forked from tangger/lerobot
Compare commits
73 Commits
test/add_c
...
user/rcade
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
41132be602 | ||
|
|
8746276d41 | ||
|
|
f07887e8d1 | ||
|
|
8d360927af | ||
|
|
e07cb52baa | ||
|
|
e88af0e588 | ||
|
|
1ecaeabad0 | ||
|
|
0309a9fcbc | ||
|
|
588bf96559 | ||
|
|
e11d2e4197 | ||
|
|
253c649507 | ||
|
|
71715c3914 | ||
|
|
7c005c2aa1 | ||
|
|
d518b036d0 | ||
|
|
367d9bda7d | ||
|
|
601b5fdbfe | ||
|
|
20b74ae1eb | ||
|
|
b9b880bd8b | ||
|
|
5bd9cb1e72 | ||
|
|
2866d0770f | ||
|
|
4375a05a9f | ||
|
|
4acf99f622 | ||
|
|
5a6ea09248 | ||
|
|
9c0836c8d0 | ||
|
|
b0cca75e5e | ||
|
|
b43ece8934 | ||
|
|
c10c5a0e64 | ||
|
|
a8db91c40e | ||
|
|
0f5f7ac780 | ||
|
|
54b5c805bf | ||
|
|
eab5543750 | ||
|
|
6b6a990f4c | ||
|
|
768e36660d | ||
|
|
c2a05a1fde | ||
|
|
790d6740ba | ||
|
|
6c4d122198 | ||
|
|
34c5d4ce07 | ||
|
|
c1b28f0b58 | ||
|
|
53ecec5fb2 | ||
|
|
65738f0a80 | ||
|
|
5d184a7811 | ||
|
|
1a5c1ef9c7 | ||
|
|
7866c1f7d1 | ||
|
|
3666ac9346 | ||
|
|
3daab2acbb | ||
|
|
c36d2253d0 | ||
|
|
e2e6f6e666 | ||
|
|
ff0029f84b | ||
|
|
39ad2d16d4 | ||
|
|
689c5efc72 | ||
|
|
eda0b996cd | ||
|
|
15e7a9d541 | ||
|
|
52fb4143b5 | ||
|
|
93c80b2cb1 | ||
|
|
5fbbaa1bc0 | ||
|
|
71d1f5e2c9 | ||
|
|
b520941cd9 | ||
|
|
64ed5258e6 | ||
|
|
392a8c32a7 | ||
|
|
969ef745a2 | ||
|
|
6fe42a72db | ||
|
|
2487228ea7 | ||
|
|
76436ca1de | ||
|
|
fbf2f2222a | ||
|
|
02bc4e03e0 | ||
|
|
624eaf1175 | ||
|
|
aed3eb4a94 | ||
|
|
8426c64f42 | ||
|
|
7c2bbee613 | ||
|
|
9d6886dd08 | ||
|
|
d67ca342e9 | ||
|
|
57c9c21c39 | ||
|
|
38c14571cc |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -11,7 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
.dev
|
||||
|
||||
# Logging
|
||||
logs
|
||||
tmp
|
||||
|
||||
@@ -48,7 +48,7 @@ repos:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.4
|
||||
rev: v0.11.5
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
@@ -57,7 +57,7 @@ repos:
|
||||
|
||||
##### Security #####
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.24.2
|
||||
rev: v8.24.3
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
|
||||
12
README.md
12
README.md
@@ -103,13 +103,20 @@ When using `miniconda`, install `ffmpeg` in your environment:
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
|
||||
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
|
||||
> ```bash
|
||||
> conda install ffmpeg=7.1.1 -c conda-forge
|
||||
> ```
|
||||
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
> **NOTE:** If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run:
|
||||
`sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
`sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
|
||||
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
||||
- [aloha](https://github.com/huggingface/gym-aloha)
|
||||
@@ -191,6 +198,7 @@ Under the hood, the `LeRobotDataset` format makes use of several ways to seriali
|
||||
Here are the important details and internal structure organization of a typical `LeRobotDataset` instantiated with `dataset = LeRobotDataset("lerobot/aloha_static_coffee")`. The exact features will change from dataset to dataset but not the main aspects:
|
||||
|
||||
```
|
||||
TODO: IMPROVE
|
||||
dataset attributes:
|
||||
├ hf_dataset: a Hugging Face dataset (backed by Arrow/parquet). Typical features example:
|
||||
│ ├ observation.images.cam_high (VideoFrame):
|
||||
@@ -203,7 +211,7 @@ dataset attributes:
|
||||
│ ├ timestamp (float32): timestamp in the episode
|
||||
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
|
||||
│ └ index (int64): general index in the whole dataset
|
||||
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
|
||||
├ meta: contains 2 tensors with the start and end indices of each episode
|
||||
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
|
||||
│ └ to: (1D int64 tensor): last frame index for each episode — shape (num episodes,)
|
||||
├ stats: a dictionary of statistics (max, mean, min, std) for each feature in the dataset, for instance
|
||||
|
||||
@@ -108,7 +108,8 @@ def save_decoded_frames(
|
||||
|
||||
|
||||
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
|
||||
ep_num_images = dataset.episode_data_index["to"][0].item()
|
||||
episode_index = 0
|
||||
ep_num_images = dataset.meta.episodes["length"][episode_index]
|
||||
if imgs_dir.exists() and len(list(imgs_dir.glob("frame_*.png"))) == ep_num_images:
|
||||
return
|
||||
|
||||
@@ -265,7 +266,8 @@ def benchmark_encoding_decoding(
|
||||
overwrite=True,
|
||||
)
|
||||
|
||||
ep_num_images = dataset.episode_data_index["to"][0].item()
|
||||
episode_index = 0
|
||||
ep_num_images = dataset.meta.episodes["length"][episode_index]
|
||||
width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:])
|
||||
num_pixels = width * height
|
||||
video_size_bytes = video_path.stat().st_size
|
||||
|
||||
@@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
tcpdump sysstat screen tmux \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||
speech-dispatcher portaudio19-dev libgeos-dev \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv python${PYTHON_VERSION}-dev \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install ffmpeg build dependencies. See:
|
||||
|
||||
@@ -191,7 +191,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--id 1
|
||||
--ID 1
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
@@ -204,7 +204,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--id 2
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
|
||||
@@ -138,7 +138,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--id 1
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
|
||||
@@ -150,7 +150,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--id 2
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
|
||||
@@ -92,11 +92,11 @@ print(dataset.hf_dataset)
|
||||
# LeRobot datasets also subclasses PyTorch datasets so you can do everything you know and love from working
|
||||
# with the latter, like iterating through the dataset.
|
||||
# The __getitem__ iterates over the frames of the dataset. Since our datasets are also structured by
|
||||
# episodes, you can access the frame indices of any episode using the episode_data_index. Here, we access
|
||||
# episodes, you can access the frame indices of any episode using dataset.meta.episodes. Here, we access
|
||||
# frame indices associated to the first episode:
|
||||
episode_index = 0
|
||||
from_idx = dataset.episode_data_index["from"][episode_index].item()
|
||||
to_idx = dataset.episode_data_index["to"][episode_index].item()
|
||||
from_idx = dataset.meta.episodes["dataset_from_index"][episode_index]
|
||||
to_idx = dataset.meta.episodes["dataset_to_index"][episode_index]
|
||||
|
||||
# Then we grab all the image frames from the first camera:
|
||||
camera_key = dataset.meta.camera_keys[0]
|
||||
|
||||
@@ -4,7 +4,7 @@ This tutorial will explain the training script, how to use it, and particularly
|
||||
|
||||
## The training script
|
||||
|
||||
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
|
||||
LeRobot offers a training script at [`lerobot/scripts/train.py`](../lerobot/scripts/train.py). At a high level it does the following:
|
||||
|
||||
- Initialize/load a configuration for the following steps using.
|
||||
- Instantiates a dataset.
|
||||
@@ -21,7 +21,7 @@ In the training script, the main function `train` expects a `TrainPipelineConfig
|
||||
def train(cfg: TrainPipelineConfig):
|
||||
```
|
||||
|
||||
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
|
||||
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
|
||||
|
||||
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated for this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
|
||||
|
||||
@@ -50,7 +50,7 @@ By default, every field takes its default value specified in the dataclass. If a
|
||||
|
||||
## Specifying values from the CLI
|
||||
|
||||
Let's say that we want to train [Diffusion Policy](../../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
|
||||
Let's say that we want to train [Diffusion Policy](../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=lerobot/pusht \
|
||||
@@ -60,10 +60,10 @@ python lerobot/scripts/train.py \
|
||||
|
||||
Let's break this down:
|
||||
- To specify the dataset, we just need to specify its `repo_id` on the hub which is the only required argument in the `DatasetConfig`. The rest of the fields have default values and in this case we are fine with those so we can just add the option `--dataset.repo_id=lerobot/pusht`.
|
||||
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../../lerobot/common/policies)
|
||||
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../../lerobot/common/envs/configs.py)
|
||||
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../lerobot/common/policies)
|
||||
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../lerobot/common/envs/configs.py)
|
||||
|
||||
Let's see another example. Let's say you've been training [ACT](../../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
|
||||
Let's see another example. Let's say you've been training [ACT](../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--policy.type=act \
|
||||
@@ -74,7 +74,7 @@ python lerobot/scripts/train.py \
|
||||
> Notice we added `--output_dir` to explicitly tell where to write outputs from this run (checkpoints, training state, configs etc.). This is not mandatory and if you don't specify it, a default directory will be created from the current date and time, env.type and policy.type. This will typically look like `outputs/train/2025-01-24/16-10-05_aloha_act`.
|
||||
|
||||
We now want to train a different policy for aloha on another task. We'll change the dataset and use [lerobot/aloha_sim_transfer_cube_human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human) instead. Of course, we also need to change the task of the environment as well to match this other task.
|
||||
Looking at the [`AlohaEnv`](../../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
|
||||
Looking at the [`AlohaEnv`](../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--policy.type=act \
|
||||
|
||||
@@ -83,7 +83,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand dynamixel \
|
||||
--model xl330-m288 \
|
||||
--baudrate 1000000 \
|
||||
--id 1
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Then unplug your first motor and plug the second motor and set its ID to 2.
|
||||
@@ -93,7 +93,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand dynamixel \
|
||||
--model xl330-m288 \
|
||||
--baudrate 1000000 \
|
||||
--id 2
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6.
|
||||
@@ -830,11 +830,6 @@ It contains:
|
||||
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
|
||||
|
||||
Troubleshooting:
|
||||
- On Linux, if you encounter any issue during video encoding with `ffmpeg: unknown encoder libsvtav1`, you can:
|
||||
- install with conda-forge by running `conda install -c conda-forge ffmpeg` (it should be compiled with `libsvtav1`),
|
||||
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform (check the version installed with `ffmpeg -encoders | grep libsvtav1`). If it isn't `ffmpeg 7.X` or lacks `libsvtav1` support, you can explicitly install `ffmpeg 7.X` using: `conda install ffmpeg=7.1.1 -c conda-forge`
|
||||
- or, install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1),
|
||||
- and, make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
|
||||
At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/koch_test) that you can obtain by running:
|
||||
|
||||
@@ -31,7 +31,7 @@ dataset = LeRobotDataset(dataset_repo_id, episodes=[0])
|
||||
# This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)`
|
||||
|
||||
# Get the index of the first observation in the first episode
|
||||
first_idx = dataset.episode_data_index["from"][0].item()
|
||||
first_idx = dataset.meta.episodes["dataset_from_index"][0]
|
||||
|
||||
# Get the frame corresponding to the first camera
|
||||
frame = dataset[first_idx][dataset.meta.camera_keys[0]]
|
||||
|
||||
144
examples/port_datasets/droid_rlds/README.md
Normal file
144
examples/port_datasets/droid_rlds/README.md
Normal file
@@ -0,0 +1,144 @@
|
||||
# Port DROID 1.0.1 dataset to LeRobotDataset
|
||||
|
||||
## Download
|
||||
|
||||
TODO
|
||||
|
||||
It will take 2 TB in your local disk.
|
||||
|
||||
## Port on a single computer
|
||||
|
||||
First, install tensorflow dataset utilities to read from raw files:
|
||||
```bash
|
||||
pip install tensorflow
|
||||
pip install tensorflow_datasets
|
||||
```
|
||||
|
||||
Then run this script to start porting the dataset:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/port_droid.py \
|
||||
--raw-dir /your/data/droid/1.0.1 \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--push-to-hub
|
||||
```
|
||||
|
||||
It will take 400GB in your local disk.
|
||||
|
||||
As usual, your LeRobotDataset will be stored in your huggingface/lerobot cache folder.
|
||||
|
||||
WARNING: it will take 7 days for porting the dataset locally and 3 days to upload, so we will need to parallelize over multiple nodes on a slurm cluster.
|
||||
|
||||
NOTE: For development, run this script to start porting a shard:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/port.py \
|
||||
--raw-dir /your/data/droid/1.0.1 \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--num-shards 2048 \
|
||||
--shard-index 0
|
||||
```
|
||||
|
||||
## Port over SLURM
|
||||
|
||||
Install slurm utilities from Hugging Face:
|
||||
```bash
|
||||
pip install datatrove
|
||||
```
|
||||
|
||||
|
||||
### 1. Port one shard per job
|
||||
|
||||
Run this script to start porting shards of the dataset:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_port_shards.py \
|
||||
--raw-dir /your/data/droid/1.0.1 \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--logs-dir /your/logs \
|
||||
--job-name port_droid \
|
||||
--partition your_partition \
|
||||
--workers 2048 \
|
||||
--cpus-per-task 8 \
|
||||
--mem-per-cpu 1950M
|
||||
```
|
||||
|
||||
**Note on how to set your command line arguments**
|
||||
|
||||
Regarding `--partition`, find yours by running:
|
||||
```bash
|
||||
info --format="%R"`
|
||||
```
|
||||
and select the CPU partition if you have one. No GPU needed.
|
||||
|
||||
Regarding `--workers`, it is the number of slurm jobs you will launch in parallel. 2048 is the maximum number, since there is 2048 shards in Droid. This big number will certainly max-out your cluster.
|
||||
|
||||
Regarding `--cpus-per-task` and `--mem-per-cpu`, by default it will use ~16GB of RAM (8*1950M) which is recommended to load the raw frames and 8 CPUs which can be useful to parallelize the encoding of the frames.
|
||||
|
||||
Find the number of CPUs and Memory of the nodes of your partition by running:
|
||||
```bash
|
||||
sinfo -N -p your_partition -h -o "%N cpus=%c mem=%m"
|
||||
```
|
||||
|
||||
**Useful commands to check progress and debug**
|
||||
|
||||
Check if your jobs are running:
|
||||
```bash
|
||||
squeue -u $USER`
|
||||
```
|
||||
|
||||
You should see a list with job indices like `15125385_155` where `15125385` is the index of the run and `155` is the worker index. The output/print of this worker is written in real time in `/your/logs/job_name/slurm_jobs/15125385_155.out`. For instance, you can inspect the content of this file by running `less /your/logs/job_name/slurm_jobs/15125385_155.out`.
|
||||
|
||||
Check the progression of your jobs by running:
|
||||
```bash
|
||||
jobs_status /your/logs
|
||||
```
|
||||
|
||||
If it's not 100% and no more slurm job is running, it means that some of them failed. Inspect the logs by running:
|
||||
```bash
|
||||
failed_logs /your/logs/job_name
|
||||
```
|
||||
|
||||
If there is an issue in the code, you can fix it in debug mode with `--slurm 0` which allows to set breakpoint:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_port_shards.py --slurm 0 ...
|
||||
```
|
||||
|
||||
And you can relaunch the same command, which will skip the completed jobs:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_port_shards.py --slurm 1 ...
|
||||
```
|
||||
|
||||
Once all jobs are completed, you will have one dataset per shard (e.g. `droid_1.0.1_world_2048_rank_1594`) saved on disk in your `/lerobot/home/dir/your_id` directory. You can find your `/lerobot/home/dir` by running:
|
||||
```bash
|
||||
python -c "from lerobot.common.constants import HF_LEROBOT_HOME;print(HF_LEROBOT_HOME)"
|
||||
```
|
||||
|
||||
|
||||
### 2. Aggregate all shards
|
||||
|
||||
Run this script to start aggregation:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_aggregate_shards.py \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--logs-dir /your/logs \
|
||||
--job-name aggr_droid \
|
||||
--partition your_partition \
|
||||
--workers 2048 \
|
||||
--cpus-per-task 8 \
|
||||
--mem-per-cpu 1950M
|
||||
```
|
||||
|
||||
Once all jobs are completed, you will have one dataset your `/lerobot/home/dir/your_id/droid_1.0.1` directory.
|
||||
|
||||
|
||||
### 3. Upload dataset
|
||||
|
||||
Run this script to start uploading:
|
||||
```bash
|
||||
python examples/port_datasets/droid_rlds/slurm_upload.py \
|
||||
--repo-id your_id/droid_1.0.1 \
|
||||
--logs-dir /your/logs \
|
||||
--job-name upload_droid \
|
||||
--partition your_partition \
|
||||
--workers 50 \
|
||||
--cpus-per-task 4 \
|
||||
--mem-per-cpu 1950M
|
||||
```
|
||||
430
examples/port_datasets/droid_rlds/port_droid.py
Normal file
430
examples/port_datasets/droid_rlds/port_droid.py
Normal file
@@ -0,0 +1,430 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import tensorflow_datasets as tfds
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
|
||||
from lerobot.common.utils.utils import get_elapsed_time_in_days_hours_minutes_seconds
|
||||
|
||||
DROID_SHARDS = 2048
|
||||
DROID_FPS = 15
|
||||
DROID_ROBOT_TYPE = "Franka"
|
||||
|
||||
# Dataset schema slightly adapted from: https://droid-dataset.github.io/droid/the-droid-dataset.html#-dataset-schema
|
||||
DROID_FEATURES = {
|
||||
# true on first step of the episode
|
||||
"is_first": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# true on last step of the episode
|
||||
"is_last": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# true on last step of the episode if it is a terminal step, True for demos
|
||||
"is_terminal": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# language_instruction is also stored as "task" to follow LeRobot standard
|
||||
"language_instruction": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"language_instruction_2": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"language_instruction_3": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"observation.state.gripper_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": {
|
||||
"axes": ["gripper"],
|
||||
},
|
||||
},
|
||||
"observation.state.cartesian_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"observation.state.joint_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6"],
|
||||
},
|
||||
},
|
||||
# Add this new feature to follow LeRobot standard of using joint position + gripper
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (8,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6", "gripper"],
|
||||
},
|
||||
},
|
||||
# Initially called wrist_image_left
|
||||
"observation.images.wrist_left": {
|
||||
"dtype": "video",
|
||||
"shape": (180, 320, 3),
|
||||
"names": [
|
||||
"height",
|
||||
"width",
|
||||
"channels",
|
||||
],
|
||||
},
|
||||
# Initially called exterior_image_1_left
|
||||
"observation.images.exterior_1_left": {
|
||||
"dtype": "video",
|
||||
"shape": (180, 320, 3),
|
||||
"names": [
|
||||
"height",
|
||||
"width",
|
||||
"channels",
|
||||
],
|
||||
},
|
||||
# Initially called exterior_image_2_left
|
||||
"observation.images.exterior_2_left": {
|
||||
"dtype": "video",
|
||||
"shape": (180, 320, 3),
|
||||
"names": [
|
||||
"height",
|
||||
"width",
|
||||
"channels",
|
||||
],
|
||||
},
|
||||
"action.gripper_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": {
|
||||
"axes": ["gripper"],
|
||||
},
|
||||
},
|
||||
"action.gripper_velocity": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": {
|
||||
"axes": ["gripper"],
|
||||
},
|
||||
},
|
||||
"action.cartesian_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"action.cartesian_velocity": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"action.joint_position": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6"],
|
||||
},
|
||||
},
|
||||
"action.joint_velocity": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6"],
|
||||
},
|
||||
},
|
||||
# This feature was called "action" in RLDS dataset and consists of [6x joint velocities, 1x gripper position]
|
||||
"action.original": {
|
||||
"dtype": "float32",
|
||||
"shape": (7,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw", "gripper"],
|
||||
},
|
||||
},
|
||||
# Add this new feature to follow LeRobot standard of using joint position + gripper
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (8,),
|
||||
"names": {
|
||||
"axes": ["joint_0", "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6", "gripper"],
|
||||
},
|
||||
},
|
||||
"discount": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"reward": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
# Meta data that are the same for all frames in the episode
|
||||
"task_category": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"building": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"collector_id": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"date": {
|
||||
"dtype": "string",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"camera_extrinsics.wrist_left": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"camera_extrinsics.exterior_1_left": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"camera_extrinsics.exterior_2_left": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": {
|
||||
"axes": ["x", "y", "z", "roll", "pitch", "yaw"],
|
||||
},
|
||||
},
|
||||
"is_episode_successful": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def is_episode_successful(tf_episode_metadata):
|
||||
# Adapted from: https://github.com/droid-dataset/droid_policy_learning/blob/dd1020eb20d981f90b5ff07dc80d80d5c0cb108b/robomimic/utils/rlds_utils.py#L8
|
||||
return "/success/" in tf_episode_metadata["file_path"].numpy().decode()
|
||||
|
||||
|
||||
def generate_lerobot_frames(tf_episode):
|
||||
m = tf_episode["episode_metadata"]
|
||||
frame_meta = {
|
||||
"task_category": m["building"].numpy().decode(),
|
||||
"building": m["building"].numpy().decode(),
|
||||
"collector_id": m["collector_id"].numpy().decode(),
|
||||
"date": m["date"].numpy().decode(),
|
||||
"camera_extrinsics.wrist_left": m["extrinsics_wrist_cam"].numpy(),
|
||||
"camera_extrinsics.exterior_1_left": m["extrinsics_exterior_cam_1"].numpy(),
|
||||
"camera_extrinsics.exterior_2_left": m["extrinsics_exterior_cam_2"].numpy(),
|
||||
"is_episode_successful": np.array([is_episode_successful(m)]),
|
||||
}
|
||||
for f in tf_episode["steps"]:
|
||||
# Dataset schema slightly adapted from: https://droid-dataset.github.io/droid/the-droid-dataset.html#-dataset-schema
|
||||
frame = {
|
||||
"is_first": np.array([f["is_first"].numpy()]),
|
||||
"is_last": np.array([f["is_last"].numpy()]),
|
||||
"is_terminal": np.array([f["is_terminal"].numpy()]),
|
||||
"language_instruction": f["language_instruction"].numpy().decode(),
|
||||
"language_instruction_2": f["language_instruction_2"].numpy().decode(),
|
||||
"language_instruction_3": f["language_instruction_3"].numpy().decode(),
|
||||
"observation.state.gripper_position": f["observation"]["gripper_position"].numpy(),
|
||||
"observation.state.cartesian_position": f["observation"]["cartesian_position"].numpy(),
|
||||
"observation.state.joint_position": f["observation"]["joint_position"].numpy(),
|
||||
"observation.images.wrist_left": f["observation"]["wrist_image_left"].numpy(),
|
||||
"observation.images.exterior_1_left": f["observation"]["exterior_image_1_left"].numpy(),
|
||||
"observation.images.exterior_2_left": f["observation"]["exterior_image_2_left"].numpy(),
|
||||
"action.gripper_position": f["action_dict"]["gripper_position"].numpy(),
|
||||
"action.gripper_velocity": f["action_dict"]["gripper_velocity"].numpy(),
|
||||
"action.cartesian_position": f["action_dict"]["cartesian_position"].numpy(),
|
||||
"action.cartesian_velocity": f["action_dict"]["cartesian_velocity"].numpy(),
|
||||
"action.joint_position": f["action_dict"]["joint_position"].numpy(),
|
||||
"action.joint_velocity": f["action_dict"]["joint_velocity"].numpy(),
|
||||
"discount": np.array([f["discount"].numpy()]),
|
||||
"reward": np.array([f["reward"].numpy()]),
|
||||
"action.original": f["action"].numpy(),
|
||||
}
|
||||
|
||||
# language_instruction is also stored as "task" to follow LeRobot standard
|
||||
frame["task"] = frame["language_instruction"]
|
||||
|
||||
# Add this new feature to follow LeRobot standard of using joint position + gripper
|
||||
frame["observation.state"] = np.concatenate(
|
||||
[frame["observation.state.joint_position"], frame["observation.state.gripper_position"]]
|
||||
)
|
||||
frame["action"] = np.concatenate([frame["action.joint_position"], frame["action.gripper_position"]])
|
||||
|
||||
# Meta data that are the same for all frames in the episode
|
||||
frame.update(frame_meta)
|
||||
|
||||
# Cast fp64 to fp32
|
||||
for key in frame:
|
||||
if isinstance(frame[key], np.ndarray) and frame[key].dtype == np.float64:
|
||||
frame[key] = frame[key].astype(np.float32)
|
||||
|
||||
yield frame
|
||||
|
||||
|
||||
def port_droid(
|
||||
raw_dir: Path,
|
||||
repo_id: str,
|
||||
push_to_hub: bool = False,
|
||||
num_shards: int | None = None,
|
||||
shard_index: int | None = None,
|
||||
):
|
||||
dataset_name = raw_dir.parent.name
|
||||
version = raw_dir.name
|
||||
data_dir = raw_dir.parent.parent
|
||||
|
||||
builder = tfds.builder(f"{dataset_name}/{version}", data_dir=data_dir, version="")
|
||||
|
||||
if num_shards is not None:
|
||||
tfds_num_shards = builder.info.splits["train"].num_shards
|
||||
if tfds_num_shards != DROID_SHARDS:
|
||||
raise ValueError(
|
||||
f"Number of shards of Droid dataset is expected to be {DROID_SHARDS} but is {tfds_num_shards}."
|
||||
)
|
||||
if num_shards != tfds_num_shards:
|
||||
raise ValueError(
|
||||
f"We only shard over the fixed number of shards provided by tensorflow dataset ({tfds_num_shards}), but {num_shards} shards provided instead."
|
||||
)
|
||||
if shard_index >= tfds_num_shards:
|
||||
raise ValueError(
|
||||
f"Shard index is greater than the num of shards ({shard_index} >= {num_shards})."
|
||||
)
|
||||
|
||||
raw_dataset = builder.as_dataset(split=f"train[{shard_index}shard]")
|
||||
else:
|
||||
raw_dataset = builder.as_dataset(split="train")
|
||||
|
||||
lerobot_dataset = LeRobotDataset.create(
|
||||
repo_id=repo_id,
|
||||
robot_type=DROID_ROBOT_TYPE,
|
||||
fps=DROID_FPS,
|
||||
features=DROID_FEATURES,
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
num_episodes = raw_dataset.cardinality().numpy().item()
|
||||
logging.info(f"Number of episodes {num_episodes}")
|
||||
|
||||
for episode_index, episode in enumerate(raw_dataset):
|
||||
elapsed_time = time.time() - start_time
|
||||
d, h, m, s = get_elapsed_time_in_days_hours_minutes_seconds(elapsed_time)
|
||||
|
||||
logging.info(
|
||||
f"{episode_index} / {num_episodes} episodes processed (after {d} days, {h} hours, {m} minutes, {s:.3f} seconds)"
|
||||
)
|
||||
|
||||
for frame in generate_lerobot_frames(episode):
|
||||
lerobot_dataset.add_frame(frame)
|
||||
|
||||
lerobot_dataset.save_episode()
|
||||
logging.info("Save_episode")
|
||||
|
||||
if push_to_hub:
|
||||
lerobot_dataset.push_to_hub(
|
||||
# Add openx tag, since it belongs to the openx collection of datasets
|
||||
tags=["openx"],
|
||||
private=False,
|
||||
)
|
||||
|
||||
|
||||
def validate_dataset(repo_id):
|
||||
"""Sanity check that ensure meta data can be loaded and all files are present."""
|
||||
meta = LeRobotDatasetMetadata(repo_id)
|
||||
|
||||
if meta.total_episodes == 0:
|
||||
raise ValueError("Number of episodes is 0.")
|
||||
|
||||
for ep_idx in range(meta.total_episodes):
|
||||
data_path = meta.root / meta.get_data_file_path(ep_idx)
|
||||
|
||||
if not data_path.exists():
|
||||
raise ValueError(f"Parquet file is missing in: {data_path}")
|
||||
|
||||
for vid_key in meta.video_keys:
|
||||
vid_path = meta.root / meta.get_video_file_path(ep_idx, vid_key)
|
||||
if not vid_path.exists():
|
||||
raise ValueError(f"Video file is missing in: {vid_path}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="Directory containing input raw datasets (e.g. `path/to/dataset` or `path/to/dataset/version).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--push-to-hub",
|
||||
action="store_true",
|
||||
help="Upload to hub.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-shards",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Number of shards. Can be either None to load the full dataset, or 2048 to load one of the 2048 tensorflow dataset files.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--shard-index",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Index of the shard. Can be either None to load the full dataset, or in [0,2047] to load one of the 2048 tensorflow dataset files.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
port_droid(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
293
examples/port_datasets/droid_rlds/slurm_aggregate_shards.py
Normal file
293
examples/port_datasets/droid_rlds/slurm_aggregate_shards.py
Normal file
@@ -0,0 +1,293 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import tqdm
|
||||
from datatrove.executor import LocalPipelineExecutor
|
||||
from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
||||
from lerobot.common.datasets.aggregate import validate_all_metadata
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import (
|
||||
legacy_write_episode_stats,
|
||||
legacy_write_task,
|
||||
write_episode,
|
||||
write_info,
|
||||
)
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
|
||||
class AggregateDatasets(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
repo_ids: list[str],
|
||||
aggregated_repo_id: str,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_ids = repo_ids
|
||||
self.aggr_repo_id = aggregated_repo_id
|
||||
|
||||
self.create_aggr_dataset()
|
||||
|
||||
def create_aggr_dataset(self):
|
||||
init_logging()
|
||||
|
||||
logging.info("Start aggregate_datasets")
|
||||
|
||||
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in self.repo_ids]
|
||||
|
||||
fps, robot_type, features = validate_all_metadata(all_metadata)
|
||||
|
||||
# Create resulting dataset folder
|
||||
aggr_meta = LeRobotDatasetMetadata.create(
|
||||
repo_id=self.aggr_repo_id,
|
||||
fps=fps,
|
||||
robot_type=robot_type,
|
||||
features=features,
|
||||
)
|
||||
|
||||
logging.info("Find all tasks")
|
||||
# find all tasks, deduplicate them, create new task indices for each dataset
|
||||
# indexed by dataset index
|
||||
datasets_task_index_to_aggr_task_index = {}
|
||||
aggr_task_index = 0
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata, desc="Find all tasks")):
|
||||
task_index_to_aggr_task_index = {}
|
||||
|
||||
for task_index, task in meta.tasks.items():
|
||||
if task not in aggr_meta.task_to_task_index:
|
||||
# add the task to aggr tasks mappings
|
||||
aggr_meta.tasks[aggr_task_index] = task
|
||||
aggr_meta.task_to_task_index[task] = aggr_task_index
|
||||
aggr_task_index += 1
|
||||
|
||||
# add task_index anyway
|
||||
task_index_to_aggr_task_index[task_index] = aggr_meta.task_to_task_index[task]
|
||||
|
||||
datasets_task_index_to_aggr_task_index[dataset_index] = task_index_to_aggr_task_index
|
||||
|
||||
logging.info("Prepare copy data and videos")
|
||||
datasets_ep_idx_to_aggr_ep_idx = {}
|
||||
datasets_aggr_episode_index_shift = {}
|
||||
aggr_episode_index_shift = 0
|
||||
for dataset_index, meta in enumerate(tqdm.tqdm(all_metadata, desc="Prepare copy data and videos")):
|
||||
ep_idx_to_aggr_ep_idx = {}
|
||||
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
ep_idx_to_aggr_ep_idx[episode_index] = aggr_episode_index
|
||||
|
||||
datasets_ep_idx_to_aggr_ep_idx[dataset_index] = ep_idx_to_aggr_ep_idx
|
||||
datasets_aggr_episode_index_shift[dataset_index] = aggr_episode_index_shift
|
||||
|
||||
# populate episodes
|
||||
for episode_index, episode_dict in meta.episodes.items():
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
episode_dict["episode_index"] = aggr_episode_index
|
||||
aggr_meta.episodes[aggr_episode_index] = episode_dict
|
||||
|
||||
# populate episodes_stats
|
||||
for episode_index, episode_stats in meta.episodes_stats.items():
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
aggr_meta.episodes_stats[aggr_episode_index] = episode_stats
|
||||
|
||||
# populate info
|
||||
aggr_meta.info["total_episodes"] += meta.total_episodes
|
||||
aggr_meta.info["total_frames"] += meta.total_frames
|
||||
aggr_meta.info["total_videos"] += len(aggr_meta.video_keys) * meta.total_episodes
|
||||
|
||||
aggr_episode_index_shift += meta.total_episodes
|
||||
|
||||
logging.info("Write meta data")
|
||||
aggr_meta.info["total_tasks"] = len(aggr_meta.tasks)
|
||||
aggr_meta.info["total_chunks"] = aggr_meta.get_episode_chunk(aggr_episode_index_shift - 1)
|
||||
aggr_meta.info["splits"] = {"train": f"0:{aggr_meta.info['total_episodes']}"}
|
||||
|
||||
# create a new episodes jsonl with updated episode_index using write_episode
|
||||
for episode_dict in tqdm.tqdm(aggr_meta.episodes.values(), desc="Write episodes"):
|
||||
write_episode(episode_dict, aggr_meta.root)
|
||||
|
||||
# create a new episode_stats jsonl with updated episode_index using write_episode_stats
|
||||
for episode_index, episode_stats in tqdm.tqdm(
|
||||
aggr_meta.episodes_stats.items(), desc="Write episodes stats"
|
||||
):
|
||||
legacy_write_episode_stats(episode_index, episode_stats, aggr_meta.root)
|
||||
|
||||
# create a new task jsonl with updated episode_index using write_task
|
||||
for task_index, task in tqdm.tqdm(aggr_meta.tasks.items(), desc="Write tasks"):
|
||||
legacy_write_task(task_index, task, aggr_meta.root)
|
||||
|
||||
write_info(aggr_meta.info, aggr_meta.root)
|
||||
|
||||
self.datasets_task_index_to_aggr_task_index = datasets_task_index_to_aggr_task_index
|
||||
self.datasets_ep_idx_to_aggr_ep_idx = datasets_ep_idx_to_aggr_ep_idx
|
||||
self.datasets_aggr_episode_index_shift = datasets_aggr_episode_index_shift
|
||||
|
||||
logging.info("Meta data done writing!")
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
import logging
|
||||
import shutil
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from lerobot.common.datasets.aggregate import get_update_episode_and_task_func
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
init_logging()
|
||||
|
||||
aggr_meta = LeRobotDatasetMetadata(self.aggr_repo_id)
|
||||
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in self.repo_ids]
|
||||
|
||||
if world_size != len(all_metadata):
|
||||
raise ValueError()
|
||||
|
||||
dataset_index = rank
|
||||
meta = all_metadata[dataset_index]
|
||||
aggr_episode_index_shift = self.datasets_aggr_episode_index_shift[dataset_index]
|
||||
|
||||
logging.info("Copy data")
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = self.datasets_ep_idx_to_aggr_ep_idx[dataset_index][episode_index]
|
||||
data_path = meta.root / meta.get_data_file_path(episode_index)
|
||||
aggr_data_path = aggr_meta.root / aggr_meta.get_data_file_path(aggr_episode_index)
|
||||
|
||||
# update episode_index and task_index
|
||||
df = pd.read_parquet(data_path)
|
||||
update_row_func = get_update_episode_and_task_func(
|
||||
aggr_episode_index_shift, self.datasets_task_index_to_aggr_task_index[dataset_index]
|
||||
)
|
||||
df = df.apply(update_row_func, axis=1)
|
||||
|
||||
aggr_data_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(aggr_data_path)
|
||||
|
||||
logging.info("Copy videos")
|
||||
for episode_index in range(meta.total_episodes):
|
||||
aggr_episode_index = episode_index + aggr_episode_index_shift
|
||||
for vid_key in meta.video_keys:
|
||||
video_path = meta.root / meta.get_video_file_path(episode_index, vid_key)
|
||||
aggr_video_path = aggr_meta.root / aggr_meta.get_video_file_path(aggr_episode_index, vid_key)
|
||||
aggr_video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(video_path, aggr_video_path)
|
||||
|
||||
# copy_command = f"cp {video_path} {aggr_video_path} &"
|
||||
# subprocess.Popen(copy_command, shell=True)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
def make_aggregate_executor(
|
||||
repo_ids, repo_id, job_name, logs_dir, workers, partition, cpus_per_task, mem_per_cpu, slurm=True
|
||||
):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
AggregateDatasets(repo_ids, repo_id),
|
||||
],
|
||||
"logging_dir": str(logs_dir / job_name),
|
||||
}
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": job_name,
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": workers,
|
||||
"time": "08:00:00",
|
||||
"partition": partition,
|
||||
"cpus_per_task": cpus_per_task,
|
||||
"sbatch_args": {"mem-per-cpu": mem_per_cpu},
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
kwargs.update(
|
||||
{
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": 1,
|
||||
}
|
||||
)
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logs-dir",
|
||||
type=Path,
|
||||
help="Path to logs directory for `datatrove`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--job-name",
|
||||
type=str,
|
||||
default="aggr_droid",
|
||||
help="Job name used in slurm, and name of the directory created inside the provided logs directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--slurm",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Launch over slurm. Use `--slurm 0` to launch sequentially (useful to debug).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Number of slurm workers. It should be less than the maximum number of shards.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--partition",
|
||||
type=str,
|
||||
help="Slurm partition. Ideally a CPU partition. No need for GPU partition.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cpus-per-task",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of cpus that each slurm worker will use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mem-per-cpu",
|
||||
type=str,
|
||||
default="1950M",
|
||||
help="Memory per cpu that each worker will use.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
kwargs["slurm"] = kwargs.pop("slurm") == 1
|
||||
|
||||
repo_ids = [f"{args.repo_id}_world_{DROID_SHARDS}_rank_{rank}" for rank in range(DROID_SHARDS)]
|
||||
aggregate_executor = make_aggregate_executor(repo_ids, **kwargs)
|
||||
aggregate_executor.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
147
examples/port_datasets/droid_rlds/slurm_port_shards.py
Normal file
147
examples/port_datasets/droid_rlds/slurm_port_shards.py
Normal file
@@ -0,0 +1,147 @@
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from datatrove.executor import LocalPipelineExecutor
|
||||
from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
||||
|
||||
|
||||
class PortDroidShards(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
raw_dir: Path | str,
|
||||
repo_id: str = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.raw_dir = Path(raw_dir)
|
||||
self.repo_id = repo_id
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
from datasets.utils.tqdm import disable_progress_bars
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import port_droid, validate_dataset
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
init_logging()
|
||||
disable_progress_bars()
|
||||
|
||||
shard_repo_id = f"{self.repo_id}_world_{world_size}_rank_{rank}"
|
||||
|
||||
try:
|
||||
validate_dataset(shard_repo_id)
|
||||
return
|
||||
except:
|
||||
pass
|
||||
|
||||
port_droid(
|
||||
self.raw_dir,
|
||||
shard_repo_id,
|
||||
push_to_hub=False,
|
||||
num_shards=world_size,
|
||||
shard_index=rank,
|
||||
)
|
||||
|
||||
validate_dataset(shard_repo_id)
|
||||
|
||||
|
||||
def make_port_executor(
|
||||
raw_dir, repo_id, job_name, logs_dir, workers, partition, cpus_per_task, mem_per_cpu, slurm=True
|
||||
):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
PortDroidShards(raw_dir, repo_id),
|
||||
],
|
||||
"logging_dir": str(logs_dir / job_name),
|
||||
}
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": job_name,
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": workers,
|
||||
"time": "08:00:00",
|
||||
"partition": partition,
|
||||
"cpus_per_task": cpus_per_task,
|
||||
"sbatch_args": {"mem-per-cpu": mem_per_cpu},
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
kwargs.update(
|
||||
{
|
||||
"tasks": 1,
|
||||
"workers": 1,
|
||||
}
|
||||
)
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="Directory containing input raw datasets (e.g. `path/to/dataset` or `path/to/dataset/version).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logs-dir",
|
||||
type=Path,
|
||||
help="Path to logs directory for `datatrove`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--job-name",
|
||||
type=str,
|
||||
default="port_droid",
|
||||
help="Job name used in slurm, and name of the directory created inside the provided logs directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--slurm",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Launch over slurm. Use `--slurm 0` to launch sequentially (useful to debug).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Number of slurm workers. It should be less than the maximum number of shards.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--partition",
|
||||
type=str,
|
||||
help="Slurm partition. Ideally a CPU partition. No need for GPU partition.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cpus-per-task",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of cpus that each slurm worker will use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mem-per-cpu",
|
||||
type=str,
|
||||
default="1950M",
|
||||
help="Memory per cpu that each worker will use.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
kwargs["slurm"] = kwargs.pop("slurm") == 1
|
||||
port_executor = make_port_executor(**kwargs)
|
||||
port_executor.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
263
examples/port_datasets/droid_rlds/slurm_upload.py
Normal file
263
examples/port_datasets/droid_rlds/slurm_upload.py
Normal file
@@ -0,0 +1,263 @@
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from datatrove.executor import LocalPipelineExecutor
|
||||
from datatrove.executor.slurm import SlurmPipelineExecutor
|
||||
from datatrove.pipeline.base import PipelineStep
|
||||
from huggingface_hub import HfApi
|
||||
from huggingface_hub.constants import REPOCARD_NAME
|
||||
|
||||
from examples.port_datasets.droid_rlds.port_droid import DROID_SHARDS
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import create_lerobot_dataset_card
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
|
||||
class UploadDataset(PipelineStep):
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
branch: str | None = None,
|
||||
revision: str | None = None,
|
||||
tags: list | None = None,
|
||||
license: str | None = "apache-2.0",
|
||||
private: bool = False,
|
||||
distant_repo_id: str | None = None,
|
||||
**card_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_id = repo_id
|
||||
self.distant_repo_id = self.repo_id if distant_repo_id is None else distant_repo_id
|
||||
self.branch = branch
|
||||
self.tags = tags
|
||||
self.license = license
|
||||
self.private = private
|
||||
self.card_kwargs = card_kwargs
|
||||
self.revision = revision if revision else CODEBASE_VERSION
|
||||
|
||||
if os.environ.get("HF_HUB_ENABLE_HF_TRANSFER", "0") != "1":
|
||||
logging.warning(
|
||||
'HF_HUB_ENABLE_HF_TRANSFER is not set to "1". Install hf_transfer and set the env '
|
||||
"variable for faster uploads:\npip install hf-transfer\nexport HF_HUB_ENABLE_HF_TRANSFER=1"
|
||||
)
|
||||
|
||||
self.create_repo()
|
||||
|
||||
def create_repo(self):
|
||||
logging.info(f"Loading meta data from {self.repo_id}...")
|
||||
meta = LeRobotDatasetMetadata(self.repo_id)
|
||||
|
||||
logging.info(f"Creating repo {self.distant_repo_id}...")
|
||||
hub_api = HfApi()
|
||||
hub_api.create_repo(
|
||||
repo_id=self.distant_repo_id,
|
||||
private=self.private,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
if self.branch:
|
||||
hub_api.create_branch(
|
||||
repo_id=self.distant_repo_id,
|
||||
branch=self.branch,
|
||||
revision=self.revision,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
|
||||
if not hub_api.file_exists(
|
||||
self.distant_repo_id, REPOCARD_NAME, repo_type="dataset", revision=self.branch
|
||||
):
|
||||
card = create_lerobot_dataset_card(
|
||||
tags=self.tags, dataset_info=meta.info, license=self.license, **self.card_kwargs
|
||||
)
|
||||
card.push_to_hub(repo_id=self.distant_repo_id, repo_type="dataset", revision=self.branch)
|
||||
|
||||
def list_files_recursively(directory):
|
||||
base_path = Path(directory)
|
||||
return [str(file.relative_to(base_path)) for file in base_path.rglob("*") if file.is_file()]
|
||||
|
||||
logging.info(f"Listing all local files from {self.repo_id}...")
|
||||
self.file_paths = list_files_recursively(meta.root)
|
||||
self.file_paths = sorted(self.file_paths)
|
||||
|
||||
def create_chunks(self, lst, n):
|
||||
from itertools import islice
|
||||
|
||||
it = iter(lst)
|
||||
return [list(islice(it, size)) for size in [len(lst) // n + (i < len(lst) % n) for i in range(n)]]
|
||||
|
||||
def create_commits(self, additions):
|
||||
import logging
|
||||
import math
|
||||
import random
|
||||
import time
|
||||
|
||||
from huggingface_hub import create_commit
|
||||
from huggingface_hub.utils import HfHubHTTPError
|
||||
|
||||
FILES_BETWEEN_COMMITS = 10 # noqa: N806
|
||||
BASE_DELAY = 0.1 # noqa: N806
|
||||
MAX_RETRIES = 12 # noqa: N806
|
||||
|
||||
# Split the files into smaller chunks for faster commit
|
||||
# and avoiding "A commit has happened since" error
|
||||
num_chunks = math.ceil(len(additions) / FILES_BETWEEN_COMMITS)
|
||||
chunks = self.create_chunks(additions, num_chunks)
|
||||
|
||||
for chunk in chunks:
|
||||
retries = 0
|
||||
while True:
|
||||
try:
|
||||
create_commit(
|
||||
self.distant_repo_id,
|
||||
repo_type="dataset",
|
||||
operations=chunk,
|
||||
commit_message=f"DataTrove upload ({len(chunk)} files)",
|
||||
revision=self.branch,
|
||||
)
|
||||
# TODO: every 100 chunks super_squach_commits()
|
||||
logging.info("create_commit completed!")
|
||||
break
|
||||
except HfHubHTTPError as e:
|
||||
if "A commit has happened since" in e.server_message:
|
||||
if retries >= MAX_RETRIES:
|
||||
logging.error(f"Failed to create commit after {MAX_RETRIES=}. Giving up.")
|
||||
raise e
|
||||
logging.info("Commit creation race condition issue. Waiting...")
|
||||
time.sleep(BASE_DELAY * 2**retries + random.uniform(0, 2))
|
||||
retries += 1
|
||||
else:
|
||||
raise e
|
||||
|
||||
def run(self, data=None, rank: int = 0, world_size: int = 1):
|
||||
import logging
|
||||
|
||||
from datasets.utils.tqdm import disable_progress_bars
|
||||
from huggingface_hub import CommitOperationAdd, preupload_lfs_files
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
init_logging()
|
||||
disable_progress_bars()
|
||||
|
||||
chunks = self.create_chunks(self.file_paths, world_size)
|
||||
file_paths = chunks[rank]
|
||||
|
||||
if len(file_paths) == 0:
|
||||
raise ValueError(file_paths)
|
||||
|
||||
logging.info("Pre-uploading LFS files...")
|
||||
for i, path in enumerate(file_paths):
|
||||
logging.info(f"{i}: {path}")
|
||||
|
||||
meta = LeRobotDatasetMetadata(self.repo_id)
|
||||
additions = [
|
||||
CommitOperationAdd(path_in_repo=path, path_or_fileobj=meta.root / path) for path in file_paths
|
||||
]
|
||||
preupload_lfs_files(
|
||||
repo_id=self.distant_repo_id, repo_type="dataset", additions=additions, revision=self.branch
|
||||
)
|
||||
|
||||
logging.info("Creating commits...")
|
||||
self.create_commits(additions)
|
||||
logging.info("Done!")
|
||||
|
||||
|
||||
def make_upload_executor(
|
||||
repo_id, job_name, logs_dir, workers, partition, cpus_per_task, mem_per_cpu, slurm=True
|
||||
):
|
||||
kwargs = {
|
||||
"pipeline": [
|
||||
UploadDataset(repo_id),
|
||||
],
|
||||
"logging_dir": str(logs_dir / job_name),
|
||||
}
|
||||
|
||||
if slurm:
|
||||
kwargs.update(
|
||||
{
|
||||
"job_name": job_name,
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": workers,
|
||||
"time": "08:00:00",
|
||||
"partition": partition,
|
||||
"cpus_per_task": cpus_per_task,
|
||||
"sbatch_args": {"mem-per-cpu": mem_per_cpu},
|
||||
}
|
||||
)
|
||||
executor = SlurmPipelineExecutor(**kwargs)
|
||||
else:
|
||||
kwargs.update(
|
||||
{
|
||||
"tasks": DROID_SHARDS,
|
||||
"workers": 1,
|
||||
}
|
||||
)
|
||||
executor = LocalPipelineExecutor(**kwargs)
|
||||
|
||||
return executor
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
help="Repositery identifier on Hugging Face: a community or a user name `/` the name of the dataset, required when push-to-hub is True.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--logs-dir",
|
||||
type=Path,
|
||||
help="Path to logs directory for `datatrove`.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--job-name",
|
||||
type=str,
|
||||
default="upload_droid",
|
||||
help="Job name used in slurm, and name of the directory created inside the provided logs directory.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--slurm",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Launch over slurm. Use `--slurm 0` to launch sequentially (useful to debug).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--workers",
|
||||
type=int,
|
||||
default=50,
|
||||
help="Number of slurm workers. It should be less than the maximum number of shards.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--partition",
|
||||
type=str,
|
||||
help="Slurm partition. Ideally a CPU partition. No need for GPU partition.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cpus-per-task",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of cpus that each slurm worker will use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mem-per-cpu",
|
||||
type=str,
|
||||
default="1950M",
|
||||
help="Memory per cpu that each worker will use.",
|
||||
)
|
||||
|
||||
init_logging()
|
||||
|
||||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
kwargs["slurm"] = kwargs.pop("slurm") == 1
|
||||
upload_executor = make_upload_executor(**kwargs)
|
||||
upload_executor.run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,4 +0,0 @@
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig
|
||||
|
||||
__all__ = ["Camera", "CameraConfig"]
|
||||
@@ -1,25 +0,0 @@
|
||||
import abc
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Camera(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def connect(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def async_read(self) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def disconnect(self):
|
||||
pass
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
@@ -1,11 +0,0 @@
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass
|
||||
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
@@ -1,4 +0,0 @@
|
||||
from .camera_realsense import RealSenseCamera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
__all__ = ["RealSenseCamera", "RealSenseCameraConfig"]
|
||||
@@ -1,4 +0,0 @@
|
||||
from .camera_opencv import OpenCVCamera
|
||||
from .configuration_opencv import OpenCVCameraConfig
|
||||
|
||||
__all__ = ["OpenCVCamera", "OpenCVCameraConfig"]
|
||||
@@ -1,37 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..configs import CameraConfig
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("opencv")
|
||||
@dataclass
|
||||
class OpenCVCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
OpenCVCameraConfig(0, 30, 640, 480)
|
||||
OpenCVCameraConfig(0, 60, 640, 480)
|
||||
OpenCVCameraConfig(0, 90, 640, 480)
|
||||
OpenCVCameraConfig(0, 30, 1280, 720)
|
||||
```
|
||||
"""
|
||||
|
||||
camera_index: int
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
rotation: int | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
@@ -1,21 +0,0 @@
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig
|
||||
|
||||
|
||||
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
|
||||
cameras = {}
|
||||
|
||||
for key, cfg in camera_configs.items():
|
||||
if cfg.type == "opencv":
|
||||
from .opencv import OpenCVCamera
|
||||
|
||||
cameras[key] = OpenCVCamera(cfg)
|
||||
|
||||
elif cfg.type == "intelrealsense":
|
||||
from .intel.camera_realsense import RealSenseCamera
|
||||
|
||||
cameras[key] = RealSenseCamera(cfg)
|
||||
else:
|
||||
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
|
||||
|
||||
return cameras
|
||||
@@ -17,15 +17,12 @@ from pathlib import Path
|
||||
|
||||
from huggingface_hub.constants import HF_HOME
|
||||
|
||||
OBS_ENV_STATE = "observation.environment_state"
|
||||
OBS_STATE = "observation.state"
|
||||
OBS_ENV = "observation.environment_state"
|
||||
OBS_ROBOT = "observation.state"
|
||||
OBS_IMAGE = "observation.image"
|
||||
OBS_IMAGES = "observation.images"
|
||||
ACTION = "action"
|
||||
|
||||
ROBOTS = "robots"
|
||||
TELEOPERATORS = "teleoperators"
|
||||
|
||||
# files & directories
|
||||
CHECKPOINTS_DIR = "checkpoints"
|
||||
LAST_CHECKPOINT_LINK = "last"
|
||||
@@ -37,16 +34,12 @@ OPTIMIZER_STATE = "optimizer_state.safetensors"
|
||||
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
|
||||
SCHEDULER_STATE = "scheduler_state.json"
|
||||
|
||||
# cache dir
|
||||
default_cache_path = Path(HF_HOME) / "lerobot"
|
||||
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
|
||||
|
||||
if "LEROBOT_HOME" in os.environ:
|
||||
raise ValueError(
|
||||
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
|
||||
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
|
||||
)
|
||||
|
||||
# cache dir
|
||||
default_cache_path = Path(HF_HOME) / "lerobot"
|
||||
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
|
||||
|
||||
# calibration dir
|
||||
default_calibration_path = HF_LEROBOT_HOME / ".calibration"
|
||||
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()
|
||||
|
||||
416
lerobot/common/datasets/aggregate.py
Normal file
416
lerobot/common/datasets/aggregate.py
Normal file
@@ -0,0 +1,416 @@
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import (
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_DATA_FILE_SIZE_IN_MB,
|
||||
DEFAULT_DATA_PATH,
|
||||
DEFAULT_EPISODES_PATH,
|
||||
DEFAULT_VIDEO_FILE_SIZE_IN_MB,
|
||||
DEFAULT_VIDEO_PATH,
|
||||
concat_video_files,
|
||||
get_parquet_file_size_in_mb,
|
||||
get_video_size_in_mb,
|
||||
to_parquet_with_hf_images,
|
||||
update_chunk_file_indices,
|
||||
write_info,
|
||||
write_stats,
|
||||
write_tasks,
|
||||
)
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
|
||||
def validate_all_metadata(all_metadata: list[LeRobotDatasetMetadata]):
|
||||
# validate same fps, robot_type, features
|
||||
|
||||
fps = all_metadata[0].fps
|
||||
robot_type = all_metadata[0].robot_type
|
||||
features = all_metadata[0].features
|
||||
|
||||
for meta in tqdm.tqdm(all_metadata, desc="Validate all meta data"):
|
||||
if fps != meta.fps:
|
||||
raise ValueError(f"Same fps is expected, but got fps={meta.fps} instead of {fps}.")
|
||||
if robot_type != meta.robot_type:
|
||||
raise ValueError(
|
||||
f"Same robot_type is expected, but got robot_type={meta.robot_type} instead of {robot_type}."
|
||||
)
|
||||
if features != meta.features:
|
||||
raise ValueError(
|
||||
f"Same features is expected, but got features={meta.features} instead of {features}."
|
||||
)
|
||||
|
||||
return fps, robot_type, features
|
||||
|
||||
|
||||
def update_data_df(df, src_meta, dst_meta):
|
||||
def _update(row):
|
||||
row["episode_index"] = row["episode_index"] + dst_meta["total_episodes"]
|
||||
row["index"] = row["index"] + dst_meta["total_frames"]
|
||||
task = src_meta.tasks.iloc[row["task_index"]].name
|
||||
row["task_index"] = dst_meta.tasks.loc[task].task_index.item()
|
||||
return row
|
||||
|
||||
return df.apply(_update, axis=1)
|
||||
|
||||
|
||||
def update_meta_data(
|
||||
df,
|
||||
dst_meta,
|
||||
meta_idx,
|
||||
data_idx,
|
||||
videos_idx,
|
||||
):
|
||||
def _update(row):
|
||||
row["meta/episodes/chunk_index"] = row["meta/episodes/chunk_index"] + meta_idx["chunk_index"]
|
||||
row["meta/episodes/file_index"] = row["meta/episodes/file_index"] + meta_idx["file_index"]
|
||||
row["data/chunk_index"] = row["data/chunk_index"] + data_idx["chunk_index"]
|
||||
row["data/file_index"] = row["data/file_index"] + data_idx["file_index"]
|
||||
for key, video_idx in videos_idx.items():
|
||||
row[f"videos/{key}/chunk_index"] = row[f"videos/{key}/chunk_index"] + video_idx["chunk_index"]
|
||||
row[f"videos/{key}/file_index"] = row[f"videos/{key}/file_index"] + video_idx["file_index"]
|
||||
row[f"videos/{key}/from_timestamp"] = (
|
||||
row[f"videos/{key}/from_timestamp"] + video_idx["latest_duration"]
|
||||
)
|
||||
row[f"videos/{key}/to_timestamp"] = (
|
||||
row[f"videos/{key}/to_timestamp"] + video_idx["latest_duration"]
|
||||
)
|
||||
row["dataset_from_index"] = row["dataset_from_index"] + dst_meta.info["total_frames"]
|
||||
row["dataset_to_index"] = row["dataset_to_index"] + dst_meta.info["total_frames"]
|
||||
row["episode_index"] = row["episode_index"] + dst_meta.info["total_episodes"]
|
||||
return row
|
||||
|
||||
return df.apply(_update, axis=1)
|
||||
|
||||
|
||||
def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, roots: list[Path] = None, aggr_root=None):
|
||||
logging.info("Start aggregate_datasets")
|
||||
|
||||
# Load metadata
|
||||
all_metadata = (
|
||||
[LeRobotDatasetMetadata(repo_id) for repo_id in repo_ids]
|
||||
if roots is None
|
||||
else [
|
||||
LeRobotDatasetMetadata(repo_id, root=root) for repo_id, root in zip(repo_ids, roots, strict=False)
|
||||
]
|
||||
)
|
||||
fps, robot_type, features = validate_all_metadata(all_metadata)
|
||||
video_keys = [key for key in features if features[key]["dtype"] == "video"]
|
||||
image_keys = [key for key in features if features[key]["dtype"] == "image"]
|
||||
|
||||
# Initialize output dataset metadata
|
||||
dst_meta = LeRobotDatasetMetadata.create(
|
||||
repo_id=aggr_repo_id,
|
||||
fps=fps,
|
||||
robot_type=robot_type,
|
||||
features=features,
|
||||
root=aggr_root,
|
||||
)
|
||||
|
||||
# Aggregate task info
|
||||
logging.info("Find all tasks")
|
||||
unique_tasks = pd.concat([m.tasks for m in all_metadata]).index.unique()
|
||||
dst_meta.tasks = pd.DataFrame({"task_index": range(len(unique_tasks))}, index=unique_tasks)
|
||||
|
||||
# Track counters and indices
|
||||
meta_idx = {"chunk": 0, "file": 0}
|
||||
data_idx = {"chunk": 0, "file": 0}
|
||||
videos_idx = {
|
||||
key: {"chunk": 0, "file": 0, "latest_duration": 0, "episode_duration": 0} for key in video_keys
|
||||
}
|
||||
|
||||
dst_meta.episodes = {}
|
||||
|
||||
# Process each dataset
|
||||
for src_meta in tqdm.tqdm(all_metadata, desc="Copy data and videos"):
|
||||
videos_idx = aggregate_videos(src_meta, dst_meta, videos_idx)
|
||||
data_idx = aggregate_data(src_meta, dst_meta, data_idx)
|
||||
|
||||
meta_idx = aggregate_metadata(src_meta, dst_meta, meta_idx, data_idx, videos_idx, video_keys, image_keys)
|
||||
|
||||
dst_meta.info["total_episodes"] += src_meta.total_episodes
|
||||
dst_meta.info["total_frames"] += src_meta.total_frames
|
||||
|
||||
finalize_aggregation(dst_meta, all_metadata)
|
||||
logging.info("Aggregation complete.")
|
||||
|
||||
|
||||
# -------------------------------
|
||||
# Helper Functions
|
||||
# -------------------------------
|
||||
|
||||
|
||||
def aggregate_videos(src_meta, dst_meta, videos_idx):
|
||||
"""
|
||||
Aggregates video chunks from a dataset into the aggregated dataset folder.
|
||||
"""
|
||||
for key, video_idx in videos_idx.items():
|
||||
# Get unique (chunk, file) combinations
|
||||
unique_chunk_file_pairs = {
|
||||
(chunk, file)
|
||||
for chunk, file in zip(
|
||||
src_meta.episodes[f"videos/{key}/chunk_index"],
|
||||
src_meta.episodes[f"videos/{key}/file_index"],
|
||||
strict=False,
|
||||
)
|
||||
}
|
||||
|
||||
# Current target chunk/file index
|
||||
chunk_idx = video_idx["chunk_idx"]
|
||||
file_idx = video_idx["file_idx"]
|
||||
|
||||
for src_chunk_idx, src_file_idx in unique_chunk_file_pairs:
|
||||
src_path = src_meta.root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key,
|
||||
chunk_index=src_chunk_idx,
|
||||
file_index=src_file_idx,
|
||||
)
|
||||
|
||||
dst_path = dst_meta.root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key,
|
||||
chunk_index=chunk_idx,
|
||||
file_index=file_idx,
|
||||
)
|
||||
|
||||
if not dst_path.exists():
|
||||
# First write to this destination file
|
||||
dst_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(str(src_path), str(dst_path))
|
||||
continue
|
||||
|
||||
# Check file sizes before appending
|
||||
src_size = get_video_size_in_mb(src_path)
|
||||
dst_size = get_video_size_in_mb(dst_path)
|
||||
|
||||
if dst_size + src_size >= DEFAULT_VIDEO_FILE_SIZE_IN_MB:
|
||||
# Rotate to a new chunk/file
|
||||
chunk_idx, file_idx = update_chunk_file_indices(chunk_idx, file_idx, DEFAULT_CHUNK_SIZE)
|
||||
dst_path = dst_meta.root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=key,
|
||||
chunk_index=chunk_idx,
|
||||
file_index=file_idx,
|
||||
)
|
||||
dst_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(str(src_path), str(dst_path))
|
||||
else:
|
||||
# Append to existing video file
|
||||
concat_video_files(
|
||||
[dst_path, src_path],
|
||||
dst_meta.root,
|
||||
key,
|
||||
chunk_idx,
|
||||
file_idx,
|
||||
)
|
||||
|
||||
if src_size + dst_size >= DEFAULT_DATA_FILE_SIZE_IN_MB:
|
||||
# Size limit is reached, prepare new parquet file
|
||||
aggr_data_chunk_idx, aggr_data_file_idx = update_chunk_file_indices(
|
||||
aggr_data_chunk_idx, aggr_data_file_idx, DEFAULT_CHUNK_SIZE
|
||||
)
|
||||
aggr_path = aggr_root / DEFAULT_DATA_PATH.format(
|
||||
chunk_index=aggr_data_chunk_idx, file_index=aggr_data_file_idx
|
||||
)
|
||||
aggr_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(aggr_path)
|
||||
else:
|
||||
# Update the existing parquet file with new rows
|
||||
aggr_df = pd.read_parquet(aggr_path)
|
||||
df = pd.concat([aggr_df, df], ignore_index=True)
|
||||
to_parquet_with_hf_images(df, aggr_path, dst_meta.image_keys)
|
||||
|
||||
return videos_idx
|
||||
|
||||
|
||||
def aggregate_data(src_meta, dst_meta, data_idx):
|
||||
unique_chunk_file_ids = {
|
||||
(c, f)
|
||||
for c, f in zip(
|
||||
src_meta.episodes["data/chunk_index"], src_meta.episodes["data/file_index"], strict=False
|
||||
)
|
||||
}
|
||||
for src_chunk_idx, src_file_idx in unique_chunk_file_ids:
|
||||
src_path = src_meta.root / DEFAULT_DATA_PATH.format(
|
||||
chunk_index=src_chunk_idx, file_index=src_file_idx
|
||||
)
|
||||
df = pd.read_parquet(src_path)
|
||||
df = update_data_df(df, src_meta, dst_meta)
|
||||
|
||||
data_idx = append_or_create_parquet_file(
|
||||
df,
|
||||
src_path,
|
||||
data_idx,
|
||||
DEFAULT_DATA_FILE_SIZE_IN_MB,
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_DATA_PATH,
|
||||
contains_images=len(dst_meta.image_keys) > 0
|
||||
)
|
||||
|
||||
return data_idx
|
||||
|
||||
|
||||
def aggregate_metadata(src_meta, dst_meta, meta_idx, data_idx, videos_idx):
|
||||
chunk_file_ids = {
|
||||
(c, f)
|
||||
for c, f in zip(
|
||||
src_meta.episodes["meta/episodes/chunk_index"],
|
||||
src_meta.episodes["meta/episodes/file_index"],
|
||||
strict=False,
|
||||
)
|
||||
}
|
||||
|
||||
for chunk_idx, file_idx in chunk_file_ids:
|
||||
src_path = src_meta.root / DEFAULT_EPISODES_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
df = pd.read_parquet(src_path)
|
||||
df = update_meta_data(
|
||||
df,
|
||||
dst_meta,
|
||||
meta_idx,
|
||||
data_idx,
|
||||
videos_idx,
|
||||
)
|
||||
|
||||
# for k in video_keys:
|
||||
# video_idx[k]["latest_duration"] += video_idx[k]["episode_duration"]
|
||||
|
||||
append_or_create_parquet_file(
|
||||
df,
|
||||
src_path,
|
||||
meta_idx,
|
||||
DEFAULT_DATA_FILE_SIZE_IN_MB,
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_EPISODES_PATH,
|
||||
)
|
||||
|
||||
return meta_idx
|
||||
|
||||
|
||||
def append_or_create_parquet_file(
|
||||
df: pd.DataFrame,
|
||||
src_path: Path,
|
||||
idx: dict[str, int],
|
||||
max_mb: float,
|
||||
chunk_size: int,
|
||||
default_path: str,
|
||||
contains_images: bool = False,
|
||||
):
|
||||
"""
|
||||
Safely appends or creates a Parquet file at dst_path based on size constraints.
|
||||
|
||||
Parameters:
|
||||
df (pd.DataFrame): Data to write.
|
||||
src_path (Path): Path to source file (used to get size).
|
||||
idx (dict): Dictionary containing 'chunk' and 'file' indices.
|
||||
max_mb (float): Maximum allowed file size in MB.
|
||||
chunk_size (int): Maximum number of files per chunk.
|
||||
default_path (str): Format string for generating a new file path.
|
||||
|
||||
Returns:
|
||||
dict: Updated index dictionary.
|
||||
"""
|
||||
# Initial destination path
|
||||
dst_path = aggr_root / DEFAULT_DATA_PATH.format(
|
||||
chunk_index=idx["chunk"], file_index=idx["file"]
|
||||
)
|
||||
|
||||
# If destination file doesn't exist, just write the new one
|
||||
if not dst_path.exists():
|
||||
dst_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(dst_path)
|
||||
return idx
|
||||
|
||||
# Otherwise, check if we exceed the size limit
|
||||
src_size = get_parquet_file_size_in_mb(src_path)
|
||||
dst_size = get_parquet_file_size_in_mb(dst_path)
|
||||
|
||||
if dst_size + src_size >= max_mb:
|
||||
# File is too large, move to a new one
|
||||
idx["chunk"], idx["file"] = update_chunk_file_indices(idx["chunk"], idx["file"], chunk_size)
|
||||
new_path = dst_path.parent / default_path.format(chunk_index=idx["chunk"], file_index=idx["file"])
|
||||
new_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
final_df = df
|
||||
else:
|
||||
# Append to existing file
|
||||
existing_df = pd.read_parquet(dst_path)
|
||||
final_df = pd.concat([existing_df, df], ignore_index=True)
|
||||
|
||||
if contains_images:
|
||||
to_parquet_with_hf_images(final_df, new_path)
|
||||
else:
|
||||
final_df.to_parquet(new_path)
|
||||
|
||||
return idx
|
||||
|
||||
|
||||
def finalize_aggregation(aggr_meta, all_metadata):
|
||||
logging.info("write tasks")
|
||||
write_tasks(aggr_meta.tasks, aggr_meta.root)
|
||||
|
||||
logging.info("write info")
|
||||
aggr_meta.info.update(
|
||||
{
|
||||
"total_tasks": len(aggr_meta.tasks),
|
||||
"total_episodes": sum(m.total_episodes for m in all_metadata),
|
||||
"total_frames": sum(m.total_frames for m in all_metadata),
|
||||
"splits": {"train": f"0:{sum(m.total_episodes for m in all_metadata)}"},
|
||||
}
|
||||
)
|
||||
write_info(aggr_meta.info, aggr_meta.root)
|
||||
|
||||
logging.info("write stats")
|
||||
aggr_meta.stats = aggregate_stats([m.stats for m in all_metadata])
|
||||
write_stats(aggr_meta.stats, aggr_meta.root)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
init_logging()
|
||||
|
||||
num_shards = 2048
|
||||
repo_id = "cadene/droid_1.0.1_v30"
|
||||
aggr_repo_id = f"{repo_id}_compact_6"
|
||||
tags = ["openx"]
|
||||
|
||||
# num_shards = 210
|
||||
# repo_id = "cadene/agibot_alpha_v30"
|
||||
# aggr_repo_id = f"{repo_id}"
|
||||
# tags = None
|
||||
|
||||
# aggr_root = Path(f"/tmp/{aggr_repo_id}")
|
||||
aggr_root = HF_LEROBOT_HOME / aggr_repo_id
|
||||
if aggr_root.exists():
|
||||
shutil.rmtree(aggr_root)
|
||||
|
||||
repo_ids = []
|
||||
roots = []
|
||||
for rank in range(num_shards):
|
||||
shard_repo_id = f"{repo_id}_world_{num_shards}_rank_{rank}"
|
||||
shard_root = HF_LEROBOT_HOME / shard_repo_id
|
||||
try:
|
||||
meta = LeRobotDatasetMetadata(shard_repo_id, root=shard_root)
|
||||
if len(meta.video_keys) == 0:
|
||||
continue
|
||||
repo_ids.append(shard_repo_id)
|
||||
roots.append(shard_root)
|
||||
except:
|
||||
pass
|
||||
|
||||
if rank == 1:
|
||||
break
|
||||
|
||||
aggregate_datasets(
|
||||
repo_ids,
|
||||
aggr_repo_id,
|
||||
roots=roots,
|
||||
aggr_root=aggr_root,
|
||||
)
|
||||
|
||||
aggr_dataset = LeRobotDataset(repo_id=aggr_repo_id, root=aggr_root)
|
||||
# for i in tqdm.tqdm(range(len(aggr_dataset))):
|
||||
# aggr_dataset[i]
|
||||
# pass
|
||||
aggr_dataset.push_to_hub(tags=tags, upload_large_folder=True)
|
||||
@@ -47,6 +47,18 @@ If you encounter a problem, contact LeRobot maintainers on [Discord](https://dis
|
||||
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
||||
"""
|
||||
|
||||
V30_MESSAGE = """
|
||||
The dataset you requested ({repo_id}) is in {version} format.
|
||||
While current version of LeRobot is backward-compatible with it, the version of your dataset still uses global
|
||||
stats instead of per-episode stats. Update your dataset stats to the new format using this command:
|
||||
```
|
||||
python lerobot/common/datasets/v30/convert_dataset_v21_to_v30.py --repo-id={repo_id}
|
||||
```
|
||||
|
||||
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
|
||||
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
||||
"""
|
||||
|
||||
FUTURE_MESSAGE = """
|
||||
The dataset you requested ({repo_id}) is only available in {version} format.
|
||||
As we cannot ensure forward compatibility with it, please update your current version of lerobot.
|
||||
@@ -58,7 +70,14 @@ class CompatibilityError(Exception): ...
|
||||
|
||||
class BackwardCompatibilityError(CompatibilityError):
|
||||
def __init__(self, repo_id: str, version: packaging.version.Version):
|
||||
message = V2_MESSAGE.format(repo_id=repo_id, version=version)
|
||||
if version.major == 3:
|
||||
message = V30_MESSAGE.format(repo_id=repo_id, version=version)
|
||||
elif version.major == 2:
|
||||
message = V2_MESSAGE.format(repo_id=repo_id, version=version)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Contact the maintainer on [Discord](https://discord.com/invite/s3KuuzsPFb)."
|
||||
)
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
|
||||
@@ -16,16 +16,18 @@
|
||||
import contextlib
|
||||
import logging
|
||||
import shutil
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import packaging.version
|
||||
import pandas as pd
|
||||
import PIL.Image
|
||||
import torch
|
||||
import torch.utils
|
||||
from datasets import concatenate_datasets, load_dataset
|
||||
from datasets import Dataset
|
||||
from huggingface_hub import HfApi, snapshot_download
|
||||
from huggingface_hub.constants import REPOCARD_NAME
|
||||
from huggingface_hub.errors import RevisionNotFoundError
|
||||
@@ -34,36 +36,41 @@ from lerobot.common.constants import HF_LEROBOT_HOME
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
|
||||
from lerobot.common.datasets.image_writer import AsyncImageWriter, write_image
|
||||
from lerobot.common.datasets.utils import (
|
||||
DEFAULT_EPISODES_PATH,
|
||||
DEFAULT_FEATURES,
|
||||
DEFAULT_IMAGE_PATH,
|
||||
INFO_PATH,
|
||||
TASKS_PATH,
|
||||
append_jsonlines,
|
||||
backward_compatible_episodes_stats,
|
||||
check_delta_timestamps,
|
||||
check_timestamps_sync,
|
||||
check_version_compatibility,
|
||||
concat_video_files,
|
||||
create_empty_dataset_info,
|
||||
create_lerobot_dataset_card,
|
||||
embed_images,
|
||||
flatten_dict,
|
||||
get_delta_indices,
|
||||
get_episode_data_index,
|
||||
get_features_from_robot,
|
||||
get_hf_dataset_size_in_mb,
|
||||
get_hf_features_from_features,
|
||||
get_parquet_file_size_in_mb,
|
||||
get_parquet_num_frames,
|
||||
get_safe_version,
|
||||
get_video_duration_in_s,
|
||||
get_video_size_in_mb,
|
||||
hf_transform_to_torch,
|
||||
is_valid_version,
|
||||
load_episodes,
|
||||
load_episodes_stats,
|
||||
load_info,
|
||||
load_nested_dataset,
|
||||
load_stats,
|
||||
load_tasks,
|
||||
to_parquet_with_hf_images,
|
||||
update_chunk_file_indices,
|
||||
validate_episode_buffer,
|
||||
validate_frame,
|
||||
write_episode,
|
||||
write_episode_stats,
|
||||
write_info,
|
||||
write_json,
|
||||
write_stats,
|
||||
write_tasks,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import (
|
||||
VideoFrame,
|
||||
@@ -72,9 +79,9 @@ from lerobot.common.datasets.video_utils import (
|
||||
get_safe_default_codec,
|
||||
get_video_info,
|
||||
)
|
||||
from lerobot.common.robots.utils import Robot
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
|
||||
CODEBASE_VERSION = "v2.1"
|
||||
CODEBASE_VERSION = "v3.0"
|
||||
|
||||
|
||||
class LeRobotDatasetMetadata:
|
||||
@@ -98,20 +105,18 @@ class LeRobotDatasetMetadata:
|
||||
self.revision = get_safe_version(self.repo_id, self.revision)
|
||||
|
||||
(self.root / "meta").mkdir(exist_ok=True, parents=True)
|
||||
# TODO(rcadene): instead of downloading all episodes metadata files,
|
||||
# download only the ones associated to the requested episodes. This would
|
||||
# require adding `episodes: list[int]` as argument.
|
||||
self.pull_from_repo(allow_patterns="meta/")
|
||||
self.load_metadata()
|
||||
|
||||
def load_metadata(self):
|
||||
self.info = load_info(self.root)
|
||||
check_version_compatibility(self.repo_id, self._version, CODEBASE_VERSION)
|
||||
self.tasks, self.task_to_task_index = load_tasks(self.root)
|
||||
self.tasks = load_tasks(self.root)
|
||||
self.episodes = load_episodes(self.root)
|
||||
if self._version < packaging.version.parse("v2.1"):
|
||||
self.stats = load_stats(self.root)
|
||||
self.episodes_stats = backward_compatible_episodes_stats(self.stats, self.episodes)
|
||||
else:
|
||||
self.episodes_stats = load_episodes_stats(self.root)
|
||||
self.stats = aggregate_stats(list(self.episodes_stats.values()))
|
||||
self.stats = load_stats(self.root)
|
||||
|
||||
def pull_from_repo(
|
||||
self,
|
||||
@@ -133,18 +138,19 @@ class LeRobotDatasetMetadata:
|
||||
return packaging.version.parse(self.info["codebase_version"])
|
||||
|
||||
def get_data_file_path(self, ep_index: int) -> Path:
|
||||
ep_chunk = self.get_episode_chunk(ep_index)
|
||||
fpath = self.data_path.format(episode_chunk=ep_chunk, episode_index=ep_index)
|
||||
ep = self.episodes[ep_index]
|
||||
chunk_idx = ep["data/chunk_index"]
|
||||
file_idx = ep["data/file_index"]
|
||||
fpath = self.data_path.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
return Path(fpath)
|
||||
|
||||
def get_video_file_path(self, ep_index: int, vid_key: str) -> Path:
|
||||
ep_chunk = self.get_episode_chunk(ep_index)
|
||||
fpath = self.video_path.format(episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_index)
|
||||
ep = self.episodes[ep_index]
|
||||
chunk_idx = ep[f"videos/{vid_key}/chunk_index"]
|
||||
file_idx = ep[f"videos/{vid_key}/file_index"]
|
||||
fpath = self.video_path.format(video_key=vid_key, chunk_index=chunk_idx, file_index=file_idx)
|
||||
return Path(fpath)
|
||||
|
||||
def get_episode_chunk(self, ep_index: int) -> int:
|
||||
return ep_index // self.chunks_size
|
||||
|
||||
@property
|
||||
def data_path(self) -> str:
|
||||
"""Formattable string for the parquet files."""
|
||||
@@ -211,39 +217,108 @@ class LeRobotDatasetMetadata:
|
||||
return self.info["total_tasks"]
|
||||
|
||||
@property
|
||||
def total_chunks(self) -> int:
|
||||
"""Total number of chunks (groups of episodes)."""
|
||||
return self.info["total_chunks"]
|
||||
def chunks_size(self) -> int:
|
||||
"""Max number of files per chunk."""
|
||||
return self.info["chunks_size"]
|
||||
|
||||
@property
|
||||
def chunks_size(self) -> int:
|
||||
"""Max number of episodes per chunk."""
|
||||
return self.info["chunks_size"]
|
||||
def data_files_size_in_mb(self) -> int:
|
||||
"""Max size of data file in mega bytes."""
|
||||
return self.info["data_files_size_in_mb"]
|
||||
|
||||
@property
|
||||
def video_files_size_in_mb(self) -> int:
|
||||
"""Max size of video file in mega bytes."""
|
||||
return self.info["video_files_size_in_mb"]
|
||||
|
||||
def get_task_index(self, task: str) -> int | None:
|
||||
"""
|
||||
Given a task in natural language, returns its task_index if the task already exists in the dataset,
|
||||
otherwise return None.
|
||||
"""
|
||||
return self.task_to_task_index.get(task, None)
|
||||
if task in self.tasks.index:
|
||||
return int(self.tasks.loc[task].task_index)
|
||||
else:
|
||||
return None
|
||||
|
||||
def add_task(self, task: str):
|
||||
def save_episode_tasks(self, tasks: list[str]):
|
||||
if len(set(tasks)) != len(tasks):
|
||||
raise ValueError(f"Tasks are not unique: {tasks}")
|
||||
|
||||
if self.tasks is None:
|
||||
new_tasks = tasks
|
||||
task_indices = range(len(tasks))
|
||||
self.tasks = pd.DataFrame({"task_index": task_indices}, index=tasks)
|
||||
else:
|
||||
new_tasks = [task for task in tasks if task not in self.tasks.index]
|
||||
new_task_indices = range(len(self.tasks), len(self.tasks) + len(new_tasks))
|
||||
for task_idx, task in zip(new_task_indices, new_tasks, strict=False):
|
||||
self.tasks.loc[task] = task_idx
|
||||
|
||||
if len(new_tasks) > 0:
|
||||
# Update on disk
|
||||
write_tasks(self.tasks, self.root)
|
||||
|
||||
def _save_episode_metadata(self, episode_dict: dict) -> None:
|
||||
"""Save episode metadata to a parquet file and update the Hugging Face dataset of episodes metadata.
|
||||
|
||||
This function processes episodes metadata from a dictionary, converts it into a Hugging Face dataset,
|
||||
and saves it as a parquet file. It handles both the creation of new parquet files and the
|
||||
updating of existing ones based on size constraints. After saving the metadata, it reloads
|
||||
the Hugging Face dataset to ensure it is up-to-date.
|
||||
|
||||
Notes: We both need to update parquet files and HF dataset:
|
||||
- `pandas` loads parquet file in RAM
|
||||
- `datasets` relies on a memory mapping from pyarrow (no RAM). It either converts parquet files to a pyarrow cache on disk,
|
||||
or loads directly from pyarrow cache.
|
||||
"""
|
||||
Given a task in natural language, add it to the dictionary of tasks.
|
||||
"""
|
||||
if task in self.task_to_task_index:
|
||||
raise ValueError(f"The task '{task}' already exists and can't be added twice.")
|
||||
# Convert buffer into HF Dataset
|
||||
episode_dict = {key: [value] for key, value in episode_dict.items()}
|
||||
ep_dataset = Dataset.from_dict(episode_dict)
|
||||
ep_size_in_mb = get_hf_dataset_size_in_mb(ep_dataset)
|
||||
df = pd.DataFrame(ep_dataset)
|
||||
num_frames = episode_dict["length"][0]
|
||||
|
||||
task_index = self.info["total_tasks"]
|
||||
self.task_to_task_index[task] = task_index
|
||||
self.tasks[task_index] = task
|
||||
self.info["total_tasks"] += 1
|
||||
if self.episodes is None:
|
||||
# Initialize indices and frame count for a new dataset made of the first episode data
|
||||
chunk_idx, file_idx = 0, 0
|
||||
df["meta/episodes/chunk_index"] = [chunk_idx]
|
||||
df["meta/episodes/file_index"] = [file_idx]
|
||||
df["dataset_from_index"] = [0]
|
||||
df["dataset_to_index"] = [num_frames]
|
||||
else:
|
||||
# Retrieve information from the latest parquet file
|
||||
latest_ep = self.episodes[-1]
|
||||
chunk_idx = latest_ep["meta/episodes/chunk_index"]
|
||||
file_idx = latest_ep["meta/episodes/file_index"]
|
||||
|
||||
task_dict = {
|
||||
"task_index": task_index,
|
||||
"task": task,
|
||||
}
|
||||
append_jsonlines(task_dict, self.root / TASKS_PATH)
|
||||
latest_path = self.root / DEFAULT_EPISODES_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
latest_size_in_mb = get_parquet_file_size_in_mb(latest_path)
|
||||
|
||||
if latest_size_in_mb + ep_size_in_mb >= self.data_files_size_in_mb:
|
||||
# Size limit is reached, prepare new parquet file
|
||||
chunk_idx, file_idx = update_chunk_file_indices(chunk_idx, file_idx, self.chunks_size)
|
||||
|
||||
# Update the existing pandas dataframe with new row
|
||||
df["meta/episodes/chunk_index"] = [chunk_idx]
|
||||
df["meta/episodes/file_index"] = [file_idx]
|
||||
df["dataset_from_index"] = [latest_ep["dataset_to_index"]]
|
||||
df["dataset_to_index"] = [latest_ep["dataset_to_index"] + num_frames]
|
||||
|
||||
if latest_size_in_mb + ep_size_in_mb < self.data_files_size_in_mb:
|
||||
# Size limit wasnt reached, concatenate latest dataframe with new one
|
||||
latest_df = pd.read_parquet(latest_path)
|
||||
df = pd.concat([latest_df, df], ignore_index=True)
|
||||
|
||||
# Write the resulting dataframe from RAM to disk
|
||||
path = self.root / DEFAULT_EPISODES_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
df.to_parquet(path, index=False)
|
||||
|
||||
# Update the Hugging Face dataset by reloading it.
|
||||
# This process should be fast because only the latest Parquet file has been modified.
|
||||
# Therefore, only this file needs to be converted to PyArrow; the rest is loaded from the PyArrow memory-mapped cache.
|
||||
self.episodes = load_episodes(self.root)
|
||||
|
||||
def save_episode(
|
||||
self,
|
||||
@@ -251,32 +326,28 @@ class LeRobotDatasetMetadata:
|
||||
episode_length: int,
|
||||
episode_tasks: list[str],
|
||||
episode_stats: dict[str, dict],
|
||||
episode_metadata: dict,
|
||||
) -> None:
|
||||
self.info["total_episodes"] += 1
|
||||
self.info["total_frames"] += episode_length
|
||||
|
||||
chunk = self.get_episode_chunk(episode_index)
|
||||
if chunk >= self.total_chunks:
|
||||
self.info["total_chunks"] += 1
|
||||
|
||||
self.info["splits"] = {"train": f"0:{self.info['total_episodes']}"}
|
||||
self.info["total_videos"] += len(self.video_keys)
|
||||
if len(self.video_keys) > 0:
|
||||
self.update_video_info()
|
||||
|
||||
write_info(self.info, self.root)
|
||||
|
||||
episode_dict = {
|
||||
"episode_index": episode_index,
|
||||
"tasks": episode_tasks,
|
||||
"length": episode_length,
|
||||
}
|
||||
self.episodes[episode_index] = episode_dict
|
||||
write_episode(episode_dict, self.root)
|
||||
episode_dict.update(episode_metadata)
|
||||
episode_dict.update(flatten_dict({"stats": episode_stats}))
|
||||
self._save_episode_metadata(episode_dict)
|
||||
|
||||
self.episodes_stats[episode_index] = episode_stats
|
||||
self.stats = aggregate_stats([self.stats, episode_stats]) if self.stats else episode_stats
|
||||
write_episode_stats(episode_index, episode_stats, self.root)
|
||||
# Update info
|
||||
self.info["total_episodes"] += 1
|
||||
self.info["total_frames"] += episode_length
|
||||
self.info["total_tasks"] = len(self.tasks)
|
||||
self.info["splits"] = {"train": f"0:{self.info['total_episodes']}"}
|
||||
if len(self.video_keys) > 0:
|
||||
self.update_video_info()
|
||||
write_info(self.info, self.root)
|
||||
|
||||
self.stats = aggregate_stats([self.stats, episode_stats]) if self.stats is not None else episode_stats
|
||||
write_stats(self.stats, self.root)
|
||||
|
||||
def update_video_info(self) -> None:
|
||||
"""
|
||||
@@ -341,8 +412,9 @@ class LeRobotDatasetMetadata:
|
||||
|
||||
features = {**features, **DEFAULT_FEATURES}
|
||||
|
||||
obj.tasks, obj.task_to_task_index = {}, {}
|
||||
obj.episodes_stats, obj.stats, obj.episodes = {}, {}, {}
|
||||
obj.tasks = None
|
||||
obj.episodes = None
|
||||
obj.stats = None
|
||||
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
|
||||
if len(obj.video_keys) > 0 and not use_videos:
|
||||
raise ValueError()
|
||||
@@ -487,29 +559,17 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
self.meta = LeRobotDatasetMetadata(
|
||||
self.repo_id, self.root, self.revision, force_cache_sync=force_cache_sync
|
||||
)
|
||||
if self.episodes is not None and self.meta._version >= packaging.version.parse("v2.1"):
|
||||
episodes_stats = [self.meta.episodes_stats[ep_idx] for ep_idx in self.episodes]
|
||||
self.stats = aggregate_stats(episodes_stats)
|
||||
|
||||
# Load actual data
|
||||
try:
|
||||
if force_cache_sync:
|
||||
raise FileNotFoundError
|
||||
assert all((self.root / fpath).is_file() for fpath in self.get_episodes_file_paths())
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
except (AssertionError, FileNotFoundError, NotADirectoryError):
|
||||
self.revision = get_safe_version(self.repo_id, self.revision)
|
||||
self.download_episodes(download_videos)
|
||||
self.download(download_videos)
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
|
||||
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
||||
|
||||
# Check timestamps
|
||||
timestamps = torch.stack(self.hf_dataset["timestamp"]).numpy()
|
||||
episode_indices = torch.stack(self.hf_dataset["episode_index"]).numpy()
|
||||
ep_data_index_np = {k: t.numpy() for k, t in self.episode_data_index.items()}
|
||||
check_timestamps_sync(timestamps, episode_indices, ep_data_index_np, self.fps, self.tolerance_s)
|
||||
|
||||
# Setup delta_indices
|
||||
if self.delta_timestamps is not None:
|
||||
check_delta_timestamps(self.delta_timestamps, self.fps, self.tolerance_s)
|
||||
@@ -585,7 +645,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
ignore_patterns=ignore_patterns,
|
||||
)
|
||||
|
||||
def download_episodes(self, download_videos: bool = True) -> None:
|
||||
def download(self, download_videos: bool = True) -> None:
|
||||
"""Downloads the dataset from the given 'repo_id' at the provided version. If 'episodes' is given, this
|
||||
will only download those episodes (selected by their episode_index). If 'episodes' is None, the whole
|
||||
dataset will be downloaded. Thanks to the behavior of snapshot_download, if the files are already present
|
||||
@@ -593,11 +653,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
"""
|
||||
# TODO(rcadene, aliberts): implement faster transfer
|
||||
# https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads
|
||||
files = None
|
||||
ignore_patterns = None if download_videos else "videos/"
|
||||
files = None
|
||||
if self.episodes is not None:
|
||||
files = self.get_episodes_file_paths()
|
||||
|
||||
self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)
|
||||
|
||||
def get_episodes_file_paths(self) -> list[Path]:
|
||||
@@ -610,19 +669,13 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
for ep_idx in episodes
|
||||
]
|
||||
fpaths += video_files
|
||||
|
||||
# episodes are stored in the same files, so we return unique paths only
|
||||
fpaths = list(set(fpaths))
|
||||
return fpaths
|
||||
|
||||
def load_hf_dataset(self) -> datasets.Dataset:
|
||||
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
|
||||
if self.episodes is None:
|
||||
path = str(self.root / "data")
|
||||
hf_dataset = load_dataset("parquet", data_dir=path, split="train")
|
||||
else:
|
||||
files = [str(self.root / self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes]
|
||||
hf_dataset = load_dataset("parquet", data_files=files, split="train")
|
||||
|
||||
# TODO(aliberts): hf_dataset.set_format("torch")
|
||||
hf_dataset = load_nested_dataset(self.root / "data")
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
@@ -630,8 +683,6 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
features = get_hf_features_from_features(self.features)
|
||||
ft_dict = {col: [] for col in features}
|
||||
hf_dataset = datasets.Dataset.from_dict(ft_dict, features=features, split="train")
|
||||
|
||||
# TODO(aliberts): hf_dataset.set_format("torch")
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
@@ -663,15 +714,16 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
return get_hf_features_from_features(self.features)
|
||||
|
||||
def _get_query_indices(self, idx: int, ep_idx: int) -> tuple[dict[str, list[int | bool]]]:
|
||||
ep_start = self.episode_data_index["from"][ep_idx]
|
||||
ep_end = self.episode_data_index["to"][ep_idx]
|
||||
ep = self.meta.episodes[ep_idx]
|
||||
ep_start = ep["dataset_from_index"]
|
||||
ep_end = ep["dataset_to_index"]
|
||||
query_indices = {
|
||||
key: [max(ep_start.item(), min(ep_end.item() - 1, idx + delta)) for delta in delta_idx]
|
||||
key: [max(ep_start, min(ep_end - 1, idx + delta)) for delta in delta_idx]
|
||||
for key, delta_idx in self.delta_indices.items()
|
||||
}
|
||||
padding = { # Pad values outside of current episode range
|
||||
f"{key}_is_pad": torch.BoolTensor(
|
||||
[(idx + delta < ep_start.item()) | (idx + delta >= ep_end.item()) for delta in delta_idx]
|
||||
[(idx + delta < ep_start) | (idx + delta >= ep_end) for delta in delta_idx]
|
||||
)
|
||||
for key, delta_idx in self.delta_indices.items()
|
||||
}
|
||||
@@ -685,7 +737,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
query_timestamps = {}
|
||||
for key in self.meta.video_keys:
|
||||
if query_indices is not None and key in query_indices:
|
||||
timestamps = self.hf_dataset.select(query_indices[key])["timestamp"]
|
||||
timestamps = self.hf_dataset[query_indices[key]]["timestamp"]
|
||||
query_timestamps[key] = torch.stack(timestamps).tolist()
|
||||
else:
|
||||
query_timestamps[key] = [current_ts]
|
||||
@@ -694,7 +746,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
def _query_hf_dataset(self, query_indices: dict[str, list[int]]) -> dict:
|
||||
return {
|
||||
key: torch.stack(self.hf_dataset.select(q_idx)[key])
|
||||
key: torch.stack(self.hf_dataset[q_idx][key])
|
||||
for key, q_idx in query_indices.items()
|
||||
if key not in self.meta.video_keys
|
||||
}
|
||||
@@ -705,10 +757,17 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
Segmentation Fault. This probably happens because a memory reference to the video loader is created in
|
||||
the main process and a subprocess fails to access it.
|
||||
"""
|
||||
ep = self.meta.episodes[ep_idx]
|
||||
item = {}
|
||||
for vid_key, query_ts in query_timestamps.items():
|
||||
# Episodes are stored sequentially on a single mp4 to reduce the number of files.
|
||||
# Thus we load the start timestamp of the episode on this mp4 and
|
||||
# shift the query timestamp accordingly.
|
||||
from_timestamp = ep[f"videos/{vid_key}/from_timestamp"]
|
||||
shifted_query_ts = [from_timestamp + ts for ts in query_ts]
|
||||
|
||||
video_path = self.root / self.meta.get_video_file_path(ep_idx, vid_key)
|
||||
frames = decode_video_frames(video_path, query_ts, self.tolerance_s, self.video_backend)
|
||||
frames = decode_video_frames(video_path, shifted_query_ts, self.tolerance_s, self.video_backend)
|
||||
item[vid_key] = frames.squeeze(0)
|
||||
|
||||
return item
|
||||
@@ -746,8 +805,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
# Add task as a string
|
||||
task_idx = item["task_index"].item()
|
||||
item["task"] = self.meta.tasks[task_idx]
|
||||
|
||||
item["task"] = self.meta.tasks.iloc[task_idx].name
|
||||
return item
|
||||
|
||||
def __repr__(self):
|
||||
@@ -777,6 +835,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
)
|
||||
return self.root / fpath
|
||||
|
||||
def _get_image_file_dir(self, episode_index: int, image_key: str) -> Path:
|
||||
return self._get_image_file_path(episode_index, image_key, frame_index=0).parent
|
||||
|
||||
def _save_image(self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path) -> None:
|
||||
if self.image_writer is None:
|
||||
if isinstance(image, torch.Tensor):
|
||||
@@ -855,11 +916,8 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
episode_buffer["index"] = np.arange(self.meta.total_frames, self.meta.total_frames + episode_length)
|
||||
episode_buffer["episode_index"] = np.full((episode_length,), episode_index)
|
||||
|
||||
# Add new tasks to the tasks dictionary
|
||||
for task in episode_tasks:
|
||||
task_index = self.meta.get_task_index(task)
|
||||
if task_index is None:
|
||||
self.meta.add_task(task)
|
||||
# Update tasks and task indices with new tasks if any
|
||||
self.meta.save_episode_tasks(episode_tasks)
|
||||
|
||||
# Given tasks in natural language, find their corresponding task indices
|
||||
episode_buffer["task_index"] = np.array([self.meta.get_task_index(task) for task in tasks])
|
||||
@@ -871,51 +929,154 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
continue
|
||||
episode_buffer[key] = np.stack(episode_buffer[key])
|
||||
|
||||
# Wait for image writer to end, so that episode stats over images can be computed
|
||||
self._wait_image_writer()
|
||||
self._save_episode_table(episode_buffer, episode_index)
|
||||
ep_stats = compute_episode_stats(episode_buffer, self.features)
|
||||
|
||||
if len(self.meta.video_keys) > 0:
|
||||
video_paths = self.encode_episode_videos(episode_index)
|
||||
for key in self.meta.video_keys:
|
||||
episode_buffer[key] = video_paths[key]
|
||||
ep_metadata = self._save_episode_data(episode_buffer)
|
||||
for video_key in self.meta.video_keys:
|
||||
ep_metadata.update(self._save_episode_video(video_key, episode_index))
|
||||
|
||||
# `meta.save_episode` be executed after encoding the videos
|
||||
self.meta.save_episode(episode_index, episode_length, episode_tasks, ep_stats)
|
||||
# `meta.save_episode` need to be executed after encoding the videos
|
||||
self.meta.save_episode(episode_index, episode_length, episode_tasks, ep_stats, ep_metadata)
|
||||
|
||||
ep_data_index = get_episode_data_index(self.meta.episodes, [episode_index])
|
||||
ep_data_index_np = {k: t.numpy() for k, t in ep_data_index.items()}
|
||||
check_timestamps_sync(
|
||||
episode_buffer["timestamp"],
|
||||
episode_buffer["episode_index"],
|
||||
ep_data_index_np,
|
||||
self.fps,
|
||||
self.tolerance_s,
|
||||
)
|
||||
|
||||
video_files = list(self.root.rglob("*.mp4"))
|
||||
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
|
||||
|
||||
parquet_files = list(self.root.rglob("*.parquet"))
|
||||
assert len(parquet_files) == self.num_episodes
|
||||
# TODO(rcadene): remove? there is only one episode in the episode buffer, no need for ep_data_index
|
||||
# ep_data_index = get_episode_data_index(self.meta.episodes, [episode_index])
|
||||
# ep_data_index_np = {k: t.numpy() for k, t in ep_data_index.items()}
|
||||
# check_timestamps_sync(
|
||||
# episode_buffer["timestamp"],
|
||||
# episode_buffer["episode_index"],
|
||||
# ep_data_index_np,
|
||||
# self.fps,
|
||||
# self.tolerance_s,
|
||||
# )
|
||||
|
||||
# TODO(rcadene): images are also deleted in clear_episode_buffer
|
||||
# delete images
|
||||
img_dir = self.root / "images"
|
||||
if img_dir.is_dir():
|
||||
shutil.rmtree(self.root / "images")
|
||||
|
||||
if not episode_data: # Reset the buffer
|
||||
if not episode_data:
|
||||
# Reset episode buffer
|
||||
self.episode_buffer = self.create_episode_buffer()
|
||||
|
||||
def _save_episode_table(self, episode_buffer: dict, episode_index: int) -> None:
|
||||
episode_dict = {key: episode_buffer[key] for key in self.hf_features}
|
||||
ep_dataset = datasets.Dataset.from_dict(episode_dict, features=self.hf_features, split="train")
|
||||
def _save_episode_data(self, episode_buffer: dict) -> dict:
|
||||
"""Save episode data to a parquet file and update the Hugging Face dataset of frames data.
|
||||
|
||||
This function processes episodes data from a buffer, converts it into a Hugging Face dataset,
|
||||
and saves it as a parquet file. It handles both the creation of new parquet files and the
|
||||
updating of existing ones based on size constraints. After saving the data, it reloads
|
||||
the Hugging Face dataset to ensure it is up-to-date.
|
||||
|
||||
Notes: We both need to update parquet files and HF dataset:
|
||||
- `pandas` loads parquet file in RAM
|
||||
- `datasets` relies on a memory mapping from pyarrow (no RAM). It either converts parquet files to a pyarrow cache on disk,
|
||||
or loads directly from pyarrow cache.
|
||||
"""
|
||||
# Convert buffer into HF Dataset
|
||||
ep_dict = {key: episode_buffer[key] for key in self.hf_features}
|
||||
ep_dataset = datasets.Dataset.from_dict(ep_dict, features=self.hf_features, split="train")
|
||||
ep_dataset = embed_images(ep_dataset)
|
||||
self.hf_dataset = concatenate_datasets([self.hf_dataset, ep_dataset])
|
||||
self.hf_dataset.set_transform(hf_transform_to_torch)
|
||||
ep_data_path = self.root / self.meta.get_data_file_path(ep_index=episode_index)
|
||||
ep_data_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
ep_dataset.to_parquet(ep_data_path)
|
||||
ep_size_in_mb = get_hf_dataset_size_in_mb(ep_dataset)
|
||||
ep_num_frames = len(ep_dataset)
|
||||
df = pd.DataFrame(ep_dataset)
|
||||
|
||||
if self.meta.episodes is None:
|
||||
# Initialize indices and frame count for a new dataset made of the first episode data
|
||||
chunk_idx, file_idx = 0, 0
|
||||
latest_num_frames = 0
|
||||
else:
|
||||
# Retrieve information from the latest parquet file
|
||||
latest_ep = self.meta.episodes[-1]
|
||||
chunk_idx = latest_ep["data/chunk_index"]
|
||||
file_idx = latest_ep["data/file_index"]
|
||||
|
||||
latest_path = self.root / self.meta.data_path.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
latest_size_in_mb = get_parquet_file_size_in_mb(latest_path)
|
||||
latest_num_frames = get_parquet_num_frames(latest_path)
|
||||
|
||||
# Determine if a new parquet file is needed
|
||||
if latest_size_in_mb + ep_size_in_mb >= self.meta.data_files_size_in_mb:
|
||||
# Size limit is reached, prepare new parquet file
|
||||
chunk_idx, file_idx = update_chunk_file_indices(chunk_idx, file_idx, self.meta.chunks_size)
|
||||
latest_num_frames = 0
|
||||
else:
|
||||
# Update the existing parquet file with new rows
|
||||
latest_df = pd.read_parquet(latest_path)
|
||||
df = pd.concat([latest_df, df], ignore_index=True)
|
||||
|
||||
# Write the resulting dataframe from RAM to disk
|
||||
path = self.root / self.meta.data_path.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
if len(self.meta.image_keys) > 0:
|
||||
to_parquet_with_hf_images(df, path)
|
||||
else:
|
||||
df.to_parquet(path)
|
||||
|
||||
# Update the Hugging Face dataset by reloading it.
|
||||
# This process should be fast because only the latest Parquet file has been modified.
|
||||
# Therefore, only this file needs to be converted to PyArrow; the rest is loaded from the PyArrow memory-mapped cache.
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
|
||||
metadata = {
|
||||
"data/chunk_index": chunk_idx,
|
||||
"data/file_index": file_idx,
|
||||
"dataset_from_index": latest_num_frames,
|
||||
"dataset_to_index": latest_num_frames + ep_num_frames,
|
||||
}
|
||||
return metadata
|
||||
|
||||
def _save_episode_video(self, video_key: str, episode_index: int):
|
||||
# Encode episode frames into a temporary video
|
||||
ep_path = self._encode_temporary_episode_video(video_key, episode_index)
|
||||
ep_size_in_mb = get_video_size_in_mb(ep_path)
|
||||
ep_duration_in_s = get_video_duration_in_s(ep_path)
|
||||
|
||||
if self.meta.episodes is None:
|
||||
# Initialize indices for a new dataset made of the first episode data
|
||||
chunk_idx, file_idx = 0, 0
|
||||
latest_duration_in_s = 0
|
||||
new_path = self.root / self.meta.video_path.format(
|
||||
video_key=video_key, chunk_index=chunk_idx, file_index=file_idx
|
||||
)
|
||||
new_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.move(str(ep_path), str(new_path))
|
||||
else:
|
||||
# Retrieve information from the latest video file
|
||||
latest_ep = self.meta.episodes[-1]
|
||||
chunk_idx = latest_ep[f"videos/{video_key}/chunk_index"]
|
||||
file_idx = latest_ep[f"videos/{video_key}/file_index"]
|
||||
|
||||
latest_path = self.root / self.meta.video_path.format(
|
||||
video_key=video_key, chunk_index=chunk_idx, file_index=file_idx
|
||||
)
|
||||
latest_size_in_mb = get_video_size_in_mb(latest_path)
|
||||
latest_duration_in_s = get_video_duration_in_s(latest_path)
|
||||
|
||||
if latest_size_in_mb + ep_size_in_mb >= self.meta.video_files_size_in_mb:
|
||||
# Move temporary episode video to a new video file in the dataset
|
||||
chunk_idx, file_idx = update_chunk_file_indices(chunk_idx, file_idx, self.meta.chunks_size)
|
||||
new_path = self.root / self.meta.video_path.format(
|
||||
video_key=video_key, chunk_index=chunk_idx, file_index=file_idx
|
||||
)
|
||||
new_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.move(str(ep_path), str(new_path))
|
||||
else:
|
||||
# Update latest video file
|
||||
concat_video_files([latest_path, ep_path], self.root, video_key, chunk_idx, file_idx)
|
||||
|
||||
# Remove temporary directory
|
||||
shutil.rmtree(str(ep_path.parent))
|
||||
|
||||
metadata = {
|
||||
"episode_index": episode_index,
|
||||
f"videos/{video_key}/chunk_index": chunk_idx,
|
||||
f"videos/{video_key}/file_index": file_idx,
|
||||
f"videos/{video_key}/from_timestamp": latest_duration_in_s,
|
||||
f"videos/{video_key}/to_timestamp": latest_duration_in_s + ep_duration_in_s,
|
||||
}
|
||||
return metadata
|
||||
|
||||
def clear_episode_buffer(self) -> None:
|
||||
episode_index = self.episode_buffer["episode_index"]
|
||||
@@ -955,34 +1116,16 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
if self.image_writer is not None:
|
||||
self.image_writer.wait_until_done()
|
||||
|
||||
def encode_videos(self) -> None:
|
||||
def _encode_temporary_episode_video(self, video_key: str, episode_index: int) -> dict:
|
||||
"""
|
||||
Use ffmpeg to convert frames stored as png into mp4 videos.
|
||||
Note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
|
||||
since video encoding with ffmpeg is already using multithreading.
|
||||
"""
|
||||
for ep_idx in range(self.meta.total_episodes):
|
||||
self.encode_episode_videos(ep_idx)
|
||||
|
||||
def encode_episode_videos(self, episode_index: int) -> dict:
|
||||
"""
|
||||
Use ffmpeg to convert frames stored as png into mp4 videos.
|
||||
Note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
|
||||
since video encoding with ffmpeg is already using multithreading.
|
||||
"""
|
||||
video_paths = {}
|
||||
for key in self.meta.video_keys:
|
||||
video_path = self.root / self.meta.get_video_file_path(episode_index, key)
|
||||
video_paths[key] = str(video_path)
|
||||
if video_path.is_file():
|
||||
# Skip if video is already encoded. Could be the case when resuming data recording.
|
||||
continue
|
||||
img_dir = self._get_image_file_path(
|
||||
episode_index=episode_index, image_key=key, frame_index=0
|
||||
).parent
|
||||
encode_video_frames(img_dir, video_path, self.fps, overwrite=True)
|
||||
|
||||
return video_paths
|
||||
temp_path = Path(tempfile.mkdtemp(dir=self.root)) / f"{video_key}_{episode_index:03d}.mp4"
|
||||
img_dir = self._get_image_file_dir(episode_index, video_key)
|
||||
encode_video_frames(img_dir, temp_path, self.fps, overwrite=True)
|
||||
return temp_path
|
||||
|
||||
@classmethod
|
||||
def create(
|
||||
@@ -1027,7 +1170,6 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
obj.image_transforms = None
|
||||
obj.delta_timestamps = None
|
||||
obj.delta_indices = None
|
||||
obj.episode_data_index = None
|
||||
obj.video_backend = video_backend if video_backend is not None else get_safe_default_codec()
|
||||
return obj
|
||||
|
||||
|
||||
@@ -337,13 +337,11 @@ def compute_sampler_weights(
|
||||
if len(offline_dataset) > 0:
|
||||
offline_data_mask_indices = []
|
||||
for start_index, end_index in zip(
|
||||
offline_dataset.episode_data_index["from"],
|
||||
offline_dataset.episode_data_index["to"],
|
||||
offline_dataset.meta.episodes["dataset_from_index"],
|
||||
offline_dataset.meta.episodes["dataset_to_index"],
|
||||
strict=True,
|
||||
):
|
||||
offline_data_mask_indices.extend(
|
||||
range(start_index.item(), end_index.item() - offline_drop_n_last_frames)
|
||||
)
|
||||
offline_data_mask_indices.extend(range(start_index, end_index - offline_drop_n_last_frames))
|
||||
offline_data_mask = torch.zeros(len(offline_dataset), dtype=torch.bool)
|
||||
offline_data_mask[torch.tensor(offline_data_mask_indices)] = True
|
||||
weights.append(
|
||||
|
||||
@@ -21,7 +21,8 @@ import torch
|
||||
class EpisodeAwareSampler:
|
||||
def __init__(
|
||||
self,
|
||||
episode_data_index: dict,
|
||||
dataset_from_indices: list[int],
|
||||
dataset_to_indices: list[int],
|
||||
episode_indices_to_use: Union[list, None] = None,
|
||||
drop_n_first_frames: int = 0,
|
||||
drop_n_last_frames: int = 0,
|
||||
@@ -30,7 +31,8 @@ class EpisodeAwareSampler:
|
||||
"""Sampler that optionally incorporates episode boundary information.
|
||||
|
||||
Args:
|
||||
episode_data_index: Dictionary with keys 'from' and 'to' containing the start and end indices of each episode.
|
||||
dataset_from_indices: List of indices containing the start of each episode in the dataset.
|
||||
dataset_to_indices: List of indices containing the end of each episode in the dataset.
|
||||
episode_indices_to_use: List of episode indices to use. If None, all episodes are used.
|
||||
Assumes that episodes are indexed from 0 to N-1.
|
||||
drop_n_first_frames: Number of frames to drop from the start of each episode.
|
||||
@@ -39,12 +41,10 @@ class EpisodeAwareSampler:
|
||||
"""
|
||||
indices = []
|
||||
for episode_idx, (start_index, end_index) in enumerate(
|
||||
zip(episode_data_index["from"], episode_data_index["to"], strict=True)
|
||||
zip(dataset_from_indices, dataset_to_indices, strict=True)
|
||||
):
|
||||
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
|
||||
indices.extend(
|
||||
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
|
||||
)
|
||||
indices.extend(range(start_index + drop_n_first_frames, end_index - drop_n_last_frames))
|
||||
|
||||
self.indices = indices
|
||||
self.shuffle = shuffle
|
||||
|
||||
@@ -17,18 +17,23 @@ import contextlib
|
||||
import importlib.resources
|
||||
import json
|
||||
import logging
|
||||
import shutil
|
||||
import subprocess
|
||||
import tempfile
|
||||
from collections.abc import Iterator
|
||||
from itertools import accumulate
|
||||
from pathlib import Path
|
||||
from pprint import pformat
|
||||
from types import SimpleNamespace
|
||||
from typing import Any
|
||||
|
||||
import datasets
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
import packaging.version
|
||||
import pandas
|
||||
import pandas as pd
|
||||
import pyarrow.parquet as pq
|
||||
import torch
|
||||
from datasets import Dataset, concatenate_datasets
|
||||
from datasets.table import embed_table_storage
|
||||
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
|
||||
from huggingface_hub.errors import RevisionNotFoundError
|
||||
@@ -40,21 +45,27 @@ from lerobot.common.datasets.backward_compatibility import (
|
||||
BackwardCompatibilityError,
|
||||
ForwardCompatibilityError,
|
||||
)
|
||||
from lerobot.common.robots.utils import Robot
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
|
||||
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
|
||||
from lerobot.configs.types import FeatureType, PolicyFeature
|
||||
|
||||
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
|
||||
DEFAULT_CHUNK_SIZE = 1000 # Max number of files per chunk
|
||||
DEFAULT_DATA_FILE_SIZE_IN_MB = 100 # Max size per file
|
||||
DEFAULT_VIDEO_FILE_SIZE_IN_MB = 500 # Max size per file
|
||||
|
||||
INFO_PATH = "meta/info.json"
|
||||
EPISODES_PATH = "meta/episodes.jsonl"
|
||||
STATS_PATH = "meta/stats.json"
|
||||
EPISODES_STATS_PATH = "meta/episodes_stats.jsonl"
|
||||
TASKS_PATH = "meta/tasks.jsonl"
|
||||
|
||||
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||
DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
|
||||
DEFAULT_IMAGE_PATH = "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png"
|
||||
EPISODES_DIR = "meta/episodes"
|
||||
DATA_DIR = "data"
|
||||
VIDEO_DIR = "videos"
|
||||
|
||||
CHUNK_FILE_PATTERN = "chunk-{chunk_index:03d}/file-{file_index:03d}"
|
||||
DEFAULT_TASKS_PATH = "meta/tasks.parquet"
|
||||
DEFAULT_EPISODES_PATH = EPISODES_DIR + "/" + CHUNK_FILE_PATTERN + ".parquet"
|
||||
DEFAULT_DATA_PATH = DATA_DIR + "/" + CHUNK_FILE_PATTERN + ".parquet"
|
||||
DEFAULT_VIDEO_PATH = VIDEO_DIR + "/{video_key}/" + CHUNK_FILE_PATTERN + ".mp4"
|
||||
DEFAULT_IMAGE_PATH = "images/{image_key}/episode-{episode_index:06d}/frame-{frame_index:06d}.png"
|
||||
|
||||
DATASET_CARD_TEMPLATE = """
|
||||
---
|
||||
@@ -75,6 +86,115 @@ DEFAULT_FEATURES = {
|
||||
}
|
||||
|
||||
|
||||
def get_parquet_file_size_in_mb(parquet_path):
|
||||
metadata = pq.read_metadata(parquet_path)
|
||||
total_uncompressed_size = 0
|
||||
for row_group in range(metadata.num_row_groups):
|
||||
rg_metadata = metadata.row_group(row_group)
|
||||
for column in range(rg_metadata.num_columns):
|
||||
col_metadata = rg_metadata.column(column)
|
||||
total_uncompressed_size += col_metadata.total_uncompressed_size
|
||||
return total_uncompressed_size / (1024**2)
|
||||
|
||||
|
||||
def get_hf_dataset_size_in_mb(hf_ds: Dataset) -> int:
|
||||
return hf_ds.data.nbytes / (1024**2)
|
||||
|
||||
|
||||
def get_pd_dataframe_size_in_mb(df: pandas.DataFrame) -> int:
|
||||
# TODO(rcadene): unused?
|
||||
memory_usage_bytes = df.memory_usage(deep=True).sum()
|
||||
return memory_usage_bytes / (1024**2)
|
||||
|
||||
|
||||
def update_chunk_file_indices(chunk_idx: int, file_idx: int, chunks_size: int):
|
||||
if file_idx == chunks_size - 1:
|
||||
file_idx = 0
|
||||
chunk_idx += 1
|
||||
else:
|
||||
file_idx += 1
|
||||
return chunk_idx, file_idx
|
||||
|
||||
|
||||
def load_nested_dataset(pq_dir: Path) -> Dataset:
|
||||
"""Find parquet files in provided directory {pq_dir}/chunk-xxx/file-xxx.parquet
|
||||
Convert parquet files to pyarrow memory mapped in a cache folder for efficient RAM usage
|
||||
Concatenate all pyarrow references to return HF Dataset format
|
||||
"""
|
||||
paths = sorted(pq_dir.glob("*/*.parquet"))
|
||||
if len(paths) == 0:
|
||||
raise FileNotFoundError(f"Provided directory does not contain any parquet file: {pq_dir}")
|
||||
|
||||
# TODO(rcadene): set num_proc to accelerate conversion to pyarrow
|
||||
datasets = [Dataset.from_parquet(str(path)) for path in paths]
|
||||
return concatenate_datasets(datasets)
|
||||
|
||||
|
||||
def get_parquet_num_frames(parquet_path):
|
||||
metadata = pq.read_metadata(parquet_path)
|
||||
return metadata.num_rows
|
||||
|
||||
|
||||
def get_video_size_in_mb(mp4_path: Path):
|
||||
file_size_bytes = mp4_path.stat().st_size
|
||||
file_size_mb = file_size_bytes / (1024**2)
|
||||
return file_size_mb
|
||||
|
||||
|
||||
def concat_video_files(paths_to_cat: list[Path], root: Path, video_key: str, chunk_idx: int, file_idx: int):
|
||||
# TODO(rcadene): move to video_utils.py
|
||||
# TODO(rcadene): add docstring
|
||||
tmp_dir = Path(tempfile.mkdtemp(dir=root))
|
||||
# Create a text file with the list of files to concatenate
|
||||
path_concat_video_files = tmp_dir / "concat_video_files.txt"
|
||||
with open(path_concat_video_files, "w") as f:
|
||||
for ep_path in paths_to_cat:
|
||||
f.write(f"file '{str(ep_path)}'\n")
|
||||
|
||||
path_tmp_output = tmp_dir / "tmp_output.mp4"
|
||||
command = [
|
||||
"ffmpeg",
|
||||
"-y",
|
||||
"-f",
|
||||
"concat",
|
||||
"-safe",
|
||||
"0",
|
||||
"-i",
|
||||
str(path_concat_video_files),
|
||||
"-c",
|
||||
"copy",
|
||||
str(path_tmp_output),
|
||||
]
|
||||
subprocess.run(command, check=True)
|
||||
|
||||
output_path = root / DEFAULT_VIDEO_PATH.format(
|
||||
video_key=video_key, chunk_index=chunk_idx, file_index=file_idx
|
||||
)
|
||||
output_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
shutil.move(str(path_tmp_output), str(output_path))
|
||||
shutil.rmtree(str(tmp_dir))
|
||||
|
||||
|
||||
def get_video_duration_in_s(mp4_file: Path):
|
||||
# TODO(rcadene): move to video_utils.py
|
||||
command = [
|
||||
"ffprobe",
|
||||
"-v",
|
||||
"error",
|
||||
"-show_entries",
|
||||
"format=duration",
|
||||
"-of",
|
||||
"default=noprint_wrappers=1:nokey=1",
|
||||
str(mp4_file),
|
||||
]
|
||||
result = subprocess.run(
|
||||
command,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.STDOUT,
|
||||
)
|
||||
return float(result.stdout)
|
||||
|
||||
|
||||
def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
|
||||
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
|
||||
|
||||
@@ -107,23 +227,13 @@ def unflatten_dict(d: dict, sep: str = "/") -> dict:
|
||||
return outdict
|
||||
|
||||
|
||||
def get_nested_item(obj: DictLike, flattened_key: str, sep: str = "/") -> Any:
|
||||
split_keys = flattened_key.split(sep)
|
||||
getter = obj[split_keys[0]]
|
||||
if len(split_keys) == 1:
|
||||
return getter
|
||||
|
||||
for key in split_keys[1:]:
|
||||
getter = getter[key]
|
||||
|
||||
return getter
|
||||
|
||||
|
||||
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
|
||||
serialized_dict = {}
|
||||
for key, value in flatten_dict(stats).items():
|
||||
if isinstance(value, (torch.Tensor, np.ndarray)):
|
||||
serialized_dict[key] = value.tolist()
|
||||
elif isinstance(value, list) and isinstance(value[0], (int, float, list)):
|
||||
serialized_dict[key] = value
|
||||
elif isinstance(value, np.generic):
|
||||
serialized_dict[key] = value.item()
|
||||
elif isinstance(value, (int, float)):
|
||||
@@ -153,23 +263,6 @@ def write_json(data: dict, fpath: Path) -> None:
|
||||
json.dump(data, f, indent=4, ensure_ascii=False)
|
||||
|
||||
|
||||
def load_jsonlines(fpath: Path) -> list[Any]:
|
||||
with jsonlines.open(fpath, "r") as reader:
|
||||
return list(reader)
|
||||
|
||||
|
||||
def write_jsonlines(data: dict, fpath: Path) -> None:
|
||||
fpath.parent.mkdir(exist_ok=True, parents=True)
|
||||
with jsonlines.open(fpath, "w") as writer:
|
||||
writer.write_all(data)
|
||||
|
||||
|
||||
def append_jsonlines(data: dict, fpath: Path) -> None:
|
||||
fpath.parent.mkdir(exist_ok=True, parents=True)
|
||||
with jsonlines.open(fpath, "a") as writer:
|
||||
writer.write(data)
|
||||
|
||||
|
||||
def write_info(info: dict, local_dir: Path):
|
||||
write_json(info, local_dir / INFO_PATH)
|
||||
|
||||
@@ -198,43 +291,42 @@ def load_stats(local_dir: Path) -> dict[str, dict[str, np.ndarray]]:
|
||||
return cast_stats_to_numpy(stats)
|
||||
|
||||
|
||||
def write_task(task_index: int, task: dict, local_dir: Path):
|
||||
task_dict = {
|
||||
"task_index": task_index,
|
||||
"task": task,
|
||||
}
|
||||
append_jsonlines(task_dict, local_dir / TASKS_PATH)
|
||||
def write_hf_dataset(hf_dataset: Dataset, local_dir: Path):
|
||||
if get_hf_dataset_size_in_mb(hf_dataset) > DEFAULT_DATA_FILE_SIZE_IN_MB:
|
||||
raise NotImplementedError("Contact a maintainer.")
|
||||
|
||||
path = local_dir / DEFAULT_DATA_PATH.format(chunk_index=0, file_index=0)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
hf_dataset.to_parquet(path)
|
||||
|
||||
|
||||
def load_tasks(local_dir: Path) -> tuple[dict, dict]:
|
||||
tasks = load_jsonlines(local_dir / TASKS_PATH)
|
||||
tasks = {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
|
||||
task_to_task_index = {task: task_index for task_index, task in tasks.items()}
|
||||
return tasks, task_to_task_index
|
||||
def write_tasks(tasks: pandas.DataFrame, local_dir: Path):
|
||||
path = local_dir / DEFAULT_TASKS_PATH
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
tasks.to_parquet(path)
|
||||
|
||||
|
||||
def write_episode(episode: dict, local_dir: Path):
|
||||
append_jsonlines(episode, local_dir / EPISODES_PATH)
|
||||
def load_tasks(local_dir: Path):
|
||||
tasks = pd.read_parquet(local_dir / DEFAULT_TASKS_PATH)
|
||||
return tasks
|
||||
|
||||
|
||||
def load_episodes(local_dir: Path) -> dict:
|
||||
episodes = load_jsonlines(local_dir / EPISODES_PATH)
|
||||
return {item["episode_index"]: item for item in sorted(episodes, key=lambda x: x["episode_index"])}
|
||||
def write_episodes(episodes: Dataset, local_dir: Path):
|
||||
if get_hf_dataset_size_in_mb(episodes) > DEFAULT_DATA_FILE_SIZE_IN_MB:
|
||||
raise NotImplementedError("Contact a maintainer.")
|
||||
|
||||
fpath = local_dir / DEFAULT_EPISODES_PATH.format(chunk_index=0, file_index=0)
|
||||
fpath.parent.mkdir(parents=True, exist_ok=True)
|
||||
episodes.to_parquet(fpath)
|
||||
|
||||
|
||||
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
|
||||
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
|
||||
# is a dictionary of stats and not an integer.
|
||||
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
|
||||
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
|
||||
|
||||
|
||||
def load_episodes_stats(local_dir: Path) -> dict:
|
||||
episodes_stats = load_jsonlines(local_dir / EPISODES_STATS_PATH)
|
||||
return {
|
||||
item["episode_index"]: cast_stats_to_numpy(item["stats"])
|
||||
for item in sorted(episodes_stats, key=lambda x: x["episode_index"])
|
||||
}
|
||||
def load_episodes(local_dir: Path) -> datasets.Dataset:
|
||||
episodes = load_nested_dataset(local_dir / EPISODES_DIR)
|
||||
# Select episode features/columns containing references to episode data and videos
|
||||
# (e.g. tasks, dataset_from_index, dataset_to_index, data/chunk_index, data/file_index, etc.)
|
||||
# This is to speedup access to these data, instead of having to load episode stats.
|
||||
episodes = episodes.select_columns([key for key in episodes.features if not key.startswith("stats/")])
|
||||
return episodes
|
||||
|
||||
|
||||
def backward_compatible_episodes_stats(
|
||||
@@ -388,6 +480,7 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
|
||||
|
||||
|
||||
def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict:
|
||||
# TODO(rcadene): add fps for each feature
|
||||
camera_ft = {}
|
||||
if robot.cameras:
|
||||
camera_ft = {
|
||||
@@ -441,31 +534,17 @@ def create_empty_dataset_info(
|
||||
"total_episodes": 0,
|
||||
"total_frames": 0,
|
||||
"total_tasks": 0,
|
||||
"total_videos": 0,
|
||||
"total_chunks": 0,
|
||||
"chunks_size": DEFAULT_CHUNK_SIZE,
|
||||
"data_files_size_in_mb": DEFAULT_DATA_FILE_SIZE_IN_MB,
|
||||
"video_files_size_in_mb": DEFAULT_VIDEO_FILE_SIZE_IN_MB,
|
||||
"fps": fps,
|
||||
"splits": {},
|
||||
"data_path": DEFAULT_PARQUET_PATH,
|
||||
"data_path": DEFAULT_DATA_PATH,
|
||||
"video_path": DEFAULT_VIDEO_PATH if use_videos else None,
|
||||
"features": features,
|
||||
}
|
||||
|
||||
|
||||
def get_episode_data_index(
|
||||
episode_dicts: dict[dict], episodes: list[int] | None = None
|
||||
) -> dict[str, torch.Tensor]:
|
||||
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in episode_dicts.items()}
|
||||
if episodes is not None:
|
||||
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
|
||||
|
||||
cumulative_lengths = list(accumulate(episode_lengths.values()))
|
||||
return {
|
||||
"from": torch.LongTensor([0] + cumulative_lengths[:-1]),
|
||||
"to": torch.LongTensor(cumulative_lengths),
|
||||
}
|
||||
|
||||
|
||||
def check_timestamps_sync(
|
||||
timestamps: np.ndarray,
|
||||
episode_indices: np.ndarray,
|
||||
@@ -811,3 +890,11 @@ def validate_episode_buffer(episode_buffer: dict, total_episodes: int, features:
|
||||
f"In episode_buffer not in features: {buffer_keys - set(features)}"
|
||||
f"In features not in episode_buffer: {set(features) - buffer_keys}"
|
||||
)
|
||||
|
||||
|
||||
def to_parquet_with_hf_images(df: pandas.DataFrame, path: Path):
|
||||
""" This function correctly writes to parquet a panda DataFrame that contains images encoded by HF dataset.
|
||||
This way, it can be loaded by HF dataset and correctly formated images are returned.
|
||||
"""
|
||||
# TODO(qlhoest): replace this weird synthax by `df.to_parquet(path)` only
|
||||
datasets.Dataset.from_dict(df.to_dict(orient="list")).to_parquet(path)
|
||||
|
||||
@@ -27,7 +27,7 @@ from textwrap import dedent
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
|
||||
from lerobot.common.robots.aloha.configuration_aloha import AlohaRobotConfig
|
||||
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
|
||||
|
||||
LOCAL_DIR = Path("data/")
|
||||
|
||||
|
||||
@@ -121,12 +121,12 @@ from safetensors.torch import load_file
|
||||
|
||||
from lerobot.common.datasets.utils import (
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_PARQUET_PATH,
|
||||
DEFAULT_DATA_PATH,
|
||||
DEFAULT_VIDEO_PATH,
|
||||
EPISODES_PATH,
|
||||
INFO_PATH,
|
||||
LEGACY_EPISODES_PATH,
|
||||
LEGACY_TASKS_PATH,
|
||||
STATS_PATH,
|
||||
TASKS_PATH,
|
||||
create_branch,
|
||||
create_lerobot_dataset_card,
|
||||
flatten_dict,
|
||||
@@ -141,8 +141,8 @@ from lerobot.common.datasets.video_utils import (
|
||||
get_image_pixel_channels,
|
||||
get_video_info,
|
||||
)
|
||||
from lerobot.common.robots import RobotConfig
|
||||
from lerobot.common.robots.utils import make_robot_config
|
||||
from lerobot.common.robot_devices.robots.configs import RobotConfig
|
||||
from lerobot.common.robot_devices.robots.utils import make_robot_config
|
||||
|
||||
V16 = "v1.6"
|
||||
V20 = "v2.0"
|
||||
@@ -291,14 +291,12 @@ def split_parquet_by_episodes(
|
||||
for ep_chunk in range(total_chunks):
|
||||
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
|
||||
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
|
||||
chunk_dir = "/".join(DEFAULT_PARQUET_PATH.split("/")[:-1]).format(episode_chunk=ep_chunk)
|
||||
chunk_dir = "/".join(DEFAULT_DATA_PATH.split("/")[:-1]).format(episode_chunk=ep_chunk)
|
||||
(output_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
|
||||
for ep_idx in range(ep_chunk_start, ep_chunk_end):
|
||||
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
|
||||
episode_lengths.insert(ep_idx, len(ep_table))
|
||||
output_file = output_dir / DEFAULT_PARQUET_PATH.format(
|
||||
episode_chunk=ep_chunk, episode_index=ep_idx
|
||||
)
|
||||
output_file = output_dir / DEFAULT_DATA_PATH.format(episode_chunk=ep_chunk, episode_index=ep_idx)
|
||||
pq.write_table(ep_table, output_file)
|
||||
|
||||
return episode_lengths
|
||||
@@ -496,7 +494,7 @@ def convert_dataset(
|
||||
|
||||
assert set(tasks) == {task for ep_tasks in tasks_by_episodes.values() for task in ep_tasks}
|
||||
tasks = [{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)]
|
||||
write_jsonlines(tasks, v20_dir / TASKS_PATH)
|
||||
write_jsonlines(tasks, v20_dir / LEGACY_TASKS_PATH)
|
||||
features["task_index"] = {
|
||||
"dtype": "int64",
|
||||
"shape": (1,),
|
||||
@@ -546,7 +544,7 @@ def convert_dataset(
|
||||
{"episode_index": ep_idx, "tasks": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
|
||||
for ep_idx in episode_indices
|
||||
]
|
||||
write_jsonlines(episodes, v20_dir / EPISODES_PATH)
|
||||
write_jsonlines(episodes, v20_dir / LEGACY_EPISODES_PATH)
|
||||
|
||||
# Assemble metadata v2.0
|
||||
metadata_v2_0 = {
|
||||
@@ -560,7 +558,7 @@ def convert_dataset(
|
||||
"chunks_size": DEFAULT_CHUNK_SIZE,
|
||||
"fps": metadata_v1["fps"],
|
||||
"splits": {"train": f"0:{total_episodes}"},
|
||||
"data_path": DEFAULT_PARQUET_PATH,
|
||||
"data_path": DEFAULT_DATA_PATH,
|
||||
"video_path": DEFAULT_VIDEO_PATH if video_keys else None,
|
||||
"features": features,
|
||||
}
|
||||
|
||||
@@ -37,7 +37,7 @@ import logging
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
|
||||
from lerobot.common.datasets.utils import LEGACY_EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
|
||||
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats
|
||||
|
||||
V20 = "v2.0"
|
||||
@@ -61,8 +61,8 @@ def convert_dataset(
|
||||
with SuppressWarnings():
|
||||
dataset = LeRobotDataset(repo_id, revision=V20, force_cache_sync=True)
|
||||
|
||||
if (dataset.root / EPISODES_STATS_PATH).is_file():
|
||||
(dataset.root / EPISODES_STATS_PATH).unlink()
|
||||
if (dataset.root / LEGACY_EPISODES_STATS_PATH).is_file():
|
||||
(dataset.root / LEGACY_EPISODES_STATS_PATH).unlink()
|
||||
|
||||
convert_stats(dataset, num_workers=num_workers)
|
||||
ref_stats = load_stats(dataset.root)
|
||||
|
||||
@@ -19,7 +19,7 @@ from tqdm import tqdm
|
||||
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import write_episode_stats
|
||||
from lerobot.common.datasets.utils import legacy_write_episode_stats
|
||||
|
||||
|
||||
def sample_episode_video_frames(dataset: LeRobotDataset, episode_index: int, ft_key: str) -> np.ndarray:
|
||||
@@ -72,7 +72,7 @@ def convert_stats(dataset: LeRobotDataset, num_workers: int = 0):
|
||||
convert_episode_stats(dataset, ep_idx)
|
||||
|
||||
for ep_idx in tqdm(range(total_episodes)):
|
||||
write_episode_stats(ep_idx, dataset.meta.episodes_stats[ep_idx], dataset.root)
|
||||
legacy_write_episode_stats(ep_idx, dataset.meta.episodes_stats[ep_idx], dataset.root)
|
||||
|
||||
|
||||
def check_aggregate_stats(
|
||||
|
||||
452
lerobot/common/datasets/v30/convert_dataset_v21_to_v30.py
Normal file
452
lerobot/common/datasets/v30/convert_dataset_v21_to_v30.py
Normal file
@@ -0,0 +1,452 @@
|
||||
"""
|
||||
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 2.1 to
|
||||
3.0. It will:
|
||||
|
||||
- Generate per-episodes stats and writes them in `episodes_stats.jsonl`
|
||||
- Check consistency between these new stats and the old ones.
|
||||
- Remove the deprecated `stats.json`.
|
||||
- Update codebase_version in `info.json`.
|
||||
- Push this new version to the hub on the 'main' branch and tags it with "v2.1".
|
||||
|
||||
Usage:
|
||||
|
||||
```bash
|
||||
python lerobot/common/datasets/v30/convert_dataset_v21_to_v30.py \
|
||||
--repo-id=lerobot/pusht
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import jsonlines
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import tqdm
|
||||
from datasets import Dataset, Features, Image
|
||||
from huggingface_hub import HfApi, snapshot_download
|
||||
from requests import HTTPError
|
||||
|
||||
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||
from lerobot.common.datasets.utils import (
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_DATA_FILE_SIZE_IN_MB,
|
||||
DEFAULT_DATA_PATH,
|
||||
DEFAULT_VIDEO_FILE_SIZE_IN_MB,
|
||||
DEFAULT_VIDEO_PATH,
|
||||
cast_stats_to_numpy,
|
||||
concat_video_files,
|
||||
flatten_dict,
|
||||
get_parquet_file_size_in_mb,
|
||||
get_parquet_num_frames,
|
||||
get_video_duration_in_s,
|
||||
get_video_size_in_mb,
|
||||
load_info,
|
||||
update_chunk_file_indices,
|
||||
write_episodes,
|
||||
write_info,
|
||||
write_stats,
|
||||
write_tasks,
|
||||
)
|
||||
|
||||
LEGACY_EPISODES_PATH = "meta/episodes.jsonl"
|
||||
LEGACY_EPISODES_STATS_PATH = "meta/episodes_stats.jsonl"
|
||||
LEGACY_TASKS_PATH = "meta/tasks.jsonl"
|
||||
LEGACY_DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||
LEGACY_DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
|
||||
|
||||
V21 = "v2.1"
|
||||
|
||||
|
||||
"""
|
||||
-------------------------
|
||||
OLD
|
||||
data/chunk-000/episode_000000.parquet
|
||||
|
||||
NEW
|
||||
data/chunk-000/file_000.parquet
|
||||
-------------------------
|
||||
OLD
|
||||
videos/chunk-000/CAMERA/episode_000000.mp4
|
||||
|
||||
NEW
|
||||
videos/chunk-000/file_000.mp4
|
||||
-------------------------
|
||||
OLD
|
||||
episodes.jsonl
|
||||
{"episode_index": 1, "tasks": ["Put the blue block in the green bowl"], "length": 266}
|
||||
|
||||
NEW
|
||||
meta/episodes/chunk-000/episodes_000.parquet
|
||||
episode_index | video_chunk_index | video_file_index | data_chunk_index | data_file_index | tasks | length
|
||||
-------------------------
|
||||
OLD
|
||||
tasks.jsonl
|
||||
{"task_index": 1, "task": "Put the blue block in the green bowl"}
|
||||
|
||||
NEW
|
||||
meta/tasks/chunk-000/file_000.parquet
|
||||
task_index | task
|
||||
-------------------------
|
||||
OLD
|
||||
episodes_stats.jsonl
|
||||
|
||||
NEW
|
||||
meta/episodes_stats/chunk-000/file_000.parquet
|
||||
episode_index | mean | std | min | max
|
||||
-------------------------
|
||||
UPDATE
|
||||
meta/info.json
|
||||
-------------------------
|
||||
"""
|
||||
|
||||
|
||||
def load_jsonlines(fpath: Path) -> list[Any]:
|
||||
with jsonlines.open(fpath, "r") as reader:
|
||||
return list(reader)
|
||||
|
||||
|
||||
def legacy_load_episodes(local_dir: Path) -> dict:
|
||||
episodes = load_jsonlines(local_dir / LEGACY_EPISODES_PATH)
|
||||
return {item["episode_index"]: item for item in sorted(episodes, key=lambda x: x["episode_index"])}
|
||||
|
||||
|
||||
def legacy_load_episodes_stats(local_dir: Path) -> dict:
|
||||
episodes_stats = load_jsonlines(local_dir / LEGACY_EPISODES_STATS_PATH)
|
||||
return {
|
||||
item["episode_index"]: cast_stats_to_numpy(item["stats"])
|
||||
for item in sorted(episodes_stats, key=lambda x: x["episode_index"])
|
||||
}
|
||||
|
||||
|
||||
def legacy_load_tasks(local_dir: Path) -> tuple[dict, dict]:
|
||||
tasks = load_jsonlines(local_dir / LEGACY_TASKS_PATH)
|
||||
tasks = {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
|
||||
task_to_task_index = {task: task_index for task_index, task in tasks.items()}
|
||||
return tasks, task_to_task_index
|
||||
|
||||
|
||||
def convert_tasks(root, new_root):
|
||||
tasks, _ = legacy_load_tasks(root)
|
||||
task_indices = tasks.keys()
|
||||
task_strings = tasks.values()
|
||||
df_tasks = pd.DataFrame({"task_index": task_indices}, index=task_strings)
|
||||
write_tasks(df_tasks, new_root)
|
||||
|
||||
|
||||
def concat_data_files(paths_to_cat, new_root, chunk_idx, file_idx, image_keys):
|
||||
# TODO(rcadene): to save RAM use Dataset.from_parquet(file) and concatenate_datasets
|
||||
dataframes = [pd.read_parquet(file) for file in paths_to_cat]
|
||||
# Concatenate all DataFrames along rows
|
||||
concatenated_df = pd.concat(dataframes, ignore_index=True)
|
||||
|
||||
path = new_root / DEFAULT_DATA_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if len(image_keys) > 0:
|
||||
schema = pa.Schema.from_pandas(concatenated_df)
|
||||
features = Features.from_arrow_schema(schema)
|
||||
for key in image_keys:
|
||||
features[key] = Image()
|
||||
schema = features.arrow_schema
|
||||
else:
|
||||
schema = None
|
||||
|
||||
concatenated_df.to_parquet(path, index=False, schema=schema)
|
||||
|
||||
|
||||
def convert_data(root, new_root):
|
||||
data_dir = root / "data"
|
||||
ep_paths = sorted(data_dir.glob("*/*.parquet"))
|
||||
|
||||
image_keys = get_image_keys(root)
|
||||
|
||||
ep_idx = 0
|
||||
chunk_idx = 0
|
||||
file_idx = 0
|
||||
size_in_mb = 0
|
||||
num_frames = 0
|
||||
paths_to_cat = []
|
||||
episodes_metadata = []
|
||||
for ep_path in ep_paths:
|
||||
ep_size_in_mb = get_parquet_file_size_in_mb(ep_path)
|
||||
ep_num_frames = get_parquet_num_frames(ep_path)
|
||||
ep_metadata = {
|
||||
"episode_index": ep_idx,
|
||||
"data/chunk_index": chunk_idx,
|
||||
"data/file_index": file_idx,
|
||||
"dataset_from_index": num_frames,
|
||||
"dataset_to_index": num_frames + ep_num_frames,
|
||||
}
|
||||
size_in_mb += ep_size_in_mb
|
||||
num_frames += ep_num_frames
|
||||
episodes_metadata.append(ep_metadata)
|
||||
ep_idx += 1
|
||||
|
||||
if size_in_mb < DEFAULT_DATA_FILE_SIZE_IN_MB:
|
||||
paths_to_cat.append(ep_path)
|
||||
continue
|
||||
|
||||
concat_data_files(paths_to_cat, new_root, chunk_idx, file_idx, image_keys)
|
||||
|
||||
# Reset for the next file
|
||||
size_in_mb = ep_size_in_mb
|
||||
num_frames = ep_num_frames
|
||||
paths_to_cat = [ep_path]
|
||||
|
||||
chunk_idx, file_idx = update_chunk_file_indices(chunk_idx, file_idx, DEFAULT_CHUNK_SIZE)
|
||||
|
||||
# Write remaining data if any
|
||||
if paths_to_cat:
|
||||
concat_data_files(paths_to_cat, new_root, chunk_idx, file_idx, image_keys)
|
||||
|
||||
return episodes_metadata
|
||||
|
||||
|
||||
def get_video_keys(root):
|
||||
info = load_info(root)
|
||||
features = info["features"]
|
||||
video_keys = [key for key, ft in features.items() if ft["dtype"] == "video"]
|
||||
return video_keys
|
||||
|
||||
|
||||
def get_image_keys(root):
|
||||
info = load_info(root)
|
||||
features = info["features"]
|
||||
image_keys = [key for key, ft in features.items() if ft["dtype"] == "image"]
|
||||
return image_keys
|
||||
|
||||
|
||||
def convert_videos(root: Path, new_root: Path):
|
||||
video_keys = get_video_keys(root)
|
||||
if len(video_keys) == 0:
|
||||
return None
|
||||
|
||||
video_keys = sorted(video_keys)
|
||||
|
||||
eps_metadata_per_cam = []
|
||||
for camera in video_keys:
|
||||
eps_metadata = convert_videos_of_camera(root, new_root, camera)
|
||||
eps_metadata_per_cam.append(eps_metadata)
|
||||
|
||||
num_eps_per_cam = [len(eps_cam_map) for eps_cam_map in eps_metadata_per_cam]
|
||||
if len(set(num_eps_per_cam)) != 1:
|
||||
raise ValueError(f"All cams dont have same number of episodes ({num_eps_per_cam}).")
|
||||
|
||||
episods_metadata = []
|
||||
num_cameras = len(video_keys)
|
||||
num_episodes = num_eps_per_cam[0]
|
||||
for ep_idx in range(num_episodes):
|
||||
# Sanity check
|
||||
ep_ids = [eps_metadata_per_cam[cam_idx][ep_idx]["episode_index"] for cam_idx in range(num_cameras)]
|
||||
ep_ids += [ep_idx]
|
||||
if len(set(ep_ids)) != 1:
|
||||
raise ValueError(f"All episode indices need to match ({ep_ids}).")
|
||||
|
||||
ep_dict = {}
|
||||
for cam_idx in range(num_cameras):
|
||||
ep_dict.update(eps_metadata_per_cam[cam_idx][ep_idx])
|
||||
episods_metadata.append(ep_dict)
|
||||
|
||||
return episods_metadata
|
||||
|
||||
|
||||
def convert_videos_of_camera(root: Path, new_root: Path, video_key):
|
||||
# Access old paths to mp4
|
||||
videos_dir = root / "videos"
|
||||
ep_paths = sorted(videos_dir.glob(f"*/{video_key}/*.mp4"))
|
||||
|
||||
ep_idx = 0
|
||||
chunk_idx = 0
|
||||
file_idx = 0
|
||||
size_in_mb = 0
|
||||
duration_in_s = 0.0
|
||||
paths_to_cat = []
|
||||
episodes_metadata = []
|
||||
for ep_path in tqdm.tqdm(ep_paths, desc=f"convert videos of {video_key}"):
|
||||
ep_size_in_mb = get_video_size_in_mb(ep_path)
|
||||
ep_duration_in_s = get_video_duration_in_s(ep_path)
|
||||
ep_metadata = {
|
||||
"episode_index": ep_idx,
|
||||
f"videos/{video_key}/chunk_index": chunk_idx,
|
||||
f"videos/{video_key}/file_index": file_idx,
|
||||
f"videos/{video_key}/from_timestamp": duration_in_s,
|
||||
f"videos/{video_key}/to_timestamp": duration_in_s + ep_duration_in_s,
|
||||
}
|
||||
size_in_mb += ep_size_in_mb
|
||||
duration_in_s += ep_duration_in_s
|
||||
episodes_metadata.append(ep_metadata)
|
||||
ep_idx += 1
|
||||
|
||||
if size_in_mb < DEFAULT_VIDEO_FILE_SIZE_IN_MB:
|
||||
paths_to_cat.append(ep_path)
|
||||
continue
|
||||
|
||||
concat_video_files(paths_to_cat, new_root, video_key, chunk_idx, file_idx)
|
||||
|
||||
# Reset for the next file
|
||||
size_in_mb = ep_size_in_mb
|
||||
duration_in_s = ep_duration_in_s
|
||||
paths_to_cat = [ep_path]
|
||||
|
||||
chunk_idx, file_idx = update_chunk_file_indices(chunk_idx, file_idx, DEFAULT_CHUNK_SIZE)
|
||||
|
||||
# Write remaining videos if any
|
||||
if paths_to_cat:
|
||||
concat_video_files(paths_to_cat, new_root, video_key, chunk_idx, file_idx)
|
||||
|
||||
return episodes_metadata
|
||||
|
||||
|
||||
def generate_episode_metadata_dict(
|
||||
episodes_legacy_metadata, episodes_metadata, episodes_stats, episodes_videos=None
|
||||
):
|
||||
num_episodes = len(episodes_metadata)
|
||||
episodes_legacy_metadata_vals = list(episodes_legacy_metadata.values())
|
||||
episodes_stats_vals = list(episodes_stats.values())
|
||||
episodes_stats_keys = list(episodes_stats.keys())
|
||||
|
||||
for i in range(num_episodes):
|
||||
ep_legacy_metadata = episodes_legacy_metadata_vals[i]
|
||||
ep_metadata = episodes_metadata[i]
|
||||
ep_stats = episodes_stats_vals[i]
|
||||
|
||||
ep_ids_set = {
|
||||
ep_legacy_metadata["episode_index"],
|
||||
ep_metadata["episode_index"],
|
||||
episodes_stats_keys[i],
|
||||
}
|
||||
|
||||
if episodes_videos is None:
|
||||
ep_video = {}
|
||||
else:
|
||||
ep_video = episodes_videos[i]
|
||||
ep_ids_set.add(ep_video["episode_index"])
|
||||
|
||||
if len(ep_ids_set) != 1:
|
||||
raise ValueError(f"Number of episodes is not the same ({ep_ids_set}).")
|
||||
|
||||
ep_dict = {**ep_metadata, **ep_video, **ep_legacy_metadata, **flatten_dict({"stats": ep_stats})}
|
||||
ep_dict["meta/episodes/chunk_index"] = 0
|
||||
ep_dict["meta/episodes/file_index"] = 0
|
||||
yield ep_dict
|
||||
|
||||
|
||||
def convert_episodes_metadata(root, new_root, episodes_metadata, episodes_video_metadata=None):
|
||||
episodes_legacy_metadata = legacy_load_episodes(root)
|
||||
episodes_stats = legacy_load_episodes_stats(root)
|
||||
|
||||
num_eps_set = {len(episodes_legacy_metadata), len(episodes_metadata)}
|
||||
if episodes_video_metadata is not None:
|
||||
num_eps_set.add(len(episodes_video_metadata))
|
||||
|
||||
if len(num_eps_set) != 1:
|
||||
raise ValueError(f"Number of episodes is not the same ({num_eps_set}).")
|
||||
|
||||
ds_episodes = Dataset.from_generator(
|
||||
lambda: generate_episode_metadata_dict(
|
||||
episodes_legacy_metadata, episodes_metadata, episodes_stats, episodes_video_metadata
|
||||
)
|
||||
)
|
||||
write_episodes(ds_episodes, new_root)
|
||||
|
||||
stats = aggregate_stats(list(episodes_stats.values()))
|
||||
write_stats(stats, new_root)
|
||||
|
||||
|
||||
def convert_info(root, new_root):
|
||||
info = load_info(root)
|
||||
info["codebase_version"] = "v3.0"
|
||||
del info["total_chunks"]
|
||||
del info["total_videos"]
|
||||
info["data_files_size_in_mb"] = DEFAULT_DATA_FILE_SIZE_IN_MB
|
||||
info["video_files_size_in_mb"] = DEFAULT_VIDEO_FILE_SIZE_IN_MB
|
||||
info["data_path"] = DEFAULT_DATA_PATH
|
||||
info["video_path"] = DEFAULT_VIDEO_PATH
|
||||
info["fps"] = float(info["fps"])
|
||||
for key in info["features"]:
|
||||
if info["features"][key]["dtype"] == "video":
|
||||
# already has fps in video_info
|
||||
continue
|
||||
info["features"][key]["fps"] = info["fps"]
|
||||
write_info(info, new_root)
|
||||
|
||||
|
||||
def convert_dataset(
|
||||
repo_id: str,
|
||||
branch: str | None = None,
|
||||
num_workers: int = 4,
|
||||
):
|
||||
root = HF_LEROBOT_HOME / repo_id
|
||||
old_root = HF_LEROBOT_HOME / f"{repo_id}_old"
|
||||
new_root = HF_LEROBOT_HOME / f"{repo_id}_v30"
|
||||
|
||||
if old_root.is_dir() and root.is_dir():
|
||||
shutil.rmtree(str(root))
|
||||
shutil.move(str(old_root), str(root))
|
||||
|
||||
if new_root.is_dir():
|
||||
shutil.rmtree(new_root)
|
||||
|
||||
snapshot_download(
|
||||
repo_id,
|
||||
repo_type="dataset",
|
||||
revision=V21,
|
||||
local_dir=root,
|
||||
)
|
||||
|
||||
convert_info(root, new_root)
|
||||
convert_tasks(root, new_root)
|
||||
episodes_metadata = convert_data(root, new_root)
|
||||
episodes_videos_metadata = convert_videos(root, new_root)
|
||||
convert_episodes_metadata(root, new_root, episodes_metadata, episodes_videos_metadata)
|
||||
|
||||
shutil.move(str(root), str(old_root))
|
||||
shutil.move(str(new_root), str(root))
|
||||
|
||||
hub_api = HfApi()
|
||||
try:
|
||||
hub_api.delete_tag(repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
|
||||
except HTTPError as e:
|
||||
print(f"tag={CODEBASE_VERSION} probably doesn't exist. Skipping exception ({e})")
|
||||
pass
|
||||
hub_api.delete_files(
|
||||
delete_patterns=["data/chunk*/episode_*", "meta/*.jsonl", "videos/chunk*"],
|
||||
repo_id=repo_id,
|
||||
revision=branch,
|
||||
repo_type="dataset",
|
||||
)
|
||||
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
|
||||
|
||||
LeRobotDataset(repo_id).push_to_hub()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset "
|
||||
"(e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--branch",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Repo branch to push your dataset. Defaults to the main branch.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of workers for parallelizing stats compute. Defaults to 4.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
convert_dataset(**vars(args))
|
||||
@@ -155,6 +155,7 @@ def decode_video_frames_torchvision(
|
||||
)
|
||||
|
||||
# get closest frames to the query timestamps
|
||||
# TODO(rcadene): remove torch.stack
|
||||
closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
|
||||
closest_ts = loaded_ts[argmin_]
|
||||
|
||||
@@ -252,7 +253,7 @@ def encode_video_frames(
|
||||
g: int | None = 2,
|
||||
crf: int | None = 30,
|
||||
fast_decode: int = 0,
|
||||
log_level: str | None = "error",
|
||||
log_level: str | None = "quiet",
|
||||
overwrite: bool = False,
|
||||
) -> None:
|
||||
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
|
||||
@@ -264,7 +265,7 @@ def encode_video_frames(
|
||||
[
|
||||
("-f", "image2"),
|
||||
("-r", str(fps)),
|
||||
("-i", str(imgs_dir / "frame_%06d.png")),
|
||||
("-i", str(imgs_dir / "frame-%06d.png")),
|
||||
("-vcodec", vcodec),
|
||||
("-pix_fmt", pix_fmt),
|
||||
]
|
||||
|
||||
@@ -17,7 +17,7 @@ from dataclasses import dataclass, field
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
|
||||
from lerobot.configs.types import FeatureType, PolicyFeature
|
||||
|
||||
|
||||
@@ -53,7 +53,7 @@ class AlohaEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_STATE,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"top": f"{OBS_IMAGE}.top",
|
||||
"pixels/top": f"{OBS_IMAGES}.top",
|
||||
}
|
||||
@@ -94,8 +94,8 @@ class PushtEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_STATE,
|
||||
"environment_state": OBS_ENV_STATE,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"environment_state": OBS_ENV,
|
||||
"pixels": OBS_IMAGE,
|
||||
}
|
||||
)
|
||||
@@ -136,7 +136,7 @@ class XarmEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_STATE,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"pixels": OBS_IMAGE,
|
||||
}
|
||||
)
|
||||
|
||||
@@ -1,17 +0,0 @@
|
||||
class DeviceNotConnectedError(ConnectionError):
|
||||
"""Exception raised when the device is not connected."""
|
||||
|
||||
def __init__(self, message="This device is not connected. Try calling `connect()` first."):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class DeviceAlreadyConnectedError(ConnectionError):
|
||||
"""Exception raised when the device is already connected."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
message="This device is already connected. Try not calling `connect()` twice.",
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
@@ -1 +0,0 @@
|
||||
from .motors_bus import Motor, MotorCalibration, MotorNormMode, MotorsBus
|
||||
@@ -1,3 +0,0 @@
|
||||
from .dynamixel import DriveMode, DynamixelMotorsBus, OperatingMode, TorqueMode
|
||||
from .dynamixel_calibration import run_arm_calibration
|
||||
from .tables import *
|
||||
@@ -1,206 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO(aliberts): Should we implement FastSyncRead/Write?
|
||||
# https://github.com/ROBOTIS-GIT/DynamixelSDK/pull/643
|
||||
# https://github.com/ROBOTIS-GIT/DynamixelSDK/releases/tag/3.8.2
|
||||
# https://emanual.robotis.com/docs/en/dxl/protocol2/#fast-sync-read-0x8a
|
||||
# -> Need to check compatibility across models
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
|
||||
from lerobot.common.utils.encoding_utils import decode_twos_complement, encode_twos_complement
|
||||
|
||||
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value
|
||||
from .tables import (
|
||||
AVAILABLE_BAUDRATES,
|
||||
MODEL_BAUDRATE_TABLE,
|
||||
MODEL_CONTROL_TABLE,
|
||||
MODEL_ENCODING_TABLE,
|
||||
MODEL_NUMBER_TABLE,
|
||||
MODEL_RESOLUTION,
|
||||
)
|
||||
|
||||
PROTOCOL_VERSION = 2.0
|
||||
BAUDRATE = 1_000_000
|
||||
DEFAULT_TIMEOUT_MS = 1000
|
||||
|
||||
NORMALIZED_DATA = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OperatingMode(Enum):
|
||||
# DYNAMIXEL only controls current(torque) regardless of speed and position. This mode is ideal for a
|
||||
# gripper or a system that only uses current(torque) control or a system that has additional
|
||||
# velocity/position controllers.
|
||||
CURRENT = 0
|
||||
|
||||
# This mode controls velocity. This mode is identical to the Wheel Mode(endless) from existing DYNAMIXEL.
|
||||
# This mode is ideal for wheel-type robots.
|
||||
VELOCITY = 1
|
||||
|
||||
# This mode controls position. This mode is identical to the Joint Mode from existing DYNAMIXEL. Operating
|
||||
# position range is limited by the Max Position Limit(48) and the Min Position Limit(52). This mode is
|
||||
# ideal for articulated robots that each joint rotates less than 360 degrees.
|
||||
POSITION = 3
|
||||
|
||||
# This mode controls position. This mode is identical to the Multi-turn Position Control from existing
|
||||
# DYNAMIXEL. 512 turns are supported(-256[rev] ~ 256[rev]). This mode is ideal for multi-turn wrists or
|
||||
# conveyer systems or a system that requires an additional reduction gear. Note that Max Position
|
||||
# Limit(48), Min Position Limit(52) are not used on Extended Position Control Mode.
|
||||
EXTENDED_POSITION = 4
|
||||
|
||||
# This mode controls both position and current(torque). Up to 512 turns are supported (-256[rev] ~
|
||||
# 256[rev]). This mode is ideal for a system that requires both position and current control such as
|
||||
# articulated robots or grippers.
|
||||
CURRENT_POSITION = 5
|
||||
|
||||
# This mode directly controls PWM output. (Voltage Control Mode)
|
||||
PWM = 16
|
||||
|
||||
|
||||
class DriveMode(Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class TorqueMode(Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
def _split_into_byte_chunks(value: int, length: int) -> list[int]:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if length == 1:
|
||||
data = [value]
|
||||
elif length == 2:
|
||||
data = [dxl.DXL_LOBYTE(value), dxl.DXL_HIBYTE(value)]
|
||||
elif length == 4:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
|
||||
]
|
||||
return data
|
||||
|
||||
|
||||
class DynamixelMotorsBus(MotorsBus):
|
||||
"""
|
||||
The Dynamixel implementation for a MotorsBus. It relies on the python dynamixel sdk to communicate with
|
||||
the motors. For more info, see the Dynamixel SDK Documentation:
|
||||
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20
|
||||
"""
|
||||
|
||||
available_baudrates = deepcopy(AVAILABLE_BAUDRATES)
|
||||
default_timeout = DEFAULT_TIMEOUT_MS
|
||||
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
|
||||
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
model_encoding_table = deepcopy(MODEL_ENCODING_TABLE)
|
||||
model_number_table = deepcopy(MODEL_NUMBER_TABLE)
|
||||
model_resolution_table = deepcopy(MODEL_RESOLUTION)
|
||||
normalized_data = deepcopy(NORMALIZED_DATA)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
port: str,
|
||||
motors: dict[str, Motor],
|
||||
calibration: dict[str, MotorCalibration] | None = None,
|
||||
):
|
||||
super().__init__(port, motors, calibration)
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
self.port_handler = dxl.PortHandler(self.port)
|
||||
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
||||
self.sync_reader = dxl.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
|
||||
self.sync_writer = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
|
||||
self._comm_success = dxl.COMM_SUCCESS
|
||||
self._no_error = 0x00
|
||||
|
||||
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
|
||||
pass
|
||||
|
||||
def _handshake(self) -> None:
|
||||
self._assert_motors_exist()
|
||||
|
||||
def configure_motors(self) -> None:
|
||||
# By default, Dynamixel motors have a 500µs delay response time (corresponding to a value of 250 on
|
||||
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
|
||||
for motor in self.motors:
|
||||
self.write("Return_Delay_Time", motor, 0)
|
||||
|
||||
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for name in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", name, TorqueMode.DISABLED.value, num_retry=num_retry)
|
||||
|
||||
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for name in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", name, TorqueMode.ENABLED.value, num_retry=num_retry)
|
||||
|
||||
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
n_bytes = encoding_table[data_name]
|
||||
ids_values[id_] = encode_twos_complement(ids_values[id_], n_bytes)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
n_bytes = encoding_table[data_name]
|
||||
ids_values[id_] = decode_twos_complement(ids_values[id_], n_bytes)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
|
||||
"""
|
||||
On Dynamixel Motors:
|
||||
Present_Position = Actual_Position + Homing_Offset
|
||||
"""
|
||||
half_turn_homings = {}
|
||||
for motor, pos in positions.items():
|
||||
model = self._get_motor_model(motor)
|
||||
max_res = self.model_resolution_table[model] - 1
|
||||
half_turn_homings[motor] = int(max_res / 2) - pos
|
||||
|
||||
return half_turn_homings
|
||||
|
||||
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
|
||||
return _split_into_byte_chunks(value, length)
|
||||
|
||||
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
|
||||
for n_try in range(1 + num_retry):
|
||||
data_list, comm = self.packet_handler.broadcastPing(self.port_handler)
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(f"Broadcast ping failed on port '{self.port}' ({n_try=})")
|
||||
logger.debug(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
if not self._is_comm_success(comm):
|
||||
if raise_on_error:
|
||||
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
return
|
||||
|
||||
return {id_: data[0] for id_, data in data_list.items()}
|
||||
@@ -1,162 +0,0 @@
|
||||
# {data_name: (address, size_byte)}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table
|
||||
X_SERIES_CONTROL_TABLE = {
|
||||
"Model_Number": (0, 2),
|
||||
"Model_Information": (2, 4),
|
||||
"Firmware_Version": (6, 1),
|
||||
"ID": (7, 1),
|
||||
"Baud_Rate": (8, 1),
|
||||
"Return_Delay_Time": (9, 1),
|
||||
"Drive_Mode": (10, 1),
|
||||
"Operating_Mode": (11, 1),
|
||||
"Secondary_ID": (12, 1),
|
||||
"Protocol_Type": (13, 1),
|
||||
"Homing_Offset": (20, 4),
|
||||
"Moving_Threshold": (24, 4),
|
||||
"Temperature_Limit": (31, 1),
|
||||
"Max_Voltage_Limit": (32, 2),
|
||||
"Min_Voltage_Limit": (34, 2),
|
||||
"PWM_Limit": (36, 2),
|
||||
"Current_Limit": (38, 2),
|
||||
"Acceleration_Limit": (40, 4),
|
||||
"Velocity_Limit": (44, 4),
|
||||
"Max_Position_Limit": (48, 4),
|
||||
"Min_Position_Limit": (52, 4),
|
||||
"Shutdown": (63, 1),
|
||||
"Torque_Enable": (64, 1),
|
||||
"LED": (65, 1),
|
||||
"Status_Return_Level": (68, 1),
|
||||
"Registered_Instruction": (69, 1),
|
||||
"Hardware_Error_Status": (70, 1),
|
||||
"Velocity_I_Gain": (76, 2),
|
||||
"Velocity_P_Gain": (78, 2),
|
||||
"Position_D_Gain": (80, 2),
|
||||
"Position_I_Gain": (82, 2),
|
||||
"Position_P_Gain": (84, 2),
|
||||
"Feedforward_2nd_Gain": (88, 2),
|
||||
"Feedforward_1st_Gain": (90, 2),
|
||||
"Bus_Watchdog": (98, 1),
|
||||
"Goal_PWM": (100, 2),
|
||||
"Goal_Current": (102, 2),
|
||||
"Goal_Velocity": (104, 4),
|
||||
"Profile_Acceleration": (108, 4),
|
||||
"Profile_Velocity": (112, 4),
|
||||
"Goal_Position": (116, 4),
|
||||
"Realtime_Tick": (120, 2),
|
||||
"Moving": (122, 1),
|
||||
"Moving_Status": (123, 1),
|
||||
"Present_PWM": (124, 2),
|
||||
"Present_Current": (126, 2),
|
||||
"Present_Velocity": (128, 4),
|
||||
"Present_Position": (132, 4),
|
||||
"Velocity_Trajectory": (136, 4),
|
||||
"Position_Trajectory": (140, 4),
|
||||
"Present_Input_Voltage": (144, 2),
|
||||
"Present_Temperature": (146, 1),
|
||||
}
|
||||
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#baud-rate8
|
||||
X_SERIES_BAUDRATE_TABLE = {
|
||||
0: 9_600,
|
||||
1: 57_600,
|
||||
2: 115_200,
|
||||
3: 1_000_000,
|
||||
4: 2_000_000,
|
||||
5: 3_000_000,
|
||||
6: 4_000_000,
|
||||
}
|
||||
|
||||
# {data_name: size_byte}
|
||||
X_SERIES_ENCODINGS_TABLE = {
|
||||
"Homing_Offset": X_SERIES_CONTROL_TABLE["Homing_Offset"][1],
|
||||
"Goal_PWM": X_SERIES_CONTROL_TABLE["Goal_PWM"][1],
|
||||
"Goal_Current": X_SERIES_CONTROL_TABLE["Goal_Current"][1],
|
||||
"Goal_Velocity": X_SERIES_CONTROL_TABLE["Goal_Velocity"][1],
|
||||
"Present_PWM": X_SERIES_CONTROL_TABLE["Present_PWM"][1],
|
||||
"Present_Current": X_SERIES_CONTROL_TABLE["Present_Current"][1],
|
||||
"Present_Velocity": X_SERIES_CONTROL_TABLE["Present_Velocity"][1],
|
||||
}
|
||||
|
||||
MODEL_ENCODING_TABLE = {
|
||||
"x_series": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl330-m077": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl330-m288": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl430-w250": X_SERIES_ENCODINGS_TABLE,
|
||||
"xm430-w350": X_SERIES_ENCODINGS_TABLE,
|
||||
"xm540-w270": X_SERIES_ENCODINGS_TABLE,
|
||||
"xc430-w150": X_SERIES_ENCODINGS_TABLE,
|
||||
}
|
||||
|
||||
# {model: model_resolution}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#specifications
|
||||
MODEL_RESOLUTION = {
|
||||
"x_series": 4096,
|
||||
"xl330-m077": 4096,
|
||||
"xl330-m288": 4096,
|
||||
"xl430-w250": 4096,
|
||||
"xm430-w350": 4096,
|
||||
"xm540-w270": 4096,
|
||||
"xc430-w150": 4096,
|
||||
}
|
||||
|
||||
# {model: model_number}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table-of-eeprom-area
|
||||
MODEL_NUMBER_TABLE = {
|
||||
"xl330-m077": 1190,
|
||||
"xl330-m288": 1200,
|
||||
"xl430-w250": 1060,
|
||||
"xm430-w350": 1020,
|
||||
"xm540-w270": 1120,
|
||||
"xc430-w150": 1070,
|
||||
}
|
||||
|
||||
# {model: available_operating_modes}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#operating-mode11
|
||||
MODEL_OPERATING_MODES = {
|
||||
"xl330-m077": [0, 1, 3, 4, 5, 16],
|
||||
"xl330-m288": [0, 1, 3, 4, 5, 16],
|
||||
"xl430-w250": [1, 3, 4, 16],
|
||||
"xm430-w350": [0, 1, 3, 4, 5, 16],
|
||||
"xm540-w270": [0, 1, 3, 4, 5, 16],
|
||||
"xc430-w150": [1, 3, 4, 16],
|
||||
}
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"x_series": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m077": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m288": X_SERIES_CONTROL_TABLE,
|
||||
"xl430-w250": X_SERIES_CONTROL_TABLE,
|
||||
"xm430-w350": X_SERIES_CONTROL_TABLE,
|
||||
"xm540-w270": X_SERIES_CONTROL_TABLE,
|
||||
"xc430-w150": X_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"x_series": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
|
||||
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
AVAILABLE_BAUDRATES = [
|
||||
9_600,
|
||||
19_200,
|
||||
38_400,
|
||||
57_600,
|
||||
115_200,
|
||||
230_400,
|
||||
460_800,
|
||||
500_000,
|
||||
576_000,
|
||||
921_600,
|
||||
1_000_000,
|
||||
1_152_000,
|
||||
2_000_000,
|
||||
2_500_000,
|
||||
3_000_000,
|
||||
3_500_000,
|
||||
4_000_000,
|
||||
]
|
||||
@@ -1,2 +0,0 @@
|
||||
from .feetech import DriveMode, FeetechMotorsBus, OperatingMode, TorqueMode
|
||||
from .tables import *
|
||||
@@ -1,367 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from pprint import pformat
|
||||
|
||||
from lerobot.common.utils.encoding_utils import decode_sign_magnitude, encode_sign_magnitude
|
||||
|
||||
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value
|
||||
from .tables import (
|
||||
FIRMWARE_MAJOR_VERSION,
|
||||
FIRMWARE_MINOR_VERSION,
|
||||
MODEL_BAUDRATE_TABLE,
|
||||
MODEL_CONTROL_TABLE,
|
||||
MODEL_ENCODING_TABLE,
|
||||
MODEL_NUMBER,
|
||||
MODEL_NUMBER_TABLE,
|
||||
MODEL_PROTOCOL,
|
||||
MODEL_RESOLUTION,
|
||||
SCAN_BAUDRATES,
|
||||
)
|
||||
|
||||
DEFAULT_PROTOCOL_VERSION = 0
|
||||
BAUDRATE = 1_000_000
|
||||
DEFAULT_TIMEOUT_MS = 1000
|
||||
|
||||
NORMALIZED_DATA = ["Goal_Position", "Present_Position"]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OperatingMode(Enum):
|
||||
# position servo mode
|
||||
POSITION = 0
|
||||
# The motor is in constant speed mode, which is controlled by parameter 0x2e, and the highest bit 15 is
|
||||
# the direction bit
|
||||
VELOCITY = 1
|
||||
# PWM open-loop speed regulation mode, with parameter 0x2c running time parameter control, bit11 as
|
||||
# direction bit
|
||||
PWM = 2
|
||||
# In step servo mode, the number of step progress is represented by parameter 0x2a, and the highest bit 15
|
||||
# is the direction bit
|
||||
STEP = 3
|
||||
|
||||
|
||||
class DriveMode(Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class TorqueMode(Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
def _split_into_byte_chunks(value: int, length: int) -> list[int]:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if length == 1:
|
||||
data = [value]
|
||||
elif length == 2:
|
||||
data = [scs.SCS_LOBYTE(value), scs.SCS_HIBYTE(value)]
|
||||
elif length == 4:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
|
||||
]
|
||||
return data
|
||||
|
||||
|
||||
def patch_setPacketTimeout(self, packet_length): # noqa: N802
|
||||
"""
|
||||
HACK: This patches the PortHandler behavior to set the correct packet timeouts.
|
||||
|
||||
It fixes https://gitee.com/ftservo/SCServoSDK/issues/IBY2S6
|
||||
The bug is fixed on the official Feetech SDK repo (https://gitee.com/ftservo/FTServo_Python)
|
||||
but because that version is not published on PyPI, we rely on the (unofficial) on that is, which needs
|
||||
patching.
|
||||
"""
|
||||
self.packet_start_time = self.getCurrentTime()
|
||||
self.packet_timeout = (self.tx_time_per_byte * packet_length) + (self.tx_time_per_byte * 3.0) + 50
|
||||
|
||||
|
||||
class FeetechMotorsBus(MotorsBus):
|
||||
"""
|
||||
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on the
|
||||
python feetech sdk to communicate with the motors, which is itself based on the dynamixel sdk.
|
||||
"""
|
||||
|
||||
available_baudrates = deepcopy(SCAN_BAUDRATES)
|
||||
default_timeout = DEFAULT_TIMEOUT_MS
|
||||
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
|
||||
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
model_encoding_table = deepcopy(MODEL_ENCODING_TABLE)
|
||||
model_number_table = deepcopy(MODEL_NUMBER_TABLE)
|
||||
model_resolution_table = deepcopy(MODEL_RESOLUTION)
|
||||
normalized_data = deepcopy(NORMALIZED_DATA)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
port: str,
|
||||
motors: dict[str, Motor],
|
||||
calibration: dict[str, MotorCalibration] | None = None,
|
||||
protocol_version: int = DEFAULT_PROTOCOL_VERSION,
|
||||
):
|
||||
super().__init__(port, motors, calibration)
|
||||
self.protocol_version = protocol_version
|
||||
self._assert_same_protocol()
|
||||
import scservo_sdk as scs
|
||||
|
||||
self.port_handler = scs.PortHandler(self.port)
|
||||
# HACK: monkeypatch
|
||||
self.port_handler.setPacketTimeout = patch_setPacketTimeout.__get__(
|
||||
self.port_handler, scs.PortHandler
|
||||
)
|
||||
self.packet_handler = scs.PacketHandler(protocol_version)
|
||||
self.sync_reader = scs.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
|
||||
self.sync_writer = scs.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
|
||||
self._comm_success = scs.COMM_SUCCESS
|
||||
self._no_error = 0x00
|
||||
|
||||
if any(MODEL_PROTOCOL[model] != self.protocol_version for model in self.models):
|
||||
raise ValueError(f"Some motors are incompatible with protocol_version={self.protocol_version}")
|
||||
|
||||
def _assert_same_protocol(self) -> None:
|
||||
if any(MODEL_PROTOCOL[model] != self.protocol_version for model in self.models):
|
||||
raise RuntimeError("Some motors use an incompatible protocol.")
|
||||
|
||||
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
|
||||
if instruction_name == "sync_read" and self.protocol_version == 1:
|
||||
raise NotImplementedError(
|
||||
"'Sync Read' is not available with Feetech motors using Protocol 1. Use 'Read' sequentially instead."
|
||||
)
|
||||
if instruction_name == "broadcast_ping" and self.protocol_version == 1:
|
||||
raise NotImplementedError(
|
||||
"'Broadcast Ping' is not available with Feetech motors using Protocol 1. Use 'Ping' sequentially instead."
|
||||
)
|
||||
|
||||
def _assert_same_firmware(self) -> None:
|
||||
firmware_versions = self._read_firmware_version(self.ids)
|
||||
if len(set(firmware_versions.values())) != 1:
|
||||
raise RuntimeError(
|
||||
"Some Motors use different firmware versions. Update their firmware first using Feetech's software. "
|
||||
"Visit https://www.feetechrc.com/software."
|
||||
)
|
||||
|
||||
def _handshake(self) -> None:
|
||||
self._assert_motors_exist()
|
||||
self._assert_same_firmware()
|
||||
|
||||
def configure_motors(self) -> None:
|
||||
for motor in self.motors:
|
||||
# By default, Feetech motors have a 500µs delay response time (corresponding to a value of 250 on
|
||||
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
|
||||
self.write("Return_Delay_Time", motor, 0)
|
||||
# Set 'Maximum_Acceleration' to 254 to speedup acceleration and deceleration of the motors.
|
||||
# Note: this address is not in the official STS3215 Memory Table
|
||||
self.write("Maximum_Acceleration", motor, 254)
|
||||
self.write("Acceleration", motor, 254)
|
||||
|
||||
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
|
||||
"""
|
||||
On Feetech Motors:
|
||||
Present_Position = Actual_Position - Homing_Offset
|
||||
"""
|
||||
half_turn_homings = {}
|
||||
for motor, pos in positions.items():
|
||||
model = self._get_motor_model(motor)
|
||||
max_res = self.model_resolution_table[model] - 1
|
||||
half_turn_homings[motor] = pos - int(max_res / 2)
|
||||
|
||||
return half_turn_homings
|
||||
|
||||
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for name in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", name, TorqueMode.DISABLED.value, num_retry=num_retry)
|
||||
self.write("Lock", name, 0, num_retry=num_retry)
|
||||
|
||||
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for name in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", name, TorqueMode.ENABLED.value, num_retry=num_retry)
|
||||
self.write("Lock", name, 1, num_retry=num_retry)
|
||||
|
||||
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
sign_bit = encoding_table[data_name]
|
||||
ids_values[id_] = encode_sign_magnitude(ids_values[id_], sign_bit)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
sign_bit = encoding_table[data_name]
|
||||
ids_values[id_] = decode_sign_magnitude(ids_values[id_], sign_bit)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
|
||||
return _split_into_byte_chunks(value, length)
|
||||
|
||||
def _broadcast_ping_p1(
|
||||
self, known_motors_only: bool = True, n_motors: int | None = None, num_retry: int = 0
|
||||
) -> dict[int, int]:
|
||||
if known_motors_only:
|
||||
ids = self.ids
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
ids = range(scs.MAX_ID + 1)
|
||||
|
||||
ids_models = {}
|
||||
motors_found = 0
|
||||
for id_ in ids:
|
||||
model_number = self.ping(id_, num_retry)
|
||||
if model_number is not None:
|
||||
ids_models[id_] = model_number
|
||||
motors_found += 1
|
||||
if motors_found >= n_motors:
|
||||
break
|
||||
|
||||
return ids_models
|
||||
|
||||
def _broadcast_ping_p0(self) -> tuple[dict[int, int], int]:
|
||||
import scservo_sdk as scs
|
||||
|
||||
data_list = {}
|
||||
|
||||
status_length = 6
|
||||
|
||||
rx_length = 0
|
||||
wait_length = status_length * scs.MAX_ID
|
||||
|
||||
txpacket = [0] * 6
|
||||
|
||||
tx_time_per_byte = (1000.0 / self.port_handler.getBaudRate()) * 10.0
|
||||
|
||||
txpacket[scs.PKT_ID] = scs.BROADCAST_ID
|
||||
txpacket[scs.PKT_LENGTH] = 2
|
||||
txpacket[scs.PKT_INSTRUCTION] = scs.INST_PING
|
||||
|
||||
result = self.packet_handler.txPacket(self.port_handler, txpacket)
|
||||
if result != scs.COMM_SUCCESS:
|
||||
self.port_handler.is_using = False
|
||||
return data_list, result
|
||||
|
||||
# set rx timeout
|
||||
self.port_handler.setPacketTimeoutMillis((wait_length * tx_time_per_byte) + (3.0 * scs.MAX_ID) + 16.0)
|
||||
|
||||
rxpacket = []
|
||||
while True:
|
||||
rxpacket += self.port_handler.readPort(wait_length - rx_length)
|
||||
rx_length = len(rxpacket)
|
||||
|
||||
if self.port_handler.isPacketTimeout(): # or rx_length >= wait_length
|
||||
break
|
||||
|
||||
self.port_handler.is_using = False
|
||||
|
||||
if rx_length == 0:
|
||||
return data_list, scs.COMM_RX_TIMEOUT
|
||||
|
||||
while True:
|
||||
if rx_length < status_length:
|
||||
return data_list, scs.COMM_RX_CORRUPT
|
||||
|
||||
# find packet header
|
||||
for idx in range(0, (rx_length - 1)):
|
||||
if (rxpacket[idx] == 0xFF) and (rxpacket[idx + 1] == 0xFF):
|
||||
break
|
||||
|
||||
if idx == 0: # found at the beginning of the packet
|
||||
# calculate checksum
|
||||
checksum = 0
|
||||
for idx in range(2, status_length - 1): # except header & checksum
|
||||
checksum += rxpacket[idx]
|
||||
|
||||
checksum = ~checksum & 0xFF
|
||||
if rxpacket[status_length - 1] == checksum:
|
||||
result = scs.COMM_SUCCESS
|
||||
data_list[rxpacket[scs.PKT_ID]] = rxpacket[scs.PKT_ERROR]
|
||||
|
||||
del rxpacket[0:status_length]
|
||||
rx_length = rx_length - status_length
|
||||
|
||||
if rx_length == 0:
|
||||
return data_list, result
|
||||
else:
|
||||
result = scs.COMM_RX_CORRUPT
|
||||
# remove header (0xFF 0xFF)
|
||||
del rxpacket[0:2]
|
||||
rx_length = rx_length - 2
|
||||
else:
|
||||
# remove unnecessary packets
|
||||
del rxpacket[0:idx]
|
||||
rx_length = rx_length - idx
|
||||
|
||||
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
|
||||
self._assert_protocol_is_compatible("broadcast_ping")
|
||||
for n_try in range(1 + num_retry):
|
||||
ids_status, comm = self._broadcast_ping_p0()
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(f"Broadcast ping failed on port '{self.port}' ({n_try=})")
|
||||
logger.debug(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
if not self._is_comm_success(comm):
|
||||
if raise_on_error:
|
||||
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
|
||||
return
|
||||
|
||||
ids_errors = {id_: status for id_, status in ids_status.items() if self._is_error(status)}
|
||||
if ids_errors:
|
||||
display_dict = {id_: self.packet_handler.getRxPacketError(err) for id_, err in ids_errors.items()}
|
||||
logger.error(f"Some motors found returned an error status:\n{pformat(display_dict, indent=4)}")
|
||||
|
||||
return self._read_model_number(list(ids_status), raise_on_error)
|
||||
|
||||
def _read_firmware_version(self, motor_ids: list[int], raise_on_error: bool = False) -> dict[int, str]:
|
||||
firmware_versions = {}
|
||||
for id_ in motor_ids:
|
||||
firm_ver_major, comm, error = self._read(
|
||||
*FIRMWARE_MAJOR_VERSION, id_, raise_on_error=raise_on_error
|
||||
)
|
||||
if not self._is_comm_success(comm) or self._is_error(error):
|
||||
return
|
||||
|
||||
firm_ver_minor, comm, error = self._read(
|
||||
*FIRMWARE_MINOR_VERSION, id_, raise_on_error=raise_on_error
|
||||
)
|
||||
if not self._is_comm_success(comm) or self._is_error(error):
|
||||
return
|
||||
|
||||
firmware_versions[id_] = f"{firm_ver_major}.{firm_ver_minor}"
|
||||
|
||||
return firmware_versions
|
||||
|
||||
def _read_model_number(self, motor_ids: list[int], raise_on_error: bool = False) -> dict[int, int]:
|
||||
model_numbers = {}
|
||||
for id_ in motor_ids:
|
||||
model_nb, comm, error = self._read(*MODEL_NUMBER, id_, raise_on_error=raise_on_error)
|
||||
if not self._is_comm_success(comm) or self._is_error(error):
|
||||
return
|
||||
|
||||
model_numbers[id_] = model_nb
|
||||
|
||||
return model_numbers
|
||||
@@ -1,202 +0,0 @@
|
||||
FIRMWARE_MAJOR_VERSION = (0, 1)
|
||||
FIRMWARE_MINOR_VERSION = (1, 1)
|
||||
MODEL_NUMBER = (3, 2)
|
||||
|
||||
# See this link for STS3215 Memory Table:
|
||||
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
|
||||
# data_name: (address, size_byte)
|
||||
STS_SMS_SERIES_CONTROL_TABLE = {
|
||||
# EPROM
|
||||
"Firmware_Major_Version": FIRMWARE_MAJOR_VERSION, # read-only
|
||||
"Firmware_Minor_Version": FIRMWARE_MINOR_VERSION, # read-only
|
||||
"Model_Number": MODEL_NUMBER, # read-only
|
||||
"ID": (5, 1),
|
||||
"Baud_Rate": (6, 1),
|
||||
"Return_Delay_Time": (7, 1),
|
||||
"Response_Status_Level": (8, 1),
|
||||
"Min_Position_Limit": (9, 2),
|
||||
"Max_Position_Limit": (11, 2),
|
||||
"Max_Temperature_Limit": (13, 1),
|
||||
"Max_Voltage_Limit": (14, 1),
|
||||
"Min_Voltage_Limit": (15, 1),
|
||||
"Max_Torque_Limit": (16, 2),
|
||||
"Phase": (18, 1),
|
||||
"Unloading_Condition": (19, 1),
|
||||
"LED_Alarm_Condition": (20, 1),
|
||||
"P_Coefficient": (21, 1),
|
||||
"D_Coefficient": (22, 1),
|
||||
"I_Coefficient": (23, 1),
|
||||
"Minimum_Startup_Force": (24, 2),
|
||||
"CW_Dead_Zone": (26, 1),
|
||||
"CCW_Dead_Zone": (27, 1),
|
||||
"Protection_Current": (28, 2),
|
||||
"Angular_Resolution": (30, 1),
|
||||
"Homing_Offset": (31, 2),
|
||||
"Operating_Mode": (33, 1),
|
||||
"Protective_Torque": (34, 1),
|
||||
"Protection_Time": (35, 1),
|
||||
"Overload_Torque": (36, 1),
|
||||
"Speed_closed_loop_P_proportional_coefficient": (37, 1),
|
||||
"Over_Current_Protection_Time": (38, 1),
|
||||
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
|
||||
# SRAM
|
||||
"Torque_Enable": (40, 1),
|
||||
"Acceleration": (41, 1),
|
||||
"Goal_Position": (42, 2),
|
||||
"Goal_Time": (44, 2),
|
||||
"Goal_Speed": (46, 2),
|
||||
"Torque_Limit": (48, 2),
|
||||
"Lock": (55, 1),
|
||||
"Present_Position": (56, 2), # read-only
|
||||
"Present_Speed": (58, 2), # read-only
|
||||
"Present_Load": (60, 2), # read-only
|
||||
"Present_Voltage": (62, 1), # read-only
|
||||
"Present_Temperature": (63, 1), # read-only
|
||||
"Status": (65, 1), # read-only
|
||||
"Moving": (66, 1), # read-only
|
||||
"Present_Current": (69, 2), # read-only
|
||||
# Not in the Memory Table
|
||||
"Maximum_Acceleration": (85, 2),
|
||||
}
|
||||
|
||||
SCS_SERIES_CONTROL_TABLE = {
|
||||
# EPROM
|
||||
"Firmware_Major_Version": FIRMWARE_MAJOR_VERSION, # read-only
|
||||
"Firmware_Minor_Version": FIRMWARE_MINOR_VERSION, # read-only
|
||||
"Model_Number": MODEL_NUMBER, # read-only
|
||||
"ID": (5, 1),
|
||||
"Baud_Rate": (6, 1),
|
||||
"Return_Delay": (7, 1),
|
||||
"Response_Status_Level": (8, 1),
|
||||
"Min_Position_Limit": (9, 2),
|
||||
"Max_Position_Limit": (11, 2),
|
||||
"Max_Temperature_Limit": (13, 1),
|
||||
"Max_Voltage_Limit": (14, 1),
|
||||
"Min_Voltage_Limit": (15, 1),
|
||||
"Max_Torque_Limit": (16, 2),
|
||||
"Phase": (18, 1),
|
||||
"Unloading_Condition": (19, 1),
|
||||
"LED_Alarm_Condition": (20, 1),
|
||||
"P_Coefficient": (21, 1),
|
||||
"D_Coefficient": (22, 1),
|
||||
"I_Coefficient": (23, 1),
|
||||
"Minimum_Startup_Force": (24, 2),
|
||||
"CW_Dead_Zone": (26, 1),
|
||||
"CCW_Dead_Zone": (27, 1),
|
||||
"Protective_Torque": (37, 1),
|
||||
"Protection_Time": (38, 1),
|
||||
# SRAM
|
||||
"Torque_Enable": (40, 1),
|
||||
"Acceleration": (41, 1),
|
||||
"Goal_Position": (42, 2),
|
||||
"Running_Time": (44, 2),
|
||||
"Goal_Speed": (46, 2),
|
||||
"Lock": (48, 1),
|
||||
"Present_Position": (56, 2), # read-only
|
||||
"Present_Speed": (58, 2), # read-only
|
||||
"Present_Load": (60, 2), # read-only
|
||||
"Present_Voltage": (62, 1), # read-only
|
||||
"Present_Temperature": (63, 1), # read-only
|
||||
"Sync_Write_Flag": (64, 1), # read-only
|
||||
"Status": (65, 1), # read-only
|
||||
"Moving": (66, 1), # read-only
|
||||
}
|
||||
|
||||
STS_SMS_SERIES_BAUDRATE_TABLE = {
|
||||
0: 1_000_000,
|
||||
1: 500_000,
|
||||
2: 250_000,
|
||||
3: 128_000,
|
||||
4: 115_200,
|
||||
5: 57_600,
|
||||
6: 38_400,
|
||||
7: 19_200,
|
||||
}
|
||||
|
||||
SCS_SERIES_BAUDRATE_TABLE = {
|
||||
0: 1_000_000,
|
||||
1: 500_000,
|
||||
2: 250_000,
|
||||
3: 128_000,
|
||||
4: 115_200,
|
||||
5: 57_600,
|
||||
6: 38_400,
|
||||
7: 19_200,
|
||||
}
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"sts_series": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"scs_series": SCS_SERIES_CONTROL_TABLE,
|
||||
"sms_series": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"sts3215": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"sts3250": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"scs0009": SCS_SERIES_CONTROL_TABLE,
|
||||
"sm8512bl": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_RESOLUTION = {
|
||||
"sts_series": 4096,
|
||||
"sms_series": 4096,
|
||||
"scs_series": 1024,
|
||||
"sts3215": 4096,
|
||||
"sts3250": 4096,
|
||||
"sm8512bl": 65536,
|
||||
"scs0009": 1024,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"sts_series": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"sms_series": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
|
||||
"sm8512bl": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"sts3215": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"sts3250": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"scs0009": SCS_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
# Sign-Magnitude encoding bits
|
||||
STS_SMS_SERIES_ENCODINGS_TABLE = {
|
||||
"Homing_Offset": 11,
|
||||
"Goal_Speed": 15,
|
||||
}
|
||||
|
||||
MODEL_ENCODING_TABLE = {
|
||||
"sts_series": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"sms_series": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"scs_series": {},
|
||||
"sts3215": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"sts3250": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"sm8512bl": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"scs0009": {},
|
||||
}
|
||||
|
||||
SCAN_BAUDRATES = [
|
||||
4_800,
|
||||
9_600,
|
||||
14_400,
|
||||
19_200,
|
||||
38_400,
|
||||
57_600,
|
||||
115_200,
|
||||
128_000,
|
||||
250_000,
|
||||
500_000,
|
||||
1_000_000,
|
||||
]
|
||||
|
||||
MODEL_NUMBER_TABLE = {
|
||||
"sts3215": 777,
|
||||
"sts3250": 2825,
|
||||
"sm8512bl": 11272,
|
||||
"scs0009": 1284,
|
||||
}
|
||||
|
||||
MODEL_PROTOCOL = {
|
||||
"sts_series": 0,
|
||||
"sms_series": 0,
|
||||
"scs_series": 1,
|
||||
"sts3215": 0,
|
||||
"sts3250": 0,
|
||||
"sm8512bl": 0,
|
||||
"scs0009": 1,
|
||||
}
|
||||
@@ -1,987 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# ruff: noqa: N802
|
||||
# This noqa is for the Protocols classes: PortHandler, PacketHandler GroupSyncRead/Write
|
||||
# TODO(aliberts): Add block noqa when feature below is available
|
||||
# https://github.com/astral-sh/ruff/issues/3711
|
||||
|
||||
import abc
|
||||
import logging
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from functools import cached_property
|
||||
from pprint import pformat
|
||||
from typing import Protocol, TypeAlias
|
||||
|
||||
import serial
|
||||
from deepdiff import DeepDiff
|
||||
from tqdm import tqdm
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.utils import enter_pressed, move_cursor_up
|
||||
|
||||
NameOrID: TypeAlias = str | int
|
||||
Value: TypeAlias = int | float
|
||||
|
||||
MAX_ID_RANGE = 252
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_ctrl_table(model_ctrl_table: dict[str, dict], model: str) -> dict[str, tuple[int, int]]:
|
||||
ctrl_table = model_ctrl_table.get(model)
|
||||
if ctrl_table is None:
|
||||
raise KeyError(f"Control table for {model=} not found.")
|
||||
return ctrl_table
|
||||
|
||||
|
||||
def get_address(model_ctrl_table: dict[str, dict], model: str, data_name: str) -> tuple[int, int]:
|
||||
ctrl_table = get_ctrl_table(model_ctrl_table, model)
|
||||
addr_bytes = ctrl_table.get(data_name)
|
||||
if addr_bytes is None:
|
||||
raise KeyError(f"Address for '{data_name}' not found in {model} control table.")
|
||||
return addr_bytes
|
||||
|
||||
|
||||
def assert_same_address(model_ctrl_table: dict[str, dict], motor_models: list[str], data_name: str) -> None:
|
||||
all_addr = []
|
||||
all_bytes = []
|
||||
for model in motor_models:
|
||||
addr, bytes = get_address(model_ctrl_table, model, data_name)
|
||||
all_addr.append(addr)
|
||||
all_bytes.append(bytes)
|
||||
|
||||
if len(set(all_addr)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different address for `data_name`='{data_name}'"
|
||||
f"({list(zip(motor_models, all_addr, strict=False))})."
|
||||
)
|
||||
|
||||
if len(set(all_bytes)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different bytes representation for `data_name`='{data_name}'"
|
||||
f"({list(zip(motor_models, all_bytes, strict=False))})."
|
||||
)
|
||||
|
||||
|
||||
class MotorNormMode(Enum):
|
||||
DEGREE = 0
|
||||
RANGE_0_100 = 1
|
||||
RANGE_M100_100 = 2
|
||||
VELOCITY = 3
|
||||
|
||||
|
||||
@dataclass
|
||||
class MotorCalibration:
|
||||
id: int
|
||||
drive_mode: int
|
||||
homing_offset: int
|
||||
range_min: int
|
||||
range_max: int
|
||||
|
||||
|
||||
@dataclass
|
||||
class Motor:
|
||||
id: int
|
||||
model: str
|
||||
norm_mode: MotorNormMode
|
||||
|
||||
|
||||
class JointOutOfRangeError(Exception):
|
||||
def __init__(self, message="Joint is out of range"):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class PortHandler(Protocol):
|
||||
def __init__(self, port_name):
|
||||
self.is_open: bool
|
||||
self.baudrate: int
|
||||
self.packet_start_time: float
|
||||
self.packet_timeout: float
|
||||
self.tx_time_per_byte: float
|
||||
self.is_using: bool
|
||||
self.port_name: str
|
||||
self.ser: serial.Serial
|
||||
|
||||
def openPort(self): ...
|
||||
def closePort(self): ...
|
||||
def clearPort(self): ...
|
||||
def setPortName(self, port_name): ...
|
||||
def getPortName(self): ...
|
||||
def setBaudRate(self, baudrate): ...
|
||||
def getBaudRate(self): ...
|
||||
def getBytesAvailable(self): ...
|
||||
def readPort(self, length): ...
|
||||
def writePort(self, packet): ...
|
||||
def setPacketTimeout(self, packet_length): ...
|
||||
def setPacketTimeoutMillis(self, msec): ...
|
||||
def isPacketTimeout(self): ...
|
||||
def getCurrentTime(self): ...
|
||||
def getTimeSinceStart(self): ...
|
||||
def setupPort(self, cflag_baud): ...
|
||||
def getCFlagBaud(self, baudrate): ...
|
||||
|
||||
|
||||
class PacketHandler(Protocol):
|
||||
def getTxRxResult(self, result): ...
|
||||
def getRxPacketError(self, error): ...
|
||||
def txPacket(self, port, txpacket): ...
|
||||
def rxPacket(self, port): ...
|
||||
def txRxPacket(self, port, txpacket): ...
|
||||
def ping(self, port, id): ...
|
||||
def action(self, port, id): ...
|
||||
def readTx(self, port, id, address, length): ...
|
||||
def readRx(self, port, id, length): ...
|
||||
def readTxRx(self, port, id, address, length): ...
|
||||
def read1ByteTx(self, port, id, address): ...
|
||||
def read1ByteRx(self, port, id): ...
|
||||
def read1ByteTxRx(self, port, id, address): ...
|
||||
def read2ByteTx(self, port, id, address): ...
|
||||
def read2ByteRx(self, port, id): ...
|
||||
def read2ByteTxRx(self, port, id, address): ...
|
||||
def read4ByteTx(self, port, id, address): ...
|
||||
def read4ByteRx(self, port, id): ...
|
||||
def read4ByteTxRx(self, port, id, address): ...
|
||||
def writeTxOnly(self, port, id, address, length, data): ...
|
||||
def writeTxRx(self, port, id, address, length, data): ...
|
||||
def write1ByteTxOnly(self, port, id, address, data): ...
|
||||
def write1ByteTxRx(self, port, id, address, data): ...
|
||||
def write2ByteTxOnly(self, port, id, address, data): ...
|
||||
def write2ByteTxRx(self, port, id, address, data): ...
|
||||
def write4ByteTxOnly(self, port, id, address, data): ...
|
||||
def write4ByteTxRx(self, port, id, address, data): ...
|
||||
def regWriteTxOnly(self, port, id, address, length, data): ...
|
||||
def regWriteTxRx(self, port, id, address, length, data): ...
|
||||
def syncReadTx(self, port, start_address, data_length, param, param_length): ...
|
||||
def syncWriteTxOnly(self, port, start_address, data_length, param, param_length): ...
|
||||
|
||||
|
||||
class GroupSyncRead(Protocol):
|
||||
def __init__(self, port, ph, start_address, data_length):
|
||||
self.port: str
|
||||
self.ph: PortHandler
|
||||
self.start_address: int
|
||||
self.data_length: int
|
||||
self.last_result: bool
|
||||
self.is_param_changed: bool
|
||||
self.param: list
|
||||
self.data_dict: dict
|
||||
|
||||
def makeParam(self): ...
|
||||
def addParam(self, id): ...
|
||||
def removeParam(self, id): ...
|
||||
def clearParam(self): ...
|
||||
def txPacket(self): ...
|
||||
def rxPacket(self): ...
|
||||
def txRxPacket(self): ...
|
||||
def isAvailable(self, id, address, data_length): ...
|
||||
def getData(self, id, address, data_length): ...
|
||||
|
||||
|
||||
class GroupSyncWrite(Protocol):
|
||||
def __init__(self, port, ph, start_address, data_length):
|
||||
self.port: str
|
||||
self.ph: PortHandler
|
||||
self.start_address: int
|
||||
self.data_length: int
|
||||
self.is_param_changed: bool
|
||||
self.param: list
|
||||
self.data_dict: dict
|
||||
|
||||
def makeParam(self): ...
|
||||
def addParam(self, id, data): ...
|
||||
def removeParam(self, id): ...
|
||||
def changeParam(self, id, data): ...
|
||||
def clearParam(self): ...
|
||||
def txPacket(self): ...
|
||||
|
||||
|
||||
class MotorsBus(abc.ABC):
|
||||
"""The main LeRobot class for implementing motors buses.
|
||||
|
||||
There are currently two implementations of this abstract class:
|
||||
- DynamixelMotorsBus
|
||||
- FeetechMotorsBus
|
||||
|
||||
Note: This class may evolve in the future should we add support for other manufacturers SDKs.
|
||||
|
||||
A MotorsBus allows to efficiently read and write to the attached motors.
|
||||
It represents several motors daisy-chained together and connected through a serial port.
|
||||
|
||||
A MotorsBus subclass instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
||||
To find the port, you can run our utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
>>> Finding all available ports for the MotorsBus.
|
||||
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
>>> Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
>>> The port of this MotorsBus is /dev/tty.usbmodem575E0031751.
|
||||
>>> Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example of usage for 1 Feetech sts3215 motor connected to the bus:
|
||||
```python
|
||||
motors_bus = FeetechMotorsBus(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={"gripper": (6, "sts3215")},
|
||||
)
|
||||
motors_bus.connect()
|
||||
|
||||
position = motors_bus.read("Present_Position")
|
||||
|
||||
# Move from a few motor steps as an example
|
||||
few_steps = 30
|
||||
motors_bus.write("Goal_Position", position + few_steps)
|
||||
|
||||
# When done, properly disconnect the port using
|
||||
motors_bus.disconnect()
|
||||
```
|
||||
"""
|
||||
|
||||
available_baudrates: list[int]
|
||||
default_timeout: int
|
||||
model_baudrate_table: dict[str, dict]
|
||||
model_ctrl_table: dict[str, dict]
|
||||
model_encoding_table: dict[str, dict]
|
||||
model_number_table: dict[str, int]
|
||||
model_resolution_table: dict[str, int]
|
||||
normalized_data: list[str]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
port: str,
|
||||
motors: dict[str, Motor],
|
||||
calibration: dict[str, MotorCalibration] | None = None,
|
||||
):
|
||||
self.port = port
|
||||
self.motors = motors
|
||||
self.calibration = calibration if calibration else {}
|
||||
|
||||
self.port_handler: PortHandler
|
||||
self.packet_handler: PacketHandler
|
||||
self.sync_reader: GroupSyncRead
|
||||
self.sync_writer: GroupSyncWrite
|
||||
self._comm_success: int
|
||||
self._no_error: int
|
||||
|
||||
self._id_to_model_dict = {m.id: m.model for m in self.motors.values()}
|
||||
self._id_to_name_dict = {m.id: name for name, m in self.motors.items()}
|
||||
self._model_nb_to_model_dict = {v: k for k, v in self.model_number_table.items()}
|
||||
|
||||
self._validate_motors()
|
||||
|
||||
def __len__(self):
|
||||
return len(self.motors)
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}(\n"
|
||||
f" Port: '{self.port}',\n"
|
||||
f" Motors: \n{pformat(self.motors, indent=8, sort_dicts=False)},\n"
|
||||
")',\n"
|
||||
)
|
||||
|
||||
@cached_property
|
||||
def _has_different_ctrl_tables(self) -> bool:
|
||||
if len(self.models) < 2:
|
||||
return False
|
||||
|
||||
first_table = self.model_ctrl_table[self.models[0]]
|
||||
return any(
|
||||
DeepDiff(first_table, get_ctrl_table(self.model_ctrl_table, model)) for model in self.models[1:]
|
||||
)
|
||||
|
||||
@cached_property
|
||||
def names(self) -> list[str]:
|
||||
return list(self.motors)
|
||||
|
||||
@cached_property
|
||||
def models(self) -> list[str]:
|
||||
return [m.model for m in self.motors.values()]
|
||||
|
||||
@cached_property
|
||||
def ids(self) -> list[int]:
|
||||
return [m.id for m in self.motors.values()]
|
||||
|
||||
def _model_nb_to_model(self, motor_nb: int) -> str:
|
||||
return self._model_nb_to_model_dict[motor_nb]
|
||||
|
||||
def _id_to_model(self, motor_id: int) -> str:
|
||||
return self._id_to_model_dict[motor_id]
|
||||
|
||||
def _id_to_name(self, motor_id: int) -> str:
|
||||
return self._id_to_name_dict[motor_id]
|
||||
|
||||
def _get_motor_id(self, motor: NameOrID) -> int:
|
||||
if isinstance(motor, str):
|
||||
return self.motors[motor].id
|
||||
elif isinstance(motor, int):
|
||||
return motor
|
||||
else:
|
||||
raise TypeError(f"'{motor}' should be int, str.")
|
||||
|
||||
def _get_motor_model(self, motor: NameOrID) -> int:
|
||||
if isinstance(motor, str):
|
||||
return self.motors[motor].model
|
||||
elif isinstance(motor, int):
|
||||
return self._id_to_model_dict[motor]
|
||||
else:
|
||||
raise TypeError(f"'{motor}' should be int, str.")
|
||||
|
||||
def _get_motors_list(self, motors: str | list[str] | None) -> list[str]:
|
||||
if motors is None:
|
||||
return self.names
|
||||
elif isinstance(motors, str):
|
||||
return [motors]
|
||||
elif isinstance(motors, list):
|
||||
return motors.copy()
|
||||
else:
|
||||
raise TypeError(motors)
|
||||
|
||||
def _get_ids_values_dict(self, values: Value | dict[str, Value] | None) -> list[str]:
|
||||
if isinstance(values, (int, float)):
|
||||
return dict.fromkeys(self.ids, values)
|
||||
elif isinstance(values, dict):
|
||||
return {self.motors[motor].id: val for motor, val in values.items()}
|
||||
else:
|
||||
raise TypeError(f"'values' is expected to be a single value or a dict. Got {values}")
|
||||
|
||||
def _validate_motors(self) -> None:
|
||||
if len(self.ids) != len(set(self.ids)):
|
||||
raise ValueError(f"Some motors have the same id!\n{self}")
|
||||
|
||||
# Ensure ctrl table available for all models
|
||||
for model in self.models:
|
||||
get_ctrl_table(self.model_ctrl_table, model)
|
||||
|
||||
def _is_comm_success(self, comm: int) -> bool:
|
||||
return comm == self._comm_success
|
||||
|
||||
def _is_error(self, error: int) -> bool:
|
||||
return error != self._no_error
|
||||
|
||||
def _assert_motors_exist(self) -> None:
|
||||
# TODO(aliberts): collect all wrong ids/models and display them at once
|
||||
found_models = {}
|
||||
for id_ in self.ids:
|
||||
model_nb = self.ping(id_)
|
||||
if model_nb is not None:
|
||||
found_models[id_] = model_nb
|
||||
expected_models = {m.id: self.model_number_table[m.model] for m in self.motors.values()}
|
||||
if set(found_models) != set(self.ids):
|
||||
raise RuntimeError(
|
||||
f"{self.__class__.__name__} is supposed to have these motors: ({{id: model_nb}})"
|
||||
f"\n{pformat(expected_models, indent=4, sort_dicts=False)}\n"
|
||||
f"But it found these motors on port '{self.port}':"
|
||||
f"\n{pformat(found_models, indent=4, sort_dicts=False)}\n"
|
||||
)
|
||||
|
||||
for id_, model in expected_models.items():
|
||||
if found_models[id_] != model:
|
||||
raise RuntimeError(
|
||||
f"Motor '{self._id_to_name(id_)}' (id={id_}) is supposed to be of model_number={model} "
|
||||
f"('{self._id_to_model(id_)}') but a model_number={found_models[id_]} "
|
||||
"was found instead for that id."
|
||||
)
|
||||
|
||||
@abc.abstractmethod
|
||||
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
|
||||
pass
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
return self.port_handler.is_open
|
||||
|
||||
def connect(self, handshake: bool = True) -> None:
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(
|
||||
f"{self.__class__.__name__}('{self.port}') is already connected. Do not call `{self.__class__.__name__}.connect()` twice."
|
||||
)
|
||||
|
||||
try:
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
elif handshake:
|
||||
self._handshake()
|
||||
except (FileNotFoundError, OSError, serial.SerialException) as e:
|
||||
raise ConnectionError(
|
||||
f"\nCould not connect on port '{self.port}'. Make sure you are using the correct port."
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py`\n"
|
||||
) from e
|
||||
|
||||
self.set_timeout()
|
||||
logger.debug(f"{self.__class__.__name__} connected.")
|
||||
|
||||
@abc.abstractmethod
|
||||
def _handshake(self) -> None:
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def scan_port(cls, port: str, *args, **kwargs) -> dict[int, list[int]]:
|
||||
bus = cls(port, {}, *args, **kwargs)
|
||||
try:
|
||||
bus.port_handler.openPort()
|
||||
except (FileNotFoundError, OSError, serial.SerialException) as e:
|
||||
raise ConnectionError(
|
||||
f"Could not connect to port '{port}'. Make sure you are using the correct port."
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py`\n"
|
||||
) from e
|
||||
baudrate_ids = {}
|
||||
for baudrate in tqdm(bus.available_baudrates, desc="Scanning port"):
|
||||
bus.set_baudrate(baudrate)
|
||||
ids_models = bus.broadcast_ping()
|
||||
if ids_models:
|
||||
tqdm.write(f"Motors found for {baudrate=}: {pformat(ids_models, indent=4)}")
|
||||
baudrate_ids[baudrate] = list(ids_models)
|
||||
|
||||
return baudrate_ids
|
||||
|
||||
@abc.abstractmethod
|
||||
def configure_motors(self) -> None:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
pass
|
||||
|
||||
@contextmanager
|
||||
def torque_disabled(self):
|
||||
self.disable_torque()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
self.enable_torque()
|
||||
|
||||
def set_timeout(self, timeout_ms: int | None = None):
|
||||
timeout_ms = timeout_ms if timeout_ms is not None else self.default_timeout
|
||||
self.port_handler.setPacketTimeoutMillis(timeout_ms)
|
||||
|
||||
def get_baudrate(self) -> int:
|
||||
return self.port_handler.getBaudRate()
|
||||
|
||||
def set_baudrate(self, baudrate: int) -> None:
|
||||
present_bus_baudrate = self.port_handler.getBaudRate()
|
||||
if present_bus_baudrate != baudrate:
|
||||
logger.info(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
||||
self.port_handler.setBaudRate(baudrate)
|
||||
|
||||
if self.port_handler.getBaudRate() != baudrate:
|
||||
raise OSError("Failed to write bus baud rate.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.calibration == self.read_calibration()
|
||||
|
||||
def read_calibration(self) -> dict[str, MotorCalibration]:
|
||||
offsets = self.sync_read("Homing_Offset", normalize=False)
|
||||
mins = self.sync_read("Min_Position_Limit", normalize=False)
|
||||
maxes = self.sync_read("Max_Position_Limit", normalize=False)
|
||||
|
||||
try:
|
||||
drive_modes = self.sync_read("Drive_Mode", normalize=False)
|
||||
except KeyError:
|
||||
drive_modes = dict.fromkeys(self.names, 0)
|
||||
|
||||
calibration = {}
|
||||
for name, motor in self.motors.items():
|
||||
calibration[name] = MotorCalibration(
|
||||
id=motor.id,
|
||||
drive_mode=drive_modes[name],
|
||||
homing_offset=offsets[name],
|
||||
range_min=mins[name],
|
||||
range_max=maxes[name],
|
||||
)
|
||||
|
||||
return calibration
|
||||
|
||||
def write_calibration(self, calibration_dict: dict[str, MotorCalibration]) -> None:
|
||||
for motor, calibration in calibration_dict.items():
|
||||
self.write("Homing_Offset", motor, calibration.homing_offset)
|
||||
self.write("Min_Position_Limit", motor, calibration.range_min)
|
||||
self.write("Max_Position_Limit", motor, calibration.range_max)
|
||||
|
||||
self.calibration = calibration_dict
|
||||
|
||||
def reset_calibration(self, motors: NameOrID | list[NameOrID] | None = None) -> None:
|
||||
if motors is None:
|
||||
motors = self.names
|
||||
elif isinstance(motors, (str, int)):
|
||||
motors = [motors]
|
||||
elif not isinstance(motors, list):
|
||||
raise TypeError(motors)
|
||||
|
||||
for motor in motors:
|
||||
model = self._get_motor_model(motor)
|
||||
max_res = self.model_resolution_table[model] - 1
|
||||
self.write("Homing_Offset", motor, 0, normalize=False)
|
||||
self.write("Min_Position_Limit", motor, 0, normalize=False)
|
||||
self.write("Max_Position_Limit", motor, max_res, normalize=False)
|
||||
|
||||
self.calibration = {}
|
||||
|
||||
def set_half_turn_homings(self, motors: NameOrID | list[NameOrID] | None = None) -> dict[NameOrID, Value]:
|
||||
"""
|
||||
This assumes motors present positions are roughly in the middle of their desired range
|
||||
|
||||
Step 1: Set homing and min max to 0
|
||||
|
||||
Step 2: Read Present_Position which will be Actual_Position since
|
||||
Present_Position = Actual_Position ± Homing_Offset (1)
|
||||
and Homing_Offset = 0 from step 1
|
||||
|
||||
Step 3: We want to set the Homing_Offset such that the current Present_Position to be half range of 1
|
||||
revolution. For instance, if 1 revolution corresponds to 4095 (4096 steps), this means we want the
|
||||
current Present_Position to be 2047.
|
||||
|
||||
In that example:
|
||||
Present_Position = 2047 (2)
|
||||
Actual_Position = X (read in step 2)
|
||||
from (1) and (2):
|
||||
=> Homing_Offset = ±(X - 2048)
|
||||
"""
|
||||
if motors is None:
|
||||
motors = self.names
|
||||
elif isinstance(motors, (str, int)):
|
||||
motors = [motors]
|
||||
else:
|
||||
raise TypeError(motors)
|
||||
|
||||
self.reset_calibration(motors)
|
||||
actual_positions = self.sync_read("Present_Position", motors, normalize=False)
|
||||
homing_offsets = self._get_half_turn_homings(actual_positions)
|
||||
for motor, offset in homing_offsets.items():
|
||||
self.write("Homing_Offset", motor, offset)
|
||||
|
||||
return homing_offsets
|
||||
|
||||
@abc.abstractmethod
|
||||
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
|
||||
pass
|
||||
|
||||
def record_ranges_of_motion(
|
||||
self, motors: NameOrID | list[NameOrID] | None = None, display_values: bool = True
|
||||
) -> tuple[dict[NameOrID, Value], dict[NameOrID, Value]]:
|
||||
"""
|
||||
This assumes that the homing offsets have been set such that all possible values in the range of
|
||||
motion are positive and that the zero is not crossed. To that end, `set_half_turn_homings` should
|
||||
typically be called prior to this.
|
||||
"""
|
||||
if motors is None:
|
||||
motors = self.names
|
||||
elif isinstance(motors, (str, int)):
|
||||
motors = [motors]
|
||||
elif not isinstance(motors, list):
|
||||
raise TypeError(motors)
|
||||
|
||||
start_positions = self.sync_read("Present_Position", motors, normalize=False)
|
||||
mins = start_positions.copy()
|
||||
maxes = start_positions.copy()
|
||||
while True:
|
||||
positions = self.sync_read("Present_Position", motors, normalize=False)
|
||||
mins = {motor: min(positions[motor], min_) for motor, min_ in mins.items()}
|
||||
maxes = {motor: max(positions[motor], max_) for motor, max_ in maxes.items()}
|
||||
|
||||
if display_values:
|
||||
print("\n-------------------------------------------")
|
||||
print(f"{'NAME':<15} | {'MIN':>6} | {'POS':>6} | {'MAX':>6}")
|
||||
for name in motors:
|
||||
print(f"{name:<15} | {mins[name]:>6} | {positions[name]:>6} | {maxes[name]:>6}")
|
||||
|
||||
if enter_pressed():
|
||||
break
|
||||
|
||||
if display_values:
|
||||
# Move cursor up to overwrite the previous output
|
||||
move_cursor_up(len(motors) + 3)
|
||||
|
||||
return mins, maxes
|
||||
|
||||
def _normalize(self, data_name: str, ids_values: dict[int, int]) -> dict[int, float]:
|
||||
if not self.calibration:
|
||||
raise RuntimeError(f"{self} has no calibration registered.")
|
||||
|
||||
normalized_values = {}
|
||||
for id_, val in ids_values.items():
|
||||
name = self._id_to_name(id_)
|
||||
min_ = self.calibration[name].range_min
|
||||
max_ = self.calibration[name].range_max
|
||||
bounded_val = min(max_, max(min_, val))
|
||||
if self.motors[name].norm_mode is MotorNormMode.RANGE_M100_100:
|
||||
normalized_values[id_] = (((bounded_val - min_) / (max_ - min_)) * 200) - 100
|
||||
elif self.motors[name].norm_mode is MotorNormMode.RANGE_0_100:
|
||||
normalized_values[id_] = ((bounded_val - min_) / (max_ - min_)) * 100
|
||||
else:
|
||||
# TODO(alibers): velocity and degree modes
|
||||
raise NotImplementedError
|
||||
|
||||
return normalized_values
|
||||
|
||||
def _unnormalize(self, data_name: str, ids_values: dict[int, float]) -> dict[int, int]:
|
||||
if not self.calibration:
|
||||
raise RuntimeError(f"{self} has no calibration registered.")
|
||||
|
||||
unnormalized_values = {}
|
||||
for id_, val in ids_values.items():
|
||||
name = self._id_to_name(id_)
|
||||
min_ = self.calibration[name].range_min
|
||||
max_ = self.calibration[name].range_max
|
||||
if self.motors[name].norm_mode is MotorNormMode.RANGE_M100_100:
|
||||
bounded_val = min(100.0, max(-100.0, val))
|
||||
unnormalized_values[id_] = int(((bounded_val + 100) / 200) * (max_ - min_) + min_)
|
||||
elif self.motors[name].norm_mode is MotorNormMode.RANGE_0_100:
|
||||
bounded_val = min(100.0, max(0.0, val))
|
||||
unnormalized_values[id_] = int((bounded_val / 100) * (max_ - min_) + min_)
|
||||
else:
|
||||
# TODO(alibers): velocity and degree modes
|
||||
raise NotImplementedError
|
||||
|
||||
return unnormalized_values
|
||||
|
||||
@abc.abstractmethod
|
||||
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
pass
|
||||
|
||||
def _serialize_data(self, value: int, length: int) -> list[int]:
|
||||
"""
|
||||
Converts an unsigned integer value into a list of byte-sized integers to be sent via a communication
|
||||
protocol. Depending on the protocol, split values can be in big-endian or little-endian order.
|
||||
|
||||
Supported data length for both Feetech and Dynamixel:
|
||||
- 1 (for values 0 to 255)
|
||||
- 2 (for values 0 to 65,535)
|
||||
- 4 (for values 0 to 4,294,967,295)
|
||||
"""
|
||||
if value < 0:
|
||||
raise ValueError(f"Negative values are not allowed: {value}")
|
||||
|
||||
max_value = {1: 0xFF, 2: 0xFFFF, 4: 0xFFFFFFFF}.get(length)
|
||||
if max_value is None:
|
||||
raise NotImplementedError(f"Unsupported byte size: {length}. Expected [1, 2, 4].")
|
||||
|
||||
if value > max_value:
|
||||
raise ValueError(f"Value {value} exceeds the maximum for {length} bytes ({max_value}).")
|
||||
|
||||
return self._split_into_byte_chunks(value, length)
|
||||
|
||||
@abc.abstractmethod
|
||||
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
|
||||
"""Convert an integer into a list of byte-sized integers."""
|
||||
pass
|
||||
|
||||
def ping(self, motor: NameOrID, num_retry: int = 0, raise_on_error: bool = False) -> int | None:
|
||||
id_ = self._get_motor_id(motor)
|
||||
for n_try in range(1 + num_retry):
|
||||
model_number, comm, error = self.packet_handler.ping(self.port_handler, id_)
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(f"ping failed for {id_=}: {n_try=} got {comm=} {error=}")
|
||||
|
||||
if not self._is_comm_success(comm):
|
||||
if raise_on_error:
|
||||
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
|
||||
else:
|
||||
return
|
||||
if self._is_error(error):
|
||||
if raise_on_error:
|
||||
raise RuntimeError(self.packet_handler.getRxPacketError(error))
|
||||
else:
|
||||
return
|
||||
|
||||
return model_number
|
||||
|
||||
@abc.abstractmethod
|
||||
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
|
||||
pass
|
||||
|
||||
def read(
|
||||
self,
|
||||
data_name: str,
|
||||
motor: str,
|
||||
*,
|
||||
normalize: bool = True,
|
||||
num_retry: int = 0,
|
||||
) -> Value:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"{self.__class__.__name__}('{self.port}') is not connected. You need to run `{self.__class__.__name__}.connect()`."
|
||||
)
|
||||
|
||||
id_ = self.motors[motor].id
|
||||
model = self.motors[motor].model
|
||||
addr, length = get_address(self.model_ctrl_table, model, data_name)
|
||||
|
||||
err_msg = f"Failed to read '{data_name}' on {id_=} after {num_retry + 1} tries."
|
||||
value, _, _ = self._read(addr, length, id_, num_retry=num_retry, raise_on_error=True, err_msg=err_msg)
|
||||
|
||||
id_value = self._decode_sign(data_name, {id_: value})
|
||||
|
||||
if normalize and data_name in self.normalized_data:
|
||||
id_value = self._normalize(data_name, id_value)
|
||||
|
||||
return id_value[id_]
|
||||
|
||||
def _read(
|
||||
self,
|
||||
address: int,
|
||||
length: int,
|
||||
motor_id: int,
|
||||
*,
|
||||
num_retry: int = 0,
|
||||
raise_on_error: bool = True,
|
||||
err_msg: str = "",
|
||||
) -> tuple[int, int]:
|
||||
if length == 1:
|
||||
read_fn = self.packet_handler.read1ByteTxRx
|
||||
elif length == 2:
|
||||
read_fn = self.packet_handler.read2ByteTxRx
|
||||
elif length == 4:
|
||||
read_fn = self.packet_handler.read4ByteTxRx
|
||||
else:
|
||||
raise ValueError(length)
|
||||
|
||||
for n_try in range(1 + num_retry):
|
||||
value, comm, error = read_fn(self.port_handler, motor_id, address)
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(
|
||||
f"Failed to read @{address=} ({length=}) on {motor_id=} ({n_try=}): "
|
||||
+ self.packet_handler.getTxRxResult(comm)
|
||||
)
|
||||
|
||||
if not self._is_comm_success(comm) and raise_on_error:
|
||||
raise ConnectionError(f"{err_msg} {self.packet_handler.getTxRxResult(comm)}")
|
||||
elif self._is_error(error) and raise_on_error:
|
||||
raise RuntimeError(f"{err_msg} {self.packet_handler.getRxPacketError(error)}")
|
||||
|
||||
return value, comm, error
|
||||
|
||||
def write(
|
||||
self, data_name: str, motor: str, value: Value, *, normalize: bool = True, num_retry: int = 0
|
||||
) -> None:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"{self.__class__.__name__}('{self.port}') is not connected. You need to run `{self.__class__.__name__}.connect()`."
|
||||
)
|
||||
|
||||
id_ = self.motors[motor].id
|
||||
model = self.motors[motor].model
|
||||
addr, length = get_address(self.model_ctrl_table, model, data_name)
|
||||
|
||||
if normalize and data_name in self.normalized_data:
|
||||
value = self._unnormalize(data_name, {id_: value})[id_]
|
||||
|
||||
value = self._encode_sign(data_name, {id_: value})[id_]
|
||||
|
||||
err_msg = f"Failed to write '{data_name}' on {id_=} with '{value}' after {num_retry + 1} tries."
|
||||
self._write(addr, length, id_, value, num_retry=num_retry, raise_on_error=True, err_msg=err_msg)
|
||||
|
||||
def _write(
|
||||
self,
|
||||
addr: int,
|
||||
length: int,
|
||||
motor_id: int,
|
||||
value: int,
|
||||
*,
|
||||
num_retry: int = 0,
|
||||
raise_on_error: bool = True,
|
||||
err_msg: str = "",
|
||||
) -> tuple[int, int]:
|
||||
data = self._serialize_data(value, length)
|
||||
for n_try in range(1 + num_retry):
|
||||
comm, error = self.packet_handler.writeTxRx(self.port_handler, motor_id, addr, length, data)
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(
|
||||
f"Failed to sync write @{addr=} ({length=}) on id={motor_id} with {value=} ({n_try=}): "
|
||||
+ self.packet_handler.getTxRxResult(comm)
|
||||
)
|
||||
|
||||
if not self._is_comm_success(comm) and raise_on_error:
|
||||
raise ConnectionError(f"{err_msg} {self.packet_handler.getTxRxResult(comm)}")
|
||||
elif self._is_error(error) and raise_on_error:
|
||||
raise RuntimeError(f"{err_msg} {self.packet_handler.getRxPacketError(error)}")
|
||||
|
||||
return comm, error
|
||||
|
||||
def sync_read(
|
||||
self,
|
||||
data_name: str,
|
||||
motors: str | list[str] | None = None,
|
||||
*,
|
||||
normalize: bool = True,
|
||||
num_retry: int = 0,
|
||||
) -> dict[str, Value]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"{self.__class__.__name__}('{self.port}') is not connected. You need to run `{self.__class__.__name__}.connect()`."
|
||||
)
|
||||
|
||||
self._assert_protocol_is_compatible("sync_read")
|
||||
|
||||
names = self._get_motors_list(motors)
|
||||
ids = [self.motors[name].id for name in names]
|
||||
models = [self.motors[name].model for name in names]
|
||||
|
||||
if self._has_different_ctrl_tables:
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
|
||||
model = next(iter(models))
|
||||
addr, length = get_address(self.model_ctrl_table, model, data_name)
|
||||
|
||||
err_msg = f"Failed to sync read '{data_name}' on {ids=} after {num_retry + 1} tries."
|
||||
ids_values, _ = self._sync_read(
|
||||
addr, length, ids, num_retry=num_retry, raise_on_error=True, err_msg=err_msg
|
||||
)
|
||||
|
||||
ids_values = self._decode_sign(data_name, ids_values)
|
||||
|
||||
if normalize and data_name in self.normalized_data:
|
||||
ids_values = self._normalize(data_name, ids_values)
|
||||
|
||||
return {self._id_to_name(id_): value for id_, value in ids_values.items()}
|
||||
|
||||
def _sync_read(
|
||||
self,
|
||||
addr: int,
|
||||
length: int,
|
||||
motor_ids: list[int],
|
||||
*,
|
||||
num_retry: int = 0,
|
||||
raise_on_error: bool = True,
|
||||
err_msg: str = "",
|
||||
) -> tuple[dict[int, int], int]:
|
||||
self._setup_sync_reader(motor_ids, addr, length)
|
||||
for n_try in range(1 + num_retry):
|
||||
comm = self.sync_reader.txRxPacket()
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(
|
||||
f"Failed to sync read @{addr=} ({length=}) on {motor_ids=} ({n_try=}): "
|
||||
+ self.packet_handler.getTxRxResult(comm)
|
||||
)
|
||||
|
||||
if not self._is_comm_success(comm) and raise_on_error:
|
||||
raise ConnectionError(f"{err_msg} {self.packet_handler.getTxRxResult(comm)}")
|
||||
|
||||
values = {id_: self.sync_reader.getData(id_, addr, length) for id_ in motor_ids}
|
||||
return values, comm
|
||||
|
||||
def _setup_sync_reader(self, motor_ids: list[int], addr: int, length: int) -> None:
|
||||
self.sync_reader.clearParam()
|
||||
self.sync_reader.start_address = addr
|
||||
self.sync_reader.data_length = length
|
||||
for id_ in motor_ids:
|
||||
self.sync_reader.addParam(id_)
|
||||
|
||||
# TODO(aliberts, pkooij): Implementing something like this could get even much faster read times if need be.
|
||||
# Would have to handle the logic of checking if a packet has been sent previously though but doable.
|
||||
# This could be at the cost of increase latency between the moment the data is produced by the motors and
|
||||
# the moment it is used by a policy.
|
||||
# def _async_read(self, motor_ids: list[int], address: int, length: int):
|
||||
# if self.sync_reader.start_address != address or self.sync_reader.data_length != length or ...:
|
||||
# self._setup_sync_reader(motor_ids, address, length)
|
||||
# else:
|
||||
# self.sync_reader.rxPacket()
|
||||
# self.sync_reader.txPacket()
|
||||
|
||||
# for id_ in motor_ids:
|
||||
# value = self.sync_reader.getData(id_, address, length)
|
||||
|
||||
def sync_write(
|
||||
self,
|
||||
data_name: str,
|
||||
values: Value | dict[str, Value],
|
||||
*,
|
||||
normalize: bool = True,
|
||||
num_retry: int = 0,
|
||||
) -> None:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"{self.__class__.__name__}('{self.port}') is not connected. You need to run `{self.__class__.__name__}.connect()`."
|
||||
)
|
||||
|
||||
ids_values = self._get_ids_values_dict(values)
|
||||
models = [self._id_to_model(id_) for id_ in ids_values]
|
||||
if self._has_different_ctrl_tables:
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
|
||||
model = next(iter(models))
|
||||
addr, length = get_address(self.model_ctrl_table, model, data_name)
|
||||
|
||||
if normalize and data_name in self.normalized_data:
|
||||
ids_values = self._unnormalize(data_name, ids_values)
|
||||
|
||||
ids_values = self._encode_sign(data_name, ids_values)
|
||||
|
||||
err_msg = f"Failed to sync write '{data_name}' with {ids_values=} after {num_retry + 1} tries."
|
||||
self._sync_write(addr, length, ids_values, num_retry=num_retry, raise_on_error=True, err_msg=err_msg)
|
||||
|
||||
def _sync_write(
|
||||
self,
|
||||
addr: int,
|
||||
length: int,
|
||||
ids_values: dict[int, int],
|
||||
num_retry: int = 0,
|
||||
raise_on_error: bool = True,
|
||||
err_msg: str = "",
|
||||
) -> int:
|
||||
self._setup_sync_writer(ids_values, addr, length)
|
||||
for n_try in range(1 + num_retry):
|
||||
comm = self.sync_writer.txPacket()
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(
|
||||
f"Failed to sync write @{addr=} ({length=}) with {ids_values=} ({n_try=}): "
|
||||
+ self.packet_handler.getTxRxResult(comm)
|
||||
)
|
||||
|
||||
if not self._is_comm_success(comm) and raise_on_error:
|
||||
raise ConnectionError(f"{err_msg} {self.packet_handler.getTxRxResult(comm)}")
|
||||
|
||||
return comm
|
||||
|
||||
def _setup_sync_writer(self, ids_values: dict[int, int], addr: int, length: int) -> None:
|
||||
self.sync_writer.clearParam()
|
||||
self.sync_writer.start_address = addr
|
||||
self.sync_writer.data_length = length
|
||||
for id_, value in ids_values.items():
|
||||
data = self._serialize_data(value, length)
|
||||
self.sync_writer.addParam(id_, data)
|
||||
|
||||
def disconnect(self, disable_torque: bool = True) -> None:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"{self.__class__.__name__}('{self.port}') is not connected. Try running `{self.__class__.__name__}.connect()` first."
|
||||
)
|
||||
|
||||
if disable_torque:
|
||||
self.port_handler.clearPort()
|
||||
self.port_handler.is_using = False
|
||||
self.disable_torque(num_retry=5)
|
||||
|
||||
self.port_handler.closePort()
|
||||
logger.debug(f"{self.__class__.__name__} disconnected.")
|
||||
@@ -33,7 +33,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
||||
from torch import Tensor, nn
|
||||
|
||||
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
|
||||
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
@@ -238,8 +238,8 @@ class DiffusionModel(nn.Module):
|
||||
|
||||
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Encode image features and concatenate them all together along with the state vector."""
|
||||
batch_size, n_obs_steps = batch[OBS_STATE].shape[:2]
|
||||
global_cond_feats = [batch[OBS_STATE]]
|
||||
batch_size, n_obs_steps = batch[OBS_ROBOT].shape[:2]
|
||||
global_cond_feats = [batch[OBS_ROBOT]]
|
||||
# Extract image features.
|
||||
if self.config.image_features:
|
||||
if self.config.use_separate_rgb_encoder_per_camera:
|
||||
@@ -269,7 +269,7 @@ class DiffusionModel(nn.Module):
|
||||
global_cond_feats.append(img_features)
|
||||
|
||||
if self.config.env_state_feature:
|
||||
global_cond_feats.append(batch[OBS_ENV_STATE])
|
||||
global_cond_feats.append(batch[OBS_ENV])
|
||||
|
||||
# Concatenate features then flatten to (B, global_cond_dim).
|
||||
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)
|
||||
|
||||
@@ -57,7 +57,7 @@ import torch.nn.functional as F # noqa: N812
|
||||
from torch import Tensor, nn
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from lerobot.common.constants import ACTION, OBS_STATE
|
||||
from lerobot.common.constants import ACTION, OBS_ROBOT
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
|
||||
from lerobot.common.policies.pi0.paligemma_with_expert import (
|
||||
@@ -271,7 +271,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
self.eval()
|
||||
|
||||
if self.config.adapt_to_pi_aloha:
|
||||
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
|
||||
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
|
||||
@@ -303,7 +303,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
|
||||
"""Do a full training forward pass to compute the loss"""
|
||||
if self.config.adapt_to_pi_aloha:
|
||||
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
|
||||
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
|
||||
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
@@ -380,7 +380,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
|
||||
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
|
||||
"""Tokenize the text input"""
|
||||
device = batch[OBS_STATE].device
|
||||
device = batch[OBS_ROBOT].device
|
||||
tasks = batch["task"]
|
||||
|
||||
# PaliGemma prompt has to end with a new line
|
||||
@@ -427,7 +427,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
|
||||
def prepare_state(self, batch):
|
||||
"""Pad state"""
|
||||
state = pad_vector(batch[OBS_STATE], self.config.max_state_dim)
|
||||
state = pad_vector(batch[OBS_ROBOT], self.config.max_state_dim)
|
||||
return state
|
||||
|
||||
def prepare_action(self, batch):
|
||||
|
||||
@@ -35,7 +35,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
|
||||
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
|
||||
@@ -753,9 +753,9 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
)
|
||||
)
|
||||
if self.config.env_state_feature:
|
||||
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV_STATE]))
|
||||
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV]))
|
||||
if self.config.robot_state_feature:
|
||||
feat.append(self.state_enc_layers(obs_dict[OBS_STATE]))
|
||||
feat.append(self.state_enc_layers(obs_dict[OBS_ROBOT]))
|
||||
return torch.stack(feat, dim=0).mean(0)
|
||||
|
||||
|
||||
|
||||
@@ -12,24 +12,67 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..configs import CameraConfig
|
||||
import draccus
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("intelrealsense")
|
||||
@dataclass
|
||||
class RealSenseCameraConfig(CameraConfig):
|
||||
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("opencv")
|
||||
@dataclass
|
||||
class OpenCVCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 60, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 90, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 30, 1280, 720)
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
|
||||
OpenCVCameraConfig(0, 30, 640, 480)
|
||||
OpenCVCameraConfig(0, 60, 640, 480)
|
||||
OpenCVCameraConfig(0, 90, 640, 480)
|
||||
OpenCVCameraConfig(0, 30, 1280, 720)
|
||||
```
|
||||
"""
|
||||
|
||||
camera_index: int
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("intelrealsense")
|
||||
@dataclass
|
||||
class IntelRealSenseCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 60, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 90, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 1280, 720)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
|
||||
```
|
||||
"""
|
||||
|
||||
@@ -31,15 +31,14 @@ from threading import Thread
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.robot_utils import (
|
||||
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
SERIAL_NUMBER_INDEX = 1
|
||||
|
||||
|
||||
@@ -109,11 +108,13 @@ def save_images_from_cameras(
|
||||
cameras = []
|
||||
for cam_sn in serial_numbers:
|
||||
print(f"{cam_sn=}")
|
||||
config = RealSenseCameraConfig(serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = RealSenseCamera(config)
|
||||
config = IntelRealSenseCameraConfig(
|
||||
serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock
|
||||
)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
camera.connect()
|
||||
print(
|
||||
f"RealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
@@ -165,11 +166,11 @@ def save_images_from_cameras(
|
||||
camera.disconnect()
|
||||
|
||||
|
||||
class RealSenseCamera(Camera):
|
||||
class IntelRealSenseCamera:
|
||||
"""
|
||||
The RealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
|
||||
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
|
||||
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
|
||||
- can also be instantiated with the camera's name — if it's unique — using RealSenseCamera.init_from_name(),
|
||||
- can also be instantiated with the camera's name — if it's unique — using IntelRealSenseCamera.init_from_name(),
|
||||
- depth map can be returned.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
|
||||
@@ -177,15 +178,15 @@ class RealSenseCamera(Camera):
|
||||
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
|
||||
```
|
||||
|
||||
When an RealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
|
||||
Example of instantiating with a serial number:
|
||||
```python
|
||||
from lerobot.common.robot_devices.cameras.configs import RealSenseCameraConfig
|
||||
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
|
||||
|
||||
config = RealSenseCameraConfig(serial_number=128422271347)
|
||||
camera = RealSenseCamera(config)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
@@ -194,21 +195,21 @@ class RealSenseCamera(Camera):
|
||||
|
||||
Example of instantiating with a name if it's unique:
|
||||
```
|
||||
config = RealSenseCameraConfig(name="Intel RealSense D405")
|
||||
config = IntelRealSenseCameraConfig(name="Intel RealSense D405")
|
||||
```
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
|
||||
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
|
||||
```
|
||||
|
||||
Example of returning depth:
|
||||
```python
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, use_depth=True)
|
||||
camera = RealSenseCamera(config)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, use_depth=True)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image, depth_map = camera.read()
|
||||
```
|
||||
@@ -216,7 +217,7 @@ class RealSenseCamera(Camera):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: RealSenseCameraConfig,
|
||||
config: IntelRealSenseCameraConfig,
|
||||
):
|
||||
self.config = config
|
||||
if config.name is not None:
|
||||
@@ -281,7 +282,9 @@ class RealSenseCamera(Camera):
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"RealSenseCamera({self.serial_number}) is already connected.")
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is already connected."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_pyrealsense2 as rs
|
||||
@@ -327,7 +330,7 @@ class RealSenseCamera(Camera):
|
||||
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
|
||||
)
|
||||
|
||||
raise OSError(f"Can't access RealSenseCamera({self.serial_number}).")
|
||||
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_stream = profile.get_stream(rs.stream.color)
|
||||
color_profile = color_stream.as_video_stream_profile()
|
||||
@@ -339,15 +342,15 @@ class RealSenseCamera(Camera):
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for RealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.capture_width is not None and self.capture_width != actual_width:
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_width=} for RealSenseCamera({self.serial_number}). Actual value is {actual_width}."
|
||||
f"Can't set {self.capture_width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.capture_height is not None and self.capture_height != actual_height:
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_height=} for RealSenseCamera({self.serial_number}). Actual value is {actual_height}."
|
||||
f"Can't set {self.capture_height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
@@ -367,8 +370,8 @@ class RealSenseCamera(Camera):
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
@@ -383,7 +386,7 @@ class RealSenseCamera(Camera):
|
||||
color_frame = frame.get_color_frame()
|
||||
|
||||
if not color_frame:
|
||||
raise OSError(f"Can't capture color image from RealSenseCamera({self.serial_number}).")
|
||||
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
@@ -415,7 +418,7 @@ class RealSenseCamera(Camera):
|
||||
if self.use_depth:
|
||||
depth_frame = frame.get_depth_frame()
|
||||
if not depth_frame:
|
||||
raise OSError(f"Can't capture depth image from RealSenseCamera({self.serial_number}).")
|
||||
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
@@ -442,8 +445,8 @@ class RealSenseCamera(Camera):
|
||||
def async_read(self):
|
||||
"""Access the latest color image"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
@@ -469,8 +472,8 @@ class RealSenseCamera(Camera):
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
@@ -492,14 +495,14 @@ class RealSenseCamera(Camera):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `RealSenseCamera` for all cameras connected to the computer, or a selected subset."
|
||||
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--serial-numbers",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of serial numbers used to instantiate the `RealSenseCamera`. If not provided, find and use all available camera indices.",
|
||||
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
@@ -509,13 +512,13 @@ if __name__ == "__main__":
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=str,
|
||||
type=int,
|
||||
default=640,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=str,
|
||||
type=int,
|
||||
default=480,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
@@ -24,20 +24,19 @@ import shutil
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.robot_utils import (
|
||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from .configuration_opencv import OpenCVCameraConfig
|
||||
|
||||
# The maximum opencv device index depends on your operating system. For instance,
|
||||
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
|
||||
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
|
||||
@@ -46,12 +45,12 @@ from .configuration_opencv import OpenCVCameraConfig
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX) -> list[dict]:
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
|
||||
cameras = []
|
||||
if platform.system() == "Linux":
|
||||
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
|
||||
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
|
||||
ports = _find_cameras(possible_ports)
|
||||
ports = _find_cameras(possible_ports, mock=mock)
|
||||
for port in ports:
|
||||
cameras.append(
|
||||
{
|
||||
@@ -65,7 +64,7 @@ def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX
|
||||
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
|
||||
)
|
||||
possible_indices = range(max_index_search_range)
|
||||
indices = _find_cameras(possible_indices)
|
||||
indices = _find_cameras(possible_indices, mock=mock)
|
||||
for index in indices:
|
||||
cameras.append(
|
||||
{
|
||||
@@ -77,7 +76,14 @@ def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX
|
||||
return cameras
|
||||
|
||||
|
||||
def _find_cameras(possible_camera_ids: list[int | str], raise_when_empty=False) -> list[int | str]:
|
||||
def _find_cameras(
|
||||
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
|
||||
) -> list[int | str]:
|
||||
if mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
camera_ids = []
|
||||
for camera_idx in possible_camera_ids:
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
@@ -121,19 +127,20 @@ def save_images_from_cameras(
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given camera index.
|
||||
"""
|
||||
if camera_ids is None or len(camera_ids) == 0:
|
||||
camera_infos = find_cameras()
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
camera_ids = [cam["index"] for cam in camera_infos]
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_idx in camera_ids:
|
||||
config = OpenCVCameraConfig(camera_index=cam_idx, fps=fps, width=width, height=height)
|
||||
config = OpenCVCameraConfig(camera_index=cam_idx, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = OpenCVCamera(config)
|
||||
camera.connect()
|
||||
print(
|
||||
@@ -183,7 +190,7 @@ def save_images_from_cameras(
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
|
||||
|
||||
class OpenCVCamera(Camera):
|
||||
class OpenCVCamera:
|
||||
"""
|
||||
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
|
||||
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
@@ -252,6 +259,7 @@ class OpenCVCamera(Camera):
|
||||
self.fps = config.fps
|
||||
self.channels = config.channels
|
||||
self.color_mode = config.color_mode
|
||||
self.mock = config.mock
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
@@ -260,6 +268,11 @@ class OpenCVCamera(Camera):
|
||||
self.color_image = None
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
@@ -270,11 +283,16 @@ class OpenCVCamera(Camera):
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
|
||||
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
|
||||
# when other threads are used to save the images.
|
||||
cv2.setNumThreads(1)
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
|
||||
# when other threads are used to save the images.
|
||||
cv2.setNumThreads(1)
|
||||
|
||||
backend = (
|
||||
cv2.CAP_V4L2
|
||||
@@ -357,7 +375,7 @@ class OpenCVCamera(Camera):
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
@@ -379,6 +397,11 @@ class OpenCVCamera(Camera):
|
||||
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
|
||||
# so we convert the image color from BGR to RGB.
|
||||
if requested_color_mode == "rgb":
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
@@ -409,13 +432,13 @@ class OpenCVCamera(Camera):
|
||||
|
||||
def async_read(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = threading.Thread(target=self.read_loop, args=())
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
|
||||
@@ -431,7 +454,7 @@ class OpenCVCamera(Camera):
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
@@ -469,13 +492,13 @@ if __name__ == "__main__":
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=str,
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=str,
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
67
lerobot/common/robot_devices/cameras/utils.py
Normal file
67
lerobot/common/robot_devices/cameras/utils.py
Normal file
@@ -0,0 +1,67 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Protocol
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import (
|
||||
CameraConfig,
|
||||
IntelRealSenseCameraConfig,
|
||||
OpenCVCameraConfig,
|
||||
)
|
||||
|
||||
|
||||
# Defines a camera type
|
||||
class Camera(Protocol):
|
||||
def connect(self): ...
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
|
||||
def async_read(self) -> np.ndarray: ...
|
||||
def disconnect(self): ...
|
||||
|
||||
|
||||
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[Camera]:
|
||||
cameras = {}
|
||||
|
||||
for key, cfg in camera_configs.items():
|
||||
if cfg.type == "opencv":
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
|
||||
cameras[key] = OpenCVCamera(cfg)
|
||||
|
||||
elif cfg.type == "intelrealsense":
|
||||
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
|
||||
|
||||
cameras[key] = IntelRealSenseCamera(cfg)
|
||||
else:
|
||||
raise ValueError(f"The camera type '{cfg.type}' is not valid.")
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def make_camera(camera_type, **kwargs) -> Camera:
|
||||
if camera_type == "opencv":
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
|
||||
config = OpenCVCameraConfig(**kwargs)
|
||||
return OpenCVCamera(config)
|
||||
|
||||
elif camera_type == "intelrealsense":
|
||||
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
|
||||
|
||||
config = IntelRealSenseCameraConfig(**kwargs)
|
||||
return IntelRealSenseCamera(config)
|
||||
|
||||
else:
|
||||
raise ValueError(f"The camera type '{camera_type}' is not valid.")
|
||||
@@ -17,7 +17,7 @@ from pathlib import Path
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.robots import RobotConfig
|
||||
from lerobot.common.robot_devices.robots.configs import RobotConfig
|
||||
from lerobot.configs import parser
|
||||
from lerobot.configs.policies import PreTrainedConfig
|
||||
|
||||
@@ -33,8 +33,8 @@ from lerobot.common.datasets.image_writer import safe_stop_image_writer
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import get_features_from_robot
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
from lerobot.common.robots.utils import Robot
|
||||
from lerobot.common.utils.robot_utils import busy_wait
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.robot_devices.utils import busy_wait
|
||||
from lerobot.common.utils.utils import get_safe_torch_device, has_method
|
||||
|
||||
|
||||
873
lerobot/common/robot_devices/motors/dynamixel.py
Normal file
873
lerobot/common/robot_devices/motors/dynamixel.py
Normal file
@@ -0,0 +1,873 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import enum
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
PROTOCOL_VERSION = 2.0
|
||||
BAUDRATE = 1_000_000
|
||||
TIMEOUT_MS = 1000
|
||||
|
||||
MAX_ID_RANGE = 252
|
||||
|
||||
# The following bounds define the lower and upper joints range (after calibration).
|
||||
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
|
||||
# which corresponds to a half rotation on the left and half rotation on the right.
|
||||
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
|
||||
# an error is raised.
|
||||
LOWER_BOUND_DEGREE = -270
|
||||
UPPER_BOUND_DEGREE = 270
|
||||
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
|
||||
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
|
||||
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
|
||||
# [-10, 110] until an error is raised.
|
||||
LOWER_BOUND_LINEAR = -10
|
||||
UPPER_BOUND_LINEAR = 110
|
||||
|
||||
HALF_TURN_DEGREE = 180
|
||||
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m077
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m288
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xm430-w350
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xm540-w270
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xc430-w150
|
||||
|
||||
# data_name: (address, size_byte)
|
||||
X_SERIES_CONTROL_TABLE = {
|
||||
"Model_Number": (0, 2),
|
||||
"Model_Information": (2, 4),
|
||||
"Firmware_Version": (6, 1),
|
||||
"ID": (7, 1),
|
||||
"Baud_Rate": (8, 1),
|
||||
"Return_Delay_Time": (9, 1),
|
||||
"Drive_Mode": (10, 1),
|
||||
"Operating_Mode": (11, 1),
|
||||
"Secondary_ID": (12, 1),
|
||||
"Protocol_Type": (13, 1),
|
||||
"Homing_Offset": (20, 4),
|
||||
"Moving_Threshold": (24, 4),
|
||||
"Temperature_Limit": (31, 1),
|
||||
"Max_Voltage_Limit": (32, 2),
|
||||
"Min_Voltage_Limit": (34, 2),
|
||||
"PWM_Limit": (36, 2),
|
||||
"Current_Limit": (38, 2),
|
||||
"Acceleration_Limit": (40, 4),
|
||||
"Velocity_Limit": (44, 4),
|
||||
"Max_Position_Limit": (48, 4),
|
||||
"Min_Position_Limit": (52, 4),
|
||||
"Shutdown": (63, 1),
|
||||
"Torque_Enable": (64, 1),
|
||||
"LED": (65, 1),
|
||||
"Status_Return_Level": (68, 1),
|
||||
"Registered_Instruction": (69, 1),
|
||||
"Hardware_Error_Status": (70, 1),
|
||||
"Velocity_I_Gain": (76, 2),
|
||||
"Velocity_P_Gain": (78, 2),
|
||||
"Position_D_Gain": (80, 2),
|
||||
"Position_I_Gain": (82, 2),
|
||||
"Position_P_Gain": (84, 2),
|
||||
"Feedforward_2nd_Gain": (88, 2),
|
||||
"Feedforward_1st_Gain": (90, 2),
|
||||
"Bus_Watchdog": (98, 1),
|
||||
"Goal_PWM": (100, 2),
|
||||
"Goal_Current": (102, 2),
|
||||
"Goal_Velocity": (104, 4),
|
||||
"Profile_Acceleration": (108, 4),
|
||||
"Profile_Velocity": (112, 4),
|
||||
"Goal_Position": (116, 4),
|
||||
"Realtime_Tick": (120, 2),
|
||||
"Moving": (122, 1),
|
||||
"Moving_Status": (123, 1),
|
||||
"Present_PWM": (124, 2),
|
||||
"Present_Current": (126, 2),
|
||||
"Present_Velocity": (128, 4),
|
||||
"Present_Position": (132, 4),
|
||||
"Velocity_Trajectory": (136, 4),
|
||||
"Position_Trajectory": (140, 4),
|
||||
"Present_Input_Voltage": (144, 2),
|
||||
"Present_Temperature": (146, 1),
|
||||
}
|
||||
|
||||
X_SERIES_BAUDRATE_TABLE = {
|
||||
0: 9_600,
|
||||
1: 57_600,
|
||||
2: 115_200,
|
||||
3: 1_000_000,
|
||||
4: 2_000_000,
|
||||
5: 3_000_000,
|
||||
6: 4_000_000,
|
||||
}
|
||||
|
||||
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"x_series": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m077": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m288": X_SERIES_CONTROL_TABLE,
|
||||
"xl430-w250": X_SERIES_CONTROL_TABLE,
|
||||
"xm430-w350": X_SERIES_CONTROL_TABLE,
|
||||
"xm540-w270": X_SERIES_CONTROL_TABLE,
|
||||
"xc430-w150": X_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_RESOLUTION = {
|
||||
"x_series": 4096,
|
||||
"xl330-m077": 4096,
|
||||
"xl330-m288": 4096,
|
||||
"xl430-w250": 4096,
|
||||
"xm430-w350": 4096,
|
||||
"xm540-w270": 4096,
|
||||
"xc430-w150": 4096,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"x_series": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
|
||||
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
NUM_READ_RETRY = 10
|
||||
NUM_WRITE_RETRY = 10
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
"""
|
||||
resolutions = [MODEL_RESOLUTION[model] for model in models]
|
||||
steps = degrees / 180 * np.array(resolutions) / 2
|
||||
steps = steps.astype(int)
|
||||
return steps
|
||||
|
||||
|
||||
def convert_to_bytes(value, bytes, mock=False):
|
||||
if mock:
|
||||
return value
|
||||
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
# Note: No need to convert back into unsigned int, since this byte preprocessing
|
||||
# already handles it for us.
|
||||
if bytes == 1:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 2:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 4:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
|
||||
]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
||||
f"{bytes} is provided instead."
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
def get_group_sync_key(data_name, motor_names):
|
||||
group_key = f"{data_name}_" + "_".join(motor_names)
|
||||
return group_key
|
||||
|
||||
|
||||
def get_result_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
rslt_name = f"{fn_name}_{group_key}"
|
||||
return rslt_name
|
||||
|
||||
|
||||
def get_queue_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
queue_name = f"{fn_name}_{group_key}"
|
||||
return queue_name
|
||||
|
||||
|
||||
def get_log_name(var_name, fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
log_name = f"{var_name}_{fn_name}_{group_key}"
|
||||
return log_name
|
||||
|
||||
|
||||
def assert_same_address(model_ctrl_table, motor_models, data_name):
|
||||
all_addr = []
|
||||
all_bytes = []
|
||||
for model in motor_models:
|
||||
addr, bytes = model_ctrl_table[model][data_name]
|
||||
all_addr.append(addr)
|
||||
all_bytes.append(bytes)
|
||||
|
||||
if len(set(all_addr)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
if len(set(all_bytes)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
|
||||
class TorqueMode(enum.Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
class DriveMode(enum.Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class CalibrationMode(enum.Enum):
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
DEGREE = 0
|
||||
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||
LINEAR = 1
|
||||
|
||||
|
||||
class JointOutOfRangeError(Exception):
|
||||
def __init__(self, message="Joint is out of range"):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class DynamixelMotorsBus:
|
||||
"""
|
||||
The DynamixelMotorsBus class allows to efficiently read and write to the attached motors. It relies on
|
||||
the python dynamixel sdk to communicate with the motors. For more info, see the [Dynamixel SDK Documentation](https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
|
||||
|
||||
A DynamixelMotorsBus instance requires a port (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
||||
To find the port, you can run our utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
>>> Finding all available ports for the MotorBus.
|
||||
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
>>> Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
>>> The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751.
|
||||
>>> Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example of usage for 1 motor connected to the bus:
|
||||
```python
|
||||
motor_name = "gripper"
|
||||
motor_index = 6
|
||||
motor_model = "xl330-m288"
|
||||
|
||||
config = DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={motor_name: (motor_index, motor_model)},
|
||||
)
|
||||
motors_bus = DynamixelMotorsBus(config)
|
||||
motors_bus.connect()
|
||||
|
||||
position = motors_bus.read("Present_Position")
|
||||
|
||||
# move from a few motor steps as an example
|
||||
few_steps = 30
|
||||
motors_bus.write("Goal_Position", position + few_steps)
|
||||
|
||||
# when done, consider disconnecting
|
||||
motors_bus.disconnect()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: DynamixelMotorsBusConfig,
|
||||
):
|
||||
self.port = config.port
|
||||
self.motors = config.motors
|
||||
self.mock = config.mock
|
||||
|
||||
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
self.model_resolution = deepcopy(MODEL_RESOLUTION)
|
||||
|
||||
self.port_handler = None
|
||||
self.packet_handler = None
|
||||
self.calibration = None
|
||||
self.is_connected = False
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.logs = {}
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
self.port_handler = dxl.PortHandler(self.port)
|
||||
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
try:
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
|
||||
)
|
||||
raise
|
||||
|
||||
# Allow to read and write
|
||||
self.is_connected = True
|
||||
|
||||
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
|
||||
|
||||
def reconnect(self):
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
self.port_handler = dxl.PortHandler(self.port)
|
||||
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def are_motors_configured(self):
|
||||
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
|
||||
# a ConnectionError will be raised anyway.
|
||||
try:
|
||||
return (self.motor_indices == self.read("ID")).all()
|
||||
except ConnectionError as e:
|
||||
print(e)
|
||||
return False
|
||||
|
||||
def find_motor_indices(self, possible_ids=None, num_retry=2):
|
||||
if possible_ids is None:
|
||||
possible_ids = range(MAX_ID_RANGE)
|
||||
|
||||
indices = []
|
||||
for idx in tqdm.tqdm(possible_ids):
|
||||
try:
|
||||
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
|
||||
except ConnectionError:
|
||||
continue
|
||||
|
||||
if idx != present_idx:
|
||||
# sanity check
|
||||
raise OSError(
|
||||
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
|
||||
)
|
||||
indices.append(idx)
|
||||
|
||||
return indices
|
||||
|
||||
def set_bus_baudrate(self, baudrate):
|
||||
present_bus_baudrate = self.port_handler.getBaudRate()
|
||||
if present_bus_baudrate != baudrate:
|
||||
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
||||
self.port_handler.setBaudRate(baudrate)
|
||||
|
||||
if self.port_handler.getBaudRate() != baudrate:
|
||||
raise OSError("Failed to write bus baud rate.")
|
||||
|
||||
@property
|
||||
def motor_names(self) -> list[str]:
|
||||
return list(self.motors.keys())
|
||||
|
||||
@property
|
||||
def motor_models(self) -> list[str]:
|
||||
return [model for _, model in self.motors.values()]
|
||||
|
||||
@property
|
||||
def motor_indices(self) -> list[int]:
|
||||
return [idx for idx, _ in self.motors.values()]
|
||||
|
||||
def set_calibration(self, calibration: dict[str, list]):
|
||||
self.calibration = calibration
|
||||
|
||||
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function applies the calibration, automatically detects out of range errors for motors values and attempts to correct.
|
||||
|
||||
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
|
||||
"""
|
||||
try:
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
except JointOutOfRangeError as e:
|
||||
print(e)
|
||||
self.autocorrect_calibration(values, motor_names)
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
return values
|
||||
|
||||
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
|
||||
a "zero position" at 0 degree.
|
||||
|
||||
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
|
||||
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
|
||||
|
||||
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
|
||||
when given a goal position that is + or - their resolution. For instance, dynamixel xl330-m077 have a resolution of 4096, and
|
||||
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
|
||||
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
|
||||
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
|
||||
in the centered nominal degree range ]-180, 180[.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Update direction of rotation of the motor to match between leader and follower.
|
||||
# In fact, the motor of the leader for a given joint can be assembled in an
|
||||
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from range [-2**31, 2**31] to
|
||||
# nominal range [-resolution//2, resolution//2] (e.g. [-2048, 2048])
|
||||
values[i] += homing_offset
|
||||
|
||||
# Convert from range [-resolution//2, resolution//2] to
|
||||
# universal float32 centered degree range [-180, 180]
|
||||
# (e.g. 2048 / (4096 // 2) * 180 = 180)
|
||||
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
|
||||
|
||||
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
|
||||
f"but present value is {values[i]} degree. "
|
||||
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Rescale the present position to a nominal range [0, 100] %,
|
||||
# useful for joints with linear motions like Aloha gripper
|
||||
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
|
||||
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
|
||||
f"but present value is {values[i]} %. "
|
||||
"This might be due to a cable connection issue creating an artificial jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
|
||||
|
||||
Some motors might have values outside of expected maximum bounds after calibration.
|
||||
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
|
||||
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
|
||||
|
||||
Known issues:
|
||||
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
|
||||
#2: Motor internal homing offset is shifted by a full turn, caused by using default calibration (e.g Aloha).
|
||||
#3: motor internal homing offset is shifted by less or more than a full turn, caused by using default calibration
|
||||
or by human error during manual calibration.
|
||||
|
||||
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
|
||||
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
|
||||
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
|
||||
|
||||
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Update direction of rotation of the motor to match between leader and follower.
|
||||
# In fact, the motor of the leader for a given joint can be assembled in an
|
||||
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from initial range to range [-180, 180] degrees
|
||||
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
|
||||
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
|
||||
# (- (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= ((resolution // 2) - values[i] - homing_offset) / resolution
|
||||
low_factor = (-(resolution // 2) - values[i] - homing_offset) / resolution
|
||||
upp_factor = ((resolution // 2) - values[i] - homing_offset) / resolution
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from initial range to range [0, 100] in %
|
||||
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [0, 100] %
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
|
||||
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
|
||||
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
|
||||
low_factor = (start_pos - values[i]) / resolution
|
||||
upp_factor = (end_pos - values[i]) / resolution
|
||||
|
||||
if not in_range:
|
||||
# Get first integer between the two bounds
|
||||
if low_factor < upp_factor:
|
||||
factor = math.ceil(low_factor)
|
||||
|
||||
if factor > upp_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
else:
|
||||
factor = math.ceil(upp_factor)
|
||||
|
||||
if factor > low_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
|
||||
logging.warning(
|
||||
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
|
||||
f"from '{out_of_range_str}' to '{in_range_str}'."
|
||||
)
|
||||
|
||||
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
self.calibration["homing_offset"][calib_idx] += resolution * factor
|
||||
|
||||
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Inverse of `apply_calibration`."""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Convert from nominal 0-centered degree range [-180, 180] to
|
||||
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
||||
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
||||
|
||||
# Subtract the homing offsets to come back to actual motor range of values
|
||||
# which can be arbitrary.
|
||||
values[i] -= homing_offset
|
||||
|
||||
# Remove drive mode, which is the rotation direction of the motor, to come back to
|
||||
# actual motor rotation direction which can be arbitrary.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from nominal lnear range of [0, 100] % to
|
||||
# actual motor range of values which can be arbitrary.
|
||||
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
|
||||
|
||||
values = np.round(values).astype(np.int32)
|
||||
return values
|
||||
|
||||
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
return_list = True
|
||||
if not isinstance(motor_ids, list):
|
||||
return_list = False
|
||||
motor_ids = [motor_ids]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = dxl.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx in motor_ids:
|
||||
group.addParam(idx)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txRxPacket()
|
||||
if comm == dxl.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = group.getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
if return_list:
|
||||
return values
|
||||
else:
|
||||
return values[0]
|
||||
|
||||
def read(self, data_name, motor_names: str | list[str] | None = None):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
if data_name not in self.group_readers:
|
||||
# create new group reader
|
||||
self.group_readers[group_key] = dxl.GroupSyncRead(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
for idx in motor_ids:
|
||||
self.group_readers[group_key].addParam(idx)
|
||||
|
||||
for _ in range(NUM_READ_RETRY):
|
||||
comm = self.group_readers[group_key].txRxPacket()
|
||||
if comm == dxl.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = self.group_readers[group_key].getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
# Convert to signed int to use range [-2048, 2048] for our motor positions.
|
||||
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
|
||||
values = values.astype(np.int32)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.apply_calibration_autocorrect(values, motor_names)
|
||||
|
||||
# log the number of seconds it took to read the data from the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the data was received
|
||||
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
return values
|
||||
|
||||
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if not isinstance(motor_ids, list):
|
||||
motor_ids = [motor_ids]
|
||||
if not isinstance(values, list):
|
||||
values = [values]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
group.addParam(idx, data)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txPacket()
|
||||
if comm == dxl.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
if isinstance(values, (int, float, np.integer)):
|
||||
values = [int(values)] * len(motor_names)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.revert_calibration(values, motor_names)
|
||||
|
||||
values = values.tolist()
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
init_group = data_name not in self.group_readers
|
||||
if init_group:
|
||||
self.group_writers[group_key] = dxl.GroupSyncWrite(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
if init_group:
|
||||
self.group_writers[group_key].addParam(idx, data)
|
||||
else:
|
||||
self.group_writers[group_key].changeParam(idx, data)
|
||||
|
||||
comm = self.group_writers[group_key].txPacket()
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
# log the number of seconds it took to write the data to the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# TODO(rcadene): should we log the time before sending the write command?
|
||||
# log the utc time when the write has been completed
|
||||
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
|
||||
)
|
||||
|
||||
if self.port_handler is not None:
|
||||
self.port_handler.closePort()
|
||||
self.port_handler = None
|
||||
|
||||
self.packet_handler = None
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
898
lerobot/common/robot_devices/motors/feetech.py
Normal file
898
lerobot/common/robot_devices/motors/feetech.py
Normal file
@@ -0,0 +1,898 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import enum
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
PROTOCOL_VERSION = 0
|
||||
BAUDRATE = 1_000_000
|
||||
TIMEOUT_MS = 1000
|
||||
|
||||
MAX_ID_RANGE = 252
|
||||
|
||||
# The following bounds define the lower and upper joints range (after calibration).
|
||||
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
|
||||
# which corresponds to a half rotation on the left and half rotation on the right.
|
||||
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
|
||||
# an error is raised.
|
||||
LOWER_BOUND_DEGREE = -270
|
||||
UPPER_BOUND_DEGREE = 270
|
||||
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
|
||||
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
|
||||
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
|
||||
# [-10, 110] until an error is raised.
|
||||
LOWER_BOUND_LINEAR = -10
|
||||
UPPER_BOUND_LINEAR = 110
|
||||
|
||||
HALF_TURN_DEGREE = 180
|
||||
|
||||
|
||||
# See this link for STS3215 Memory Table:
|
||||
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
|
||||
# data_name: (address, size_byte)
|
||||
SCS_SERIES_CONTROL_TABLE = {
|
||||
"Model": (3, 2),
|
||||
"ID": (5, 1),
|
||||
"Baud_Rate": (6, 1),
|
||||
"Return_Delay": (7, 1),
|
||||
"Response_Status_Level": (8, 1),
|
||||
"Min_Angle_Limit": (9, 2),
|
||||
"Max_Angle_Limit": (11, 2),
|
||||
"Max_Temperature_Limit": (13, 1),
|
||||
"Max_Voltage_Limit": (14, 1),
|
||||
"Min_Voltage_Limit": (15, 1),
|
||||
"Max_Torque_Limit": (16, 2),
|
||||
"Phase": (18, 1),
|
||||
"Unloading_Condition": (19, 1),
|
||||
"LED_Alarm_Condition": (20, 1),
|
||||
"P_Coefficient": (21, 1),
|
||||
"D_Coefficient": (22, 1),
|
||||
"I_Coefficient": (23, 1),
|
||||
"Minimum_Startup_Force": (24, 2),
|
||||
"CW_Dead_Zone": (26, 1),
|
||||
"CCW_Dead_Zone": (27, 1),
|
||||
"Protection_Current": (28, 2),
|
||||
"Angular_Resolution": (30, 1),
|
||||
"Offset": (31, 2),
|
||||
"Mode": (33, 1),
|
||||
"Protective_Torque": (34, 1),
|
||||
"Protection_Time": (35, 1),
|
||||
"Overload_Torque": (36, 1),
|
||||
"Speed_closed_loop_P_proportional_coefficient": (37, 1),
|
||||
"Over_Current_Protection_Time": (38, 1),
|
||||
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
|
||||
"Torque_Enable": (40, 1),
|
||||
"Acceleration": (41, 1),
|
||||
"Goal_Position": (42, 2),
|
||||
"Goal_Time": (44, 2),
|
||||
"Goal_Speed": (46, 2),
|
||||
"Torque_Limit": (48, 2),
|
||||
"Lock": (55, 1),
|
||||
"Present_Position": (56, 2),
|
||||
"Present_Speed": (58, 2),
|
||||
"Present_Load": (60, 2),
|
||||
"Present_Voltage": (62, 1),
|
||||
"Present_Temperature": (63, 1),
|
||||
"Status": (65, 1),
|
||||
"Moving": (66, 1),
|
||||
"Present_Current": (69, 2),
|
||||
# Not in the Memory Table
|
||||
"Maximum_Acceleration": (85, 2),
|
||||
}
|
||||
|
||||
SCS_SERIES_BAUDRATE_TABLE = {
|
||||
0: 1_000_000,
|
||||
1: 500_000,
|
||||
2: 250_000,
|
||||
3: 128_000,
|
||||
4: 115_200,
|
||||
5: 57_600,
|
||||
6: 38_400,
|
||||
7: 19_200,
|
||||
}
|
||||
|
||||
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"scs_series": SCS_SERIES_CONTROL_TABLE,
|
||||
"sts3215": SCS_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_RESOLUTION = {
|
||||
"scs_series": 4096,
|
||||
"sts3215": 4096,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
|
||||
"sts3215": SCS_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
# High number of retries is needed for feetech compared to dynamixel motors.
|
||||
NUM_READ_RETRY = 20
|
||||
NUM_WRITE_RETRY = 20
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
"""
|
||||
resolutions = [MODEL_RESOLUTION[model] for model in models]
|
||||
steps = degrees / 180 * np.array(resolutions) / 2
|
||||
steps = steps.astype(int)
|
||||
return steps
|
||||
|
||||
|
||||
def convert_to_bytes(value, bytes, mock=False):
|
||||
if mock:
|
||||
return value
|
||||
|
||||
import scservo_sdk as scs
|
||||
|
||||
# Note: No need to convert back into unsigned int, since this byte preprocessing
|
||||
# already handles it for us.
|
||||
if bytes == 1:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 2:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 4:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
|
||||
]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
||||
f"{bytes} is provided instead."
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
def get_group_sync_key(data_name, motor_names):
|
||||
group_key = f"{data_name}_" + "_".join(motor_names)
|
||||
return group_key
|
||||
|
||||
|
||||
def get_result_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
rslt_name = f"{fn_name}_{group_key}"
|
||||
return rslt_name
|
||||
|
||||
|
||||
def get_queue_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
queue_name = f"{fn_name}_{group_key}"
|
||||
return queue_name
|
||||
|
||||
|
||||
def get_log_name(var_name, fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
log_name = f"{var_name}_{fn_name}_{group_key}"
|
||||
return log_name
|
||||
|
||||
|
||||
def assert_same_address(model_ctrl_table, motor_models, data_name):
|
||||
all_addr = []
|
||||
all_bytes = []
|
||||
for model in motor_models:
|
||||
addr, bytes = model_ctrl_table[model][data_name]
|
||||
all_addr.append(addr)
|
||||
all_bytes.append(bytes)
|
||||
|
||||
if len(set(all_addr)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
if len(set(all_bytes)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
|
||||
class TorqueMode(enum.Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
class DriveMode(enum.Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class CalibrationMode(enum.Enum):
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
DEGREE = 0
|
||||
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||
LINEAR = 1
|
||||
|
||||
|
||||
class JointOutOfRangeError(Exception):
|
||||
def __init__(self, message="Joint is out of range"):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class FeetechMotorsBus:
|
||||
"""
|
||||
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on
|
||||
the python feetech sdk to communicate with the motors. For more info, see the [feetech SDK Documentation](https://emanual.robotis.com/docs/en/software/feetech/feetech_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
|
||||
|
||||
A FeetechMotorsBus instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
||||
To find the port, you can run our utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
>>> Finding all available ports for the MotorsBus.
|
||||
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
>>> Remove the usb cable from your FeetechMotorsBus and press Enter when done.
|
||||
>>> The port of this FeetechMotorsBus is /dev/tty.usbmodem575E0031751.
|
||||
>>> Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example of usage for 1 motor connected to the bus:
|
||||
```python
|
||||
motor_name = "gripper"
|
||||
motor_index = 6
|
||||
motor_model = "sts3215"
|
||||
|
||||
config = FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={motor_name: (motor_index, motor_model)},
|
||||
)
|
||||
motors_bus = FeetechMotorsBus(config)
|
||||
motors_bus.connect()
|
||||
|
||||
position = motors_bus.read("Present_Position")
|
||||
|
||||
# move from a few motor steps as an example
|
||||
few_steps = 30
|
||||
motors_bus.write("Goal_Position", position + few_steps)
|
||||
|
||||
# when done, consider disconnecting
|
||||
motors_bus.disconnect()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: FeetechMotorsBusConfig,
|
||||
):
|
||||
self.port = config.port
|
||||
self.motors = config.motors
|
||||
self.mock = config.mock
|
||||
|
||||
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
self.model_resolution = deepcopy(MODEL_RESOLUTION)
|
||||
|
||||
self.port_handler = None
|
||||
self.packet_handler = None
|
||||
self.calibration = None
|
||||
self.is_connected = False
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.logs = {}
|
||||
|
||||
self.track_positions = {}
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
self.port_handler = scs.PortHandler(self.port)
|
||||
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
try:
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
|
||||
)
|
||||
raise
|
||||
|
||||
# Allow to read and write
|
||||
self.is_connected = True
|
||||
|
||||
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
|
||||
|
||||
def reconnect(self):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
self.port_handler = scs.PortHandler(self.port)
|
||||
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def are_motors_configured(self):
|
||||
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
|
||||
# a ConnectionError will be raised anyway.
|
||||
try:
|
||||
return (self.motor_indices == self.read("ID")).all()
|
||||
except ConnectionError as e:
|
||||
print(e)
|
||||
return False
|
||||
|
||||
def find_motor_indices(self, possible_ids=None, num_retry=2):
|
||||
if possible_ids is None:
|
||||
possible_ids = range(MAX_ID_RANGE)
|
||||
|
||||
indices = []
|
||||
for idx in tqdm.tqdm(possible_ids):
|
||||
try:
|
||||
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
|
||||
except ConnectionError:
|
||||
continue
|
||||
|
||||
if idx != present_idx:
|
||||
# sanity check
|
||||
raise OSError(
|
||||
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
|
||||
)
|
||||
indices.append(idx)
|
||||
|
||||
return indices
|
||||
|
||||
def set_bus_baudrate(self, baudrate):
|
||||
present_bus_baudrate = self.port_handler.getBaudRate()
|
||||
if present_bus_baudrate != baudrate:
|
||||
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
||||
self.port_handler.setBaudRate(baudrate)
|
||||
|
||||
if self.port_handler.getBaudRate() != baudrate:
|
||||
raise OSError("Failed to write bus baud rate.")
|
||||
|
||||
@property
|
||||
def motor_names(self) -> list[str]:
|
||||
return list(self.motors.keys())
|
||||
|
||||
@property
|
||||
def motor_models(self) -> list[str]:
|
||||
return [model for _, model in self.motors.values()]
|
||||
|
||||
@property
|
||||
def motor_indices(self) -> list[int]:
|
||||
return [idx for idx, _ in self.motors.values()]
|
||||
|
||||
def set_calibration(self, calibration: dict[str, list]):
|
||||
self.calibration = calibration
|
||||
|
||||
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
|
||||
|
||||
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
|
||||
"""
|
||||
try:
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
except JointOutOfRangeError as e:
|
||||
print(e)
|
||||
self.autocorrect_calibration(values, motor_names)
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
return values
|
||||
|
||||
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
|
||||
a "zero position" at 0 degree.
|
||||
|
||||
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
|
||||
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
|
||||
|
||||
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
|
||||
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
|
||||
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
|
||||
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
|
||||
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
|
||||
in the centered nominal degree range ]-180, 180[.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Update direction of rotation of the motor to match between leader and follower.
|
||||
# In fact, the motor of the leader for a given joint can be assembled in an
|
||||
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from range [-2**31, 2**31[ to
|
||||
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
|
||||
values[i] += homing_offset
|
||||
|
||||
# Convert from range ]-resolution, resolution[ to
|
||||
# universal float32 centered degree range ]-180, 180[
|
||||
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
|
||||
|
||||
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
|
||||
f"but present value is {values[i]} degree. "
|
||||
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Rescale the present position to a nominal range [0, 100] %,
|
||||
# useful for joints with linear motions like Aloha gripper
|
||||
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
|
||||
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
|
||||
f"but present value is {values[i]} %. "
|
||||
"This might be due to a cable connection issue creating an artificial jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
|
||||
|
||||
Some motors might have values outside of expected maximum bounds after calibration.
|
||||
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
|
||||
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
|
||||
|
||||
Known issues:
|
||||
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
|
||||
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
|
||||
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
|
||||
or by human error during manual calibration.
|
||||
|
||||
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
|
||||
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
|
||||
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
|
||||
|
||||
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from initial range to range [-180, 180] degrees
|
||||
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
|
||||
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
|
||||
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
|
||||
low_factor = (
|
||||
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
|
||||
) / resolution
|
||||
upp_factor = (
|
||||
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
|
||||
) / resolution
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from initial range to range [0, 100] in %
|
||||
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [0, 100] %
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
|
||||
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
|
||||
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
|
||||
low_factor = (start_pos - values[i]) / resolution
|
||||
upp_factor = (end_pos - values[i]) / resolution
|
||||
|
||||
if not in_range:
|
||||
# Get first integer between the two bounds
|
||||
if low_factor < upp_factor:
|
||||
factor = math.ceil(low_factor)
|
||||
|
||||
if factor > upp_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
else:
|
||||
factor = math.ceil(upp_factor)
|
||||
|
||||
if factor > low_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
|
||||
logging.warning(
|
||||
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
|
||||
f"from '{out_of_range_str}' to '{in_range_str}'."
|
||||
)
|
||||
|
||||
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
self.calibration["homing_offset"][calib_idx] += resolution * factor
|
||||
|
||||
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Inverse of `apply_calibration`."""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Convert from nominal 0-centered degree range [-180, 180] to
|
||||
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
||||
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
||||
|
||||
# Subtract the homing offsets to come back to actual motor range of values
|
||||
# which can be arbitrary.
|
||||
values[i] -= homing_offset
|
||||
|
||||
# Remove drive mode, which is the rotation direction of the motor, to come back to
|
||||
# actual motor rotation direction which can be arbitrary.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from nominal lnear range of [0, 100] % to
|
||||
# actual motor range of values which can be arbitrary.
|
||||
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
|
||||
|
||||
values = np.round(values).astype(np.int32)
|
||||
return values
|
||||
|
||||
def avoid_rotation_reset(self, values, motor_names, data_name):
|
||||
if data_name not in self.track_positions:
|
||||
self.track_positions[data_name] = {
|
||||
"prev": [None] * len(self.motor_names),
|
||||
# Assume False at initialization
|
||||
"below_zero": [False] * len(self.motor_names),
|
||||
"above_max": [False] * len(self.motor_names),
|
||||
}
|
||||
|
||||
track = self.track_positions[data_name]
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
idx = self.motor_names.index(name)
|
||||
|
||||
if track["prev"][idx] is None:
|
||||
track["prev"][idx] = values[i]
|
||||
continue
|
||||
|
||||
# Detect a full rotation occurred
|
||||
if abs(track["prev"][idx] - values[i]) > 2048:
|
||||
# Position went below 0 and got reset to 4095
|
||||
if track["prev"][idx] < values[i]:
|
||||
# So we set negative value by adding a full rotation
|
||||
values[i] -= 4096
|
||||
|
||||
# Position went above 4095 and got reset to 0
|
||||
elif track["prev"][idx] > values[i]:
|
||||
# So we add a full rotation
|
||||
values[i] += 4096
|
||||
|
||||
track["prev"][idx] = values[i]
|
||||
|
||||
return values
|
||||
|
||||
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
return_list = True
|
||||
if not isinstance(motor_ids, list):
|
||||
return_list = False
|
||||
motor_ids = [motor_ids]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = scs.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx in motor_ids:
|
||||
group.addParam(idx)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txRxPacket()
|
||||
if comm == scs.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = group.getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
if return_list:
|
||||
return values
|
||||
else:
|
||||
return values[0]
|
||||
|
||||
def read(self, data_name, motor_names: str | list[str] | None = None):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
if data_name not in self.group_readers:
|
||||
# Very Important to flush the buffer!
|
||||
self.port_handler.ser.reset_output_buffer()
|
||||
self.port_handler.ser.reset_input_buffer()
|
||||
|
||||
# create new group reader
|
||||
self.group_readers[group_key] = scs.GroupSyncRead(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
for idx in motor_ids:
|
||||
self.group_readers[group_key].addParam(idx)
|
||||
|
||||
for _ in range(NUM_READ_RETRY):
|
||||
comm = self.group_readers[group_key].txRxPacket()
|
||||
if comm == scs.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = self.group_readers[group_key].getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
# Convert to signed int to use range [-2048, 2048] for our motor positions.
|
||||
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
|
||||
values = values.astype(np.int32)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED:
|
||||
values = self.avoid_rotation_reset(values, motor_names, data_name)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.apply_calibration_autocorrect(values, motor_names)
|
||||
|
||||
# log the number of seconds it took to read the data from the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the data was received
|
||||
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
return values
|
||||
|
||||
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if not isinstance(motor_ids, list):
|
||||
motor_ids = [motor_ids]
|
||||
if not isinstance(values, list):
|
||||
values = [values]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = scs.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
group.addParam(idx, data)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txPacket()
|
||||
if comm == scs.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
if isinstance(values, (int, float, np.integer)):
|
||||
values = [int(values)] * len(motor_names)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.revert_calibration(values, motor_names)
|
||||
|
||||
values = values.tolist()
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
init_group = data_name not in self.group_readers
|
||||
if init_group:
|
||||
self.group_writers[group_key] = scs.GroupSyncWrite(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
if init_group:
|
||||
self.group_writers[group_key].addParam(idx, data)
|
||||
else:
|
||||
self.group_writers[group_key].changeParam(idx, data)
|
||||
|
||||
comm = self.group_writers[group_key].txPacket()
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
# log the number of seconds it took to write the data to the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# TODO(rcadene): should we log the time before sending the write command?
|
||||
# log the utc time when the write has been completed
|
||||
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
|
||||
)
|
||||
|
||||
if self.port_handler is not None:
|
||||
self.port_handler.closePort()
|
||||
self.port_handler = None
|
||||
|
||||
self.packet_handler = None
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
@@ -12,8 +12,22 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .configs import MotorsBusConfig
|
||||
from .motors_bus import MotorsBus
|
||||
from typing import Protocol
|
||||
|
||||
from lerobot.common.robot_devices.motors.configs import (
|
||||
DynamixelMotorsBusConfig,
|
||||
FeetechMotorsBusConfig,
|
||||
MotorsBusConfig,
|
||||
)
|
||||
|
||||
|
||||
class MotorsBus(Protocol):
|
||||
def motor_names(self): ...
|
||||
def set_calibration(self): ...
|
||||
def apply_calibration(self): ...
|
||||
def revert_calibration(self): ...
|
||||
def read(self): ...
|
||||
def write(self): ...
|
||||
|
||||
|
||||
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
|
||||
@@ -21,12 +35,12 @@ def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig
|
||||
|
||||
for key, cfg in motors_bus_configs.items():
|
||||
if cfg.type == "dynamixel":
|
||||
from .dynamixel import DynamixelMotorsBus
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
|
||||
|
||||
motors_buses[key] = DynamixelMotorsBus(cfg)
|
||||
|
||||
elif cfg.type == "feetech":
|
||||
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
|
||||
|
||||
motors_buses[key] = FeetechMotorsBus(cfg)
|
||||
|
||||
@@ -38,16 +52,13 @@ def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig
|
||||
|
||||
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
|
||||
if motor_type == "dynamixel":
|
||||
from .configs import DynamixelMotorsBusConfig
|
||||
from .dynamixel import DynamixelMotorsBus
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
|
||||
|
||||
config = DynamixelMotorsBusConfig(**kwargs)
|
||||
return DynamixelMotorsBus(config)
|
||||
|
||||
elif motor_type == "feetech":
|
||||
from feetech import FeetechMotorsBus
|
||||
|
||||
from .configs import FeetechMotorsBusConfig
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
|
||||
|
||||
config = FeetechMotorsBusConfig(**kwargs)
|
||||
return FeetechMotorsBus(config)
|
||||
613
lerobot/common/robot_devices/robots/configs.py
Normal file
613
lerobot/common/robot_devices/robots/configs.py
Normal file
@@ -0,0 +1,613 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Sequence
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import (
|
||||
CameraConfig,
|
||||
IntelRealSenseCameraConfig,
|
||||
OpenCVCameraConfig,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.configs import (
|
||||
DynamixelMotorsBusConfig,
|
||||
FeetechMotorsBusConfig,
|
||||
MotorsBusConfig,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
|
||||
# TODO(rcadene, aliberts): remove ManipulatorRobotConfig abstraction
|
||||
@dataclass
|
||||
class ManipulatorRobotConfig(RobotConfig):
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
|
||||
|
||||
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
|
||||
# as the number of motors in your follower arms (assumes all follower arms have the same number of
|
||||
# motors).
|
||||
max_relative_target: list[float] | float | None = None
|
||||
|
||||
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
|
||||
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
|
||||
# gripper is not put in torque mode.
|
||||
gripper_open_degree: float | None = None
|
||||
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.mock:
|
||||
for arm in self.leader_arms.values():
|
||||
if not arm.mock:
|
||||
arm.mock = True
|
||||
for arm in self.follower_arms.values():
|
||||
if not arm.mock:
|
||||
arm.mock = True
|
||||
for cam in self.cameras.values():
|
||||
if not cam.mock:
|
||||
cam.mock = True
|
||||
|
||||
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
|
||||
for name in self.follower_arms:
|
||||
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
|
||||
raise ValueError(
|
||||
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
|
||||
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
|
||||
f"`max_relative_target` list has as many parameters as there are motors per arm. "
|
||||
"Note: This feature does not yet work with robots where different follower arms have "
|
||||
"different numbers of motors."
|
||||
)
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("aloha")
|
||||
@dataclass
|
||||
class AlohaRobotConfig(ManipulatorRobotConfig):
|
||||
# Specific to Aloha, LeRobot comes with default calibration files. Assuming the motors have been
|
||||
# properly assembled, no manual calibration step is expected. If you need to run manual calibration,
|
||||
# simply update this path to ".cache/calibration/aloha"
|
||||
calibration_dir: str = ".cache/calibration/aloha_default"
|
||||
|
||||
# /!\ FOR SAFETY, READ THIS /!\
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
|
||||
# When you feel more confident with teleoperation or running the policy, you can extend
|
||||
# this safety limit and even removing it by setting it to `null`.
|
||||
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
|
||||
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
|
||||
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
|
||||
max_relative_target: int | None = 5
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
# window_x
|
||||
port="/dev/ttyDXL_leader_left",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm430-w350"],
|
||||
"shoulder": [2, "xm430-w350"],
|
||||
"shoulder_shadow": [3, "xm430-w350"],
|
||||
"elbow": [4, "xm430-w350"],
|
||||
"elbow_shadow": [5, "xm430-w350"],
|
||||
"forearm_roll": [6, "xm430-w350"],
|
||||
"wrist_angle": [7, "xm430-w350"],
|
||||
"wrist_rotate": [8, "xl430-w250"],
|
||||
"gripper": [9, "xc430-w150"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
# window_x
|
||||
port="/dev/ttyDXL_leader_right",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm430-w350"],
|
||||
"shoulder": [2, "xm430-w350"],
|
||||
"shoulder_shadow": [3, "xm430-w350"],
|
||||
"elbow": [4, "xm430-w350"],
|
||||
"elbow_shadow": [5, "xm430-w350"],
|
||||
"forearm_roll": [6, "xm430-w350"],
|
||||
"wrist_angle": [7, "xm430-w350"],
|
||||
"wrist_rotate": [8, "xl430-w250"],
|
||||
"gripper": [9, "xc430-w150"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
port="/dev/ttyDXL_follower_left",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm540-w270"],
|
||||
"shoulder": [2, "xm540-w270"],
|
||||
"shoulder_shadow": [3, "xm540-w270"],
|
||||
"elbow": [4, "xm540-w270"],
|
||||
"elbow_shadow": [5, "xm540-w270"],
|
||||
"forearm_roll": [6, "xm540-w270"],
|
||||
"wrist_angle": [7, "xm540-w270"],
|
||||
"wrist_rotate": [8, "xm430-w350"],
|
||||
"gripper": [9, "xm430-w350"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
port="/dev/ttyDXL_follower_right",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm540-w270"],
|
||||
"shoulder": [2, "xm540-w270"],
|
||||
"shoulder_shadow": [3, "xm540-w270"],
|
||||
"elbow": [4, "xm540-w270"],
|
||||
"elbow_shadow": [5, "xm540-w270"],
|
||||
"forearm_roll": [6, "xm540-w270"],
|
||||
"wrist_angle": [7, "xm540-w270"],
|
||||
"wrist_rotate": [8, "xm430-w350"],
|
||||
"gripper": [9, "xm430-w350"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
# Troubleshooting: If one of your IntelRealSense cameras freeze during
|
||||
# data recording due to bandwidth limit, you might need to plug the camera
|
||||
# on another USB hub or PCIe card.
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"cam_high": IntelRealSenseCameraConfig(
|
||||
serial_number=128422271347,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"cam_low": IntelRealSenseCameraConfig(
|
||||
serial_number=130322270656,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"cam_left_wrist": IntelRealSenseCameraConfig(
|
||||
serial_number=218622272670,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"cam_right_wrist": IntelRealSenseCameraConfig(
|
||||
serial_number=130322272300,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("koch")
|
||||
@dataclass
|
||||
class KochRobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/koch"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0085511",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl330-m077"],
|
||||
"shoulder_lift": [2, "xl330-m077"],
|
||||
"elbow_flex": [3, "xl330-m077"],
|
||||
"wrist_flex": [4, "xl330-m077"],
|
||||
"wrist_roll": [5, "xl330-m077"],
|
||||
"gripper": [6, "xl330-m077"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl430-w250"],
|
||||
"shoulder_lift": [2, "xl430-w250"],
|
||||
"elbow_flex": [3, "xl330-m288"],
|
||||
"wrist_flex": [4, "xl330-m288"],
|
||||
"wrist_roll": [5, "xl330-m288"],
|
||||
"gripper": [6, "xl330-m288"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
# ~ Koch specific settings ~
|
||||
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
gripper_open_degree: float = 35.156
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("koch_bimanual")
|
||||
@dataclass
|
||||
class KochBimanualRobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/koch_bimanual"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0085511",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl330-m077"],
|
||||
"shoulder_lift": [2, "xl330-m077"],
|
||||
"elbow_flex": [3, "xl330-m077"],
|
||||
"wrist_flex": [4, "xl330-m077"],
|
||||
"wrist_roll": [5, "xl330-m077"],
|
||||
"gripper": [6, "xl330-m077"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl330-m077"],
|
||||
"shoulder_lift": [2, "xl330-m077"],
|
||||
"elbow_flex": [3, "xl330-m077"],
|
||||
"wrist_flex": [4, "xl330-m077"],
|
||||
"wrist_roll": [5, "xl330-m077"],
|
||||
"gripper": [6, "xl330-m077"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl430-w250"],
|
||||
"shoulder_lift": [2, "xl430-w250"],
|
||||
"elbow_flex": [3, "xl330-m288"],
|
||||
"wrist_flex": [4, "xl330-m288"],
|
||||
"wrist_roll": [5, "xl330-m288"],
|
||||
"gripper": [6, "xl330-m288"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0032081",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl430-w250"],
|
||||
"shoulder_lift": [2, "xl430-w250"],
|
||||
"elbow_flex": [3, "xl330-m288"],
|
||||
"wrist_flex": [4, "xl330-m288"],
|
||||
"wrist_roll": [5, "xl330-m288"],
|
||||
"gripper": [6, "xl330-m288"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
# ~ Koch specific settings ~
|
||||
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
gripper_open_degree: float = 35.156
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("moss")
|
||||
@dataclass
|
||||
class MossRobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/moss"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem58760431091",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("so100")
|
||||
@dataclass
|
||||
class So100RobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/so100"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem58760431091",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("stretch")
|
||||
@dataclass
|
||||
class StretchRobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"navigation": OpenCVCameraConfig(
|
||||
camera_index="/dev/hello-nav-head-camera",
|
||||
fps=10,
|
||||
width=1280,
|
||||
height=720,
|
||||
rotation=-90,
|
||||
),
|
||||
"head": IntelRealSenseCameraConfig(
|
||||
name="Intel RealSense D435I",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
rotation=90,
|
||||
),
|
||||
"wrist": IntelRealSenseCameraConfig(
|
||||
name="Intel RealSense D405",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiRobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# Network Configuration
|
||||
ip: str = "192.168.0.193"
|
||||
port: int = 5555
|
||||
video_port: int = 5556
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"front": OpenCVCameraConfig(
|
||||
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
|
||||
),
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0077581",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/ttyACM0",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
"left_wheel": (7, "sts3215"),
|
||||
"back_wheel": (8, "sts3215"),
|
||||
"right_wheel": (9, "sts3215"),
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
teleop_keys: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
# Movement
|
||||
"forward": "w",
|
||||
"backward": "s",
|
||||
"left": "a",
|
||||
"right": "d",
|
||||
"rotate_left": "z",
|
||||
"rotate_right": "x",
|
||||
# Speed control
|
||||
"speed_up": "r",
|
||||
"speed_down": "f",
|
||||
# quit teleop
|
||||
"quit": "q",
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
@@ -17,9 +17,12 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..motors_bus import MotorNormMode, MotorsBus
|
||||
from .dynamixel import TorqueMode
|
||||
from .tables import MODEL_RESOLUTION
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
@@ -46,17 +49,6 @@ def apply_drive_mode(position, drive_mode):
|
||||
return position
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
"""
|
||||
resolutions = [MODEL_RESOLUTION[model] for model in models]
|
||||
steps = degrees / 180 * np.array(resolutions) / 2
|
||||
steps = steps.astype(int)
|
||||
return steps
|
||||
|
||||
|
||||
def compute_nearest_rounded_position(position, models):
|
||||
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
|
||||
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
|
||||
@@ -97,11 +89,11 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.models)
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.models)
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
|
||||
homing_offset = zero_target_pos - zero_nearest_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
@@ -115,7 +107,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.models)
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
@@ -124,7 +116,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.models)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
@@ -133,13 +125,13 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_mode = [MotorNormMode.DEGREE.name] * len(arm.names)
|
||||
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
|
||||
|
||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||
if robot_type in ["aloha"] and "gripper" in arm.names:
|
||||
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
|
||||
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||
calib_idx = arm.names.index("gripper")
|
||||
calib_mode[calib_idx] = MotorNormMode.LINEAR.name
|
||||
calib_idx = arm.motor_names.index("gripper")
|
||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||
|
||||
calib_data = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
@@ -147,6 +139,6 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_mode,
|
||||
"motor_names": arm.names,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_data
|
||||
498
lerobot/common/robot_devices/robots/feetech_calibration.py
Normal file
498
lerobot/common/robot_devices/robots/feetech_calibration.py
Normal file
@@ -0,0 +1,498 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Logic to calibrate a robot arm built with feetech motors"""
|
||||
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.motors.feetech import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
ZERO_POSITION_DEGREE = 0
|
||||
ROTATED_POSITION_DEGREE = 90
|
||||
|
||||
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
|
||||
count = 0
|
||||
while True:
|
||||
present_pos = arm.read("Present_Position", motor_name)
|
||||
if positive_direction:
|
||||
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
|
||||
arm.write("Goal_Position", present_pos + 100, motor_name)
|
||||
else:
|
||||
arm.write("Goal_Position", present_pos - 100, motor_name)
|
||||
|
||||
if while_move_hook is not None:
|
||||
while_move_hook()
|
||||
|
||||
present_pos = arm.read("Present_Position", motor_name).item()
|
||||
present_speed = arm.read("Present_Speed", motor_name).item()
|
||||
present_current = arm.read("Present_Current", motor_name).item()
|
||||
# present_load = arm.read("Present_Load", motor_name).item()
|
||||
# present_voltage = arm.read("Present_Voltage", motor_name).item()
|
||||
# present_temperature = arm.read("Present_Temperature", motor_name).item()
|
||||
|
||||
# print(f"{present_pos=}")
|
||||
# print(f"{present_speed=}")
|
||||
# print(f"{present_current=}")
|
||||
# print(f"{present_load=}")
|
||||
# print(f"{present_voltage=}")
|
||||
# print(f"{present_temperature=}")
|
||||
|
||||
if present_speed == 0 and present_current > 40:
|
||||
count += 1
|
||||
if count > 100 or present_current > 300:
|
||||
return present_pos
|
||||
else:
|
||||
count = 0
|
||||
|
||||
|
||||
def move_to_calibrate(
|
||||
arm,
|
||||
motor_name,
|
||||
invert_drive_mode=False,
|
||||
positive_first=True,
|
||||
in_between_move_hook=None,
|
||||
while_move_hook=None,
|
||||
):
|
||||
initial_pos = arm.read("Present_Position", motor_name)
|
||||
|
||||
if positive_first:
|
||||
p_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
|
||||
)
|
||||
else:
|
||||
n_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
|
||||
)
|
||||
|
||||
if in_between_move_hook is not None:
|
||||
in_between_move_hook()
|
||||
|
||||
if positive_first:
|
||||
n_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
|
||||
)
|
||||
else:
|
||||
p_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
|
||||
)
|
||||
|
||||
zero_pos = (n_present_pos + p_present_pos) / 2
|
||||
|
||||
calib_data = {
|
||||
"initial_pos": initial_pos,
|
||||
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
|
||||
"invert_drive_mode": invert_drive_mode,
|
||||
"drive_mode": -1 if invert_drive_mode else 0,
|
||||
"zero_pos": zero_pos,
|
||||
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
|
||||
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
|
||||
}
|
||||
return calib_data
|
||||
|
||||
|
||||
def apply_offset(calib, offset):
|
||||
calib["zero_pos"] += offset
|
||||
if calib["drive_mode"]:
|
||||
calib["homing_offset"] += offset
|
||||
else:
|
||||
calib["homing_offset"] -= offset
|
||||
return calib
|
||||
|
||||
|
||||
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
if robot_type == "so100":
|
||||
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
|
||||
elif robot_type == "moss":
|
||||
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
|
||||
else:
|
||||
raise ValueError(robot_type)
|
||||
|
||||
|
||||
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
if not (robot_type == "so100" and arm_type == "follower"):
|
||||
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to initial position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# Lower the acceleration of the motors (in [0,254])
|
||||
initial_acceleration = arm.read("Acceleration")
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", 10)
|
||||
time.sleep(1)
|
||||
|
||||
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
|
||||
|
||||
print(f'{arm.read("Present_Position", "elbow_flex")=}')
|
||||
|
||||
calib = {}
|
||||
|
||||
init_wf_pos = arm.read("Present_Position", "wrist_flex")
|
||||
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
|
||||
init_ef_pos = arm.read("Present_Position", "elbow_flex")
|
||||
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
|
||||
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
|
||||
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
|
||||
time.sleep(2)
|
||||
|
||||
print("Calibrate shoulder_pan")
|
||||
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
|
||||
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate gripper")
|
||||
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate wrist_flex")
|
||||
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
|
||||
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
|
||||
|
||||
def in_between_move_hook():
|
||||
nonlocal arm, calib
|
||||
time.sleep(2)
|
||||
ef_pos = arm.read("Present_Position", "elbow_flex")
|
||||
sl_pos = arm.read("Present_Position", "shoulder_lift")
|
||||
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
|
||||
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
|
||||
time.sleep(2)
|
||||
|
||||
print("Calibrate elbow_flex")
|
||||
calib["elbow_flex"] = move_to_calibrate(
|
||||
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
|
||||
)
|
||||
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
|
||||
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
|
||||
time.sleep(1)
|
||||
|
||||
def in_between_move_hook():
|
||||
nonlocal arm, calib
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
|
||||
|
||||
print("Calibrate shoulder_lift")
|
||||
calib["shoulder_lift"] = move_to_calibrate(
|
||||
arm,
|
||||
"shoulder_lift",
|
||||
invert_drive_mode=True,
|
||||
positive_first=False,
|
||||
in_between_move_hook=in_between_move_hook,
|
||||
)
|
||||
# add an 30 steps as offset to align with body
|
||||
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
|
||||
|
||||
def while_move_hook():
|
||||
nonlocal arm, calib
|
||||
positions = {
|
||||
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
|
||||
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
|
||||
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
|
||||
"gripper": round(calib["gripper"]["end_pos"]),
|
||||
}
|
||||
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
|
||||
|
||||
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
|
||||
time.sleep(2)
|
||||
|
||||
print("Calibrate wrist_roll")
|
||||
calib["wrist_roll"] = move_to_calibrate(
|
||||
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
|
||||
)
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
|
||||
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
|
||||
time.sleep(1)
|
||||
|
||||
calib_modes = []
|
||||
for name in arm.motor_names:
|
||||
if name == "gripper":
|
||||
calib_modes.append(CalibrationMode.LINEAR.name)
|
||||
else:
|
||||
calib_modes.append(CalibrationMode.DEGREE.name)
|
||||
|
||||
calib_dict = {
|
||||
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
|
||||
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
|
||||
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
|
||||
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
|
||||
"calib_mode": calib_modes,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
|
||||
# Re-enable original accerlation
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", initial_acceleration)
|
||||
time.sleep(1)
|
||||
|
||||
return calib_dict
|
||||
|
||||
|
||||
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
if not (robot_type == "moss" and arm_type == "follower"):
|
||||
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to initial position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# Lower the acceleration of the motors (in [0,254])
|
||||
initial_acceleration = arm.read("Acceleration")
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", 10)
|
||||
time.sleep(1)
|
||||
|
||||
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
|
||||
|
||||
sl_pos = arm.read("Present_Position", "shoulder_lift")
|
||||
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
|
||||
ef_pos = arm.read("Present_Position", "elbow_flex")
|
||||
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
|
||||
time.sleep(2)
|
||||
|
||||
calib = {}
|
||||
|
||||
print("Calibrate shoulder_pan")
|
||||
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
|
||||
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate gripper")
|
||||
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate wrist_flex")
|
||||
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
|
||||
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
|
||||
|
||||
wr_pos = arm.read("Present_Position", "wrist_roll")
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate wrist_roll")
|
||||
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
|
||||
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
|
||||
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
|
||||
|
||||
def in_between_move_elbow_flex_hook():
|
||||
nonlocal arm, calib
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
|
||||
|
||||
print("Calibrate elbow_flex")
|
||||
calib["elbow_flex"] = move_to_calibrate(
|
||||
arm,
|
||||
"elbow_flex",
|
||||
invert_drive_mode=True,
|
||||
in_between_move_hook=in_between_move_elbow_flex_hook,
|
||||
)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
|
||||
def in_between_move_shoulder_lift_hook():
|
||||
nonlocal arm, calib
|
||||
sl = arm.read("Present_Position", "shoulder_lift")
|
||||
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate shoulder_lift")
|
||||
calib["shoulder_lift"] = move_to_calibrate(
|
||||
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
|
||||
)
|
||||
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
|
||||
time.sleep(2)
|
||||
|
||||
calib_modes = []
|
||||
for name in arm.motor_names:
|
||||
if name == "gripper":
|
||||
calib_modes.append(CalibrationMode.LINEAR.name)
|
||||
else:
|
||||
calib_modes.append(CalibrationMode.DEGREE.name)
|
||||
|
||||
calib_dict = {
|
||||
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
|
||||
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
|
||||
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
|
||||
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
|
||||
"calib_mode": calib_modes,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
|
||||
# Re-enable original accerlation
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", initial_acceleration)
|
||||
time.sleep(1)
|
||||
|
||||
return calib_dict
|
||||
|
||||
|
||||
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
the two robots will move to the same position.To this end, this function computes the homing offset
|
||||
and the drive mode for each motor of a given robot.
|
||||
|
||||
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
|
||||
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
|
||||
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
|
||||
|
||||
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
|
||||
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
|
||||
to the "rotated position".
|
||||
|
||||
After calibration, the homing offsets and drive modes are stored in a cache.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "so100", "left", "follower")
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
homing_offset = zero_target_pos - zero_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
# This allows to identify the rotation direction of each motor.
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
rotated_pos = arm.read("Present_Position")
|
||||
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
homing_offset = rotated_target_pos - rotated_drived_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_modes = []
|
||||
for name in arm.motor_names:
|
||||
if name == "gripper":
|
||||
calib_modes.append(CalibrationMode.LINEAR.name)
|
||||
else:
|
||||
calib_modes.append(CalibrationMode.DEGREE.name)
|
||||
|
||||
calib_dict = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
"drive_mode": drive_mode.tolist(),
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_modes,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_dict
|
||||
@@ -21,7 +21,7 @@ from pathlib import Path
|
||||
import cv2
|
||||
import zmq
|
||||
|
||||
from lerobot.common.robots.mobile_manipulator import LeKiwi
|
||||
from lerobot.common.robot_devices.robots.mobile_manipulator import LeKiwi
|
||||
|
||||
|
||||
def setup_zmq_sockets(config):
|
||||
@@ -61,7 +61,7 @@ def calibrate_follower_arm(motors_bus, calib_dir_str):
|
||||
calib_dir.mkdir(parents=True, exist_ok=True)
|
||||
calib_file = calib_dir / "main_follower.json"
|
||||
try:
|
||||
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
|
||||
except ImportError:
|
||||
print("[WARNING] Calibration function not available. Skipping calibration.")
|
||||
return
|
||||
@@ -72,7 +72,7 @@ def calibrate_follower_arm(motors_bus, calib_dir_str):
|
||||
print(f"[INFO] Loaded calibration from {calib_file}")
|
||||
else:
|
||||
print("[INFO] Calibration file not found. Running manual calibration...")
|
||||
calibration = run_full_arm_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
|
||||
calibration = run_arm_manual_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
|
||||
print(f"[INFO] Calibration complete. Saving to {calib_file}")
|
||||
with open(calib_file, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
@@ -93,8 +93,8 @@ def run_lekiwi(robot_config):
|
||||
- Processes incoming commands (arm and wheel commands) and sends back sensor and camera data.
|
||||
"""
|
||||
# Import helper functions and classes
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus, TorqueMode
|
||||
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus, TorqueMode
|
||||
|
||||
# Initialize cameras from the robot configuration.
|
||||
cameras = make_cameras_from_configs(robot_config.cameras)
|
||||
@@ -18,66 +18,40 @@ and send orders to its motors.
|
||||
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
|
||||
# calibration procedure, to make it easy for people to add their own robot.
|
||||
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Sequence
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.cameras.configs import CameraConfig
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors.configs import MotorsBusConfig
|
||||
from lerobot.common.motors.motors_bus import MotorsBus
|
||||
from lerobot.common.motors.utils import make_motors_buses_from_configs
|
||||
from lerobot.common.robots.config import RobotConfig
|
||||
from lerobot.common.robots.utils import ensure_safe_goal_position, get_arm_id
|
||||
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
|
||||
from lerobot.common.robot_devices.robots.configs import ManipulatorRobotConfig
|
||||
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
|
||||
|
||||
@dataclass
|
||||
class ManipulatorRobotConfig(RobotConfig):
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
|
||||
def ensure_safe_goal_position(
|
||||
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
|
||||
):
|
||||
# Cap relative action target magnitude for safety.
|
||||
diff = goal_pos - present_pos
|
||||
max_relative_target = torch.tensor(max_relative_target)
|
||||
safe_diff = torch.minimum(diff, max_relative_target)
|
||||
safe_diff = torch.maximum(safe_diff, -max_relative_target)
|
||||
safe_goal_pos = present_pos + safe_diff
|
||||
|
||||
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
|
||||
# as the number of motors in your follower arms (assumes all follower arms have the same number of
|
||||
# motors).
|
||||
max_relative_target: list[float] | float | None = None
|
||||
if not torch.allclose(goal_pos, safe_goal_pos):
|
||||
logging.warning(
|
||||
"Relative goal position magnitude had to be clamped to be safe.\n"
|
||||
f" requested relative goal position target: {diff}\n"
|
||||
f" clamped relative goal position target: {safe_diff}"
|
||||
)
|
||||
|
||||
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
|
||||
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
|
||||
# gripper is not put in torque mode.
|
||||
gripper_open_degree: float | None = None
|
||||
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.mock:
|
||||
for arm in self.leader_arms.values():
|
||||
if not arm.mock:
|
||||
arm.mock = True
|
||||
for arm in self.follower_arms.values():
|
||||
if not arm.mock:
|
||||
arm.mock = True
|
||||
for cam in self.cameras.values():
|
||||
if not cam.mock:
|
||||
cam.mock = True
|
||||
|
||||
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
|
||||
for name in self.follower_arms:
|
||||
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
|
||||
raise ValueError(
|
||||
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
|
||||
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
|
||||
f"`max_relative_target` list has as many parameters as there are motors per arm. "
|
||||
"Note: This feature does not yet work with robots where different follower arms have "
|
||||
"different numbers of motors."
|
||||
)
|
||||
return safe_goal_pos
|
||||
|
||||
|
||||
class ManipulatorRobot:
|
||||
@@ -250,7 +224,7 @@ class ManipulatorRobot:
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
|
||||
)
|
||||
|
||||
@@ -268,9 +242,9 @@ class ManipulatorRobot:
|
||||
self.leader_arms[name].connect()
|
||||
|
||||
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
|
||||
from lerobot.common.motors.dynamixel.dynamixel import TorqueMode
|
||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||
from lerobot.common.motors.feetech.feetech import TorqueMode
|
||||
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
||||
|
||||
# We assume that at connection time, arms are in a rest position, and torque can
|
||||
# be safely disabled to run calibration and/or set robot preset configurations.
|
||||
@@ -279,6 +253,8 @@ class ManipulatorRobot:
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
|
||||
|
||||
self.activate_calibration()
|
||||
|
||||
# Set robot preset (e.g. torque in leader gripper for Koch v1.1)
|
||||
if self.robot_type in ["koch", "koch_bimanual"]:
|
||||
self.set_koch_robot_preset()
|
||||
@@ -315,9 +291,52 @@ class ManipulatorRobot:
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def activate_calibration(self):
|
||||
"""After calibration all motors function in human interpretable ranges.
|
||||
Rotations are expressed in degrees in nominal range of [-180, 180],
|
||||
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
|
||||
"""
|
||||
|
||||
def load_or_run_calibration_(name, arm, arm_type):
|
||||
arm_id = get_arm_id(name, arm_type)
|
||||
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
|
||||
|
||||
if arm_calib_path.exists():
|
||||
with open(arm_calib_path) as f:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
# TODO(rcadene): display a warning in __init__ if calibration file not available
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
|
||||
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
|
||||
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
|
||||
|
||||
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||
|
||||
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import (
|
||||
run_arm_manual_calibration,
|
||||
)
|
||||
|
||||
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
|
||||
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(arm_calib_path, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
|
||||
return calibration
|
||||
|
||||
for name, arm in self.follower_arms.items():
|
||||
calibration = load_or_run_calibration_(name, arm, "follower")
|
||||
arm.set_calibration(calibration)
|
||||
for name, arm in self.leader_arms.items():
|
||||
calibration = load_or_run_calibration_(name, arm, "leader")
|
||||
arm.set_calibration(calibration)
|
||||
|
||||
def set_koch_robot_preset(self):
|
||||
def set_operating_mode_(arm):
|
||||
from lerobot.common.motors.dynamixel.dynamixel import TorqueMode
|
||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
|
||||
@@ -415,6 +434,9 @@ class ManipulatorRobot:
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.follower_arms[name].write("I_Coefficient", 0)
|
||||
self.follower_arms[name].write("D_Coefficient", 32)
|
||||
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
|
||||
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
|
||||
self.follower_arms[name].write("Lock", 0)
|
||||
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
|
||||
# the motors. Note: this configuration is not in the official STS3215 Memory Table
|
||||
self.follower_arms[name].write("Maximum_Acceleration", 254)
|
||||
@@ -424,7 +446,7 @@ class ManipulatorRobot:
|
||||
self, record_data=False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
@@ -504,7 +526,7 @@ class ManipulatorRobot:
|
||||
def capture_observation(self):
|
||||
"""The returned observations do not have a batch dimension."""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
@@ -550,7 +572,7 @@ class ManipulatorRobot:
|
||||
action: tensor containing the concatenated goal positions for the follower arms.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
@@ -585,7 +607,7 @@ class ManipulatorRobot:
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
|
||||
)
|
||||
|
||||
@@ -23,14 +23,13 @@ import numpy as np
|
||||
import torch
|
||||
import zmq
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.errors import DeviceNotConnectedError
|
||||
from lerobot.common.motors.feetech.feetech import TorqueMode
|
||||
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
|
||||
from lerobot.common.motors.motors_bus import MotorsBus
|
||||
from lerobot.common.motors.utils import make_motors_buses_from_configs
|
||||
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
|
||||
from lerobot.common.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
|
||||
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
|
||||
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError
|
||||
|
||||
PYNPUT_AVAILABLE = True
|
||||
try:
|
||||
@@ -267,7 +266,7 @@ class MobileManipulator:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(arm_calib_path, "w") as f:
|
||||
@@ -396,7 +395,7 @@ class MobileManipulator:
|
||||
self, record_data: bool = False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
|
||||
raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
|
||||
|
||||
speed_setting = self.speed_levels[self.speed_index]
|
||||
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
|
||||
@@ -456,7 +455,7 @@ class MobileManipulator:
|
||||
and a camera frame.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
|
||||
frames, present_speed, remote_arm_state_tensor = self._get_data()
|
||||
|
||||
@@ -480,7 +479,7 @@ class MobileManipulator:
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
|
||||
# Ensure the action tensor has at least 9 elements:
|
||||
# - First 6: arm positions.
|
||||
@@ -518,7 +517,7 @@ class MobileManipulator:
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("Not connected.")
|
||||
raise RobotDeviceNotConnectedError("Not connected.")
|
||||
if self.cmd_socket:
|
||||
stop_cmd = {
|
||||
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
|
||||
208
lerobot/common/robot_devices/robots/stretch.py
Normal file
208
lerobot/common/robot_devices/robots/stretch.py
Normal file
@@ -0,0 +1,208 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import time
|
||||
from dataclasses import replace
|
||||
|
||||
import torch
|
||||
from stretch_body.gamepad_teleop import GamePadTeleop
|
||||
from stretch_body.robot import Robot as StretchAPI
|
||||
from stretch_body.robot_params import RobotParams
|
||||
|
||||
from lerobot.common.robot_devices.robots.configs import StretchRobotConfig
|
||||
|
||||
|
||||
class StretchRobot(StretchAPI):
|
||||
"""Wrapper of stretch_body.robot.Robot"""
|
||||
|
||||
def __init__(self, config: StretchRobotConfig | None = None, **kwargs):
|
||||
super().__init__()
|
||||
if config is None:
|
||||
self.config = StretchRobotConfig(**kwargs)
|
||||
else:
|
||||
# Overwrite config arguments using kwargs
|
||||
self.config = replace(config, **kwargs)
|
||||
|
||||
self.robot_type = self.config.type
|
||||
self.cameras = self.config.cameras
|
||||
self.is_connected = False
|
||||
self.teleop = None
|
||||
self.logs = {}
|
||||
|
||||
# TODO(aliberts): test this
|
||||
RobotParams.set_logging_level("WARNING")
|
||||
RobotParams.set_logging_formatter("brief_console_formatter")
|
||||
|
||||
self.state_keys = None
|
||||
self.action_keys = None
|
||||
|
||||
def connect(self) -> None:
|
||||
self.is_connected = self.startup()
|
||||
if not self.is_connected:
|
||||
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
|
||||
raise ConnectionError()
|
||||
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
self.is_connected = self.is_connected and self.cameras[name].is_connected
|
||||
|
||||
if not self.is_connected:
|
||||
print("Could not connect to the cameras, check that all cameras are plugged-in.")
|
||||
raise ConnectionError()
|
||||
|
||||
self.run_calibration()
|
||||
|
||||
def run_calibration(self) -> None:
|
||||
if not self.is_homed():
|
||||
self.home()
|
||||
|
||||
def teleop_step(
|
||||
self, record_data=False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
before_read_t = time.perf_counter()
|
||||
state = self.get_state()
|
||||
action = self.teleop.gamepad_controller.get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
state = torch.as_tensor(list(state.values()))
|
||||
action = torch.as_tensor(list(action.values()))
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = state
|
||||
action_dict["action"] = action
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def get_state(self) -> dict:
|
||||
status = self.get_status()
|
||||
return {
|
||||
"head_pan.pos": status["head"]["head_pan"]["pos"],
|
||||
"head_tilt.pos": status["head"]["head_tilt"]["pos"],
|
||||
"lift.pos": status["lift"]["pos"],
|
||||
"arm.pos": status["arm"]["pos"],
|
||||
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"],
|
||||
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"],
|
||||
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"],
|
||||
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"],
|
||||
"base_x.vel": status["base"]["x_vel"],
|
||||
"base_y.vel": status["base"]["y_vel"],
|
||||
"base_theta.vel": status["base"]["theta_vel"],
|
||||
}
|
||||
|
||||
def capture_observation(self) -> dict:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
before_read_t = time.perf_counter()
|
||||
state = self.get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
state = torch.as_tensor(list(state.values()))
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries
|
||||
obs_dict = {}
|
||||
obs_dict["observation.state"] = state
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
if self.action_keys is None:
|
||||
dummy_action = self.teleop.gamepad_controller.get_state()
|
||||
self.action_keys = list(dummy_action.keys())
|
||||
|
||||
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(state=action_dict, robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
# TODO(aliberts): return action_sent when motion is limited
|
||||
return action
|
||||
|
||||
def print_logs(self) -> None:
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def teleop_safety_stop(self) -> None:
|
||||
if self.teleop is not None:
|
||||
self.teleop._safety_stop(robot=self)
|
||||
|
||||
def disconnect(self) -> None:
|
||||
self.stop()
|
||||
if self.teleop is not None:
|
||||
self.teleop.gamepad_controller.stop()
|
||||
self.teleop.stop()
|
||||
|
||||
if len(self.cameras) > 0:
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
self.disconnect()
|
||||
86
lerobot/common/robot_devices/robots/utils.py
Normal file
86
lerobot/common/robot_devices/robots/utils.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Protocol
|
||||
|
||||
from lerobot.common.robot_devices.robots.configs import (
|
||||
AlohaRobotConfig,
|
||||
KochBimanualRobotConfig,
|
||||
KochRobotConfig,
|
||||
LeKiwiRobotConfig,
|
||||
ManipulatorRobotConfig,
|
||||
MossRobotConfig,
|
||||
RobotConfig,
|
||||
So100RobotConfig,
|
||||
StretchRobotConfig,
|
||||
)
|
||||
|
||||
|
||||
def get_arm_id(name, arm_type):
|
||||
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
|
||||
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
|
||||
"""
|
||||
return f"{name}_{arm_type}"
|
||||
|
||||
|
||||
class Robot(Protocol):
|
||||
# TODO(rcadene, aliberts): Add unit test checking the protocol is implemented in the corresponding classes
|
||||
robot_type: str
|
||||
features: dict
|
||||
|
||||
def connect(self): ...
|
||||
def run_calibration(self): ...
|
||||
def teleop_step(self, record_data=False): ...
|
||||
def capture_observation(self): ...
|
||||
def send_action(self, action): ...
|
||||
def disconnect(self): ...
|
||||
|
||||
|
||||
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
||||
if robot_type == "aloha":
|
||||
return AlohaRobotConfig(**kwargs)
|
||||
elif robot_type == "koch":
|
||||
return KochRobotConfig(**kwargs)
|
||||
elif robot_type == "koch_bimanual":
|
||||
return KochBimanualRobotConfig(**kwargs)
|
||||
elif robot_type == "moss":
|
||||
return MossRobotConfig(**kwargs)
|
||||
elif robot_type == "so100":
|
||||
return So100RobotConfig(**kwargs)
|
||||
elif robot_type == "stretch":
|
||||
return StretchRobotConfig(**kwargs)
|
||||
elif robot_type == "lekiwi":
|
||||
return LeKiwiRobotConfig(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Robot type '{robot_type}' is not available.")
|
||||
|
||||
|
||||
def make_robot_from_config(config: RobotConfig):
|
||||
if isinstance(config, ManipulatorRobotConfig):
|
||||
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
|
||||
|
||||
return ManipulatorRobot(config)
|
||||
elif isinstance(config, LeKiwiRobotConfig):
|
||||
from lerobot.common.robot_devices.robots.mobile_manipulator import MobileManipulator
|
||||
|
||||
return MobileManipulator(config)
|
||||
else:
|
||||
from lerobot.common.robot_devices.robots.stretch import StretchRobot
|
||||
|
||||
return StretchRobot(config)
|
||||
|
||||
|
||||
def make_robot(robot_type: str, **kwargs) -> Robot:
|
||||
config = make_robot_config(robot_type, **kwargs)
|
||||
return make_robot_from_config(config)
|
||||
@@ -42,3 +42,24 @@ def safe_disconnect(func):
|
||||
raise e
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
class RobotDeviceNotConnectedError(Exception):
|
||||
"""Exception raised when the robot device is not connected."""
|
||||
|
||||
def __init__(
|
||||
self, message="This robot device is not connected. Try calling `robot_device.connect()` first."
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class RobotDeviceAlreadyConnectedError(Exception):
|
||||
"""Exception raised when the robot device is already connected."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
message="This robot device is already connected. Try not calling `robot_device.connect()` twice.",
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
@@ -1,4 +0,0 @@
|
||||
from .config import RobotConfig
|
||||
from .robot import Robot
|
||||
|
||||
__all__ = ["RobotConfig", "Robot"]
|
||||
@@ -1,17 +0,0 @@
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
# Allows to distinguish between different robots of the same type
|
||||
id: str | None = None
|
||||
# Directory to store calibration file
|
||||
calibration_dir: Path | None = None
|
||||
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
@@ -1,2 +0,0 @@
|
||||
from .config_koch_follower import KochFollowerConfig
|
||||
from .koch_follower import KochFollower
|
||||
@@ -1,22 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("koch_follower")
|
||||
@dataclass
|
||||
class KochFollowerConfig(RobotConfig):
|
||||
# Port to connect to the arm
|
||||
port: str
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
@@ -1,230 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.dynamixel import (
|
||||
DynamixelMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .config_koch_follower import KochFollowerConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class KochFollower(Robot):
|
||||
"""
|
||||
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
|
||||
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
|
||||
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
|
||||
"""
|
||||
|
||||
config_class = KochFollowerConfig
|
||||
name = "koch_follower"
|
||||
|
||||
def __init__(self, config: KochFollowerConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.arm = DynamixelMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": Motor(1, "xl430-w250", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder_lift": Motor(2, "xl430-w250", MotorNormMode.RANGE_M100_100),
|
||||
"elbow_flex": Motor(3, "xl330-m288", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_flex": Motor(4, "xl330-m288", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_roll": Motor(5, "xl330-m288", MotorNormMode.RANGE_M100_100),
|
||||
"gripper": Motor(6, "xl330-m288", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(self.arm),),
|
||||
"names": {"motors": list(self.arm.motors)},
|
||||
}
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return self.state_feature
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
cam_ft[cam_key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
# TODO(aliberts): add cam.is_connected for cam in self.cameras
|
||||
return self.arm.is_connected
|
||||
|
||||
def connect(self) -> None:
|
||||
"""
|
||||
We assume that at connection time, arm is in a rest position,
|
||||
and torque can be safely disabled to run calibration.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.arm.connect()
|
||||
if not self.is_calibrated:
|
||||
self.calibrate()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.arm.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
self.arm.disable_torque()
|
||||
for name in self.arm.names:
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
input("Move robot to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.arm.set_half_turn_homings()
|
||||
|
||||
full_turn_motors = ["shoulder_pan", "wrist_roll"]
|
||||
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
|
||||
logger.info(
|
||||
f"Move all joints except {full_turn_motors} sequentially through their entire "
|
||||
"ranges of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
|
||||
for name in full_turn_motors:
|
||||
range_mins[name] = 0
|
||||
range_maxes[name] = 4095
|
||||
|
||||
self.calibration = {}
|
||||
for name, motor in self.arm.motors.items():
|
||||
self.calibration[name] = MotorCalibration(
|
||||
id=motor.id,
|
||||
drive_mode=0,
|
||||
homing_offset=homing_offsets[name],
|
||||
range_min=range_mins[name],
|
||||
range_max=range_maxes[name],
|
||||
)
|
||||
|
||||
self.arm.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
logger.info(f"Calibration saved to {self.calibration_fpath}")
|
||||
|
||||
def configure(self) -> None:
|
||||
with self.arm.torque_disabled():
|
||||
self.arm.configure_motors()
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
|
||||
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling
|
||||
# the arm, you could end up with a servo with a position 0 or 4095 at a crucial point
|
||||
for name in self.arm.names:
|
||||
if name != "gripper":
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
# Use 'position control current based' for gripper to be limited by the limit of the current. For
|
||||
# the follower gripper, it means it can grasp an object without forcing too much even tho, its
|
||||
# goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
# For the leader gripper, it means we can use it as a physical trigger, since we can force with
|
||||
# our finger to make it move, and it will move back to its original target position when we
|
||||
# release the force.
|
||||
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
|
||||
|
||||
# Set better PID values to close the gap between recorded states and actions
|
||||
# TODO(rcadene): Implement an automatic procedure to set optimal PID values for each motor
|
||||
self.arm.write("Position_P_Gain", "elbow_flex", 1500)
|
||||
self.arm.write("Position_I_Gain", "elbow_flex", 0)
|
||||
self.arm.write("Position_D_Gain", "elbow_flex", 600)
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
obs_dict = {}
|
||||
|
||||
# Read arm position
|
||||
start = time.perf_counter()
|
||||
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
start = time.perf_counter()
|
||||
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: dict[str, float]) -> dict[str, float]:
|
||||
"""Command arm to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Args:
|
||||
action (dict[str, float]): The goal positions for the motors.
|
||||
|
||||
Returns:
|
||||
dict[str, float]: The action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
goal_pos = action
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.arm.sync_read("Present_Position")
|
||||
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
|
||||
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
|
||||
|
||||
# Send goal position to the arm
|
||||
self.arm.sync_write("Goal_Position", goal_pos)
|
||||
return goal_pos
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.arm.disconnect(self.config.disable_torque_on_disconnect)
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
@@ -1,89 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras.configs import CameraConfig
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
from lerobot.common.motors.configs import FeetechMotorsBusConfig, MotorsBusConfig
|
||||
from lerobot.common.robots.config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiRobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# Network Configuration
|
||||
ip: str = "192.168.0.193"
|
||||
port: int = 5555
|
||||
video_port: int = 5556
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"front": OpenCVCameraConfig(
|
||||
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
|
||||
),
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0077581",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/ttyACM0",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
"left_wheel": (7, "sts3215"),
|
||||
"back_wheel": (8, "sts3215"),
|
||||
"right_wheel": (9, "sts3215"),
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
teleop_keys: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
# Movement
|
||||
"forward": "w",
|
||||
"backward": "s",
|
||||
"left": "a",
|
||||
"right": "d",
|
||||
"rotate_left": "z",
|
||||
"rotate_right": "x",
|
||||
# Speed control
|
||||
"speed_up": "r",
|
||||
"speed_down": "f",
|
||||
# quit teleop
|
||||
"quit": "q",
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
@@ -1,692 +0,0 @@
|
||||
import base64
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import zmq
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.errors import DeviceNotConnectedError
|
||||
from lerobot.common.motors.feetech.feetech import TorqueMode
|
||||
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
|
||||
from lerobot.common.motors.motors_bus import MotorsBus
|
||||
from lerobot.common.motors.utils import make_motors_buses_from_configs
|
||||
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
|
||||
from lerobot.common.robots.utils import get_arm_id
|
||||
|
||||
PYNPUT_AVAILABLE = True
|
||||
try:
|
||||
# Only import if there's a valid X server or if we're not on a Pi
|
||||
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
|
||||
print("No DISPLAY set. Skipping pynput import.")
|
||||
raise ImportError("pynput blocked intentionally due to no display.")
|
||||
|
||||
from pynput import keyboard
|
||||
except ImportError:
|
||||
keyboard = None
|
||||
PYNPUT_AVAILABLE = False
|
||||
except Exception as e:
|
||||
keyboard = None
|
||||
PYNPUT_AVAILABLE = False
|
||||
print(f"Could not import pynput: {e}")
|
||||
|
||||
|
||||
class MobileManipulator:
|
||||
"""
|
||||
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
|
||||
The robot includes a three omniwheel mobile base and a remote follower arm.
|
||||
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
|
||||
forwarded to the remote follower arm (after applying a safety clamp).
|
||||
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
|
||||
"""
|
||||
|
||||
def __init__(self, config: LeKiwiRobotConfig):
|
||||
"""
|
||||
Expected keys in config:
|
||||
- ip, port, video_port for the remote connection.
|
||||
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
|
||||
"""
|
||||
self.robot_type = config.type
|
||||
self.config = config
|
||||
self.remote_ip = config.ip
|
||||
self.remote_port = config.port
|
||||
self.remote_port_video = config.video_port
|
||||
self.calibration_dir = Path(self.config.calibration_dir)
|
||||
self.logs = {}
|
||||
|
||||
self.teleop_keys = self.config.teleop_keys
|
||||
|
||||
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
|
||||
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
|
||||
|
||||
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
|
||||
|
||||
self.cameras = make_cameras_from_configs(self.config.cameras)
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
self.last_frames = {}
|
||||
self.last_present_speed = {}
|
||||
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
|
||||
|
||||
# Define three speed levels and a current index
|
||||
self.speed_levels = [
|
||||
{"xy": 0.1, "theta": 30}, # slow
|
||||
{"xy": 0.2, "theta": 60}, # medium
|
||||
{"xy": 0.3, "theta": 90}, # fast
|
||||
]
|
||||
self.speed_index = 0 # Start at slow
|
||||
|
||||
# ZeroMQ context and sockets.
|
||||
self.context = None
|
||||
self.cmd_socket = None
|
||||
self.video_socket = None
|
||||
|
||||
# Keyboard state for base teleoperation.
|
||||
self.running = True
|
||||
self.pressed_keys = {
|
||||
"forward": False,
|
||||
"backward": False,
|
||||
"left": False,
|
||||
"right": False,
|
||||
"rotate_left": False,
|
||||
"rotate_right": False,
|
||||
}
|
||||
|
||||
if PYNPUT_AVAILABLE:
|
||||
print("pynput is available - enabling local keyboard listener.")
|
||||
self.listener = keyboard.Listener(
|
||||
on_press=self.on_press,
|
||||
on_release=self.on_release,
|
||||
)
|
||||
self.listener.start()
|
||||
else:
|
||||
print("pynput not available - skipping local keyboard listener.")
|
||||
self.listener = None
|
||||
|
||||
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
|
||||
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
key = f"observation.images.{cam_key}"
|
||||
cam_ft[key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def motor_features(self) -> dict:
|
||||
follower_arm_names = [
|
||||
"shoulder_pan",
|
||||
"shoulder_lift",
|
||||
"elbow_flex",
|
||||
"wrist_flex",
|
||||
"wrist_roll",
|
||||
"gripper",
|
||||
]
|
||||
observations = ["x_mm", "y_mm", "theta"]
|
||||
combined_names = follower_arm_names + observations
|
||||
return {
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (len(combined_names),),
|
||||
"names": combined_names,
|
||||
},
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (len(combined_names),),
|
||||
"names": combined_names,
|
||||
},
|
||||
}
|
||||
|
||||
@property
|
||||
def features(self):
|
||||
return {**self.motor_features, **self.camera_features}
|
||||
|
||||
@property
|
||||
def has_camera(self):
|
||||
return len(self.cameras) > 0
|
||||
|
||||
@property
|
||||
def num_cameras(self):
|
||||
return len(self.cameras)
|
||||
|
||||
@property
|
||||
def available_arms(self):
|
||||
available = []
|
||||
for name in self.leader_arms:
|
||||
available.append(get_arm_id(name, "leader"))
|
||||
for name in self.follower_arms:
|
||||
available.append(get_arm_id(name, "follower"))
|
||||
return available
|
||||
|
||||
def on_press(self, key):
|
||||
try:
|
||||
# Movement
|
||||
if key.char == self.teleop_keys["forward"]:
|
||||
self.pressed_keys["forward"] = True
|
||||
elif key.char == self.teleop_keys["backward"]:
|
||||
self.pressed_keys["backward"] = True
|
||||
elif key.char == self.teleop_keys["left"]:
|
||||
self.pressed_keys["left"] = True
|
||||
elif key.char == self.teleop_keys["right"]:
|
||||
self.pressed_keys["right"] = True
|
||||
elif key.char == self.teleop_keys["rotate_left"]:
|
||||
self.pressed_keys["rotate_left"] = True
|
||||
elif key.char == self.teleop_keys["rotate_right"]:
|
||||
self.pressed_keys["rotate_right"] = True
|
||||
|
||||
# Quit teleoperation
|
||||
elif key.char == self.teleop_keys["quit"]:
|
||||
self.running = False
|
||||
return False
|
||||
|
||||
# Speed control
|
||||
elif key.char == self.teleop_keys["speed_up"]:
|
||||
self.speed_index = min(self.speed_index + 1, 2)
|
||||
print(f"Speed index increased to {self.speed_index}")
|
||||
elif key.char == self.teleop_keys["speed_down"]:
|
||||
self.speed_index = max(self.speed_index - 1, 0)
|
||||
print(f"Speed index decreased to {self.speed_index}")
|
||||
|
||||
except AttributeError:
|
||||
# e.g., if key is special like Key.esc
|
||||
if key == keyboard.Key.esc:
|
||||
self.running = False
|
||||
return False
|
||||
|
||||
def on_release(self, key):
|
||||
try:
|
||||
if hasattr(key, "char"):
|
||||
if key.char == self.teleop_keys["forward"]:
|
||||
self.pressed_keys["forward"] = False
|
||||
elif key.char == self.teleop_keys["backward"]:
|
||||
self.pressed_keys["backward"] = False
|
||||
elif key.char == self.teleop_keys["left"]:
|
||||
self.pressed_keys["left"] = False
|
||||
elif key.char == self.teleop_keys["right"]:
|
||||
self.pressed_keys["right"] = False
|
||||
elif key.char == self.teleop_keys["rotate_left"]:
|
||||
self.pressed_keys["rotate_left"] = False
|
||||
elif key.char == self.teleop_keys["rotate_right"]:
|
||||
self.pressed_keys["rotate_right"] = False
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
def connect(self):
|
||||
if not self.leader_arms:
|
||||
raise ValueError("MobileManipulator has no leader arm to connect.")
|
||||
for name in self.leader_arms:
|
||||
print(f"Connecting {name} leader arm.")
|
||||
self.calibrate_leader()
|
||||
|
||||
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
|
||||
self.context = zmq.Context()
|
||||
self.cmd_socket = self.context.socket(zmq.PUSH)
|
||||
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
|
||||
self.cmd_socket.connect(connection_string)
|
||||
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
self.video_socket = self.context.socket(zmq.PULL)
|
||||
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
|
||||
self.video_socket.connect(video_connection)
|
||||
self.video_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
print(
|
||||
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
|
||||
)
|
||||
self.is_connected = True
|
||||
|
||||
def load_or_run_calibration_(self, name, arm, arm_type):
|
||||
arm_id = get_arm_id(name, arm_type)
|
||||
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
|
||||
|
||||
if arm_calib_path.exists():
|
||||
with open(arm_calib_path) as f:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(arm_calib_path, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
|
||||
return calibration
|
||||
|
||||
def calibrate_leader(self):
|
||||
for name, arm in self.leader_arms.items():
|
||||
# Connect the bus
|
||||
arm.connect()
|
||||
|
||||
# Disable torque on all motors
|
||||
for motor_id in arm.motors:
|
||||
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
|
||||
|
||||
# Now run calibration
|
||||
calibration = self.load_or_run_calibration_(name, arm, "leader")
|
||||
arm.set_calibration(calibration)
|
||||
|
||||
def calibrate_follower(self):
|
||||
for name, bus in self.follower_arms.items():
|
||||
bus.connect()
|
||||
|
||||
# Disable torque on all motors
|
||||
for motor_id in bus.motors:
|
||||
bus.write("Torque_Enable", 0, motor_id)
|
||||
|
||||
# Then filter out wheels
|
||||
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
|
||||
if not arm_only_dict:
|
||||
continue
|
||||
|
||||
original_motors = bus.motors
|
||||
bus.motors = arm_only_dict
|
||||
|
||||
calibration = self.load_or_run_calibration_(name, bus, "follower")
|
||||
bus.set_calibration(calibration)
|
||||
|
||||
bus.motors = original_motors
|
||||
|
||||
def _get_data(self):
|
||||
"""
|
||||
Polls the video socket for up to 15 ms. If data arrives, decode only
|
||||
the *latest* message, returning frames, speed, and arm state. If
|
||||
nothing arrives for any field, use the last known values.
|
||||
"""
|
||||
frames = {}
|
||||
present_speed = {}
|
||||
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
|
||||
|
||||
# Poll up to 15 ms
|
||||
poller = zmq.Poller()
|
||||
poller.register(self.video_socket, zmq.POLLIN)
|
||||
socks = dict(poller.poll(15))
|
||||
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
|
||||
# No new data arrived → reuse ALL old data
|
||||
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||
|
||||
# Drain all messages, keep only the last
|
||||
last_msg = None
|
||||
while True:
|
||||
try:
|
||||
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
|
||||
last_msg = obs_string
|
||||
except zmq.Again:
|
||||
break
|
||||
|
||||
if not last_msg:
|
||||
# No new message → also reuse old
|
||||
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||
|
||||
# Decode only the final message
|
||||
try:
|
||||
observation = json.loads(last_msg)
|
||||
|
||||
images_dict = observation.get("images", {})
|
||||
new_speed = observation.get("present_speed", {})
|
||||
new_arm_state = observation.get("follower_arm_state", None)
|
||||
|
||||
# Convert images
|
||||
for cam_name, image_b64 in images_dict.items():
|
||||
if image_b64:
|
||||
jpg_data = base64.b64decode(image_b64)
|
||||
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
|
||||
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
||||
if frame_candidate is not None:
|
||||
frames[cam_name] = frame_candidate
|
||||
|
||||
# If remote_arm_state is None and frames is None there is no message then use the previous message
|
||||
if new_arm_state is not None and frames is not None:
|
||||
self.last_frames = frames
|
||||
|
||||
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
|
||||
self.last_remote_arm_state = remote_arm_state_tensor
|
||||
|
||||
present_speed = new_speed
|
||||
self.last_present_speed = new_speed
|
||||
else:
|
||||
frames = self.last_frames
|
||||
|
||||
remote_arm_state_tensor = self.last_remote_arm_state
|
||||
|
||||
present_speed = self.last_present_speed
|
||||
|
||||
except Exception as e:
|
||||
print(f"[DEBUG] Error decoding video message: {e}")
|
||||
# If decode fails, fall back to old data
|
||||
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||
|
||||
return frames, present_speed, remote_arm_state_tensor
|
||||
|
||||
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
|
||||
state_tensor = torch.zeros(3, dtype=torch.int32)
|
||||
if present_speed:
|
||||
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
|
||||
if "1" in decoded:
|
||||
state_tensor[0] = decoded["1"]
|
||||
if "2" in decoded:
|
||||
state_tensor[1] = decoded["2"]
|
||||
if "3" in decoded:
|
||||
state_tensor[2] = decoded["3"]
|
||||
return state_tensor
|
||||
|
||||
def teleop_step(
|
||||
self, record_data: bool = False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
|
||||
|
||||
speed_setting = self.speed_levels[self.speed_index]
|
||||
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
|
||||
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
|
||||
|
||||
# Prepare to assign the position of the leader to the follower
|
||||
arm_positions = []
|
||||
for name in self.leader_arms:
|
||||
pos = self.leader_arms[name].read("Present_Position")
|
||||
pos_tensor = torch.from_numpy(pos).float()
|
||||
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
|
||||
arm_positions.extend(pos_tensor.tolist())
|
||||
|
||||
# (The rest of your code for generating wheel commands remains unchanged)
|
||||
x_cmd = 0.0 # m/s forward/backward
|
||||
y_cmd = 0.0 # m/s lateral
|
||||
theta_cmd = 0.0 # deg/s rotation
|
||||
if self.pressed_keys["forward"]:
|
||||
x_cmd += xy_speed
|
||||
if self.pressed_keys["backward"]:
|
||||
x_cmd -= xy_speed
|
||||
if self.pressed_keys["left"]:
|
||||
y_cmd += xy_speed
|
||||
if self.pressed_keys["right"]:
|
||||
y_cmd -= xy_speed
|
||||
if self.pressed_keys["rotate_left"]:
|
||||
theta_cmd += theta_speed
|
||||
if self.pressed_keys["rotate_right"]:
|
||||
theta_cmd -= theta_speed
|
||||
|
||||
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||
|
||||
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
|
||||
self.cmd_socket.send_string(json.dumps(message))
|
||||
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
obs_dict = self.capture_observation()
|
||||
|
||||
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
|
||||
|
||||
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
|
||||
wheel_velocity_mm = (
|
||||
wheel_velocity_tuple[0] * 1000.0,
|
||||
wheel_velocity_tuple[1] * 1000.0,
|
||||
wheel_velocity_tuple[2],
|
||||
)
|
||||
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
|
||||
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
|
||||
action_dict = {"action": action_tensor}
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def capture_observation(self) -> dict:
|
||||
"""
|
||||
Capture observations from the remote robot: current follower arm positions,
|
||||
present wheel speeds (converted to body-frame velocities: x, y, theta),
|
||||
and a camera frame.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
|
||||
frames, present_speed, remote_arm_state_tensor = self._get_data()
|
||||
|
||||
body_state = self.wheel_raw_to_body(present_speed)
|
||||
|
||||
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
|
||||
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
|
||||
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
|
||||
|
||||
obs_dict = {"observation.state": combined_state_tensor}
|
||||
|
||||
# Loop over each configured camera
|
||||
for cam_name, cam in self.cameras.items():
|
||||
frame = frames.get(cam_name, None)
|
||||
if frame is None:
|
||||
# Create a black image using the camera's configured width, height, and channels
|
||||
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
|
||||
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
|
||||
# Ensure the action tensor has at least 9 elements:
|
||||
# - First 6: arm positions.
|
||||
# - Last 3: base commands.
|
||||
if action.numel() < 9:
|
||||
# Pad with zeros if there are not enough elements.
|
||||
padded = torch.zeros(9, dtype=action.dtype)
|
||||
padded[: action.numel()] = action
|
||||
action = padded
|
||||
|
||||
# Extract arm and base actions.
|
||||
arm_actions = action[:6].flatten()
|
||||
base_actions = action[6:].flatten()
|
||||
|
||||
x_cmd_mm = base_actions[0].item() # mm/s
|
||||
y_cmd_mm = base_actions[1].item() # mm/s
|
||||
theta_cmd = base_actions[2].item() # deg/s
|
||||
|
||||
# Convert mm/s to m/s for the kinematics calculations.
|
||||
x_cmd = x_cmd_mm / 1000.0 # m/s
|
||||
y_cmd = y_cmd_mm / 1000.0 # m/s
|
||||
|
||||
# Compute wheel commands from body commands.
|
||||
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||
|
||||
arm_positions_list = arm_actions.tolist()
|
||||
|
||||
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
|
||||
self.cmd_socket.send_string(json.dumps(message))
|
||||
|
||||
return action
|
||||
|
||||
def print_logs(self):
|
||||
pass
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError("Not connected.")
|
||||
if self.cmd_socket:
|
||||
stop_cmd = {
|
||||
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
|
||||
"arm_positions": {},
|
||||
}
|
||||
self.cmd_socket.send_string(json.dumps(stop_cmd))
|
||||
self.cmd_socket.close()
|
||||
if self.video_socket:
|
||||
self.video_socket.close()
|
||||
if self.context:
|
||||
self.context.term()
|
||||
if PYNPUT_AVAILABLE:
|
||||
self.listener.stop()
|
||||
self.is_connected = False
|
||||
print("[INFO] Disconnected from remote robot.")
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
if PYNPUT_AVAILABLE:
|
||||
self.listener.stop()
|
||||
|
||||
@staticmethod
|
||||
def degps_to_raw(degps: float) -> int:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
speed_in_steps = abs(degps) * steps_per_deg
|
||||
speed_int = int(round(speed_in_steps))
|
||||
if speed_int > 0x7FFF:
|
||||
speed_int = 0x7FFF
|
||||
if degps < 0:
|
||||
return speed_int | 0x8000
|
||||
else:
|
||||
return speed_int & 0x7FFF
|
||||
|
||||
@staticmethod
|
||||
def raw_to_degps(raw_speed: int) -> float:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
magnitude = raw_speed & 0x7FFF
|
||||
degps = magnitude / steps_per_deg
|
||||
if raw_speed & 0x8000:
|
||||
degps = -degps
|
||||
return degps
|
||||
|
||||
def body_to_wheel_raw(
|
||||
self,
|
||||
x_cmd: float,
|
||||
y_cmd: float,
|
||||
theta_cmd: float,
|
||||
wheel_radius: float = 0.05,
|
||||
base_radius: float = 0.125,
|
||||
max_raw: int = 3000,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert desired body-frame velocities into wheel raw commands.
|
||||
|
||||
Parameters:
|
||||
x_cmd : Linear velocity in x (m/s).
|
||||
y_cmd : Linear velocity in y (m/s).
|
||||
theta_cmd : Rotational velocity (deg/s).
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the center of rotation to each wheel (meters).
|
||||
max_raw : Maximum allowed raw command (ticks) per wheel.
|
||||
|
||||
Returns:
|
||||
A dictionary with wheel raw commands:
|
||||
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
|
||||
|
||||
Notes:
|
||||
- Internally, the method converts theta_cmd to rad/s for the kinematics.
|
||||
- The raw command is computed from the wheels angular speed in deg/s
|
||||
using degps_to_raw(). If any command exceeds max_raw, all commands
|
||||
are scaled down proportionally.
|
||||
"""
|
||||
# Convert rotational velocity from deg/s to rad/s.
|
||||
theta_rad = theta_cmd * (np.pi / 180.0)
|
||||
# Create the body velocity vector [x, y, theta_rad].
|
||||
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
|
||||
# The third column (base_radius) accounts for the effect of rotation.
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
|
||||
wheel_linear_speeds = m.dot(velocity_vector)
|
||||
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
|
||||
|
||||
# Convert wheel angular speeds from rad/s to deg/s.
|
||||
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
|
||||
|
||||
# Scaling
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
|
||||
max_raw_computed = max(raw_floats)
|
||||
if max_raw_computed > max_raw:
|
||||
scale = max_raw / max_raw_computed
|
||||
wheel_degps = wheel_degps * scale
|
||||
|
||||
# Convert each wheel’s angular speed (deg/s) to a raw integer.
|
||||
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
|
||||
|
||||
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
|
||||
|
||||
def wheel_raw_to_body(
|
||||
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
|
||||
) -> tuple:
|
||||
"""
|
||||
Convert wheel raw command feedback back into body-frame velocities.
|
||||
|
||||
Parameters:
|
||||
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the robot center to each wheel (meters).
|
||||
|
||||
Returns:
|
||||
A tuple (x_cmd, y_cmd, theta_cmd) where:
|
||||
x_cmd : Linear velocity in x (m/s).
|
||||
y_cmd : Linear velocity in y (m/s).
|
||||
theta_cmd : Rotational velocity in deg/s.
|
||||
"""
|
||||
# Extract the raw values in order.
|
||||
raw_list = [
|
||||
int(wheel_raw.get("left_wheel", 0)),
|
||||
int(wheel_raw.get("back_wheel", 0)),
|
||||
int(wheel_raw.get("right_wheel", 0)),
|
||||
]
|
||||
|
||||
# Convert each raw command back to an angular speed in deg/s.
|
||||
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
|
||||
# Convert from deg/s to rad/s.
|
||||
wheel_radps = wheel_degps * (np.pi / 180.0)
|
||||
# Compute each wheel’s linear speed (m/s) from its angular speed.
|
||||
wheel_linear_speeds = wheel_radps * wheel_radius
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
|
||||
m_inv = np.linalg.inv(m)
|
||||
velocity_vector = m_inv.dot(wheel_linear_speeds)
|
||||
x_cmd, y_cmd, theta_rad = velocity_vector
|
||||
theta_cmd = theta_rad * (180.0 / np.pi)
|
||||
return (x_cmd, y_cmd, theta_cmd)
|
||||
|
||||
|
||||
class LeKiwi:
|
||||
def __init__(self, motor_bus):
|
||||
"""
|
||||
Initializes the LeKiwi with Feetech motors bus.
|
||||
"""
|
||||
self.motor_bus = motor_bus
|
||||
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
|
||||
|
||||
# Initialize motors in velocity mode.
|
||||
self.motor_bus.write("Lock", 0)
|
||||
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
|
||||
self.motor_bus.write("Lock", 1)
|
||||
print("Motors set to velocity mode.")
|
||||
|
||||
def read_velocity(self):
|
||||
"""
|
||||
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
|
||||
"""
|
||||
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
|
||||
return {
|
||||
"left_wheel": int(raw_speeds[0]),
|
||||
"back_wheel": int(raw_speeds[1]),
|
||||
"right_wheel": int(raw_speeds[2]),
|
||||
}
|
||||
|
||||
def set_velocity(self, command_speeds):
|
||||
"""
|
||||
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
|
||||
The order of speeds must correspond to self.motor_ids.
|
||||
"""
|
||||
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)
|
||||
|
||||
def stop(self):
|
||||
"""Stops the robot by setting all motor speeds to zero."""
|
||||
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
|
||||
print("Motors stopped.")
|
||||
@@ -1,4 +0,0 @@
|
||||
from .configuration_moss import MossRobotConfig
|
||||
from .robot_moss import MossRobot
|
||||
|
||||
__all__ = ["MossRobotConfig", "MossRobot"]
|
||||
@@ -1,30 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("moss")
|
||||
@dataclass
|
||||
class MossRobotConfig(RobotConfig):
|
||||
# Port to connect to the robot
|
||||
port: str
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
mock: bool = False
|
||||
|
||||
# motors
|
||||
shoulder_pan: tuple = (1, "sts3215")
|
||||
shoulder_lift: tuple = (2, "sts3215")
|
||||
elbow_flex: tuple = (3, "sts3215")
|
||||
wrist_flex: tuple = (4, "sts3215")
|
||||
wrist_roll: tuple = (5, "sts3215")
|
||||
gripper: tuple = (6, "sts3215")
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
@@ -1,223 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import TorqueMode
|
||||
from lerobot.common.motors.feetech import (
|
||||
FeetechMotorsBus,
|
||||
apply_feetech_offsets_from_calibration,
|
||||
run_full_arm_calibration,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .configuration_moss import MossRobotConfig
|
||||
|
||||
|
||||
class MossRobot(Robot):
|
||||
"""
|
||||
[Moss Arm](https://github.com/jess-moss/moss-robot-arms) designed by Jess Moss
|
||||
"""
|
||||
|
||||
config_class = MossRobotConfig
|
||||
name = "moss"
|
||||
|
||||
def __init__(self, config: MossRobotConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.robot_type = config.type
|
||||
|
||||
self.arm = FeetechMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": config.shoulder_pan,
|
||||
"shoulder_lift": config.shoulder_lift,
|
||||
"elbow_flex": config.elbow_flex,
|
||||
"wrist_flex": config.wrist_flex,
|
||||
"wrist_roll": config.wrist_roll,
|
||||
"gripper": config.gripper,
|
||||
},
|
||||
)
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
self.is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(self.arm),),
|
||||
"names": {"motors": list(self.arm.motors)},
|
||||
}
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return self.state_feature
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
cam_ft[cam_key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
def connect(self) -> None:
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(
|
||||
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
|
||||
)
|
||||
|
||||
logging.info("Connecting arm.")
|
||||
self.arm.connect()
|
||||
|
||||
# We assume that at connection time, arm is in a rest position,
|
||||
# and torque can be safely disabled to run calibration.
|
||||
self.arm.write("Torque_Enable", TorqueMode.DISABLED.value)
|
||||
self.calibrate()
|
||||
|
||||
# Mode=0 for Position Control
|
||||
self.arm.write("Mode", 0)
|
||||
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
|
||||
self.arm.write("P_Coefficient", 16)
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.arm.write("I_Coefficient", 0)
|
||||
self.arm.write("D_Coefficient", 32)
|
||||
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
|
||||
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
|
||||
self.arm.write("Lock", 0)
|
||||
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
|
||||
# the motors. Note: this configuration is not in the official STS3215 Memory Table
|
||||
self.arm.write("Maximum_Acceleration", 254)
|
||||
self.arm.write("Acceleration", 254)
|
||||
|
||||
logging.info("Activating torque.")
|
||||
self.arm.write("Torque_Enable", TorqueMode.ENABLED.value)
|
||||
|
||||
# Check arm can be read
|
||||
self.arm.read("Present_Position")
|
||||
|
||||
# Connect the cameras
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def calibrate(self) -> None:
|
||||
"""After calibration all motors function in human interpretable ranges.
|
||||
Rotations are expressed in degrees in nominal range of [-180, 180],
|
||||
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
|
||||
"""
|
||||
if self.calibration_fpath.exists():
|
||||
with open(self.calibration_fpath) as f:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
# TODO(rcadene): display a warning in __init__ if calibration file not available
|
||||
logging.info(f"Missing calibration file '{self.calibration_fpath}'")
|
||||
calibration = run_full_arm_calibration(self.arm, self.robot_type, self.name, "follower")
|
||||
|
||||
logging.info(f"Calibration is done! Saving calibration file '{self.calibration_fpath}'")
|
||||
self.calibration_fpath.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(self.calibration_fpath, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
|
||||
self.arm.set_calibration(calibration)
|
||||
apply_feetech_offsets_from_calibration(self.arm, calibration)
|
||||
|
||||
def get_observation(self) -> dict[str, np.ndarray]:
|
||||
"""The returned observations do not have a batch dimension."""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
obs_dict = {}
|
||||
|
||||
# Read arm position
|
||||
before_read_t = time.perf_counter()
|
||||
obs_dict[OBS_STATE] = self.arm.read("Present_Position")
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
before_camread_t = time.perf_counter()
|
||||
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
|
||||
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: np.ndarray) -> np.ndarray:
|
||||
"""Command arm to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Args:
|
||||
action (np.ndarray): array containing the goal positions for the motors.
|
||||
|
||||
Raises:
|
||||
RobotDeviceNotConnectedError: if robot is not connected.
|
||||
|
||||
Returns:
|
||||
np.ndarray: the action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
goal_pos = action
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.arm.read("Present_Position")
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
|
||||
# Send goal position to the arm
|
||||
self.arm.write("Goal_Position", goal_pos.astype(np.int32))
|
||||
|
||||
return goal_pos
|
||||
|
||||
def print_logs(self):
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
pass
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
|
||||
)
|
||||
|
||||
self.arm.disconnect()
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
@@ -1,95 +0,0 @@
|
||||
import abc
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.constants import HF_LEROBOT_CALIBRATION, ROBOTS
|
||||
from lerobot.common.motors import MotorCalibration
|
||||
|
||||
from .config import RobotConfig
|
||||
|
||||
|
||||
# TODO(aliberts): action/obs typing such as Generic[ObsType, ActType] similar to gym.Env ?
|
||||
# https://github.com/Farama-Foundation/Gymnasium/blob/3287c869f9a48d99454306b0d4b4ec537f0f35e3/gymnasium/core.py#L23
|
||||
class Robot(abc.ABC):
|
||||
"""The main LeRobot class for implementing robots."""
|
||||
|
||||
# Set these in ALL subclasses
|
||||
config_class: RobotConfig
|
||||
name: str
|
||||
|
||||
def __init__(self, config: RobotConfig):
|
||||
self.robot_type = self.name
|
||||
self.id = config.id
|
||||
self.calibration_dir = (
|
||||
config.calibration_dir if config.calibration_dir else HF_LEROBOT_CALIBRATION / ROBOTS / self.name
|
||||
)
|
||||
self.calibration_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.calibration_fpath = self.calibration_dir / f"{self.id}.json"
|
||||
self.calibration: dict[str, MotorCalibration] = {}
|
||||
if self.calibration_fpath.is_file():
|
||||
self._load_calibration()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.id} {self.__class__.__name__}"
|
||||
|
||||
# TODO(aliberts): create a proper Feature class for this that links with datasets
|
||||
@abc.abstractproperty
|
||||
def state_feature(self) -> dict:
|
||||
pass
|
||||
|
||||
@abc.abstractproperty
|
||||
def action_feature(self) -> dict:
|
||||
pass
|
||||
|
||||
@abc.abstractproperty
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
pass
|
||||
|
||||
@abc.abstractproperty
|
||||
def is_connected(self) -> bool:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def connect(self) -> None:
|
||||
"""Connects to the robot."""
|
||||
pass
|
||||
|
||||
@abc.abstractproperty
|
||||
def is_calibrated(self) -> bool:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def calibrate(self) -> None:
|
||||
"""Calibrates the robot."""
|
||||
pass
|
||||
|
||||
def _load_calibration(self, fpath: Path | None = None) -> None:
|
||||
fpath = self.calibration_fpath if fpath is None else fpath
|
||||
with open(fpath) as f, draccus.config_type("json"):
|
||||
self.calibration = draccus.load(dict[str, MotorCalibration], f)
|
||||
|
||||
def _save_calibration(self, fpath: Path | None = None) -> None:
|
||||
fpath = self.calibration_fpath if fpath is None else fpath
|
||||
with open(fpath, "w") as f, draccus.config_type("json"):
|
||||
draccus.dump(self.calibration, f, indent=4)
|
||||
|
||||
@abc.abstractmethod
|
||||
def configure(self) -> None:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
"""Gets observation from the robot."""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Sends actions to the robot."""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def disconnect(self) -> None:
|
||||
"""Disconnects from the robot."""
|
||||
pass
|
||||
@@ -1,2 +0,0 @@
|
||||
from .config_so100_follower import SO100FollowerConfig
|
||||
from .so100_follower import SO100Follower
|
||||
@@ -1,22 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("so100_follower")
|
||||
@dataclass
|
||||
class SO100FollowerConfig(RobotConfig):
|
||||
# Port to connect to the arm
|
||||
port: str
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
@@ -1,215 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.feetech import (
|
||||
FeetechMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .config_so100_follower import SO100FollowerConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SO100Follower(Robot):
|
||||
"""
|
||||
[SO-100 Follower Arm](https://github.com/TheRobotStudio/SO-ARM100) designed by TheRobotStudio
|
||||
"""
|
||||
|
||||
config_class = SO100FollowerConfig
|
||||
name = "so100_follower"
|
||||
|
||||
def __init__(self, config: SO100FollowerConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.arm = FeetechMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(self.arm),),
|
||||
"names": {"motors": list(self.arm.motors)},
|
||||
}
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return self.state_feature
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
cam_ft[cam_key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
# TODO(aliberts): add cam.is_connected for cam in self.cameras
|
||||
return self.arm.is_connected
|
||||
|
||||
def connect(self) -> None:
|
||||
"""
|
||||
We assume that at connection time, arm is in a rest position,
|
||||
and torque can be safely disabled to run calibration.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.arm.connect()
|
||||
if not self.is_calibrated:
|
||||
self.calibrate()
|
||||
|
||||
# Connect the cameras
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.arm.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
self.arm.disable_torque()
|
||||
for name in self.arm.names:
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
|
||||
|
||||
input("Move robot to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.arm.set_half_turn_homings()
|
||||
|
||||
full_turn_motor = "wrist_roll"
|
||||
unknown_range_motors = [name for name in self.arm.names if name != full_turn_motor]
|
||||
logger.info(
|
||||
f"Move all joints except '{full_turn_motor}' sequentially through their "
|
||||
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
|
||||
range_mins[full_turn_motor] = 0
|
||||
range_maxes[full_turn_motor] = 4095
|
||||
|
||||
self.calibration = {}
|
||||
for name, motor in self.arm.motors.items():
|
||||
self.calibration[name] = MotorCalibration(
|
||||
id=motor.id,
|
||||
drive_mode=0,
|
||||
homing_offset=homing_offsets[name],
|
||||
range_min=range_mins[name],
|
||||
range_max=range_maxes[name],
|
||||
)
|
||||
|
||||
self.arm.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
print("Calibration saved to", self.calibration_fpath)
|
||||
|
||||
def configure(self) -> None:
|
||||
with self.arm.torque_disabled():
|
||||
self.arm.configure_motors()
|
||||
for name in self.arm.names:
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
|
||||
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
|
||||
self.arm.write("P_Coefficient", name, 16)
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.arm.write("I_Coefficient", name, 0)
|
||||
self.arm.write("D_Coefficient", name, 32)
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
obs_dict = {}
|
||||
|
||||
# Read arm position
|
||||
start = time.perf_counter()
|
||||
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
start = time.perf_counter()
|
||||
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Command arm to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Raises:
|
||||
RobotDeviceNotConnectedError: if robot is not connected.
|
||||
|
||||
Returns:
|
||||
the action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
goal_pos = action
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.arm.sync_read("Present_Position")
|
||||
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
|
||||
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
|
||||
|
||||
# Send goal position to the arm
|
||||
self.arm.sync_write("Goal_Position", goal_pos)
|
||||
return goal_pos
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.arm.disconnect(self.config.disable_torque_on_disconnect)
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
@@ -1,44 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
from lerobot.common.cameras.intel import RealSenseCameraConfig
|
||||
from lerobot.common.cameras.opencv import OpenCVCameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("stretch3")
|
||||
@dataclass
|
||||
class Stretch3RobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"navigation": OpenCVCameraConfig(
|
||||
camera_index="/dev/hello-nav-head-camera",
|
||||
fps=10,
|
||||
width=1280,
|
||||
height=720,
|
||||
rotation=-90,
|
||||
),
|
||||
"head": RealSenseCameraConfig(
|
||||
name="Intel RealSense D435I",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
rotation=90,
|
||||
),
|
||||
"wrist": RealSenseCameraConfig(
|
||||
name="Intel RealSense D405",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
@@ -1,183 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from stretch_body.gamepad_teleop import GamePadTeleop
|
||||
from stretch_body.robot import Robot as StretchAPI
|
||||
from stretch_body.robot_params import RobotParams
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.datasets.utils import get_nested_item
|
||||
|
||||
from ..robot import Robot
|
||||
from .configuration_stretch3 import Stretch3RobotConfig
|
||||
|
||||
# {lerobot_keys: stretch.api.keys}
|
||||
STRETCH_MOTORS = {
|
||||
"head_pan.pos": "head.head_pan.pos",
|
||||
"head_tilt.pos": "head.head_tilt.pos",
|
||||
"lift.pos": "lift.pos",
|
||||
"arm.pos": "arm.pos",
|
||||
"wrist_pitch.pos": "end_of_arm.wrist_pitch.pos",
|
||||
"wrist_roll.pos": "end_of_arm.wrist_roll.pos",
|
||||
"wrist_yaw.pos": "end_of_arm.wrist_yaw.pos",
|
||||
"gripper.pos": "end_of_arm.stretch_gripper.pos",
|
||||
"base_x.vel": "base.x_vel",
|
||||
"base_y.vel": "base.y_vel",
|
||||
"base_theta.vel": "base.theta_vel",
|
||||
}
|
||||
|
||||
|
||||
class Stretch3Robot(Robot):
|
||||
"""[Stretch 3](https://hello-robot.com/stretch-3-product), by Hello Robot."""
|
||||
|
||||
config_class = Stretch3RobotConfig
|
||||
name = "stretch3"
|
||||
|
||||
def __init__(self, config: Stretch3RobotConfig):
|
||||
super().__init__(config)
|
||||
|
||||
self.config = config
|
||||
self.robot_type = self.config.type
|
||||
|
||||
self.api = StretchAPI()
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
self.is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
self.teleop = None # TODO remove
|
||||
|
||||
# TODO(aliberts): test this
|
||||
RobotParams.set_logging_level("WARNING")
|
||||
RobotParams.set_logging_formatter("brief_console_formatter")
|
||||
|
||||
self.state_keys = None
|
||||
self.action_keys = None
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(STRETCH_MOTORS),),
|
||||
"names": {"motors": list(STRETCH_MOTORS)},
|
||||
}
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return self.state_feature
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
cam_ft[cam_key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
def connect(self) -> None:
|
||||
self.is_connected = self.api.startup()
|
||||
if not self.is_connected:
|
||||
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
|
||||
raise ConnectionError()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
self.is_connected = self.is_connected and cam.is_connected
|
||||
|
||||
if not self.is_connected:
|
||||
print("Could not connect to the cameras, check that all cameras are plugged-in.")
|
||||
raise ConnectionError()
|
||||
|
||||
self.calibrate()
|
||||
|
||||
def calibrate(self) -> None:
|
||||
if not self.api.is_homed():
|
||||
self.api.home()
|
||||
|
||||
def _get_state(self) -> dict:
|
||||
status = self.api.get_status()
|
||||
return {k: get_nested_item(status, v, sep=".") for k, v in STRETCH_MOTORS.items()}
|
||||
|
||||
def get_observation(self) -> dict[str, np.ndarray]:
|
||||
obs_dict = {}
|
||||
|
||||
# Read Stretch state
|
||||
before_read_t = time.perf_counter()
|
||||
state = self._get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
state = np.asarray(list(state.values()))
|
||||
obs_dict[OBS_STATE] = state
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
before_camread_t = time.perf_counter()
|
||||
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
|
||||
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: np.ndarray) -> np.ndarray:
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
if self.action_keys is None:
|
||||
dummy_action = self.teleop.gamepad_controller.get_state()
|
||||
self.action_keys = list(dummy_action.keys())
|
||||
|
||||
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(state=action_dict, robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
# TODO(aliberts): return action_sent when motion is limited
|
||||
return action
|
||||
|
||||
def print_logs(self) -> None:
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def teleop_safety_stop(self) -> None:
|
||||
if self.teleop is not None:
|
||||
self.teleop._safety_stop(robot=self)
|
||||
|
||||
def disconnect(self) -> None:
|
||||
self.api.stop()
|
||||
if self.teleop is not None:
|
||||
self.teleop.gamepad_controller.stop()
|
||||
self.teleop.stop()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
@@ -1,117 +0,0 @@
|
||||
import logging
|
||||
from pprint import pformat
|
||||
from typing import Protocol
|
||||
|
||||
from lerobot.common.robots import RobotConfig
|
||||
|
||||
|
||||
def get_arm_id(name, arm_type):
|
||||
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
|
||||
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
|
||||
"""
|
||||
return f"{name}_{arm_type}"
|
||||
|
||||
|
||||
# TODO(aliberts): Remove and point to lerobot.common.robots.Robot
|
||||
class Robot(Protocol):
|
||||
robot_type: str
|
||||
features: dict
|
||||
|
||||
def connect(self): ...
|
||||
def run_calibration(self): ...
|
||||
def teleop_step(self, record_data=False): ...
|
||||
def capture_observation(self): ...
|
||||
def send_action(self, action): ...
|
||||
def disconnect(self): ...
|
||||
|
||||
|
||||
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
||||
if robot_type == "aloha":
|
||||
from .aloha.configuration_aloha import AlohaRobotConfig
|
||||
|
||||
return AlohaRobotConfig(**kwargs)
|
||||
elif robot_type == "koch_follower":
|
||||
from .koch.config_koch_follower import KochFollowerConfig
|
||||
|
||||
return KochFollowerConfig(**kwargs)
|
||||
# elif robot_type == "koch_bimanual":
|
||||
# return KochBimanualRobotConfig(**kwargs)
|
||||
elif robot_type == "moss":
|
||||
from .moss.configuration_moss import MossRobotConfig
|
||||
|
||||
return MossRobotConfig(**kwargs)
|
||||
elif robot_type == "so100_leader":
|
||||
from .so100.config_so100_follower import SO100FollowerConfig
|
||||
|
||||
return SO100FollowerConfig(**kwargs)
|
||||
elif robot_type == "stretch":
|
||||
from .stretch3.configuration_stretch3 import Stretch3RobotConfig
|
||||
|
||||
return Stretch3RobotConfig(**kwargs)
|
||||
elif robot_type == "lekiwi":
|
||||
from .lekiwi.configuration_lekiwi import LeKiwiRobotConfig
|
||||
|
||||
return LeKiwiRobotConfig(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Robot type '{robot_type}' is not available.")
|
||||
|
||||
|
||||
def make_robot_from_config(config: RobotConfig):
|
||||
from .lekiwi.configuration_lekiwi import LeKiwiRobotConfig
|
||||
from .manipulator import ManipulatorRobotConfig
|
||||
|
||||
if isinstance(config, ManipulatorRobotConfig):
|
||||
from lerobot.common.robots.manipulator import ManipulatorRobot
|
||||
|
||||
return ManipulatorRobot(config)
|
||||
elif isinstance(config, LeKiwiRobotConfig):
|
||||
from lerobot.common.robots.mobile_manipulator import MobileManipulator
|
||||
|
||||
return MobileManipulator(config)
|
||||
else:
|
||||
from lerobot.common.robots.stretch3.robot_stretch3 import Stretch3Robot
|
||||
|
||||
return Stretch3Robot(config)
|
||||
|
||||
|
||||
def make_robot(robot_type: str, **kwargs) -> Robot:
|
||||
config = make_robot_config(robot_type, **kwargs)
|
||||
return make_robot_from_config(config)
|
||||
|
||||
|
||||
def ensure_safe_goal_position(
|
||||
goal_present_pos: dict[str, tuple[float, float]], max_relative_target: float | dict[float]
|
||||
) -> dict[str, float]:
|
||||
"""Caps relative action target magnitude for safety."""
|
||||
|
||||
if isinstance(max_relative_target, float):
|
||||
diff_cap = dict.fromkeys(goal_present_pos, max_relative_target)
|
||||
elif isinstance(max_relative_target, dict):
|
||||
if not set(goal_present_pos) == set(max_relative_target):
|
||||
raise ValueError("max_relative_target keys must match those of goal_present_pos.")
|
||||
diff_cap = max_relative_target
|
||||
else:
|
||||
raise TypeError(max_relative_target)
|
||||
|
||||
warnings_dict = {}
|
||||
safe_goal_positions = {}
|
||||
for key, (goal_pos, present_pos) in goal_present_pos.items():
|
||||
diff = goal_pos - present_pos
|
||||
max_diff = diff_cap[key]
|
||||
safe_diff = min(diff, max_diff)
|
||||
safe_diff = max(safe_diff, -max_diff)
|
||||
safe_goal_pos = present_pos + safe_diff
|
||||
safe_goal_positions[key] = safe_goal_pos
|
||||
if abs(safe_goal_pos - goal_pos) > 1e-4:
|
||||
warnings_dict[key] = {
|
||||
"original goal_pos": goal_pos,
|
||||
"safe goal_pos": safe_goal_pos,
|
||||
}
|
||||
|
||||
if warnings_dict:
|
||||
logging.warning(
|
||||
"Relative goal position magnitude had to be clamped to be safe.\n"
|
||||
f"{pformat(warnings_dict, indent=4)}"
|
||||
)
|
||||
|
||||
return safe_goal_positions
|
||||
@@ -1,2 +0,0 @@
|
||||
from .config_viperx import ViperXConfig
|
||||
from .viperx import ViperX
|
||||
@@ -1,31 +0,0 @@
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("viperx")
|
||||
@dataclass
|
||||
class ViperXConfig(RobotConfig):
|
||||
port: str # Port to connect to the arm
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# /!\ FOR SAFETY, READ THIS /!\
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
|
||||
# When you feel more confident with teleoperation or running the policy, you can extend
|
||||
# this safety limit and even removing it by setting it to `null`.
|
||||
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
|
||||
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
|
||||
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
|
||||
max_relative_target: int | None = 5
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
# Troubleshooting: If one of your IntelRealSense cameras freeze during
|
||||
# data recording due to bandwidth limit, you might need to plug the camera
|
||||
# on another USB hub or PCIe card.
|
||||
@@ -1,229 +0,0 @@
|
||||
"""Contains logic to instantiate a robot, read information from its motors and cameras,
|
||||
and send orders to its motors.
|
||||
"""
|
||||
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
|
||||
# calibration procedure, to make it easy for people to add their own robot.
|
||||
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.dynamixel import (
|
||||
DynamixelMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .config_viperx import ViperXConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ViperX(Robot):
|
||||
"""
|
||||
[ViperX](https://www.trossenrobotics.com/viperx-300) developed by Trossen Robotics
|
||||
"""
|
||||
|
||||
config_class = ViperXConfig
|
||||
name = "viperx"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ViperXConfig,
|
||||
):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.arm = DynamixelMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"waist": Motor(1, "xm540-w270", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder": Motor(2, "xm540-w270", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder_shadow": Motor(3, "xm540-w270", MotorNormMode.RANGE_M100_100),
|
||||
"elbow": Motor(4, "xm540-w270", MotorNormMode.RANGE_M100_100),
|
||||
"elbow_shadow": Motor(5, "xm540-w270", MotorNormMode.RANGE_M100_100),
|
||||
"forearm_roll": Motor(6, "xm540-w270", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_angle": Motor(7, "xm540-w270", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_rotate": Motor(8, "xm430-w350", MotorNormMode.RANGE_M100_100),
|
||||
"gripper": Motor(9, "xm430-w350", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
)
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(self.arm),),
|
||||
"names": {"motors": list(self.arm.motors)},
|
||||
}
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return self.state_feature
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
key = f"observation.images.{cam_key}"
|
||||
cam_ft[key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
# TODO(aliberts): add cam.is_connected for cam in self.cameras
|
||||
return self.arm.is_connected
|
||||
|
||||
def connect(self) -> None:
|
||||
"""
|
||||
We assume that at connection time, arm is in a rest position,
|
||||
and torque can be safely disabled to run calibration.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.arm.connect()
|
||||
if not self.is_calibrated:
|
||||
self.calibrate()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.arm.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
raise NotImplementedError # TODO(aliberts): adapt code below (copied from koch
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
self.arm.disable_torque()
|
||||
for name in self.arm.names:
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
input("Move robot to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.arm.set_half_turn_homings()
|
||||
|
||||
full_turn_motors = ["shoulder_pan", "wrist_roll"]
|
||||
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
|
||||
logger.info(
|
||||
f"Move all joints except {full_turn_motors} sequentially through their entire "
|
||||
"ranges of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
|
||||
for name in full_turn_motors:
|
||||
range_mins[name] = 0
|
||||
range_maxes[name] = 4095
|
||||
|
||||
self.calibration = {}
|
||||
for name, motor in self.arm.motors.items():
|
||||
self.calibration[name] = MotorCalibration(
|
||||
id=motor.id,
|
||||
drive_mode=0,
|
||||
homing_offset=homing_offsets[name],
|
||||
range_min=range_mins[name],
|
||||
range_max=range_maxes[name],
|
||||
)
|
||||
|
||||
self.arm.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
logger.info(f"Calibration saved to {self.calibration_fpath}")
|
||||
|
||||
def configure(self) -> None:
|
||||
with self.arm.torque_disabled():
|
||||
self.arm.configure_motors()
|
||||
|
||||
# Set secondary/shadow ID for shoulder and elbow. These joints have two motors.
|
||||
# As a result, if only one of them is required to move to a certain position,
|
||||
# the other will follow. This is to avoid breaking the motors.
|
||||
self.arm.write("Secondary_ID", "shoulder_shadow", 2)
|
||||
self.arm.write("Secondary_ID", "elbow_shadow", 4)
|
||||
|
||||
# Set a velocity limit of 131 as advised by Trossen Robotics
|
||||
# TODO(aliberts): remove as it's actually useless in position control
|
||||
self.arm.write("Velocity_Limit", 131)
|
||||
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
|
||||
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling
|
||||
# the arm, you could end up with a servo with a position 0 or 4095 at a crucial point.
|
||||
# See: https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11
|
||||
for name in self.arm.names:
|
||||
if name != "gripper":
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
# Use 'position control current based' for follower gripper to be limited by the limit of the
|
||||
# current. It can grasp an object without forcing too much even tho, it's goal position is a
|
||||
# complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
"""The returned observations do not have a batch dimension."""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
obs_dict = {}
|
||||
|
||||
# Read arm position
|
||||
start = time.perf_counter()
|
||||
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
start = time.perf_counter()
|
||||
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: dict[str, float]) -> dict[str, float]:
|
||||
"""Command arm to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Args:
|
||||
action (dict[str, float]): The goal positions for the motors.
|
||||
|
||||
Returns:
|
||||
dict[str, float]: The action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
goal_pos = action
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.arm.sync_read("Present_Position")
|
||||
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
|
||||
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
|
||||
|
||||
# Send goal position to the arm
|
||||
self.arm.sync_write("Goal_Position", goal_pos)
|
||||
return goal_pos
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.arm.disconnect(self.config.disable_torque_on_disconnect)
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
@@ -1,4 +0,0 @@
|
||||
from .config import TeleoperatorConfig
|
||||
from .teleoperator import Teleoperator
|
||||
|
||||
__all__ = ["TeleoperatorConfig", "Teleoperator"]
|
||||
@@ -1,17 +0,0 @@
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class TeleoperatorConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
# Allows to distinguish between different teleoperators of the same type
|
||||
id: str | None = None
|
||||
# Directory to store calibration file
|
||||
calibration_dir: Path | None = None
|
||||
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
@@ -1,4 +0,0 @@
|
||||
from .configuration_keyboard import KeyboardTeleopConfig
|
||||
from .teleop_keyboard import KeyboardTeleop
|
||||
|
||||
__all__ = ["KeyboardTeleopConfig", "KeyboardTeleop"]
|
||||
@@ -1,25 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..config import TeleoperatorConfig
|
||||
|
||||
|
||||
@TeleoperatorConfig.register_subclass("keyboard")
|
||||
@dataclass
|
||||
class KeyboardTeleopConfig(TeleoperatorConfig):
|
||||
mock: bool = False
|
||||
@@ -1,142 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from queue import Queue
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
|
||||
from ..teleoperator import Teleoperator
|
||||
from .configuration_keyboard import KeyboardTeleopConfig
|
||||
|
||||
PYNPUT_AVAILABLE = True
|
||||
try:
|
||||
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
|
||||
logging.info("No DISPLAY set. Skipping pynput import.")
|
||||
raise ImportError("pynput blocked intentionally due to no display.")
|
||||
|
||||
from pynput import keyboard
|
||||
except ImportError:
|
||||
keyboard = None
|
||||
PYNPUT_AVAILABLE = False
|
||||
except Exception as e:
|
||||
keyboard = None
|
||||
PYNPUT_AVAILABLE = False
|
||||
logging.info(f"Could not import pynput: {e}")
|
||||
|
||||
|
||||
class KeyboardTeleop(Teleoperator):
|
||||
"""
|
||||
Teleop class to use keyboard inputs for control.
|
||||
"""
|
||||
|
||||
config_class = KeyboardTeleopConfig
|
||||
name = "keyboard"
|
||||
|
||||
def __init__(self, config: KeyboardTeleopConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.robot_type = config.type
|
||||
|
||||
self.event_queue = Queue()
|
||||
self.current_pressed = {}
|
||||
self.listener = None
|
||||
self.is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(self.arm),),
|
||||
"names": {"motors": list(self.arm.motors)},
|
||||
}
|
||||
|
||||
@property
|
||||
def feedback_feature(self) -> dict:
|
||||
return {}
|
||||
|
||||
def connect(self) -> None:
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(
|
||||
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
|
||||
)
|
||||
|
||||
if PYNPUT_AVAILABLE:
|
||||
logging.info("pynput is available - enabling local keyboard listener.")
|
||||
self.listener = keyboard.Listener(
|
||||
on_press=self.on_press,
|
||||
on_release=self.on_release,
|
||||
)
|
||||
self.listener.start()
|
||||
else:
|
||||
logging.info("pynput not available - skipping local keyboard listener.")
|
||||
self.listener = None
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def calibrate(self) -> None:
|
||||
pass
|
||||
|
||||
def on_press(self, key):
|
||||
if hasattr(key, "char"):
|
||||
self.event_queue.put((key.char, True))
|
||||
|
||||
def on_release(self, key):
|
||||
if hasattr(key, "char"):
|
||||
self.event_queue.put((key.char, False))
|
||||
if key == keyboard.Key.esc:
|
||||
logging.info("ESC pressed, disconnecting.")
|
||||
self.disconnect()
|
||||
|
||||
def _drain_pressed_keys(self):
|
||||
while not self.event_queue.empty():
|
||||
key_char, is_pressed = self.event_queue.get_nowait()
|
||||
self.current_pressed[key_char] = is_pressed
|
||||
|
||||
def get_action(self) -> np.ndarray:
|
||||
before_read_t = time.perf_counter()
|
||||
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
"KeyboardTeleop is not connected. You need to run `connect()` before `get_action()`."
|
||||
)
|
||||
|
||||
self._drain_pressed_keys()
|
||||
|
||||
# Generate action based on current key states
|
||||
action = {key for key, val in self.current_pressed.items() if val}
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
return np.array(list(action))
|
||||
|
||||
def send_feedback(self, feedback: np.ndarray) -> None:
|
||||
pass
|
||||
|
||||
def disconnect(self) -> None:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
"KeyboardTeleop is not connected. You need to run `robot.connect()` before `disconnect()`."
|
||||
)
|
||||
if self.listener is not None:
|
||||
self.listener.stop()
|
||||
|
||||
self.is_connected = False
|
||||
@@ -1,28 +0,0 @@
|
||||
import logging
|
||||
import time
|
||||
|
||||
from lerobot.common.teleoperators.keyboard import KeyboardTeleop, KeyboardTeleopConfig
|
||||
|
||||
|
||||
def main():
|
||||
logging.info("Configuring Keyboard Teleop")
|
||||
keyboard_config = KeyboardTeleopConfig()
|
||||
keyboard = KeyboardTeleop(keyboard_config)
|
||||
|
||||
logging.info("Connecting Keyboard Teleop")
|
||||
keyboard.connect()
|
||||
|
||||
logging.info("Starting Keyboard capture")
|
||||
i = 0
|
||||
while i < 20:
|
||||
action = keyboard.get_action()
|
||||
print("Captured keys: %s", action)
|
||||
time.sleep(1)
|
||||
i += 1
|
||||
|
||||
keyboard.disconnect()
|
||||
logging.info("Finished LeKiwiRobot cleanly")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,2 +0,0 @@
|
||||
from .config_koch_leader import KochLeaderConfig
|
||||
from .koch_leader import KochLeader
|
||||
@@ -1,30 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..config import TeleoperatorConfig
|
||||
|
||||
|
||||
@TeleoperatorConfig.register_subclass("koch_leader")
|
||||
@dataclass
|
||||
class KochLeaderConfig(TeleoperatorConfig):
|
||||
# Port to connect to the arm
|
||||
port: str
|
||||
|
||||
# Sets the arm in torque mode with the gripper motor set to this value. This makes it possible to squeeze
|
||||
# the gripper and have it spring back to an open position on its own.
|
||||
gripper_open_pos: float = 50.0
|
||||
@@ -1,168 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.dynamixel import (
|
||||
DriveMode,
|
||||
DynamixelMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..teleoperator import Teleoperator
|
||||
from .config_koch_leader import KochLeaderConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class KochLeader(Teleoperator):
|
||||
"""
|
||||
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
|
||||
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
|
||||
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
|
||||
"""
|
||||
|
||||
config_class = KochLeaderConfig
|
||||
name = "koch_leader"
|
||||
|
||||
def __init__(self, config: KochLeaderConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.arm = DynamixelMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": Motor(1, "xl330-m077", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder_lift": Motor(2, "xl330-m077", MotorNormMode.RANGE_M100_100),
|
||||
"elbow_flex": Motor(3, "xl330-m077", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_flex": Motor(4, "xl330-m077", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_roll": Motor(5, "xl330-m077", MotorNormMode.RANGE_M100_100),
|
||||
"gripper": Motor(6, "xl330-m077", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(self.arm),),
|
||||
"names": {"motors": list(self.arm.motors)},
|
||||
}
|
||||
|
||||
@property
|
||||
def feedback_feature(self) -> dict:
|
||||
return {}
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
return self.arm.is_connected
|
||||
|
||||
def connect(self) -> None:
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.arm.connect()
|
||||
if not self.is_calibrated:
|
||||
self.calibrate()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.arm.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
self.arm.disable_torque()
|
||||
for name in self.arm.names:
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
self.arm.write("Drive_Mode", "elbow_flex", DriveMode.INVERTED.value)
|
||||
drive_modes = {name: 1 if name == "elbow_flex" else 0 for name in self.arm.names}
|
||||
|
||||
input("Move robot to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.arm.set_half_turn_homings()
|
||||
|
||||
full_turn_motors = ["shoulder_pan", "wrist_roll"]
|
||||
unknown_range_motors = [name for name in self.arm.names if name not in full_turn_motors]
|
||||
logger.info(
|
||||
f"Move all joints except {full_turn_motors} sequentially through their "
|
||||
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
|
||||
for name in full_turn_motors:
|
||||
range_mins[name] = 0
|
||||
range_maxes[name] = 4095
|
||||
|
||||
self.calibration = {}
|
||||
for name, motor in self.arm.motors.items():
|
||||
self.calibration[name] = MotorCalibration(
|
||||
id=motor.id,
|
||||
drive_mode=drive_modes[name],
|
||||
homing_offset=homing_offsets[name],
|
||||
range_min=range_mins[name],
|
||||
range_max=range_maxes[name],
|
||||
)
|
||||
|
||||
self.arm.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
logger.info(f"Calibration saved to {self.calibration_fpath}")
|
||||
|
||||
def configure(self) -> None:
|
||||
self.arm.disable_torque()
|
||||
self.arm.configure_motors()
|
||||
for name in self.arm.names:
|
||||
if name != "gripper":
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
|
||||
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while
|
||||
# assembling the arm, you could end up with a servo with a position 0 or 4095 at a crucial
|
||||
# point
|
||||
self.arm.write("Operating_Mode", name, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
# Use 'position control current based' for gripper to be limited by the limit of the current.
|
||||
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
|
||||
# its goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
|
||||
# to make it move, and it will move back to its original target position when we release the force.
|
||||
self.arm.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
|
||||
# Set gripper's goal pos in current position mode so that we can use it as a trigger.
|
||||
self.arm.enable_torque("gripper")
|
||||
self.arm.write("Goal_Position", "gripper", self.config.gripper_open_pos)
|
||||
|
||||
def get_action(self) -> dict[str, float]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
start = time.perf_counter()
|
||||
action = self.arm.sync_read("Present_Position")
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read action: {dt_ms:.1f}ms")
|
||||
return action
|
||||
|
||||
def send_feedback(self, feedback: dict[str, float]) -> None:
|
||||
# TODO(rcadene, aliberts): Implement force feedback
|
||||
raise NotImplementedError
|
||||
|
||||
def disconnect(self) -> None:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.arm.disconnect()
|
||||
logger.info(f"{self} disconnected.")
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user