compression with `20` or extreme with `56`?
|
||||
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
|
||||
- How many key frames (`-g`)? A key frame every `10` frames?
|
||||
|
||||
How to decode videos?
|
||||
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
|
||||
|
||||
## Metrics
|
||||
|
||||
**Percentage of data compression (higher is better)**
|
||||
`compression_factor` is the ratio of the memory space on disk taken by the original images to encode, to the memory space taken by the encoded video. For instance, `compression_factor=4` means that the video takes 4 times less memory space on disk compared to the original images.
|
||||
|
||||
**Percentage of loading time (higher is better)**
|
||||
`load_time_factor` is the ratio of the time it takes to load original images at given timestamps, to the time it takes to decode the exact same frames from the video. Higher is better. For instance, `load_time_factor=0.5` means that decoding from video is 2 times slower than loading the original images.
|
||||
|
||||
**Average L2 error per pixel (lower is better)**
|
||||
`avg_per_pixel_l2_error` is the average L2 error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
|
||||
|
||||
**Loss of a pretrained policy (higher is better)** (not available)
|
||||
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
|
||||
|
||||
**Success rate after retraining (higher is better)** (not available)
|
||||
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best.
|
||||
|
||||
|
||||
## Variables
|
||||
|
||||
**Image content**
|
||||
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an appartment, or in a factory, or outdoor, etc. Hence, we run this benchmark on two datasets: `pusht` (simulation) and `umi` (real-world outdoor).
|
||||
|
||||
**Requested timestamps**
|
||||
In this benchmark, we focus on the loading time of random access, so we are not interested in sequentially loading all frames of a video like in a movie. However, the number of consecutive timestamps requested and their spacing can greatly affect the `load_time_factor`. In fact, it is expected to get faster loading time by decoding a large number of consecutive frames from a video, than to load the same data from individual images. To reflect our robotics use case, we consider a few settings:
|
||||
- `single_frame`: 1 frame,
|
||||
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
|
||||
- `2_frames_4_space`: 2 consecutive frames with 4 frames of spacing (e.g `[t, t + 4 / fps]`),
|
||||
|
||||
**Data augmentations**
|
||||
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
|
||||
|
||||
|
||||
## Results
|
||||
|
||||
**`decoder`**
|
||||
| repo_id | decoder | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | <span style="color: #32CD32;">torchvision</span> | 0.166 | 0.0000119 |
|
||||
| lerobot/pusht | ffmpegio | 0.009 | 0.0001182 |
|
||||
| lerobot/pusht | torchaudio | 0.138 | 0.0000359 |
|
||||
| lerobot/umi_cup_in_the_wild | <span style="color: #32CD32;">torchvision</span> | 0.174 | 0.0000174 |
|
||||
| lerobot/umi_cup_in_the_wild | ffmpegio | 0.010 | 0.0000735 |
|
||||
| lerobot/umi_cup_in_the_wild | torchaudio | 0.154 | 0.0000340 |
|
||||
|
||||
### `1_frame`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.224 | 0.0000760 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.185 | 0.0000443 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.388 | 0.0000469 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.329 | 0.0000397 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.204 | 0.0000556 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.182 | 0.0000443 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.174 | 0.0000450 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.163 | 0.0000448 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.163 | 0.0000436 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.155 | 0.0000427 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.130 | 0.0000410 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.105 | 0.0000406 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.097 | 0.0000400 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.061 | 0.0000405 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.039 | 0.0000422 |
|
||||
| lerobot/pusht | None | 8.909 | 0.024 | 0.0000431 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.444 | 0.0000601 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.345 | 0.0000397 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.282 | 0.0000416 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.271 | 0.0000415 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.260 | 0.0000415 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.249 | 0.0000415 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.195 | 0.0000399 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.169 | 0.0000394 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.140 | 0.0000390 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.096 | 0.0000384 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.046 | 0.0000390 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.022 | 0.0000400 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.175 | 0.0000035 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.181 | 0.0000080 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.172 | 0.0000123 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.187 | 0.0000211 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.181 | 0.0000346 |
|
||||
| lerobot/pusht | None | 3.646 | 0.189 | 0.0000443 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.186 | 0.0000521 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.184 | 0.0000850 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.193 | 0.0001726 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.183 | 0.0002606 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.165 | 0.0000056 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.171 | 0.0000111 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.212 | 0.0000153 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.261 | 0.0000218 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.312 | 0.0000317 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.339 | 0.0000397 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.297 | 0.0000452 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.406 | 0.0000629 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.468 | 0.0001184 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.515 | 0.0001879 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.188 | 0.0000443 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.339 | 0.0000397 |
|
||||
|
||||
### `2_frames`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.314 | 0.0000799 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.303 | 0.0000496 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.642 | 0.0000503 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.529 | 0.0000436 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.308 | 0.0000599 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.279 | 0.0000496 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.259 | 0.0000498 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.243 | 0.0000501 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.235 | 0.0000492 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.230 | 0.0000481 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.194 | 0.0000468 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.152 | 0.0000460 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.151 | 0.0000455 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.095 | 0.0000454 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.062 | 0.0000472 |
|
||||
| lerobot/pusht | None | 8.909 | 0.037 | 0.0000479 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.638 | 0.0000625 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.537 | 0.0000436 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.493 | 0.0000437 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.458 | 0.0000446 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.438 | 0.0000445 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.424 | 0.0000444 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.345 | 0.0000435 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.313 | 0.0000417 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.264 | 0.0000421 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.185 | 0.0000414 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.090 | 0.0000420 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.042 | 0.0000424 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.302 | 0.0000097 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.287 | 0.0000142 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.283 | 0.0000184 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.305 | 0.0000268 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.285 | 0.0000402 |
|
||||
| lerobot/pusht | None | 3.646 | 0.285 | 0.0000496 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.293 | 0.0000572 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.293 | 0.0000893 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.319 | 0.0001762 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.304 | 0.0002626 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.235 | 0.0000112 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.261 | 0.0000166 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.333 | 0.0000207 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.406 | 0.0000267 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.489 | 0.0000361 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.537 | 0.0000436 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.578 | 0.0000487 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.453 | 0.0000655 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.767 | 0.0001192 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.816 | 0.0001881 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.283 | 0.0000496 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.543 | 0.0000436 |
|
||||
|
||||
### `2_frames_4_space`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.257 | 0.0000855 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.261 | 0.0000556 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.493 | 0.0000476 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.371 | 0.0000404 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.226 | 0.0000670 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.222 | 0.0000556 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.217 | 0.0000567 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.204 | 0.0000555 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.179 | 0.0000556 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.188 | 0.0000544 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.160 | 0.0000531 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.150 | 0.0000521 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.123 | 0.0000519 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.092 | 0.0000519 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.053 | 0.0000533 |
|
||||
| lerobot/pusht | None | 8.909 | 0.034 | 0.0000541 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.409 | 0.0000607 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.381 | 0.0000404 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.355 | 0.0000418 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.346 | 0.0000425 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.354 | 0.0000419 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.336 | 0.0000419 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.314 | 0.0000402 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.269 | 0.0000397 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.246 | 0.0000395 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.171 | 0.0000390 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.091 | 0.0000399 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.043 | 0.0000409 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.212 | 0.0000193 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.211 | 0.0000232 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.199 | 0.0000270 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.198 | 0.0000347 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.211 | 0.0000469 |
|
||||
| lerobot/pusht | None | 3.646 | 0.206 | 0.0000556 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.210 | 0.0000626 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.223 | 0.0000927 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.227 | 0.0001763 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.223 | 0.0002625 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.147 | 0.0000071 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.182 | 0.0000125 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.222 | 0.0000166 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.270 | 0.0000229 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.325 | 0.0000326 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.362 | 0.0000404 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.390 | 0.0000459 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.437 | 0.0000633 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.499 | 0.0001186 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.564 | 0.0001879 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.224 | 0.0000556 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.368 | 0.0000404 |
|
||||
|
||||
### `6_frames`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.660 | 0.0000839 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.546 | 0.0000542 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 1.225 | 0.0000497 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.908 | 0.0000428 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.552 | 0.0000646 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.534 | 0.0000542 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.563 | 0.0000546 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.537 | 0.0000545 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.477 | 0.0000532 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.515 | 0.0000530 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.410 | 0.0000512 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.405 | 0.0000503 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.345 | 0.0000500 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.247 | 0.0000496 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.147 | 0.0000510 |
|
||||
| lerobot/pusht | None | 8.909 | 0.100 | 0.0000519 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.997 | 0.0000620 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.911 | 0.0000428 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.869 | 0.0000433 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.874 | 0.0000438 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.864 | 0.0000439 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.834 | 0.0000440 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.781 | 0.0000421 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.679 | 0.0000411 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.652 | 0.0000410 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.465 | 0.0000404 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.245 | 0.0000413 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.116 | 0.0000417 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.534 | 0.0000163 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.524 | 0.0000205 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.510 | 0.0000245 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.512 | 0.0000324 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.508 | 0.0000452 |
|
||||
| lerobot/pusht | None | 3.646 | 0.518 | 0.0000542 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.534 | 0.0000616 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.530 | 0.0000927 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.552 | 0.0001777 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.564 | 0.0002644 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.401 | 0.0000101 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.499 | 0.0000156 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.599 | 0.0000197 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.704 | 0.0000258 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.834 | 0.0000352 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.925 | 0.0000428 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.978 | 0.0000480 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 1.088 | 0.0000648 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 1.324 | 0.0001190 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 1.436 | 0.0001880 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.546 | 0.0000542 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.934 | 0.0000428 |
|
||||
@@ -1,357 +0,0 @@
|
||||
import json
|
||||
import random
|
||||
import shutil
|
||||
import subprocess
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import numpy
|
||||
import PIL
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.video_utils import (
|
||||
decode_video_frames_torchvision,
|
||||
)
|
||||
|
||||
|
||||
def get_directory_size(directory):
|
||||
total_size = 0
|
||||
# Iterate over all files and subdirectories recursively
|
||||
for item in directory.rglob("*"):
|
||||
if item.is_file():
|
||||
# Add the file size to the total
|
||||
total_size += item.stat().st_size
|
||||
return total_size
|
||||
|
||||
|
||||
def run_video_benchmark(
|
||||
output_dir,
|
||||
cfg,
|
||||
timestamps_mode,
|
||||
seed=1337,
|
||||
):
|
||||
output_dir = Path(output_dir)
|
||||
if output_dir.exists():
|
||||
shutil.rmtree(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
repo_id = cfg["repo_id"]
|
||||
|
||||
# TODO(rcadene): rewrite with hardcoding of original images and episodes
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
|
||||
# Get fps
|
||||
fps = dataset.fps
|
||||
|
||||
# we only load first episode
|
||||
ep_num_images = dataset.episode_data_index["to"][0].item()
|
||||
|
||||
# Save/Load image directory for the first episode
|
||||
imgs_dir = Path(f"tmp/data/images/{repo_id}/observation.image_episode_000000")
|
||||
if not imgs_dir.exists():
|
||||
imgs_dir.mkdir(parents=True, exist_ok=True)
|
||||
hf_dataset = dataset.hf_dataset.with_format(None)
|
||||
imgs_dataset = hf_dataset.select_columns("observation.image")
|
||||
|
||||
for i, item in enumerate(imgs_dataset):
|
||||
img = item["observation.image"]
|
||||
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
|
||||
|
||||
if i >= ep_num_images - 1:
|
||||
break
|
||||
|
||||
sum_original_frames_size_bytes = get_directory_size(imgs_dir)
|
||||
|
||||
# Encode images into video
|
||||
video_path = output_dir / "episode_0.mp4"
|
||||
|
||||
g = cfg.get("g")
|
||||
crf = cfg.get("crf")
|
||||
pix_fmt = cfg["pix_fmt"]
|
||||
|
||||
cmd = f"ffmpeg -r {fps} "
|
||||
cmd += "-f image2 "
|
||||
cmd += "-loglevel error "
|
||||
cmd += f"-i {str(imgs_dir / 'frame_%06d.png')} "
|
||||
cmd += "-vcodec libx264 "
|
||||
if g is not None:
|
||||
cmd += f"-g {g} " # ensures at least 1 keyframe every 10 frames
|
||||
# cmd += "-keyint_min 10 " set a minimum of 10 frames between 2 key frames
|
||||
# cmd += "-sc_threshold 0 " disable scene change detection to lower the number of key frames
|
||||
if crf is not None:
|
||||
cmd += f"-crf {crf} "
|
||||
cmd += f"-pix_fmt {pix_fmt} "
|
||||
cmd += f"{str(video_path)}"
|
||||
subprocess.run(cmd.split(" "), check=True)
|
||||
|
||||
video_size_bytes = video_path.stat().st_size
|
||||
|
||||
# Set decoder
|
||||
|
||||
decoder = cfg["decoder"]
|
||||
decoder_kwgs = cfg["decoder_kwgs"]
|
||||
device = cfg["device"]
|
||||
|
||||
if decoder == "torchvision":
|
||||
decode_frames_fn = decode_video_frames_torchvision
|
||||
else:
|
||||
raise ValueError(decoder)
|
||||
|
||||
# Estimate average loading time
|
||||
|
||||
def load_original_frames(imgs_dir, timestamps):
|
||||
frames = []
|
||||
for ts in timestamps:
|
||||
idx = int(ts * fps)
|
||||
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
|
||||
frame = torch.from_numpy(numpy.array(frame))
|
||||
frame = frame.type(torch.float32) / 255
|
||||
frame = einops.rearrange(frame, "h w c -> c h w")
|
||||
frames.append(frame)
|
||||
return frames
|
||||
|
||||
list_avg_load_time = []
|
||||
list_avg_load_time_from_images = []
|
||||
per_pixel_l2_errors = []
|
||||
|
||||
random.seed(seed)
|
||||
|
||||
for t in range(50):
|
||||
# test loading 2 frames that are 4 frames appart, which might be a common setting
|
||||
ts = random.randint(fps, ep_num_images - fps) / fps
|
||||
|
||||
if timestamps_mode == "1_frame":
|
||||
timestamps = [ts]
|
||||
elif timestamps_mode == "2_frames":
|
||||
timestamps = [ts - 1 / fps, ts]
|
||||
elif timestamps_mode == "2_frames_4_space":
|
||||
timestamps = [ts - 4 / fps, ts]
|
||||
elif timestamps_mode == "6_frames":
|
||||
timestamps = [ts - i / fps for i in range(6)][::-1]
|
||||
else:
|
||||
raise ValueError(timestamps_mode)
|
||||
|
||||
num_frames = len(timestamps)
|
||||
|
||||
start_time_s = time.monotonic()
|
||||
frames = decode_frames_fn(
|
||||
video_path, timestamps=timestamps, tolerance_s=1e-4, device=device, **decoder_kwgs
|
||||
)
|
||||
avg_load_time = (time.monotonic() - start_time_s) / num_frames
|
||||
list_avg_load_time.append(avg_load_time)
|
||||
|
||||
start_time_s = time.monotonic()
|
||||
original_frames = load_original_frames(imgs_dir, timestamps)
|
||||
avg_load_time_from_images = (time.monotonic() - start_time_s) / num_frames
|
||||
list_avg_load_time_from_images.append(avg_load_time_from_images)
|
||||
|
||||
# Estimate average L2 error between original frames and decoded frames
|
||||
for i, ts in enumerate(timestamps):
|
||||
# are_close = torch.allclose(frames[i], original_frames[i], atol=0.02)
|
||||
num_pixels = original_frames[i].numel()
|
||||
per_pixel_l2_error = torch.norm(frames[i] - original_frames[i], p=2).item() / num_pixels
|
||||
|
||||
# save decoded frames
|
||||
if t == 0:
|
||||
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
|
||||
PIL.Image.fromarray(frame_hwc).save(output_dir / f"frame_{i:06d}.png")
|
||||
|
||||
# save original_frames
|
||||
idx = int(ts * fps)
|
||||
if t == 0:
|
||||
original_frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
|
||||
original_frame.save(output_dir / f"original_frame_{i:06d}.png")
|
||||
|
||||
per_pixel_l2_errors.append(per_pixel_l2_error)
|
||||
|
||||
avg_load_time = float(numpy.array(list_avg_load_time).mean())
|
||||
avg_load_time_from_images = float(numpy.array(list_avg_load_time_from_images).mean())
|
||||
avg_per_pixel_l2_error = float(numpy.array(per_pixel_l2_errors).mean())
|
||||
|
||||
# Save benchmark info
|
||||
|
||||
info = {
|
||||
"sum_original_frames_size_bytes": sum_original_frames_size_bytes,
|
||||
"video_size_bytes": video_size_bytes,
|
||||
"avg_load_time_from_images": avg_load_time_from_images,
|
||||
"avg_load_time": avg_load_time,
|
||||
"compression_factor": sum_original_frames_size_bytes / video_size_bytes,
|
||||
"load_time_factor": avg_load_time_from_images / avg_load_time,
|
||||
"avg_per_pixel_l2_error": avg_per_pixel_l2_error,
|
||||
}
|
||||
|
||||
with open(output_dir / "info.json", "w") as f:
|
||||
json.dump(info, f)
|
||||
|
||||
return info
|
||||
|
||||
|
||||
def display_markdown_table(headers, rows):
|
||||
for i, row in enumerate(rows):
|
||||
new_row = []
|
||||
for col in row:
|
||||
if col is None:
|
||||
new_col = "None"
|
||||
elif isinstance(col, float):
|
||||
new_col = f"{col:.3f}"
|
||||
if new_col == "0.000":
|
||||
new_col = f"{col:.7f}"
|
||||
elif isinstance(col, int):
|
||||
new_col = f"{col}"
|
||||
else:
|
||||
new_col = col
|
||||
new_row.append(new_col)
|
||||
rows[i] = new_row
|
||||
|
||||
header_line = "| " + " | ".join(headers) + " |"
|
||||
separator_line = "| " + " | ".join(["---" for _ in headers]) + " |"
|
||||
body_lines = ["| " + " | ".join(row) + " |" for row in rows]
|
||||
markdown_table = "\n".join([header_line, separator_line] + body_lines)
|
||||
print(markdown_table)
|
||||
print()
|
||||
|
||||
|
||||
def load_info(out_dir):
|
||||
with open(out_dir / "info.json") as f:
|
||||
info = json.load(f)
|
||||
return info
|
||||
|
||||
|
||||
def main():
|
||||
out_dir = Path("tmp/run_video_benchmark")
|
||||
dry_run = False
|
||||
repo_ids = ["lerobot/pusht", "lerobot/umi_cup_in_the_wild"]
|
||||
timestamps_modes = [
|
||||
"1_frame",
|
||||
"2_frames",
|
||||
"2_frames_4_space",
|
||||
"6_frames",
|
||||
]
|
||||
for timestamps_mode in timestamps_modes:
|
||||
bench_dir = out_dir / timestamps_mode
|
||||
|
||||
print(f"### `{timestamps_mode}`")
|
||||
print()
|
||||
|
||||
print("**`pix_fmt`**")
|
||||
headers = ["repo_id", "pix_fmt", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
for pix_fmt in ["yuv420p", "yuv444p"]:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": 2,
|
||||
"crf": None,
|
||||
"pix_fmt": pix_fmt,
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / f"torchvision_{pix_fmt}", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / f"torchvision_{pix_fmt}")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
pix_fmt,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
print("**`g`**")
|
||||
headers = ["repo_id", "g", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
for g in [1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None]:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": g,
|
||||
"pix_fmt": "yuv444p",
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / f"torchvision_g_{g}", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / f"torchvision_g_{g}")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
g,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
print("**`crf`**")
|
||||
headers = ["repo_id", "crf", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
for crf in [0, 5, 10, 15, 20, None, 25, 30, 40, 50]:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": 2,
|
||||
"crf": crf,
|
||||
"pix_fmt": "yuv444p",
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / f"torchvision_crf_{crf}", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / f"torchvision_crf_{crf}")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
crf,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
print("**best**")
|
||||
headers = ["repo_id", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": 2,
|
||||
"crf": None,
|
||||
"pix_fmt": "yuv444p",
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / "torchvision_best", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / "torchvision_best")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,17 +1,30 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from copy import deepcopy
|
||||
from math import ceil
|
||||
|
||||
import datasets
|
||||
import einops
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Image
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.video_utils import VideoFrame
|
||||
|
||||
|
||||
def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_workers=0):
|
||||
def get_stats_einops_patterns(dataset, num_workers=0):
|
||||
"""These einops patterns will be used to aggregate batches and compute statistics.
|
||||
|
||||
Note: We assume the images are in channel first format
|
||||
@@ -27,6 +40,10 @@ def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_wo
|
||||
|
||||
stats_patterns = {}
|
||||
for key, feats_type in dataset.features.items():
|
||||
# NOTE: skip language_instruction embedding in stats computation
|
||||
if key == "language_instruction":
|
||||
continue
|
||||
|
||||
# sanity check that tensors are not float64
|
||||
assert batch[key].dtype != torch.float64
|
||||
|
||||
@@ -51,9 +68,8 @@ def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_wo
|
||||
return stats_patterns
|
||||
|
||||
|
||||
def compute_stats(
|
||||
dataset: LeRobotDataset | datasets.Dataset, batch_size=32, num_workers=16, max_num_samples=None
|
||||
):
|
||||
def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
|
||||
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
|
||||
if max_num_samples is None:
|
||||
max_num_samples = len(dataset)
|
||||
|
||||
@@ -144,3 +160,54 @@ def compute_stats(
|
||||
"min": min[key],
|
||||
}
|
||||
return stats
|
||||
|
||||
|
||||
def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
|
||||
"""Aggregate stats of multiple LeRobot datasets into one set of stats without recomputing from scratch.
|
||||
|
||||
The final stats will have the union of all data keys from each of the datasets.
|
||||
|
||||
The final stats will have the union of all data keys from each of the datasets. For instance:
|
||||
- new_max = max(max_dataset_0, max_dataset_1, ...)
|
||||
- new_min = min(min_dataset_0, min_dataset_1, ...)
|
||||
- new_mean = (mean of all data)
|
||||
- new_std = (std of all data)
|
||||
"""
|
||||
data_keys = set()
|
||||
for dataset in ls_datasets:
|
||||
data_keys.update(dataset.stats.keys())
|
||||
stats = {k: {} for k in data_keys}
|
||||
for data_key in data_keys:
|
||||
for stat_key in ["min", "max"]:
|
||||
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
|
||||
stats[data_key][stat_key] = einops.reduce(
|
||||
torch.stack([d.stats[data_key][stat_key] for d in ls_datasets if data_key in d.stats], dim=0),
|
||||
"n ... -> ...",
|
||||
stat_key,
|
||||
)
|
||||
total_samples = sum(d.num_samples for d in ls_datasets if data_key in d.stats)
|
||||
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
|
||||
# dataset, then divide by total_samples to get the overall "mean".
|
||||
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
|
||||
# numerical overflow!
|
||||
stats[data_key]["mean"] = sum(
|
||||
d.stats[data_key]["mean"] * (d.num_samples / total_samples)
|
||||
for d in ls_datasets
|
||||
if data_key in d.stats
|
||||
)
|
||||
# The derivation for standard deviation is a little more involved but is much in the same spirit as
|
||||
# the computation of the mean.
|
||||
# Given two sets of data where the statistics are known:
|
||||
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
|
||||
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
|
||||
# NOTE: the brackets around (d.num_samples / total_samples) are needed tor minimize the risk of
|
||||
# numerical overflow!
|
||||
stats[data_key]["std"] = torch.sqrt(
|
||||
sum(
|
||||
(d.stats[data_key]["std"] ** 2 + (d.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2)
|
||||
* (d.num_samples / total_samples)
|
||||
for d in ls_datasets
|
||||
if data_key in d.stats
|
||||
)
|
||||
)
|
||||
return stats
|
||||
@@ -1,34 +1,111 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
|
||||
import torch
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf import ListConfig, OmegaConf
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, MultiLeRobotDataset
|
||||
from lerobot.common.datasets.transforms import get_image_transforms
|
||||
|
||||
|
||||
def make_dataset(
|
||||
cfg,
|
||||
split="train",
|
||||
):
|
||||
if cfg.env.name not in cfg.dataset_repo_id:
|
||||
logging.warning(
|
||||
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
|
||||
f"environment ({cfg.env.name=})."
|
||||
)
|
||||
def resolve_delta_timestamps(cfg):
|
||||
"""Resolves delta_timestamps config key (in-place) by using `eval`.
|
||||
|
||||
Doesn't do anything if delta_timestamps is not specified or has already been resolve (as evidenced by
|
||||
the data type of its values).
|
||||
"""
|
||||
delta_timestamps = cfg.training.get("delta_timestamps")
|
||||
if delta_timestamps is not None:
|
||||
for key in delta_timestamps:
|
||||
if isinstance(delta_timestamps[key], str):
|
||||
delta_timestamps[key] = eval(delta_timestamps[key])
|
||||
# TODO(rcadene, alexander-soare): remove `eval` to avoid exploit
|
||||
cfg.training.delta_timestamps[key] = eval(delta_timestamps[key])
|
||||
|
||||
# TODO(rcadene): add data augmentations
|
||||
|
||||
dataset = LeRobotDataset(
|
||||
cfg.dataset_repo_id,
|
||||
split=split,
|
||||
delta_timestamps=delta_timestamps,
|
||||
)
|
||||
def make_dataset(cfg, split: str = "train") -> LeRobotDataset | MultiLeRobotDataset:
|
||||
"""
|
||||
Args:
|
||||
cfg: A Hydra config as per the LeRobot config scheme.
|
||||
split: Select the data subset used to create an instance of LeRobotDataset.
|
||||
All datasets hosted on [lerobot](https://huggingface.co/lerobot) contain only one subset: "train".
|
||||
Thus, by default, `split="train"` selects all the available data. `split` aims to work like the
|
||||
slicer in the hugging face datasets:
|
||||
https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
|
||||
As of now, it only supports `split="train[:n]"` to load the first n frames of the dataset or
|
||||
`split="train[n:]"` to load the last n frames. For instance `split="train[:1000]"`.
|
||||
Returns:
|
||||
The LeRobotDataset.
|
||||
"""
|
||||
if not isinstance(cfg.dataset_repo_id, (str, ListConfig)):
|
||||
raise ValueError(
|
||||
"Expected cfg.dataset_repo_id to be either a single string to load one dataset or a list of "
|
||||
"strings to load multiple datasets."
|
||||
)
|
||||
|
||||
# A soft check to warn if the environment matches the dataset. Don't check if we are using a real world env (dora).
|
||||
if cfg.env.name != "dora":
|
||||
if isinstance(cfg.dataset_repo_id, str):
|
||||
dataset_repo_ids = [cfg.dataset_repo_id] # single dataset
|
||||
else:
|
||||
dataset_repo_ids = cfg.dataset_repo_id # multiple datasets
|
||||
|
||||
for dataset_repo_id in dataset_repo_ids:
|
||||
if cfg.env.name not in dataset_repo_id:
|
||||
logging.warning(
|
||||
f"There might be a mismatch between your training dataset ({dataset_repo_id=}) and your "
|
||||
f"environment ({cfg.env.name=})."
|
||||
)
|
||||
|
||||
resolve_delta_timestamps(cfg)
|
||||
|
||||
image_transforms = None
|
||||
if cfg.training.image_transforms.enable:
|
||||
cfg_tf = cfg.training.image_transforms
|
||||
image_transforms = get_image_transforms(
|
||||
brightness_weight=cfg_tf.brightness.weight,
|
||||
brightness_min_max=cfg_tf.brightness.min_max,
|
||||
contrast_weight=cfg_tf.contrast.weight,
|
||||
contrast_min_max=cfg_tf.contrast.min_max,
|
||||
saturation_weight=cfg_tf.saturation.weight,
|
||||
saturation_min_max=cfg_tf.saturation.min_max,
|
||||
hue_weight=cfg_tf.hue.weight,
|
||||
hue_min_max=cfg_tf.hue.min_max,
|
||||
sharpness_weight=cfg_tf.sharpness.weight,
|
||||
sharpness_min_max=cfg_tf.sharpness.min_max,
|
||||
max_num_transforms=cfg_tf.max_num_transforms,
|
||||
random_order=cfg_tf.random_order,
|
||||
)
|
||||
|
||||
if isinstance(cfg.dataset_repo_id, str):
|
||||
dataset = LeRobotDataset(
|
||||
cfg.dataset_repo_id,
|
||||
split=split,
|
||||
delta_timestamps=cfg.training.get("delta_timestamps"),
|
||||
image_transforms=image_transforms,
|
||||
video_backend=cfg.video_backend,
|
||||
)
|
||||
else:
|
||||
dataset = MultiLeRobotDataset(
|
||||
cfg.dataset_repo_id,
|
||||
split=split,
|
||||
delta_timestamps=cfg.training.get("delta_timestamps"),
|
||||
image_transforms=image_transforms,
|
||||
video_backend=cfg.video_backend,
|
||||
)
|
||||
|
||||
if cfg.get("override_dataset_stats"):
|
||||
for key, stats_dict in cfg.override_dataset_stats.items():
|
||||
|
||||
@@ -1,49 +1,75 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import torch.utils
|
||||
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
load_episode_data_index,
|
||||
load_hf_dataset,
|
||||
load_info,
|
||||
load_previous_and_future_frames,
|
||||
load_stats,
|
||||
load_videos,
|
||||
reset_episode_index,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, load_from_videos
|
||||
|
||||
# For maintainers, see lerobot/common/datasets/push_dataset_to_hub/CODEBASE_VERSION.md
|
||||
CODEBASE_VERSION = "v1.6"
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
CODEBASE_VERSION = "v1.3"
|
||||
|
||||
|
||||
class LeRobotDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
version: str | None = CODEBASE_VERSION,
|
||||
root: Path | None = DATA_DIR,
|
||||
split: str = "train",
|
||||
transform: callable = None,
|
||||
image_transforms: Callable | None = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
video_backend: str | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_id = repo_id
|
||||
self.version = version
|
||||
self.root = root
|
||||
self.split = split
|
||||
self.transform = transform
|
||||
self.image_transforms = image_transforms
|
||||
self.delta_timestamps = delta_timestamps
|
||||
# load data from hub or locally when root is provided
|
||||
# TODO(rcadene, aliberts): implement faster transfer
|
||||
# https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads
|
||||
self.hf_dataset = load_hf_dataset(repo_id, version, root, split)
|
||||
self.episode_data_index = load_episode_data_index(repo_id, version, root)
|
||||
self.stats = load_stats(repo_id, version, root)
|
||||
self.info = load_info(repo_id, version, root)
|
||||
self.hf_dataset = load_hf_dataset(repo_id, CODEBASE_VERSION, root, split)
|
||||
if split == "train":
|
||||
self.episode_data_index = load_episode_data_index(repo_id, CODEBASE_VERSION, root)
|
||||
else:
|
||||
self.episode_data_index = calculate_episode_data_index(self.hf_dataset)
|
||||
self.hf_dataset = reset_episode_index(self.hf_dataset)
|
||||
self.stats = load_stats(repo_id, CODEBASE_VERSION, root)
|
||||
self.info = load_info(repo_id, CODEBASE_VERSION, root)
|
||||
if self.video:
|
||||
self.videos_dir = load_videos(repo_id, version, root)
|
||||
self.videos_dir = load_videos(repo_id, CODEBASE_VERSION, root)
|
||||
self.video_backend = video_backend if video_backend is not None else "pyav"
|
||||
|
||||
@property
|
||||
def fps(self) -> int:
|
||||
@@ -124,10 +150,12 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
self.video_frame_keys,
|
||||
self.videos_dir,
|
||||
self.tolerance_s,
|
||||
self.video_backend,
|
||||
)
|
||||
|
||||
if self.transform is not None:
|
||||
item = self.transform(item)
|
||||
if self.image_transforms is not None:
|
||||
for cam in self.camera_keys:
|
||||
item[cam] = self.image_transforms(item[cam])
|
||||
|
||||
return item
|
||||
|
||||
@@ -135,7 +163,6 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
return (
|
||||
f"{self.__class__.__name__}(\n"
|
||||
f" Repository ID: '{self.repo_id}',\n"
|
||||
f" Version: '{self.version}',\n"
|
||||
f" Split: '{self.split}',\n"
|
||||
f" Number of Samples: {self.num_samples},\n"
|
||||
f" Number of Episodes: {self.num_episodes},\n"
|
||||
@@ -143,15 +170,15 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
f" Recorded Frames per Second: {self.fps},\n"
|
||||
f" Camera Keys: {self.camera_keys},\n"
|
||||
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
|
||||
f" Transformations: {self.transform},\n"
|
||||
f" Transformations: {self.image_transforms},\n"
|
||||
f" Codebase Version: {self.info.get('codebase_version', '< v1.6')},\n"
|
||||
f")"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_preloaded(
|
||||
cls,
|
||||
repo_id: str,
|
||||
version: str | None = CODEBASE_VERSION,
|
||||
repo_id: str = "from_preloaded",
|
||||
root: Path | None = None,
|
||||
split: str = "train",
|
||||
transform: callable = None,
|
||||
@@ -162,18 +189,213 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
stats=None,
|
||||
info=None,
|
||||
videos_dir=None,
|
||||
):
|
||||
video_backend=None,
|
||||
) -> "LeRobotDataset":
|
||||
"""Create a LeRobot Dataset from existing data and attributes instead of loading from the filesystem.
|
||||
|
||||
It is especially useful when converting raw data into LeRobotDataset before saving the dataset
|
||||
on the filesystem or uploading to the hub.
|
||||
|
||||
Note: Meta-data attributes like `repo_id`, `version`, `root`, etc are optional and potentially
|
||||
meaningless depending on the downstream usage of the return dataset.
|
||||
"""
|
||||
# create an empty object of type LeRobotDataset
|
||||
obj = cls.__new__(cls)
|
||||
obj.repo_id = repo_id
|
||||
obj.version = version
|
||||
obj.root = root
|
||||
obj.split = split
|
||||
obj.transform = transform
|
||||
obj.image_transforms = transform
|
||||
obj.delta_timestamps = delta_timestamps
|
||||
obj.hf_dataset = hf_dataset
|
||||
obj.episode_data_index = episode_data_index
|
||||
obj.stats = stats
|
||||
obj.info = info
|
||||
obj.info = info if info is not None else {}
|
||||
obj.videos_dir = videos_dir
|
||||
obj.video_backend = video_backend if video_backend is not None else "pyav"
|
||||
return obj
|
||||
|
||||
|
||||
class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
"""A dataset consisting of multiple underlying `LeRobotDataset`s.
|
||||
|
||||
The underlying `LeRobotDataset`s are effectively concatenated, and this class adopts much of the API
|
||||
structure of `LeRobotDataset`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
repo_ids: list[str],
|
||||
root: Path | None = DATA_DIR,
|
||||
split: str = "train",
|
||||
image_transforms: Callable | None = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
video_backend: str | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_ids = repo_ids
|
||||
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
|
||||
# are handled by this class.
|
||||
self._datasets = [
|
||||
LeRobotDataset(
|
||||
repo_id,
|
||||
root=root,
|
||||
split=split,
|
||||
delta_timestamps=delta_timestamps,
|
||||
image_transforms=image_transforms,
|
||||
video_backend=video_backend,
|
||||
)
|
||||
for repo_id in repo_ids
|
||||
]
|
||||
# Check that some properties are consistent across datasets. Note: We may relax some of these
|
||||
# consistency requirements in future iterations of this class.
|
||||
for repo_id, dataset in zip(self.repo_ids, self._datasets, strict=True):
|
||||
if dataset.info != self._datasets[0].info:
|
||||
raise ValueError(
|
||||
f"Detected a mismatch in dataset info between {self.repo_ids[0]} and {repo_id}. This is "
|
||||
"not yet supported."
|
||||
)
|
||||
# Disable any data keys that are not common across all of the datasets. Note: we may relax this
|
||||
# restriction in future iterations of this class. For now, this is necessary at least for being able
|
||||
# to use PyTorch's default DataLoader collate function.
|
||||
self.disabled_data_keys = set()
|
||||
intersection_data_keys = set(self._datasets[0].hf_dataset.features)
|
||||
for dataset in self._datasets:
|
||||
intersection_data_keys.intersection_update(dataset.hf_dataset.features)
|
||||
if len(intersection_data_keys) == 0:
|
||||
raise RuntimeError(
|
||||
"Multiple datasets were provided but they had no keys common to all of them. The "
|
||||
"multi-dataset functionality currently only keeps common keys."
|
||||
)
|
||||
for repo_id, dataset in zip(self.repo_ids, self._datasets, strict=True):
|
||||
extra_keys = set(dataset.hf_dataset.features).difference(intersection_data_keys)
|
||||
logging.warning(
|
||||
f"keys {extra_keys} of {repo_id} were disabled as they are not contained in all the "
|
||||
"other datasets."
|
||||
)
|
||||
self.disabled_data_keys.update(extra_keys)
|
||||
|
||||
self.root = root
|
||||
self.split = split
|
||||
self.image_transforms = image_transforms
|
||||
self.delta_timestamps = delta_timestamps
|
||||
self.stats = aggregate_stats(self._datasets)
|
||||
|
||||
@property
|
||||
def repo_id_to_index(self):
|
||||
"""Return a mapping from dataset repo_id to a dataset index automatically created by this class.
|
||||
|
||||
This index is incorporated as a data key in the dictionary returned by `__getitem__`.
|
||||
"""
|
||||
return {repo_id: i for i, repo_id in enumerate(self.repo_ids)}
|
||||
|
||||
@property
|
||||
def repo_index_to_id(self):
|
||||
"""Return the inverse mapping if repo_id_to_index."""
|
||||
return {v: k for k, v in self.repo_id_to_index}
|
||||
|
||||
@property
|
||||
def fps(self) -> int:
|
||||
"""Frames per second used during data collection.
|
||||
|
||||
NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
|
||||
"""
|
||||
return self._datasets[0].info["fps"]
|
||||
|
||||
@property
|
||||
def video(self) -> bool:
|
||||
"""Returns True if this dataset loads video frames from mp4 files.
|
||||
|
||||
Returns False if it only loads images from png files.
|
||||
|
||||
NOTE: Fow now, this relies on a check in __init__ to make sure all sub-datasets have the same info.
|
||||
"""
|
||||
return self._datasets[0].info.get("video", False)
|
||||
|
||||
@property
|
||||
def features(self) -> datasets.Features:
|
||||
features = {}
|
||||
for dataset in self._datasets:
|
||||
features.update({k: v for k, v in dataset.features.items() if k not in self.disabled_data_keys})
|
||||
return features
|
||||
|
||||
@property
|
||||
def camera_keys(self) -> list[str]:
|
||||
"""Keys to access image and video stream from cameras."""
|
||||
keys = []
|
||||
for key, feats in self.features.items():
|
||||
if isinstance(feats, (datasets.Image, VideoFrame)):
|
||||
keys.append(key)
|
||||
return keys
|
||||
|
||||
@property
|
||||
def video_frame_keys(self) -> list[str]:
|
||||
"""Keys to access video frames that requires to be decoded into images.
|
||||
|
||||
Note: It is empty if the dataset contains images only,
|
||||
or equal to `self.cameras` if the dataset contains videos only,
|
||||
or can even be a subset of `self.cameras` in a case of a mixed image/video dataset.
|
||||
"""
|
||||
video_frame_keys = []
|
||||
for key, feats in self.features.items():
|
||||
if isinstance(feats, VideoFrame):
|
||||
video_frame_keys.append(key)
|
||||
return video_frame_keys
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
"""Number of samples/frames."""
|
||||
return sum(d.num_samples for d in self._datasets)
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
"""Number of episodes."""
|
||||
return sum(d.num_episodes for d in self._datasets)
|
||||
|
||||
@property
|
||||
def tolerance_s(self) -> float:
|
||||
"""Tolerance in seconds used to discard loaded frames when their timestamps
|
||||
are not close enough from the requested frames. It is only used when `delta_timestamps`
|
||||
is provided or when loading video frames from mp4 files.
|
||||
"""
|
||||
# 1e-4 to account for possible numerical error
|
||||
return 1 / self.fps - 1e-4
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
||||
if idx >= len(self):
|
||||
raise IndexError(f"Index {idx} out of bounds.")
|
||||
# Determine which dataset to get an item from based on the index.
|
||||
start_idx = 0
|
||||
dataset_idx = 0
|
||||
for dataset in self._datasets:
|
||||
if idx >= start_idx + dataset.num_samples:
|
||||
start_idx += dataset.num_samples
|
||||
dataset_idx += 1
|
||||
continue
|
||||
break
|
||||
else:
|
||||
raise AssertionError("We expect the loop to break out as long as the index is within bounds.")
|
||||
item = self._datasets[dataset_idx][idx - start_idx]
|
||||
item["dataset_index"] = torch.tensor(dataset_idx)
|
||||
for data_key in self.disabled_data_keys:
|
||||
if data_key in item:
|
||||
del item[data_key]
|
||||
|
||||
return item
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}(\n"
|
||||
f" Repository IDs: '{self.repo_ids}',\n"
|
||||
f" Split: '{self.split}',\n"
|
||||
f" Number of Samples: {self.num_samples},\n"
|
||||
f" Number of Episodes: {self.num_episodes},\n"
|
||||
f" Type: {'video (.mp4)' if self.video else 'image (.png)'},\n"
|
||||
f" Recorded Frames per Second: {self.fps},\n"
|
||||
f" Camera Keys: {self.camera_keys},\n"
|
||||
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
|
||||
f" Transformations: {self.image_transforms},\n"
|
||||
f")"
|
||||
)
|
||||
|
||||
384
lerobot/common/datasets/online_buffer.py
Normal file
384
lerobot/common/datasets/online_buffer.py
Normal file
@@ -0,0 +1,384 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""An online buffer for the online training loop in train.py
|
||||
|
||||
Note to maintainers: This duplicates some logic from LeRobotDataset and EpisodeAwareSampler. We should
|
||||
consider converging to one approach. Here we have opted to use numpy.memmap to back the data buffer. It's much
|
||||
faster than using HuggingFace Datasets as there's no conversion to an intermediate non-python object. Also it
|
||||
supports in-place slicing and mutation which is very handy for a dynamic buffer.
|
||||
"""
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
|
||||
def _make_memmap_safe(**kwargs) -> np.memmap:
|
||||
"""Make a numpy memmap with checks on available disk space first.
|
||||
|
||||
Expected kwargs are: "filename", "dtype" (must by np.dtype), "mode" and "shape"
|
||||
|
||||
For information on dtypes:
|
||||
https://numpy.org/doc/stable/reference/arrays.dtypes.html#arrays-dtypes-constructing
|
||||
"""
|
||||
if kwargs["mode"].startswith("w"):
|
||||
required_space = kwargs["dtype"].itemsize * np.prod(kwargs["shape"]) # bytes
|
||||
stats = os.statvfs(Path(kwargs["filename"]).parent)
|
||||
available_space = stats.f_bavail * stats.f_frsize # bytes
|
||||
if required_space >= available_space * 0.8:
|
||||
raise RuntimeError(
|
||||
f"You're about to take up {required_space} of {available_space} bytes available."
|
||||
)
|
||||
return np.memmap(**kwargs)
|
||||
|
||||
|
||||
class OnlineBuffer(torch.utils.data.Dataset):
|
||||
"""FIFO data buffer for the online training loop in train.py.
|
||||
|
||||
Follows the protocol of LeRobotDataset as much as is required to have it be used by the online training
|
||||
loop in the same way that a LeRobotDataset would be used.
|
||||
|
||||
The underlying data structure will have data inserted in a circular fashion. Always insert after the
|
||||
last index, and when you reach the end, wrap around to the start.
|
||||
|
||||
The data is stored in a numpy memmap.
|
||||
"""
|
||||
|
||||
NEXT_INDEX_KEY = "_next_index"
|
||||
OCCUPANCY_MASK_KEY = "_occupancy_mask"
|
||||
INDEX_KEY = "index"
|
||||
FRAME_INDEX_KEY = "frame_index"
|
||||
EPISODE_INDEX_KEY = "episode_index"
|
||||
TIMESTAMP_KEY = "timestamp"
|
||||
IS_PAD_POSTFIX = "_is_pad"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
write_dir: str | Path,
|
||||
data_spec: dict[str, Any] | None,
|
||||
buffer_capacity: int | None,
|
||||
fps: float | None = None,
|
||||
delta_timestamps: dict[str, list[float]] | dict[str, np.ndarray] | None = None,
|
||||
):
|
||||
"""
|
||||
The online buffer can be provided from scratch or you can load an existing online buffer by passing
|
||||
a `write_dir` associated with an existing buffer.
|
||||
|
||||
Args:
|
||||
write_dir: Where to keep the numpy memmap files. One memmap file will be stored for each data key.
|
||||
Note that if the files already exist, they are opened in read-write mode (used for training
|
||||
resumption.)
|
||||
data_spec: A mapping from data key to data specification, like {data_key: {"shape": tuple[int],
|
||||
"dtype": np.dtype}}. This should include all the data that you wish to record into the buffer,
|
||||
but note that "index", "frame_index" and "episode_index" are already accounted for by this
|
||||
class, so you don't need to include them.
|
||||
buffer_capacity: How many frames should be stored in the buffer as a maximum. Be aware of your
|
||||
system's available disk space when choosing this.
|
||||
fps: Same as the fps concept in LeRobot dataset. Here it needs to be provided for the
|
||||
delta_timestamps logic. You can pass None if you are not using delta_timestamps.
|
||||
delta_timestamps: Same as the delta_timestamps concept in LeRobotDataset. This is internally
|
||||
converted to dict[str, np.ndarray] for optimization purposes.
|
||||
|
||||
"""
|
||||
self.set_delta_timestamps(delta_timestamps)
|
||||
self._fps = fps
|
||||
# Tolerance in seconds used to discard loaded frames when their timestamps are not close enough from
|
||||
# the requested frames. It is only used when `delta_timestamps` is provided.
|
||||
# minus 1e-4 to account for possible numerical error
|
||||
self.tolerance_s = 1 / self.fps - 1e-4 if fps is not None else None
|
||||
self._buffer_capacity = buffer_capacity
|
||||
data_spec = self._make_data_spec(data_spec, buffer_capacity)
|
||||
Path(write_dir).mkdir(parents=True, exist_ok=True)
|
||||
self._data = {}
|
||||
for k, v in data_spec.items():
|
||||
self._data[k] = _make_memmap_safe(
|
||||
filename=Path(write_dir) / k,
|
||||
dtype=v["dtype"] if v is not None else None,
|
||||
mode="r+" if (Path(write_dir) / k).exists() else "w+",
|
||||
shape=tuple(v["shape"]) if v is not None else None,
|
||||
)
|
||||
|
||||
@property
|
||||
def delta_timestamps(self) -> dict[str, np.ndarray] | None:
|
||||
return self._delta_timestamps
|
||||
|
||||
def set_delta_timestamps(self, value: dict[str, list[float]] | None):
|
||||
"""Set delta_timestamps converting the values to numpy arrays.
|
||||
|
||||
The conversion is for an optimization in the __getitem__. The loop is much slower if the arrays
|
||||
need to be converted into numpy arrays.
|
||||
"""
|
||||
if value is not None:
|
||||
self._delta_timestamps = {k: np.array(v) for k, v in value.items()}
|
||||
else:
|
||||
self._delta_timestamps = None
|
||||
|
||||
def _make_data_spec(self, data_spec: dict[str, Any], buffer_capacity: int) -> dict[str, dict[str, Any]]:
|
||||
"""Makes the data spec for np.memmap."""
|
||||
if any(k.startswith("_") for k in data_spec):
|
||||
raise ValueError(
|
||||
"data_spec keys should not start with '_'. This prefix is reserved for internal logic."
|
||||
)
|
||||
preset_keys = {
|
||||
OnlineBuffer.INDEX_KEY,
|
||||
OnlineBuffer.FRAME_INDEX_KEY,
|
||||
OnlineBuffer.EPISODE_INDEX_KEY,
|
||||
OnlineBuffer.TIMESTAMP_KEY,
|
||||
}
|
||||
if len(intersection := set(data_spec).intersection(preset_keys)) > 0:
|
||||
raise ValueError(
|
||||
f"data_spec should not contain any of {preset_keys} as these are handled internally. "
|
||||
f"The provided data_spec has {intersection}."
|
||||
)
|
||||
complete_data_spec = {
|
||||
# _next_index will be a pointer to the next index that we should start filling from when we add
|
||||
# more data.
|
||||
OnlineBuffer.NEXT_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": ()},
|
||||
# Since the memmap is initialized with all-zeros, this keeps track of which indices are occupied
|
||||
# with real data rather than the dummy initialization.
|
||||
OnlineBuffer.OCCUPANCY_MASK_KEY: {"dtype": np.dtype("?"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.FRAME_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.EPISODE_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
|
||||
OnlineBuffer.TIMESTAMP_KEY: {"dtype": np.dtype("float64"), "shape": (buffer_capacity,)},
|
||||
}
|
||||
for k, v in data_spec.items():
|
||||
complete_data_spec[k] = {"dtype": v["dtype"], "shape": (buffer_capacity, *v["shape"])}
|
||||
return complete_data_spec
|
||||
|
||||
def add_data(self, data: dict[str, np.ndarray]):
|
||||
"""Add new data to the buffer, which could potentially mean shifting old data out.
|
||||
|
||||
The new data should contain all the frames (in order) of any number of episodes. The indices should
|
||||
start from 0 (note to the developer: this can easily be generalized). See the `rollout` and
|
||||
`eval_policy` functions in `eval.py` for more information on how the data is constructed.
|
||||
|
||||
Shift the incoming data index and episode_index to continue on from the last frame. Note that this
|
||||
will be done in place!
|
||||
"""
|
||||
if len(missing_keys := (set(self.data_keys).difference(set(data)))) > 0:
|
||||
raise ValueError(f"Missing data keys: {missing_keys}")
|
||||
new_data_length = len(data[self.data_keys[0]])
|
||||
if not all(len(data[k]) == new_data_length for k in self.data_keys):
|
||||
raise ValueError("All data items should have the same length")
|
||||
|
||||
next_index = self._data[OnlineBuffer.NEXT_INDEX_KEY]
|
||||
|
||||
# Sanity check to make sure that the new data indices start from 0.
|
||||
assert data[OnlineBuffer.EPISODE_INDEX_KEY][0].item() == 0
|
||||
assert data[OnlineBuffer.INDEX_KEY][0].item() == 0
|
||||
|
||||
# Shift the incoming indices if necessary.
|
||||
if self.num_samples > 0:
|
||||
last_episode_index = self._data[OnlineBuffer.EPISODE_INDEX_KEY][next_index - 1]
|
||||
last_data_index = self._data[OnlineBuffer.INDEX_KEY][next_index - 1]
|
||||
data[OnlineBuffer.EPISODE_INDEX_KEY] += last_episode_index + 1
|
||||
data[OnlineBuffer.INDEX_KEY] += last_data_index + 1
|
||||
|
||||
# Insert the new data starting from next_index. It may be necessary to wrap around to the start.
|
||||
n_surplus = max(0, new_data_length - (self._buffer_capacity - next_index))
|
||||
for k in self.data_keys:
|
||||
if n_surplus == 0:
|
||||
slc = slice(next_index, next_index + new_data_length)
|
||||
self._data[k][slc] = data[k]
|
||||
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY][slc] = True
|
||||
else:
|
||||
self._data[k][next_index:] = data[k][:-n_surplus]
|
||||
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY][next_index:] = True
|
||||
self._data[k][:n_surplus] = data[k][-n_surplus:]
|
||||
if n_surplus == 0:
|
||||
self._data[OnlineBuffer.NEXT_INDEX_KEY] = next_index + new_data_length
|
||||
else:
|
||||
self._data[OnlineBuffer.NEXT_INDEX_KEY] = n_surplus
|
||||
|
||||
@property
|
||||
def data_keys(self) -> list[str]:
|
||||
keys = set(self._data)
|
||||
keys.remove(OnlineBuffer.OCCUPANCY_MASK_KEY)
|
||||
keys.remove(OnlineBuffer.NEXT_INDEX_KEY)
|
||||
return sorted(keys)
|
||||
|
||||
@property
|
||||
def fps(self) -> float | None:
|
||||
return self._fps
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
return len(
|
||||
np.unique(self._data[OnlineBuffer.EPISODE_INDEX_KEY][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
|
||||
)
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
return np.count_nonzero(self._data[OnlineBuffer.OCCUPANCY_MASK_KEY])
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
def _item_to_tensors(self, item: dict) -> dict:
|
||||
item_ = {}
|
||||
for k, v in item.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
item_[k] = v
|
||||
elif isinstance(v, np.ndarray):
|
||||
item_[k] = torch.from_numpy(v)
|
||||
else:
|
||||
item_[k] = torch.tensor(v)
|
||||
return item_
|
||||
|
||||
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
|
||||
if idx >= len(self) or idx < -len(self):
|
||||
raise IndexError
|
||||
|
||||
item = {k: v[idx] for k, v in self._data.items() if not k.startswith("_")}
|
||||
|
||||
if self.delta_timestamps is None:
|
||||
return self._item_to_tensors(item)
|
||||
|
||||
episode_index = item[OnlineBuffer.EPISODE_INDEX_KEY]
|
||||
current_ts = item[OnlineBuffer.TIMESTAMP_KEY]
|
||||
episode_data_indices = np.where(
|
||||
np.bitwise_and(
|
||||
self._data[OnlineBuffer.EPISODE_INDEX_KEY] == episode_index,
|
||||
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY],
|
||||
)
|
||||
)[0]
|
||||
episode_timestamps = self._data[OnlineBuffer.TIMESTAMP_KEY][episode_data_indices]
|
||||
|
||||
for data_key in self.delta_timestamps:
|
||||
# Note: The logic in this loop is copied from `load_previous_and_future_frames`.
|
||||
# Get timestamps used as query to retrieve data of previous/future frames.
|
||||
query_ts = current_ts + self.delta_timestamps[data_key]
|
||||
|
||||
# Compute distances between each query timestamp and all timestamps of all the frames belonging to
|
||||
# the episode.
|
||||
dist = np.abs(query_ts[:, None] - episode_timestamps[None, :])
|
||||
argmin_ = np.argmin(dist, axis=1)
|
||||
min_ = dist[np.arange(dist.shape[0]), argmin_]
|
||||
|
||||
is_pad = min_ > self.tolerance_s
|
||||
|
||||
# Check violated query timestamps are all outside the episode range.
|
||||
assert (
|
||||
(query_ts[is_pad] < episode_timestamps[0]) | (episode_timestamps[-1] < query_ts[is_pad])
|
||||
).all(), (
|
||||
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {self.tolerance_s=}"
|
||||
") inside the episode range."
|
||||
)
|
||||
|
||||
# Load frames for this data key.
|
||||
item[data_key] = self._data[data_key][episode_data_indices[argmin_]]
|
||||
|
||||
item[f"{data_key}{OnlineBuffer.IS_PAD_POSTFIX}"] = is_pad
|
||||
|
||||
return self._item_to_tensors(item)
|
||||
|
||||
def get_data_by_key(self, key: str) -> torch.Tensor:
|
||||
"""Returns all data for a given data key as a Tensor."""
|
||||
return torch.from_numpy(self._data[key][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
|
||||
|
||||
|
||||
def compute_sampler_weights(
|
||||
offline_dataset: LeRobotDataset,
|
||||
offline_drop_n_last_frames: int = 0,
|
||||
online_dataset: OnlineBuffer | None = None,
|
||||
online_sampling_ratio: float | None = None,
|
||||
online_drop_n_last_frames: int = 0,
|
||||
) -> torch.Tensor:
|
||||
"""Compute the sampling weights for the online training dataloader in train.py.
|
||||
|
||||
Args:
|
||||
offline_dataset: The LeRobotDataset used for offline pre-training.
|
||||
online_drop_n_last_frames: Number of frames to drop from the end of each offline dataset episode.
|
||||
online_dataset: The OnlineBuffer used in online training.
|
||||
online_sampling_ratio: The proportion of data that should be sampled from the online dataset. If an
|
||||
online dataset is provided, this value must also be provided.
|
||||
online_drop_n_first_frames: See `offline_drop_n_last_frames`. This is the same, but for the online
|
||||
dataset.
|
||||
Returns:
|
||||
Tensor of weights for [offline_dataset; online_dataset], normalized to 1.
|
||||
|
||||
Notes to maintainers:
|
||||
- This duplicates some logic from EpisodeAwareSampler. We should consider converging to one approach.
|
||||
- When used with `torch.utils.data.WeightedRandomSampler`, it could completely replace
|
||||
`EpisodeAwareSampler` as the online dataset related arguments are optional. The only missing feature
|
||||
is the ability to turn shuffling off.
|
||||
- Options `drop_first_n_frames` and `episode_indices_to_use` can be added easily. They were not
|
||||
included here to avoid adding complexity.
|
||||
"""
|
||||
if len(offline_dataset) == 0 and (online_dataset is None or len(online_dataset) == 0):
|
||||
raise ValueError("At least one of `offline_dataset` or `online_dataset` should be contain data.")
|
||||
if (online_dataset is None) ^ (online_sampling_ratio is None):
|
||||
raise ValueError(
|
||||
"`online_dataset` and `online_sampling_ratio` must be provided together or not at all."
|
||||
)
|
||||
offline_sampling_ratio = 0 if online_sampling_ratio is None else 1 - online_sampling_ratio
|
||||
|
||||
weights = []
|
||||
|
||||
if len(offline_dataset) > 0:
|
||||
offline_data_mask_indices = []
|
||||
for start_index, end_index in zip(
|
||||
offline_dataset.episode_data_index["from"],
|
||||
offline_dataset.episode_data_index["to"],
|
||||
strict=True,
|
||||
):
|
||||
offline_data_mask_indices.extend(
|
||||
range(start_index.item(), end_index.item() - offline_drop_n_last_frames)
|
||||
)
|
||||
offline_data_mask = torch.zeros(len(offline_dataset), dtype=torch.bool)
|
||||
offline_data_mask[torch.tensor(offline_data_mask_indices)] = True
|
||||
weights.append(
|
||||
torch.full(
|
||||
size=(len(offline_dataset),),
|
||||
fill_value=offline_sampling_ratio / offline_data_mask.sum(),
|
||||
)
|
||||
* offline_data_mask
|
||||
)
|
||||
|
||||
if online_dataset is not None and len(online_dataset) > 0:
|
||||
online_data_mask_indices = []
|
||||
episode_indices = online_dataset.get_data_by_key("episode_index")
|
||||
for episode_idx in torch.unique(episode_indices):
|
||||
where_episode = torch.where(episode_indices == episode_idx)
|
||||
start_index = where_episode[0][0]
|
||||
end_index = where_episode[0][-1] + 1
|
||||
online_data_mask_indices.extend(
|
||||
range(start_index.item(), end_index.item() - online_drop_n_last_frames)
|
||||
)
|
||||
online_data_mask = torch.zeros(len(online_dataset), dtype=torch.bool)
|
||||
online_data_mask[torch.tensor(online_data_mask_indices)] = True
|
||||
weights.append(
|
||||
torch.full(
|
||||
size=(len(online_dataset),),
|
||||
fill_value=online_sampling_ratio / online_data_mask.sum(),
|
||||
)
|
||||
* online_data_mask
|
||||
)
|
||||
|
||||
weights = torch.cat(weights)
|
||||
|
||||
if weights.sum() == 0:
|
||||
weights += 1 / len(weights)
|
||||
else:
|
||||
weights /= weights.sum()
|
||||
|
||||
return weights
|
||||
@@ -0,0 +1,56 @@
|
||||
## Using / Updating `CODEBASE_VERSION` (for maintainers)
|
||||
|
||||
Since our dataset pushed to the hub are decoupled with the evolution of this repo, we ensure compatibility of
|
||||
the datasets with our code, we use a `CODEBASE_VERSION` (defined in
|
||||
lerobot/common/datasets/lerobot_dataset.py) variable.
|
||||
|
||||
For instance, [`lerobot/pusht`](https://huggingface.co/datasets/lerobot/pusht) has many versions to maintain backward compatibility between LeRobot codebase versions:
|
||||
- [v1.0](https://huggingface.co/datasets/lerobot/pusht/tree/v1.0)
|
||||
- [v1.1](https://huggingface.co/datasets/lerobot/pusht/tree/v1.1)
|
||||
- [v1.2](https://huggingface.co/datasets/lerobot/pusht/tree/v1.2)
|
||||
- [v1.3](https://huggingface.co/datasets/lerobot/pusht/tree/v1.3)
|
||||
- [v1.4](https://huggingface.co/datasets/lerobot/pusht/tree/v1.4)
|
||||
- [v1.5](https://huggingface.co/datasets/lerobot/pusht/tree/v1.5)
|
||||
- [v1.6](https://huggingface.co/datasets/lerobot/pusht/tree/v1.6) <-- last version
|
||||
- [main](https://huggingface.co/datasets/lerobot/pusht/tree/main) <-- points to the last version
|
||||
|
||||
Starting with v1.6, every dataset pushed to the hub or saved locally also have this version number in their
|
||||
`info.json` metadata.
|
||||
|
||||
### Uploading a new dataset
|
||||
If you are pushing a new dataset, you don't need to worry about any of the instructions below, nor to be
|
||||
compatible with previous codebase versions. The `push_dataset_to_hub.py` script will automatically tag your
|
||||
dataset with the current `CODEBASE_VERSION`.
|
||||
|
||||
### Updating an existing dataset
|
||||
If you want to update an existing dataset, you need to change the `CODEBASE_VERSION` from `lerobot_dataset.py`
|
||||
before running `push_dataset_to_hub.py`. This is especially useful if you introduce a breaking change
|
||||
intentionally or not (i.e. something not backward compatible such as modifying the reward functions used,
|
||||
deleting some frames at the end of an episode, etc.). That way, people running a previous version of the
|
||||
codebase won't be affected by your change and backward compatibility is maintained.
|
||||
|
||||
However, you will need to update the version of ALL the other datasets so that they have the new
|
||||
`CODEBASE_VERSION` as a branch in their hugging face dataset repository. Don't worry, there is an easy way
|
||||
that doesn't require to run `push_dataset_to_hub.py`. You can just "branch-out" from the `main` branch on HF
|
||||
dataset repo by running this script which corresponds to a `git checkout -b` (so no copy or upload needed):
|
||||
|
||||
```python
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
|
||||
api = HfApi()
|
||||
|
||||
for repo_id in available_datasets:
|
||||
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
|
||||
branches = [b.name for b in dataset_info.branches]
|
||||
if CODEBASE_VERSION in branches:
|
||||
print(f"{repo_id} already @{CODEBASE_VERSION}, skipping.")
|
||||
continue
|
||||
else:
|
||||
# Now create a branch named after the new version by branching out from "main"
|
||||
# which is expected to be the preceding version
|
||||
api.create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION, revision="main")
|
||||
print(f"{repo_id} successfully updated @{CODEBASE_VERSION}")
|
||||
```
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Helper code for loading PushT dataset from Diffusion Policy (https://diffusion-policy.cs.columbia.edu/)
|
||||
|
||||
Copied from the original Diffusion Policy repository and used in our `download_and_upload_dataset.py` script.
|
||||
|
||||
@@ -1,170 +1,202 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This file contains all obsolete download scripts. They are centralized here to not have to load
|
||||
useless dependencies when using datasets.
|
||||
This file contains download scripts for raw datasets.
|
||||
|
||||
Example of usage:
|
||||
```
|
||||
python lerobot/common/datasets/push_dataset_to_hub/_download_raw.py \
|
||||
--raw-dir data/lerobot-raw/pusht_raw \
|
||||
--repo-id lerobot-raw/pusht_raw
|
||||
```
|
||||
"""
|
||||
|
||||
import io
|
||||
import argparse
|
||||
import logging
|
||||
import shutil
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import tqdm
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
ALOHA_RAW_URLS_DIR = "lerobot/common/datasets/push_dataset_to_hub/_aloha_raw_urls"
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
|
||||
|
||||
# {raw_repo_id: raw_format}
|
||||
AVAILABLE_RAW_REPO_IDS = {
|
||||
"lerobot-raw/aloha_mobile_cabinet_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_chair_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_elevator_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_shrimp_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_wash_pan_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_wipe_wine_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_insertion_human_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_insertion_scripted_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_transfer_cube_human_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_transfer_cube_scripted_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_battery_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_candy_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_coffee_new_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_coffee_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_cups_open_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_fork_pick_up_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_pingpong_test_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_pro_pencil_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_screw_driver_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_tape_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_thread_velcro_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_towel_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_vinh_cup_left_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_vinh_cup_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_ziploc_slide_raw": "aloha_hdf5",
|
||||
"lerobot-raw/umi_cup_in_the_wild_raw": "umi_zarr",
|
||||
"lerobot-raw/pusht_raw": "pusht_zarr",
|
||||
"lerobot-raw/unitreeh1_fold_clothes_raw": "aloha_hdf5",
|
||||
"lerobot-raw/unitreeh1_rearrange_objects_raw": "aloha_hdf5",
|
||||
"lerobot-raw/unitreeh1_two_robot_greeting_raw": "aloha_hdf5",
|
||||
"lerobot-raw/unitreeh1_warehouse_raw": "aloha_hdf5",
|
||||
"lerobot-raw/xarm_lift_medium_raw": "xarm_pkl",
|
||||
"lerobot-raw/xarm_lift_medium_replay_raw": "xarm_pkl",
|
||||
"lerobot-raw/xarm_push_medium_raw": "xarm_pkl",
|
||||
"lerobot-raw/xarm_push_medium_replay_raw": "xarm_pkl",
|
||||
"lerobot-raw/fractal20220817_data_raw": "openx_rlds.fractal20220817_data",
|
||||
"lerobot-raw/kuka_raw": "openx_rlds.kuka",
|
||||
"lerobot-raw/bridge_openx_raw": "openx_rlds.bridge_openx",
|
||||
"lerobot-raw/taco_play_raw": "openx_rlds.taco_play",
|
||||
"lerobot-raw/jaco_play_raw": "openx_rlds.jaco_play",
|
||||
"lerobot-raw/berkeley_cable_routing_raw": "openx_rlds.berkeley_cable_routing",
|
||||
"lerobot-raw/roboturk_raw": "openx_rlds.roboturk",
|
||||
"lerobot-raw/nyu_door_opening_surprising_effectiveness_raw": "openx_rlds.nyu_door_opening_surprising_effectiveness",
|
||||
"lerobot-raw/viola_raw": "openx_rlds.viola",
|
||||
"lerobot-raw/berkeley_autolab_ur5_raw": "openx_rlds.berkeley_autolab_ur5",
|
||||
"lerobot-raw/toto_raw": "openx_rlds.toto",
|
||||
"lerobot-raw/language_table_raw": "openx_rlds.language_table",
|
||||
"lerobot-raw/columbia_cairlab_pusht_real_raw": "openx_rlds.columbia_cairlab_pusht_real",
|
||||
"lerobot-raw/stanford_kuka_multimodal_dataset_raw": "openx_rlds.stanford_kuka_multimodal_dataset",
|
||||
"lerobot-raw/nyu_rot_dataset_raw": "openx_rlds.nyu_rot_dataset",
|
||||
"lerobot-raw/io_ai_tech_raw": "openx_rlds.io_ai_tech",
|
||||
"lerobot-raw/stanford_hydra_dataset_raw": "openx_rlds.stanford_hydra_dataset",
|
||||
"lerobot-raw/austin_buds_dataset_raw": "openx_rlds.austin_buds_dataset",
|
||||
"lerobot-raw/nyu_franka_play_dataset_raw": "openx_rlds.nyu_franka_play_dataset",
|
||||
"lerobot-raw/maniskill_dataset_raw": "openx_rlds.maniskill_dataset",
|
||||
"lerobot-raw/furniture_bench_dataset_raw": "openx_rlds.furniture_bench_dataset",
|
||||
"lerobot-raw/cmu_franka_exploration_dataset_raw": "openx_rlds.cmu_franka_exploration_dataset",
|
||||
"lerobot-raw/ucsd_kitchen_dataset_raw": "openx_rlds.ucsd_kitchen_dataset",
|
||||
"lerobot-raw/ucsd_pick_and_place_dataset_raw": "openx_rlds.ucsd_pick_and_place_dataset",
|
||||
"lerobot-raw/spoc_raw": "openx_rlds.spoc",
|
||||
"lerobot-raw/austin_sailor_dataset_raw": "openx_rlds.austin_sailor_dataset",
|
||||
"lerobot-raw/austin_sirius_dataset_raw": "openx_rlds.austin_sirius_dataset",
|
||||
"lerobot-raw/bc_z_raw": "openx_rlds.bc_z",
|
||||
"lerobot-raw/utokyo_pr2_opening_fridge_raw": "openx_rlds.utokyo_pr2_opening_fridge",
|
||||
"lerobot-raw/utokyo_pr2_tabletop_manipulation_raw": "openx_rlds.utokyo_pr2_tabletop_manipulation",
|
||||
"lerobot-raw/utokyo_xarm_pick_and_place_raw": "openx_rlds.utokyo_xarm_pick_and_place",
|
||||
"lerobot-raw/utokyo_xarm_bimanual_raw": "openx_rlds.utokyo_xarm_bimanual",
|
||||
"lerobot-raw/utokyo_saytap_raw": "openx_rlds.utokyo_saytap",
|
||||
"lerobot-raw/robo_net_raw": "openx_rlds.robo_net",
|
||||
"lerobot-raw/robo_set_raw": "openx_rlds.robo_set",
|
||||
"lerobot-raw/berkeley_mvp_raw": "openx_rlds.berkeley_mvp",
|
||||
"lerobot-raw/berkeley_rpt_raw": "openx_rlds.berkeley_rpt",
|
||||
"lerobot-raw/kaist_nonprehensile_raw": "openx_rlds.kaist_nonprehensile",
|
||||
"lerobot-raw/stanford_mask_vit_raw": "openx_rlds.stanford_mask_vit",
|
||||
"lerobot-raw/tokyo_u_lsmo_raw": "openx_rlds.tokyo_u_lsmo",
|
||||
"lerobot-raw/dlr_sara_pour_raw": "openx_rlds.dlr_sara_pour",
|
||||
"lerobot-raw/dlr_sara_grid_clamp_raw": "openx_rlds.dlr_sara_grid_clamp",
|
||||
"lerobot-raw/dlr_edan_shared_control_raw": "openx_rlds.dlr_edan_shared_control",
|
||||
"lerobot-raw/asu_table_top_raw": "openx_rlds.asu_table_top",
|
||||
"lerobot-raw/stanford_robocook_raw": "openx_rlds.stanford_robocook",
|
||||
"lerobot-raw/imperialcollege_sawyer_wrist_cam_raw": "openx_rlds.imperialcollege_sawyer_wrist_cam",
|
||||
"lerobot-raw/iamlab_cmu_pickup_insert_raw": "openx_rlds.iamlab_cmu_pickup_insert",
|
||||
"lerobot-raw/uiuc_d3field_raw": "openx_rlds.uiuc_d3field",
|
||||
"lerobot-raw/utaustin_mutex_raw": "openx_rlds.utaustin_mutex",
|
||||
"lerobot-raw/berkeley_fanuc_manipulation_raw": "openx_rlds.berkeley_fanuc_manipulation",
|
||||
"lerobot-raw/cmu_playing_with_food_raw": "openx_rlds.cmu_playing_with_food",
|
||||
"lerobot-raw/cmu_play_fusion_raw": "openx_rlds.cmu_play_fusion",
|
||||
"lerobot-raw/cmu_stretch_raw": "openx_rlds.cmu_stretch",
|
||||
"lerobot-raw/berkeley_gnm_recon_raw": "openx_rlds.berkeley_gnm_recon",
|
||||
"lerobot-raw/berkeley_gnm_cory_hall_raw": "openx_rlds.berkeley_gnm_cory_hall",
|
||||
"lerobot-raw/berkeley_gnm_sac_son_raw": "openx_rlds.berkeley_gnm_sac_son",
|
||||
"lerobot-raw/droid_raw": "openx_rlds.droid",
|
||||
"lerobot-raw/droid_100_raw": "openx_rlds.droid100",
|
||||
"lerobot-raw/fmb_raw": "openx_rlds.fmb",
|
||||
"lerobot-raw/dobbe_raw": "openx_rlds.dobbe",
|
||||
"lerobot-raw/usc_cloth_sim_raw": "openx_rlds.usc_cloth_sim",
|
||||
"lerobot-raw/plex_robosuite_raw": "openx_rlds.plex_robosuite",
|
||||
"lerobot-raw/conq_hose_manipulation_raw": "openx_rlds.conq_hose_manipulation",
|
||||
"lerobot-raw/vima_raw": "openx_rlds.vima",
|
||||
"lerobot-raw/robot_vqa_raw": "openx_rlds.robot_vqa",
|
||||
"lerobot-raw/mimic_play_raw": "openx_rlds.mimic_play",
|
||||
"lerobot-raw/tidybot_raw": "openx_rlds.tidybot",
|
||||
"lerobot-raw/eth_agent_affordances_raw": "openx_rlds.eth_agent_affordances",
|
||||
}
|
||||
|
||||
|
||||
def download_raw(raw_dir, dataset_id):
|
||||
if "pusht" in dataset_id:
|
||||
download_pusht(raw_dir)
|
||||
elif "xarm" in dataset_id:
|
||||
download_xarm(raw_dir)
|
||||
elif "aloha" in dataset_id:
|
||||
download_aloha(raw_dir, dataset_id)
|
||||
elif "umi" in dataset_id:
|
||||
download_umi(raw_dir)
|
||||
else:
|
||||
raise ValueError(dataset_id)
|
||||
def download_raw(raw_dir: Path, repo_id: str):
|
||||
check_repo_id(repo_id)
|
||||
user_id, dataset_id = repo_id.split("/")
|
||||
|
||||
if not dataset_id.endswith("_raw"):
|
||||
warnings.warn(
|
||||
f"""`dataset_id` ({dataset_id}) doesn't end with '_raw' (e.g. 'lerobot/pusht_raw'). Following this
|
||||
naming convention by renaming your repository is advised, but not mandatory.""",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
|
||||
import zipfile
|
||||
|
||||
import requests
|
||||
|
||||
print(f"downloading from {url}")
|
||||
response = requests.get(url, stream=True)
|
||||
if response.status_code == 200:
|
||||
total_size = int(response.headers.get("content-length", 0))
|
||||
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
|
||||
|
||||
zip_file = io.BytesIO()
|
||||
for chunk in response.iter_content(chunk_size=1024):
|
||||
if chunk:
|
||||
zip_file.write(chunk)
|
||||
progress_bar.update(len(chunk))
|
||||
|
||||
progress_bar.close()
|
||||
|
||||
zip_file.seek(0)
|
||||
|
||||
with zipfile.ZipFile(zip_file, "r") as zip_ref:
|
||||
zip_ref.extractall(destination_folder)
|
||||
|
||||
|
||||
def download_pusht(raw_dir: str):
|
||||
pusht_url = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
|
||||
|
||||
raw_dir = Path(raw_dir)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
download_and_extract_zip(pusht_url, raw_dir)
|
||||
# file is created inside a useful "pusht" directory, so we move it out and delete the dir
|
||||
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
|
||||
shutil.move(raw_dir / "pusht" / "pusht_cchi_v7_replay.zarr", zarr_path)
|
||||
shutil.rmtree(raw_dir / "pusht")
|
||||
|
||||
|
||||
def download_xarm(raw_dir: Path):
|
||||
"""Download all xarm datasets at once"""
|
||||
import zipfile
|
||||
|
||||
import gdown
|
||||
|
||||
raw_dir = Path(raw_dir)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
# from https://github.com/fyhMer/fowm/blob/main/scripts/download_datasets.py
|
||||
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
|
||||
zip_path = raw_dir / "data.zip"
|
||||
gdown.download(url, str(zip_path), quiet=False)
|
||||
print("Extracting...")
|
||||
with zipfile.ZipFile(str(zip_path), "r") as zip_f:
|
||||
for pkl_path in zip_f.namelist():
|
||||
if pkl_path.startswith("data/xarm") and pkl_path.endswith(".pkl"):
|
||||
zip_f.extract(member=pkl_path)
|
||||
# move to corresponding raw directory
|
||||
extract_dir = pkl_path.replace("/buffer.pkl", "")
|
||||
raw_pkl_path = raw_dir / "buffer.pkl"
|
||||
shutil.move(pkl_path, raw_pkl_path)
|
||||
shutil.rmtree(extract_dir)
|
||||
zip_path.unlink()
|
||||
|
||||
|
||||
def download_aloha(raw_dir: Path, dataset_id: str):
|
||||
import gdown
|
||||
|
||||
subset_id = dataset_id.replace("aloha_", "")
|
||||
urls_path = Path(ALOHA_RAW_URLS_DIR) / f"{subset_id}.txt"
|
||||
assert urls_path.exists(), f"{subset_id}.txt not found in '{ALOHA_RAW_URLS_DIR}' directory."
|
||||
|
||||
with open(urls_path) as f:
|
||||
# strip lines and ignore empty lines
|
||||
urls = [url.strip() for url in f if url.strip()]
|
||||
|
||||
# sanity check
|
||||
for url in urls:
|
||||
assert (
|
||||
"drive.google.com/drive/folders" in url or "drive.google.com/file" in url
|
||||
), f"Wrong url provided '{url}' in file '{urls_path}'."
|
||||
|
||||
raw_dir = Path(raw_dir)
|
||||
# Send warning if raw_dir isn't well formated
|
||||
if raw_dir.parts[-2] != user_id or raw_dir.parts[-1] != dataset_id:
|
||||
warnings.warn(
|
||||
f"""`raw_dir` ({raw_dir}) doesn't contain a community or user id `/` the name of the dataset that
|
||||
match the `repo_id` (e.g. 'data/lerobot/pusht_raw'). Following this naming convention is advised,
|
||||
but not mandatory.""",
|
||||
stacklevel=1,
|
||||
)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
logging.info(f"Start downloading from google drive for {dataset_id}")
|
||||
for url in urls:
|
||||
if "drive.google.com/drive/folders" in url:
|
||||
# when a folder url is given, download up to 50 files from the folder
|
||||
gdown.download_folder(url, output=str(raw_dir), remaining_ok=True)
|
||||
|
||||
elif "drive.google.com/file" in url:
|
||||
# because of the 50 files limit per folder, we download the remaining files (file by file)
|
||||
gdown.download(url, output=str(raw_dir), fuzzy=True)
|
||||
|
||||
logging.info(f"End downloading from google drive for {dataset_id}")
|
||||
logging.info(f"Start downloading from huggingface.co/{user_id} for {dataset_id}")
|
||||
snapshot_download(repo_id, repo_type="dataset", local_dir=raw_dir)
|
||||
logging.info(f"Finish downloading from huggingface.co/{user_id} for {dataset_id}")
|
||||
|
||||
|
||||
def download_umi(raw_dir: Path):
|
||||
url_cup_in_the_wild = "https://real.stanford.edu/umi/data/zarr_datasets/cup_in_the_wild.zarr.zip"
|
||||
zarr_path = raw_dir / "cup_in_the_wild.zarr"
|
||||
def download_all_raw_datasets(data_dir: Path | None = None):
|
||||
if data_dir is None:
|
||||
data_dir = Path("data")
|
||||
for repo_id in AVAILABLE_RAW_REPO_IDS:
|
||||
raw_dir = data_dir / repo_id
|
||||
download_raw(raw_dir, repo_id)
|
||||
|
||||
raw_dir = Path(raw_dir)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
download_and_extract_zip(url_cup_in_the_wild, zarr_path)
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=f"""A script to download raw datasets from Hugging Face hub to a local directory. Here is a
|
||||
non exhaustive list of available repositories to use in `--repo-id`: {list(AVAILABLE_RAW_REPO_IDS.keys())}""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="Directory containing input raw datasets (e.g. `data/aloha_mobile_chair_raw` or `data/pusht_raw).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Repositery identifier on Hugging Face: a community or a user name `/` the name of
|
||||
the dataset (e.g. `lerobot/pusht_raw`, `cadene/aloha_sim_insertion_human_raw`).""",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
download_raw(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
data_dir = Path("data")
|
||||
dataset_ids = [
|
||||
"pusht",
|
||||
"xarm_lift_medium",
|
||||
"xarm_lift_medium_replay",
|
||||
"xarm_push_medium",
|
||||
"xarm_push_medium_replay",
|
||||
"aloha_mobile_cabinet",
|
||||
"aloha_mobile_chair",
|
||||
"aloha_mobile_elevator",
|
||||
"aloha_mobile_shrimp",
|
||||
"aloha_mobile_wash_pan",
|
||||
"aloha_mobile_wipe_wine",
|
||||
"aloha_sim_insertion_human",
|
||||
"aloha_sim_insertion_scripted",
|
||||
"aloha_sim_transfer_cube_human",
|
||||
"aloha_sim_transfer_cube_scripted",
|
||||
"aloha_static_battery",
|
||||
"aloha_static_candy",
|
||||
"aloha_static_coffee",
|
||||
"aloha_static_coffee_new",
|
||||
"aloha_static_cups_open",
|
||||
"aloha_static_fork_pick_up",
|
||||
"aloha_static_pingpong_test",
|
||||
"aloha_static_pro_pencil",
|
||||
"aloha_static_screw_driver",
|
||||
"aloha_static_tape",
|
||||
"aloha_static_thread_velcro",
|
||||
"aloha_static_towel",
|
||||
"aloha_static_vinh_cup",
|
||||
"aloha_static_vinh_cup_left",
|
||||
"aloha_static_ziploc_slide",
|
||||
"umi_cup_in_the_wild",
|
||||
]
|
||||
for dataset_id in dataset_ids:
|
||||
raw_dir = data_dir / f"{dataset_id}_raw"
|
||||
download_raw(raw_dir, dataset_id)
|
||||
main()
|
||||
|
||||
184
lerobot/common/datasets/push_dataset_to_hub/_encode_datasets.py
Normal file
184
lerobot/common/datasets/push_dataset_to_hub/_encode_datasets.py
Normal file
@@ -0,0 +1,184 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Use this script to batch encode lerobot dataset from their raw format to LeRobotDataset and push their updated
|
||||
version to the hub. Under the hood, this script reuses 'push_dataset_to_hub.py'. It assumes that you already
|
||||
downloaded raw datasets, which you can do with the related '_download_raw.py' script.
|
||||
|
||||
For instance, for codebase_version = 'v1.6', the following command was run, assuming raw datasets from
|
||||
lerobot-raw were downloaded in 'raw/datasets/directory':
|
||||
```bash
|
||||
python lerobot/common/datasets/push_dataset_to_hub/_encode_datasets.py \
|
||||
--raw-dir raw/datasets/directory \
|
||||
--raw-repo-ids lerobot-raw \
|
||||
--local-dir push/datasets/directory \
|
||||
--tests-data-dir tests/data \
|
||||
--push-repo lerobot \
|
||||
--vcodec libsvtav1 \
|
||||
--pix-fmt yuv420p \
|
||||
--g 2 \
|
||||
--crf 30
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub._download_raw import AVAILABLE_RAW_REPO_IDS
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
|
||||
from lerobot.scripts.push_dataset_to_hub import push_dataset_to_hub
|
||||
|
||||
|
||||
def get_push_repo_id_from_raw(raw_repo_id: str, push_repo: str) -> str:
|
||||
dataset_id_raw = raw_repo_id.split("/")[1]
|
||||
dataset_id = dataset_id_raw.removesuffix("_raw")
|
||||
return f"{push_repo}/{dataset_id}"
|
||||
|
||||
|
||||
def encode_datasets(
|
||||
raw_dir: Path,
|
||||
raw_repo_ids: list[str],
|
||||
push_repo: str,
|
||||
vcodec: str,
|
||||
pix_fmt: str,
|
||||
g: int,
|
||||
crf: int,
|
||||
local_dir: Path | None = None,
|
||||
tests_data_dir: Path | None = None,
|
||||
raw_format: str | None = None,
|
||||
dry_run: bool = False,
|
||||
) -> None:
|
||||
if len(raw_repo_ids) == 1 and raw_repo_ids[0].lower() == "lerobot-raw":
|
||||
raw_repo_ids_format = AVAILABLE_RAW_REPO_IDS
|
||||
else:
|
||||
if raw_format is None:
|
||||
raise ValueError(raw_format)
|
||||
raw_repo_ids_format = {id_: raw_format for id_ in raw_repo_ids}
|
||||
|
||||
for raw_repo_id, repo_raw_format in raw_repo_ids_format.items():
|
||||
check_repo_id(raw_repo_id)
|
||||
dataset_repo_id_push = get_push_repo_id_from_raw(raw_repo_id, push_repo)
|
||||
dataset_raw_dir = raw_dir / raw_repo_id
|
||||
dataset_dir = local_dir / dataset_repo_id_push if local_dir is not None else None
|
||||
encoding = {
|
||||
"vcodec": vcodec,
|
||||
"pix_fmt": pix_fmt,
|
||||
"g": g,
|
||||
"crf": crf,
|
||||
}
|
||||
|
||||
if not (dataset_raw_dir).is_dir():
|
||||
raise NotADirectoryError(dataset_raw_dir)
|
||||
|
||||
if not dry_run:
|
||||
push_dataset_to_hub(
|
||||
dataset_raw_dir,
|
||||
raw_format=repo_raw_format,
|
||||
repo_id=dataset_repo_id_push,
|
||||
local_dir=dataset_dir,
|
||||
resume=True,
|
||||
encoding=encoding,
|
||||
tests_data_dir=tests_data_dir,
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"DRY RUN: {dataset_raw_dir} --> {dataset_dir} --> {dataset_repo_id_push}@{CODEBASE_VERSION}"
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
default=Path("data"),
|
||||
help="Directory where raw datasets are located.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--raw-repo-ids",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=["lerobot-raw"],
|
||||
help="""Raw dataset repo ids. if 'lerobot-raw', the keys from `AVAILABLE_RAW_REPO_IDS` will be
|
||||
used and raw datasets will be fetched from the 'lerobot-raw/' repo and pushed with their
|
||||
associated format. It is assumed that each dataset is located at `raw_dir / raw_repo_id` """,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--raw-format",
|
||||
type=str,
|
||||
default=None,
|
||||
help="""Raw format to use for the raw repo-ids. Must be specified if --raw-repo-ids is not
|
||||
'lerobot-raw'""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--local-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="""When provided, writes the dataset converted to LeRobotDataset format in this directory
|
||||
(e.g. `data/lerobot/aloha_mobile_chair`).""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--push-repo",
|
||||
type=str,
|
||||
default="lerobot",
|
||||
help="Repo to upload datasets to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vcodec",
|
||||
type=str,
|
||||
default="libsvtav1",
|
||||
help="Codec to use for encoding videos",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pix-fmt",
|
||||
type=str,
|
||||
default="yuv420p",
|
||||
help="Pixel formats (chroma subsampling) to be used for encoding",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--g",
|
||||
type=int,
|
||||
default=2,
|
||||
help="Group of pictures sizes to be used for encoding.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--crf",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Constant rate factors to be used for encoding.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tests-data-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help=(
|
||||
"When provided, save tests artifacts into the given directory "
|
||||
"(e.g. `--tests-data-dir tests/data` will save to tests/data/{--repo-id})."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run",
|
||||
type=int,
|
||||
default=0,
|
||||
help="If not set to 0, this script won't download or upload anything.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
encode_datasets(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# imagecodecs/numcodecs.py
|
||||
|
||||
# Copyright (c) 2021-2022, Christoph Gohlke
|
||||
|
||||
@@ -1,8 +1,23 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contains utilities to process raw data format of HDF5 files like in: https://github.com/tonyzhaozh/act
|
||||
"""
|
||||
|
||||
import re
|
||||
import gc
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
@@ -13,8 +28,14 @@ import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
@@ -55,19 +76,25 @@ def check_format(raw_dir) -> bool:
|
||||
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# only frames from simulation are uncompressed
|
||||
compressed_images = "sim" not in raw_dir.name
|
||||
|
||||
hdf5_files = list(raw_dir.glob("*.hdf5"))
|
||||
hdf5_files = sorted(raw_dir.glob("episode_*.hdf5"))
|
||||
num_episodes = len(hdf5_files)
|
||||
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
id_from = 0
|
||||
|
||||
for ep_path in tqdm.tqdm(hdf5_files, total=len(hdf5_files)):
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx in tqdm.tqdm(ep_ids):
|
||||
ep_path = hdf5_files[ep_idx]
|
||||
with h5py.File(ep_path, "r") as ep:
|
||||
ep_idx = int(re.search(r"episode_(\d+)", ep_path.name).group(1))
|
||||
num_frames = ep["/action"].shape[0]
|
||||
|
||||
# last step of demonstration is considered done
|
||||
@@ -76,6 +103,10 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
|
||||
state = torch.from_numpy(ep["/observations/qpos"][:])
|
||||
action = torch.from_numpy(ep["/action"][:])
|
||||
if "/observations/qvel" in ep:
|
||||
velocity = torch.from_numpy(ep["/observations/qvel"][:])
|
||||
if "/observations/effort" in ep:
|
||||
effort = torch.from_numpy(ep["/observations/effort"][:])
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
@@ -97,13 +128,13 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
@@ -116,6 +147,10 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
if "/observations/velocity" in ep:
|
||||
ep_dict["observation.velocity"] = velocity
|
||||
if "/observations/effort" in ep:
|
||||
ep_dict["observation.effort"] = effort
|
||||
ep_dict["action"] = action
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
@@ -126,17 +161,13 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
assert isinstance(ep_idx, int)
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
|
||||
id_from += num_frames
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
gc.collect()
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
return data_dict, episode_data_index
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
@@ -152,6 +183,14 @@ def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
@@ -166,18 +205,29 @@ def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 50
|
||||
|
||||
data_dir, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
hf_dataset = to_hf_dataset(data_dir, video)
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
|
||||
104
lerobot/common/datasets/push_dataset_to_hub/cam_png_format.py
Normal file
104
lerobot/common/datasets/push_dataset_to_hub/cam_png_format.py
Normal file
@@ -0,0 +1,104 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contains utilities to process raw data format of png images files recorded with capture_camera_feed.py
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from datasets import Dataset, Features, Image, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes
|
||||
from lerobot.common.datasets.utils import calculate_episode_data_index, hf_transform_to_torch
|
||||
from lerobot.common.datasets.video_utils import VideoFrame
|
||||
|
||||
|
||||
def check_format(raw_dir: Path) -> bool:
|
||||
image_paths = list(raw_dir.glob("frame_*.png"))
|
||||
if len(image_paths) == 0:
|
||||
raise ValueError
|
||||
|
||||
|
||||
def load_from_raw(raw_dir: Path, fps: int, episodes: list[int] | None = None):
|
||||
if episodes is not None:
|
||||
# TODO(aliberts): add support for multi-episodes.
|
||||
raise NotImplementedError()
|
||||
|
||||
ep_dict = {}
|
||||
ep_idx = 0
|
||||
|
||||
image_paths = sorted(raw_dir.glob("frame_*.png"))
|
||||
num_frames = len(image_paths)
|
||||
|
||||
ep_dict["observation.image"] = [PILImage.open(x) for x in image_paths]
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
|
||||
ep_dicts = [ep_dict]
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
if video or episodes or encoding is not None:
|
||||
# TODO(aliberts): support this
|
||||
raise NotImplementedError
|
||||
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 30
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -0,0 +1,233 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contains utilities to process raw data format from dora-record
|
||||
"""
|
||||
|
||||
import re
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame
|
||||
|
||||
|
||||
def check_format(raw_dir) -> bool:
|
||||
assert raw_dir.exists()
|
||||
|
||||
leader_file = list(raw_dir.glob("*.parquet"))
|
||||
if len(leader_file) == 0:
|
||||
raise ValueError(f"Missing parquet files in '{raw_dir}'")
|
||||
return True
|
||||
|
||||
|
||||
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
|
||||
# Load data stream that will be used as reference for the timestamps synchronization
|
||||
reference_files = list(raw_dir.glob("observation.images.cam_*.parquet"))
|
||||
if len(reference_files) == 0:
|
||||
raise ValueError(f"Missing reference files for camera, starting with in '{raw_dir}'")
|
||||
# select first camera in alphanumeric order
|
||||
reference_key = sorted(reference_files)[0].stem
|
||||
reference_df = pd.read_parquet(raw_dir / f"{reference_key}.parquet")
|
||||
reference_df = reference_df[["timestamp_utc", reference_key]]
|
||||
|
||||
# Merge all data stream using nearest backward strategy
|
||||
df = reference_df
|
||||
for path in raw_dir.glob("*.parquet"):
|
||||
key = path.stem # action or observation.state or ...
|
||||
if key == reference_key:
|
||||
continue
|
||||
if "failed_episode_index" in key:
|
||||
# TODO(rcadene): add support for removing episodes that are tagged as "failed"
|
||||
continue
|
||||
modality_df = pd.read_parquet(path)
|
||||
modality_df = modality_df[["timestamp_utc", key]]
|
||||
df = pd.merge_asof(
|
||||
df,
|
||||
modality_df,
|
||||
on="timestamp_utc",
|
||||
# "nearest" is the best option over "backward", since the latter can desynchronizes camera timestamps by
|
||||
# matching timestamps that are too far appart, in order to fit the backward constraints. It's not the case for "nearest".
|
||||
# However, note that "nearest" might synchronize the reference camera with other cameras on slightly future timestamps.
|
||||
# are too far appart.
|
||||
direction="nearest",
|
||||
tolerance=pd.Timedelta(f"{1/fps} seconds"),
|
||||
)
|
||||
# Remove rows with episode_index -1 which indicates data that correspond to in-between episodes
|
||||
df = df[df["episode_index"] != -1]
|
||||
|
||||
image_keys = [key for key in df if "observation.images." in key]
|
||||
|
||||
def get_episode_index(row):
|
||||
episode_index_per_cam = {}
|
||||
for key in image_keys:
|
||||
path = row[key][0]["path"]
|
||||
match = re.search(r"_(\d{6}).mp4", path)
|
||||
if not match:
|
||||
raise ValueError(path)
|
||||
episode_index = int(match.group(1))
|
||||
episode_index_per_cam[key] = episode_index
|
||||
if len(set(episode_index_per_cam.values())) != 1:
|
||||
raise ValueError(
|
||||
f"All cameras are expected to belong to the same episode, but getting {episode_index_per_cam}"
|
||||
)
|
||||
return episode_index
|
||||
|
||||
df["episode_index"] = df.apply(get_episode_index, axis=1)
|
||||
|
||||
# dora only use arrays, so single values are encapsulated into a list
|
||||
df["frame_index"] = df.groupby("episode_index").cumcount()
|
||||
df = df.reset_index()
|
||||
df["index"] = df.index
|
||||
|
||||
# set 'next.done' to True for the last frame of each episode
|
||||
df["next.done"] = False
|
||||
df.loc[df.groupby("episode_index").tail(1).index, "next.done"] = True
|
||||
|
||||
df["timestamp"] = df["timestamp_utc"].map(lambda x: x.timestamp())
|
||||
# each episode starts with timestamp 0 to match the ones from the video
|
||||
df["timestamp"] = df.groupby("episode_index")["timestamp"].transform(lambda x: x - x.iloc[0])
|
||||
|
||||
del df["timestamp_utc"]
|
||||
|
||||
# sanity check
|
||||
has_nan = df.isna().any().any()
|
||||
if has_nan:
|
||||
raise ValueError("Dataset contains Nan values.")
|
||||
|
||||
# sanity check episode indices go from 0 to n-1
|
||||
ep_ids = [ep_idx for ep_idx, _ in df.groupby("episode_index")]
|
||||
expected_ep_ids = list(range(df["episode_index"].max() + 1))
|
||||
if ep_ids != expected_ep_ids:
|
||||
raise ValueError(f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}")
|
||||
|
||||
# Create symlink to raw videos directory (that needs to be absolute not relative)
|
||||
videos_dir.parent.mkdir(parents=True, exist_ok=True)
|
||||
videos_dir.symlink_to((raw_dir / "videos").absolute())
|
||||
|
||||
# sanity check the video paths are well formated
|
||||
for key in df:
|
||||
if "observation.images." not in key:
|
||||
continue
|
||||
for ep_idx in ep_ids:
|
||||
video_path = videos_dir / f"{key}_episode_{ep_idx:06d}.mp4"
|
||||
if not video_path.exists():
|
||||
raise ValueError(f"Video file not found in {video_path}")
|
||||
|
||||
data_dict = {}
|
||||
for key in df:
|
||||
# is video frame
|
||||
if "observation.images." in key:
|
||||
# we need `[0] because dora only use arrays, so single values are encapsulated into a list.
|
||||
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
|
||||
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
|
||||
|
||||
# sanity check the video path is well formated
|
||||
video_path = videos_dir.parent / data_dict[key][0]["path"]
|
||||
if not video_path.exists():
|
||||
raise ValueError(f"Video file not found in {video_path}")
|
||||
# is number
|
||||
elif df[key].iloc[0].ndim == 0 or df[key].iloc[0].shape[0] == 1:
|
||||
data_dict[key] = torch.from_numpy(df[key].values)
|
||||
# is vector
|
||||
elif df[key].iloc[0].shape[0] > 1:
|
||||
data_dict[key] = torch.stack([torch.from_numpy(x.copy()) for x in df[key].values])
|
||||
else:
|
||||
raise ValueError(key)
|
||||
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
|
||||
keys = [key for key in data_dict if "observation.images." in key]
|
||||
for key in keys:
|
||||
if video:
|
||||
features[key] = VideoFrame()
|
||||
else:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 30
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
if not video:
|
||||
raise NotImplementedError()
|
||||
|
||||
if encoding is not None:
|
||||
warnings.warn(
|
||||
"Video encoding is currently done outside of LeRobot for the dora_parquet format.",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
data_df = load_from_raw(raw_dir, videos_dir, fps, episodes)
|
||||
hf_dataset = to_hf_dataset(data_df, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = "unknown"
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
639
lerobot/common/datasets/push_dataset_to_hub/openx/configs.yaml
Normal file
639
lerobot/common/datasets/push_dataset_to_hub/openx/configs.yaml
Normal file
@@ -0,0 +1,639 @@
|
||||
OPENX_DATASET_CONFIGS:
|
||||
fractal20220817_data:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- base_pose_tool_reached
|
||||
- gripper_closed
|
||||
fps: 3
|
||||
|
||||
kuka:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- clip_function_input/base_pose_tool_reached
|
||||
- gripper_closed
|
||||
fps: 10
|
||||
|
||||
bridge_openx:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- EEF_state
|
||||
- gripper_state
|
||||
fps: 5
|
||||
|
||||
taco_play:
|
||||
image_obs_keys:
|
||||
- rgb_static
|
||||
- rgb_gripper
|
||||
depth_obs_keys:
|
||||
- depth_static
|
||||
- depth_gripper
|
||||
state_obs_keys:
|
||||
- state_eef
|
||||
- state_gripper
|
||||
fps: 15
|
||||
|
||||
jaco_play:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- image_wrist
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state_eef
|
||||
- state_gripper
|
||||
fps: 10
|
||||
|
||||
berkeley_cable_routing:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- top_image
|
||||
- wrist45_image
|
||||
- wrist225_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- robot_state
|
||||
fps: 10
|
||||
|
||||
roboturk:
|
||||
image_obs_keys:
|
||||
- front_rgb
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- null
|
||||
fps: 10
|
||||
|
||||
nyu_door_opening_surprising_effectiveness:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- null
|
||||
fps: 3
|
||||
|
||||
viola:
|
||||
image_obs_keys:
|
||||
- agentview_rgb
|
||||
- eye_in_hand_rgb
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- joint_states
|
||||
- gripper_states
|
||||
fps: 20
|
||||
|
||||
berkeley_autolab_ur5:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- hand_image
|
||||
depth_obs_keys:
|
||||
- image_with_depth
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 5
|
||||
|
||||
toto:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 30
|
||||
|
||||
language_table:
|
||||
image_obs_keys:
|
||||
- rgb
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- effector_translation
|
||||
fps: 10
|
||||
|
||||
columbia_cairlab_pusht_real:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- robot_state
|
||||
fps: 10
|
||||
|
||||
stanford_kuka_multimodal_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- depth_image
|
||||
state_obs_keys:
|
||||
- ee_position
|
||||
- ee_orientation
|
||||
fps: 20
|
||||
|
||||
nyu_rot_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 3
|
||||
|
||||
io_ai_tech:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- image_fisheye
|
||||
- image_left_side
|
||||
- image_right_side
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 3
|
||||
|
||||
stanford_hydra_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 10
|
||||
|
||||
austin_buds_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 20
|
||||
|
||||
nyu_franka_play_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- image_additional_view
|
||||
depth_obs_keys:
|
||||
- depth
|
||||
- depth_additional_view
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
fps: 3
|
||||
|
||||
maniskill_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- depth
|
||||
- wrist_depth
|
||||
state_obs_keys:
|
||||
- tcp_pose
|
||||
- gripper_state
|
||||
fps: 20
|
||||
|
||||
furniture_bench_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 10
|
||||
|
||||
cmu_franka_exploration_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- highres_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- null
|
||||
fps: 10
|
||||
|
||||
ucsd_kitchen_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- joint_state
|
||||
fps: 2
|
||||
|
||||
ucsd_pick_and_place_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 3
|
||||
|
||||
spoc:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- image_manipulation
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- null
|
||||
fps: 3
|
||||
|
||||
austin_sailor_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 20
|
||||
|
||||
austin_sirius_dataset_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 20
|
||||
|
||||
bc_z:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- present/xyz
|
||||
- present/axis_angle
|
||||
- present/sensed_close
|
||||
fps: 10
|
||||
|
||||
utokyo_pr2_opening_fridge_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 10
|
||||
|
||||
utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 10
|
||||
|
||||
utokyo_xarm_pick_and_place_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- image2
|
||||
- hand_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- end_effector_pose
|
||||
fps: 10
|
||||
|
||||
utokyo_xarm_bimanual_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- pose_r
|
||||
fps: 10
|
||||
|
||||
robo_net:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- image1
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 1
|
||||
|
||||
robo_set:
|
||||
image_obs_keys:
|
||||
- image_left
|
||||
- image_right
|
||||
- image_wrist
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
- state_velocity
|
||||
fps: 5
|
||||
|
||||
berkeley_mvp_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- hand_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- gripper
|
||||
- pose
|
||||
- joint_pos
|
||||
fps: 5
|
||||
|
||||
berkeley_rpt_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- hand_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- joint_pos
|
||||
- gripper
|
||||
fps: 30
|
||||
|
||||
kaist_nonprehensile_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 10
|
||||
|
||||
stanford_mask_vit_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
|
||||
tokyo_u_lsmo_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 10
|
||||
|
||||
dlr_sara_pour_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 10
|
||||
|
||||
dlr_sara_grid_clamp_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 10
|
||||
|
||||
dlr_edan_shared_control_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 5
|
||||
|
||||
asu_table_top_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 12.5
|
||||
|
||||
stanford_robocook_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image_1
|
||||
- image_2
|
||||
depth_obs_keys:
|
||||
- depth_1
|
||||
- depth_2
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 5
|
||||
|
||||
imperialcollege_sawyer_wrist_cam:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 10
|
||||
|
||||
iamlab_cmu_pickup_insert_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- joint_state
|
||||
- gripper_state
|
||||
fps: 20
|
||||
|
||||
uiuc_d3field:
|
||||
image_obs_keys:
|
||||
- image_1
|
||||
- image_2
|
||||
depth_obs_keys:
|
||||
- depth_1
|
||||
- depth_2
|
||||
state_obs_keys:
|
||||
- null
|
||||
fps: 1
|
||||
|
||||
utaustin_mutex:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 20
|
||||
|
||||
berkeley_fanuc_manipulation:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- joint_state
|
||||
- gripper_state
|
||||
fps: 10
|
||||
|
||||
cmu_playing_with_food:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- finger_vision_1
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 10
|
||||
|
||||
cmu_play_fusion:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 5
|
||||
|
||||
cmu_stretch:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- eef_state
|
||||
- gripper_state
|
||||
fps: 10
|
||||
|
||||
berkeley_gnm_recon:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
- position
|
||||
- yaw
|
||||
fps: 3
|
||||
|
||||
berkeley_gnm_cory_hall:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
- position
|
||||
- yaw
|
||||
fps: 5
|
||||
|
||||
berkeley_gnm_sac_son:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
- position
|
||||
- yaw
|
||||
fps: 10
|
||||
|
||||
droid:
|
||||
image_obs_keys:
|
||||
- exterior_image_1_left
|
||||
- exterior_image_2_left
|
||||
- wrist_image_left
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- proprio
|
||||
fps: 15
|
||||
|
||||
droid_100:
|
||||
image_obs_keys:
|
||||
- exterior_image_1_left
|
||||
- exterior_image_2_left
|
||||
- wrist_image_left
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- proprio
|
||||
fps: 15
|
||||
|
||||
fmb:
|
||||
image_obs_keys:
|
||||
- image_side_1
|
||||
- image_side_2
|
||||
- image_wrist_1
|
||||
- image_wrist_2
|
||||
depth_obs_keys:
|
||||
- image_side_1_depth
|
||||
- image_side_2_depth
|
||||
- image_wrist_1_depth
|
||||
- image_wrist_2_depth
|
||||
state_obs_keys:
|
||||
- proprio
|
||||
fps: 10
|
||||
|
||||
dobbe:
|
||||
image_obs_keys:
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- proprio
|
||||
fps: 3.75
|
||||
|
||||
usc_cloth_sim_converted_externally_to_rlds:
|
||||
image_obs_keys:
|
||||
- image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- null
|
||||
fps: 10
|
||||
|
||||
plex_robosuite:
|
||||
image_obs_keys:
|
||||
- image
|
||||
- wrist_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 20
|
||||
|
||||
conq_hose_manipulation:
|
||||
image_obs_keys:
|
||||
- frontleft_fisheye_image
|
||||
- frontright_fisheye_image
|
||||
- hand_color_image
|
||||
depth_obs_keys:
|
||||
- null
|
||||
state_obs_keys:
|
||||
- state
|
||||
fps: 30
|
||||
106
lerobot/common/datasets/push_dataset_to_hub/openx/data_utils.py
Normal file
106
lerobot/common/datasets/push_dataset_to_hub/openx/data_utils.py
Normal file
@@ -0,0 +1,106 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the Licens e.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
NOTE(YL): Adapted from:
|
||||
Octo: https://github.com/octo-models/octo/blob/main/octo/data/utils/data_utils.py
|
||||
|
||||
data_utils.py
|
||||
|
||||
Additional utils for data processing.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def binarize_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
|
||||
"""
|
||||
Converts gripper actions from continuous to binary values (0 and 1).
|
||||
|
||||
We exploit that fact that most of the time, the gripper is fully open (near 1.0) or fully closed (near 0.0). As it
|
||||
transitions between the two, it sometimes passes through a few intermediate values. We relabel those intermediate
|
||||
values based on the state that is reached _after_ those intermediate values.
|
||||
|
||||
In the edge case that the trajectory ends with an intermediate value, we give up on binarizing and relabel that
|
||||
chunk of intermediate values as the last action in the trajectory.
|
||||
|
||||
The `scan_fn` implements the following logic:
|
||||
new_actions = np.empty_like(actions)
|
||||
carry = actions[-1]
|
||||
for i in reversed(range(actions.shape[0])):
|
||||
if in_between_mask[i]:
|
||||
carry = carry
|
||||
else:
|
||||
carry = float(open_mask[i])
|
||||
new_actions[i] = carry
|
||||
"""
|
||||
open_mask, closed_mask = actions > 0.95, actions < 0.05
|
||||
in_between_mask = tf.logical_not(tf.logical_or(open_mask, closed_mask))
|
||||
is_open_float = tf.cast(open_mask, tf.float32)
|
||||
|
||||
def scan_fn(carry, i):
|
||||
return tf.cond(in_between_mask[i], lambda: tf.cast(carry, tf.float32), lambda: is_open_float[i])
|
||||
|
||||
return tf.scan(scan_fn, tf.range(tf.shape(actions)[0]), actions[-1], reverse=True)
|
||||
|
||||
|
||||
def invert_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
|
||||
return 1 - actions
|
||||
|
||||
|
||||
def rel2abs_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
|
||||
"""
|
||||
Converts relative gripper actions (+1 for closing, -1 for opening) to absolute actions (0 = closed; 1 = open).
|
||||
|
||||
Assumes that the first relative gripper is not redundant (i.e. close when already closed)!
|
||||
"""
|
||||
# Note =>> -1 for closing, 1 for opening, 0 for no change
|
||||
opening_mask, closing_mask = actions < -0.1, actions > 0.1
|
||||
thresholded_actions = tf.where(opening_mask, 1, tf.where(closing_mask, -1, 0))
|
||||
|
||||
def scan_fn(carry, i):
|
||||
return tf.cond(thresholded_actions[i] == 0, lambda: carry, lambda: thresholded_actions[i])
|
||||
|
||||
# If no relative grasp, assumes open for whole trajectory
|
||||
start = -1 * thresholded_actions[tf.argmax(thresholded_actions != 0, axis=0)]
|
||||
start = tf.cond(start == 0, lambda: 1, lambda: start)
|
||||
|
||||
# Note =>> -1 for closed, 1 for open
|
||||
new_actions = tf.scan(scan_fn, tf.range(tf.shape(actions)[0]), start)
|
||||
new_actions = tf.cast(new_actions, tf.float32) / 2 + 0.5
|
||||
|
||||
return new_actions
|
||||
|
||||
|
||||
# === Bridge-V2 =>> Dataset-Specific Transform ===
|
||||
def relabel_bridge_actions(traj: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Relabels actions to use reached proprioceptive state; discards last timestep (no-action)."""
|
||||
movement_actions = traj["observation"]["state"][1:, :6] - traj["observation"]["state"][:-1, :6]
|
||||
traj_truncated = tf.nest.map_structure(lambda x: x[:-1], traj)
|
||||
traj_truncated["action"] = tf.concat([movement_actions, traj["action"][:-1, -1:]], axis=1)
|
||||
|
||||
return traj_truncated
|
||||
|
||||
|
||||
# === RLDS Dataset Initialization Utilities ===
|
||||
def pprint_data_mixture(dataset_kwargs_list: List[Dict[str, Any]], dataset_weights: List[int]) -> None:
|
||||
print("\n######################################################################################")
|
||||
print(f"# Loading the following {len(dataset_kwargs_list)} datasets (incl. sampling weight):{'': >24} #")
|
||||
for dataset_kwargs, weight in zip(dataset_kwargs_list, dataset_weights, strict=False):
|
||||
pad = 80 - len(dataset_kwargs["name"])
|
||||
print(f"# {dataset_kwargs['name']}: {weight:=>{pad}f} #")
|
||||
print("######################################################################################\n")
|
||||
200
lerobot/common/datasets/push_dataset_to_hub/openx/droid_utils.py
Normal file
200
lerobot/common/datasets/push_dataset_to_hub/openx/droid_utils.py
Normal file
@@ -0,0 +1,200 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
NOTE(YL): Adapted from:
|
||||
OpenVLA: https://github.com/openvla/openvla
|
||||
|
||||
Episode transforms for DROID dataset.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow_graphics.geometry.transformation as tfg
|
||||
|
||||
|
||||
def rmat_to_euler(rot_mat):
|
||||
return tfg.euler.from_rotation_matrix(rot_mat)
|
||||
|
||||
|
||||
def euler_to_rmat(euler):
|
||||
return tfg.rotation_matrix_3d.from_euler(euler)
|
||||
|
||||
|
||||
def invert_rmat(rot_mat):
|
||||
return tfg.rotation_matrix_3d.inverse(rot_mat)
|
||||
|
||||
|
||||
def rotmat_to_rot6d(mat):
|
||||
"""
|
||||
Converts rotation matrix to R6 rotation representation (first two rows in rotation matrix).
|
||||
Args:
|
||||
mat: rotation matrix
|
||||
|
||||
Returns: 6d vector (first two rows of rotation matrix)
|
||||
|
||||
"""
|
||||
r6 = mat[..., :2, :]
|
||||
r6_0, r6_1 = r6[..., 0, :], r6[..., 1, :]
|
||||
r6_flat = tf.concat([r6_0, r6_1], axis=-1)
|
||||
return r6_flat
|
||||
|
||||
|
||||
def velocity_act_to_wrist_frame(velocity, wrist_in_robot_frame):
|
||||
"""
|
||||
Translates velocity actions (translation + rotation) from base frame of the robot to wrist frame.
|
||||
Args:
|
||||
velocity: 6d velocity action (3 x translation, 3 x rotation)
|
||||
wrist_in_robot_frame: 6d pose of the end-effector in robot base frame
|
||||
|
||||
Returns: 9d velocity action in robot wrist frame (3 x translation, 6 x rotation as R6)
|
||||
|
||||
"""
|
||||
r_frame = euler_to_rmat(wrist_in_robot_frame[:, 3:6])
|
||||
r_frame_inv = invert_rmat(r_frame)
|
||||
|
||||
# world to wrist: dT_pi = R^-1 dT_rbt
|
||||
vel_t = (r_frame_inv @ velocity[:, :3][..., None])[..., 0]
|
||||
|
||||
# world to wrist: dR_pi = R^-1 dR_rbt R
|
||||
dr_ = euler_to_rmat(velocity[:, 3:6])
|
||||
dr_ = r_frame_inv @ (dr_ @ r_frame)
|
||||
dr_r6 = rotmat_to_rot6d(dr_)
|
||||
return tf.concat([vel_t, dr_r6], axis=-1)
|
||||
|
||||
|
||||
def rand_swap_exterior_images(img1, img2):
|
||||
"""
|
||||
Randomly swaps the two exterior images (for training with single exterior input).
|
||||
"""
|
||||
return tf.cond(tf.random.uniform(shape=[]) > 0.5, lambda: (img1, img2), lambda: (img2, img1))
|
||||
|
||||
|
||||
def droid_baseact_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
DROID dataset transformation for actions expressed in *base* frame of the robot.
|
||||
"""
|
||||
dt = trajectory["action_dict"]["cartesian_velocity"][:, :3]
|
||||
dr_ = trajectory["action_dict"]["cartesian_velocity"][:, 3:6]
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
dt,
|
||||
dr_,
|
||||
1 - trajectory["action_dict"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["exterior_image_1_left"], trajectory["observation"]["exterior_image_2_left"] = (
|
||||
rand_swap_exterior_images(
|
||||
trajectory["observation"]["exterior_image_1_left"],
|
||||
trajectory["observation"]["exterior_image_2_left"],
|
||||
)
|
||||
)
|
||||
trajectory["observation"]["proprio"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["cartesian_position"],
|
||||
trajectory["observation"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def droid_wristact_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
DROID dataset transformation for actions expressed in *wrist* frame of the robot.
|
||||
"""
|
||||
wrist_act = velocity_act_to_wrist_frame(
|
||||
trajectory["action_dict"]["cartesian_velocity"], trajectory["observation"]["cartesian_position"]
|
||||
)
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
wrist_act,
|
||||
trajectory["action_dict"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["exterior_image_1_left"], trajectory["observation"]["exterior_image_2_left"] = (
|
||||
rand_swap_exterior_images(
|
||||
trajectory["observation"]["exterior_image_1_left"],
|
||||
trajectory["observation"]["exterior_image_2_left"],
|
||||
)
|
||||
)
|
||||
trajectory["observation"]["proprio"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["cartesian_position"],
|
||||
trajectory["observation"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def droid_finetuning_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
DROID dataset transformation for actions expressed in *base* frame of the robot.
|
||||
"""
|
||||
dt = trajectory["action_dict"]["cartesian_velocity"][:, :3]
|
||||
dr_ = trajectory["action_dict"]["cartesian_velocity"][:, 3:6]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
dt,
|
||||
dr_,
|
||||
1 - trajectory["action_dict"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["proprio"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["cartesian_position"],
|
||||
trajectory["observation"]["gripper_position"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def zero_action_filter(traj: Dict) -> bool:
|
||||
"""
|
||||
Filters transitions whose actions are all-0 (only relative actions, no gripper action).
|
||||
Note: this filter is applied *after* action normalization, so need to compare to "normalized 0".
|
||||
"""
|
||||
droid_q01 = tf.convert_to_tensor(
|
||||
[
|
||||
-0.7776297926902771,
|
||||
-0.5803514122962952,
|
||||
-0.5795090794563293,
|
||||
-0.6464047729969025,
|
||||
-0.7041108310222626,
|
||||
-0.8895104378461838,
|
||||
]
|
||||
)
|
||||
droid_q99 = tf.convert_to_tensor(
|
||||
[
|
||||
0.7597932070493698,
|
||||
0.5726242214441299,
|
||||
0.7351000607013702,
|
||||
0.6705610305070877,
|
||||
0.6464948207139969,
|
||||
0.8897542208433151,
|
||||
]
|
||||
)
|
||||
droid_norm_0_act = (
|
||||
2 * (tf.zeros_like(traj["action"][:, :6]) - droid_q01) / (droid_q99 - droid_q01 + 1e-8) - 1
|
||||
)
|
||||
|
||||
return tf.reduce_any(tf.math.abs(traj["action"][:, :6] - droid_norm_0_act) > 1e-5)
|
||||
859
lerobot/common/datasets/push_dataset_to_hub/openx/transforms.py
Normal file
859
lerobot/common/datasets/push_dataset_to_hub/openx/transforms.py
Normal file
@@ -0,0 +1,859 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
NOTE(YL): Adapted from:
|
||||
OpenVLA: https://github.com/openvla/openvla
|
||||
Octo: https://github.com/octo-models/octo
|
||||
|
||||
transforms.py
|
||||
|
||||
Defines a registry of per-dataset standardization transforms for each dataset in Open-X Embodiment.
|
||||
|
||||
Transforms adopt the following structure:
|
||||
Input: Dictionary of *batched* features (i.e., has leading time dimension)
|
||||
Output: Dictionary `step` =>> {
|
||||
"observation": {
|
||||
<image_keys, depth_image_keys>
|
||||
State (in chosen state representation)
|
||||
},
|
||||
"action": Action (in chosen action representation),
|
||||
"language_instruction": str
|
||||
}
|
||||
"""
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.openx.data_utils import (
|
||||
binarize_gripper_actions,
|
||||
invert_gripper_actions,
|
||||
rel2abs_gripper_actions,
|
||||
relabel_bridge_actions,
|
||||
)
|
||||
|
||||
|
||||
def droid_baseact_transform_fn():
|
||||
from lerobot.common.datasets.push_dataset_to_hub.openx.droid_utils import droid_baseact_transform
|
||||
|
||||
return droid_baseact_transform
|
||||
|
||||
|
||||
def bridge_openx_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Applies to version of Bridge V2 in Open X-Embodiment mixture.
|
||||
|
||||
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
|
||||
"""
|
||||
for key in trajectory:
|
||||
if key == "traj_metadata":
|
||||
continue
|
||||
elif key in ["observation", "action"]:
|
||||
for key2 in trajectory[key]:
|
||||
trajectory[key][key2] = trajectory[key][key2][1:]
|
||||
else:
|
||||
trajectory[key] = trajectory[key][1:]
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
tf.cast(trajectory["action"]["open_gripper"][:, None], tf.float32),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
trajectory = relabel_bridge_actions(trajectory)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def bridge_orig_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Applies to original version of Bridge V2 from the official project website.
|
||||
|
||||
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
|
||||
"""
|
||||
for key in trajectory:
|
||||
if key == "traj_metadata":
|
||||
continue
|
||||
elif key == "observation":
|
||||
for key2 in trajectory[key]:
|
||||
trajectory[key][key2] = trajectory[key][key2][1:]
|
||||
else:
|
||||
trajectory[key] = trajectory[key][1:]
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
[
|
||||
trajectory["action"][:, :6],
|
||||
binarize_gripper_actions(trajectory["action"][:, -1])[:, None],
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
trajectory = relabel_bridge_actions(trajectory)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def ppgm_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
[
|
||||
trajectory["action"][:, :6],
|
||||
binarize_gripper_actions(trajectory["action"][:, -1])[:, None],
|
||||
],
|
||||
axis=1,
|
||||
)
|
||||
trajectory["observation"]["EEF_state"] = trajectory["observation"]["cartesian_position"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["gripper_position"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def rt1_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def kuka_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
# decode compressed state
|
||||
eef_value = tf.io.decode_compressed(
|
||||
trajectory["observation"]["clip_function_input/base_pose_tool_reached"],
|
||||
compression_type="ZLIB",
|
||||
)
|
||||
eef_value = tf.io.decode_raw(eef_value, tf.float32)
|
||||
trajectory["observation"]["clip_function_input/base_pose_tool_reached"] = tf.reshape(eef_value, (-1, 7))
|
||||
gripper_value = tf.io.decode_compressed(
|
||||
trajectory["observation"]["gripper_closed"], compression_type="ZLIB"
|
||||
)
|
||||
gripper_value = tf.io.decode_raw(gripper_value, tf.float32)
|
||||
trajectory["observation"]["gripper_closed"] = tf.reshape(gripper_value, (-1, 1))
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def taco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state_eef"] = trajectory["observation"]["robot_obs"][:, :6]
|
||||
trajectory["observation"]["state_gripper"] = trajectory["observation"]["robot_obs"][:, 7:8]
|
||||
trajectory["action"] = trajectory["action"]["rel_actions_world"]
|
||||
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
tf.clip_by_value(trajectory["action"][:, -1:], 0, 1),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def jaco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state_eef"] = trajectory["observation"]["end_effector_cartesian_pos"][:, :6]
|
||||
trajectory["observation"]["state_gripper"] = trajectory["observation"]["end_effector_cartesian_pos"][
|
||||
:, -1:
|
||||
]
|
||||
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
tf.zeros_like(trajectory["action"]["world_vector"]),
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_cable_routing_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
tf.zeros_like(trajectory["action"]["world_vector"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def roboturk_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert absolute gripper action, +1 = open, 0 = close
|
||||
gripper_action = invert_gripper_actions(
|
||||
tf.clip_by_value(trajectory["action"]["gripper_closedness_action"], 0, 1)
|
||||
)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action,
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
trajectory["language_embedding"] = trajectory["observation"]["natural_language_embedding"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def nyu_door_opening_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def viola_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# make gripper action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"][:, None]
|
||||
gripper_action = tf.clip_by_value(gripper_action, 0, 1)
|
||||
gripper_action = invert_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action,
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_autolab_ur5_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["robot_state"][:, 6:14]
|
||||
|
||||
# make gripper action absolute action, +1 = open, 0 = close
|
||||
gripper_action = trajectory["action"]["gripper_closedness_action"]
|
||||
gripper_action = rel2abs_gripper_actions(gripper_action)
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
gripper_action[:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def toto_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
tf.cast(trajectory["action"]["open_gripper"][:, None], tf.float32),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def language_table_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# default to "open" gripper
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.ones_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# decode language instruction
|
||||
instruction_bytes = trajectory["observation"]["instruction"]
|
||||
instruction_encoded = tf.strings.unicode_encode(instruction_bytes, output_encoding="UTF-8")
|
||||
# Remove trailing padding --> convert RaggedTensor to regular Tensor.
|
||||
trajectory["language_instruction"] = tf.strings.split(instruction_encoded, "\x00")[:, :1].to_tensor()[
|
||||
:, 0
|
||||
]
|
||||
return trajectory
|
||||
|
||||
|
||||
def pusht_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["world_vector"],
|
||||
trajectory["action"]["rotation_delta"],
|
||||
trajectory["action"]["gripper_closedness_action"][:, None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def stanford_kuka_multimodal_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["depth_image"] = trajectory["observation"]["depth_image"][..., 0]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tf.zeros_like(trajectory["action"][:, :3]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def nyu_rot_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][..., :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][..., -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :7]
|
||||
return trajectory
|
||||
|
||||
|
||||
def stanford_hydra_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(trajectory["action"][:, -1:]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :3],
|
||||
trajectory["observation"]["state"][:, 7:10],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -3:-2]
|
||||
return trajectory
|
||||
|
||||
|
||||
def austin_buds_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :8]
|
||||
return trajectory
|
||||
|
||||
|
||||
def nyu_franka_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["depth"] = tf.cast(trajectory["observation"]["depth"][..., 0], tf.float32)
|
||||
trajectory["observation"]["depth_additional_view"] = tf.cast(
|
||||
trajectory["observation"]["depth_additional_view"][..., 0], tf.float32
|
||||
)
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, -6:]
|
||||
|
||||
# clip gripper action, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, -8:-2],
|
||||
tf.clip_by_value(trajectory["action"][:, -2:-1], 0, 1),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def maniskill_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][..., 7:8]
|
||||
return trajectory
|
||||
|
||||
|
||||
def furniture_bench_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
import tensorflow_graphics.geometry.transformation as tft
|
||||
|
||||
trajectory["observation"]["state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :7],
|
||||
trajectory["observation"]["state"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def cmu_franka_exploration_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def ucsd_kitchen_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :7]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def ucsd_pick_place_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tf.zeros_like(trajectory["action"][:, :3]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def austin_sailor_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def austin_sirius_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def bc_z_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"]["future/xyz_residual"][:, :3],
|
||||
trajectory["action"]["future/axis_angle_residual"][:, :3],
|
||||
invert_gripper_actions(tf.cast(trajectory["action"]["future/target_close"][:, :1], tf.float32)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["language_instruction"] = trajectory["observation"]["natural_language_instruction"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def tokyo_pr2_opening_fridge_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def tokyo_pr2_tabletop_manipulation_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def utokyo_xarm_bimanual_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = trajectory["action"][..., -7:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def robo_net_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :4],
|
||||
tf.zeros_like(trajectory["observation"]["state"][:, :2]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :4],
|
||||
tf.zeros_like(trajectory["action"][:, :2]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_mvp_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
trajectory["observation"]["state"] = tf.concat((
|
||||
tf.cast(trajectory["observation"]["gripper"][:, None], tf.float32),
|
||||
trajectory["observation"]["pose"],
|
||||
trajectory["observation"]["joint_pos"],),
|
||||
axis=-1,)
|
||||
"""
|
||||
trajectory["observation"]["gripper"] = tf.cast(trajectory["observation"]["gripper"][:, None], tf.float32)
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_rpt_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["gripper"] = tf.cast(trajectory["observation"]["gripper"][:, None], tf.float32)
|
||||
return trajectory
|
||||
|
||||
|
||||
def kaist_nonprehensible_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, -7:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
tf.zeros_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def stanford_mask_vit_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["end_effector_pose"][:, :4],
|
||||
tf.zeros_like(trajectory["observation"]["end_effector_pose"][:, :2]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["end_effector_pose"][:, -1:]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :4],
|
||||
tf.zeros_like(trajectory["action"][:, :2]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def tokyo_lsmo_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def dlr_sara_grid_clamp_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :6]
|
||||
return trajectory
|
||||
|
||||
|
||||
def dlr_edan_shared_control_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# invert gripper action, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(trajectory["action"][:, -1:]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def asu_table_top_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["ground_truth_states"]["EE"]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def robocook_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
return trajectory
|
||||
|
||||
|
||||
def imperial_wristcam_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def iamlab_pick_insert_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
import tensorflow_graphics.geometry.transformation as tft
|
||||
|
||||
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :7]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, 7:8]
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
|
||||
trajectory["action"][:, 7:8],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def uiuc_d3field_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def utaustin_mutex_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = trajectory["observation"]["state"][:, :8]
|
||||
|
||||
# invert gripper action + clip, +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :6],
|
||||
invert_gripper_actions(tf.clip_by_value(trajectory["action"][:, -1:], 0, 1)),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def berkeley_fanuc_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["joint_state"] = trajectory["observation"]["state"][:, :6]
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, 6:7]
|
||||
|
||||
# dataset does not store gripper actions, so use gripper state info, invert so +1 = open, 0 = close
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
invert_gripper_actions(trajectory["observation"]["gripper_state"]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def cmu_playing_with_food_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
import tensorflow_graphics.geometry.transformation as tft
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
tft.euler.from_quaternion(trajectory["action"][:, 3:7]),
|
||||
trajectory["action"][:, -1:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def playfusion_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :3],
|
||||
trajectory["action"][:, -4:],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def cmu_stretch_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["eef_state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["state"][:, :3],
|
||||
tf.zeros_like(trajectory["observation"]["state"][:, :3]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -1:]
|
||||
trajectory["action"] = trajectory["action"][..., :-1]
|
||||
return trajectory
|
||||
|
||||
|
||||
def gnm_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
trajectory["observation"]["state"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["position"],
|
||||
tf.zeros_like(trajectory["observation"]["state"][:, :3]),
|
||||
trajectory["observation"]["yaw"],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"],
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"]),
|
||||
tf.zeros_like(trajectory["action"][:, :1]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def fmb_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# every input feature is batched, ie has leading batch dimension
|
||||
trajectory["observation"]["proprio"] = tf.concat(
|
||||
(
|
||||
trajectory["observation"]["eef_pose"],
|
||||
trajectory["observation"]["state_gripper_pose"][..., None],
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def dobbe_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# every input feature is batched, ie has leading batch dimension
|
||||
trajectory["observation"]["proprio"] = trajectory["observation"]["state"]
|
||||
return trajectory
|
||||
|
||||
|
||||
def robo_set_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# gripper action is in -1...1 --> clip to 0...1, flip
|
||||
gripper_action = trajectory["action"][:, -1:]
|
||||
gripper_action = invert_gripper_actions(tf.clip_by_value(gripper_action, 0, 1))
|
||||
|
||||
trajectory["action"] = tf.concat(
|
||||
(
|
||||
trajectory["action"][:, :7],
|
||||
gripper_action,
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
return trajectory
|
||||
|
||||
|
||||
def identity_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
|
||||
return trajectory
|
||||
|
||||
|
||||
# === Registry ===
|
||||
OPENX_STANDARDIZATION_TRANSFORMS = {
|
||||
"bridge_openx": bridge_openx_dataset_transform,
|
||||
"bridge_orig": bridge_orig_dataset_transform,
|
||||
"bridge_dataset": bridge_orig_dataset_transform,
|
||||
"ppgm": ppgm_dataset_transform,
|
||||
"ppgm_static": ppgm_dataset_transform,
|
||||
"ppgm_wrist": ppgm_dataset_transform,
|
||||
"fractal20220817_data": rt1_dataset_transform,
|
||||
"kuka": kuka_dataset_transform,
|
||||
"taco_play": taco_play_dataset_transform,
|
||||
"jaco_play": jaco_play_dataset_transform,
|
||||
"berkeley_cable_routing": berkeley_cable_routing_dataset_transform,
|
||||
"roboturk": roboturk_dataset_transform,
|
||||
"nyu_door_opening_surprising_effectiveness": nyu_door_opening_dataset_transform,
|
||||
"viola": viola_dataset_transform,
|
||||
"berkeley_autolab_ur5": berkeley_autolab_ur5_dataset_transform,
|
||||
"toto": toto_dataset_transform,
|
||||
"language_table": language_table_dataset_transform,
|
||||
"columbia_cairlab_pusht_real": pusht_dataset_transform,
|
||||
"stanford_kuka_multimodal_dataset_converted_externally_to_rlds": stanford_kuka_multimodal_dataset_transform,
|
||||
"nyu_rot_dataset_converted_externally_to_rlds": nyu_rot_dataset_transform,
|
||||
"stanford_hydra_dataset_converted_externally_to_rlds": stanford_hydra_dataset_transform,
|
||||
"austin_buds_dataset_converted_externally_to_rlds": austin_buds_dataset_transform,
|
||||
"nyu_franka_play_dataset_converted_externally_to_rlds": nyu_franka_play_dataset_transform,
|
||||
"maniskill_dataset_converted_externally_to_rlds": maniskill_dataset_transform,
|
||||
"furniture_bench_dataset_converted_externally_to_rlds": furniture_bench_dataset_transform,
|
||||
"cmu_franka_exploration_dataset_converted_externally_to_rlds": cmu_franka_exploration_dataset_transform,
|
||||
"ucsd_kitchen_dataset_converted_externally_to_rlds": ucsd_kitchen_dataset_transform,
|
||||
"ucsd_pick_and_place_dataset_converted_externally_to_rlds": ucsd_pick_place_dataset_transform,
|
||||
"austin_sailor_dataset_converted_externally_to_rlds": austin_sailor_dataset_transform,
|
||||
"austin_sirius_dataset_converted_externally_to_rlds": austin_sirius_dataset_transform,
|
||||
"bc_z": bc_z_dataset_transform,
|
||||
"utokyo_pr2_opening_fridge_converted_externally_to_rlds": tokyo_pr2_opening_fridge_dataset_transform,
|
||||
"utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds": tokyo_pr2_tabletop_manipulation_dataset_transform,
|
||||
"utokyo_xarm_pick_and_place_converted_externally_to_rlds": identity_transform,
|
||||
"utokyo_xarm_bimanual_converted_externally_to_rlds": utokyo_xarm_bimanual_dataset_transform,
|
||||
"robo_net": robo_net_dataset_transform,
|
||||
"berkeley_mvp_converted_externally_to_rlds": berkeley_mvp_dataset_transform,
|
||||
"berkeley_rpt_converted_externally_to_rlds": berkeley_rpt_dataset_transform,
|
||||
"kaist_nonprehensile_converted_externally_to_rlds": kaist_nonprehensible_dataset_transform,
|
||||
"stanford_mask_vit_converted_externally_to_rlds": stanford_mask_vit_dataset_transform,
|
||||
"tokyo_u_lsmo_converted_externally_to_rlds": tokyo_lsmo_dataset_transform,
|
||||
"dlr_sara_pour_converted_externally_to_rlds": identity_transform,
|
||||
"dlr_sara_grid_clamp_converted_externally_to_rlds": dlr_sara_grid_clamp_dataset_transform,
|
||||
"dlr_edan_shared_control_converted_externally_to_rlds": dlr_edan_shared_control_dataset_transform,
|
||||
"asu_table_top_converted_externally_to_rlds": asu_table_top_dataset_transform,
|
||||
"stanford_robocook_converted_externally_to_rlds": robocook_dataset_transform,
|
||||
"imperialcollege_sawyer_wrist_cam": imperial_wristcam_dataset_transform,
|
||||
"iamlab_cmu_pickup_insert_converted_externally_to_rlds": iamlab_pick_insert_dataset_transform,
|
||||
"uiuc_d3field": uiuc_d3field_dataset_transform,
|
||||
"utaustin_mutex": utaustin_mutex_dataset_transform,
|
||||
"berkeley_fanuc_manipulation": berkeley_fanuc_dataset_transform,
|
||||
"cmu_playing_with_food": cmu_playing_with_food_dataset_transform,
|
||||
"cmu_play_fusion": playfusion_dataset_transform,
|
||||
"cmu_stretch": cmu_stretch_dataset_transform,
|
||||
"berkeley_gnm_recon": gnm_dataset_transform,
|
||||
"berkeley_gnm_cory_hall": gnm_dataset_transform,
|
||||
"berkeley_gnm_sac_son": gnm_dataset_transform,
|
||||
"droid": droid_baseact_transform_fn(),
|
||||
"droid_100": droid_baseact_transform_fn(), # first 100 episodes of droid
|
||||
"fmb": fmb_transform,
|
||||
"dobbe": dobbe_dataset_transform,
|
||||
"robo_set": robo_set_dataset_transform,
|
||||
"usc_cloth_sim_converted_externally_to_rlds": identity_transform,
|
||||
"plex_robosuite": identity_transform,
|
||||
"conq_hose_manipulation": identity_transform,
|
||||
"io_ai_tech": identity_transform,
|
||||
"spoc": identity_transform,
|
||||
}
|
||||
359
lerobot/common/datasets/push_dataset_to_hub/openx_rlds_format.py
Normal file
359
lerobot/common/datasets/push_dataset_to_hub/openx_rlds_format.py
Normal file
@@ -0,0 +1,359 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
|
||||
|
||||
Example:
|
||||
python lerobot/scripts/push_dataset_to_hub.py \
|
||||
--raw-dir /hdd/tensorflow_datasets/bridge_dataset/1.0.0/ \
|
||||
--repo-id youliangtan/sampled_bridge_data_v2 \
|
||||
--raw-format openx_rlds.bridge_orig \
|
||||
--episodes 3 4 5 8 9
|
||||
|
||||
Exact dataset fps defined in openx/config.py, obtained from:
|
||||
https://docs.google.com/spreadsheets/d/1rPBD77tk60AEIGZrGSODwyyzs5FgCU9Uz3h-3_t2A9g/edit?gid=0#gid=0&range=R:R
|
||||
"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
import torch
|
||||
import tqdm
|
||||
import yaml
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.openx.transforms import OPENX_STANDARDIZATION_TRANSFORMS
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
with open("lerobot/common/datasets/push_dataset_to_hub/openx/configs.yaml") as f:
|
||||
_openx_list = yaml.safe_load(f)
|
||||
|
||||
OPENX_DATASET_CONFIGS = _openx_list["OPENX_DATASET_CONFIGS"]
|
||||
|
||||
np.set_printoptions(precision=2)
|
||||
|
||||
|
||||
def tf_to_torch(data):
|
||||
return torch.from_numpy(data.numpy())
|
||||
|
||||
|
||||
def tf_img_convert(img):
|
||||
if img.dtype == tf.string:
|
||||
img = tf.io.decode_image(img, expand_animations=False, dtype=tf.uint8)
|
||||
elif img.dtype != tf.uint8:
|
||||
raise ValueError(f"Unsupported image dtype: found with dtype {img.dtype}")
|
||||
return img.numpy()
|
||||
|
||||
|
||||
def _broadcast_metadata_rlds(i: tf.Tensor, traj: dict) -> dict:
|
||||
"""
|
||||
In the RLDS format, each trajectory has some top-level metadata that is explicitly separated out, and a "steps"
|
||||
entry. This function moves the "steps" entry to the top level, broadcasting any metadata to the length of the
|
||||
trajectory. This function also adds the extra metadata fields `_len`, `_traj_index`, and `_frame_index`.
|
||||
|
||||
NOTE: adapted from DLimp library https://github.com/kvablack/dlimp/
|
||||
"""
|
||||
steps = traj.pop("steps")
|
||||
|
||||
traj_len = tf.shape(tf.nest.flatten(steps)[0])[0]
|
||||
|
||||
# broadcast metadata to the length of the trajectory
|
||||
metadata = tf.nest.map_structure(lambda x: tf.repeat(x, traj_len), traj)
|
||||
|
||||
# put steps back in
|
||||
assert "traj_metadata" not in steps
|
||||
traj = {**steps, "traj_metadata": metadata}
|
||||
|
||||
assert "_len" not in traj
|
||||
assert "_traj_index" not in traj
|
||||
assert "_frame_index" not in traj
|
||||
traj["_len"] = tf.repeat(traj_len, traj_len)
|
||||
traj["_traj_index"] = tf.repeat(i, traj_len)
|
||||
traj["_frame_index"] = tf.range(traj_len)
|
||||
|
||||
return traj
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
openx_dataset_name: str | None = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
raw_dir (Path): _description_
|
||||
videos_dir (Path): _description_
|
||||
fps (int): _description_
|
||||
video (bool): _description_
|
||||
episodes (list[int] | None, optional): _description_. Defaults to None.
|
||||
"""
|
||||
ds_builder = tfds.builder_from_directory(str(raw_dir))
|
||||
dataset = ds_builder.as_dataset(
|
||||
split="all",
|
||||
decoders={"steps": tfds.decode.SkipDecoding()},
|
||||
)
|
||||
|
||||
dataset_info = ds_builder.info
|
||||
print("dataset_info: ", dataset_info)
|
||||
|
||||
ds_length = len(dataset)
|
||||
dataset = dataset.take(ds_length)
|
||||
# "flatten" the dataset as such we can apply trajectory level map() easily
|
||||
# each [obs][key] has a shape of (frame_size, ...)
|
||||
dataset = dataset.enumerate().map(_broadcast_metadata_rlds)
|
||||
|
||||
# we will apply the standardization transform if the dataset_name is provided
|
||||
# if the dataset name is not provided and the goal is to convert any rlds formatted dataset
|
||||
# search for 'image' keys in the observations
|
||||
if openx_dataset_name is not None:
|
||||
print(" - applying standardization transform for dataset: ", openx_dataset_name)
|
||||
assert openx_dataset_name in OPENX_STANDARDIZATION_TRANSFORMS
|
||||
transform_fn = OPENX_STANDARDIZATION_TRANSFORMS[openx_dataset_name]
|
||||
dataset = dataset.map(transform_fn)
|
||||
|
||||
image_keys = OPENX_DATASET_CONFIGS[openx_dataset_name]["image_obs_keys"]
|
||||
else:
|
||||
obs_keys = dataset_info.features["steps"]["observation"].keys()
|
||||
image_keys = [key for key in obs_keys if "image" in key]
|
||||
|
||||
lang_key = "language_instruction" if "language_instruction" in dataset.element_spec else None
|
||||
|
||||
print(" - image_keys: ", image_keys)
|
||||
print(" - lang_key: ", lang_key)
|
||||
|
||||
it = iter(dataset)
|
||||
|
||||
ep_dicts = []
|
||||
# Init temp path to save ep_dicts in case of crash
|
||||
tmp_ep_dicts_dir = videos_dir.parent.joinpath("ep_dicts")
|
||||
tmp_ep_dicts_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# check if ep_dicts have already been saved in /tmp
|
||||
starting_ep_idx = 0
|
||||
saved_ep_dicts = [ep.__str__() for ep in tmp_ep_dicts_dir.iterdir()]
|
||||
if len(saved_ep_dicts) > 0:
|
||||
saved_ep_dicts.sort()
|
||||
# get last ep_idx number
|
||||
starting_ep_idx = int(saved_ep_dicts[-1][-13:-3]) + 1
|
||||
for i in range(starting_ep_idx):
|
||||
episode = next(it)
|
||||
ep_dicts.append(torch.load(saved_ep_dicts[i]))
|
||||
|
||||
# if we user specified episodes, skip the ones not in the list
|
||||
if episodes is not None:
|
||||
if ds_length == 0:
|
||||
raise ValueError("No episodes found.")
|
||||
# convert episodes index to sorted list
|
||||
episodes = sorted(episodes)
|
||||
|
||||
for ep_idx in tqdm.tqdm(range(starting_ep_idx, ds_length)):
|
||||
episode = next(it)
|
||||
|
||||
# if user specified episodes, skip the ones not in the list
|
||||
if episodes is not None:
|
||||
if len(episodes) == 0:
|
||||
break
|
||||
if ep_idx == episodes[0]:
|
||||
# process this episode
|
||||
print(" selecting episode idx: ", ep_idx)
|
||||
episodes.pop(0)
|
||||
else:
|
||||
continue # skip
|
||||
|
||||
num_frames = episode["action"].shape[0]
|
||||
|
||||
###########################################################
|
||||
# Handle the episodic data
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
done[-1] = True
|
||||
ep_dict = {}
|
||||
langs = [] # TODO: might be located in "observation"
|
||||
|
||||
image_array_dict = {key: [] for key in image_keys}
|
||||
|
||||
# We will create the state observation tensor by stacking the state
|
||||
# obs keys defined in the openx/configs.py
|
||||
if openx_dataset_name is not None:
|
||||
state_obs_keys = OPENX_DATASET_CONFIGS[openx_dataset_name]["state_obs_keys"]
|
||||
# stack the state observations, if is None, pad with zeros
|
||||
states = []
|
||||
for key in state_obs_keys:
|
||||
if key in episode["observation"]:
|
||||
states.append(tf_to_torch(episode["observation"][key]))
|
||||
else:
|
||||
states.append(torch.zeros(num_frames, 1)) # pad with zeros
|
||||
states = torch.cat(states, dim=1)
|
||||
# assert states.shape == (num_frames, 8), f"states shape: {states.shape}"
|
||||
else:
|
||||
states = tf_to_torch(episode["observation"]["state"])
|
||||
|
||||
actions = tf_to_torch(episode["action"])
|
||||
rewards = tf_to_torch(episode["reward"]).float()
|
||||
|
||||
# If lang_key is present, convert the entire tensor at once
|
||||
if lang_key is not None:
|
||||
langs = [str(x) for x in episode[lang_key]]
|
||||
|
||||
for im_key in image_keys:
|
||||
imgs = episode["observation"][im_key]
|
||||
image_array_dict[im_key] = [tf_img_convert(img) for img in imgs]
|
||||
|
||||
# simple assertions
|
||||
for item in [states, actions, rewards, done]:
|
||||
assert len(item) == num_frames
|
||||
|
||||
###########################################################
|
||||
|
||||
# loop through all cameras
|
||||
for im_key in image_keys:
|
||||
img_key = f"observation.images.{im_key}"
|
||||
imgs_array = image_array_dict[im_key]
|
||||
imgs_array = np.array(imgs_array)
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
if lang_key is not None:
|
||||
ep_dict["language_instruction"] = langs
|
||||
|
||||
ep_dict["observation.state"] = states
|
||||
ep_dict["action"] = actions
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["next.reward"] = rewards
|
||||
ep_dict["next.done"] = done
|
||||
|
||||
path_ep_dict = tmp_ep_dicts_dir.joinpath(
|
||||
"ep_dict_" + "0" * (10 - len(str(ep_idx))) + str(ep_idx) + ".pt"
|
||||
)
|
||||
torch.save(ep_dict, path_ep_dict)
|
||||
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
|
||||
keys = [key for key in data_dict if "observation.images." in key]
|
||||
for key in keys:
|
||||
if video:
|
||||
features[key] = VideoFrame()
|
||||
else:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "language_instruction" in data_dict:
|
||||
features["language_instruction"] = Value(dtype="string", id=None)
|
||||
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.reward"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
openx_dataset_name: str | None = None,
|
||||
):
|
||||
"""This is a test impl for rlds conversion"""
|
||||
if openx_dataset_name is None:
|
||||
# set a default rlds frame rate if the dataset is not from openx
|
||||
fps = 30
|
||||
elif "fps" not in OPENX_DATASET_CONFIGS[openx_dataset_name]:
|
||||
raise ValueError(
|
||||
"fps for this dataset is not specified in openx/configs.py yet," "means it is not yet tested"
|
||||
)
|
||||
fps = OPENX_DATASET_CONFIGS[openx_dataset_name]["fps"]
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding, openx_dataset_name)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process zarr files formatted like in: https://github.com/real-stanford/diffusion_policy"""
|
||||
|
||||
import shutil
|
||||
@@ -10,8 +25,14 @@ import zarr
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
@@ -38,7 +59,15 @@ def check_format(raw_dir):
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
keypoints_instead_of_image: bool = False,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
try:
|
||||
import pymunk
|
||||
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
|
||||
@@ -56,7 +85,6 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
|
||||
|
||||
episode_ids = torch.from_numpy(zarr_data.get_episode_idxs())
|
||||
num_episodes = zarr_data.meta["episode_ends"].shape[0]
|
||||
assert len(
|
||||
{zarr_data[key].shape[0] for key in zarr_data.keys()} # noqa: SIM118
|
||||
), "Some data type dont have the same number of total frames."
|
||||
@@ -69,32 +97,44 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
states = torch.from_numpy(zarr_data["state"])
|
||||
actions = torch.from_numpy(zarr_data["action"])
|
||||
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
# load data indices from which each episode starts and ends
|
||||
from_ids, to_ids = [], []
|
||||
from_idx = 0
|
||||
for to_idx in zarr_data.meta["episode_ends"]:
|
||||
from_ids.append(from_idx)
|
||||
to_ids.append(to_idx)
|
||||
from_idx = to_idx
|
||||
|
||||
id_from = 0
|
||||
for ep_idx in tqdm.tqdm(range(num_episodes)):
|
||||
id_to = zarr_data.meta["episode_ends"][ep_idx]
|
||||
num_frames = id_to - id_from
|
||||
num_episodes = len(from_ids)
|
||||
|
||||
ep_dicts = []
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
|
||||
from_idx = from_ids[selected_ep_idx]
|
||||
to_idx = to_ids[selected_ep_idx]
|
||||
num_frames = to_idx - from_idx
|
||||
|
||||
# sanity check
|
||||
assert (episode_ids[id_from:id_to] == ep_idx).all()
|
||||
assert (episode_ids[from_idx:to_idx] == ep_idx).all()
|
||||
|
||||
# get image
|
||||
image = imgs[id_from:id_to]
|
||||
assert image.min() >= 0.0
|
||||
assert image.max() <= 255.0
|
||||
image = image.type(torch.uint8)
|
||||
if not keypoints_instead_of_image:
|
||||
image = imgs[from_idx:to_idx]
|
||||
assert image.min() >= 0.0
|
||||
assert image.max() <= 255.0
|
||||
image = image.type(torch.uint8)
|
||||
|
||||
# get state
|
||||
state = states[id_from:id_to]
|
||||
state = states[from_idx:to_idx]
|
||||
agent_pos = state[:, :2]
|
||||
block_pos = state[:, 2:4]
|
||||
block_angle = state[:, 4]
|
||||
|
||||
# get reward, success, done
|
||||
# get reward, success, done, and (maybe) keypoints
|
||||
reward = torch.zeros(num_frames)
|
||||
success = torch.zeros(num_frames, dtype=torch.bool)
|
||||
if keypoints_instead_of_image:
|
||||
keypoints = torch.zeros(num_frames, 16) # 8 keypoints each with 2 coords
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
for i in range(num_frames):
|
||||
space = pymunk.Space()
|
||||
@@ -110,7 +150,7 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
]
|
||||
space.add(*walls)
|
||||
|
||||
block_body = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||||
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
@@ -118,34 +158,41 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
coverage = intersection_area / goal_area
|
||||
reward[i] = np.clip(coverage / success_threshold, 0, 1)
|
||||
success[i] = coverage > success_threshold
|
||||
if keypoints_instead_of_image:
|
||||
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done[-1] = True
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
imgs_array = [x.numpy() for x in image]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
if not keypoints_instead_of_image:
|
||||
imgs_array = [x.numpy() for x in image]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = agent_pos
|
||||
ep_dict["action"] = actions[id_from:id_to]
|
||||
if keypoints_instead_of_image:
|
||||
ep_dict["observation.environment_state"] = keypoints
|
||||
ep_dict["action"] = actions[from_idx:to_idx]
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
@@ -156,31 +203,30 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
ep_dict["next.done"] = torch.cat([done[1:], done[[-1]]])
|
||||
ep_dict["next.success"] = torch.cat([success[1:], success[[-1]]])
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
|
||||
id_from += num_frames
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
return data_dict, episode_data_index
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
def to_hf_dataset(data_dict, video, keypoints_instead_of_image: bool = False):
|
||||
features = {}
|
||||
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
if not keypoints_instead_of_image:
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if keypoints_instead_of_image:
|
||||
features["observation.environment_state"] = Sequence(
|
||||
length=data_dict["observation.environment_state"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
@@ -197,18 +243,33 @@ def to_hf_dataset(data_dict, video):
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# Manually change this to True to use keypoints of the T instead of an image observation (but don't merge
|
||||
# with True). Also make sure to use video = 0 in the `push_dataset_to_hub.py` script.
|
||||
keypoints_instead_of_image = False
|
||||
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 10
|
||||
|
||||
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, keypoints_instead_of_image, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video, keypoints_instead_of_image)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
"video": video if not keypoints_instead_of_image else 0,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
|
||||
@@ -1,19 +1,39 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process UMI (Universal Manipulation Interface) data stored in Zarr format like in: https://github.com/real-stanford/universal_manipulation_interface"""
|
||||
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
import zarr
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
@@ -44,23 +64,14 @@ def check_format(raw_dir) -> bool:
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
|
||||
|
||||
def get_episode_idxs(episode_ends: np.ndarray) -> np.ndarray:
|
||||
# Optimized and simplified version of this function: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/common/replay_buffer.py#L374
|
||||
from numba import jit
|
||||
|
||||
@jit(nopython=True)
|
||||
def _get_episode_idxs(episode_ends):
|
||||
result = np.zeros((episode_ends[-1],), dtype=np.int64)
|
||||
start_idx = 0
|
||||
for episode_number, end_idx in enumerate(episode_ends):
|
||||
result[start_idx:end_idx] = episode_number
|
||||
start_idx = end_idx
|
||||
return result
|
||||
|
||||
return _get_episode_idxs(episode_ends)
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
zarr_path = raw_dir / "cup_in_the_wild.zarr"
|
||||
zarr_data = zarr.open(zarr_path, mode="r")
|
||||
|
||||
@@ -77,74 +88,79 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
episode_ends = zarr_data["meta/episode_ends"][:]
|
||||
num_episodes = episode_ends.shape[0]
|
||||
|
||||
episode_ids = torch.from_numpy(get_episode_idxs(episode_ends))
|
||||
|
||||
# We convert it in torch tensor later because the jit function does not support torch tensors
|
||||
episode_ends = torch.from_numpy(episode_ends)
|
||||
|
||||
# load data indices from which each episode starts and ends
|
||||
from_ids, to_ids = [], []
|
||||
from_idx = 0
|
||||
for to_idx in episode_ends:
|
||||
from_ids.append(from_idx)
|
||||
to_ids.append(to_idx)
|
||||
from_idx = to_idx
|
||||
|
||||
ep_dicts_dir = videos_dir / "ep_dicts"
|
||||
ep_dicts_dir.mkdir(exist_ok=True, parents=True)
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
id_from = 0
|
||||
for ep_idx in tqdm.tqdm(range(num_episodes)):
|
||||
id_to = episode_ends[ep_idx]
|
||||
num_frames = id_to - id_from
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
|
||||
ep_dict_path = ep_dicts_dir / f"{ep_idx}"
|
||||
if not ep_dict_path.is_file():
|
||||
from_idx = from_ids[selected_ep_idx]
|
||||
to_idx = to_ids[selected_ep_idx]
|
||||
num_frames = to_idx - from_idx
|
||||
|
||||
# sanity heck
|
||||
assert (episode_ids[id_from:id_to] == ep_idx).all()
|
||||
# TODO(rcadene): save temporary images of the episode?
|
||||
|
||||
# TODO(rcadene): save temporary images of the episode?
|
||||
state = states[from_idx:to_idx]
|
||||
|
||||
state = states[id_from:id_to]
|
||||
ep_dict = {}
|
||||
|
||||
ep_dict = {}
|
||||
# load 57MB of images in RAM (400x224x224x3 uint8)
|
||||
imgs_array = zarr_data["data/camera0_rgb"][from_idx:to_idx]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
if not video_path.is_file():
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# load 57MB of images in RAM (400x224x224x3 uint8)
|
||||
imgs_array = zarr_data["data/camera0_rgb"][id_from:id_to]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
# encode images to a mp4 video
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_data_index_from"] = torch.tensor([from_idx] * num_frames)
|
||||
ep_dict["episode_data_index_to"] = torch.tensor([from_idx + num_frames] * num_frames)
|
||||
ep_dict["end_pose"] = end_pose[from_idx:to_idx]
|
||||
ep_dict["start_pos"] = start_pos[from_idx:to_idx]
|
||||
ep_dict["gripper_width"] = gripper_width[from_idx:to_idx]
|
||||
torch.save(ep_dict, ep_dict_path)
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
ep_dict = torch.load(ep_dict_path)
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_data_index_from"] = torch.tensor([id_from] * num_frames)
|
||||
ep_dict["episode_data_index_to"] = torch.tensor([id_from + num_frames] * num_frames)
|
||||
ep_dict["end_pose"] = end_pose[id_from:id_to]
|
||||
ep_dict["start_pos"] = start_pos[id_from:id_to]
|
||||
ep_dict["gripper_width"] = gripper_width[id_from:id_to]
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
id_from += num_frames
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = id_from
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
|
||||
return data_dict, episode_data_index
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
@@ -184,7 +200,14 @@ def to_hf_dataset(data_dict, video):
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
@@ -197,11 +220,15 @@ def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=Tru
|
||||
"Generating UMI dataset without `video=True` creates ~150GB on disk and requires ~80GB in RAM."
|
||||
)
|
||||
|
||||
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
|
||||
@@ -1,3 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import inspect
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
|
||||
@@ -5,6 +21,8 @@ import numpy
|
||||
import PIL
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.video_utils import encode_video_frames
|
||||
|
||||
|
||||
def concatenate_episodes(ep_dicts):
|
||||
data_dict = {}
|
||||
@@ -36,3 +54,21 @@ def save_images_concurrently(imgs_array: numpy.array, out_dir: Path, max_workers
|
||||
num_images = len(imgs_array)
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
[executor.submit(save_image, imgs_array[i], i, out_dir) for i in range(num_images)]
|
||||
|
||||
|
||||
def get_default_encoding() -> dict:
|
||||
"""Returns the default ffmpeg encoding parameters used by `encode_video_frames`."""
|
||||
signature = inspect.signature(encode_video_frames)
|
||||
return {
|
||||
k: v.default
|
||||
for k, v in signature.parameters.items()
|
||||
if v.default is not inspect.Parameter.empty and k in ["vcodec", "pix_fmt", "g", "crf"]
|
||||
}
|
||||
|
||||
|
||||
def check_repo_id(repo_id: str) -> None:
|
||||
if len(repo_id.split("/")) != 2:
|
||||
raise ValueError(
|
||||
f"""`repo_id` is expected to contain a community or user id `/` the name of the dataset
|
||||
(e.g. 'lerobot/pusht'), but contains '{repo_id}'."""
|
||||
)
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process pickle files formatted like in: https://github.com/fyhMer/fowm"""
|
||||
|
||||
import pickle
|
||||
@@ -10,8 +25,14 @@ import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
@@ -39,37 +60,49 @@ def check_format(raw_dir):
|
||||
assert all(len(nested_dict[subkey]) == expected_len for subkey in subkeys if subkey in nested_dict)
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
pkl_path = raw_dir / "buffer.pkl"
|
||||
|
||||
with open(pkl_path, "rb") as f:
|
||||
pkl_data = pickle.load(f)
|
||||
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
id_from = 0
|
||||
id_to = 0
|
||||
ep_idx = 0
|
||||
total_frames = pkl_data["actions"].shape[0]
|
||||
for i in tqdm.tqdm(range(total_frames)):
|
||||
id_to += 1
|
||||
|
||||
if not pkl_data["dones"][i]:
|
||||
# load data indices from which each episode starts and ends
|
||||
from_ids, to_ids = [], []
|
||||
from_idx, to_idx = 0, 0
|
||||
for done in pkl_data["dones"]:
|
||||
to_idx += 1
|
||||
if not done:
|
||||
continue
|
||||
from_ids.append(from_idx)
|
||||
to_ids.append(to_idx)
|
||||
from_idx = to_idx
|
||||
|
||||
num_frames = id_to - id_from
|
||||
num_episodes = len(from_ids)
|
||||
|
||||
image = torch.tensor(pkl_data["observations"]["rgb"][id_from:id_to])
|
||||
ep_dicts = []
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
|
||||
from_idx = from_ids[selected_ep_idx]
|
||||
to_idx = to_ids[selected_ep_idx]
|
||||
num_frames = to_idx - from_idx
|
||||
|
||||
image = torch.tensor(pkl_data["observations"]["rgb"][from_idx:to_idx])
|
||||
image = einops.rearrange(image, "b c h w -> b h w c")
|
||||
state = torch.tensor(pkl_data["observations"]["state"][id_from:id_to])
|
||||
action = torch.tensor(pkl_data["actions"][id_from:id_to])
|
||||
state = torch.tensor(pkl_data["observations"]["state"][from_idx:to_idx])
|
||||
action = torch.tensor(pkl_data["actions"][from_idx:to_idx])
|
||||
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
|
||||
# it is critical to have this frame for tdmpc to predict a "done observation/state"
|
||||
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][id_from:id_to])
|
||||
# next_state = torch.tensor(pkl_data["next_observations"]["state"][id_from:id_to])
|
||||
next_reward = torch.tensor(pkl_data["rewards"][id_from:id_to])
|
||||
next_done = torch.tensor(pkl_data["dones"][id_from:id_to])
|
||||
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][from_idx:to_idx])
|
||||
# next_state = torch.tensor(pkl_data["next_observations"]["state"][from_idx:to_idx])
|
||||
next_reward = torch.tensor(pkl_data["rewards"][from_idx:to_idx])
|
||||
next_done = torch.tensor(pkl_data["dones"][from_idx:to_idx])
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
@@ -77,13 +110,13 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
@@ -104,18 +137,11 @@ def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
ep_dict["next.done"] = next_done
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
|
||||
id_from = id_to
|
||||
ep_idx += 1
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
return data_dict, episode_data_index
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
@@ -146,18 +172,29 @@ def to_hf_dataset(data_dict, video):
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 15
|
||||
|
||||
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
|
||||
61
lerobot/common/datasets/sampler.py
Normal file
61
lerobot/common/datasets/sampler.py
Normal file
@@ -0,0 +1,61 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Iterator, Union
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class EpisodeAwareSampler:
|
||||
def __init__(
|
||||
self,
|
||||
episode_data_index: dict,
|
||||
episode_indices_to_use: Union[list, None] = None,
|
||||
drop_n_first_frames: int = 0,
|
||||
drop_n_last_frames: int = 0,
|
||||
shuffle: bool = False,
|
||||
):
|
||||
"""Sampler that optionally incorporates episode boundary information.
|
||||
|
||||
Args:
|
||||
episode_data_index: Dictionary with keys 'from' and 'to' containing the start and end indices of each episode.
|
||||
episode_indices_to_use: List of episode indices to use. If None, all episodes are used.
|
||||
Assumes that episodes are indexed from 0 to N-1.
|
||||
drop_n_first_frames: Number of frames to drop from the start of each episode.
|
||||
drop_n_last_frames: Number of frames to drop from the end of each episode.
|
||||
shuffle: Whether to shuffle the indices.
|
||||
"""
|
||||
indices = []
|
||||
for episode_idx, (start_index, end_index) in enumerate(
|
||||
zip(episode_data_index["from"], episode_data_index["to"], strict=True)
|
||||
):
|
||||
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
|
||||
indices.extend(
|
||||
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
|
||||
)
|
||||
|
||||
self.indices = indices
|
||||
self.shuffle = shuffle
|
||||
|
||||
def __iter__(self) -> Iterator[int]:
|
||||
if self.shuffle:
|
||||
for i in torch.randperm(len(self.indices)):
|
||||
yield self.indices[i]
|
||||
else:
|
||||
for i in self.indices:
|
||||
yield i
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.indices)
|
||||
197
lerobot/common/datasets/transforms.py
Normal file
197
lerobot/common/datasets/transforms.py
Normal file
@@ -0,0 +1,197 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import collections
|
||||
from typing import Any, Callable, Dict, Sequence
|
||||
|
||||
import torch
|
||||
from torchvision.transforms import v2
|
||||
from torchvision.transforms.v2 import Transform
|
||||
from torchvision.transforms.v2 import functional as F # noqa: N812
|
||||
|
||||
|
||||
class RandomSubsetApply(Transform):
|
||||
"""Apply a random subset of N transformations from a list of transformations.
|
||||
|
||||
Args:
|
||||
transforms: list of transformations.
|
||||
p: represents the multinomial probabilities (with no replacement) used for sampling the transform.
|
||||
If the sum of the weights is not 1, they will be normalized. If ``None`` (default), all transforms
|
||||
have the same probability.
|
||||
n_subset: number of transformations to apply. If ``None``, all transforms are applied.
|
||||
Must be in [1, len(transforms)].
|
||||
random_order: apply transformations in a random order.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
transforms: Sequence[Callable],
|
||||
p: list[float] | None = None,
|
||||
n_subset: int | None = None,
|
||||
random_order: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
if not isinstance(transforms, Sequence):
|
||||
raise TypeError("Argument transforms should be a sequence of callables")
|
||||
if p is None:
|
||||
p = [1] * len(transforms)
|
||||
elif len(p) != len(transforms):
|
||||
raise ValueError(
|
||||
f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
|
||||
)
|
||||
|
||||
if n_subset is None:
|
||||
n_subset = len(transforms)
|
||||
elif not isinstance(n_subset, int):
|
||||
raise TypeError("n_subset should be an int or None")
|
||||
elif not (1 <= n_subset <= len(transforms)):
|
||||
raise ValueError(f"n_subset should be in the interval [1, {len(transforms)}]")
|
||||
|
||||
self.transforms = transforms
|
||||
total = sum(p)
|
||||
self.p = [prob / total for prob in p]
|
||||
self.n_subset = n_subset
|
||||
self.random_order = random_order
|
||||
|
||||
def forward(self, *inputs: Any) -> Any:
|
||||
needs_unpacking = len(inputs) > 1
|
||||
|
||||
selected_indices = torch.multinomial(torch.tensor(self.p), self.n_subset)
|
||||
if not self.random_order:
|
||||
selected_indices = selected_indices.sort().values
|
||||
|
||||
selected_transforms = [self.transforms[i] for i in selected_indices]
|
||||
|
||||
for transform in selected_transforms:
|
||||
outputs = transform(*inputs)
|
||||
inputs = outputs if needs_unpacking else (outputs,)
|
||||
|
||||
return outputs
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return (
|
||||
f"transforms={self.transforms}, "
|
||||
f"p={self.p}, "
|
||||
f"n_subset={self.n_subset}, "
|
||||
f"random_order={self.random_order}"
|
||||
)
|
||||
|
||||
|
||||
class SharpnessJitter(Transform):
|
||||
"""Randomly change the sharpness of an image or video.
|
||||
|
||||
Similar to a v2.RandomAdjustSharpness with p=1 and a sharpness_factor sampled randomly.
|
||||
While v2.RandomAdjustSharpness applies — with a given probability — a fixed sharpness_factor to an image,
|
||||
SharpnessJitter applies a random sharpness_factor each time. This is to have a more diverse set of
|
||||
augmentations as a result.
|
||||
|
||||
A sharpness_factor of 0 gives a blurred image, 1 gives the original image while 2 increases the sharpness
|
||||
by a factor of 2.
|
||||
|
||||
If the input is a :class:`torch.Tensor`,
|
||||
it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
|
||||
|
||||
Args:
|
||||
sharpness: How much to jitter sharpness. sharpness_factor is chosen uniformly from
|
||||
[max(0, 1 - sharpness), 1 + sharpness] or the given
|
||||
[min, max]. Should be non negative numbers.
|
||||
"""
|
||||
|
||||
def __init__(self, sharpness: float | Sequence[float]) -> None:
|
||||
super().__init__()
|
||||
self.sharpness = self._check_input(sharpness)
|
||||
|
||||
def _check_input(self, sharpness):
|
||||
if isinstance(sharpness, (int, float)):
|
||||
if sharpness < 0:
|
||||
raise ValueError("If sharpness is a single number, it must be non negative.")
|
||||
sharpness = [1.0 - sharpness, 1.0 + sharpness]
|
||||
sharpness[0] = max(sharpness[0], 0.0)
|
||||
elif isinstance(sharpness, collections.abc.Sequence) and len(sharpness) == 2:
|
||||
sharpness = [float(v) for v in sharpness]
|
||||
else:
|
||||
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
|
||||
|
||||
if not 0.0 <= sharpness[0] <= sharpness[1]:
|
||||
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
|
||||
|
||||
return float(sharpness[0]), float(sharpness[1])
|
||||
|
||||
def _generate_value(self, left: float, right: float) -> float:
|
||||
return torch.empty(1).uniform_(left, right).item()
|
||||
|
||||
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
||||
sharpness_factor = self._generate_value(self.sharpness[0], self.sharpness[1])
|
||||
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
|
||||
|
||||
|
||||
def get_image_transforms(
|
||||
brightness_weight: float = 1.0,
|
||||
brightness_min_max: tuple[float, float] | None = None,
|
||||
contrast_weight: float = 1.0,
|
||||
contrast_min_max: tuple[float, float] | None = None,
|
||||
saturation_weight: float = 1.0,
|
||||
saturation_min_max: tuple[float, float] | None = None,
|
||||
hue_weight: float = 1.0,
|
||||
hue_min_max: tuple[float, float] | None = None,
|
||||
sharpness_weight: float = 1.0,
|
||||
sharpness_min_max: tuple[float, float] | None = None,
|
||||
max_num_transforms: int | None = None,
|
||||
random_order: bool = False,
|
||||
):
|
||||
def check_value(name, weight, min_max):
|
||||
if min_max is not None:
|
||||
if len(min_max) != 2:
|
||||
raise ValueError(
|
||||
f"`{name}_min_max` is expected to be a tuple of 2 dimensions, but {min_max} provided."
|
||||
)
|
||||
if weight < 0.0:
|
||||
raise ValueError(
|
||||
f"`{name}_weight` is expected to be 0 or positive, but is negative ({weight})."
|
||||
)
|
||||
|
||||
check_value("brightness", brightness_weight, brightness_min_max)
|
||||
check_value("contrast", contrast_weight, contrast_min_max)
|
||||
check_value("saturation", saturation_weight, saturation_min_max)
|
||||
check_value("hue", hue_weight, hue_min_max)
|
||||
check_value("sharpness", sharpness_weight, sharpness_min_max)
|
||||
|
||||
weights = []
|
||||
transforms = []
|
||||
if brightness_min_max is not None and brightness_weight > 0.0:
|
||||
weights.append(brightness_weight)
|
||||
transforms.append(v2.ColorJitter(brightness=brightness_min_max))
|
||||
if contrast_min_max is not None and contrast_weight > 0.0:
|
||||
weights.append(contrast_weight)
|
||||
transforms.append(v2.ColorJitter(contrast=contrast_min_max))
|
||||
if saturation_min_max is not None and saturation_weight > 0.0:
|
||||
weights.append(saturation_weight)
|
||||
transforms.append(v2.ColorJitter(saturation=saturation_min_max))
|
||||
if hue_min_max is not None and hue_weight > 0.0:
|
||||
weights.append(hue_weight)
|
||||
transforms.append(v2.ColorJitter(hue=hue_min_max))
|
||||
if sharpness_min_max is not None and sharpness_weight > 0.0:
|
||||
weights.append(sharpness_weight)
|
||||
transforms.append(SharpnessJitter(sharpness=sharpness_min_max))
|
||||
|
||||
n_subset = len(transforms)
|
||||
if max_num_transforms is not None:
|
||||
n_subset = min(n_subset, max_num_transforms)
|
||||
|
||||
if n_subset == 0:
|
||||
return v2.Identity()
|
||||
else:
|
||||
# TODO(rcadene, aliberts): add v2.ToDtype float16?
|
||||
return RandomSubsetApply(transforms, p=weights, n_subset=n_subset, random_order=random_order)
|
||||
@@ -1,14 +1,41 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import json
|
||||
import re
|
||||
import warnings
|
||||
from functools import cache
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
from datasets import load_dataset, load_from_disk
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
from huggingface_hub import DatasetCard, HfApi, hf_hub_download, snapshot_download
|
||||
from PIL import Image as PILImage
|
||||
from safetensors.torch import load_file
|
||||
from torchvision import transforms
|
||||
|
||||
DATASET_CARD_TEMPLATE = """
|
||||
---
|
||||
# Metadata will go there
|
||||
---
|
||||
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def flatten_dict(d, parent_key="", sep="/"):
|
||||
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
|
||||
@@ -42,7 +69,7 @@ def unflatten_dict(d, sep="/"):
|
||||
return outdict
|
||||
|
||||
|
||||
def hf_transform_to_torch(items_dict):
|
||||
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
|
||||
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
|
||||
to torch tensors. Importantly, images are converted from PIL, which corresponds to
|
||||
a channel last representation (h w c) of uint8 type, to a torch image representation
|
||||
@@ -53,20 +80,66 @@ def hf_transform_to_torch(items_dict):
|
||||
if isinstance(first_item, PILImage.Image):
|
||||
to_tensor = transforms.ToTensor()
|
||||
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
|
||||
elif isinstance(first_item, str):
|
||||
# TODO (michel-aractingi): add str2embedding via language tokenizer
|
||||
# For now we leave this part up to the user to choose how to address
|
||||
# language conditioned tasks
|
||||
pass
|
||||
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
|
||||
# video frame will be processed downstream
|
||||
pass
|
||||
elif first_item is None:
|
||||
pass
|
||||
else:
|
||||
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
|
||||
return items_dict
|
||||
|
||||
|
||||
def load_hf_dataset(repo_id, version, root, split) -> datasets.Dataset:
|
||||
@cache
|
||||
def get_hf_dataset_safe_version(repo_id: str, version: str) -> str:
|
||||
api = HfApi()
|
||||
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
|
||||
branches = [b.name for b in dataset_info.branches]
|
||||
if version not in branches:
|
||||
warnings.warn(
|
||||
f"""You are trying to load a dataset from {repo_id} created with a previous version of the
|
||||
codebase. The following versions are available: {branches}.
|
||||
The requested version ('{version}') is not found. You should be fine since
|
||||
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
|
||||
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
|
||||
stacklevel=1,
|
||||
)
|
||||
if "main" not in branches:
|
||||
raise ValueError(f"Version 'main' not found on {repo_id}")
|
||||
return "main"
|
||||
else:
|
||||
return version
|
||||
|
||||
|
||||
def load_hf_dataset(repo_id: str, version: str, root: Path, split: str) -> datasets.Dataset:
|
||||
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
|
||||
if root is not None:
|
||||
hf_dataset = load_from_disk(str(Path(root) / repo_id / split))
|
||||
hf_dataset = load_from_disk(str(Path(root) / repo_id / "train"))
|
||||
# TODO(rcadene): clean this which enables getting a subset of dataset
|
||||
if split != "train":
|
||||
if "%" in split:
|
||||
raise NotImplementedError(f"We dont support splitting based on percentage for now ({split}).")
|
||||
match_from = re.search(r"train\[(\d+):\]", split)
|
||||
match_to = re.search(r"train\[:(\d+)\]", split)
|
||||
if match_from:
|
||||
from_frame_index = int(match_from.group(1))
|
||||
hf_dataset = hf_dataset.select(range(from_frame_index, len(hf_dataset)))
|
||||
elif match_to:
|
||||
to_frame_index = int(match_to.group(1))
|
||||
hf_dataset = hf_dataset.select(range(to_frame_index))
|
||||
else:
|
||||
raise ValueError(
|
||||
f'`split` ({split}) should either be "train", "train[INT:]", or "train[:INT]"'
|
||||
)
|
||||
else:
|
||||
hf_dataset = load_dataset(repo_id, revision=version, split=split)
|
||||
safe_version = get_hf_dataset_safe_version(repo_id, version)
|
||||
hf_dataset = load_dataset(repo_id, revision=safe_version, split=split)
|
||||
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
@@ -84,8 +157,9 @@ def load_episode_data_index(repo_id, version, root) -> dict[str, torch.Tensor]:
|
||||
if root is not None:
|
||||
path = Path(root) / repo_id / "meta_data" / "episode_data_index.safetensors"
|
||||
else:
|
||||
safe_version = get_hf_dataset_safe_version(repo_id, version)
|
||||
path = hf_hub_download(
|
||||
repo_id, "meta_data/episode_data_index.safetensors", repo_type="dataset", revision=version
|
||||
repo_id, "meta_data/episode_data_index.safetensors", repo_type="dataset", revision=safe_version
|
||||
)
|
||||
|
||||
return load_file(path)
|
||||
@@ -102,7 +176,10 @@ def load_stats(repo_id, version, root) -> dict[str, dict[str, torch.Tensor]]:
|
||||
if root is not None:
|
||||
path = Path(root) / repo_id / "meta_data" / "stats.safetensors"
|
||||
else:
|
||||
path = hf_hub_download(repo_id, "meta_data/stats.safetensors", repo_type="dataset", revision=version)
|
||||
safe_version = get_hf_dataset_safe_version(repo_id, version)
|
||||
path = hf_hub_download(
|
||||
repo_id, "meta_data/stats.safetensors", repo_type="dataset", revision=safe_version
|
||||
)
|
||||
|
||||
stats = load_file(path)
|
||||
return unflatten_dict(stats)
|
||||
@@ -119,7 +196,8 @@ def load_info(repo_id, version, root) -> dict:
|
||||
if root is not None:
|
||||
path = Path(root) / repo_id / "meta_data" / "info.json"
|
||||
else:
|
||||
path = hf_hub_download(repo_id, "meta_data/info.json", repo_type="dataset", revision=version)
|
||||
safe_version = get_hf_dataset_safe_version(repo_id, version)
|
||||
path = hf_hub_download(repo_id, "meta_data/info.json", repo_type="dataset", revision=safe_version)
|
||||
|
||||
with open(path) as f:
|
||||
info = json.load(f)
|
||||
@@ -131,7 +209,8 @@ def load_videos(repo_id, version, root) -> Path:
|
||||
path = Path(root) / repo_id / "videos"
|
||||
else:
|
||||
# TODO(rcadene): we download the whole repo here. see if we can avoid this
|
||||
repo_dir = snapshot_download(repo_id, repo_type="dataset", revision=version)
|
||||
safe_version = get_hf_dataset_safe_version(repo_id, version)
|
||||
repo_dir = snapshot_download(repo_id, repo_type="dataset", revision=safe_version)
|
||||
path = Path(repo_dir) / "videos"
|
||||
|
||||
return path
|
||||
@@ -230,6 +309,84 @@ def load_previous_and_future_frames(
|
||||
return item
|
||||
|
||||
|
||||
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
|
||||
|
||||
Parameters:
|
||||
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
|
||||
|
||||
Returns:
|
||||
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
|
||||
- "from": A tensor containing the starting index of each episode.
|
||||
- "to": A tensor containing the ending index of each episode.
|
||||
"""
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
current_episode = None
|
||||
"""
|
||||
The episode_index is a list of integers, each representing the episode index of the corresponding example.
|
||||
For instance, the following is a valid episode_index:
|
||||
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
|
||||
|
||||
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
|
||||
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
|
||||
{
|
||||
"from": [0, 3, 7],
|
||||
"to": [3, 7, 12]
|
||||
}
|
||||
"""
|
||||
if len(hf_dataset) == 0:
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([]),
|
||||
"to": torch.tensor([]),
|
||||
}
|
||||
return episode_data_index
|
||||
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
|
||||
if episode_idx != current_episode:
|
||||
# We encountered a new episode, so we append its starting location to the "from" list
|
||||
episode_data_index["from"].append(idx)
|
||||
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
|
||||
if current_episode is not None:
|
||||
episode_data_index["to"].append(idx)
|
||||
# Let's keep track of the current episode index
|
||||
current_episode = episode_idx
|
||||
else:
|
||||
# We are still in the same episode, so there is nothing for us to do here
|
||||
pass
|
||||
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
|
||||
episode_data_index["to"].append(idx + 1)
|
||||
|
||||
for k in ["from", "to"]:
|
||||
episode_data_index[k] = torch.tensor(episode_data_index[k])
|
||||
|
||||
return episode_data_index
|
||||
|
||||
|
||||
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
|
||||
"""Reset the `episode_index` of the provided HuggingFace Dataset.
|
||||
|
||||
`episode_data_index` (and related functionality such as `load_previous_and_future_frames`) requires the
|
||||
`episode_index` to be sorted, continuous (1,1,1 and not 1,2,1) and start at 0.
|
||||
|
||||
This brings the `episode_index` to the required format.
|
||||
"""
|
||||
if len(hf_dataset) == 0:
|
||||
return hf_dataset
|
||||
unique_episode_idxs = torch.stack(hf_dataset["episode_index"]).unique().tolist()
|
||||
episode_idx_to_reset_idx_mapping = {
|
||||
ep_id: reset_ep_id for reset_ep_id, ep_id in enumerate(unique_episode_idxs)
|
||||
}
|
||||
|
||||
def modify_ep_idx_func(example):
|
||||
example["episode_index"] = episode_idx_to_reset_idx_mapping[example["episode_index"].item()]
|
||||
return example
|
||||
|
||||
hf_dataset = hf_dataset.map(modify_ep_idx_func)
|
||||
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def cycle(iterable):
|
||||
"""The equivalent of itertools.cycle, but safe for Pytorch dataloaders.
|
||||
|
||||
@@ -241,3 +398,29 @@ def cycle(iterable):
|
||||
yield next(iterator)
|
||||
except StopIteration:
|
||||
iterator = iter(iterable)
|
||||
|
||||
|
||||
def create_branch(repo_id, *, branch: str, repo_type: str | None = None):
|
||||
"""Create a branch on a existing Hugging Face repo. Delete the branch if it already
|
||||
exists before creating it.
|
||||
"""
|
||||
api = HfApi()
|
||||
|
||||
branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches
|
||||
refs = [branch.ref for branch in branches]
|
||||
ref = f"refs/heads/{branch}"
|
||||
if ref in refs:
|
||||
api.delete_branch(repo_id, repo_type=repo_type, branch=branch)
|
||||
|
||||
api.create_branch(repo_id, repo_type=repo_type, branch=branch)
|
||||
|
||||
|
||||
def create_lerobot_dataset_card(tags: list | None = None, text: str | None = None) -> DatasetCard:
|
||||
card = DatasetCard(DATASET_CARD_TEMPLATE)
|
||||
card.data.task_categories = ["robotics"]
|
||||
card.data.tags = ["LeRobot"]
|
||||
if tags is not None:
|
||||
card.data.tags += tags
|
||||
if text is not None:
|
||||
card.text += text
|
||||
return card
|
||||
|
||||
@@ -1,6 +1,22 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import subprocess
|
||||
import warnings
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, ClassVar
|
||||
@@ -12,7 +28,11 @@ from datasets.features.features import register_feature
|
||||
|
||||
|
||||
def load_from_videos(
|
||||
item: dict[str, torch.Tensor], video_frame_keys: list[str], videos_dir: Path, tolerance_s: float
|
||||
item: dict[str, torch.Tensor],
|
||||
video_frame_keys: list[str],
|
||||
videos_dir: Path,
|
||||
tolerance_s: float,
|
||||
backend: str = "pyav",
|
||||
):
|
||||
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
|
||||
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a Segmentation Fault.
|
||||
@@ -31,14 +51,14 @@ def load_from_videos(
|
||||
raise NotImplementedError("All video paths are expected to be the same for now.")
|
||||
video_path = data_dir / paths[0]
|
||||
|
||||
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
|
||||
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
|
||||
item[key] = frames
|
||||
else:
|
||||
# load one frame
|
||||
timestamps = [item[key]["timestamp"]]
|
||||
video_path = data_dir / item[key]["path"]
|
||||
|
||||
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
|
||||
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
|
||||
item[key] = frames[0]
|
||||
|
||||
return item
|
||||
@@ -48,11 +68,22 @@ def decode_video_frames_torchvision(
|
||||
video_path: str,
|
||||
timestamps: list[float],
|
||||
tolerance_s: float,
|
||||
device: str = "cpu",
|
||||
backend: str = "pyav",
|
||||
log_loaded_timestamps: bool = False,
|
||||
):
|
||||
) -> torch.Tensor:
|
||||
"""Loads frames associated to the requested timestamps of a video
|
||||
|
||||
The backend can be either "pyav" (default) or "video_reader".
|
||||
"video_reader" requires installing torchvision from source, see:
|
||||
https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
|
||||
(note that you need to compile against ffmpeg<4.3)
|
||||
|
||||
While both use cpu, "video_reader" is supposedly faster than "pyav" but requires additional setup.
|
||||
For more info on video decoding, see `benchmark/video/README.md`
|
||||
|
||||
See torchvision doc for more info on these two backends:
|
||||
https://pytorch.org/vision/0.18/index.html?highlight=backend#torchvision.set_video_backend
|
||||
|
||||
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
|
||||
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
|
||||
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
|
||||
@@ -63,21 +94,9 @@ def decode_video_frames_torchvision(
|
||||
|
||||
# set backend
|
||||
keyframes_only = False
|
||||
if device == "cpu":
|
||||
# explicitely use pyav
|
||||
torchvision.set_video_backend("pyav")
|
||||
torchvision.set_video_backend(backend)
|
||||
if backend == "pyav":
|
||||
keyframes_only = True # pyav doesnt support accuracte seek
|
||||
elif device == "cuda":
|
||||
# TODO(rcadene, aliberts): implement video decoding with GPU
|
||||
# torchvision.set_video_backend("cuda")
|
||||
# torchvision.set_video_backend("video_reader")
|
||||
# requires installing torchvision from source, see: https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
|
||||
# check possible bug: https://github.com/pytorch/vision/issues/7745
|
||||
raise NotImplementedError(
|
||||
"Video decoding on gpu with cuda is currently not supported. Use `device='cpu'`."
|
||||
)
|
||||
else:
|
||||
raise ValueError(device)
|
||||
|
||||
# set a video stream reader
|
||||
# TODO(rcadene): also load audio stream at the same time
|
||||
@@ -105,7 +124,9 @@ def decode_video_frames_torchvision(
|
||||
if current_ts >= last_ts:
|
||||
break
|
||||
|
||||
reader.container.close()
|
||||
if backend == "pyav":
|
||||
reader.container.close()
|
||||
|
||||
reader = None
|
||||
|
||||
query_ts = torch.tensor(timestamps)
|
||||
@@ -121,6 +142,10 @@ def decode_video_frames_torchvision(
|
||||
"It means that the closest frame that can be loaded from the video is too far away in time."
|
||||
"This might be due to synchronization issues with timestamps during data collection."
|
||||
"To be safe, we advise to ignore this item during training."
|
||||
f"\nqueried timestamps: {query_ts}"
|
||||
f"\nloaded timestamps: {loaded_ts}"
|
||||
f"\nvideo: {video_path}"
|
||||
f"\nbackend: {backend}"
|
||||
)
|
||||
|
||||
# get closest frames to the query timestamps
|
||||
@@ -137,22 +162,59 @@ def decode_video_frames_torchvision(
|
||||
return closest_frames
|
||||
|
||||
|
||||
def encode_video_frames(imgs_dir: Path, video_path: Path, fps: int):
|
||||
"""More info on ffmpeg arguments tuning on `lerobot/common/datasets/_video_benchmark/README.md`"""
|
||||
def encode_video_frames(
|
||||
imgs_dir: Path,
|
||||
video_path: Path,
|
||||
fps: int,
|
||||
vcodec: str = "libsvtav1",
|
||||
pix_fmt: str = "yuv420p",
|
||||
g: int | None = 2,
|
||||
crf: int | None = 30,
|
||||
fast_decode: int = 0,
|
||||
log_level: str | None = "error",
|
||||
overwrite: bool = False,
|
||||
) -> None:
|
||||
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
|
||||
video_path = Path(video_path)
|
||||
video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
ffmpeg_cmd = (
|
||||
f"ffmpeg -r {fps} "
|
||||
"-f image2 "
|
||||
"-loglevel error "
|
||||
f"-i {str(imgs_dir / 'frame_%06d.png')} "
|
||||
"-vcodec libx264 "
|
||||
"-g 2 "
|
||||
"-pix_fmt yuv444p "
|
||||
f"{str(video_path)}"
|
||||
ffmpeg_args = OrderedDict(
|
||||
[
|
||||
("-f", "image2"),
|
||||
("-r", str(fps)),
|
||||
("-i", str(imgs_dir / "frame_%06d.png")),
|
||||
("-vcodec", vcodec),
|
||||
("-pix_fmt", pix_fmt),
|
||||
]
|
||||
)
|
||||
subprocess.run(ffmpeg_cmd.split(" "), check=True)
|
||||
|
||||
if g is not None:
|
||||
ffmpeg_args["-g"] = str(g)
|
||||
|
||||
if crf is not None:
|
||||
ffmpeg_args["-crf"] = str(crf)
|
||||
|
||||
if fast_decode:
|
||||
key = "-svtav1-params" if vcodec == "libsvtav1" else "-tune"
|
||||
value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode"
|
||||
ffmpeg_args[key] = value
|
||||
|
||||
if log_level is not None:
|
||||
ffmpeg_args["-loglevel"] = str(log_level)
|
||||
|
||||
ffmpeg_args = [item for pair in ffmpeg_args.items() for item in pair]
|
||||
if overwrite:
|
||||
ffmpeg_args.append("-y")
|
||||
|
||||
ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)]
|
||||
# redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal
|
||||
subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL)
|
||||
|
||||
if not video_path.exists():
|
||||
raise OSError(
|
||||
f"Video encoding did not work. File not found: {video_path}. "
|
||||
f"Try running the command manually to debug: `{''.join(ffmpeg_cmd)}`"
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
|
||||
@@ -1,10 +1,25 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
|
||||
import gymnasium as gym
|
||||
from omegaconf import DictConfig
|
||||
|
||||
|
||||
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv:
|
||||
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv | None:
|
||||
"""Makes a gym vector environment according to the evaluation config.
|
||||
|
||||
n_envs can be used to override eval.batch_size in the configuration. Must be at least 1.
|
||||
@@ -12,13 +27,8 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
|
||||
if n_envs is not None and n_envs < 1:
|
||||
raise ValueError("`n_envs must be at least 1")
|
||||
|
||||
kwargs = {
|
||||
"obs_type": "pixels_agent_pos",
|
||||
"render_mode": "rgb_array",
|
||||
"max_episode_steps": cfg.env.episode_length,
|
||||
"visualization_width": 384,
|
||||
"visualization_height": 384,
|
||||
}
|
||||
if cfg.env.name == "real_world":
|
||||
return
|
||||
|
||||
package_name = f"gym_{cfg.env.name}"
|
||||
|
||||
@@ -31,12 +41,16 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
|
||||
raise e
|
||||
|
||||
gym_handle = f"{package_name}/{cfg.env.task}"
|
||||
gym_kwgs = dict(cfg.env.get("gym", {}))
|
||||
|
||||
if cfg.env.get("episode_length"):
|
||||
gym_kwgs["max_episode_steps"] = cfg.env.episode_length
|
||||
|
||||
# batched version of the env that returns an observation of shape (b, c)
|
||||
env_cls = gym.vector.AsyncVectorEnv if cfg.eval.use_async_envs else gym.vector.SyncVectorEnv
|
||||
env = env_cls(
|
||||
[
|
||||
lambda: gym.make(gym_handle, disable_env_checker=True, **kwargs)
|
||||
lambda: gym.make(gym_handle, disable_env_checker=True, **gym_kwgs)
|
||||
for _ in range(n_envs if n_envs is not None else cfg.eval.batch_size)
|
||||
]
|
||||
)
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -13,31 +28,35 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
|
||||
"""
|
||||
# map to expected inputs for the policy
|
||||
return_observations = {}
|
||||
if "pixels" in observations:
|
||||
if isinstance(observations["pixels"], dict):
|
||||
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
|
||||
else:
|
||||
imgs = {"observation.image": observations["pixels"]}
|
||||
|
||||
if isinstance(observations["pixels"], dict):
|
||||
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
|
||||
else:
|
||||
imgs = {"observation.image": observations["pixels"]}
|
||||
for imgkey, img in imgs.items():
|
||||
img = torch.from_numpy(img)
|
||||
|
||||
for imgkey, img in imgs.items():
|
||||
img = torch.from_numpy(img)
|
||||
# sanity check that images are channel last
|
||||
_, h, w, c = img.shape
|
||||
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
|
||||
|
||||
# sanity check that images are channel last
|
||||
_, h, w, c = img.shape
|
||||
assert c < h and c < w, f"expect channel first images, but instead {img.shape}"
|
||||
# sanity check that images are uint8
|
||||
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
|
||||
|
||||
# sanity check that images are uint8
|
||||
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
|
||||
# convert to channel first of type float32 in range [0,1]
|
||||
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
|
||||
img = img.type(torch.float32)
|
||||
img /= 255
|
||||
|
||||
# convert to channel first of type float32 in range [0,1]
|
||||
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
|
||||
img = img.type(torch.float32)
|
||||
img /= 255
|
||||
return_observations[imgkey] = img
|
||||
|
||||
return_observations[imgkey] = img
|
||||
if "environment_state" in observations:
|
||||
return_observations["observation.environment_state"] = torch.from_numpy(
|
||||
observations["environment_state"]
|
||||
).float()
|
||||
|
||||
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing
|
||||
# requirement for "agent_pos"
|
||||
return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
|
||||
|
||||
return return_observations
|
||||
|
||||
@@ -1,22 +1,45 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Borrowed from https://github.com/fyhMer/fowm/blob/main/src/logger.py
|
||||
|
||||
# TODO(rcadene, alexander-soare): clean this file
|
||||
"""Borrowed from https://github.com/fyhMer/fowm/blob/main/src/logger.py"""
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from glob import glob
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
|
||||
from omegaconf import OmegaConf
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from termcolor import colored
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import LRScheduler
|
||||
|
||||
from lerobot.common.policies.policy_protocol import Policy
|
||||
from lerobot.common.utils.utils import get_global_random_state, set_global_random_state
|
||||
|
||||
|
||||
def log_output_dir(out_dir):
|
||||
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
|
||||
|
||||
|
||||
def cfg_to_group(cfg, return_list=False):
|
||||
def cfg_to_group(cfg: DictConfig, return_list: bool = False) -> list[str] | str:
|
||||
"""Return a group name for logging. Optionally returns group name as list."""
|
||||
lst = [
|
||||
f"policy:{cfg.policy.name}",
|
||||
@@ -27,22 +50,54 @@ def cfg_to_group(cfg, return_list=False):
|
||||
return lst if return_list else "-".join(lst)
|
||||
|
||||
|
||||
class Logger:
|
||||
"""Primary logger object. Logs either locally or using wandb."""
|
||||
def get_wandb_run_id_from_filesystem(checkpoint_dir: Path) -> str:
|
||||
# Get the WandB run ID.
|
||||
paths = glob(str(checkpoint_dir / "../wandb/latest-run/run-*"))
|
||||
if len(paths) != 1:
|
||||
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
|
||||
match = re.search(r"run-([^\.]+).wandb", paths[0].split("/")[-1])
|
||||
if match is None:
|
||||
raise RuntimeError("Couldn't get the previous WandB run ID for run resumption.")
|
||||
wandb_run_id = match.groups(0)[0]
|
||||
return wandb_run_id
|
||||
|
||||
def __init__(self, log_dir, job_name, cfg):
|
||||
self._log_dir = Path(log_dir)
|
||||
self._log_dir.mkdir(parents=True, exist_ok=True)
|
||||
self._job_name = job_name
|
||||
self._model_dir = self._log_dir / "checkpoints"
|
||||
self._buffer_dir = self._log_dir / "buffers"
|
||||
self._save_model = cfg.training.save_model
|
||||
self._disable_wandb_artifact = cfg.wandb.disable_artifact
|
||||
self._save_buffer = cfg.training.get("save_buffer", False)
|
||||
self._group = cfg_to_group(cfg)
|
||||
self._seed = cfg.seed
|
||||
|
||||
class Logger:
|
||||
"""Primary logger object. Logs either locally or using wandb.
|
||||
|
||||
The logger creates the following directory structure:
|
||||
|
||||
provided_log_dir
|
||||
├── .hydra # hydra's configuration cache
|
||||
├── checkpoints
|
||||
│ ├── specific_checkpoint_name
|
||||
│ │ ├── pretrained_model # Hugging Face pretrained model directory
|
||||
│ │ │ ├── ...
|
||||
│ │ └── training_state.pth # optimizer, scheduler, and random states + training step
|
||||
| ├── another_specific_checkpoint_name
|
||||
│ │ ├── ...
|
||||
| ├── ...
|
||||
│ └── last # a softlink to the last logged checkpoint
|
||||
"""
|
||||
|
||||
pretrained_model_dir_name = "pretrained_model"
|
||||
training_state_file_name = "training_state.pth"
|
||||
|
||||
def __init__(self, cfg: DictConfig, log_dir: str, wandb_job_name: str | None = None):
|
||||
"""
|
||||
Args:
|
||||
log_dir: The directory to save all logs and training outputs to.
|
||||
job_name: The WandB job name.
|
||||
"""
|
||||
self._cfg = cfg
|
||||
self._eval = []
|
||||
self.log_dir = Path(log_dir)
|
||||
self.log_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.checkpoints_dir = self.get_checkpoints_dir(log_dir)
|
||||
self.last_checkpoint_dir = self.get_last_checkpoint_dir(log_dir)
|
||||
self.last_pretrained_model_dir = self.get_last_pretrained_model_dir(log_dir)
|
||||
|
||||
# Set up WandB.
|
||||
self._group = cfg_to_group(cfg)
|
||||
project = cfg.get("wandb", {}).get("project")
|
||||
entity = cfg.get("wandb", {}).get("entity")
|
||||
enable_wandb = cfg.get("wandb", {}).get("enable", False)
|
||||
@@ -54,69 +109,138 @@ class Logger:
|
||||
os.environ["WANDB_SILENT"] = "true"
|
||||
import wandb
|
||||
|
||||
wandb_run_id = None
|
||||
if cfg.resume:
|
||||
wandb_run_id = get_wandb_run_id_from_filesystem(self.checkpoints_dir)
|
||||
|
||||
wandb.init(
|
||||
id=wandb_run_id,
|
||||
project=project,
|
||||
entity=entity,
|
||||
name=job_name,
|
||||
name=wandb_job_name,
|
||||
notes=cfg.get("wandb", {}).get("notes"),
|
||||
# group=self._group,
|
||||
tags=cfg_to_group(cfg, return_list=True),
|
||||
dir=self._log_dir,
|
||||
dir=log_dir,
|
||||
config=OmegaConf.to_container(cfg, resolve=True),
|
||||
# TODO(rcadene): try set to True
|
||||
save_code=False,
|
||||
# TODO(rcadene): split train and eval, and run async eval with job_type="eval"
|
||||
job_type="train_eval",
|
||||
# TODO(rcadene): add resume option
|
||||
resume=None,
|
||||
resume="must" if cfg.resume else None,
|
||||
)
|
||||
print(colored("Logs will be synced with wandb.", "blue", attrs=["bold"]))
|
||||
logging.info(f"Track this run --> {colored(wandb.run.get_url(), 'yellow', attrs=['bold'])}")
|
||||
self._wandb = wandb
|
||||
|
||||
def save_model(self, policy: Policy, identifier):
|
||||
if self._save_model:
|
||||
self._model_dir.mkdir(parents=True, exist_ok=True)
|
||||
save_dir = self._model_dir / str(identifier)
|
||||
policy.save_pretrained(save_dir)
|
||||
# Also save the full Hydra config for the env configuration.
|
||||
OmegaConf.save(self._cfg, save_dir / "config.yaml")
|
||||
if self._wandb and not self._disable_wandb_artifact:
|
||||
# note wandb artifact does not accept ":" in its name
|
||||
artifact = self._wandb.Artifact(
|
||||
self._group.replace(":", "_") + "-" + str(self._seed) + "-" + str(identifier),
|
||||
type="model",
|
||||
)
|
||||
artifact.add_file(save_dir / SAFETENSORS_SINGLE_FILE)
|
||||
self._wandb.log_artifact(artifact)
|
||||
@classmethod
|
||||
def get_checkpoints_dir(cls, log_dir: str | Path) -> Path:
|
||||
"""Given the log directory, get the sub-directory in which checkpoints will be saved."""
|
||||
return Path(log_dir) / "checkpoints"
|
||||
|
||||
def save_buffer(self, buffer, identifier):
|
||||
self._buffer_dir.mkdir(parents=True, exist_ok=True)
|
||||
fp = self._buffer_dir / f"{str(identifier)}.pkl"
|
||||
buffer.save(fp)
|
||||
if self._wandb:
|
||||
artifact = self._wandb.Artifact(
|
||||
self._group + "-" + str(self._seed) + "-" + str(identifier),
|
||||
type="buffer",
|
||||
)
|
||||
artifact.add_file(fp)
|
||||
@classmethod
|
||||
def get_last_checkpoint_dir(cls, log_dir: str | Path) -> Path:
|
||||
"""Given the log directory, get the sub-directory in which the last checkpoint will be saved."""
|
||||
return cls.get_checkpoints_dir(log_dir) / "last"
|
||||
|
||||
@classmethod
|
||||
def get_last_pretrained_model_dir(cls, log_dir: str | Path) -> Path:
|
||||
"""
|
||||
Given the log directory, get the sub-directory in which the last checkpoint's pretrained weights will
|
||||
be saved.
|
||||
"""
|
||||
return cls.get_last_checkpoint_dir(log_dir) / cls.pretrained_model_dir_name
|
||||
|
||||
def save_model(self, save_dir: Path, policy: Policy, wandb_artifact_name: str | None = None):
|
||||
"""Save the weights of the Policy model using PyTorchModelHubMixin.
|
||||
|
||||
The weights are saved in a folder called "pretrained_model" under the checkpoint directory.
|
||||
|
||||
Optionally also upload the model to WandB.
|
||||
"""
|
||||
self.checkpoints_dir.mkdir(parents=True, exist_ok=True)
|
||||
policy.save_pretrained(save_dir)
|
||||
# Also save the full Hydra config for the env configuration.
|
||||
OmegaConf.save(self._cfg, save_dir / "config.yaml")
|
||||
if self._wandb and not self._cfg.wandb.disable_artifact:
|
||||
# note wandb artifact does not accept ":" or "/" in its name
|
||||
artifact = self._wandb.Artifact(wandb_artifact_name, type="model")
|
||||
artifact.add_file(save_dir / SAFETENSORS_SINGLE_FILE)
|
||||
self._wandb.log_artifact(artifact)
|
||||
if self.last_checkpoint_dir.exists():
|
||||
os.remove(self.last_checkpoint_dir)
|
||||
|
||||
def finish(self, agent, buffer):
|
||||
if self._save_model:
|
||||
self.save_model(agent, identifier="final")
|
||||
if self._save_buffer:
|
||||
self.save_buffer(buffer, identifier="buffer")
|
||||
if self._wandb:
|
||||
self._wandb.finish()
|
||||
def save_training_state(
|
||||
self,
|
||||
save_dir: Path,
|
||||
train_step: int,
|
||||
optimizer: Optimizer,
|
||||
scheduler: LRScheduler | None,
|
||||
):
|
||||
"""Checkpoint the global training_step, optimizer state, scheduler state, and random state.
|
||||
|
||||
All of these are saved as "training_state.pth" under the checkpoint directory.
|
||||
"""
|
||||
training_state = {
|
||||
"step": train_step,
|
||||
"optimizer": optimizer.state_dict(),
|
||||
**get_global_random_state(),
|
||||
}
|
||||
if scheduler is not None:
|
||||
training_state["scheduler"] = scheduler.state_dict()
|
||||
torch.save(training_state, save_dir / self.training_state_file_name)
|
||||
|
||||
def save_checkpont(
|
||||
self,
|
||||
train_step: int,
|
||||
policy: Policy,
|
||||
optimizer: Optimizer,
|
||||
scheduler: LRScheduler | None,
|
||||
identifier: str,
|
||||
):
|
||||
"""Checkpoint the model weights and the training state."""
|
||||
checkpoint_dir = self.checkpoints_dir / str(identifier)
|
||||
wandb_artifact_name = (
|
||||
None
|
||||
if self._wandb is None
|
||||
else f"{self._group.replace(':', '_').replace('/', '_')}-{self._cfg.seed}-{identifier}"
|
||||
)
|
||||
self.save_model(
|
||||
checkpoint_dir / self.pretrained_model_dir_name, policy, wandb_artifact_name=wandb_artifact_name
|
||||
)
|
||||
self.save_training_state(checkpoint_dir, train_step, optimizer, scheduler)
|
||||
os.symlink(checkpoint_dir.absolute(), self.last_checkpoint_dir)
|
||||
|
||||
def load_last_training_state(self, optimizer: Optimizer, scheduler: LRScheduler | None) -> int:
|
||||
"""
|
||||
Given the last checkpoint in the logging directory, load the optimizer state, scheduler state, and
|
||||
random state, and return the global training step.
|
||||
"""
|
||||
training_state = torch.load(self.last_checkpoint_dir / self.training_state_file_name)
|
||||
optimizer.load_state_dict(training_state["optimizer"])
|
||||
if scheduler is not None:
|
||||
scheduler.load_state_dict(training_state["scheduler"])
|
||||
elif "scheduler" in training_state:
|
||||
raise ValueError(
|
||||
"The checkpoint contains a scheduler state_dict, but no LRScheduler was provided."
|
||||
)
|
||||
# Small hack to get the expected keys: use `get_global_random_state`.
|
||||
set_global_random_state({k: training_state[k] for k in get_global_random_state()})
|
||||
return training_state["step"]
|
||||
|
||||
def log_dict(self, d, step, mode="train"):
|
||||
assert mode in {"train", "eval"}
|
||||
# TODO(alexander-soare): Add local text log.
|
||||
if self._wandb is not None:
|
||||
for k, v in d.items():
|
||||
if not isinstance(v, (int, float, str)):
|
||||
logging.warning(
|
||||
f'WandB logging of key "{k}" was ignored as its type is not handled by this wrapper.'
|
||||
)
|
||||
continue
|
||||
self._wandb.log({f"{mode}/{k}": v}, step=step)
|
||||
|
||||
def log_video(self, video_path: str, step: int, mode: str = "train"):
|
||||
assert mode in {"train", "eval"}
|
||||
assert self._wandb is not None
|
||||
wandb_video = self._wandb.Video(video_path, fps=self._cfg.fps, format="mp4")
|
||||
self._wandb.log({f"{mode}/video": wandb_video}, step=step)
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@@ -10,6 +25,16 @@ class ACTConfig:
|
||||
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
|
||||
Those are: `input_shapes` and 'output_shapes`.
|
||||
|
||||
Notes on the inputs and outputs:
|
||||
- Either:
|
||||
- At least one key starting with "observation.image is required as an input.
|
||||
AND/OR
|
||||
- The key "observation.environment_state" is required as input.
|
||||
- If there are multiple keys beginning with "observation.images." they are treated as multiple camera
|
||||
views. Right now we only support all images having the same shape.
|
||||
- May optionally work without an "observation.state" key for the proprioceptive robot state.
|
||||
- "action" is required as an output key.
|
||||
|
||||
Args:
|
||||
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
|
||||
current step and additional steps going back).
|
||||
@@ -18,15 +43,15 @@ class ACTConfig:
|
||||
This should be no greater than the chunk size. For example, if the chunk size size 100, you may
|
||||
set this to 50. This would mean that the model predicts 100 steps worth of actions, runs 50 in the
|
||||
environment, and throws the other 50 out.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy.
|
||||
The key represents the input data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "observation.images.top" refers to an input from the
|
||||
"top" camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
|
||||
Importantly, shapes doesn't include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy.
|
||||
The key represents the output data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
|
||||
14-dimensional actions. Importantly, shapes doesn't include batch dimension or temporal dimension.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
|
||||
the input data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
|
||||
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
|
||||
include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
|
||||
the output data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
|
||||
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
|
||||
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
|
||||
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
|
||||
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
|
||||
@@ -51,8 +76,10 @@ class ACTConfig:
|
||||
documentation in the policy class).
|
||||
latent_dim: The VAE's latent dimension.
|
||||
n_vae_encoder_layers: The number of transformer layers to use for the VAE's encoder.
|
||||
use_temporal_aggregation: Whether to blend the actions of multiple policy invocations for any given
|
||||
environment step.
|
||||
temporal_ensemble_coeff: Coefficient for the exponential weighting scheme to apply for temporal
|
||||
ensembling. Defaults to None which means temporal ensembling is not used. `n_action_steps` must be
|
||||
1 when using this feature, as inference needs to happen at every step to form an ensemble. For
|
||||
more information on how ensembling works, please see `ACTTemporalEnsembler`.
|
||||
dropout: Dropout to use in the transformer layers (see code for details).
|
||||
kl_weight: The weight to use for the KL-divergence component of the loss if the variational objective
|
||||
is enabled. Loss is then calculated as: `reconstruction_loss + kl_weight * kld_loss`.
|
||||
@@ -100,6 +127,9 @@ class ACTConfig:
|
||||
dim_feedforward: int = 3200
|
||||
feedforward_activation: str = "relu"
|
||||
n_encoder_layers: int = 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: int = 1
|
||||
# VAE.
|
||||
use_vae: bool = True
|
||||
@@ -107,7 +137,8 @@ class ACTConfig:
|
||||
n_vae_encoder_layers: int = 4
|
||||
|
||||
# Inference.
|
||||
use_temporal_aggregation: bool = False
|
||||
# Note: the value used in ACT when temporal ensembling is enabled is 0.01.
|
||||
temporal_ensemble_coeff: float | None = None
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: float = 0.1
|
||||
@@ -119,8 +150,11 @@ class ACTConfig:
|
||||
raise ValueError(
|
||||
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
|
||||
)
|
||||
if self.use_temporal_aggregation:
|
||||
raise NotImplementedError("Temporal aggregation is not yet implemented.")
|
||||
if self.temporal_ensemble_coeff is not None and self.n_action_steps > 1:
|
||||
raise NotImplementedError(
|
||||
"`n_action_steps` must be 1 when using temporal ensembling. This is "
|
||||
"because the policy needs to be queried every step to compute the ensembled action."
|
||||
)
|
||||
if self.n_action_steps > self.chunk_size:
|
||||
raise ValueError(
|
||||
f"The chunk size is the upper bound for the number of action steps per model invocation. Got "
|
||||
@@ -130,10 +164,8 @@ class ACTConfig:
|
||||
raise ValueError(
|
||||
f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`"
|
||||
)
|
||||
# Check that there is only one image.
|
||||
# TODO(alexander-soare): generalize this to multiple images.
|
||||
if (
|
||||
sum(k.startswith("observation.images.") for k in self.input_shapes) != 1
|
||||
or "observation.images.top" not in self.input_shapes
|
||||
not any(k.startswith("observation.image") for k in self.input_shapes)
|
||||
and "observation.environment_state" not in self.input_shapes
|
||||
):
|
||||
raise ValueError('For now, only "observation.images.top" is accepted for an image input.')
|
||||
raise ValueError("You must provide at least one image or the environment state among the inputs.")
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Tony Z. Zhao and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Action Chunking Transformer Policy
|
||||
|
||||
As per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware (https://arxiv.org/abs/2304.13705).
|
||||
@@ -23,7 +38,13 @@ from lerobot.common.policies.act.configuration_act import ACTConfig
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
|
||||
|
||||
class ACTPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
class ACTPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "act"],
|
||||
):
|
||||
"""
|
||||
Action Chunking Transformer Policy as per Learning Fine-Grained Bimanual Manipulation with Low-Cost
|
||||
Hardware (paper: https://arxiv.org/abs/2304.13705, code: https://github.com/tonyzhaozh/act)
|
||||
@@ -46,7 +67,8 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
super().__init__()
|
||||
if config is None:
|
||||
config = ACTConfig()
|
||||
self.config = config
|
||||
self.config: ACTConfig = config
|
||||
|
||||
self.normalize_inputs = Normalize(
|
||||
config.input_shapes, config.input_normalization_modes, dataset_stats
|
||||
)
|
||||
@@ -56,11 +78,21 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
self.unnormalize_outputs = Unnormalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
|
||||
self.model = ACT(config)
|
||||
|
||||
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
|
||||
if config.temporal_ensemble_coeff is not None:
|
||||
self.temporal_ensembler = ACTTemporalEnsembler(config.temporal_ensemble_coeff, config.chunk_size)
|
||||
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
"""This should be called whenever the environment is reset."""
|
||||
if self.config.n_action_steps is not None:
|
||||
if self.config.temporal_ensemble_coeff is not None:
|
||||
self.temporal_ensembler.reset()
|
||||
else:
|
||||
self._action_queue = deque([], maxlen=self.config.n_action_steps)
|
||||
|
||||
@torch.no_grad
|
||||
@@ -71,37 +103,48 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
environment. It works by managing the actions in a queue and only calling `select_actions` when the
|
||||
queue is empty.
|
||||
"""
|
||||
assert "observation.images.top" in batch
|
||||
assert "observation.state" in batch
|
||||
|
||||
self.eval()
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
self._stack_images(batch)
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
|
||||
# If we are doing temporal ensembling, do online updates where we keep track of the number of actions
|
||||
# we are ensembling over.
|
||||
if self.config.temporal_ensemble_coeff is not None:
|
||||
actions = self.model(batch)[0] # (batch_size, chunk_size, action_dim)
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
action = self.temporal_ensembler.update(actions)
|
||||
return action
|
||||
|
||||
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
|
||||
# querying the policy.
|
||||
if len(self._action_queue) == 0:
|
||||
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
|
||||
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
|
||||
actions = self.model(batch)[0][: self.config.n_action_steps]
|
||||
actions = self.model(batch)[0][:, : self.config.n_action_steps]
|
||||
|
||||
# TODO(rcadene): make _forward return output dictionary?
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
|
||||
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
|
||||
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
|
||||
self._action_queue.extend(actions.transpose(0, 1))
|
||||
return self._action_queue.popleft()
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
"""Run the batch through the model and compute the loss for training or validation."""
|
||||
batch = self.normalize_inputs(batch)
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = self.normalize_targets(batch)
|
||||
self._stack_images(batch)
|
||||
actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch)
|
||||
|
||||
l1_loss = (
|
||||
F.l1_loss(batch["action"], actions_hat, reduction="none") * ~batch["action_is_pad"].unsqueeze(-1)
|
||||
).mean()
|
||||
|
||||
loss_dict = {"l1_loss": l1_loss}
|
||||
loss_dict = {"l1_loss": l1_loss.item()}
|
||||
if self.config.use_vae:
|
||||
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
|
||||
# each dimension independently, we sum over the latent dimension to get the total
|
||||
@@ -110,27 +153,103 @@ class ACTPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
mean_kld = (
|
||||
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
|
||||
)
|
||||
loss_dict["kld_loss"] = mean_kld
|
||||
loss_dict["kld_loss"] = mean_kld.item()
|
||||
loss_dict["loss"] = l1_loss + mean_kld * self.config.kl_weight
|
||||
else:
|
||||
loss_dict["loss"] = l1_loss
|
||||
|
||||
return loss_dict
|
||||
|
||||
def _stack_images(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
"""Stacks all the images in a batch and puts them in a new key: "observation.images".
|
||||
|
||||
This function expects `batch` to have (at least):
|
||||
{
|
||||
"observation.state": (B, state_dim) batch of robot states.
|
||||
"observation.images.{name}": (B, C, H, W) tensor of images.
|
||||
}
|
||||
class ACTTemporalEnsembler:
|
||||
def __init__(self, temporal_ensemble_coeff: float, chunk_size: int) -> None:
|
||||
"""Temporal ensembling as described in Algorithm 2 of https://arxiv.org/abs/2304.13705.
|
||||
|
||||
The weights are calculated as wᵢ = exp(-temporal_ensemble_coeff * i) where w₀ is the oldest action.
|
||||
They are then normalized to sum to 1 by dividing by Σwᵢ. Here's some intuition around how the
|
||||
coefficient works:
|
||||
- Setting it to 0 uniformly weighs all actions.
|
||||
- Setting it positive gives more weight to older actions.
|
||||
- Setting it negative gives more weight to newer actions.
|
||||
NOTE: The default value for `temporal_ensemble_coeff` used by the original ACT work is 0.01. This
|
||||
results in older actions being weighed more highly than newer actions (the experiments documented in
|
||||
https://github.com/huggingface/lerobot/pull/319 hint at why highly weighing new actions might be
|
||||
detrimental: doing so aggressively may diminish the benefits of action chunking).
|
||||
|
||||
Here we use an online method for computing the average rather than caching a history of actions in
|
||||
order to compute the average offline. For a simple 1D sequence it looks something like:
|
||||
|
||||
```
|
||||
import torch
|
||||
|
||||
seq = torch.linspace(8, 8.5, 100)
|
||||
print(seq)
|
||||
|
||||
m = 0.01
|
||||
exp_weights = torch.exp(-m * torch.arange(len(seq)))
|
||||
print(exp_weights)
|
||||
|
||||
# Calculate offline
|
||||
avg = (exp_weights * seq).sum() / exp_weights.sum()
|
||||
print("offline", avg)
|
||||
|
||||
# Calculate online
|
||||
for i, item in enumerate(seq):
|
||||
if i == 0:
|
||||
avg = item
|
||||
continue
|
||||
avg *= exp_weights[:i].sum()
|
||||
avg += item * exp_weights[i]
|
||||
avg /= exp_weights[:i+1].sum()
|
||||
print("online", avg)
|
||||
```
|
||||
"""
|
||||
# Stack images in the order dictated by input_shapes.
|
||||
batch["observation.images"] = torch.stack(
|
||||
[batch[k] for k in self.config.input_shapes if k.startswith("observation.images.")],
|
||||
dim=-4,
|
||||
self.chunk_size = chunk_size
|
||||
self.ensemble_weights = torch.exp(-temporal_ensemble_coeff * torch.arange(chunk_size))
|
||||
self.ensemble_weights_cumsum = torch.cumsum(self.ensemble_weights, dim=0)
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
"""Resets the online computation variables."""
|
||||
self.ensembled_actions = None
|
||||
# (chunk_size,) count of how many actions are in the ensemble for each time step in the sequence.
|
||||
self.ensembled_actions_count = None
|
||||
|
||||
def update(self, actions: Tensor) -> Tensor:
|
||||
"""
|
||||
Takes a (batch, chunk_size, action_dim) sequence of actions, update the temporal ensemble for all
|
||||
time steps, and pop/return the next batch of actions in the sequence.
|
||||
"""
|
||||
self.ensemble_weights = self.ensemble_weights.to(device=actions.device)
|
||||
self.ensemble_weights_cumsum = self.ensemble_weights_cumsum.to(device=actions.device)
|
||||
if self.ensembled_actions is None:
|
||||
# Initializes `self._ensembled_action` to the sequence of actions predicted during the first
|
||||
# time step of the episode.
|
||||
self.ensembled_actions = actions.clone()
|
||||
# Note: The last dimension is unsqueeze to make sure we can broadcast properly for tensor
|
||||
# operations later.
|
||||
self.ensembled_actions_count = torch.ones(
|
||||
(self.chunk_size, 1), dtype=torch.long, device=self.ensembled_actions.device
|
||||
)
|
||||
else:
|
||||
# self.ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
|
||||
# the online update for those entries.
|
||||
self.ensembled_actions *= self.ensemble_weights_cumsum[self.ensembled_actions_count - 1]
|
||||
self.ensembled_actions += actions[:, :-1] * self.ensemble_weights[self.ensembled_actions_count]
|
||||
self.ensembled_actions /= self.ensemble_weights_cumsum[self.ensembled_actions_count]
|
||||
self.ensembled_actions_count = torch.clamp(self.ensembled_actions_count + 1, max=self.chunk_size)
|
||||
# The last action, which has no prior online average, needs to get concatenated onto the end.
|
||||
self.ensembled_actions = torch.cat([self.ensembled_actions, actions[:, -1:]], dim=1)
|
||||
self.ensembled_actions_count = torch.cat(
|
||||
[self.ensembled_actions_count, torch.ones_like(self.ensembled_actions_count[-1:])]
|
||||
)
|
||||
# "Consume" the first action.
|
||||
action, self.ensembled_actions, self.ensembled_actions_count = (
|
||||
self.ensembled_actions[:, 0],
|
||||
self.ensembled_actions[:, 1:],
|
||||
self.ensembled_actions_count[1:],
|
||||
)
|
||||
return action
|
||||
|
||||
|
||||
class ACT(nn.Module):
|
||||
@@ -161,66 +280,85 @@ class ACT(nn.Module):
|
||||
│ encoder │ │ │ │Transf.│ │
|
||||
│ │ │ │ │encoder│ │
|
||||
└───▲─────┘ │ │ │ │ │
|
||||
│ │ │ └───▲───┘ │
|
||||
│ │ │ │ │
|
||||
inputs └─────┼─────┘ │
|
||||
│ │
|
||||
│ │ │ └▲──▲─▲─┘ │
|
||||
│ │ │ │ │ │ │
|
||||
inputs └─────┼──┘ │ image emb. │
|
||||
│ state emb. │
|
||||
└───────────────────────┘
|
||||
"""
|
||||
|
||||
def __init__(self, config: ACTConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
|
||||
# BERT style VAE encoder with input tokens [cls, robot_state, *action_sequence].
|
||||
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
|
||||
self.use_robot_state = "observation.state" in config.input_shapes
|
||||
self.use_images = any(k.startswith("observation.image") for k in config.input_shapes)
|
||||
self.use_env_state = "observation.environment_state" in config.input_shapes
|
||||
if self.config.use_vae:
|
||||
self.vae_encoder = ACTEncoder(config)
|
||||
self.vae_encoder = ACTEncoder(config, is_vae_encoder=True)
|
||||
self.vae_encoder_cls_embed = nn.Embedding(1, config.dim_model)
|
||||
# Projection layer for joint-space configuration to hidden dimension.
|
||||
self.vae_encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
if self.use_robot_state:
|
||||
self.vae_encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
# Projection layer for action (joint-space target) to hidden dimension.
|
||||
self.vae_encoder_action_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
config.output_shapes["action"][0], config.dim_model
|
||||
)
|
||||
self.latent_dim = config.latent_dim
|
||||
# Projection layer from the VAE encoder's output to the latent distribution's parameter space.
|
||||
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, self.latent_dim * 2)
|
||||
# Fixed sinusoidal positional embedding the whole input to the VAE encoder. Unsqueeze for batch
|
||||
self.vae_encoder_latent_output_proj = nn.Linear(config.dim_model, config.latent_dim * 2)
|
||||
# Fixed sinusoidal positional embedding for the input to the VAE encoder. Unsqueeze for batch
|
||||
# dimension.
|
||||
num_input_token_encoder = 1 + config.chunk_size
|
||||
if self.use_robot_state:
|
||||
num_input_token_encoder += 1
|
||||
self.register_buffer(
|
||||
"vae_encoder_pos_enc",
|
||||
create_sinusoidal_pos_embedding(1 + 1 + config.chunk_size, config.dim_model).unsqueeze(0),
|
||||
create_sinusoidal_pos_embedding(num_input_token_encoder, config.dim_model).unsqueeze(0),
|
||||
)
|
||||
|
||||
# Backbone for image feature extraction.
|
||||
backbone_model = getattr(torchvision.models, config.vision_backbone)(
|
||||
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
|
||||
weights=config.pretrained_backbone_weights,
|
||||
norm_layer=FrozenBatchNorm2d,
|
||||
)
|
||||
# Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final feature
|
||||
# map).
|
||||
# Note: The forward method of this returns a dict: {"feature_map": output}.
|
||||
self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})
|
||||
if self.use_images:
|
||||
backbone_model = getattr(torchvision.models, config.vision_backbone)(
|
||||
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
|
||||
weights=config.pretrained_backbone_weights,
|
||||
norm_layer=FrozenBatchNorm2d,
|
||||
)
|
||||
# Note: The assumption here is that we are using a ResNet model (and hence layer4 is the final
|
||||
# feature map).
|
||||
# Note: The forward method of this returns a dict: {"feature_map": output}.
|
||||
self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})
|
||||
|
||||
# Transformer (acts as VAE decoder when training with the variational objective).
|
||||
self.encoder = ACTEncoder(config)
|
||||
self.decoder = ACTDecoder(config)
|
||||
|
||||
# Transformer encoder input projections. The tokens will be structured like
|
||||
# [latent, robot_state, image_feature_map_pixels].
|
||||
self.encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
self.encoder_latent_input_proj = nn.Linear(self.latent_dim, config.dim_model)
|
||||
self.encoder_img_feat_input_proj = nn.Conv2d(
|
||||
backbone_model.fc.in_features, config.dim_model, kernel_size=1
|
||||
)
|
||||
# [latent, (robot_state), (env_state), (image_feature_map_pixels)].
|
||||
if self.use_robot_state:
|
||||
self.encoder_robot_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.state"][0], config.dim_model
|
||||
)
|
||||
if self.use_env_state:
|
||||
self.encoder_env_state_input_proj = nn.Linear(
|
||||
config.input_shapes["observation.environment_state"][0], config.dim_model
|
||||
)
|
||||
self.encoder_latent_input_proj = nn.Linear(config.latent_dim, config.dim_model)
|
||||
if self.use_images:
|
||||
self.encoder_img_feat_input_proj = nn.Conv2d(
|
||||
backbone_model.fc.in_features, config.dim_model, kernel_size=1
|
||||
)
|
||||
# Transformer encoder positional embeddings.
|
||||
self.encoder_robot_and_latent_pos_embed = nn.Embedding(2, config.dim_model)
|
||||
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
|
||||
n_1d_tokens = 1 # for the latent
|
||||
if self.use_robot_state:
|
||||
n_1d_tokens += 1
|
||||
if self.use_env_state:
|
||||
n_1d_tokens += 1
|
||||
self.encoder_1d_feature_pos_embed = nn.Embedding(n_1d_tokens, config.dim_model)
|
||||
if self.use_images:
|
||||
self.encoder_cam_feat_pos_embed = ACTSinusoidalPositionEmbedding2d(config.dim_model // 2)
|
||||
|
||||
# Transformer decoder.
|
||||
# Learnable positional embedding for the transformer's decoder (in the style of DETR object queries).
|
||||
@@ -241,10 +379,13 @@ class ACT(nn.Module):
|
||||
"""A forward pass through the Action Chunking Transformer (with optional VAE encoder).
|
||||
|
||||
`batch` should have the following structure:
|
||||
|
||||
{
|
||||
"observation.state": (B, state_dim) batch of robot states.
|
||||
"observation.state" (optional): (B, state_dim) batch of robot states.
|
||||
|
||||
"observation.images": (B, n_cameras, C, H, W) batch of images.
|
||||
AND/OR
|
||||
"observation.environment_state": (B, env_dim) batch of environment states.
|
||||
|
||||
"action" (optional, only if training with VAE): (B, chunk_size, action dim) batch of actions.
|
||||
}
|
||||
|
||||
@@ -258,7 +399,11 @@ class ACT(nn.Module):
|
||||
"action" in batch
|
||||
), "actions must be provided when using the variational objective in training mode."
|
||||
|
||||
batch_size = batch["observation.state"].shape[0]
|
||||
batch_size = (
|
||||
batch["observation.images"]
|
||||
if "observation.images" in batch
|
||||
else batch["observation.environment_state"]
|
||||
).shape[0]
|
||||
|
||||
# Prepare the latent for input to the transformer encoder.
|
||||
if self.config.use_vae and "action" in batch:
|
||||
@@ -266,79 +411,102 @@ class ACT(nn.Module):
|
||||
cls_embed = einops.repeat(
|
||||
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
|
||||
) # (B, 1, D)
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"]).unsqueeze(
|
||||
1
|
||||
) # (B, 1, D)
|
||||
if self.use_robot_state:
|
||||
robot_state_embed = self.vae_encoder_robot_state_input_proj(batch["observation.state"])
|
||||
robot_state_embed = robot_state_embed.unsqueeze(1) # (B, 1, D)
|
||||
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
|
||||
vae_encoder_input = torch.cat([cls_embed, robot_state_embed, action_embed], axis=1) # (B, S+2, D)
|
||||
|
||||
if self.use_robot_state:
|
||||
vae_encoder_input = [cls_embed, robot_state_embed, action_embed] # (B, S+2, D)
|
||||
else:
|
||||
vae_encoder_input = [cls_embed, action_embed]
|
||||
vae_encoder_input = torch.cat(vae_encoder_input, axis=1)
|
||||
|
||||
# Prepare fixed positional embedding.
|
||||
# Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
|
||||
pos_embed = self.vae_encoder_pos_enc.clone().detach() # (1, S+2, D)
|
||||
|
||||
# Prepare key padding mask for the transformer encoder. We have 1 or 2 extra tokens at the start of the
|
||||
# sequence depending whether we use the input states or not (cls and robot state)
|
||||
# False means not a padding token.
|
||||
cls_joint_is_pad = torch.full(
|
||||
(batch_size, 2 if self.use_robot_state else 1),
|
||||
False,
|
||||
device=batch["observation.state"].device,
|
||||
)
|
||||
key_padding_mask = torch.cat(
|
||||
[cls_joint_is_pad, batch["action_is_pad"]], axis=1
|
||||
) # (bs, seq+1 or 2)
|
||||
|
||||
# Forward pass through VAE encoder to get the latent PDF parameters.
|
||||
cls_token_out = self.vae_encoder(
|
||||
vae_encoder_input.permute(1, 0, 2), pos_embed=pos_embed.permute(1, 0, 2)
|
||||
vae_encoder_input.permute(1, 0, 2),
|
||||
pos_embed=pos_embed.permute(1, 0, 2),
|
||||
key_padding_mask=key_padding_mask,
|
||||
)[0] # select the class token, with shape (B, D)
|
||||
latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out)
|
||||
mu = latent_pdf_params[:, : self.latent_dim]
|
||||
mu = latent_pdf_params[:, : self.config.latent_dim]
|
||||
# This is 2log(sigma). Done this way to match the original implementation.
|
||||
log_sigma_x2 = latent_pdf_params[:, self.latent_dim :]
|
||||
log_sigma_x2 = latent_pdf_params[:, self.config.latent_dim :]
|
||||
|
||||
# Sample the latent with the reparameterization trick.
|
||||
latent_sample = mu + log_sigma_x2.div(2).exp() * torch.randn_like(mu)
|
||||
else:
|
||||
# When not using the VAE encoder, we set the latent to be all zeros.
|
||||
mu = log_sigma_x2 = None
|
||||
latent_sample = torch.zeros([batch_size, self.latent_dim], dtype=torch.float32).to(
|
||||
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use buffer
|
||||
latent_sample = torch.zeros([batch_size, self.config.latent_dim], dtype=torch.float32).to(
|
||||
batch["observation.state"].device
|
||||
)
|
||||
|
||||
# Prepare all other transformer encoder inputs.
|
||||
# Prepare transformer encoder inputs.
|
||||
encoder_in_tokens = [self.encoder_latent_input_proj(latent_sample)]
|
||||
encoder_in_pos_embed = list(self.encoder_1d_feature_pos_embed.weight.unsqueeze(1))
|
||||
# Robot state token.
|
||||
if self.use_robot_state:
|
||||
encoder_in_tokens.append(self.encoder_robot_state_input_proj(batch["observation.state"]))
|
||||
# Environment state token.
|
||||
if self.use_env_state:
|
||||
encoder_in_tokens.append(
|
||||
self.encoder_env_state_input_proj(batch["observation.environment_state"])
|
||||
)
|
||||
|
||||
# Camera observation features and positional embeddings.
|
||||
all_cam_features = []
|
||||
all_cam_pos_embeds = []
|
||||
images = batch["observation.images"]
|
||||
for cam_index in range(images.shape[-4]):
|
||||
cam_features = self.backbone(images[:, cam_index])["feature_map"]
|
||||
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
|
||||
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
|
||||
all_cam_features.append(cam_features)
|
||||
all_cam_pos_embeds.append(cam_pos_embed)
|
||||
# Concatenate camera observation feature maps and positional embeddings along the width dimension.
|
||||
encoder_in = torch.cat(all_cam_features, axis=3)
|
||||
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=3)
|
||||
if self.use_images:
|
||||
all_cam_features = []
|
||||
all_cam_pos_embeds = []
|
||||
|
||||
# Get positional embeddings for robot state and latent.
|
||||
robot_state_embed = self.encoder_robot_state_input_proj(batch["observation.state"])
|
||||
latent_embed = self.encoder_latent_input_proj(latent_sample)
|
||||
for cam_index in range(batch["observation.images"].shape[-4]):
|
||||
cam_features = self.backbone(batch["observation.images"][:, cam_index])["feature_map"]
|
||||
# TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use
|
||||
# buffer
|
||||
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
|
||||
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
|
||||
all_cam_features.append(cam_features)
|
||||
all_cam_pos_embeds.append(cam_pos_embed)
|
||||
# Concatenate camera observation feature maps and positional embeddings along the width dimension,
|
||||
# and move to (sequence, batch, dim).
|
||||
all_cam_features = torch.cat(all_cam_features, axis=-1)
|
||||
encoder_in_tokens.extend(einops.rearrange(all_cam_features, "b c h w -> (h w) b c"))
|
||||
all_cam_pos_embeds = torch.cat(all_cam_pos_embeds, axis=-1)
|
||||
encoder_in_pos_embed.extend(einops.rearrange(all_cam_pos_embeds, "b c h w -> (h w) b c"))
|
||||
|
||||
# Stack encoder input and positional embeddings moving to (S, B, C).
|
||||
encoder_in = torch.cat(
|
||||
[
|
||||
torch.stack([latent_embed, robot_state_embed], axis=0),
|
||||
encoder_in.flatten(2).permute(2, 0, 1),
|
||||
]
|
||||
)
|
||||
pos_embed = torch.cat(
|
||||
[
|
||||
self.encoder_robot_and_latent_pos_embed.weight.unsqueeze(1),
|
||||
cam_pos_embed.flatten(2).permute(2, 0, 1),
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
# Stack all tokens along the sequence dimension.
|
||||
encoder_in_tokens = torch.stack(encoder_in_tokens, axis=0)
|
||||
encoder_in_pos_embed = torch.stack(encoder_in_pos_embed, axis=0)
|
||||
|
||||
# Forward pass through the transformer modules.
|
||||
encoder_out = self.encoder(encoder_in, pos_embed=pos_embed)
|
||||
encoder_out = self.encoder(encoder_in_tokens, pos_embed=encoder_in_pos_embed)
|
||||
# TODO(rcadene, alexander-soare): remove call to `device` ; precompute and use buffer
|
||||
decoder_in = torch.zeros(
|
||||
(self.config.chunk_size, batch_size, self.config.dim_model),
|
||||
dtype=pos_embed.dtype,
|
||||
device=pos_embed.device,
|
||||
dtype=encoder_in_pos_embed.dtype,
|
||||
device=encoder_in_pos_embed.device,
|
||||
)
|
||||
decoder_out = self.decoder(
|
||||
decoder_in,
|
||||
encoder_out,
|
||||
encoder_pos_embed=pos_embed,
|
||||
encoder_pos_embed=encoder_in_pos_embed,
|
||||
decoder_pos_embed=self.decoder_pos_embed.weight.unsqueeze(1),
|
||||
)
|
||||
|
||||
@@ -353,14 +521,18 @@ class ACT(nn.Module):
|
||||
class ACTEncoder(nn.Module):
|
||||
"""Convenience module for running multiple encoder layers, maybe followed by normalization."""
|
||||
|
||||
def __init__(self, config: ACTConfig):
|
||||
def __init__(self, config: ACTConfig, is_vae_encoder: bool = False):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(config.n_encoder_layers)])
|
||||
self.is_vae_encoder = is_vae_encoder
|
||||
num_layers = config.n_vae_encoder_layers if self.is_vae_encoder else config.n_encoder_layers
|
||||
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(num_layers)])
|
||||
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
|
||||
|
||||
def forward(self, x: Tensor, pos_embed: Tensor | None = None) -> Tensor:
|
||||
def forward(
|
||||
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
|
||||
) -> Tensor:
|
||||
for layer in self.layers:
|
||||
x = layer(x, pos_embed=pos_embed)
|
||||
x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
@@ -383,12 +555,13 @@ class ACTEncoderLayer(nn.Module):
|
||||
self.activation = get_activation_fn(config.feedforward_activation)
|
||||
self.pre_norm = config.pre_norm
|
||||
|
||||
def forward(self, x, pos_embed: Tensor | None = None) -> Tensor:
|
||||
def forward(self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None) -> Tensor:
|
||||
skip = x
|
||||
if self.pre_norm:
|
||||
x = self.norm1(x)
|
||||
q = k = x if pos_embed is None else x + pos_embed
|
||||
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights
|
||||
x = self.self_attn(q, k, value=x, key_padding_mask=key_padding_mask)
|
||||
x = x[0] # note: [0] to select just the output, not the attention weights
|
||||
x = skip + self.dropout1(x)
|
||||
if self.pre_norm:
|
||||
skip = x
|
||||
|
||||
@@ -1,3 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
|
||||
# and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@@ -10,21 +26,31 @@ class DiffusionConfig:
|
||||
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
|
||||
Those are: `input_shapes` and `output_shapes`.
|
||||
|
||||
Notes on the inputs and outputs:
|
||||
- "observation.state" is required as an input key.
|
||||
- Either:
|
||||
- At least one key starting with "observation.image is required as an input.
|
||||
AND/OR
|
||||
- The key "observation.environment_state" is required as input.
|
||||
- If there are multiple keys beginning with "observation.image" they are treated as multiple camera
|
||||
views. Right now we only support all images having the same shape.
|
||||
- "action" is required as an output key.
|
||||
|
||||
Args:
|
||||
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
|
||||
current step and additional steps going back).
|
||||
horizon: Diffusion model action prediction size as detailed in `DiffusionPolicy.select_action`.
|
||||
n_action_steps: The number of action steps to run in the environment for one invocation of the policy.
|
||||
See `DiffusionPolicy.select_action` for more details.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy.
|
||||
The key represents the input data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "observation.image" refers to an input from
|
||||
a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
|
||||
Importantly, shapes doesnt include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy.
|
||||
The key represents the output data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
|
||||
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
|
||||
the input data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
|
||||
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
|
||||
include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
|
||||
the output data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
|
||||
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
|
||||
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
|
||||
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
|
||||
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
|
||||
@@ -51,6 +77,7 @@ class DiffusionConfig:
|
||||
use_film_scale_modulation: FiLM (https://arxiv.org/abs/1709.07871) is used for the Unet conditioning.
|
||||
Bias modulation is used be default, while this parameter indicates whether to also use scale
|
||||
modulation.
|
||||
noise_scheduler_type: Name of the noise scheduler to use. Supported options: ["DDPM", "DDIM"].
|
||||
num_train_timesteps: Number of diffusion steps for the forward diffusion schedule.
|
||||
beta_schedule: Name of the diffusion beta schedule as per DDPMScheduler from Hugging Face diffusers.
|
||||
beta_start: Beta value for the first forward-diffusion step.
|
||||
@@ -110,6 +137,7 @@ class DiffusionConfig:
|
||||
diffusion_step_embed_dim: int = 128
|
||||
use_film_scale_modulation: bool = True
|
||||
# Noise scheduler.
|
||||
noise_scheduler_type: str = "DDPM"
|
||||
num_train_timesteps: int = 100
|
||||
beta_schedule: str = "squaredcos_cap_v2"
|
||||
beta_start: float = 0.0001
|
||||
@@ -130,17 +158,50 @@ class DiffusionConfig:
|
||||
raise ValueError(
|
||||
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
|
||||
)
|
||||
if (
|
||||
self.crop_shape[0] > self.input_shapes["observation.image"][1]
|
||||
or self.crop_shape[1] > self.input_shapes["observation.image"][2]
|
||||
):
|
||||
raise ValueError(
|
||||
f'`crop_shape` should fit within `input_shapes["observation.image"]`. Got {self.crop_shape} '
|
||||
f'for `crop_shape` and {self.input_shapes["observation.image"]} for '
|
||||
'`input_shapes["observation.image"]`.'
|
||||
)
|
||||
|
||||
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
|
||||
|
||||
if len(image_keys) == 0 and "observation.environment_state" not in self.input_shapes:
|
||||
raise ValueError("You must provide at least one image or the environment state among the inputs.")
|
||||
|
||||
if len(image_keys) > 0:
|
||||
if self.crop_shape is not None:
|
||||
for image_key in image_keys:
|
||||
if (
|
||||
self.crop_shape[0] > self.input_shapes[image_key][1]
|
||||
or self.crop_shape[1] > self.input_shapes[image_key][2]
|
||||
):
|
||||
raise ValueError(
|
||||
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
|
||||
f"for `crop_shape` and {self.input_shapes[image_key]} for "
|
||||
"`input_shapes[{image_key}]`."
|
||||
)
|
||||
# Check that all input images have the same shape.
|
||||
first_image_key = next(iter(image_keys))
|
||||
for image_key in image_keys:
|
||||
if self.input_shapes[image_key] != self.input_shapes[first_image_key]:
|
||||
raise ValueError(
|
||||
f"`input_shapes[{image_key}]` does not match `input_shapes[{first_image_key}]`, but we "
|
||||
"expect all image shapes to match."
|
||||
)
|
||||
|
||||
supported_prediction_types = ["epsilon", "sample"]
|
||||
if self.prediction_type not in supported_prediction_types:
|
||||
raise ValueError(
|
||||
f"`prediction_type` must be one of {supported_prediction_types}. Got {self.prediction_type}."
|
||||
)
|
||||
supported_noise_schedulers = ["DDPM", "DDIM"]
|
||||
if self.noise_scheduler_type not in supported_noise_schedulers:
|
||||
raise ValueError(
|
||||
f"`noise_scheduler_type` must be one of {supported_noise_schedulers}. "
|
||||
f"Got {self.noise_scheduler_type}."
|
||||
)
|
||||
|
||||
# Check that the horizon size and U-Net downsampling is compatible.
|
||||
# U-Net downsamples by 2 with each stage.
|
||||
downsampling_factor = 2 ** len(self.down_dims)
|
||||
if self.horizon % downsampling_factor != 0:
|
||||
raise ValueError(
|
||||
"The horizon should be an integer multiple of the downsampling factor (which is determined "
|
||||
f"by `len(down_dims)`). Got {self.horizon=} and {self.down_dims=}"
|
||||
)
|
||||
|
||||
@@ -1,7 +1,22 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
|
||||
# and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
|
||||
|
||||
TODO(alexander-soare):
|
||||
- Remove reliance on Robomimic for SpatialSoftmax.
|
||||
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
|
||||
"""
|
||||
|
||||
@@ -10,12 +25,13 @@ from collections import deque
|
||||
from typing import Callable
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
import torchvision
|
||||
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
from robomimic.models.base_nets import SpatialSoftmax
|
||||
from torch import Tensor, nn
|
||||
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
@@ -27,7 +43,13 @@ from lerobot.common.policies.utils import (
|
||||
)
|
||||
|
||||
|
||||
class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
class DiffusionPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "diffusion-policy"],
|
||||
):
|
||||
"""
|
||||
Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
|
||||
(paper: https://arxiv.org/abs/2303.04137, code: https://github.com/real-stanford/diffusion_policy).
|
||||
@@ -66,15 +88,21 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
|
||||
self.diffusion = DiffusionModel(config)
|
||||
|
||||
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
self.use_env_state = "observation.environment_state" in config.input_shapes
|
||||
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Clear observation and action queues. Should be called on `env.reset()`
|
||||
"""
|
||||
"""Clear observation and action queues. Should be called on `env.reset()`"""
|
||||
self._queues = {
|
||||
"observation.image": deque(maxlen=self.config.n_obs_steps),
|
||||
"observation.state": deque(maxlen=self.config.n_obs_steps),
|
||||
"action": deque(maxlen=self.config.n_action_steps),
|
||||
}
|
||||
if len(self.expected_image_keys) > 0:
|
||||
self._queues["observation.images"] = deque(maxlen=self.config.n_obs_steps)
|
||||
if self.use_env_state:
|
||||
self._queues["observation.environment_state"] = deque(maxlen=self.config.n_obs_steps)
|
||||
|
||||
@torch.no_grad
|
||||
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
@@ -89,25 +117,25 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
Schematically this looks like:
|
||||
----------------------------------------------------------------------------------------------
|
||||
(legend: o = n_obs_steps, h = horizon, a = n_action_steps)
|
||||
|timestep | n-o+1 | n-o+2 | ..... | n | ..... | n+a-1 | n+a | ..... |n-o+1+h|
|
||||
|observation is used | YES | YES | YES | NO | NO | NO | NO | NO | NO |
|
||||
|timestep | n-o+1 | n-o+2 | ..... | n | ..... | n+a-1 | n+a | ..... | n-o+h |
|
||||
|observation is used | YES | YES | YES | YES | NO | NO | NO | NO | NO |
|
||||
|action is generated | YES | YES | YES | YES | YES | YES | YES | YES | YES |
|
||||
|action is used | NO | NO | NO | YES | YES | YES | NO | NO | NO |
|
||||
----------------------------------------------------------------------------------------------
|
||||
Note that this means we require: `n_action_steps < horizon - n_obs_steps + 1`. Also, note that
|
||||
Note that this means we require: `n_action_steps <= horizon - n_obs_steps + 1`. Also, note that
|
||||
"horizon" may not the best name to describe what the variable actually means, because this period is
|
||||
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
|
||||
"""
|
||||
assert "observation.image" in batch
|
||||
assert "observation.state" in batch
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
# Note: It's important that this happens after stacking the images into a single key.
|
||||
self._queues = populate_queues(self._queues, batch)
|
||||
|
||||
if len(self._queues["action"]) == 0:
|
||||
# stack n latest observations from the queue
|
||||
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
|
||||
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
|
||||
actions = self.diffusion.generate_actions(batch)
|
||||
|
||||
# TODO(rcadene): make above methods return output dictionary?
|
||||
@@ -121,29 +149,53 @@ class DiffusionPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
"""Run the batch through the model and compute the loss for training or validation."""
|
||||
batch = self.normalize_inputs(batch)
|
||||
if len(self.expected_image_keys) > 0:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = self.normalize_targets(batch)
|
||||
loss = self.diffusion.compute_loss(batch)
|
||||
return {"loss": loss}
|
||||
|
||||
|
||||
def _make_noise_scheduler(name: str, **kwargs: dict) -> DDPMScheduler | DDIMScheduler:
|
||||
"""
|
||||
Factory for noise scheduler instances of the requested type. All kwargs are passed
|
||||
to the scheduler.
|
||||
"""
|
||||
if name == "DDPM":
|
||||
return DDPMScheduler(**kwargs)
|
||||
elif name == "DDIM":
|
||||
return DDIMScheduler(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Unsupported noise scheduler type {name}")
|
||||
|
||||
|
||||
class DiffusionModel(nn.Module):
|
||||
def __init__(self, config: DiffusionConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
self.rgb_encoder = DiffusionRgbEncoder(config)
|
||||
self.unet = DiffusionConditionalUnet1d(
|
||||
config,
|
||||
global_cond_dim=(config.output_shapes["action"][0] + self.rgb_encoder.feature_dim)
|
||||
* config.n_obs_steps,
|
||||
)
|
||||
# Build observation encoders (depending on which observations are provided).
|
||||
global_cond_dim = config.input_shapes["observation.state"][0]
|
||||
num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
|
||||
self._use_images = False
|
||||
self._use_env_state = False
|
||||
if num_images > 0:
|
||||
self._use_images = True
|
||||
self.rgb_encoder = DiffusionRgbEncoder(config)
|
||||
global_cond_dim += self.rgb_encoder.feature_dim * num_images
|
||||
if "observation.environment_state" in config.input_shapes:
|
||||
self._use_env_state = True
|
||||
global_cond_dim += config.input_shapes["observation.environment_state"][0]
|
||||
|
||||
self.noise_scheduler = DDPMScheduler(
|
||||
self.unet = DiffusionConditionalUnet1d(config, global_cond_dim=global_cond_dim * config.n_obs_steps)
|
||||
|
||||
self.noise_scheduler = _make_noise_scheduler(
|
||||
config.noise_scheduler_type,
|
||||
num_train_timesteps=config.num_train_timesteps,
|
||||
beta_start=config.beta_start,
|
||||
beta_end=config.beta_end,
|
||||
beta_schedule=config.beta_schedule,
|
||||
variance_type="fixed_small",
|
||||
clip_sample=config.clip_sample,
|
||||
clip_sample_range=config.clip_sample_range,
|
||||
prediction_type=config.prediction_type,
|
||||
@@ -183,30 +235,48 @@ class DiffusionModel(nn.Module):
|
||||
|
||||
return sample
|
||||
|
||||
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Encode image features and concatenate them all together along with the state vector."""
|
||||
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
|
||||
global_cond_feats = [batch["observation.state"]]
|
||||
# Extract image feature (first combine batch, sequence, and camera index dims).
|
||||
if self._use_images:
|
||||
img_features = self.rgb_encoder(
|
||||
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
|
||||
)
|
||||
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
|
||||
# feature dim (effectively concatenating the camera features).
|
||||
img_features = einops.rearrange(
|
||||
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
|
||||
)
|
||||
global_cond_feats.append(img_features)
|
||||
|
||||
if self._use_env_state:
|
||||
global_cond_feats.append(batch["observation.environment_state"])
|
||||
|
||||
# Concatenate features then flatten to (B, global_cond_dim).
|
||||
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)
|
||||
|
||||
def generate_actions(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""
|
||||
This function expects `batch` to have (at least):
|
||||
This function expects `batch` to have:
|
||||
{
|
||||
"observation.state": (B, n_obs_steps, state_dim)
|
||||
"observation.image": (B, n_obs_steps, C, H, W)
|
||||
|
||||
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
|
||||
AND/OR
|
||||
"observation.environment_state": (B, environment_dim)
|
||||
}
|
||||
"""
|
||||
assert set(batch).issuperset({"observation.state", "observation.image"})
|
||||
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
|
||||
assert n_obs_steps == self.config.n_obs_steps
|
||||
|
||||
# Extract image feature (first combine batch and sequence dims).
|
||||
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
|
||||
# Separate batch and sequence dims.
|
||||
img_features = einops.rearrange(img_features, "(b n) ... -> b n ...", b=batch_size)
|
||||
# Concatenate state and image features then flatten to (B, global_cond_dim).
|
||||
global_cond = torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
|
||||
# Encode image features and concatenate them all together along with the state vector.
|
||||
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
|
||||
|
||||
# run sampling
|
||||
sample = self.conditional_sample(batch_size, global_cond=global_cond)
|
||||
actions = self.conditional_sample(batch_size, global_cond=global_cond)
|
||||
|
||||
# `horizon` steps worth of actions (from the first observation).
|
||||
actions = sample[..., : self.config.output_shapes["action"][0]]
|
||||
# Extract `n_action_steps` steps worth of actions (from the current observation).
|
||||
start = n_obs_steps - 1
|
||||
end = start + self.config.n_action_steps
|
||||
@@ -219,28 +289,28 @@ class DiffusionModel(nn.Module):
|
||||
This function expects `batch` to have (at least):
|
||||
{
|
||||
"observation.state": (B, n_obs_steps, state_dim)
|
||||
"observation.image": (B, n_obs_steps, C, H, W)
|
||||
|
||||
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
|
||||
AND/OR
|
||||
"observation.environment_state": (B, environment_dim)
|
||||
|
||||
"action": (B, horizon, action_dim)
|
||||
"action_is_pad": (B, horizon)
|
||||
}
|
||||
"""
|
||||
# Input validation.
|
||||
assert set(batch).issuperset({"observation.state", "observation.image", "action", "action_is_pad"})
|
||||
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
|
||||
assert set(batch).issuperset({"observation.state", "action", "action_is_pad"})
|
||||
assert "observation.images" in batch or "observation.environment_state" in batch
|
||||
n_obs_steps = batch["observation.state"].shape[1]
|
||||
horizon = batch["action"].shape[1]
|
||||
assert horizon == self.config.horizon
|
||||
assert n_obs_steps == self.config.n_obs_steps
|
||||
|
||||
# Extract image feature (first combine batch and sequence dims).
|
||||
img_features = self.rgb_encoder(einops.rearrange(batch["observation.image"], "b n ... -> (b n) ..."))
|
||||
# Separate batch and sequence dims.
|
||||
img_features = einops.rearrange(img_features, "(b n) ... -> b n ...", b=batch_size)
|
||||
# Concatenate state and image features then flatten to (B, global_cond_dim).
|
||||
global_cond = torch.cat([batch["observation.state"], img_features], dim=-1).flatten(start_dim=1)
|
||||
|
||||
trajectory = batch["action"]
|
||||
# Encode image features and concatenate them all together along with the state vector.
|
||||
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
|
||||
|
||||
# Forward diffusion.
|
||||
trajectory = batch["action"]
|
||||
# Sample noise to add to the trajectory.
|
||||
eps = torch.randn(trajectory.shape, device=trajectory.device)
|
||||
# Sample a random noising timestep for each item in the batch.
|
||||
@@ -268,13 +338,89 @@ class DiffusionModel(nn.Module):
|
||||
loss = F.mse_loss(pred, target, reduction="none")
|
||||
|
||||
# Mask loss wherever the action is padded with copies (edges of the dataset trajectory).
|
||||
if self.config.do_mask_loss_for_padding and "action_is_pad" in batch:
|
||||
if self.config.do_mask_loss_for_padding:
|
||||
if "action_is_pad" not in batch:
|
||||
raise ValueError(
|
||||
"You need to provide 'action_is_pad' in the batch when "
|
||||
f"{self.config.do_mask_loss_for_padding=}."
|
||||
)
|
||||
in_episode_bound = ~batch["action_is_pad"]
|
||||
loss = loss * in_episode_bound.unsqueeze(-1)
|
||||
|
||||
return loss.mean()
|
||||
|
||||
|
||||
class SpatialSoftmax(nn.Module):
|
||||
"""
|
||||
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
|
||||
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
|
||||
|
||||
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
|
||||
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
|
||||
|
||||
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
|
||||
-----------------------------------------------------
|
||||
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
|
||||
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
|
||||
| ... | ... | ... | ... |
|
||||
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
|
||||
-----------------------------------------------------
|
||||
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
|
||||
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
|
||||
|
||||
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
|
||||
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
|
||||
linear mapping (in_channels, H, W) -> (num_kp, H, W).
|
||||
"""
|
||||
|
||||
def __init__(self, input_shape, num_kp=None):
|
||||
"""
|
||||
Args:
|
||||
input_shape (list): (C, H, W) input feature map shape.
|
||||
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert len(input_shape) == 3
|
||||
self._in_c, self._in_h, self._in_w = input_shape
|
||||
|
||||
if num_kp is not None:
|
||||
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
|
||||
self._out_c = num_kp
|
||||
else:
|
||||
self.nets = None
|
||||
self._out_c = self._in_c
|
||||
|
||||
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
|
||||
# and causes a small degradation in pc_success of pre-trained models.
|
||||
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
|
||||
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
|
||||
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
|
||||
# register as buffer so it's moved to the correct device.
|
||||
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
|
||||
|
||||
def forward(self, features: Tensor) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
features: (B, C, H, W) input feature maps.
|
||||
Returns:
|
||||
(B, K, 2) image-space coordinates of keypoints.
|
||||
"""
|
||||
if self.nets is not None:
|
||||
features = self.nets(features)
|
||||
|
||||
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
|
||||
features = features.reshape(-1, self._in_h * self._in_w)
|
||||
# 2d softmax normalization
|
||||
attention = F.softmax(features, dim=-1)
|
||||
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
|
||||
expected_xy = attention @ self.pos_grid
|
||||
# reshape to [B, K, 2]
|
||||
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
|
||||
|
||||
return feature_keypoints
|
||||
|
||||
|
||||
class DiffusionRgbEncoder(nn.Module):
|
||||
"""Encoder an RGB image into a 1D feature vector.
|
||||
|
||||
@@ -315,11 +461,20 @@ class DiffusionRgbEncoder(nn.Module):
|
||||
|
||||
# Set up pooling and final layers.
|
||||
# Use a dry run to get the feature map shape.
|
||||
# The dummy input should take the number of image channels from `config.input_shapes` and it should
|
||||
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
|
||||
# height and width from `config.input_shapes`.
|
||||
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
# Note: we have a check in the config class to make sure all images have the same shape.
|
||||
image_key = image_keys[0]
|
||||
dummy_input_h_w = (
|
||||
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]
|
||||
)
|
||||
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *dummy_input_h_w))
|
||||
with torch.inference_mode():
|
||||
feat_map_shape = tuple(
|
||||
self.backbone(torch.zeros(size=(1, *config.input_shapes["observation.image"]))).shape[1:]
|
||||
)
|
||||
self.pool = SpatialSoftmax(feat_map_shape, num_kp=config.spatial_softmax_num_keypoints)
|
||||
dummy_feature_map = self.backbone(dummy_input)
|
||||
feature_map_shape = tuple(dummy_feature_map.shape[1:])
|
||||
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
|
||||
self.feature_dim = config.spatial_softmax_num_keypoints * 2
|
||||
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
@@ -1,4 +1,20 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import inspect
|
||||
import logging
|
||||
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
|
||||
@@ -8,12 +24,19 @@ from lerobot.common.utils.utils import get_safe_torch_device
|
||||
|
||||
def _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg):
|
||||
expected_kwargs = set(inspect.signature(policy_cfg_class).parameters)
|
||||
assert set(hydra_cfg.policy).issuperset(
|
||||
expected_kwargs
|
||||
), f"Hydra config is missing arguments: {set(expected_kwargs).difference(hydra_cfg.policy)}"
|
||||
if not set(hydra_cfg.policy).issuperset(expected_kwargs):
|
||||
logging.warning(
|
||||
f"Hydra config is missing arguments: {set(expected_kwargs).difference(hydra_cfg.policy)}"
|
||||
)
|
||||
|
||||
# OmegaConf.to_container returns lists where sequences are found, but our dataclasses use tuples to avoid
|
||||
# issues with mutable defaults. This filter changes all lists to tuples.
|
||||
def list_to_tuple(item):
|
||||
return tuple(item) if isinstance(item, list) else item
|
||||
|
||||
policy_cfg = policy_cfg_class(
|
||||
**{
|
||||
k: v
|
||||
k: list_to_tuple(v)
|
||||
for k, v in OmegaConf.to_container(hydra_cfg.policy, resolve=True).items()
|
||||
if k in expected_kwargs
|
||||
}
|
||||
@@ -38,6 +61,11 @@ def get_policy_and_config_classes(name: str) -> tuple[Policy, object]:
|
||||
from lerobot.common.policies.act.modeling_act import ACTPolicy
|
||||
|
||||
return ACTPolicy, ACTConfig
|
||||
elif name == "vqbet":
|
||||
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
|
||||
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTPolicy
|
||||
|
||||
return VQBeTPolicy, VQBeTConfig
|
||||
else:
|
||||
raise NotImplementedError(f"Policy with name {name} is not implemented.")
|
||||
|
||||
@@ -58,15 +86,25 @@ def make_policy(
|
||||
policy. Therefore, this argument is mutually exclusive with `pretrained_policy_name_or_path`.
|
||||
"""
|
||||
if not (pretrained_policy_name_or_path is None) ^ (dataset_stats is None):
|
||||
raise ValueError("Only one of `pretrained_policy_name_or_path` and `dataset_stats` may be provided.")
|
||||
raise ValueError(
|
||||
"Exactly one of `pretrained_policy_name_or_path` and `dataset_stats` must be provided."
|
||||
)
|
||||
|
||||
policy_cls, policy_cfg_class = get_policy_and_config_classes(hydra_cfg.policy.name)
|
||||
|
||||
policy_cfg = _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg)
|
||||
if pretrained_policy_name_or_path is None:
|
||||
policy_cfg = _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg)
|
||||
# Make a fresh policy.
|
||||
policy = policy_cls(policy_cfg, dataset_stats)
|
||||
else:
|
||||
policy = policy_cls.from_pretrained(pretrained_policy_name_or_path)
|
||||
# Load a pretrained policy and override the config if needed (for example, if there are inference-time
|
||||
# hyperparameters that we want to vary).
|
||||
# TODO(alexander-soare): This hack makes use of huggingface_hub's tooling to load the policy with,
|
||||
# pretrained weights which are then loaded into a fresh policy with the desired config. This PR in
|
||||
# huggingface_hub should make it possible to avoid the hack:
|
||||
# https://github.com/huggingface/huggingface_hub/pull/2274.
|
||||
policy = policy_cls(policy_cfg)
|
||||
policy.load_state_dict(policy_cls.from_pretrained(pretrained_policy_name_or_path).state_dict())
|
||||
|
||||
policy.to(get_safe_torch_device(hydra_cfg.device))
|
||||
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
@@ -117,6 +132,7 @@ class Normalize(nn.Module):
|
||||
# TODO(rcadene): should we remove torch.no_grad?
|
||||
@torch.no_grad
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
batch = dict(batch) # shallow copy avoids mutating the input batch
|
||||
for key, mode in self.modes.items():
|
||||
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
|
||||
|
||||
@@ -132,7 +148,7 @@ class Normalize(nn.Module):
|
||||
assert not torch.isinf(min).any(), _no_stats_error_str("min")
|
||||
assert not torch.isinf(max).any(), _no_stats_error_str("max")
|
||||
# normalize to [0,1]
|
||||
batch[key] = (batch[key] - min) / (max - min)
|
||||
batch[key] = (batch[key] - min) / (max - min + 1e-8)
|
||||
# normalize to [-1, 1]
|
||||
batch[key] = batch[key] * 2 - 1
|
||||
else:
|
||||
@@ -182,6 +198,7 @@ class Unnormalize(nn.Module):
|
||||
# TODO(rcadene): should we remove torch.no_grad?
|
||||
@torch.no_grad
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
batch = dict(batch) # shallow copy avoids mutating the input batch
|
||||
for key, mode in self.modes.items():
|
||||
buffer = getattr(self, "buffer_" + key.replace(".", "_"))
|
||||
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""A protocol that all policies should follow.
|
||||
|
||||
This provides a mechanism for type-hinting and isinstance checks without requiring the policies classes
|
||||
@@ -38,10 +53,11 @@ class Policy(Protocol):
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict:
|
||||
"""Run the batch through the model and compute the loss for training or validation.
|
||||
|
||||
Returns a dictionary with "loss" and maybe other information.
|
||||
Returns a dictionary with "loss" and potentially other information. Apart from "loss" which is a Tensor, all
|
||||
other items should be logging-friendly, native Python types.
|
||||
"""
|
||||
|
||||
def select_action(self, batch: dict[str, Tensor]):
|
||||
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Return one action to run in the environment (potentially in batch mode).
|
||||
|
||||
When the model uses a history of observations, or outputs a sequence of actions, this method deals
|
||||
|
||||
@@ -1,3 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
|
||||
# and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@@ -9,12 +25,25 @@ class TDMPCConfig:
|
||||
camera observations.
|
||||
|
||||
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
|
||||
Those are: `input_shapes`, `output_shapes`, and perhaps `max_random_shift`.
|
||||
Those are: `input_shapes`, `output_shapes`, and perhaps `max_random_shift_ratio`.
|
||||
|
||||
Args:
|
||||
n_action_repeats: The number of times to repeat the action returned by the planning. (hint: Google
|
||||
action repeats in Q-learning or ask your favorite chatbot)
|
||||
horizon: Horizon for model predictive control.
|
||||
n_action_steps: Number of action steps to take from the plan given by model predictive control. This
|
||||
is an alternative to using action repeats. If this is set to more than 1, then we require
|
||||
`n_action_repeats == 1`, `use_mpc == True` and `n_action_steps <= horizon`. Note that this
|
||||
approach of using multiple steps from the plan is not in the original implementation.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
|
||||
the input data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
|
||||
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
|
||||
include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
|
||||
the output data name, and the value is a list indicating the dimensions of the corresponding data.
|
||||
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
|
||||
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
|
||||
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
|
||||
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
|
||||
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
|
||||
@@ -47,7 +76,7 @@ class TDMPCConfig:
|
||||
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
|
||||
elites, when updating the gaussian parameters for CEM.
|
||||
gaussian_mean_momentum: Momentum (α) used for EMA updates of the mean parameter μ of the gaussian
|
||||
paramters optimized in CEM. Updates are calculated as μ⁻ ← αμ⁻ + (1-α)μ.
|
||||
parameters optimized in CEM. Updates are calculated as μ⁻ ← αμ⁻ + (1-α)μ.
|
||||
max_random_shift_ratio: Maximum random shift (as a proportion of the image size) to apply to the
|
||||
image(s) (in units of pixels) for training-time augmentation. If set to 0, no such augmentation
|
||||
is applied. Note that the input images are assumed to be square for this augmentation.
|
||||
@@ -75,6 +104,7 @@ class TDMPCConfig:
|
||||
# Input / output structure.
|
||||
n_action_repeats: int = 2
|
||||
horizon: int = 5
|
||||
n_action_steps: int = 1
|
||||
|
||||
input_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
@@ -131,13 +161,20 @@ class TDMPCConfig:
|
||||
|
||||
def __post_init__(self):
|
||||
"""Input validation (not exhaustive)."""
|
||||
if self.input_shapes["observation.image"][-2] != self.input_shapes["observation.image"][-1]:
|
||||
# TODO(alexander-soare): This limitation is solely because of code in the random shift
|
||||
# augmentation. It should be able to be removed.
|
||||
# There should only be one image key.
|
||||
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
|
||||
if len(image_keys) > 1:
|
||||
raise ValueError(
|
||||
"Only square images are handled now. Got image shape "
|
||||
f"{self.input_shapes['observation.image']}."
|
||||
f"{self.__class__.__name__} handles at most one image for now. Got image keys {image_keys}."
|
||||
)
|
||||
if len(image_keys) > 0:
|
||||
image_key = next(iter(image_keys))
|
||||
if self.input_shapes[image_key][-2] != self.input_shapes[image_key][-1]:
|
||||
# TODO(alexander-soare): This limitation is solely because of code in the random shift
|
||||
# augmentation. It should be able to be removed.
|
||||
raise ValueError(
|
||||
f"Only square images are handled now. Got image shape {self.input_shapes[image_key]}."
|
||||
)
|
||||
if self.n_gaussian_samples <= 0:
|
||||
raise ValueError(
|
||||
f"The number of guassian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
|
||||
@@ -148,3 +185,12 @@ class TDMPCConfig:
|
||||
f"advised that you stick with the default. See {self.__class__.__name__} docstring for more "
|
||||
"information."
|
||||
)
|
||||
if self.n_action_steps > 1:
|
||||
if self.n_action_repeats != 1:
|
||||
raise ValueError(
|
||||
"If `n_action_steps > 1`, `n_action_repeats` must be left to its default value of 1."
|
||||
)
|
||||
if not self.use_mpc:
|
||||
raise ValueError("If `n_action_steps > 1`, `use_mpc` must be set to `True`.")
|
||||
if self.n_action_steps > self.horizon:
|
||||
raise ValueError("`n_action_steps` must be less than or equal to `horizon`.")
|
||||
|
||||
@@ -1,16 +1,28 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
|
||||
# and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Implementation of Finetuning Offline World Models in the Real World.
|
||||
|
||||
The comments in this code may sometimes refer to these references:
|
||||
TD-MPC paper: Temporal Difference Learning for Model Predictive Control (https://arxiv.org/abs/2203.04955)
|
||||
FOWM paper: Finetuning Offline World Models in the Real World (https://arxiv.org/abs/2310.16029)
|
||||
|
||||
TODO(alexander-soare): Make rollout work for batch sizes larger than 1.
|
||||
TODO(alexander-soare): Use batch-first throughout.
|
||||
"""
|
||||
|
||||
# ruff: noqa: N806
|
||||
|
||||
import logging
|
||||
from collections import deque
|
||||
from copy import deepcopy
|
||||
from functools import partial
|
||||
@@ -29,7 +41,13 @@ from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
|
||||
from lerobot.common.policies.utils import get_device_from_parameters, populate_queues
|
||||
|
||||
|
||||
class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
class TDMPCPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "tdmpc"],
|
||||
):
|
||||
"""Implementation of TD-MPC learning + inference.
|
||||
|
||||
Please note several warnings for this policy.
|
||||
@@ -40,9 +58,11 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
process communication to use the xarm environment from FOWM. This is because our xarm
|
||||
environment uses newer dependencies and does not match the environment in FOWM. See
|
||||
https://github.com/huggingface/lerobot/pull/103 for implementation details.
|
||||
- We have NOT checked that training on LeRobot reproduces SOTA results. This is a TODO.
|
||||
- We have NOT checked that training on LeRobot reproduces the results from FOWM.
|
||||
- Nevertheless, we have verified that we can train TD-MPC for PushT. See
|
||||
`lerobot/configs/policy/tdmpc_pusht_keypoints.yaml`.
|
||||
- Our current xarm datasets were generated using the environment from FOWM. Therefore they do not
|
||||
match our xarm environment.
|
||||
match our xarm environment.
|
||||
"""
|
||||
|
||||
name = "tdmpc"
|
||||
@@ -58,22 +78,6 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
that they will be passed with a call to `load_state_dict` before the policy is used.
|
||||
"""
|
||||
super().__init__()
|
||||
logging.warning(
|
||||
"""
|
||||
Please note several warnings for this policy.
|
||||
|
||||
- Evaluation of pretrained weights created with the original FOWM code
|
||||
(https://github.com/fyhMer/fowm) works as expected. To be precise: we trained and evaluated a
|
||||
model with the FOWM code for the xarm_lift_medium_replay dataset. We ported the weights across
|
||||
to LeRobot, and were able to evaluate with the same success metric. BUT, we had to use inter-
|
||||
process communication to use the xarm environment from FOWM. This is because our xarm
|
||||
environment uses newer dependencies and does not match the environment in FOWM. See
|
||||
https://github.com/huggingface/lerobot/pull/103 for implementation details.
|
||||
- We have NOT checked that training on LeRobot reproduces SOTA results. This is a TODO.
|
||||
- Our current xarm datasets were generated using the environment from FOWM. Therefore they do not
|
||||
match our xarm environment.
|
||||
"""
|
||||
)
|
||||
|
||||
if config is None:
|
||||
config = TDMPCConfig()
|
||||
@@ -96,13 +100,18 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
|
||||
def save(self, fp):
|
||||
"""Save state dict of TOLD model to filepath."""
|
||||
torch.save(self.state_dict(), fp)
|
||||
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
|
||||
self._use_image = False
|
||||
self._use_env_state = False
|
||||
if len(image_keys) > 0:
|
||||
assert len(image_keys) == 1
|
||||
self._use_image = True
|
||||
self.input_image_key = image_keys[0]
|
||||
if "observation.environment_state" in config.input_shapes:
|
||||
self._use_env_state = True
|
||||
|
||||
def load(self, fp):
|
||||
"""Load a saved state dict from filepath into current agent."""
|
||||
self.load_state_dict(torch.load(fp))
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
@@ -110,21 +119,24 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
called on `env.reset()`
|
||||
"""
|
||||
self._queues = {
|
||||
"observation.image": deque(maxlen=1),
|
||||
"observation.state": deque(maxlen=1),
|
||||
"action": deque(maxlen=self.config.n_action_repeats),
|
||||
"action": deque(maxlen=max(self.config.n_action_steps, self.config.n_action_repeats)),
|
||||
}
|
||||
if self._use_image:
|
||||
self._queues["observation.image"] = deque(maxlen=1)
|
||||
if self._use_env_state:
|
||||
self._queues["observation.environment_state"] = deque(maxlen=1)
|
||||
# Previous mean obtained from the cross-entropy method (CEM) used during MPC. It is used to warm start
|
||||
# CEM for the next step.
|
||||
self._prev_mean: torch.Tensor | None = None
|
||||
|
||||
@torch.no_grad()
|
||||
def select_action(self, batch: dict[str, Tensor]):
|
||||
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Select a single action given environment observations."""
|
||||
assert "observation.image" in batch
|
||||
assert "observation.state" in batch
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
if self._use_image:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.image"] = batch[self.input_image_key]
|
||||
|
||||
self._queues = populate_queues(self._queues, batch)
|
||||
|
||||
@@ -138,49 +150,57 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
batch[key] = batch[key][:, 0]
|
||||
|
||||
# NOTE: Order of observations matters here.
|
||||
z = self.model.encode({k: batch[k] for k in ["observation.image", "observation.state"]})
|
||||
if self.config.use_mpc:
|
||||
batch_size = batch["observation.image"].shape[0]
|
||||
# Batch processing is not handled in MPC mode, so process the batch in a loop.
|
||||
action = [] # will be a batch of actions for one step
|
||||
for i in range(batch_size):
|
||||
# Note: self.plan does not handle batches, hence the squeeze.
|
||||
action.append(self.plan(z[i]))
|
||||
action = torch.stack(action)
|
||||
encode_keys = []
|
||||
if self._use_image:
|
||||
encode_keys.append("observation.image")
|
||||
if self._use_env_state:
|
||||
encode_keys.append("observation.environment_state")
|
||||
encode_keys.append("observation.state")
|
||||
z = self.model.encode({k: batch[k] for k in encode_keys})
|
||||
if self.config.use_mpc: # noqa: SIM108
|
||||
actions = self.plan(z) # (horizon, batch, action_dim)
|
||||
else:
|
||||
# Plan with the policy (π) alone.
|
||||
action = self.model.pi(z)
|
||||
# Plan with the policy (π) alone. This always returns one action so unsqueeze to get a
|
||||
# sequence dimension like in the MPC branch.
|
||||
actions = self.model.pi(z).unsqueeze(0)
|
||||
|
||||
self.unnormalize_outputs({"action": action})["action"]
|
||||
actions = torch.clamp(actions, -1, +1)
|
||||
|
||||
for _ in range(self.config.n_action_repeats):
|
||||
self._queues["action"].append(action)
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
|
||||
if self.config.n_action_repeats > 1:
|
||||
for _ in range(self.config.n_action_repeats):
|
||||
self._queues["action"].append(actions[0])
|
||||
else:
|
||||
# Action queue is (n_action_steps, batch_size, action_dim), so we transpose the action.
|
||||
self._queues["action"].extend(actions[: self.config.n_action_steps])
|
||||
|
||||
action = self._queues["action"].popleft()
|
||||
return torch.clamp(action, -1, 1)
|
||||
return action
|
||||
|
||||
@torch.no_grad()
|
||||
def plan(self, z: Tensor) -> Tensor:
|
||||
"""Plan next action using TD-MPC inference.
|
||||
"""Plan sequence of actions using TD-MPC inference.
|
||||
|
||||
Args:
|
||||
z: (latent_dim,) tensor for the initial state.
|
||||
z: (batch, latent_dim,) tensor for the initial state.
|
||||
Returns:
|
||||
(action_dim,) tensor for the next action.
|
||||
|
||||
TODO(alexander-soare) Extend this to be able to work with batches.
|
||||
(horizon, batch, action_dim,) tensor for the planned trajectory of actions.
|
||||
"""
|
||||
device = get_device_from_parameters(self)
|
||||
|
||||
batch_size = z.shape[0]
|
||||
|
||||
# Sample Nπ trajectories from the policy.
|
||||
pi_actions = torch.empty(
|
||||
self.config.horizon,
|
||||
self.config.n_pi_samples,
|
||||
batch_size,
|
||||
self.config.output_shapes["action"][0],
|
||||
device=device,
|
||||
)
|
||||
if self.config.n_pi_samples > 0:
|
||||
_z = einops.repeat(z, "d -> n d", n=self.config.n_pi_samples)
|
||||
_z = einops.repeat(z, "b d -> n b d", n=self.config.n_pi_samples)
|
||||
for t in range(self.config.horizon):
|
||||
# Note: Adding a small amount of noise here doesn't hurt during inference and may even be
|
||||
# helpful for CEM.
|
||||
@@ -189,12 +209,14 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
|
||||
# In the CEM loop we will need this for a call to estimate_value with the gaussian sampled
|
||||
# trajectories.
|
||||
z = einops.repeat(z, "d -> n d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
|
||||
z = einops.repeat(z, "b d -> n b d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
|
||||
|
||||
# Model Predictive Path Integral (MPPI) with the cross-entropy method (CEM) as the optimization
|
||||
# algorithm.
|
||||
# The initial mean and standard deviation for the cross-entropy method (CEM).
|
||||
mean = torch.zeros(self.config.horizon, self.config.output_shapes["action"][0], device=device)
|
||||
mean = torch.zeros(
|
||||
self.config.horizon, batch_size, self.config.output_shapes["action"][0], device=device
|
||||
)
|
||||
# Maybe warm start CEM with the mean from the previous step.
|
||||
if self._prev_mean is not None:
|
||||
mean[:-1] = self._prev_mean[1:]
|
||||
@@ -205,6 +227,7 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
std_normal_noise = torch.randn(
|
||||
self.config.horizon,
|
||||
self.config.n_gaussian_samples,
|
||||
batch_size,
|
||||
self.config.output_shapes["action"][0],
|
||||
device=std.device,
|
||||
)
|
||||
@@ -213,21 +236,24 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
# Compute elite actions.
|
||||
actions = torch.cat([gaussian_actions, pi_actions], dim=1)
|
||||
value = self.estimate_value(z, actions).nan_to_num_(0)
|
||||
elite_idxs = torch.topk(value, self.config.n_elites, dim=0).indices
|
||||
elite_value, elite_actions = value[elite_idxs], actions[:, elite_idxs]
|
||||
elite_idxs = torch.topk(value, self.config.n_elites, dim=0).indices # (n_elites, batch)
|
||||
elite_value = value.take_along_dim(elite_idxs, dim=0) # (n_elites, batch)
|
||||
# (horizon, n_elites, batch, action_dim)
|
||||
elite_actions = actions.take_along_dim(einops.rearrange(elite_idxs, "n b -> 1 n b 1"), dim=1)
|
||||
|
||||
# Update guassian PDF parameters to be the (weighted) mean and standard deviation of the elites.
|
||||
max_value = elite_value.max(0)[0]
|
||||
# Update gaussian PDF parameters to be the (weighted) mean and standard deviation of the elites.
|
||||
max_value = elite_value.max(0, keepdim=True)[0] # (1, batch)
|
||||
# The weighting is a softmax over trajectory values. Note that this is not the same as the usage
|
||||
# of Ω in eqn 4 of the TD-MPC paper. Instead it is the normalized version of it: s = Ω/ΣΩ. This
|
||||
# makes the equations: μ = Σ(s⋅Γ), σ = Σ(s⋅(Γ-μ)²).
|
||||
score = torch.exp(self.config.elite_weighting_temperature * (elite_value - max_value))
|
||||
score /= score.sum()
|
||||
_mean = torch.sum(einops.rearrange(score, "n -> n 1") * elite_actions, dim=1)
|
||||
score /= score.sum(axis=0, keepdim=True)
|
||||
# (horizon, batch, action_dim)
|
||||
_mean = torch.sum(einops.rearrange(score, "n b -> n b 1") * elite_actions, dim=1)
|
||||
_std = torch.sqrt(
|
||||
torch.sum(
|
||||
einops.rearrange(score, "n -> n 1")
|
||||
* (elite_actions - einops.rearrange(_mean, "h d -> h 1 d")) ** 2,
|
||||
einops.rearrange(score, "n b -> n b 1")
|
||||
* (elite_actions - einops.rearrange(_mean, "h b d -> h 1 b d")) ** 2,
|
||||
dim=1,
|
||||
)
|
||||
)
|
||||
@@ -242,11 +268,9 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
|
||||
# Randomly select one of the elite actions from the last iteration of MPPI/CEM using the softmax
|
||||
# scores from the last iteration.
|
||||
actions = elite_actions[:, torch.multinomial(score, 1).item()]
|
||||
actions = elite_actions[:, torch.multinomial(score.T, 1).squeeze(), torch.arange(batch_size)]
|
||||
|
||||
# Select only the first action
|
||||
action = actions[0]
|
||||
return action
|
||||
return actions
|
||||
|
||||
@torch.no_grad()
|
||||
def estimate_value(self, z: Tensor, actions: Tensor):
|
||||
@@ -298,29 +322,32 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
G -= running_discount * self.config.uncertainty_regularizer_coeff * terminal_values.std(0)
|
||||
return G
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
"""Run the batch through the model and compute the loss."""
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
|
||||
"""Run the batch through the model and compute the loss.
|
||||
|
||||
Returns a dictionary with loss as a tensor, and other information as native floats.
|
||||
"""
|
||||
device = get_device_from_parameters(self)
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
if self._use_image:
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.image"] = batch[self.input_image_key]
|
||||
batch = self.normalize_targets(batch)
|
||||
|
||||
info = {}
|
||||
|
||||
# TODO(alexander-soare): Refactor TDMPC and make it comply with the policy interface documentation.
|
||||
batch_size = batch["index"].shape[0]
|
||||
|
||||
# (b, t) -> (t, b)
|
||||
for key in batch:
|
||||
if batch[key].ndim > 1:
|
||||
batch[key] = batch[key].transpose(1, 0)
|
||||
|
||||
action = batch["action"] # (t, b)
|
||||
reward = batch["next.reward"] # (t,)
|
||||
action = batch["action"] # (t, b, action_dim)
|
||||
reward = batch["next.reward"] # (t, b)
|
||||
observations = {k: v for k, v in batch.items() if k.startswith("observation.")}
|
||||
|
||||
# Apply random image augmentations.
|
||||
if self.config.max_random_shift_ratio > 0:
|
||||
if self._use_image and self.config.max_random_shift_ratio > 0:
|
||||
observations["observation.image"] = flatten_forward_unflatten(
|
||||
partial(random_shifts_aug, max_random_shift_ratio=self.config.max_random_shift_ratio),
|
||||
observations["observation.image"],
|
||||
@@ -332,11 +359,14 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
for k in observations:
|
||||
current_observation[k] = observations[k][0]
|
||||
next_observations[k] = observations[k][1:]
|
||||
horizon = next_observations["observation.image"].shape[0]
|
||||
horizon, batch_size = next_observations[
|
||||
"observation.image" if self._use_image else "observation.environment_state"
|
||||
].shape[:2]
|
||||
|
||||
# Run latent rollout using the latent dynamics model and policy model.
|
||||
# Note this has shape `horizon+1` because there are `horizon` actions and a current `z`. Each action
|
||||
# gives us a next `z`.
|
||||
batch_size = batch["index"].shape[0]
|
||||
z_preds = torch.empty(horizon + 1, batch_size, self.config.latent_dim, device=device)
|
||||
z_preds[0] = self.model.encode(current_observation)
|
||||
reward_preds = torch.empty_like(reward, device=device)
|
||||
@@ -401,7 +431,8 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
|
||||
q_value_loss = (
|
||||
(
|
||||
F.mse_loss(
|
||||
temporal_loss_coeffs
|
||||
* F.mse_loss(
|
||||
q_preds_ensemble,
|
||||
einops.repeat(q_targets, "t b -> e t b", e=q_preds_ensemble.shape[0]),
|
||||
reduction="none",
|
||||
@@ -450,10 +481,11 @@ class TDMPCPolicy(nn.Module, PyTorchModelHubMixin):
|
||||
action_preds = self.model.pi(z_preds[:-1]) # (t, b, a)
|
||||
# Calculate the MSE between the actions and the action predictions.
|
||||
# Note: FOWM's original code calculates the log probability (wrt to a unit standard deviation
|
||||
# gaussian) and sums over the action dimension. Computing the log probability amounts to multiplying
|
||||
# the MSE by 0.5 and adding a constant offset (the log(2*pi) term) . Here we drop the constant offset
|
||||
# as it doesn't change the optimization step, and we drop the 0.5 as we instead make a configuration
|
||||
# parameter for it (see below where we compute the total loss).
|
||||
# gaussian) and sums over the action dimension. Computing the (negative) log probability amounts to
|
||||
# multiplying the MSE by 0.5 and adding a constant offset (the log(2*pi)/2 term, times the action
|
||||
# dimension). Here we drop the constant offset as it doesn't change the optimization step, and we drop
|
||||
# the 0.5 as we instead make a configuration parameter for it (see below where we compute the total
|
||||
# loss).
|
||||
mse = F.mse_loss(action_preds, action, reduction="none").sum(-1) # (t, b)
|
||||
# NOTE: The original implementation does not take the sum over the temporal dimension like with the
|
||||
# other losses.
|
||||
@@ -714,6 +746,16 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
if "observation.environment_state" in config.input_shapes:
|
||||
self.env_state_enc_layers = nn.Sequential(
|
||||
nn.Linear(
|
||||
config.input_shapes["observation.environment_state"][0], config.state_encoder_hidden_dim
|
||||
),
|
||||
nn.ELU(),
|
||||
nn.Linear(config.state_encoder_hidden_dim, config.latent_dim),
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
|
||||
"""Encode the image and/or state vector.
|
||||
@@ -722,8 +764,11 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
over all features.
|
||||
"""
|
||||
feat = []
|
||||
# NOTE: Order of observations matters here.
|
||||
if "observation.image" in self.config.input_shapes:
|
||||
feat.append(flatten_forward_unflatten(self.image_enc_layers, obs_dict["observation.image"]))
|
||||
if "observation.environment_state" in self.config.input_shapes:
|
||||
feat.append(self.env_state_enc_layers(obs_dict["observation.environment_state"]))
|
||||
if "observation.state" in self.config.input_shapes:
|
||||
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
|
||||
return torch.stack(feat, dim=0).mean(0)
|
||||
|
||||
@@ -1,9 +1,28 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
def populate_queues(queues, batch):
|
||||
for key in batch:
|
||||
# Ignore keys not in the queues already (leaving the responsibility to the caller to make sure the
|
||||
# queues have the keys they want).
|
||||
if key not in queues:
|
||||
continue
|
||||
if len(queues[key]) != queues[key].maxlen:
|
||||
# initialize by copying the first observation several times until the queue is full
|
||||
while len(queues[key]) != queues[key].maxlen:
|
||||
|
||||
167
lerobot/common/policies/vqbet/configuration_vqbet.py
Normal file
167
lerobot/common/policies/vqbet/configuration_vqbet.py
Normal file
@@ -0,0 +1,167 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
|
||||
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
|
||||
# and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class VQBeTConfig:
|
||||
"""Configuration class for VQ-BeT.
|
||||
|
||||
Defaults are configured for training with PushT providing proprioceptive and single camera observations.
|
||||
|
||||
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
|
||||
Those are: `input_shapes` and `output_shapes`.
|
||||
|
||||
Notes on the inputs and outputs:
|
||||
- "observation.state" is required as an input key.
|
||||
- At least one key starting with "observation.image is required as an input.
|
||||
- If there are multiple keys beginning with "observation.image" they are treated as multiple camera
|
||||
views. Right now we only support all images having the same shape.
|
||||
- "action" is required as an output key.
|
||||
|
||||
Args:
|
||||
n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the
|
||||
current step and additional steps going back).
|
||||
n_action_pred_token: Total number of current token and future tokens that VQ-BeT predicts.
|
||||
action_chunk_size: Action chunk size of each action prediction token.
|
||||
input_shapes: A dictionary defining the shapes of the input data for the policy.
|
||||
The key represents the input data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "observation.image" refers to an input from
|
||||
a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution.
|
||||
Importantly, shapes doesnt include batch dimension or temporal dimension.
|
||||
output_shapes: A dictionary defining the shapes of the output data for the policy.
|
||||
The key represents the output data name, and the value is a list indicating the dimensions
|
||||
of the corresponding data. For example, "action" refers to an output shape of [14], indicating
|
||||
14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension.
|
||||
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
|
||||
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
|
||||
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
|
||||
[-1, 1] range.
|
||||
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
|
||||
original scale. Note that this is also used for normalizing the training targets.
|
||||
vision_backbone: Name of the torchvision resnet backbone to use for encoding images.
|
||||
crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit
|
||||
within the image size. If None, no cropping is done.
|
||||
crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval
|
||||
mode).
|
||||
pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone.
|
||||
`None` means no pretrained weights.
|
||||
use_group_norm: Whether to replace batch normalization with group normalization in the backbone.
|
||||
The group sizes are set to be about 16 (to be precise, feature_dim // 16).
|
||||
spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax.
|
||||
n_vqvae_training_steps: Number of optimization steps for training Residual VQ.
|
||||
vqvae_n_embed: Number of embedding vectors in the RVQ dictionary (each layer).
|
||||
vqvae_embedding_dim: Dimension of each embedding vector in the RVQ dictionary.
|
||||
vqvae_enc_hidden_dim: Size of hidden dimensions of Encoder / Decoder part of Residaul VQ-VAE
|
||||
gpt_block_size: Max block size of minGPT (should be larger than the number of input tokens)
|
||||
gpt_input_dim: Size of output input of GPT. This is also used as the dimension of observation features.
|
||||
gpt_output_dim: Size of output dimension of GPT. This is also used as a input dimension of offset / bin prediction headers.
|
||||
gpt_n_layer: Number of layers of GPT
|
||||
gpt_n_head: Number of headers of GPT
|
||||
gpt_hidden_dim: Size of hidden dimensions of GPT
|
||||
dropout: Dropout rate for GPT
|
||||
mlp_hidden_dim: Size of hidden dimensions of offset header / bin prediction headers parts of VQ-BeT
|
||||
offset_loss_weight: A constant that is multiplied to the offset loss
|
||||
primary_code_loss_weight: A constant that is multiplied to the primary code prediction loss
|
||||
secondary_code_loss_weight: A constant that is multiplied to the secondary code prediction loss
|
||||
bet_softmax_temperature: Sampling temperature of code for rollout with VQ-BeT
|
||||
sequentially_select: Whether select code of primary / secondary as sequentially (pick primary code,
|
||||
and then select secodnary code), or at the same time.
|
||||
"""
|
||||
|
||||
# Inputs / output structure.
|
||||
n_obs_steps: int = 5
|
||||
n_action_pred_token: int = 3
|
||||
action_chunk_size: int = 5
|
||||
|
||||
input_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
"observation.image": [3, 96, 96],
|
||||
"observation.state": [2],
|
||||
}
|
||||
)
|
||||
output_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
"action": [2],
|
||||
}
|
||||
)
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"observation.image": "mean_std",
|
||||
"observation.state": "min_max",
|
||||
}
|
||||
)
|
||||
output_normalization_modes: dict[str, str] = field(default_factory=lambda: {"action": "min_max"})
|
||||
|
||||
# Architecture / modeling.
|
||||
# Vision backbone.
|
||||
vision_backbone: str = "resnet18"
|
||||
crop_shape: tuple[int, int] | None = (84, 84)
|
||||
crop_is_random: bool = True
|
||||
pretrained_backbone_weights: str | None = None
|
||||
use_group_norm: bool = True
|
||||
spatial_softmax_num_keypoints: int = 32
|
||||
# VQ-VAE
|
||||
n_vqvae_training_steps: int = 20000
|
||||
vqvae_n_embed: int = 16
|
||||
vqvae_embedding_dim: int = 256
|
||||
vqvae_enc_hidden_dim: int = 128
|
||||
# VQ-BeT
|
||||
gpt_block_size: int = 500
|
||||
gpt_input_dim: int = 512
|
||||
gpt_output_dim: int = 512
|
||||
gpt_n_layer: int = 8
|
||||
gpt_n_head: int = 8
|
||||
gpt_hidden_dim: int = 512
|
||||
dropout: float = 0.1
|
||||
mlp_hidden_dim: int = 1024
|
||||
offset_loss_weight: float = 10000.0
|
||||
primary_code_loss_weight: float = 5.0
|
||||
secondary_code_loss_weight: float = 0.5
|
||||
bet_softmax_temperature: float = 0.1
|
||||
sequentially_select: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
"""Input validation (not exhaustive)."""
|
||||
if not self.vision_backbone.startswith("resnet"):
|
||||
raise ValueError(
|
||||
f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}."
|
||||
)
|
||||
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
|
||||
if self.crop_shape is not None:
|
||||
for image_key in image_keys:
|
||||
if (
|
||||
self.crop_shape[0] > self.input_shapes[image_key][1]
|
||||
or self.crop_shape[1] > self.input_shapes[image_key][2]
|
||||
):
|
||||
raise ValueError(
|
||||
f"`crop_shape` should fit within `input_shapes[{image_key}]`. Got {self.crop_shape} "
|
||||
f"for `crop_shape` and {self.input_shapes[image_key]} for "
|
||||
"`input_shapes[{image_key}]`."
|
||||
)
|
||||
# Check that all input images have the same shape.
|
||||
first_image_key = next(iter(image_keys))
|
||||
for image_key in image_keys:
|
||||
if self.input_shapes[image_key] != self.input_shapes[first_image_key]:
|
||||
raise ValueError(
|
||||
f"`input_shapes[{image_key}]` does not match `input_shapes[{first_image_key}]`, but we "
|
||||
"expect all image shapes to match."
|
||||
)
|
||||
964
lerobot/common/policies/vqbet/modeling_vqbet.py
Normal file
964
lerobot/common/policies/vqbet/modeling_vqbet.py
Normal file
@@ -0,0 +1,964 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru
|
||||
# and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto
|
||||
# and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from collections import deque
|
||||
from typing import Callable, List
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
import torchvision
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
from torch import Tensor, nn
|
||||
from torch.optim.lr_scheduler import LambdaLR
|
||||
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.utils import get_device_from_parameters, populate_queues
|
||||
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
|
||||
from lerobot.common.policies.vqbet.vqbet_utils import GPT, ResidualVQ
|
||||
|
||||
# ruff: noqa: N806
|
||||
|
||||
|
||||
class VQBeTPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "vqbet"],
|
||||
):
|
||||
"""
|
||||
VQ-BeT Policy as per "Behavior Generation with Latent Actions"
|
||||
"""
|
||||
|
||||
name = "vqbet"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: VQBeTConfig | None = None,
|
||||
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
config: Policy configuration class instance or None, in which case the default instantiation of
|
||||
the configuration class is used.
|
||||
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
|
||||
that they will be passed with a call to `load_state_dict` before the policy is used.
|
||||
"""
|
||||
super().__init__()
|
||||
if config is None:
|
||||
config = VQBeTConfig()
|
||||
self.config = config
|
||||
self.normalize_inputs = Normalize(
|
||||
config.input_shapes, config.input_normalization_modes, dataset_stats
|
||||
)
|
||||
self.normalize_targets = Normalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
self.unnormalize_outputs = Unnormalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
|
||||
self.vqbet = VQBeTModel(config)
|
||||
|
||||
self.expected_image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Clear observation and action queues. Should be called on `env.reset()`
|
||||
queues are populated during rollout of the policy, they contain the n latest observations and actions
|
||||
"""
|
||||
self._queues = {
|
||||
"observation.images": deque(maxlen=self.config.n_obs_steps),
|
||||
"observation.state": deque(maxlen=self.config.n_obs_steps),
|
||||
"action": deque(maxlen=self.config.action_chunk_size),
|
||||
}
|
||||
|
||||
@torch.no_grad
|
||||
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Select a single action given environment observations.
|
||||
|
||||
This method wraps `select_actions` in order to return one action at a time for execution in the
|
||||
environment. It works by managing the actions in a queue and only calling `select_actions` when the
|
||||
queue is empty.
|
||||
"""
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
# Note: It's important that this happens after stacking the images into a single key.
|
||||
self._queues = populate_queues(self._queues, batch)
|
||||
|
||||
if not self.vqbet.action_head.vqvae_model.discretized.item():
|
||||
warnings.warn(
|
||||
"To evaluate in the environment, your VQ-BeT model should contain a pretrained Residual VQ.",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
if len(self._queues["action"]) == 0:
|
||||
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
|
||||
actions = self.vqbet(batch, rollout=True)[:, : self.config.action_chunk_size]
|
||||
|
||||
# the dimension of returned action is (batch_size, action_chunk_size, action_dim)
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
# since the data in the action queue's dimension is (action_chunk_size, batch_size, action_dim), we transpose the action and fill the queue
|
||||
self._queues["action"].extend(actions.transpose(0, 1))
|
||||
|
||||
action = self._queues["action"].popleft()
|
||||
return action
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
|
||||
"""Run the batch through the model and compute the loss for training or validation."""
|
||||
batch = self.normalize_inputs(batch)
|
||||
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
|
||||
batch["observation.images"] = torch.stack([batch[k] for k in self.expected_image_keys], dim=-4)
|
||||
batch = self.normalize_targets(batch)
|
||||
# VQ-BeT discretizes action using VQ-VAE before training BeT (please refer to section 3.2 in the VQ-BeT paper https://arxiv.org/pdf/2403.03181)
|
||||
if not self.vqbet.action_head.vqvae_model.discretized.item():
|
||||
# loss: total loss of training RVQ
|
||||
# n_different_codes: how many of the total possible VQ codes are being used in single batch (how many of them have at least one encoder embedding as a nearest neighbor). This can be at most `vqvae_n_embed * number of layers of RVQ (=2)`.
|
||||
# n_different_combinations: how many different code combinations are being used out of all possible combinations in single batch. This can be at most `vqvae_n_embed ^ number of layers of RVQ (=2)` (hint consider the RVQ as a decision tree).
|
||||
loss, n_different_codes, n_different_combinations, recon_l1_error = (
|
||||
self.vqbet.action_head.discretize(self.config.n_vqvae_training_steps, batch["action"])
|
||||
)
|
||||
return {
|
||||
"loss": loss,
|
||||
"n_different_codes": n_different_codes,
|
||||
"n_different_combinations": n_different_combinations,
|
||||
"recon_l1_error": recon_l1_error,
|
||||
}
|
||||
# if Residual VQ is already trained, VQ-BeT trains its GPT and bin prediction head / offset prediction head parts.
|
||||
_, loss_dict = self.vqbet(batch, rollout=False)
|
||||
|
||||
return loss_dict
|
||||
|
||||
|
||||
class SpatialSoftmax(nn.Module):
|
||||
"""
|
||||
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
|
||||
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
|
||||
|
||||
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
|
||||
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
|
||||
|
||||
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
|
||||
-----------------------------------------------------
|
||||
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
|
||||
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
|
||||
| ... | ... | ... | ... |
|
||||
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
|
||||
-----------------------------------------------------
|
||||
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
|
||||
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
|
||||
|
||||
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
|
||||
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
|
||||
linear mapping (in_channels, H, W) -> (num_kp, H, W).
|
||||
"""
|
||||
|
||||
def __init__(self, input_shape, num_kp=None):
|
||||
"""
|
||||
Args:
|
||||
input_shape (list): (C, H, W) input feature map shape.
|
||||
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert len(input_shape) == 3
|
||||
self._in_c, self._in_h, self._in_w = input_shape
|
||||
|
||||
if num_kp is not None:
|
||||
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
|
||||
self._out_c = num_kp
|
||||
else:
|
||||
self.nets = None
|
||||
self._out_c = self._in_c
|
||||
|
||||
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
|
||||
# and causes a small degradation in pc_success of pre-trained models.
|
||||
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
|
||||
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
|
||||
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
|
||||
# register as buffer so it's moved to the correct device.
|
||||
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
|
||||
|
||||
def forward(self, features: Tensor) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
features: (B, C, H, W) input feature maps.
|
||||
Returns:
|
||||
(B, K, 2) image-space coordinates of keypoints.
|
||||
"""
|
||||
if self.nets is not None:
|
||||
features = self.nets(features)
|
||||
|
||||
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
|
||||
features = features.reshape(-1, self._in_h * self._in_w)
|
||||
# 2d softmax normalization
|
||||
attention = F.softmax(features, dim=-1)
|
||||
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
|
||||
expected_xy = attention @ self.pos_grid
|
||||
# reshape to [B, K, 2]
|
||||
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
|
||||
|
||||
return feature_keypoints
|
||||
|
||||
|
||||
class VQBeTModel(nn.Module):
|
||||
"""VQ-BeT: The underlying neural network for VQ-BeT
|
||||
|
||||
Note: In this code we use the terms `rgb_encoder`, 'policy', `action_head`. The meanings are as follows.
|
||||
- The `rgb_encoder` process rgb-style image observations to one-dimensional embedding vectors
|
||||
- A `policy` is a minGPT architecture, that takes observation sequences and action query tokens to generate `features`.
|
||||
- These `features` pass through the action head, which passes through the code prediction, offset prediction head,
|
||||
and finally generates a prediction for the action chunks.
|
||||
|
||||
-------------------------------** legend **-------------------------------
|
||||
│ n = n_obs_steps, p = n_action_pred_token, c = action_chunk_size) │
|
||||
│ o_{t} : visual observation at timestep {t} │
|
||||
│ s_{t} : state observation at timestep {t} │
|
||||
│ a_{t} : action at timestep {t} │
|
||||
│ A_Q : action_query_token │
|
||||
--------------------------------------------------------------------------
|
||||
|
||||
|
||||
Training Phase 1. Discretize action using Residual VQ (for config.n_vqvae_training_steps steps)
|
||||
|
||||
|
||||
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
|
||||
│ │ │ │ │ │
|
||||
│ RVQ encoder │ ─► │ Residual │ ─► │ RVQ Decoder │
|
||||
│ (a_{t}~a_{t+p}) │ │ Code Quantizer │ │ │
|
||||
│ │ │ │ │ │
|
||||
└─────────────────┘ └─────────────────┘ └─────────────────┘
|
||||
|
||||
Training Phase 2.
|
||||
|
||||
timestep {t-n+1} timestep {t-n+2} timestep {t}
|
||||
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
|
||||
|
||||
o_{t-n+1} o_{t-n+2} ... o_{t}
|
||||
│ │ │
|
||||
│ s_{t-n+1} │ s_{t-n+2} ... │ s_{t} p
|
||||
│ │ │ │ │ │ ┌───────┴───────┐
|
||||
│ │ A_Q │ │ A_Q ... │ │ A_Q ... A_Q
|
||||
│ │ │ │ │ │ │ │ │ │
|
||||
┌───▼─────▼─────▼─────▼─────▼─────▼─────────────────▼─────▼─────▼───────────────▼───┐
|
||||
│ │
|
||||
│ GPT │ => policy
|
||||
│ │
|
||||
└───────────────▼─────────────────▼─────────────────────────────▼───────────────▼───┘
|
||||
│ │ │ │
|
||||
┌───┴───┐ ┌───┴───┐ ┌───┴───┐ ┌───┴───┐
|
||||
code offset code offset code offset code offset
|
||||
▼ │ ▼ │ ▼ │ ▼ │ => action_head
|
||||
RVQ Decoder │ RVQ Decoder │ RVQ Decoder │ RVQ Decoder │
|
||||
└── + ──┘ └── + ──┘ └── + ──┘ └── + ──┘
|
||||
▼ ▼ ▼ ▼
|
||||
action chunk action chunk action chunk action chunk
|
||||
a_{t-n+1} ~ a_{t-n+2} ~ a_{t} ~ ... a_{t+p-1} ~
|
||||
a_{t-n+c} a_{t-n+c+1} a_{t+c-1} a_{t+p+c-1}
|
||||
|
||||
▼
|
||||
ONLY this chunk is used in rollout!
|
||||
"""
|
||||
|
||||
def __init__(self, config: VQBeTConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
self.rgb_encoder = VQBeTRgbEncoder(config)
|
||||
self.num_images = len([k for k in config.input_shapes if k.startswith("observation.image")])
|
||||
# This action query token is used as a prompt for querying action chunks. Please refer to "A_Q" in the image above.
|
||||
# Note: During the forward pass, this token is repeated as many times as needed. The authors also experimented with initializing the necessary number of tokens independently and observed inferior results.
|
||||
self.action_token = nn.Parameter(torch.randn(1, 1, self.config.gpt_input_dim))
|
||||
|
||||
# To input state and observation features into GPT layers, we first project the features to fit the shape of input size of GPT.
|
||||
self.state_projector = MLP(
|
||||
config.input_shapes["observation.state"][0], hidden_channels=[self.config.gpt_input_dim]
|
||||
)
|
||||
self.rgb_feature_projector = MLP(
|
||||
self.rgb_encoder.feature_dim, hidden_channels=[self.config.gpt_input_dim]
|
||||
)
|
||||
|
||||
# GPT part of VQ-BeT
|
||||
self.policy = GPT(config)
|
||||
# bin prediction head / offset prediction head part of VQ-BeT
|
||||
self.action_head = VQBeTHead(config)
|
||||
|
||||
# Action tokens for: each observation step, the current action token, and all future action tokens.
|
||||
num_tokens = self.config.n_action_pred_token + self.config.n_obs_steps - 1
|
||||
self.register_buffer(
|
||||
"select_target_actions_indices",
|
||||
torch.row_stack([torch.arange(i, i + self.config.action_chunk_size) for i in range(num_tokens)]),
|
||||
)
|
||||
|
||||
def forward(self, batch: dict[str, Tensor], rollout: bool) -> Tensor:
|
||||
# Input validation.
|
||||
assert set(batch).issuperset({"observation.state", "observation.images"})
|
||||
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
|
||||
assert n_obs_steps == self.config.n_obs_steps
|
||||
|
||||
# Extract image feature (first combine batch and sequence dims).
|
||||
img_features = self.rgb_encoder(
|
||||
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
|
||||
)
|
||||
# Separate batch and sequence dims.
|
||||
img_features = einops.rearrange(
|
||||
img_features, "(b s n) ... -> b s n ...", b=batch_size, s=n_obs_steps, n=self.num_images
|
||||
)
|
||||
|
||||
# Arrange prior and current observation step tokens as shown in the class docstring.
|
||||
# First project features to token dimension.
|
||||
rgb_tokens = self.rgb_feature_projector(
|
||||
img_features
|
||||
) # (batch, obs_step, number of different cameras, projection dims)
|
||||
input_tokens = [rgb_tokens[:, :, i] for i in range(rgb_tokens.size(2))]
|
||||
input_tokens.append(
|
||||
self.state_projector(batch["observation.state"])
|
||||
) # (batch, obs_step, projection dims)
|
||||
input_tokens.append(einops.repeat(self.action_token, "1 1 d -> b n d", b=batch_size, n=n_obs_steps))
|
||||
# Interleave tokens by stacking and rearranging.
|
||||
input_tokens = torch.stack(input_tokens, dim=2)
|
||||
input_tokens = einops.rearrange(input_tokens, "b n t d -> b (n t) d")
|
||||
|
||||
len_additional_action_token = self.config.n_action_pred_token - 1
|
||||
future_action_tokens = self.action_token.repeat(batch_size, len_additional_action_token, 1)
|
||||
|
||||
# add additional action query tokens for predicting future action chunks
|
||||
input_tokens = torch.cat([input_tokens, future_action_tokens], dim=1)
|
||||
|
||||
# get action features (pass through GPT)
|
||||
features = self.policy(input_tokens)
|
||||
# len(self.config.input_shapes) is the number of different observation modes.
|
||||
# this line gets the index of action prompt tokens.
|
||||
historical_act_pred_index = np.arange(0, n_obs_steps) * (len(self.config.input_shapes) + 1) + len(
|
||||
self.config.input_shapes
|
||||
)
|
||||
|
||||
# only extract the output tokens at the position of action query:
|
||||
# Behavior Transformer (BeT), and VQ-BeT are both sequence-to-sequence prediction models,
|
||||
# mapping sequential observation to sequential action (please refer to section 2.2 in BeT paper https://arxiv.org/pdf/2206.11251).
|
||||
# Thus, it predicts a historical action sequence, in addition to current and future actions (predicting future actions : optional).
|
||||
if len_additional_action_token > 0:
|
||||
features = torch.cat(
|
||||
[features[:, historical_act_pred_index], features[:, -len_additional_action_token:]], dim=1
|
||||
)
|
||||
else:
|
||||
features = features[:, historical_act_pred_index]
|
||||
# pass through action head
|
||||
action_head_output = self.action_head(features)
|
||||
# if rollout, VQ-BeT don't calculate loss
|
||||
if rollout:
|
||||
return action_head_output["predicted_action"][:, n_obs_steps - 1, :].reshape(
|
||||
batch_size, self.config.action_chunk_size, -1
|
||||
)
|
||||
# else, it calculate overall loss (bin prediction loss, and offset loss)
|
||||
else:
|
||||
output = batch["action"][:, self.select_target_actions_indices]
|
||||
loss = self.action_head.loss_fn(action_head_output, output, reduction="mean")
|
||||
return action_head_output, loss
|
||||
|
||||
|
||||
class VQBeTHead(nn.Module):
|
||||
def __init__(self, config: VQBeTConfig):
|
||||
"""
|
||||
VQBeTHead takes output of GPT layers, and pass the feature through bin prediction head (`self.map_to_cbet_preds_bin`), and offset prediction head (`self.map_to_cbet_preds_offset`)
|
||||
|
||||
self.map_to_cbet_preds_bin: outputs probability of each code (for each layer).
|
||||
The input dimension of `self.map_to_cbet_preds_bin` is same with the output of GPT,
|
||||
and the output dimension of `self.map_to_cbet_preds_bin` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed`.
|
||||
if the agent select the code sequentially, we use self.map_to_cbet_preds_primary_bin and self.map_to_cbet_preds_secondary_bin instead of self._map_to_cbet_preds_bin.
|
||||
|
||||
self.map_to_cbet_preds_offset: output the predicted offsets for all the codes in all the layers.
|
||||
The input dimension of ` self.map_to_cbet_preds_offset` is same with the output of GPT,
|
||||
and the output dimension of ` self.map_to_cbet_preds_offset` is `self.vqvae_model.vqvae_num_layers (=fixed as 2) * self.config.vqvae_n_embed * config.action_chunk_size * config.output_shapes["action"][0]`.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.config = config
|
||||
# init vqvae
|
||||
self.vqvae_model = VqVae(config)
|
||||
if config.sequentially_select:
|
||||
self.map_to_cbet_preds_primary_bin = MLP(
|
||||
in_channels=config.gpt_output_dim,
|
||||
hidden_channels=[self.config.vqvae_n_embed],
|
||||
)
|
||||
self.map_to_cbet_preds_secondary_bin = MLP(
|
||||
in_channels=config.gpt_output_dim + self.config.vqvae_n_embed,
|
||||
hidden_channels=[self.config.vqvae_n_embed],
|
||||
)
|
||||
else:
|
||||
self.map_to_cbet_preds_bin = MLP(
|
||||
in_channels=config.gpt_output_dim,
|
||||
hidden_channels=[self.vqvae_model.vqvae_num_layers * self.config.vqvae_n_embed],
|
||||
)
|
||||
self.map_to_cbet_preds_offset = MLP(
|
||||
in_channels=config.gpt_output_dim,
|
||||
hidden_channels=[
|
||||
self.vqvae_model.vqvae_num_layers
|
||||
* self.config.vqvae_n_embed
|
||||
* config.action_chunk_size
|
||||
* config.output_shapes["action"][0],
|
||||
],
|
||||
)
|
||||
# loss
|
||||
self._focal_loss_fn = FocalLoss(gamma=2.0)
|
||||
|
||||
def discretize(self, n_vqvae_training_steps, actions):
|
||||
# Resize the action sequence data to fit the action chunk size using a sliding window approach.
|
||||
actions = torch.cat(
|
||||
[
|
||||
actions[:, j : j + self.config.action_chunk_size, :]
|
||||
for j in range(actions.shape[1] + 1 - self.config.action_chunk_size)
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
# `actions` is a tensor of shape (new_batch, action_chunk_size, action_dim) where new_batch is the number of possible chunks created from the original sequences using the sliding window.
|
||||
|
||||
loss, metric = self.vqvae_model.vqvae_forward(actions)
|
||||
n_different_codes = sum(
|
||||
[len(torch.unique(metric[2][:, i])) for i in range(self.vqvae_model.vqvae_num_layers)]
|
||||
)
|
||||
n_different_combinations = len(torch.unique(metric[2], dim=0))
|
||||
recon_l1_error = metric[0].detach().cpu().item()
|
||||
self.vqvae_model.optimized_steps += 1
|
||||
# if we updated RVQ more than `n_vqvae_training_steps` steps, we freeze the RVQ part.
|
||||
if self.vqvae_model.optimized_steps >= n_vqvae_training_steps:
|
||||
self.vqvae_model.discretized = torch.tensor(True)
|
||||
self.vqvae_model.vq_layer.freeze_codebook = torch.tensor(True)
|
||||
print("Finished discretizing action data!")
|
||||
self.vqvae_model.eval()
|
||||
for param in self.vqvae_model.vq_layer.parameters():
|
||||
param.requires_grad = False
|
||||
return loss, n_different_codes, n_different_combinations, recon_l1_error
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
# N is the batch size, and T is number of action query tokens, which are process through same GPT
|
||||
N, T, _ = x.shape
|
||||
# we calculate N and T side parallely. Thus, the dimensions would be
|
||||
# (batch size * number of action query tokens, action chunk size, action dimension)
|
||||
x = einops.rearrange(x, "N T WA -> (N T) WA")
|
||||
|
||||
# sample offsets
|
||||
cbet_offsets = self.map_to_cbet_preds_offset(x)
|
||||
cbet_offsets = einops.rearrange(
|
||||
cbet_offsets,
|
||||
"(NT) (G C WA) -> (NT) G C WA",
|
||||
G=self.vqvae_model.vqvae_num_layers,
|
||||
C=self.config.vqvae_n_embed,
|
||||
)
|
||||
# if self.config.sequentially_select is True, bin prediction head first sample the primary code, and then sample secondary code
|
||||
if self.config.sequentially_select:
|
||||
cbet_primary_logits = self.map_to_cbet_preds_primary_bin(x)
|
||||
|
||||
# select primary bin first
|
||||
cbet_primary_probs = torch.softmax(
|
||||
cbet_primary_logits / self.config.bet_softmax_temperature, dim=-1
|
||||
)
|
||||
NT, choices = cbet_primary_probs.shape
|
||||
sampled_primary_centers = einops.rearrange(
|
||||
torch.multinomial(cbet_primary_probs.view(-1, choices), num_samples=1),
|
||||
"(NT) 1 -> NT",
|
||||
NT=NT,
|
||||
)
|
||||
|
||||
cbet_secondary_logits = self.map_to_cbet_preds_secondary_bin(
|
||||
torch.cat(
|
||||
(x, F.one_hot(sampled_primary_centers, num_classes=self.config.vqvae_n_embed)),
|
||||
axis=1,
|
||||
)
|
||||
)
|
||||
cbet_secondary_probs = torch.softmax(
|
||||
cbet_secondary_logits / self.config.bet_softmax_temperature, dim=-1
|
||||
)
|
||||
sampled_secondary_centers = einops.rearrange(
|
||||
torch.multinomial(cbet_secondary_probs.view(-1, choices), num_samples=1),
|
||||
"(NT) 1 -> NT",
|
||||
NT=NT,
|
||||
)
|
||||
sampled_centers = torch.stack((sampled_primary_centers, sampled_secondary_centers), axis=1)
|
||||
cbet_logits = torch.stack([cbet_primary_logits, cbet_secondary_logits], dim=1)
|
||||
# if self.config.sequentially_select is False, bin prediction head samples primary and secondary code at once.
|
||||
else:
|
||||
cbet_logits = self.map_to_cbet_preds_bin(x)
|
||||
cbet_logits = einops.rearrange(
|
||||
cbet_logits, "(NT) (G C) -> (NT) G C", G=self.vqvae_model.vqvae_num_layers
|
||||
)
|
||||
cbet_probs = torch.softmax(cbet_logits / self.config.bet_softmax_temperature, dim=-1)
|
||||
NT, G, choices = cbet_probs.shape
|
||||
sampled_centers = einops.rearrange(
|
||||
torch.multinomial(cbet_probs.view(-1, choices), num_samples=1),
|
||||
"(NT G) 1 -> NT G",
|
||||
NT=NT,
|
||||
)
|
||||
|
||||
device = get_device_from_parameters(self)
|
||||
indices = (
|
||||
torch.arange(NT, device=device).unsqueeze(1),
|
||||
torch.arange(self.vqvae_model.vqvae_num_layers, device=device).unsqueeze(0),
|
||||
sampled_centers,
|
||||
)
|
||||
# Use advanced indexing to sample the values (Extract the only offsets corresponding to the sampled codes.)
|
||||
sampled_offsets = cbet_offsets[indices]
|
||||
# Then, sum the offsets over the RVQ layers to get a net offset for the bin prediction
|
||||
sampled_offsets = sampled_offsets.sum(dim=1)
|
||||
with torch.no_grad():
|
||||
# Get the centroids (= vectors corresponding to the codes) of each layer to pass it through RVQ decoder
|
||||
return_decoder_input = self.vqvae_model.get_embeddings_from_code(sampled_centers).clone().detach()
|
||||
# pass the centroids through decoder to get actions.
|
||||
decoded_action = self.vqvae_model.get_action_from_latent(return_decoder_input).clone().detach()
|
||||
# reshaped extracted offset to match with decoded centroids
|
||||
sampled_offsets = einops.rearrange(
|
||||
sampled_offsets, "NT (W A) -> NT W A", W=self.config.action_chunk_size
|
||||
)
|
||||
# add offset and decoded centroids
|
||||
predicted_action = decoded_action + sampled_offsets
|
||||
predicted_action = einops.rearrange(
|
||||
predicted_action,
|
||||
"(N T) W A -> N T (W A)",
|
||||
N=N,
|
||||
T=T,
|
||||
W=self.config.action_chunk_size,
|
||||
)
|
||||
|
||||
return {
|
||||
"cbet_logits": cbet_logits,
|
||||
"predicted_action": predicted_action,
|
||||
"sampled_centers": sampled_centers,
|
||||
"decoded_action": decoded_action,
|
||||
}
|
||||
|
||||
def loss_fn(self, pred, target, **kwargs):
|
||||
"""
|
||||
for given ground truth action values (target), and prediction (pred) this function calculates the overall loss.
|
||||
|
||||
predicted_action: predicted action chunk (offset + decoded centroids)
|
||||
sampled_centers: sampled centroids (code of RVQ)
|
||||
decoded_action: decoded action, which is produced by passing sampled_centers through RVQ decoder
|
||||
NT: batch size * T
|
||||
T: number of action query tokens, which are process through same GPT
|
||||
cbet_logits: probability of all codes in each layer
|
||||
"""
|
||||
action_seq = target
|
||||
predicted_action = pred["predicted_action"]
|
||||
sampled_centers = pred["sampled_centers"]
|
||||
decoded_action = pred["decoded_action"]
|
||||
NT = predicted_action.shape[0] * predicted_action.shape[1]
|
||||
|
||||
cbet_logits = pred["cbet_logits"]
|
||||
|
||||
predicted_action = einops.rearrange(
|
||||
predicted_action, "N T (W A) -> (N T) W A", W=self.config.action_chunk_size
|
||||
)
|
||||
|
||||
action_seq = einops.rearrange(action_seq, "N T W A -> (N T) W A")
|
||||
# Figure out the loss for the actions.
|
||||
# First, we need to find the closest cluster center for each ground truth action.
|
||||
with torch.no_grad():
|
||||
state_vq, action_bins = self.vqvae_model.get_code(action_seq) # action_bins: NT, G
|
||||
|
||||
# Now we can compute the loss.
|
||||
|
||||
# offset loss is L1 distance between the predicted action and ground truth action
|
||||
offset_loss = F.l1_loss(action_seq, predicted_action)
|
||||
|
||||
# calculate primary code prediction loss
|
||||
cbet_loss1 = self._focal_loss_fn(
|
||||
cbet_logits[:, 0, :],
|
||||
action_bins[:, 0],
|
||||
)
|
||||
# calculate secondary code prediction loss
|
||||
cbet_loss2 = self._focal_loss_fn(
|
||||
cbet_logits[:, 1, :],
|
||||
action_bins[:, 1],
|
||||
)
|
||||
# add all the prediction loss
|
||||
cbet_loss = (
|
||||
cbet_loss1 * self.config.primary_code_loss_weight
|
||||
+ cbet_loss2 * self.config.secondary_code_loss_weight
|
||||
)
|
||||
|
||||
equal_primary_code_rate = torch.sum((action_bins[:, 0] == sampled_centers[:, 0]).int()) / (NT)
|
||||
equal_secondary_code_rate = torch.sum((action_bins[:, 1] == sampled_centers[:, 1]).int()) / (NT)
|
||||
|
||||
action_mse_error = torch.mean((action_seq - predicted_action) ** 2)
|
||||
vq_action_error = torch.mean(torch.abs(action_seq - decoded_action))
|
||||
offset_action_error = torch.mean(torch.abs(action_seq - predicted_action))
|
||||
action_error_max = torch.max(torch.abs(action_seq - predicted_action))
|
||||
|
||||
loss = cbet_loss + self.config.offset_loss_weight * offset_loss
|
||||
|
||||
loss_dict = {
|
||||
"loss": loss,
|
||||
"classification_loss": cbet_loss.detach().cpu().item(),
|
||||
"offset_loss": offset_loss.detach().cpu().item(),
|
||||
"equal_primary_code_rate": equal_primary_code_rate.detach().cpu().item(),
|
||||
"equal_secondary_code_rate": equal_secondary_code_rate.detach().cpu().item(),
|
||||
"vq_action_error": vq_action_error.detach().cpu().item(),
|
||||
"offset_action_error": offset_action_error.detach().cpu().item(),
|
||||
"action_error_max": action_error_max.detach().cpu().item(),
|
||||
"action_mse_error": action_mse_error.detach().cpu().item(),
|
||||
}
|
||||
return loss_dict
|
||||
|
||||
|
||||
class VQBeTOptimizer(torch.optim.Adam):
|
||||
def __init__(self, policy, cfg):
|
||||
vqvae_params = (
|
||||
list(policy.vqbet.action_head.vqvae_model.encoder.parameters())
|
||||
+ list(policy.vqbet.action_head.vqvae_model.decoder.parameters())
|
||||
+ list(policy.vqbet.action_head.vqvae_model.vq_layer.parameters())
|
||||
)
|
||||
decay_params, no_decay_params = policy.vqbet.policy.configure_parameters()
|
||||
decay_params = (
|
||||
decay_params
|
||||
+ list(policy.vqbet.rgb_encoder.parameters())
|
||||
+ list(policy.vqbet.state_projector.parameters())
|
||||
+ list(policy.vqbet.rgb_feature_projector.parameters())
|
||||
+ [policy.vqbet.action_token]
|
||||
+ list(policy.vqbet.action_head.map_to_cbet_preds_offset.parameters())
|
||||
)
|
||||
|
||||
if cfg.policy.sequentially_select:
|
||||
decay_params = (
|
||||
decay_params
|
||||
+ list(policy.vqbet.action_head.map_to_cbet_preds_primary_bin.parameters())
|
||||
+ list(policy.vqbet.action_head.map_to_cbet_preds_secondary_bin.parameters())
|
||||
)
|
||||
else:
|
||||
decay_params = decay_params + list(policy.vqbet.action_head.map_to_cbet_preds_bin.parameters())
|
||||
|
||||
optim_groups = [
|
||||
{
|
||||
"params": decay_params,
|
||||
"weight_decay": cfg.training.adam_weight_decay,
|
||||
"lr": cfg.training.lr,
|
||||
},
|
||||
{
|
||||
"params": vqvae_params,
|
||||
"weight_decay": 0.0001,
|
||||
"lr": cfg.training.vqvae_lr,
|
||||
},
|
||||
{
|
||||
"params": no_decay_params,
|
||||
"weight_decay": 0.0,
|
||||
"lr": cfg.training.lr,
|
||||
},
|
||||
]
|
||||
super().__init__(
|
||||
optim_groups,
|
||||
cfg.training.lr,
|
||||
cfg.training.adam_betas,
|
||||
cfg.training.adam_eps,
|
||||
)
|
||||
|
||||
|
||||
class VQBeTScheduler(nn.Module):
|
||||
def __init__(self, optimizer, cfg):
|
||||
super().__init__()
|
||||
n_vqvae_training_steps = cfg.training.n_vqvae_training_steps
|
||||
|
||||
num_warmup_steps = cfg.training.lr_warmup_steps
|
||||
num_training_steps = cfg.training.offline_steps
|
||||
num_cycles = 0.5
|
||||
|
||||
def lr_lambda(current_step):
|
||||
if current_step < n_vqvae_training_steps:
|
||||
return float(1)
|
||||
else:
|
||||
current_step = current_step - n_vqvae_training_steps
|
||||
if current_step < num_warmup_steps:
|
||||
return float(current_step) / float(max(1, num_warmup_steps))
|
||||
progress = float(current_step - num_warmup_steps) / float(
|
||||
max(1, num_training_steps - num_warmup_steps)
|
||||
)
|
||||
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
||||
|
||||
self.lr_scheduler = LambdaLR(optimizer, lr_lambda, -1)
|
||||
|
||||
def step(self):
|
||||
self.lr_scheduler.step()
|
||||
|
||||
|
||||
class VQBeTRgbEncoder(nn.Module):
|
||||
"""Encode an RGB image into a 1D feature vector.
|
||||
|
||||
Includes the ability to normalize and crop the image first.
|
||||
|
||||
Same with DiffusionRgbEncoder from modeling_diffusion.py
|
||||
"""
|
||||
|
||||
def __init__(self, config: VQBeTConfig):
|
||||
super().__init__()
|
||||
# Set up optional preprocessing.
|
||||
if config.crop_shape is not None:
|
||||
self.do_crop = True
|
||||
# Always use center crop for eval
|
||||
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
|
||||
if config.crop_is_random:
|
||||
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
|
||||
else:
|
||||
self.maybe_random_crop = self.center_crop
|
||||
else:
|
||||
self.do_crop = False
|
||||
|
||||
# Set up backbone.
|
||||
backbone_model = getattr(torchvision.models, config.vision_backbone)(
|
||||
weights=config.pretrained_backbone_weights
|
||||
)
|
||||
# Note: This assumes that the layer4 feature map is children()[-3]
|
||||
# TODO(alexander-soare): Use a safer alternative.
|
||||
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
|
||||
if config.use_group_norm:
|
||||
if config.pretrained_backbone_weights:
|
||||
raise ValueError(
|
||||
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
|
||||
)
|
||||
self.backbone = _replace_submodules(
|
||||
root_module=self.backbone,
|
||||
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
|
||||
func=lambda x: nn.GroupNorm(num_groups=x.num_features // 16, num_channels=x.num_features),
|
||||
)
|
||||
|
||||
# Set up pooling and final layers.
|
||||
# Use a dry run to get the feature map shape.
|
||||
# The dummy input should take the number of image channels from `config.input_shapes` and it should
|
||||
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
|
||||
# height and width from `config.input_shapes`.
|
||||
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
|
||||
assert len(image_keys) == 1
|
||||
image_key = image_keys[0]
|
||||
dummy_input_h_w = (
|
||||
config.crop_shape if config.crop_shape is not None else config.input_shapes[image_key][1:]
|
||||
)
|
||||
dummy_input = torch.zeros(size=(1, config.input_shapes[image_key][0], *dummy_input_h_w))
|
||||
with torch.inference_mode():
|
||||
dummy_feature_map = self.backbone(dummy_input)
|
||||
feature_map_shape = tuple(dummy_feature_map.shape[1:])
|
||||
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
|
||||
self.feature_dim = config.spatial_softmax_num_keypoints * 2
|
||||
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""
|
||||
Args:
|
||||
x: (B, C, H, W) image tensor with pixel values in [0, 1].
|
||||
Returns:
|
||||
(B, D) image feature.
|
||||
"""
|
||||
# Preprocess: maybe crop (if it was set up in the __init__).
|
||||
if self.do_crop:
|
||||
if self.training: # noqa: SIM108
|
||||
x = self.maybe_random_crop(x)
|
||||
else:
|
||||
# Always use center crop for eval.
|
||||
x = self.center_crop(x)
|
||||
# Extract backbone feature.
|
||||
x = torch.flatten(self.pool(self.backbone(x)), start_dim=1)
|
||||
# Final linear layer with non-linearity.
|
||||
x = self.relu(self.out(x))
|
||||
return x
|
||||
|
||||
|
||||
def _replace_submodules(
|
||||
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
|
||||
) -> nn.Module:
|
||||
"""
|
||||
Args:
|
||||
root_module: The module for which the submodules need to be replaced
|
||||
predicate: Takes a module as an argument and must return True if the that module is to be replaced.
|
||||
func: Takes a module as an argument and returns a new module to replace it with.
|
||||
Returns:
|
||||
The root module with its submodules replaced.
|
||||
"""
|
||||
if predicate(root_module):
|
||||
return func(root_module)
|
||||
|
||||
replace_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
|
||||
for *parents, k in replace_list:
|
||||
parent_module = root_module
|
||||
if len(parents) > 0:
|
||||
parent_module = root_module.get_submodule(".".join(parents))
|
||||
if isinstance(parent_module, nn.Sequential):
|
||||
src_module = parent_module[int(k)]
|
||||
else:
|
||||
src_module = getattr(parent_module, k)
|
||||
tgt_module = func(src_module)
|
||||
if isinstance(parent_module, nn.Sequential):
|
||||
parent_module[int(k)] = tgt_module
|
||||
else:
|
||||
setattr(parent_module, k, tgt_module)
|
||||
# verify that all BN are replaced
|
||||
assert not any(predicate(m) for _, m in root_module.named_modules(remove_duplicate=True))
|
||||
return root_module
|
||||
|
||||
|
||||
class VqVae(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
config: VQBeTConfig,
|
||||
):
|
||||
"""
|
||||
VQ-VAE is composed of three parts: encoder, vq_layer, and decoder.
|
||||
Encoder and decoder are MLPs consisting of an input, output layer, and hidden layer, respectively.
|
||||
The vq_layer uses residual VQs.
|
||||
|
||||
This class contains functions for training the encoder and decoder along with the residual VQ layer (for trainign phase 1),
|
||||
as well as functions to help BeT training part in training phase 2.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.config = config
|
||||
# 'discretized' indicates whether the Residual VQ part is trained or not. (After finishing the training, we set discretized=True)
|
||||
self.register_buffer("discretized", torch.tensor(False))
|
||||
self.optimized_steps = 0
|
||||
# we use the fixed number of layers for Residual VQ across all environments.
|
||||
self.vqvae_num_layers = 2
|
||||
|
||||
self.vq_layer = ResidualVQ(
|
||||
dim=config.vqvae_embedding_dim,
|
||||
num_quantizers=self.vqvae_num_layers,
|
||||
codebook_size=config.vqvae_n_embed,
|
||||
)
|
||||
|
||||
self.encoder = MLP(
|
||||
in_channels=self.config.output_shapes["action"][0] * self.config.action_chunk_size,
|
||||
hidden_channels=[
|
||||
config.vqvae_enc_hidden_dim,
|
||||
config.vqvae_enc_hidden_dim,
|
||||
config.vqvae_embedding_dim,
|
||||
],
|
||||
)
|
||||
self.decoder = MLP(
|
||||
in_channels=config.vqvae_embedding_dim,
|
||||
hidden_channels=[
|
||||
config.vqvae_enc_hidden_dim,
|
||||
config.vqvae_enc_hidden_dim,
|
||||
self.config.output_shapes["action"][0] * self.config.action_chunk_size,
|
||||
],
|
||||
)
|
||||
|
||||
def get_embeddings_from_code(self, encoding_indices):
|
||||
# This function gets code indices as inputs, and outputs embedding vectors corresponding to the code indices.
|
||||
with torch.no_grad():
|
||||
z_embed = self.vq_layer.get_codebook_vector_from_indices(encoding_indices)
|
||||
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
|
||||
z_embed = z_embed.sum(dim=0)
|
||||
return z_embed
|
||||
|
||||
def get_action_from_latent(self, latent):
|
||||
# given latent vector, this function outputs the decoded action.
|
||||
output = self.decoder(latent)
|
||||
if self.config.action_chunk_size == 1:
|
||||
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
|
||||
else:
|
||||
return einops.rearrange(output, "N (T A) -> N T A", A=self.config.output_shapes["action"][0])
|
||||
|
||||
def get_code(self, state):
|
||||
# in phase 2 of VQ-BeT training, we need a `ground truth labels of action data` to calculate the Focal loss for code prediction head. (please refer to section 3.3 in the paper https://arxiv.org/pdf/2403.03181)
|
||||
# this function outputs the `GT code` of given action using frozen encoder and quantization layers. (please refer to Figure 2. in the paper https://arxiv.org/pdf/2403.03181)
|
||||
state = einops.rearrange(state, "N T A -> N (T A)")
|
||||
with torch.no_grad():
|
||||
state_rep = self.encoder(state)
|
||||
state_rep_shape = state_rep.shape[:-1]
|
||||
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
|
||||
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
|
||||
state_vq = state_rep_flat.view(*state_rep_shape, -1)
|
||||
vq_code = vq_code.view(*state_rep_shape, -1)
|
||||
vq_loss_state = torch.sum(vq_loss_state)
|
||||
return state_vq, vq_code
|
||||
|
||||
def vqvae_forward(self, state):
|
||||
# This function passes the given data through Residual VQ with Encoder and Decoder. Please refer to section 3.2 in the paper https://arxiv.org/pdf/2403.03181).
|
||||
state = einops.rearrange(state, "N T A -> N (T A)")
|
||||
# We start with passing action (or action chunk) at:t+n through the encoder ϕ.
|
||||
state_rep = self.encoder(state)
|
||||
state_rep_shape = state_rep.shape[:-1]
|
||||
state_rep_flat = state_rep.view(state_rep.size(0), -1, state_rep.size(1))
|
||||
# The resulting latent embedding vector x = ϕ(at:t+n) is then mapped to an embedding vector in the codebook of the RVQ layers by the nearest neighbor look-up.
|
||||
state_rep_flat, vq_code, vq_loss_state = self.vq_layer(state_rep_flat)
|
||||
state_vq = state_rep_flat.view(*state_rep_shape, -1)
|
||||
vq_code = vq_code.view(*state_rep_shape, -1)
|
||||
# since the RVQ has multiple layers, it adds the vectors in the axis of layers to provide a vector for that code combination.
|
||||
vq_loss_state = torch.sum(vq_loss_state)
|
||||
# Then, the discretized vector zq(x) is reconstructed as ψ(zq(x)) by passing through the decoder ψ.
|
||||
dec_out = self.decoder(state_vq)
|
||||
# Calculate L1 reconstruction loss
|
||||
encoder_loss = (state - dec_out).abs().mean()
|
||||
# add encoder reconstruction loss and commitment loss
|
||||
rep_loss = encoder_loss + vq_loss_state * 5
|
||||
|
||||
metric = (
|
||||
encoder_loss.clone().detach(),
|
||||
vq_loss_state.clone().detach(),
|
||||
vq_code,
|
||||
rep_loss.item(),
|
||||
)
|
||||
return rep_loss, metric
|
||||
|
||||
|
||||
class FocalLoss(nn.Module):
|
||||
"""
|
||||
From https://github.com/notmahi/miniBET/blob/main/behavior_transformer/bet.py
|
||||
"""
|
||||
|
||||
def __init__(self, gamma: float = 0, size_average: bool = True):
|
||||
super().__init__()
|
||||
self.gamma = gamma
|
||||
self.size_average = size_average
|
||||
|
||||
def forward(self, input, target):
|
||||
if len(input.shape) == 3:
|
||||
N, T, _ = input.shape
|
||||
logpt = F.log_softmax(input, dim=-1)
|
||||
logpt = logpt.gather(-1, target.view(N, T, 1)).view(N, T)
|
||||
elif len(input.shape) == 2:
|
||||
logpt = F.log_softmax(input, dim=-1)
|
||||
logpt = logpt.gather(-1, target.view(-1, 1)).view(-1)
|
||||
pt = logpt.exp()
|
||||
|
||||
loss = -1 * (1 - pt) ** self.gamma * logpt
|
||||
if self.size_average:
|
||||
return loss.mean()
|
||||
else:
|
||||
return loss.sum()
|
||||
|
||||
|
||||
class MLP(torch.nn.Sequential):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
hidden_channels: List[int],
|
||||
):
|
||||
layers = []
|
||||
in_dim = in_channels
|
||||
for hidden_dim in hidden_channels[:-1]:
|
||||
layers.append(torch.nn.Linear(in_dim, hidden_dim))
|
||||
layers.append(torch.nn.ReLU())
|
||||
in_dim = hidden_dim
|
||||
|
||||
layers.append(torch.nn.Linear(in_dim, hidden_channels[-1]))
|
||||
|
||||
super().__init__(*layers)
|
||||
1462
lerobot/common/policies/vqbet/vqbet_utils.py
Normal file
1462
lerobot/common/policies/vqbet/vqbet_utils.py
Normal file
File diff suppressed because it is too large
Load Diff
557
lerobot/common/robot_devices/cameras/intelrealsense.py
Normal file
557
lerobot/common/robot_devices/cameras/intelrealsense.py
Normal file
@@ -0,0 +1,557 @@
|
||||
"""
|
||||
This file contains utilities for recording frames from Intel Realsense cameras.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import logging
|
||||
import math
|
||||
import shutil
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from collections import Counter
|
||||
from dataclasses import dataclass, replace
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
from lerobot.scripts.control_robot import busy_wait
|
||||
|
||||
SERIAL_NUMBER_INDEX = 1
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
|
||||
"""
|
||||
Find the names and the serial numbers of the Intel RealSense cameras
|
||||
connected to the computer.
|
||||
"""
|
||||
if mock:
|
||||
import tests.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
cameras = []
|
||||
for device in rs.context().query_devices():
|
||||
serial_number = int(device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX)))
|
||||
name = device.get_info(rs.camera_info.name)
|
||||
cameras.append(
|
||||
{
|
||||
"serial_number": serial_number,
|
||||
"name": name,
|
||||
}
|
||||
)
|
||||
|
||||
if raise_when_empty and len(cameras) == 0:
|
||||
raise OSError(
|
||||
"Not a single camera was detected. Try re-plugging, or re-installing `librealsense` and its python wrapper `pyrealsense2`, or updating the firmware."
|
||||
)
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def save_image(img_array, serial_number, frame_index, images_dir):
|
||||
try:
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{serial_number}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
logging.info(f"Saved image: {path}")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to save image for camera {serial_number} frame {frame_index}: {e}")
|
||||
|
||||
|
||||
def save_images_from_cameras(
|
||||
images_dir: Path,
|
||||
serial_numbers: list[int] | None = None,
|
||||
fps=None,
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given serial number.
|
||||
"""
|
||||
if serial_numbers is None or len(serial_numbers) == 0:
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
serial_numbers = [cam["serial_number"] for cam in camera_infos]
|
||||
|
||||
if mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_sn in serial_numbers:
|
||||
print(f"{cam_sn=}")
|
||||
camera = IntelRealSenseCamera(cam_sn, fps=fps, width=width, height=height, mock=mock)
|
||||
camera.connect()
|
||||
print(
|
||||
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
images_dir = Path(images_dir)
|
||||
if images_dir.exists():
|
||||
shutil.rmtree(
|
||||
images_dir,
|
||||
)
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Saving images to {images_dir}")
|
||||
frame_index = 0
|
||||
start_time = time.perf_counter()
|
||||
try:
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
|
||||
for camera in cameras:
|
||||
# If we use async_read when fps is None, the loop will go full speed, and we will end up
|
||||
# saving the same images from the cameras multiple times until the RAM/disk is full.
|
||||
image = camera.read() if fps is None else camera.async_read()
|
||||
if image is None:
|
||||
print("No Frame")
|
||||
|
||||
bgr_converted_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
executor.submit(
|
||||
save_image,
|
||||
bgr_converted_image,
|
||||
camera.serial_number,
|
||||
frame_index,
|
||||
images_dir,
|
||||
)
|
||||
|
||||
if fps is not None:
|
||||
dt_s = time.perf_counter() - now
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
|
||||
frame_index += 1
|
||||
finally:
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
for camera in cameras:
|
||||
camera.disconnect()
|
||||
|
||||
|
||||
@dataclass
|
||||
class IntelRealSenseCameraConfig:
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
IntelRealSenseCameraConfig(30, 640, 480)
|
||||
IntelRealSenseCameraConfig(60, 640, 480)
|
||||
IntelRealSenseCameraConfig(90, 640, 480)
|
||||
IntelRealSenseCameraConfig(30, 1280, 720)
|
||||
IntelRealSenseCameraConfig(30, 640, 480, use_depth=True)
|
||||
IntelRealSenseCameraConfig(30, 640, 480, rotation=90)
|
||||
```
|
||||
"""
|
||||
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
use_depth: bool = False
|
||||
force_hardware_reset: bool = True
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
at_least_one_is_not_none = self.fps is not None or self.width is not None or self.height is not None
|
||||
at_least_one_is_none = self.fps is None or self.width is None or self.height is None
|
||||
if at_least_one_is_not_none and at_least_one_is_none:
|
||||
raise ValueError(
|
||||
"For `fps`, `width` and `height`, either all of them need to be set, or none of them, "
|
||||
f"but {self.fps=}, {self.width=}, {self.height=} were provided."
|
||||
)
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
|
||||
|
||||
class IntelRealSenseCamera:
|
||||
"""
|
||||
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
|
||||
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
|
||||
- can also be instantiated with the camera's name — if it's unique — using IntelRealSenseCamera.init_from_name(),
|
||||
- depth map can be returned.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
|
||||
```
|
||||
|
||||
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
# Instantiate with its serial number
|
||||
camera = IntelRealSenseCamera(128422271347)
|
||||
# Or by its name if it's unique
|
||||
camera = IntelRealSenseCamera.init_from_name("Intel RealSense D405")
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
camera.disconnect()
|
||||
```
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
camera = IntelRealSenseCamera(serial_number, fps=30, width=1280, height=720)
|
||||
camera = connect() # applies the settings, might error out if these settings are not compatible with the camera
|
||||
|
||||
camera = IntelRealSenseCamera(serial_number, fps=90, width=640, height=480)
|
||||
camera = connect()
|
||||
|
||||
camera = IntelRealSenseCamera(serial_number, fps=90, width=640, height=480, color_mode="bgr")
|
||||
camera = connect()
|
||||
```
|
||||
|
||||
Example of returning depth:
|
||||
```python
|
||||
camera = IntelRealSenseCamera(serial_number, use_depth=True)
|
||||
camera.connect()
|
||||
color_image, depth_map = camera.read()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
serial_number: int,
|
||||
config: IntelRealSenseCameraConfig | None = None,
|
||||
**kwargs,
|
||||
):
|
||||
if config is None:
|
||||
config = IntelRealSenseCameraConfig()
|
||||
|
||||
# Overwrite the config arguments using kwargs
|
||||
config = replace(config, **kwargs)
|
||||
|
||||
self.serial_number = serial_number
|
||||
self.fps = config.fps
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
self.color_mode = config.color_mode
|
||||
self.use_depth = config.use_depth
|
||||
self.force_hardware_reset = config.force_hardware_reset
|
||||
self.mock = config.mock
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
self.color_image = None
|
||||
self.depth_map = None
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
# TODO(alibets): Do we keep original width/height or do we define them after rotation?
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
elif config.rotation == 90:
|
||||
self.rotation = cv2.ROTATE_90_CLOCKWISE
|
||||
elif config.rotation == 180:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
|
||||
@classmethod
|
||||
def init_from_name(cls, name: str, config: IntelRealSenseCameraConfig | None = None, **kwargs):
|
||||
camera_infos = find_cameras()
|
||||
camera_names = [cam["name"] for cam in camera_infos]
|
||||
this_name_count = Counter(camera_names)[name]
|
||||
if this_name_count > 1:
|
||||
# TODO(aliberts): Test this with multiple identical cameras (Aloha)
|
||||
raise ValueError(
|
||||
f"Multiple {name} cameras have been detected. Please use their serial number to instantiate them."
|
||||
)
|
||||
|
||||
name_to_serial_dict = {cam["name"]: cam["serial_number"] for cam in camera_infos}
|
||||
cam_sn = name_to_serial_dict[name]
|
||||
|
||||
if config is None:
|
||||
config = IntelRealSenseCameraConfig()
|
||||
|
||||
# Overwrite the config arguments using kwargs
|
||||
config = replace(config, **kwargs)
|
||||
|
||||
return cls(serial_number=cam_sn, config=config, **kwargs)
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is already connected."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
config = rs.config()
|
||||
config.enable_device(str(self.serial_number))
|
||||
|
||||
if self.fps and self.width and self.height:
|
||||
# TODO(rcadene): can we set rgb8 directly?
|
||||
config.enable_stream(rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps)
|
||||
else:
|
||||
config.enable_stream(rs.stream.color)
|
||||
|
||||
if self.use_depth:
|
||||
if self.fps and self.width and self.height:
|
||||
config.enable_stream(rs.stream.depth, self.width, self.height, rs.format.z16, self.fps)
|
||||
else:
|
||||
config.enable_stream(rs.stream.depth)
|
||||
|
||||
self.camera = rs.pipeline()
|
||||
try:
|
||||
profile = self.camera.start(config)
|
||||
is_camera_open = True
|
||||
except RuntimeError:
|
||||
is_camera_open = False
|
||||
traceback.print_exc()
|
||||
|
||||
# If the camera doesn't work, display the camera indices corresponding to
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `serial_number` is valid before printing the traceback
|
||||
camera_infos = find_cameras()
|
||||
serial_numbers = [cam["serial_number"] for cam in camera_infos]
|
||||
if self.serial_number not in serial_numbers:
|
||||
raise ValueError(
|
||||
f"`serial_number` is expected to be one of these available cameras {serial_numbers}, but {self.serial_number} is provided instead. "
|
||||
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
|
||||
)
|
||||
|
||||
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_stream = profile.get_stream(rs.stream.color)
|
||||
color_profile = color_stream.as_video_stream_profile()
|
||||
actual_fps = color_profile.fps()
|
||||
actual_width = color_profile.width()
|
||||
actual_height = color_profile.height()
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.width is not None and self.width != actual_width:
|
||||
raise OSError(
|
||||
f"Can't set {self.width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.height is not None and self.height != actual_height:
|
||||
raise OSError(
|
||||
f"Can't set {self.height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.width = round(actual_width)
|
||||
self.height = round(actual_height)
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
|
||||
"""Read a frame from the camera returned in the format height x width x channels (e.g. 480 x 640 x 3)
|
||||
of type `np.uint8`, contrarily to the pytorch format which is float channel first.
|
||||
|
||||
When `use_depth=True`, returns a tuple `(color_image, depth_map)` with a depth map in the format
|
||||
height x width (e.g. 480 x 640) of type np.uint16.
|
||||
|
||||
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
frame = self.camera.wait_for_frames(timeout_ms=5000)
|
||||
|
||||
color_frame = frame.get_color_frame()
|
||||
|
||||
if not color_frame:
|
||||
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color is None else temporary_color
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
|
||||
)
|
||||
|
||||
# IntelRealSense uses RGB format as default (red, green, blue).
|
||||
if requested_color_mode == "bgr":
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.height or w != self.width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
color_image = cv2.rotate(color_image, self.rotation)
|
||||
|
||||
# log the number of seconds it took to read the image
|
||||
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the image was received
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
|
||||
if self.use_depth:
|
||||
depth_frame = frame.get_depth_frame()
|
||||
if not depth_frame:
|
||||
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
h, w = depth_map.shape
|
||||
if h != self.height or w != self.width:
|
||||
raise OSError(
|
||||
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
depth_map = cv2.rotate(depth_map, self.rotation)
|
||||
|
||||
return color_image, depth_map
|
||||
else:
|
||||
return color_image
|
||||
|
||||
def read_loop(self):
|
||||
while not self.stop_event.is_set():
|
||||
if self.use_depth:
|
||||
self.color_image, self.depth_map = self.read()
|
||||
else:
|
||||
self.color_image = self.read()
|
||||
|
||||
def async_read(self):
|
||||
"""Access the latest color image"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
|
||||
num_tries = 0
|
||||
while self.color_image is None:
|
||||
# TODO(rcadene, aliberts): intelrealsense has diverged compared to opencv over here
|
||||
num_tries += 1
|
||||
time.sleep(1 / self.fps)
|
||||
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
|
||||
raise Exception(
|
||||
"The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called."
|
||||
)
|
||||
|
||||
if self.use_depth:
|
||||
return self.color_image, self.depth_map
|
||||
else:
|
||||
return self.color_image
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
# wait for the thread to finish
|
||||
self.stop_event.set()
|
||||
self.thread.join()
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
|
||||
self.camera.stop()
|
||||
self.camera = None
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--serial-numbers",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=str,
|
||||
default=640,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=str,
|
||||
default=480,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--images-dir",
|
||||
type=Path,
|
||||
default="outputs/images_from_intelrealsense_cameras",
|
||||
help="Set directory to save a few frames for each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-time-s",
|
||||
type=float,
|
||||
default=2.0,
|
||||
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
save_images_from_cameras(**vars(args))
|
||||
516
lerobot/common/robot_devices/cameras/opencv.py
Normal file
516
lerobot/common/robot_devices/cameras/opencv.py
Normal file
@@ -0,0 +1,516 @@
|
||||
"""
|
||||
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import math
|
||||
import platform
|
||||
import shutil
|
||||
import threading
|
||||
import time
|
||||
from dataclasses import dataclass, replace
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
# The maximum opencv device index depends on your operating system. For instance,
|
||||
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
|
||||
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
|
||||
# When you change the USB port or reboot the computer, the operating system might
|
||||
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
|
||||
cameras = []
|
||||
if platform.system() == "Linux":
|
||||
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
|
||||
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
|
||||
ports = _find_cameras(possible_ports, mock=mock)
|
||||
for port in ports:
|
||||
cameras.append(
|
||||
{
|
||||
"port": port,
|
||||
"index": int(port.removeprefix("/dev/video")),
|
||||
}
|
||||
)
|
||||
else:
|
||||
print(
|
||||
"Mac or Windows detected. Finding available camera indices through "
|
||||
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
|
||||
)
|
||||
possible_indices = range(max_index_search_range)
|
||||
indices = _find_cameras(possible_indices, mock=mock)
|
||||
for index in indices:
|
||||
cameras.append(
|
||||
{
|
||||
"port": None,
|
||||
"index": index,
|
||||
}
|
||||
)
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def _find_cameras(
|
||||
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
|
||||
) -> list[int | str]:
|
||||
if mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
camera_ids = []
|
||||
for camera_idx in possible_camera_ids:
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
is_open = camera.isOpened()
|
||||
camera.release()
|
||||
|
||||
if is_open:
|
||||
print(f"Camera found at index {camera_idx}")
|
||||
camera_ids.append(camera_idx)
|
||||
|
||||
if raise_when_empty and len(camera_ids) == 0:
|
||||
raise OSError(
|
||||
"Not a single camera was detected. Try re-plugging, or re-installing `opencv2`, "
|
||||
"or your camera driver, or make sure your camera is compatible with opencv2."
|
||||
)
|
||||
|
||||
return camera_ids
|
||||
|
||||
|
||||
def is_valid_unix_path(path: str) -> bool:
|
||||
"""Note: if 'path' points to a symlink, this will return True only if the target exists"""
|
||||
p = Path(path)
|
||||
return p.is_absolute() and p.exists()
|
||||
|
||||
|
||||
def get_camera_index_from_unix_port(port: Path) -> int:
|
||||
return int(str(port.resolve()).removeprefix("/dev/video"))
|
||||
|
||||
|
||||
def save_image(img_array, camera_index, frame_index, images_dir):
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
|
||||
|
||||
def save_images_from_cameras(
|
||||
images_dir: Path,
|
||||
camera_ids: list | None = None,
|
||||
fps=None,
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given camera index.
|
||||
"""
|
||||
if camera_ids is None or len(camera_ids) == 0:
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
camera_ids = [cam["index"] for cam in camera_infos]
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_idx in camera_ids:
|
||||
camera = OpenCVCamera(cam_idx, fps=fps, width=width, height=height, mock=mock)
|
||||
camera.connect()
|
||||
print(
|
||||
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.width}, "
|
||||
f"height={camera.height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
images_dir = Path(images_dir)
|
||||
if images_dir.exists():
|
||||
shutil.rmtree(
|
||||
images_dir,
|
||||
)
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Saving images to {images_dir}")
|
||||
frame_index = 0
|
||||
start_time = time.perf_counter()
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
|
||||
for camera in cameras:
|
||||
# If we use async_read when fps is None, the loop will go full speed, and we will endup
|
||||
# saving the same images from the cameras multiple times until the RAM/disk is full.
|
||||
image = camera.read() if fps is None else camera.async_read()
|
||||
|
||||
executor.submit(
|
||||
save_image,
|
||||
image,
|
||||
camera.index,
|
||||
frame_index,
|
||||
images_dir,
|
||||
)
|
||||
|
||||
if fps is not None:
|
||||
dt_s = time.perf_counter() - now
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
|
||||
frame_index += 1
|
||||
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
|
||||
|
||||
@dataclass
|
||||
class OpenCVCameraConfig:
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
OpenCVCameraConfig(30, 640, 480)
|
||||
OpenCVCameraConfig(60, 640, 480)
|
||||
OpenCVCameraConfig(90, 640, 480)
|
||||
OpenCVCameraConfig(30, 1280, 720)
|
||||
```
|
||||
"""
|
||||
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
|
||||
|
||||
class OpenCVCamera:
|
||||
"""
|
||||
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
|
||||
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
An OpenCVCamera instance requires a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera
|
||||
like a webcam of a laptop, the camera index is expected to be 0, but it might also be very different, and the camera index
|
||||
might change if you reboot your computer or re-plug your camera. This behavior depends on your operation system.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will be save a few frames for each camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/opencv.py --images-dir outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
When an OpenCVCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
camera = OpenCVCamera(camera_index=0)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
camera.disconnect()
|
||||
```
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
camera = OpenCVCamera(0, fps=30, width=1280, height=720)
|
||||
camera = connect() # applies the settings, might error out if these settings are not compatible with the camera
|
||||
|
||||
camera = OpenCVCamera(0, fps=90, width=640, height=480)
|
||||
camera = connect()
|
||||
|
||||
camera = OpenCVCamera(0, fps=90, width=640, height=480, color_mode="bgr")
|
||||
camera = connect()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, camera_index: int | str, config: OpenCVCameraConfig | None = None, **kwargs):
|
||||
if config is None:
|
||||
config = OpenCVCameraConfig()
|
||||
|
||||
# Overwrite config arguments using kwargs
|
||||
config = replace(config, **kwargs)
|
||||
|
||||
self.camera_index = camera_index
|
||||
self.port = None
|
||||
|
||||
# Linux uses ports for connecting to cameras
|
||||
if platform.system() == "Linux":
|
||||
if isinstance(self.camera_index, int):
|
||||
self.port = Path(f"/dev/video{self.camera_index}")
|
||||
elif isinstance(self.camera_index, str) and is_valid_unix_path(self.camera_index):
|
||||
self.port = Path(self.camera_index)
|
||||
# Retrieve the camera index from a potentially symlinked path
|
||||
self.camera_index = get_camera_index_from_unix_port(self.port)
|
||||
else:
|
||||
raise ValueError(f"Please check the provided camera_index: {camera_index}")
|
||||
|
||||
self.fps = config.fps
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
self.color_mode = config.color_mode
|
||||
self.mock = config.mock
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
self.color_image = None
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
# TODO(aliberts): Do we keep original width/height or do we define them after rotation?
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
elif config.rotation == 90:
|
||||
self.rotation = cv2.ROTATE_90_CLOCKWISE
|
||||
elif config.rotation == 180:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
|
||||
# when other threads are used to save the images.
|
||||
cv2.setNumThreads(1)
|
||||
|
||||
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
|
||||
# First create a temporary camera trying to access `camera_index`,
|
||||
# and verify it is a valid camera by calling `isOpened`.
|
||||
tmp_camera = cv2.VideoCapture(camera_idx)
|
||||
is_camera_open = tmp_camera.isOpened()
|
||||
# Release camera to make it accessible for `find_camera_indices`
|
||||
tmp_camera.release()
|
||||
del tmp_camera
|
||||
|
||||
# If the camera doesn't work, display the camera indices corresponding to
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `camera_index` is valid before printing the traceback
|
||||
cameras_info = find_cameras()
|
||||
available_cam_ids = [cam["index"] for cam in cameras_info]
|
||||
if self.camera_index not in available_cam_ids:
|
||||
raise ValueError(
|
||||
f"`camera_index` is expected to be one of these available cameras {available_cam_ids}, but {self.camera_index} is provided instead. "
|
||||
"To find the camera index you should use, run `python lerobot/common/robot_devices/cameras/opencv.py`."
|
||||
)
|
||||
|
||||
raise OSError(f"Can't access OpenCVCamera({camera_idx}).")
|
||||
|
||||
# Secondly, create the camera that will be used downstream.
|
||||
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
|
||||
# needs to be re-created.
|
||||
self.camera = cv2.VideoCapture(camera_idx)
|
||||
|
||||
if self.fps is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
|
||||
if self.width is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
|
||||
if self.height is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
|
||||
|
||||
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
|
||||
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||||
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.width is not None and not math.isclose(self.width, actual_width, rel_tol=1e-3):
|
||||
raise OSError(
|
||||
f"Can't set {self.width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.height is not None and not math.isclose(self.height, actual_height, rel_tol=1e-3):
|
||||
raise OSError(
|
||||
f"Can't set {self.height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.width = round(actual_width)
|
||||
self.height = round(actual_height)
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
|
||||
"""Read a frame from the camera returned in the format (height, width, channels)
|
||||
(e.g. 480 x 640 x 3), contrarily to the pytorch format which is channel first.
|
||||
|
||||
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, color_image = self.camera.read()
|
||||
|
||||
if not ret:
|
||||
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color_mode is None else temporary_color_mode
|
||||
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
|
||||
)
|
||||
|
||||
# OpenCV uses BGR format as default (blue, green, red) for all operations, including displaying images.
|
||||
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
|
||||
# so we convert the image color from BGR to RGB.
|
||||
if requested_color_mode == "rgb":
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.height or w != self.width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
color_image = cv2.rotate(color_image, self.rotation)
|
||||
|
||||
# log the number of seconds it took to read the image
|
||||
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the image was received
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
|
||||
self.color_image = color_image
|
||||
|
||||
return color_image
|
||||
|
||||
def read_loop(self):
|
||||
while not self.stop_event.is_set():
|
||||
try:
|
||||
self.color_image = self.read()
|
||||
except Exception as e:
|
||||
print(f"Error reading in thread: {e}")
|
||||
|
||||
def async_read(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
|
||||
num_tries = 0
|
||||
while True:
|
||||
if self.color_image is not None:
|
||||
return self.color_image
|
||||
|
||||
time.sleep(1 / self.fps)
|
||||
num_tries += 1
|
||||
if num_tries > self.fps * 2:
|
||||
raise TimeoutError("Timed out waiting for async_read() to start.")
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is not None:
|
||||
self.stop_event.set()
|
||||
self.thread.join() # wait for the thread to finish
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
|
||||
self.camera.release()
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `OpenCVCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--camera-ids",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of camera indices used to instantiate the `OpenCVCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--images-dir",
|
||||
type=Path,
|
||||
default="outputs/images_from_opencv_cameras",
|
||||
help="Set directory to save a few frames for each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-time-s",
|
||||
type=float,
|
||||
default=4.0,
|
||||
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
save_images_from_cameras(**vars(args))
|
||||
11
lerobot/common/robot_devices/cameras/utils.py
Normal file
11
lerobot/common/robot_devices/cameras/utils.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from typing import Protocol
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Defines a camera type
|
||||
class Camera(Protocol):
|
||||
def connect(self): ...
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
|
||||
def async_read(self) -> np.ndarray: ...
|
||||
def disconnect(self): ...
|
||||
1014
lerobot/common/robot_devices/motors/dynamixel.py
Normal file
1014
lerobot/common/robot_devices/motors/dynamixel.py
Normal file
File diff suppressed because it is too large
Load Diff
10
lerobot/common/robot_devices/motors/utils.py
Normal file
10
lerobot/common/robot_devices/motors/utils.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from typing import Protocol
|
||||
|
||||
|
||||
class MotorsBus(Protocol):
|
||||
def motor_names(self): ...
|
||||
def set_calibration(self): ...
|
||||
def apply_calibration(self): ...
|
||||
def revert_calibration(self): ...
|
||||
def read(self): ...
|
||||
def write(self): ...
|
||||
9
lerobot/common/robot_devices/robots/factory.py
Normal file
9
lerobot/common/robot_devices/robots/factory.py
Normal file
@@ -0,0 +1,9 @@
|
||||
import hydra
|
||||
from omegaconf import DictConfig
|
||||
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
|
||||
|
||||
def make_robot(cfg: DictConfig) -> Robot:
|
||||
robot = hydra.utils.instantiate(cfg)
|
||||
return robot
|
||||
707
lerobot/common/robot_devices/robots/manipulator.py
Normal file
707
lerobot/common/robot_devices/robots/manipulator.py
Normal file
@@ -0,0 +1,707 @@
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field, replace
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.robot_devices.cameras.utils import Camera
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
|
||||
########################################################################
|
||||
# Calibration logic
|
||||
########################################################################
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
ZERO_POSITION_DEGREE = 0
|
||||
ROTATED_POSITION_DEGREE = 90
|
||||
|
||||
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def compute_nearest_rounded_position(position, models):
|
||||
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
|
||||
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
|
||||
return nearest_pos.astype(position.dtype)
|
||||
|
||||
|
||||
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
the two robots will move to the same position.To this end, this function computes the homing offset
|
||||
and the drive mode for each motor of a given robot.
|
||||
|
||||
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
|
||||
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
|
||||
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
|
||||
|
||||
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
|
||||
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
|
||||
to the "rotated position".
|
||||
|
||||
After calibration, the homing offsets and drive modes are stored in a cache.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "koch", "left", "follower")
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
|
||||
homing_offset = zero_target_pos - zero_nearest_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
# This allows to identify the rotation direction of each motor.
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
rotated_pos = arm.read("Present_Position")
|
||||
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
|
||||
|
||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||
if robot_type == "aloha" and "gripper" in arm.motor_names:
|
||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
||||
calib_idx = arm.motor_names.index("gripper")
|
||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||
|
||||
calib_data = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
"drive_mode": drive_mode.tolist(),
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_mode,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_data
|
||||
|
||||
|
||||
def ensure_safe_goal_position(
|
||||
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
|
||||
):
|
||||
# Cap relative action target magnitude for safety.
|
||||
diff = goal_pos - present_pos
|
||||
max_relative_target = torch.tensor(max_relative_target)
|
||||
safe_diff = torch.minimum(diff, max_relative_target)
|
||||
safe_diff = torch.maximum(safe_diff, -max_relative_target)
|
||||
safe_goal_pos = present_pos + safe_diff
|
||||
|
||||
if not torch.allclose(goal_pos, safe_goal_pos):
|
||||
logging.warning(
|
||||
"Relative goal position magnitude had to be clamped to be safe.\n"
|
||||
f" requested relative goal position target: {diff}\n"
|
||||
f" clamped relative goal position target: {safe_diff}"
|
||||
)
|
||||
|
||||
return safe_goal_pos
|
||||
|
||||
|
||||
########################################################################
|
||||
# Manipulator robot
|
||||
########################################################################
|
||||
|
||||
|
||||
@dataclass
|
||||
class ManipulatorRobotConfig:
|
||||
"""
|
||||
Example of usage:
|
||||
```python
|
||||
ManipulatorRobotConfig()
|
||||
```
|
||||
"""
|
||||
|
||||
# Define all components of the robot
|
||||
robot_type: str | None = None
|
||||
leader_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
|
||||
follower_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
|
||||
cameras: dict[str, Camera] = field(default_factory=lambda: {})
|
||||
|
||||
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
|
||||
# as the number of motors in your follower arms (assumes all follower arms have the same number of
|
||||
# motors).
|
||||
max_relative_target: list[float] | float | None = None
|
||||
|
||||
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
|
||||
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
|
||||
# gripper is not put in torque mode.
|
||||
gripper_open_degree: float | None = None
|
||||
|
||||
def __setattr__(self, prop: str, val):
|
||||
if prop == "max_relative_target" and val is not None and isinstance(val, Sequence):
|
||||
for name in self.follower_arms:
|
||||
if len(self.follower_arms[name].motors) != len(val):
|
||||
raise ValueError(
|
||||
f"len(max_relative_target)={len(val)} but the follower arm with name {name} has "
|
||||
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
|
||||
f"`max_relative_target` list has as many parameters as there are motors per arm. "
|
||||
"Note: This feature does not yet work with robots where different follower arms have "
|
||||
"different numbers of motors."
|
||||
)
|
||||
super().__setattr__(prop, val)
|
||||
|
||||
|
||||
class ManipulatorRobot:
|
||||
# TODO(rcadene): Implement force feedback
|
||||
"""This class allows to control any manipulator robot of various number of motors.
|
||||
|
||||
Non exaustive list of robots:
|
||||
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow expansion, developed
|
||||
by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
|
||||
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
|
||||
- [Aloha](https://www.trossenrobotics.com/aloha-kits) developed by Trossen Robotics
|
||||
|
||||
Example of highest frequency teleoperation without camera:
|
||||
```python
|
||||
# Defines how to communicate with the motors of the leader and follower arms
|
||||
leader_arms = {
|
||||
"main": DynamixelMotorsBus(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl330-m077"),
|
||||
"shoulder_lift": (2, "xl330-m077"),
|
||||
"elbow_flex": (3, "xl330-m077"),
|
||||
"wrist_flex": (4, "xl330-m077"),
|
||||
"wrist_roll": (5, "xl330-m077"),
|
||||
"gripper": (6, "xl330-m077"),
|
||||
},
|
||||
),
|
||||
}
|
||||
follower_arms = {
|
||||
"main": DynamixelMotorsBus(
|
||||
port="/dev/tty.usbmodem575E0032081",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl430-w250"),
|
||||
"shoulder_lift": (2, "xl430-w250"),
|
||||
"elbow_flex": (3, "xl330-m288"),
|
||||
"wrist_flex": (4, "xl330-m288"),
|
||||
"wrist_roll": (5, "xl330-m288"),
|
||||
"gripper": (6, "xl330-m288"),
|
||||
},
|
||||
),
|
||||
}
|
||||
robot = ManipulatorRobot(
|
||||
robot_type="koch",
|
||||
calibration_dir=".cache/calibration/koch",
|
||||
leader_arms=leader_arms,
|
||||
follower_arms=follower_arms,
|
||||
)
|
||||
|
||||
# Connect motors buses and cameras if any (Required)
|
||||
robot.connect()
|
||||
|
||||
while True:
|
||||
robot.teleop_step()
|
||||
```
|
||||
|
||||
Example of highest frequency data collection without camera:
|
||||
```python
|
||||
# Assumes leader and follower arms have been instantiated already (see first example)
|
||||
robot = ManipulatorRobot(
|
||||
robot_type="koch",
|
||||
calibration_dir=".cache/calibration/koch",
|
||||
leader_arms=leader_arms,
|
||||
follower_arms=follower_arms,
|
||||
)
|
||||
robot.connect()
|
||||
while True:
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
```
|
||||
|
||||
Example of highest frequency data collection with cameras:
|
||||
```python
|
||||
# Defines how to communicate with 2 cameras connected to the computer.
|
||||
# Here, the webcam of the laptop and the phone (connected in USB to the laptop)
|
||||
# can be reached respectively using the camera indices 0 and 1. These indices can be
|
||||
# arbitrary. See the documentation of `OpenCVCamera` to find your own camera indices.
|
||||
cameras = {
|
||||
"laptop": OpenCVCamera(camera_index=0, fps=30, width=640, height=480),
|
||||
"phone": OpenCVCamera(camera_index=1, fps=30, width=640, height=480),
|
||||
}
|
||||
|
||||
# Assumes leader and follower arms have been instantiated already (see first example)
|
||||
robot = ManipulatorRobot(
|
||||
robot_type="koch",
|
||||
calibration_dir=".cache/calibration/koch",
|
||||
leader_arms=leader_arms,
|
||||
follower_arms=follower_arms,
|
||||
cameras=cameras,
|
||||
)
|
||||
robot.connect()
|
||||
while True:
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
```
|
||||
|
||||
Example of controlling the robot with a policy (without running multiple policies in parallel to ensure highest frequency):
|
||||
```python
|
||||
# Assumes leader and follower arms + cameras have been instantiated already (see previous example)
|
||||
robot = ManipulatorRobot(
|
||||
robot_type="koch",
|
||||
calibration_dir=".cache/calibration/koch",
|
||||
leader_arms=leader_arms,
|
||||
follower_arms=follower_arms,
|
||||
cameras=cameras,
|
||||
)
|
||||
robot.connect()
|
||||
while True:
|
||||
# Uses the follower arms and cameras to capture an observation
|
||||
observation = robot.capture_observation()
|
||||
|
||||
# Assumes a policy has been instantiated
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation)
|
||||
|
||||
# Orders the robot to move
|
||||
robot.send_action(action)
|
||||
```
|
||||
|
||||
Example of disconnecting which is not mandatory since we disconnect when the object is deleted:
|
||||
```python
|
||||
robot.disconnect()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ManipulatorRobotConfig | None = None,
|
||||
calibration_dir: Path = ".cache/calibration/koch",
|
||||
**kwargs,
|
||||
):
|
||||
if config is None:
|
||||
config = ManipulatorRobotConfig()
|
||||
# Overwrite config arguments using kwargs
|
||||
self.config = replace(config, **kwargs)
|
||||
self.calibration_dir = Path(calibration_dir)
|
||||
|
||||
self.robot_type = self.config.robot_type
|
||||
self.leader_arms = self.config.leader_arms
|
||||
self.follower_arms = self.config.follower_arms
|
||||
self.cameras = self.config.cameras
|
||||
self.is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
|
||||
)
|
||||
|
||||
if not self.leader_arms and not self.follower_arms and not self.cameras:
|
||||
raise ValueError(
|
||||
"ManipulatorRobot doesn't have any device to connect. See example of usage in docstring of the class."
|
||||
)
|
||||
|
||||
# Connect the arms
|
||||
for name in self.follower_arms:
|
||||
print(f"Connecting {name} follower arm.")
|
||||
self.follower_arms[name].connect()
|
||||
print(f"Connecting {name} leader arm.")
|
||||
self.leader_arms[name].connect()
|
||||
|
||||
# We assume that at connection time, arms are in a rest position, and torque can
|
||||
# be safely disabled to run calibration and/or set robot preset configurations.
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
|
||||
|
||||
self.activate_calibration()
|
||||
|
||||
# Set robot preset (e.g. torque in leader gripper for Koch v1.1)
|
||||
if self.robot_type == "koch":
|
||||
self.set_koch_robot_preset()
|
||||
elif self.robot_type == "aloha":
|
||||
self.set_aloha_robot_preset()
|
||||
else:
|
||||
warnings.warn(f"No preset found for robot type: {self.robot_type}", stacklevel=1)
|
||||
|
||||
# Enable torque on all motors of the follower arms
|
||||
for name in self.follower_arms:
|
||||
print(f"Activating torque on {name} follower arm.")
|
||||
self.follower_arms[name].write("Torque_Enable", 1)
|
||||
|
||||
if self.config.gripper_open_degree is not None:
|
||||
# Set the leader arm in torque mode with the gripper motor set to an angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
|
||||
|
||||
# Connect the cameras
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def activate_calibration(self):
|
||||
"""After calibration all motors function in human interpretable ranges.
|
||||
Rotations are expressed in degrees in nominal range of [-180, 180],
|
||||
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
|
||||
"""
|
||||
|
||||
def load_or_run_calibration_(name, arm, arm_type):
|
||||
arm_id = get_arm_id(name, arm_type)
|
||||
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
|
||||
|
||||
if arm_calib_path.exists():
|
||||
with open(arm_calib_path) as f:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(arm_calib_path, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
|
||||
return calibration
|
||||
|
||||
for name, arm in self.follower_arms.items():
|
||||
calibration = load_or_run_calibration_(name, arm, "follower")
|
||||
arm.set_calibration(calibration)
|
||||
for name, arm in self.leader_arms.items():
|
||||
calibration = load_or_run_calibration_(name, arm, "leader")
|
||||
arm.set_calibration(calibration)
|
||||
|
||||
def set_koch_robot_preset(self):
|
||||
def set_operating_mode_(arm):
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
|
||||
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
|
||||
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
|
||||
if len(all_motors_except_gripper) > 0:
|
||||
# 4 corresponds to Extended Position on Koch motors
|
||||
arm.write("Operating_Mode", 4, all_motors_except_gripper)
|
||||
|
||||
# Use 'position control current based' for gripper to be limited by the limit of the current.
|
||||
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
|
||||
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
|
||||
# to make it move, and it will move back to its original target position when we release the force.
|
||||
# 5 corresponds to Current Controlled Position on Koch gripper motors "xl330-m077, xl330-m288"
|
||||
arm.write("Operating_Mode", 5, "gripper")
|
||||
|
||||
for name in self.follower_arms:
|
||||
set_operating_mode_(self.follower_arms[name])
|
||||
|
||||
# Set better PID values to close the gap between recorded states and actions
|
||||
# TODO(rcadene): Implement an automatic procedure to set optimial PID values for each motor
|
||||
self.follower_arms[name].write("Position_P_Gain", 1500, "elbow_flex")
|
||||
self.follower_arms[name].write("Position_I_Gain", 0, "elbow_flex")
|
||||
self.follower_arms[name].write("Position_D_Gain", 600, "elbow_flex")
|
||||
|
||||
if self.config.gripper_open_degree is not None:
|
||||
for name in self.leader_arms:
|
||||
set_operating_mode_(self.leader_arms[name])
|
||||
|
||||
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
|
||||
# so that we can use it as a trigger to close the gripper of the follower arms.
|
||||
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
|
||||
|
||||
def set_aloha_robot_preset(self):
|
||||
def set_shadow_(arm):
|
||||
# Set secondary/shadow ID for shoulder and elbow. These joints have two motors.
|
||||
# As a result, if only one of them is required to move to a certain position,
|
||||
# the other will follow. This is to avoid breaking the motors.
|
||||
if "shoulder_shadow" in arm.motor_names:
|
||||
shoulder_idx = arm.read("ID", "shoulder")
|
||||
arm.write("Secondary_ID", shoulder_idx, "shoulder_shadow")
|
||||
|
||||
if "elbow_shadow" in arm.motor_names:
|
||||
elbow_idx = arm.read("ID", "elbow")
|
||||
arm.write("Secondary_ID", elbow_idx, "elbow_shadow")
|
||||
|
||||
for name in self.follower_arms:
|
||||
set_shadow_(self.follower_arms[name])
|
||||
|
||||
for name in self.leader_arms:
|
||||
set_shadow_(self.leader_arms[name])
|
||||
|
||||
for name in self.follower_arms:
|
||||
# Set a velocity limit of 131 as advised by Trossen Robotics
|
||||
self.follower_arms[name].write("Velocity_Limit", 131)
|
||||
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
|
||||
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [
|
||||
name for name in self.follower_arms[name].motor_names if name != "gripper"
|
||||
]
|
||||
if len(all_motors_except_gripper) > 0:
|
||||
# 4 corresponds to Extended Position on Aloha motors
|
||||
self.follower_arms[name].write("Operating_Mode", 4, all_motors_except_gripper)
|
||||
|
||||
# Use 'position control current based' for follower gripper to be limited by the limit of the current.
|
||||
# It can grasp an object without forcing too much even tho,
|
||||
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
# 5 corresponds to Current Controlled Position on Aloha gripper follower "xm430-w350"
|
||||
self.follower_arms[name].write("Operating_Mode", 5, "gripper")
|
||||
|
||||
# Note: We can't enable torque on the leader gripper since "xc430-w150" doesn't have
|
||||
# a Current Controlled Position mode.
|
||||
|
||||
if self.config.gripper_open_degree is not None:
|
||||
warnings.warn(
|
||||
f"`gripper_open_degree` is set to {self.config.gripper_open_degree}, but None is expected for Aloha instead",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
def teleop_step(
|
||||
self, record_data=False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
# Prepare to assign the position of the leader to the follower
|
||||
leader_pos = {}
|
||||
for name in self.leader_arms:
|
||||
before_lread_t = time.perf_counter()
|
||||
leader_pos[name] = self.leader_arms[name].read("Present_Position")
|
||||
leader_pos[name] = torch.from_numpy(leader_pos[name])
|
||||
self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - before_lread_t
|
||||
|
||||
# Send goal position to the follower
|
||||
follower_goal_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fwrite_t = time.perf_counter()
|
||||
goal_pos = leader_pos[name]
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.follower_arms[name].read("Present_Position")
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
|
||||
# Used when record_data=True
|
||||
follower_goal_pos[name] = goal_pos
|
||||
|
||||
goal_pos = goal_pos.numpy().astype(np.int32)
|
||||
self.follower_arms[name].write("Goal_Position", goal_pos)
|
||||
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t
|
||||
|
||||
# Early exit when recording data is not requested
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
# TODO(rcadene): Add velocity and other info
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = torch.cat(state)
|
||||
|
||||
# Create action by concatenating follower goal position
|
||||
action = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_goal_pos:
|
||||
action.append(follower_goal_pos[name])
|
||||
action = torch.cat(action)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionnaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = state
|
||||
action_dict["action"] = action
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def capture_observation(self):
|
||||
"""The returned observations do not have a batch dimension."""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = torch.cat(state)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionnaries and format to pytorch
|
||||
obs_dict = {}
|
||||
obs_dict["observation.state"] = state
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
"""Command the follower arms to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Args:
|
||||
action: tensor containing the concatenated goal positions for the follower arms.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
from_idx = 0
|
||||
to_idx = 0
|
||||
action_sent = []
|
||||
for name in self.follower_arms:
|
||||
# Get goal position of each follower arm by splitting the action vector
|
||||
to_idx += len(self.follower_arms[name].motor_names)
|
||||
goal_pos = action[from_idx:to_idx]
|
||||
from_idx = to_idx
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.follower_arms[name].read("Present_Position")
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
|
||||
# Save tensor to concat and return
|
||||
action_sent.append(goal_pos)
|
||||
|
||||
# Send goal position to each follower
|
||||
goal_pos = goal_pos.numpy().astype(np.int32)
|
||||
self.follower_arms[name].write("Goal_Position", goal_pos)
|
||||
|
||||
return torch.cat(action_sent)
|
||||
|
||||
def print_logs(self):
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
|
||||
)
|
||||
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].disconnect()
|
||||
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].disconnect()
|
||||
|
||||
for name in self.cameras:
|
||||
self.cameras[name].disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
216
lerobot/common/robot_devices/robots/stretch.py
Normal file
216
lerobot/common/robot_devices/robots/stretch.py
Normal file
@@ -0,0 +1,216 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import time
|
||||
from dataclasses import dataclass, field, replace
|
||||
|
||||
import torch
|
||||
from stretch_body.gamepad_teleop import GamePadTeleop
|
||||
from stretch_body.robot import Robot as StretchAPI
|
||||
from stretch_body.robot_params import RobotParams
|
||||
|
||||
from lerobot.common.robot_devices.cameras.utils import Camera
|
||||
|
||||
|
||||
@dataclass
|
||||
class StretchRobotConfig:
|
||||
robot_type: str | None = "stretch"
|
||||
cameras: dict[str, Camera] = field(default_factory=lambda: {})
|
||||
# TODO(aliberts): add feature with max_relative target
|
||||
# TODO(aliberts): add comment on max_relative target
|
||||
max_relative_target: list[float] | float | None = None
|
||||
|
||||
|
||||
class StretchRobot(StretchAPI):
|
||||
"""Wrapper of stretch_body.robot.Robot"""
|
||||
|
||||
def __init__(self, config: StretchRobotConfig | None = None, **kwargs):
|
||||
super().__init__()
|
||||
if config is None:
|
||||
config = StretchRobotConfig()
|
||||
# Overwrite config arguments using kwargs
|
||||
self.config = replace(config, **kwargs)
|
||||
|
||||
self.robot_type = self.config.robot_type
|
||||
self.cameras = self.config.cameras
|
||||
self.is_connected = False
|
||||
self.teleop = None
|
||||
self.logs = {}
|
||||
|
||||
# TODO(aliberts): test this
|
||||
RobotParams.set_logging_level("WARNING")
|
||||
RobotParams.set_logging_formatter("brief_console_formatter")
|
||||
|
||||
self.state_keys = None
|
||||
self.action_keys = None
|
||||
|
||||
def connect(self) -> None:
|
||||
self.is_connected = self.startup()
|
||||
if not self.is_connected:
|
||||
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
|
||||
raise ConnectionError()
|
||||
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
self.is_connected = self.is_connected and self.cameras[name].is_connected
|
||||
|
||||
if not self.is_connected:
|
||||
print("Could not connect to the cameras, check that all cameras are plugged-in.")
|
||||
raise ConnectionError()
|
||||
|
||||
self.run_calibration()
|
||||
|
||||
def run_calibration(self) -> None:
|
||||
if not self.is_homed():
|
||||
self.home()
|
||||
|
||||
def teleop_step(
|
||||
self, record_data=False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
before_read_t = time.perf_counter()
|
||||
state = self.get_state()
|
||||
action = self.teleop.gamepad_controller.get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
state = torch.as_tensor(list(state.values()))
|
||||
action = torch.as_tensor(list(action.values()))
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionnaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = state
|
||||
action_dict["action"] = action
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def get_state(self) -> dict:
|
||||
status = self.get_status()
|
||||
return {
|
||||
"head_pan.pos": status["head"]["head_pan"]["pos"],
|
||||
"head_tilt.pos": status["head"]["head_tilt"]["pos"],
|
||||
"lift.pos": status["lift"]["pos"],
|
||||
"arm.pos": status["arm"]["pos"],
|
||||
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"],
|
||||
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"],
|
||||
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"],
|
||||
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"],
|
||||
"base_x.vel": status["base"]["x_vel"],
|
||||
"base_y.vel": status["base"]["y_vel"],
|
||||
"base_theta.vel": status["base"]["theta_vel"],
|
||||
}
|
||||
|
||||
def capture_observation(self) -> dict:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
before_read_t = time.perf_counter()
|
||||
state = self.get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
state = torch.as_tensor(list(state.values()))
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionnaries
|
||||
obs_dict = {}
|
||||
obs_dict["observation.state"] = state
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
if self.action_keys is None:
|
||||
dummy_action = self.teleop.gamepad_controller.get_state()
|
||||
self.action_keys = list(dummy_action.keys())
|
||||
|
||||
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(state=action_dict, robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
# TODO(aliberts): return action_sent when motion is limited
|
||||
return action
|
||||
|
||||
def print_logs(self) -> None:
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def teleop_safety_stop(self) -> None:
|
||||
if self.teleop is not None:
|
||||
self.teleop._safety_stop(robot=self)
|
||||
|
||||
def disconnect(self) -> None:
|
||||
self.stop()
|
||||
if self.teleop is not None:
|
||||
self.teleop.gamepad_controller.stop()
|
||||
self.teleop.stop()
|
||||
|
||||
if len(self.cameras) > 0:
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
self.disconnect()
|
||||
20
lerobot/common/robot_devices/robots/utils.py
Normal file
20
lerobot/common/robot_devices/robots/utils.py
Normal file
@@ -0,0 +1,20 @@
|
||||
from typing import Protocol
|
||||
|
||||
|
||||
def get_arm_id(name, arm_type):
|
||||
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
|
||||
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
|
||||
"""
|
||||
return f"{name}_{arm_type}"
|
||||
|
||||
|
||||
class Robot(Protocol):
|
||||
# TODO(rcadene, aliberts): Add unit test checking the protocol is implemented in the corresponding classes
|
||||
robot_type: str
|
||||
|
||||
def connect(self): ...
|
||||
def run_calibration(self): ...
|
||||
def teleop_step(self, record_data=False): ...
|
||||
def capture_observation(self): ...
|
||||
def send_action(self, action): ...
|
||||
def disconnect(self): ...
|
||||
51
lerobot/common/robot_devices/utils.py
Normal file
51
lerobot/common/robot_devices/utils.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import platform
|
||||
import time
|
||||
|
||||
|
||||
def busy_wait(seconds):
|
||||
if platform.system() == "Darwin":
|
||||
# On Mac, `time.sleep` is not accurate and we need to use this while loop trick,
|
||||
# but it consumes CPU cycles.
|
||||
# TODO(rcadene): find an alternative: from python 11, time.sleep is precise
|
||||
end_time = time.perf_counter() + seconds
|
||||
while time.perf_counter() < end_time:
|
||||
pass
|
||||
else:
|
||||
# On Linux time.sleep is accurate
|
||||
if seconds > 0:
|
||||
time.sleep(seconds)
|
||||
|
||||
|
||||
def safe_disconnect(func):
|
||||
# TODO(aliberts): Allow to pass custom exceptions
|
||||
# (e.g. ThreadServiceExit, KeyboardInterrupt, SystemExit, UnpluggedError, DynamixelCommError)
|
||||
def wrapper(robot, *args, **kwargs):
|
||||
try:
|
||||
return func(robot, *args, **kwargs)
|
||||
except Exception as e:
|
||||
if robot.is_connected:
|
||||
robot.disconnect()
|
||||
raise e
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
class RobotDeviceNotConnectedError(Exception):
|
||||
"""Exception raised when the robot device is not connected."""
|
||||
|
||||
def __init__(
|
||||
self, message="This robot device is not connected. Try calling `robot_device.connect()` first."
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class RobotDeviceAlreadyConnectedError(Exception):
|
||||
"""Exception raised when the robot device is already connected."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
message="This robot device is already connected. Try not calling `robot_device.connect()` twice.",
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
92
lerobot/common/utils/benchmark.py
Normal file
92
lerobot/common/utils/benchmark.py
Normal file
@@ -0,0 +1,92 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import threading
|
||||
import time
|
||||
from contextlib import ContextDecorator
|
||||
|
||||
|
||||
class TimeBenchmark(ContextDecorator):
|
||||
"""
|
||||
Measures execution time using a context manager or decorator.
|
||||
|
||||
This class supports both context manager and decorator usage, and is thread-safe for multithreaded
|
||||
environments.
|
||||
|
||||
Args:
|
||||
print: If True, prints the elapsed time upon exiting the context or completing the function. Defaults
|
||||
to False.
|
||||
|
||||
Examples:
|
||||
|
||||
Using as a context manager:
|
||||
|
||||
>>> benchmark = TimeBenchmark()
|
||||
>>> with benchmark:
|
||||
... time.sleep(1)
|
||||
>>> print(f"Block took {benchmark.result:.4f} seconds")
|
||||
Block took approximately 1.0000 seconds
|
||||
|
||||
Using with multithreading:
|
||||
|
||||
```python
|
||||
import threading
|
||||
|
||||
benchmark = TimeBenchmark()
|
||||
|
||||
def context_manager_example():
|
||||
with benchmark:
|
||||
time.sleep(0.01)
|
||||
print(f"Block took {benchmark.result_ms:.2f} milliseconds")
|
||||
|
||||
threads = []
|
||||
for _ in range(3):
|
||||
t1 = threading.Thread(target=context_manager_example)
|
||||
threads.append(t1)
|
||||
|
||||
for t in threads:
|
||||
t.start()
|
||||
|
||||
for t in threads:
|
||||
t.join()
|
||||
```
|
||||
Expected output:
|
||||
Block took approximately 10.00 milliseconds
|
||||
Block took approximately 10.00 milliseconds
|
||||
Block took approximately 10.00 milliseconds
|
||||
"""
|
||||
|
||||
def __init__(self, print=False):
|
||||
self.local = threading.local()
|
||||
self.print_time = print
|
||||
|
||||
def __enter__(self):
|
||||
self.local.start_time = time.perf_counter()
|
||||
return self
|
||||
|
||||
def __exit__(self, *exc):
|
||||
self.local.end_time = time.perf_counter()
|
||||
self.local.elapsed_time = self.local.end_time - self.local.start_time
|
||||
if self.print_time:
|
||||
print(f"Elapsed time: {self.local.elapsed_time:.4f} seconds")
|
||||
return False
|
||||
|
||||
@property
|
||||
def result(self):
|
||||
return getattr(self.local, "elapsed_time", None)
|
||||
|
||||
@property
|
||||
def result_ms(self):
|
||||
return self.result * 1e3
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
import logging
|
||||
|
||||
|
||||
@@ -1,3 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import warnings
|
||||
|
||||
import imageio
|
||||
|
||||
@@ -1,8 +1,26 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import os
|
||||
import os.path as osp
|
||||
import random
|
||||
from datetime import datetime
|
||||
from contextlib import contextmanager
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Generator
|
||||
|
||||
import hydra
|
||||
import numpy as np
|
||||
@@ -10,6 +28,12 @@ import torch
|
||||
from omegaconf import DictConfig
|
||||
|
||||
|
||||
def inside_slurm():
|
||||
"""Check whether the python process was launched through slurm"""
|
||||
# TODO(rcadene): return False for interactive mode `--pty bash`
|
||||
return "SLURM_JOB_ID" in os.environ
|
||||
|
||||
|
||||
def get_safe_torch_device(cfg_device: str, log: bool = False) -> torch.device:
|
||||
"""Given a string, return a torch.device with checks on whether the device is available."""
|
||||
match cfg_device:
|
||||
@@ -31,12 +55,57 @@ def get_safe_torch_device(cfg_device: str, log: bool = False) -> torch.device:
|
||||
return device
|
||||
|
||||
|
||||
def get_global_random_state() -> dict[str, Any]:
|
||||
"""Get the random state for `random`, `numpy`, and `torch`."""
|
||||
random_state_dict = {
|
||||
"random_state": random.getstate(),
|
||||
"numpy_random_state": np.random.get_state(),
|
||||
"torch_random_state": torch.random.get_rng_state(),
|
||||
}
|
||||
if torch.cuda.is_available():
|
||||
random_state_dict["torch_cuda_random_state"] = torch.cuda.random.get_rng_state()
|
||||
return random_state_dict
|
||||
|
||||
|
||||
def set_global_random_state(random_state_dict: dict[str, Any]):
|
||||
"""Set the random state for `random`, `numpy`, and `torch`.
|
||||
|
||||
Args:
|
||||
random_state_dict: A dictionary of the form returned by `get_global_random_state`.
|
||||
"""
|
||||
random.setstate(random_state_dict["random_state"])
|
||||
np.random.set_state(random_state_dict["numpy_random_state"])
|
||||
torch.random.set_rng_state(random_state_dict["torch_random_state"])
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.random.set_rng_state(random_state_dict["torch_cuda_random_state"])
|
||||
|
||||
|
||||
def set_global_seed(seed):
|
||||
"""Set seed for reproducibility."""
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def seeded_context(seed: int) -> Generator[None, None, None]:
|
||||
"""Set the seed when entering a context, and restore the prior random state at exit.
|
||||
|
||||
Example usage:
|
||||
|
||||
```
|
||||
a = random.random() # produces some random number
|
||||
with seeded_context(1337):
|
||||
b = random.random() # produces some other random number
|
||||
c = random.random() # produces yet another random number, but the same it would have if we never made `b`
|
||||
```
|
||||
"""
|
||||
random_state_dict = get_global_random_state()
|
||||
set_global_seed(seed)
|
||||
yield None
|
||||
set_global_random_state(random_state_dict)
|
||||
|
||||
|
||||
def init_logging():
|
||||
@@ -58,13 +127,13 @@ def init_logging():
|
||||
logging.getLogger().addHandler(console_handler)
|
||||
|
||||
|
||||
def format_big_number(num):
|
||||
def format_big_number(num, precision=0):
|
||||
suffixes = ["", "K", "M", "B", "T", "Q"]
|
||||
divisor = 1000.0
|
||||
|
||||
for suffix in suffixes:
|
||||
if abs(num) < divisor:
|
||||
return f"{num:.0f}{suffix}"
|
||||
return f"{num:.{precision}f}{suffix}"
|
||||
num /= divisor
|
||||
|
||||
return num
|
||||
@@ -110,3 +179,7 @@ def print_cuda_memory_usage():
|
||||
print("Maximum GPU Memory Allocated: {:.2f} MB".format(torch.cuda.max_memory_allocated(0) / 1024**2))
|
||||
print("Current GPU Memory Reserved: {:.2f} MB".format(torch.cuda.memory_reserved(0) / 1024**2))
|
||||
print("Maximum GPU Memory Reserved: {:.2f} MB".format(torch.cuda.max_memory_reserved(0) / 1024**2))
|
||||
|
||||
|
||||
def capture_timestamp_utc():
|
||||
return datetime.now(timezone.utc)
|
||||
|
||||
@@ -5,27 +5,115 @@ defaults:
|
||||
|
||||
hydra:
|
||||
run:
|
||||
# Set `dir` to where you would like to save all of the run outputs. If you run another training session
|
||||
# with the same value for `dir` its contents will be overwritten unless you set `resume` to true.
|
||||
dir: outputs/train/${now:%Y-%m-%d}/${now:%H-%M-%S}_${env.name}_${policy.name}_${hydra.job.name}
|
||||
job:
|
||||
name: default
|
||||
|
||||
# Set `resume` to true to resume a previous run. In order for this to work, you will need to make sure
|
||||
# `hydra.run.dir` is the directory of an existing run with at least one checkpoint in it.
|
||||
# Note that when resuming a run, the default behavior is to use the configuration from the checkpoint,
|
||||
# regardless of what's provided with the training command at the time of resumption.
|
||||
resume: false
|
||||
device: cuda # cpu
|
||||
# `use_amp` determines whether to use Automatic Mixed Precision (AMP) for training and evaluation. With AMP,
|
||||
# automatic gradient scaling is used.
|
||||
use_amp: false
|
||||
# `seed` is used for training (eg: model initialization, dataset shuffling)
|
||||
# AND for the evaluation environments.
|
||||
seed: ???
|
||||
# You may provide a list of datasets here. `train.py` creates them all and concatenates them. Note: only data
|
||||
# keys common between the datasets are kept. Each dataset gets and additional transform that inserts the
|
||||
# "dataset_index" into the returned item. The index mapping is made according to the order in which the
|
||||
# datsets are provided.
|
||||
dataset_repo_id: lerobot/pusht
|
||||
video_backend: pyav
|
||||
|
||||
training:
|
||||
offline_steps: ???
|
||||
online_steps: ???
|
||||
online_steps_between_rollouts: ???
|
||||
online_sampling_ratio: 0.5
|
||||
# `online_env_seed` is used for environments for online training data rollouts.
|
||||
online_env_seed: ???
|
||||
|
||||
# Number of workers for the offline training dataloader.
|
||||
num_workers: 4
|
||||
|
||||
batch_size: ???
|
||||
|
||||
eval_freq: ???
|
||||
log_freq: 200
|
||||
save_checkpoint: true
|
||||
# Checkpoint is saved every `save_freq` training iterations and after the last training step.
|
||||
save_freq: ???
|
||||
log_freq: 250
|
||||
save_model: true
|
||||
|
||||
# Online training. Note that the online training loop adopts most of the options above apart from the
|
||||
# dataloader options. Unless otherwise specified.
|
||||
# The online training look looks something like:
|
||||
#
|
||||
# for i in range(online_steps):
|
||||
# do_online_rollout_and_update_online_buffer()
|
||||
# for j in range(online_steps_between_rollouts):
|
||||
# batch = next(dataloader_with_offline_and_online_data)
|
||||
# loss = policy(batch)
|
||||
# loss.backward()
|
||||
# optimizer.step()
|
||||
#
|
||||
online_steps: ???
|
||||
# How many episodes to collect at once when we reach the online rollout part of the training loop.
|
||||
online_rollout_n_episodes: 1
|
||||
# The number of environments to use in the gym.vector.VectorEnv. This ends up also being the batch size for
|
||||
# the policy. Ideally you should set this to by an even divisor or online_rollout_n_episodes.
|
||||
online_rollout_batch_size: 1
|
||||
# How many optimization steps (forward, backward, optimizer step) to do between running rollouts.
|
||||
online_steps_between_rollouts: null
|
||||
# The proportion of online samples (vs offline samples) to include in the online training batches.
|
||||
online_sampling_ratio: 0.5
|
||||
# First seed to use for the online rollout environment. Seeds for subsequent rollouts are incremented by 1.
|
||||
online_env_seed: null
|
||||
# Sets the maximum number of frames that are stored in the online buffer for online training. The buffer is
|
||||
# FIFO.
|
||||
online_buffer_capacity: null
|
||||
# The minimum number of frames to have in the online buffer before commencing online training.
|
||||
# If online_buffer_seed_size > online_rollout_n_episodes, the rollout will be run multiple times until the
|
||||
# seed size condition is satisfied.
|
||||
online_buffer_seed_size: 0
|
||||
# Whether to run the online rollouts asynchronously. This means we can run the online training steps in
|
||||
# parallel with the rollouts. This might be advised if your GPU has the bandwidth to handle training
|
||||
# + eval + environment rendering simultaneously.
|
||||
do_online_rollout_async: false
|
||||
|
||||
image_transforms:
|
||||
# These transforms are all using standard torchvision.transforms.v2
|
||||
# You can find out how these transformations affect images here:
|
||||
# https://pytorch.org/vision/0.18/auto_examples/transforms/plot_transforms_illustrations.html
|
||||
# We use a custom RandomSubsetApply container to sample them.
|
||||
# For each transform, the following parameters are available:
|
||||
# weight: This represents the multinomial probability (with no replacement)
|
||||
# used for sampling the transform. If the sum of the weights is not 1,
|
||||
# they will be normalized.
|
||||
# min_max: Lower & upper bound respectively used for sampling the transform's parameter
|
||||
# (following uniform distribution) when it's applied.
|
||||
# Set this flag to `true` to enable transforms during training
|
||||
enable: false
|
||||
# This is the maximum number of transforms (sampled from these below) that will be applied to each frame.
|
||||
# It's an integer in the interval [1, number of available transforms].
|
||||
max_num_transforms: 3
|
||||
# By default, transforms are applied in Torchvision's suggested order (shown below).
|
||||
# Set this to True to apply them in a random order.
|
||||
random_order: false
|
||||
brightness:
|
||||
weight: 1
|
||||
min_max: [0.8, 1.2]
|
||||
contrast:
|
||||
weight: 1
|
||||
min_max: [0.8, 1.2]
|
||||
saturation:
|
||||
weight: 1
|
||||
min_max: [0.5, 1.5]
|
||||
hue:
|
||||
weight: 1
|
||||
min_max: [-0.05, 0.05]
|
||||
sharpness:
|
||||
weight: 1
|
||||
min_max: [0.8, 1.2]
|
||||
|
||||
eval:
|
||||
n_episodes: 1
|
||||
@@ -35,8 +123,8 @@ eval:
|
||||
use_async_envs: false
|
||||
|
||||
wandb:
|
||||
enable: true
|
||||
# Set to true to disable saving an artifact despite save_model == True
|
||||
enable: false
|
||||
# Set to true to disable saving an artifact despite save_checkpoint == True
|
||||
disable_artifact: false
|
||||
project: lerobot
|
||||
notes: ""
|
||||
|
||||
10
lerobot/configs/env/aloha.yaml
vendored
10
lerobot/configs/env/aloha.yaml
vendored
@@ -5,10 +5,10 @@ fps: 50
|
||||
env:
|
||||
name: aloha
|
||||
task: AlohaInsertion-v0
|
||||
from_pixels: True
|
||||
pixels_only: False
|
||||
image_size: [3, 480, 640]
|
||||
episode_length: 400
|
||||
fps: ${fps}
|
||||
state_dim: 14
|
||||
action_dim: 14
|
||||
fps: ${fps}
|
||||
episode_length: 400
|
||||
gym:
|
||||
obs_type: pixels_agent_pos
|
||||
render_mode: rgb_array
|
||||
|
||||
10
lerobot/configs/env/aloha_real.yaml
vendored
Normal file
10
lerobot/configs/env/aloha_real.yaml
vendored
Normal file
@@ -0,0 +1,10 @@
|
||||
# @package _global_
|
||||
|
||||
fps: 30
|
||||
|
||||
env:
|
||||
name: real_world
|
||||
task: null
|
||||
state_dim: 14
|
||||
action_dim: 14
|
||||
fps: ${fps}
|
||||
13
lerobot/configs/env/dora_aloha_real.yaml
vendored
Normal file
13
lerobot/configs/env/dora_aloha_real.yaml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
# @package _global_
|
||||
|
||||
fps: 30
|
||||
|
||||
env:
|
||||
name: dora
|
||||
task: DoraAloha-v0
|
||||
state_dim: 14
|
||||
action_dim: 14
|
||||
fps: ${fps}
|
||||
episode_length: 400
|
||||
gym:
|
||||
fps: ${fps}
|
||||
10
lerobot/configs/env/koch_real.yaml
vendored
Normal file
10
lerobot/configs/env/koch_real.yaml
vendored
Normal file
@@ -0,0 +1,10 @@
|
||||
# @package _global_
|
||||
|
||||
fps: 30
|
||||
|
||||
env:
|
||||
name: real_world
|
||||
task: null
|
||||
state_dim: 6
|
||||
action_dim: 6
|
||||
fps: ${fps}
|
||||
11
lerobot/configs/env/pusht.yaml
vendored
11
lerobot/configs/env/pusht.yaml
vendored
@@ -5,10 +5,13 @@ fps: 10
|
||||
env:
|
||||
name: pusht
|
||||
task: PushT-v0
|
||||
from_pixels: True
|
||||
pixels_only: False
|
||||
image_size: 96
|
||||
episode_length: 300
|
||||
fps: ${fps}
|
||||
state_dim: 2
|
||||
action_dim: 2
|
||||
fps: ${fps}
|
||||
episode_length: 300
|
||||
gym:
|
||||
obs_type: pixels_agent_pos
|
||||
render_mode: rgb_array
|
||||
visualization_width: 384
|
||||
visualization_height: 384
|
||||
|
||||
11
lerobot/configs/env/xarm.yaml
vendored
11
lerobot/configs/env/xarm.yaml
vendored
@@ -5,10 +5,13 @@ fps: 15
|
||||
env:
|
||||
name: xarm
|
||||
task: XarmLift-v0
|
||||
from_pixels: True
|
||||
pixels_only: False
|
||||
image_size: 84
|
||||
episode_length: 25
|
||||
fps: ${fps}
|
||||
state_dim: 4
|
||||
action_dim: 4
|
||||
fps: ${fps}
|
||||
episode_length: 200
|
||||
gym:
|
||||
obs_type: pixels_agent_pos
|
||||
render_mode: rgb_array
|
||||
visualization_width: 384
|
||||
visualization_height: 384
|
||||
|
||||
@@ -3,13 +3,18 @@
|
||||
seed: 1000
|
||||
dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.top:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
offline_steps: 100000
|
||||
online_steps: 0
|
||||
eval_freq: 10000
|
||||
save_freq: 100000
|
||||
log_freq: 250
|
||||
save_model: true
|
||||
eval_freq: 20000
|
||||
save_freq: 20000
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
@@ -18,12 +23,6 @@ training:
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.top:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
||||
@@ -66,6 +65,9 @@ policy:
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
@@ -73,7 +75,7 @@ policy:
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
use_temporal_aggregation: false
|
||||
temporal_ensemble_coeff: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
|
||||
121
lerobot/configs/policy/act_aloha_real.yaml
Normal file
121
lerobot/configs/policy/act_aloha_real.yaml
Normal file
@@ -0,0 +1,121 @@
|
||||
# @package _global_
|
||||
|
||||
# Use `act_aloha_real.yaml` to train on real-world datasets collected on Aloha or Aloha-2 robots.
|
||||
# Compared to `act.yaml`, it contains 4 cameras (i.e. cam_right_wrist, cam_left_wrist, cam_high, cam_low) instead of 1 camera (i.e. top).
|
||||
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
|
||||
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
|
||||
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
|
||||
#
|
||||
# Example of usage for training and inference with `control_robot.py`:
|
||||
# ```bash
|
||||
# python lerobot/scripts/train.py \
|
||||
# policy=act_aloha_real \
|
||||
# env=aloha_real
|
||||
# ```
|
||||
#
|
||||
# Example of usage for training and inference with [Dora-rs](https://github.com/dora-rs/dora-lerobot):
|
||||
# ```bash
|
||||
# python lerobot/scripts/train.py \
|
||||
# policy=act_aloha_real \
|
||||
# env=dora_aloha_real
|
||||
# ```
|
||||
|
||||
seed: 1000
|
||||
dataset_repo_id: lerobot/aloha_static_vinh_cup
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.cam_right_wrist:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_left_wrist:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_high:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.cam_low:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
online_steps: 0
|
||||
eval_freq: -1
|
||||
save_freq: 10000
|
||||
log_freq: 100
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.images.cam_right_wrist: [3, 480, 640]
|
||||
observation.images.cam_left_wrist: [3, 480, 640]
|
||||
observation.images.cam_high: [3, 480, 640]
|
||||
observation.images.cam_low: [3, 480, 640]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.cam_right_wrist: mean_std
|
||||
observation.images.cam_left_wrist: mean_std
|
||||
observation.images.cam_high: mean_std
|
||||
observation.images.cam_low: mean_std
|
||||
observation.state: mean_std
|
||||
output_normalization_modes:
|
||||
action: mean_std
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_momentum: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
102
lerobot/configs/policy/act_koch_real.yaml
Normal file
102
lerobot/configs/policy/act_koch_real.yaml
Normal file
@@ -0,0 +1,102 @@
|
||||
# @package _global_
|
||||
|
||||
# Use `act_koch_real.yaml` to train on real-world datasets collected on Alexander Koch's robots.
|
||||
# Compared to `act.yaml`, it contains 2 cameras (i.e. laptop, phone) instead of 1 camera (i.e. top).
|
||||
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
|
||||
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
|
||||
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
|
||||
#
|
||||
# Example of usage for training:
|
||||
# ```bash
|
||||
# python lerobot/scripts/train.py \
|
||||
# policy=act_koch_real \
|
||||
# env=koch_real
|
||||
# ```
|
||||
|
||||
seed: 1000
|
||||
dataset_repo_id: lerobot/koch_pick_place_lego
|
||||
|
||||
override_dataset_stats:
|
||||
observation.images.laptop:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
observation.images.phone:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
online_steps: 0
|
||||
eval_freq: -1
|
||||
save_freq: 10000
|
||||
log_freq: 100
|
||||
save_checkpoint: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
|
||||
observation.images.laptop: [3, 480, 640]
|
||||
observation.images.phone: [3, 480, 640]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.images.laptop: mean_std
|
||||
observation.images.phone: mean_std
|
||||
observation.state: mean_std
|
||||
output_normalization_modes:
|
||||
action: mean_std
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_momentum: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user