forked from tangger/lerobot
Compare commits
278 Commits
user/rcade
...
test/add_c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cdcb27f908 | ||
|
|
2bb73ac431 | ||
|
|
9afc4b771c | ||
|
|
f71e224023 | ||
|
|
889de7c415 | ||
|
|
3539251b18 | ||
|
|
1f210bc8a3 | ||
|
|
d70bc4bde9 | ||
|
|
bdbca09cb2 | ||
|
|
e0b292ab51 | ||
|
|
f960f4d8d4 | ||
|
|
9e57ec7837 | ||
|
|
0a7f51f0da | ||
|
|
4ca92a28e9 | ||
|
|
0464dc91b3 | ||
|
|
d32daebf75 | ||
|
|
27cb0c40bd | ||
|
|
12abc9ca86 | ||
|
|
4005065223 | ||
|
|
443fed216c | ||
|
|
42a87e7211 | ||
|
|
5322417c03 | ||
|
|
4041f57943 | ||
|
|
034171a89a | ||
|
|
2c86fea78a | ||
|
|
782dff1163 | ||
|
|
8924ccbbab | ||
|
|
792c3d961d | ||
|
|
e998dddcfa | ||
|
|
437fc29e12 | ||
|
|
aee86b4b18 | ||
|
|
1c873df5c0 | ||
|
|
99c0938b42 | ||
|
|
716029b1e3 | ||
|
|
3848a8f9aa | ||
|
|
f7672e14c7 | ||
|
|
e393af2d88 | ||
|
|
0dcb2caba8 | ||
|
|
4679725957 | ||
|
|
57319062aa | ||
|
|
078f59bfd1 | ||
|
|
36fcea2002 | ||
|
|
2971bdfed5 | ||
|
|
28cd3a6f3a | ||
|
|
c0570b3003 | ||
|
|
eeb8490016 | ||
|
|
854b78975a | ||
|
|
e55d2ffe50 | ||
|
|
1ebd81552c | ||
|
|
145fe4cd17 | ||
|
|
65569ba90e | ||
|
|
79293800f1 | ||
|
|
bc765f9e95 | ||
|
|
201311503f | ||
|
|
8cc0232e73 | ||
|
|
6bfcc18e73 | ||
|
|
e004247ed4 | ||
|
|
e096754d14 | ||
|
|
02803f545d | ||
|
|
8503e8e166 | ||
|
|
d6007c6e7d | ||
|
|
50963fcf13 | ||
|
|
b568de35ad | ||
|
|
ae9c81ac39 | ||
|
|
78fd1a1e04 | ||
|
|
90533e6b9f | ||
|
|
051a52a4ce | ||
|
|
2292b514aa | ||
|
|
1f1a01a798 | ||
|
|
faa476f0d2 | ||
|
|
5130b69ece | ||
|
|
aed85241b7 | ||
|
|
21c3ac42ee | ||
|
|
2d3a5fb2be | ||
|
|
a631e4c11c | ||
|
|
222d6f104e | ||
|
|
7a3b424cd3 | ||
|
|
2c22f7d76d | ||
|
|
af295fadb5 | ||
|
|
9644e2b086 | ||
|
|
6ccf083127 | ||
|
|
bb774e7acd | ||
|
|
dcbbeab80b | ||
|
|
b71ac34214 | ||
|
|
a774af2eab | ||
|
|
c237d1379e | ||
|
|
cf963eb1b0 | ||
|
|
4293b6a4fb | ||
|
|
725b446ad6 | ||
|
|
7a75bb9f61 | ||
|
|
0c1d4cb323 | ||
|
|
c6212d585d | ||
|
|
7c8ab8e2d6 | ||
|
|
1de75c46c0 | ||
|
|
4ad109cff8 | ||
|
|
8994252019 | ||
|
|
9832daf08d | ||
|
|
39d8f45810 | ||
|
|
30fcd3d417 | ||
|
|
039b437ef0 | ||
|
|
7582a0a2b0 | ||
|
|
25388d0947 | ||
|
|
7152bc8aa7 | ||
|
|
5b46dc0b6a | ||
|
|
4273f1f384 | ||
|
|
97194bf7f3 | ||
|
|
0ac026b521 | ||
|
|
ff7cfdaf40 | ||
|
|
57c97762e1 | ||
|
|
a38bb15e79 | ||
|
|
3ceaee999d | ||
|
|
d485dc1313 | ||
|
|
329d103453 | ||
|
|
9f46a3d8f9 | ||
|
|
c9ca9e4316 | ||
|
|
5a57e6f4a7 | ||
|
|
a2f5c34625 | ||
|
|
1f1e1bcfe8 | ||
|
|
e047074825 | ||
|
|
a6015a55f9 | ||
|
|
c2e761437d | ||
|
|
fedac994c3 | ||
|
|
7d558d058e | ||
|
|
1d3e1cbdbd | ||
|
|
0ccc957d5c | ||
|
|
a4d487bc1d | ||
|
|
8ca03a7255 | ||
|
|
f2ed2bfb2f | ||
|
|
40675ec76c | ||
|
|
9e34c1d731 | ||
|
|
857f335be9 | ||
|
|
fc4a95f187 | ||
|
|
4fe1880887 | ||
|
|
6fa859fa19 | ||
|
|
2abfa5838d | ||
|
|
3d119c0ccb | ||
|
|
a32081757d | ||
|
|
56c04ffc53 | ||
|
|
715d4557af | ||
|
|
6541982dff | ||
|
|
43bc9404bb | ||
|
|
375499c323 | ||
|
|
17a4447cef | ||
|
|
287dc13d96 | ||
|
|
02a1cf6a4e | ||
|
|
34cd1e47bf | ||
|
|
74d56834af | ||
|
|
dd80dbb4cd | ||
|
|
bc020ee0a4 | ||
|
|
a15767aff1 | ||
|
|
9af0a9bf37 | ||
|
|
e2c8bc6948 | ||
|
|
2c68c6ca40 | ||
|
|
dd1f33e5ed | ||
|
|
2c1bb766ff | ||
|
|
c1c71fb994 | ||
|
|
2d56f35071 | ||
|
|
64ce2669ca | ||
|
|
f39652707c | ||
|
|
f527adf7a9 | ||
|
|
6a77189f50 | ||
|
|
e4a6d035f9 | ||
|
|
794f6e00fc | ||
|
|
97494c6a39 | ||
|
|
9358d334c7 | ||
|
|
712d5dae4f | ||
|
|
952e892fe5 | ||
|
|
e8159997c7 | ||
|
|
1c15bab70f | ||
|
|
c85a9253e7 | ||
|
|
8d659a6aa9 | ||
|
|
f6a2396484 | ||
|
|
7a7af82e35 | ||
|
|
7f23972f3f | ||
|
|
3362b665e6 | ||
|
|
eeeccdba53 | ||
|
|
bd5b181dfd | ||
|
|
858678786a | ||
|
|
0f972661e1 | ||
|
|
2e9b144c56 | ||
|
|
fa8ba9e4e2 | ||
|
|
2037cc0219 | ||
|
|
5006da72ff | ||
|
|
ad0bacbfe4 | ||
|
|
e33ca2c980 | ||
|
|
9f0a8a49d0 | ||
|
|
a3cd18eda9 | ||
|
|
f0505e81cc | ||
|
|
7dc9ffe4c9 | ||
|
|
0e98c6ee96 | ||
|
|
1f7ddc1d76 | ||
|
|
ce63cfdb25 | ||
|
|
974028bd28 | ||
|
|
a36ed39487 | ||
|
|
c37b1d45b6 | ||
|
|
d6f1359e69 | ||
|
|
2357d4aceb | ||
|
|
f994febca4 | ||
|
|
12f52632ed | ||
|
|
8a64d8268b | ||
|
|
d6ccdc222c | ||
|
|
9bd0788131 | ||
|
|
1ae62c28f7 | ||
|
|
baf6e66c3d | ||
|
|
a065bd61ae | ||
|
|
84565c7c2e | ||
|
|
05b54733da | ||
|
|
513b008bcc | ||
|
|
32fffd4bbb | ||
|
|
03c7cf8a63 | ||
|
|
074f0ac8fe | ||
|
|
25c63ccf63 | ||
|
|
5dc3c74e64 | ||
|
|
5e9473806c | ||
|
|
4214b01703 | ||
|
|
b974e5541f | ||
|
|
10706ed753 | ||
|
|
fd64dc84ae | ||
|
|
0b8205a8a0 | ||
|
|
57ae509823 | ||
|
|
5d24ce3160 | ||
|
|
d694ea1d38 | ||
|
|
a00936686f | ||
|
|
2feb5edc65 | ||
|
|
b80e55ca44 | ||
|
|
e8ce388109 | ||
|
|
a4c1da25de | ||
|
|
a003e7c081 | ||
|
|
06988b2135 | ||
|
|
7ed7570b17 | ||
|
|
e2d13ba7e4 | ||
|
|
f6c1049474 | ||
|
|
2b24feb604 | ||
|
|
a27411022d | ||
|
|
3827974b58 | ||
|
|
b299cfea8a | ||
|
|
a13e49073c | ||
|
|
2c7e0f17b6 | ||
|
|
418866007e | ||
|
|
5ab418dbeb | ||
|
|
95f61ee9d4 | ||
|
|
ac89c8d226 | ||
|
|
d75d904e43 | ||
|
|
ea4d8d990c | ||
|
|
c93cbb8311 | ||
|
|
c0137e89b9 | ||
|
|
3111ba78ad | ||
|
|
3d3a176940 | ||
|
|
212c6095a2 | ||
|
|
bf6f89a5b5 | ||
|
|
48469ec674 | ||
|
|
c7dfd32b43 | ||
|
|
8861546ad8 | ||
|
|
9c1a893ee3 | ||
|
|
e81c36cf74 | ||
|
|
ed83cbd4f2 | ||
|
|
2a33b9ad87 | ||
|
|
6e85aa13ec | ||
|
|
af05a1725c | ||
|
|
800c4a847f | ||
|
|
bba8c4c0d4 | ||
|
|
68b369e321 | ||
|
|
8d60ac3ffc | ||
|
|
731fb6ebaf | ||
|
|
13e124302f | ||
|
|
59bdd29106 | ||
|
|
659ec4434d | ||
|
|
124829104b | ||
|
|
21cd2940a9 | ||
|
|
da265ca920 | ||
|
|
a1809ad3de | ||
|
|
8699a28be0 | ||
|
|
65db5afe1c | ||
|
|
75d5fa4604 | ||
|
|
e64fad2224 | ||
|
|
eecf32e77a | ||
|
|
3354d919fc | ||
|
|
aca464ca72 |
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Misc
|
||||
.git
|
||||
tmp
|
||||
@@ -59,7 +73,7 @@ pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
!tests/data
|
||||
!tests/artifacts
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
|
||||
14
.gitattributes
vendored
14
.gitattributes
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
*.memmap filter=lfs diff=lfs merge=lfs -text
|
||||
*.stl filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
|
||||
14
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
14
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Submit a bug report to help us improve LeRobot
|
||||
body:
|
||||
|
||||
14
.github/workflows/build-docker-images.yml
vendored
14
.github/workflows/build-docker-images.yml
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Inspired by
|
||||
# https://github.com/huggingface/peft/blob/main/.github/workflows/build_docker_images.yml
|
||||
name: Builds
|
||||
|
||||
14
.github/workflows/nightly-tests.yml
vendored
14
.github/workflows/nightly-tests.yml
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Inspired by
|
||||
# https://github.com/huggingface/peft/blob/main/.github/workflows/nightly.yml
|
||||
name: Nightly
|
||||
|
||||
32
.github/workflows/quality.yml
vendored
32
.github/workflows/quality.yml
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: Quality
|
||||
|
||||
on:
|
||||
@@ -32,13 +46,27 @@ jobs:
|
||||
id: get-ruff-version
|
||||
run: |
|
||||
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
|
||||
echo "RUFF_VERSION=${RUFF_VERSION}" >> $GITHUB_ENV
|
||||
echo "ruff_version=${RUFF_VERSION}" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Install Ruff
|
||||
run: python -m pip install "ruff==${{ env.RUFF_VERSION }}"
|
||||
env:
|
||||
RUFF_VERSION: ${{ steps.get-ruff-version.outputs.ruff_version }}
|
||||
run: python -m pip install "ruff==${RUFF_VERSION}"
|
||||
|
||||
- name: Ruff check
|
||||
run: ruff check --output-format=github
|
||||
|
||||
- name: Ruff format
|
||||
run: ruff format --diff
|
||||
|
||||
typos:
|
||||
name: Typos
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: typos-action
|
||||
uses: crate-ci/typos@v1.29.10
|
||||
|
||||
18
.github/workflows/test-docker-build.yml
vendored
18
.github/workflows/test-docker-build.yml
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Inspired by
|
||||
# https://github.com/huggingface/peft/blob/main/.github/workflows/test-docker-build.yml
|
||||
name: Test Dockerfiles
|
||||
@@ -27,7 +41,7 @@ jobs:
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v44
|
||||
uses: tj-actions/changed-files@3f54ebb830831fc121d3263c1857cfbdc310cdb9 #v42
|
||||
with:
|
||||
files: docker/**
|
||||
json: "true"
|
||||
@@ -43,7 +57,7 @@ jobs:
|
||||
needs: get_changed_files
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
if: ${{ needs.get_changed_files.outputs.matrix }} != ''
|
||||
if: needs.get_changed_files.outputs.matrix != ''
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
|
||||
16
.github/workflows/test.yml
vendored
16
.github/workflows/test.yml
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: Tests
|
||||
|
||||
on:
|
||||
@@ -112,7 +126,7 @@ jobs:
|
||||
# portaudio19-dev is needed to install pyaudio
|
||||
run: |
|
||||
sudo apt-get update && \
|
||||
sudo apt-get install -y libegl1-mesa-dev portaudio19-dev
|
||||
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
|
||||
|
||||
- name: Install uv and python
|
||||
uses: astral-sh/setup-uv@v5
|
||||
|
||||
14
.github/workflows/trufflehog.yml
vendored
14
.github/workflows/trufflehog.yml
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
on:
|
||||
push:
|
||||
|
||||
|
||||
16
.gitignore
vendored
16
.gitignore
vendored
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
.dev
|
||||
# Logging
|
||||
logs
|
||||
tmp
|
||||
@@ -64,7 +78,7 @@ pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
!tests/data
|
||||
!tests/artifacts
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
|
||||
@@ -1,7 +1,29 @@
|
||||
exclude: ^(tests/data)
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
exclude: "tests/artifacts/.*\\.safetensors$"
|
||||
default_language_version:
|
||||
python: python3.10
|
||||
repos:
|
||||
##### Meta #####
|
||||
- repo: meta
|
||||
hooks:
|
||||
- id: check-useless-excludes
|
||||
- id: check-hooks-apply
|
||||
|
||||
|
||||
##### Style / Misc. #####
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v5.0.0
|
||||
hooks:
|
||||
@@ -13,21 +35,40 @@ repos:
|
||||
- id: check-toml
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
|
||||
- repo: https://github.com/adhtruong/mirrors-typos
|
||||
rev: v1.31.1
|
||||
hooks:
|
||||
- id: typos
|
||||
args: [--force-exclude]
|
||||
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.19.1
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.9.6
|
||||
rev: v0.11.4
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
- id: ruff-format
|
||||
|
||||
|
||||
##### Security #####
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.23.3
|
||||
rev: v8.24.2
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
- repo: https://github.com/woodruffw/zizmor-pre-commit
|
||||
rev: v1.3.1
|
||||
rev: v1.5.2
|
||||
hooks:
|
||||
- id: zizmor
|
||||
|
||||
- repo: https://github.com/PyCQA/bandit
|
||||
rev: 1.8.3
|
||||
hooks:
|
||||
- id: bandit
|
||||
args: ["-c", "pyproject.toml"]
|
||||
additional_dependencies: ["bandit[toml]"]
|
||||
|
||||
@@ -228,7 +228,7 @@ Follow these steps to start contributing:
|
||||
git commit
|
||||
```
|
||||
|
||||
Note, if you already commited some changes that have a wrong formatting, you can use:
|
||||
Note, if you already committed some changes that have a wrong formatting, you can use:
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
@@ -291,7 +291,7 @@ sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
Pull artifacts if they're not in [tests/data](tests/data)
|
||||
Pull artifacts if they're not in [tests/artifacts](tests/artifacts)
|
||||
```bash
|
||||
git lfs pull
|
||||
```
|
||||
|
||||
32
Makefile
32
Makefile
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
.PHONY: tests
|
||||
|
||||
PYTHON_PATH := $(shell which python)
|
||||
@@ -33,6 +47,7 @@ test-act-ete-train:
|
||||
--policy.dim_model=64 \
|
||||
--policy.n_action_steps=20 \
|
||||
--policy.chunk_size=20 \
|
||||
--policy.device=$(DEVICE) \
|
||||
--env.type=aloha \
|
||||
--env.episode_length=5 \
|
||||
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||
@@ -47,7 +62,6 @@ test-act-ete-train:
|
||||
--save_checkpoint=true \
|
||||
--log_freq=1 \
|
||||
--wandb.enable=false \
|
||||
--device=$(DEVICE) \
|
||||
--output_dir=tests/outputs/act/
|
||||
|
||||
test-act-ete-train-resume:
|
||||
@@ -58,11 +72,11 @@ test-act-ete-train-resume:
|
||||
test-act-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
--policy.path=tests/outputs/act/checkpoints/000004/pretrained_model \
|
||||
--policy.device=$(DEVICE) \
|
||||
--env.type=aloha \
|
||||
--env.episode_length=5 \
|
||||
--eval.n_episodes=1 \
|
||||
--eval.batch_size=1 \
|
||||
--device=$(DEVICE)
|
||||
--eval.batch_size=1
|
||||
|
||||
test-diffusion-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
@@ -70,6 +84,7 @@ test-diffusion-ete-train:
|
||||
--policy.down_dims='[64,128,256]' \
|
||||
--policy.diffusion_step_embed_dim=32 \
|
||||
--policy.num_inference_steps=10 \
|
||||
--policy.device=$(DEVICE) \
|
||||
--env.type=pusht \
|
||||
--env.episode_length=5 \
|
||||
--dataset.repo_id=lerobot/pusht \
|
||||
@@ -84,21 +99,21 @@ test-diffusion-ete-train:
|
||||
--save_freq=2 \
|
||||
--log_freq=1 \
|
||||
--wandb.enable=false \
|
||||
--device=$(DEVICE) \
|
||||
--output_dir=tests/outputs/diffusion/
|
||||
|
||||
test-diffusion-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
--policy.path=tests/outputs/diffusion/checkpoints/000002/pretrained_model \
|
||||
--policy.device=$(DEVICE) \
|
||||
--env.type=pusht \
|
||||
--env.episode_length=5 \
|
||||
--eval.n_episodes=1 \
|
||||
--eval.batch_size=1 \
|
||||
--device=$(DEVICE)
|
||||
--eval.batch_size=1
|
||||
|
||||
test-tdmpc-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
--policy.type=tdmpc \
|
||||
--policy.device=$(DEVICE) \
|
||||
--env.type=xarm \
|
||||
--env.task=XarmLift-v0 \
|
||||
--env.episode_length=5 \
|
||||
@@ -114,15 +129,14 @@ test-tdmpc-ete-train:
|
||||
--save_freq=2 \
|
||||
--log_freq=1 \
|
||||
--wandb.enable=false \
|
||||
--device=$(DEVICE) \
|
||||
--output_dir=tests/outputs/tdmpc/
|
||||
|
||||
test-tdmpc-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
--policy.path=tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
|
||||
--policy.device=$(DEVICE) \
|
||||
--env.type=xarm \
|
||||
--env.episode_length=5 \
|
||||
--env.task=XarmLift-v0 \
|
||||
--eval.n_episodes=1 \
|
||||
--eval.batch_size=1 \
|
||||
--device=$(DEVICE)
|
||||
--eval.batch_size=1
|
||||
|
||||
40
README.md
40
README.md
@@ -23,15 +23,24 @@
|
||||
</div>
|
||||
|
||||
<h2 align="center">
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">New robot in town: SO-100</a></p>
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
|
||||
Build Your Own SO-100 Robot!</a></p>
|
||||
</h2>
|
||||
|
||||
<div align="center">
|
||||
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
|
||||
<p>We just added a new tutorial on how to build a more affordable robot, at the price of $110 per arm!</p>
|
||||
<p>Teach it new skills by showing it a few moves with just a laptop.</p>
|
||||
<p>Then watch your homemade robot act autonomously 🤯</p>
|
||||
<p>Follow the link to the <a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">full tutorial for SO-100</a>.</p>
|
||||
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
|
||||
|
||||
<p><strong>Meet the SO-100 – Just $110 per arm!</strong></p>
|
||||
<p>Train it in minutes with a few simple moves on your laptop.</p>
|
||||
<p>Then sit back and watch your creation act autonomously! 🤯</p>
|
||||
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
|
||||
Get the full SO-100 tutorial here.</a></p>
|
||||
|
||||
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
|
||||
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
|
||||
|
||||
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
|
||||
</div>
|
||||
|
||||
<br/>
|
||||
@@ -89,14 +98,18 @@ conda create -y -n lerobot python=3.10
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
|
||||
you may need to install `cmake` and `build-essential` for building some of our dependencies.
|
||||
On linux: `sudo apt-get install cmake build-essential`
|
||||
> **NOTE:** If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run:
|
||||
`sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
|
||||
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
||||
- [aloha](https://github.com/huggingface/gym-aloha)
|
||||
@@ -210,7 +223,7 @@ A `LeRobotDataset` is serialised using several widespread file formats for each
|
||||
- videos are stored in mp4 format to save space
|
||||
- metadata are stored in plain json/jsonl files
|
||||
|
||||
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can use the `local_files_only` argument and specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
|
||||
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
|
||||
|
||||
### Evaluate a pretrained policy
|
||||
|
||||
@@ -223,8 +236,8 @@ python lerobot/scripts/eval.py \
|
||||
--env.type=pusht \
|
||||
--eval.batch_size=10 \
|
||||
--eval.n_episodes=10 \
|
||||
--use_amp=false \
|
||||
--device=cuda
|
||||
--policy.use_amp=false \
|
||||
--policy.device=cuda
|
||||
```
|
||||
|
||||
Note: After training your own policy, you can re-evaluate the checkpoints with:
|
||||
@@ -375,3 +388,6 @@ Additionally, if you are using any of the particular policy architecture, pretra
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
## Star History
|
||||
|
||||
[](https://star-history.com/#huggingface/lerobot&Timeline)
|
||||
|
||||
@@ -51,7 +51,7 @@ For a comprehensive list and documentation of these parameters, see the ffmpeg d
|
||||
### Decoding parameters
|
||||
**Decoder**
|
||||
We tested two video decoding backends from torchvision:
|
||||
- `pyav` (default)
|
||||
- `pyav`
|
||||
- `video_reader` (requires to build torchvision from source)
|
||||
|
||||
**Requested timestamps**
|
||||
@@ -114,7 +114,7 @@ We tried to measure the most impactful parameters for both encoding and decoding
|
||||
|
||||
Additional encoding parameters exist that are not included in this benchmark. In particular:
|
||||
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
|
||||
- `-tune` which allows to optimize the encoding for certains aspects (e.g. film quality, fast decoding, etc.).
|
||||
- `-tune` which allows to optimize the encoding for certain aspects (e.g. film quality, fast decoding, etc.).
|
||||
|
||||
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.
|
||||
|
||||
|
||||
@@ -17,12 +17,21 @@
|
||||
|
||||
import argparse
|
||||
import datetime as dt
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import rerun as rr
|
||||
|
||||
# see https://rerun.io/docs/howto/visualization/limit-ram
|
||||
RERUN_MEMORY_LIMIT = os.getenv("LEROBOT_RERUN_MEMORY_LIMIT", "5%")
|
||||
|
||||
|
||||
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int):
|
||||
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int, duration: int):
|
||||
rr.init("lerobot_capture_camera_feed")
|
||||
rr.spawn(memory_limit=RERUN_MEMORY_LIMIT)
|
||||
|
||||
now = dt.datetime.now()
|
||||
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
|
||||
if not capture_dir.exists():
|
||||
@@ -39,24 +48,21 @@ def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
||||
|
||||
frame_index = 0
|
||||
while True:
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < duration:
|
||||
ret, frame = cap.read()
|
||||
|
||||
if not ret:
|
||||
print("Error: Could not read frame.")
|
||||
break
|
||||
|
||||
cv2.imshow("Video Stream", frame)
|
||||
rr.log("video/stream", rr.Image(frame.numpy()), static=True)
|
||||
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
|
||||
frame_index += 1
|
||||
|
||||
# Break the loop on 'q' key press
|
||||
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||
break
|
||||
|
||||
# Release the capture and destroy all windows
|
||||
# Release the capture
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
# TODO(Steven): Add a graceful shutdown via a close() method for the Viewer context, though not currently supported in the Rerun API.
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -86,5 +92,11 @@ if __name__ == "__main__":
|
||||
default=720,
|
||||
help="Height of the captured images.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--duration",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Duration in seconds for which the video stream should be captured.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
display_and_save_video_stream(**vars(args))
|
||||
|
||||
@@ -67,7 +67,7 @@ def parse_int_or_none(value) -> int | None:
|
||||
def check_datasets_formats(repo_ids: list) -> None:
|
||||
for repo_id in repo_ids:
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
if dataset.video:
|
||||
if len(dataset.meta.video_keys) > 0:
|
||||
raise ValueError(
|
||||
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
|
||||
)
|
||||
|
||||
@@ -1,33 +1,29 @@
|
||||
# Configure image
|
||||
ARG PYTHON_VERSION=3.10
|
||||
|
||||
FROM python:${PYTHON_VERSION}-slim
|
||||
ARG PYTHON_VERSION
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install apt dependencies
|
||||
# Configure environment variables
|
||||
ARG PYTHON_VERSION
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV MUJOCO_GL="egl"
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
# Install dependencies and set up Python in a single layer
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake git git-lfs \
|
||||
build-essential cmake git \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||
speech-dispatcher libgeos-dev \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
|
||||
&& python -m venv /opt/venv \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
|
||||
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
|
||||
# Create virtual environment
|
||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
||||
RUN python -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
|
||||
# Install LeRobot
|
||||
RUN git lfs install
|
||||
RUN git clone https://github.com/huggingface/lerobot.git /lerobot
|
||||
# Clone repository and install LeRobot in a single layer
|
||||
COPY . /lerobot
|
||||
WORKDIR /lerobot
|
||||
RUN pip install --upgrade --no-cache-dir pip
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
|
||||
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Execute in bash shell rather than python
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
@@ -1,31 +1,24 @@
|
||||
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
||||
|
||||
# Configure image
|
||||
# Configure environment variables
|
||||
ARG PYTHON_VERSION=3.10
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV MUJOCO_GL="egl"
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
|
||||
|
||||
# Install apt dependencies
|
||||
# Install dependencies and set up Python in a single layer
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake git git-lfs \
|
||||
build-essential cmake git \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||
speech-dispatcher libgeos-dev \
|
||||
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
|
||||
&& python -m venv /opt/venv \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
|
||||
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
|
||||
|
||||
# Create virtual environment
|
||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
||||
RUN python -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
|
||||
# Install LeRobot
|
||||
RUN git lfs install
|
||||
RUN git clone https://github.com/huggingface/lerobot.git /lerobot
|
||||
# Clone repository and install LeRobot in a single layer
|
||||
COPY . /lerobot
|
||||
WORKDIR /lerobot
|
||||
RUN pip install --upgrade --no-cache-dir pip
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
|
||||
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
|
||||
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
|
||||
@@ -105,7 +119,7 @@ print(dataset.features[camera_key]["shape"])
|
||||
delta_timestamps = {
|
||||
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
|
||||
camera_key: [-1, -0.5, -0.20, 0],
|
||||
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
|
||||
# loads 6 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
|
||||
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, 0],
|
||||
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
|
||||
"action": [t / dataset.fps for t in range(64)],
|
||||
@@ -129,6 +143,6 @@ dataloader = torch.utils.data.DataLoader(
|
||||
|
||||
for batch in dataloader:
|
||||
print(f"{batch[camera_key].shape=}") # (32, 4, c, h, w)
|
||||
print(f"{batch['observation.state'].shape=}") # (32, 5, c)
|
||||
print(f"{batch['observation.state'].shape=}") # (32, 6, c)
|
||||
print(f"{batch['action'].shape=}") # (32, 64, c)
|
||||
break
|
||||
|
||||
@@ -1,10 +1,24 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
|
||||
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
|
||||
|
||||
It requires the installation of the 'gym_pusht' simulation environment. Install it by running:
|
||||
```bash
|
||||
pip install -e ".[pusht]"`
|
||||
pip install -e ".[pusht]"
|
||||
```
|
||||
"""
|
||||
|
||||
@@ -30,7 +44,7 @@ pretrained_policy_path = "lerobot/diffusion_pusht"
|
||||
# OR a path to a local outputs/train folder.
|
||||
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
|
||||
|
||||
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path, map_location=device)
|
||||
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
|
||||
|
||||
# Initialize evaluation environment to render two observation types:
|
||||
# an image of the scene and state/position of the agent. The environment
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
|
||||
|
||||
Once you have trained a model with this script, you can try to evaluate it on
|
||||
@@ -85,7 +99,7 @@ def main():
|
||||
done = False
|
||||
while not done:
|
||||
for batch in dataloader:
|
||||
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
||||
batch = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
|
||||
loss, _ = policy.forward(batch)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
This tutorial will explain the training script, how to use it, and particularly how to configure everything needed for the training run.
|
||||
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--device=cpu` (`--device=mps` respectively). However, be advised that the code executes much slower on cpu.
|
||||
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
|
||||
|
||||
|
||||
## The training script
|
||||
|
||||
@@ -46,13 +46,6 @@ Using `uv`:
|
||||
uv sync --extra "dynamixel"
|
||||
```
|
||||
|
||||
/!\ For Linux only, ffmpeg and opencv requires conda install for now. Run this exact sequence of commands:
|
||||
```bash
|
||||
conda install -c conda-forge ffmpeg
|
||||
pip uninstall opencv-python
|
||||
conda install -c conda-forge "opencv>=4.10.0"
|
||||
```
|
||||
|
||||
You are now ready to plug the 5V power supply to the motor bus of the leader arm (the smaller one) since all its motors only require 5V.
|
||||
|
||||
Then plug the 12V power supply to the motor bus of the follower arm. It has two motors that need 12V, and the rest will be powered with 5V through the voltage convertor.
|
||||
@@ -62,6 +55,9 @@ Finally, connect both arms to your computer via USB. Note that the USB doesn't p
|
||||
Now you are ready to configure your motors for the first time, as detailed in the sections below. In the upcoming sections, you'll learn about our classes and functions by running some python code in an interactive session, or by copy-pasting it in a python file.
|
||||
|
||||
If you have already configured your motors the first time, you can streamline the process by directly running the teleoperate script (which is detailed further in the tutorial):
|
||||
|
||||
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=koch \
|
||||
@@ -87,7 +83,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand dynamixel \
|
||||
--model xl330-m288 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
--id 1
|
||||
```
|
||||
|
||||
Then unplug your first motor and plug the second motor and set its ID to 2.
|
||||
@@ -97,7 +93,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand dynamixel \
|
||||
--model xl330-m288 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
--id 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6.
|
||||
@@ -292,6 +288,11 @@ Steps:
|
||||
- Scan for devices. All 12 motors should appear.
|
||||
- Select the motors one by one and move the arm. Check that the graphical indicator near the top right shows the movement.
|
||||
|
||||
** There is a common issue with the Dynamixel XL430-W250 motors where the motors become undiscoverable after upgrading their firmware from Mac and Windows Dynamixel Wizard2 applications. When this occurs, it is required to do a firmware recovery (Select `DYNAMIXEL Firmware Recovery` and follow the prompts). There are two known workarounds to conduct this firmware reset:
|
||||
1) Install the Dynamixel Wizard on a linux machine and complete the firmware recovery
|
||||
2) Use the Dynamixel U2D2 in order to perform the reset with Windows or Mac. This U2D2 can be purchased [here](https://www.robotis.us/u2d2/).
|
||||
For either solution, open DYNAMIXEL Wizard 2.0 and select the appropriate port. You will likely be unable to see the motor in the GUI at this time. Select `Firmware Recovery`, carefully choose the correct model, and wait for the process to complete. Finally, re-scan to confirm the firmware recovery was successful.
|
||||
|
||||
**Read and Write with DynamixelMotorsBus**
|
||||
|
||||
To get familiar with how `DynamixelMotorsBus` communicates with the motors, you can start by reading data from them. Copy past this code in the same interactive python session:
|
||||
@@ -386,19 +387,19 @@ When you connect your robot for the first time, the [`ManipulatorRobot`](../lero
|
||||
|
||||
Here are the positions you'll move the follower arm to:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
|---|---|---|
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| <img src="../media/koch/follower_zero.webp?raw=true" alt="Koch v1.1 follower arm zero position" title="Koch v1.1 follower arm zero position" style="width:100%;"> | <img src="../media/koch/follower_rotated.webp?raw=true" alt="Koch v1.1 follower arm rotated position" title="Koch v1.1 follower arm rotated position" style="width:100%;"> | <img src="../media/koch/follower_rest.webp?raw=true" alt="Koch v1.1 follower arm rest position" title="Koch v1.1 follower arm rest position" style="width:100%;"> |
|
||||
|
||||
And here are the corresponding positions for the leader arm:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
|---|---|---|
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ----------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| <img src="../media/koch/leader_zero.webp?raw=true" alt="Koch v1.1 leader arm zero position" title="Koch v1.1 leader arm zero position" style="width:100%;"> | <img src="../media/koch/leader_rotated.webp?raw=true" alt="Koch v1.1 leader arm rotated position" title="Koch v1.1 leader arm rotated position" style="width:100%;"> | <img src="../media/koch/leader_rest.webp?raw=true" alt="Koch v1.1 leader arm rest position" title="Koch v1.1 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
|
||||
|
||||
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to mesure if the values changed negatively or positively.
|
||||
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
|
||||
|
||||
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
|
||||
|
||||
@@ -626,7 +627,7 @@ Finally, run this code to instantiate and connectyour camera:
|
||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
|
||||
camera_config = OpenCVCameraConfig(camera_index=0)
|
||||
config = OpenCVCameraConfig(camera_index=0)
|
||||
camera = OpenCVCamera(config)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
@@ -663,18 +664,20 @@ camera.disconnect()
|
||||
|
||||
**Instantiate your robot with cameras**
|
||||
|
||||
Additionaly, you can set up your robot to work with your cameras.
|
||||
Additionally, you can set up your robot to work with your cameras.
|
||||
|
||||
Modify the following Python code with the appropriate camera names and configurations:
|
||||
```python
|
||||
robot = ManipulatorRobot(
|
||||
leader_arms={"main": leader_arm},
|
||||
follower_arms={"main": follower_arm},
|
||||
calibration_dir=".cache/calibration/koch",
|
||||
cameras={
|
||||
"laptop": OpenCVCameraConfig(0, fps=30, width=640, height=480),
|
||||
"phone": OpenCVCameraConfig(1, fps=30, width=640, height=480),
|
||||
},
|
||||
KochRobotConfig(
|
||||
leader_arms={"main": leader_arm},
|
||||
follower_arms={"main": follower_arm},
|
||||
calibration_dir=".cache/calibration/koch",
|
||||
cameras={
|
||||
"laptop": OpenCVCameraConfig(0, fps=30, width=640, height=480),
|
||||
"phone": OpenCVCameraConfig(1, fps=30, width=640, height=480),
|
||||
},
|
||||
)
|
||||
)
|
||||
robot.connect()
|
||||
```
|
||||
@@ -711,7 +714,7 @@ python lerobot/scripts/control_robot.py \
|
||||
|
||||
You will see a lot of lines appearing like this one:
|
||||
```
|
||||
INFO 2024-08-10 11:15:03 ol_robot.py:209 dt: 5.12 (195.1hz) dtRlead: 4.93 (203.0hz) dtRfoll: 0.19 (5239.0hz)
|
||||
INFO 2024-08-10 11:15:03 ol_robot.py:209 dt: 5.12 (195.1hz) dtRlead: 4.93 (203.0hz) dtWfoll: 0.19 (5239.0hz)
|
||||
```
|
||||
|
||||
It contains
|
||||
@@ -768,7 +771,7 @@ You can use the `record` function from [`lerobot/scripts/control_robot.py`](../l
|
||||
1. Frames from cameras are saved on disk in threads, and encoded into videos at the end of each episode recording.
|
||||
2. Video streams from cameras are displayed in window so that you can verify them.
|
||||
3. Data is stored with [`LeRobotDataset`](../lerobot/common/datasets/lerobot_dataset.py) format which is pushed to your Hugging Face page (unless `--control.push_to_hub=false` is provided).
|
||||
4. Checkpoints are done during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You might need to add `--control.local_files_only=true` if your dataset was not uploaded to hugging face hub. Also you will need to manually delete the dataset directory to start recording from scratch.
|
||||
4. Checkpoints are done during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
|
||||
5. Set the flow of data recording using command line arguments:
|
||||
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
|
||||
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
|
||||
@@ -823,20 +826,15 @@ It contains:
|
||||
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
|
||||
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
|
||||
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
|
||||
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchrously.
|
||||
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchrously.
|
||||
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
|
||||
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
|
||||
|
||||
Troubleshooting:
|
||||
- On Linux, if you encounter a hanging issue when using cameras, uninstall opencv and re-install it with conda:
|
||||
```bash
|
||||
pip uninstall opencv-python
|
||||
conda install -c conda-forge opencv=4.10.0
|
||||
```
|
||||
- On Linux, if you encounter any issue during video encoding with `ffmpeg: unknown encoder libsvtav1`, you can:
|
||||
- install with conda-forge by running `conda install -c conda-forge ffmpeg` (it should be compiled with `libsvtav1`),
|
||||
- or, install [Homebrew](https://brew.sh) and run `brew install ffmpeg` (it should be compiled with `libsvtav1`),
|
||||
- or, install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1),
|
||||
- and, make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
- install with conda-forge by running `conda install -c conda-forge ffmpeg` (it should be compiled with `libsvtav1`),
|
||||
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform (check the version installed with `ffmpeg -encoders | grep libsvtav1`). If it isn't `ffmpeg 7.X` or lacks `libsvtav1` support, you can explicitly install `ffmpeg 7.X` using: `conda install ffmpeg=7.1.1 -c conda-forge`
|
||||
- or, install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1),
|
||||
- and, make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
|
||||
At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/koch_test) that you can obtain by running:
|
||||
@@ -844,7 +842,7 @@ At the end of data recording, your dataset will be uploaded on your Hugging Face
|
||||
echo https://huggingface.co/datasets/${HF_USER}/koch_test
|
||||
```
|
||||
|
||||
### b. Advices for recording dataset
|
||||
### b. Advice for recording dataset
|
||||
|
||||
Once you're comfortable with data recording, it's time to create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings.
|
||||
|
||||
@@ -883,8 +881,6 @@ python lerobot/scripts/control_robot.py \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
Note: You might need to add `--control.local_files_only=true` if your dataset was not uploaded to hugging face hub.
|
||||
|
||||
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
|
||||
|
||||
## 4. Train a policy on your data
|
||||
@@ -898,16 +894,14 @@ python lerobot/scripts/train.py \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_koch_test \
|
||||
--job_name=act_koch_test \
|
||||
--device=cuda \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Note: You might need to add `--dataset.local_files_only=true` if your dataset was not uploaded to hugging face hub.
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/koch_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
For more information on the `train` script see the previous tutorial: [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md)
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
|
||||
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and
|
||||
|
||||
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
|
||||
|
||||
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy
|
||||
|
||||
@@ -1,222 +0,0 @@
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
|
||||
from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw
|
||||
|
||||
PUSHT_TASK = "Push the T-shaped blue block onto the T-shaped green target surface."
|
||||
PUSHT_FEATURES = {
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (2,),
|
||||
"names": {
|
||||
"axes": ["x", "y"],
|
||||
},
|
||||
},
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (2,),
|
||||
"names": {
|
||||
"axes": ["x", "y"],
|
||||
},
|
||||
},
|
||||
"next.reward": {
|
||||
"dtype": "float32",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"next.success": {
|
||||
"dtype": "bool",
|
||||
"shape": (1,),
|
||||
"names": None,
|
||||
},
|
||||
"observation.environment_state": {
|
||||
"dtype": "float32",
|
||||
"shape": (16,),
|
||||
"names": [
|
||||
"keypoints",
|
||||
],
|
||||
},
|
||||
"observation.image": {
|
||||
"dtype": None,
|
||||
"shape": (3, 96, 96),
|
||||
"names": [
|
||||
"channels",
|
||||
"height",
|
||||
"width",
|
||||
],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def build_features(mode: str) -> dict:
|
||||
features = PUSHT_FEATURES
|
||||
if mode == "keypoints":
|
||||
features.pop("observation.image")
|
||||
else:
|
||||
features.pop("observation.environment_state")
|
||||
features["observation.image"]["dtype"] = mode
|
||||
|
||||
return features
|
||||
|
||||
|
||||
def load_raw_dataset(zarr_path: Path):
|
||||
try:
|
||||
from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import (
|
||||
ReplayBuffer as DiffusionPolicyReplayBuffer,
|
||||
)
|
||||
except ModuleNotFoundError as e:
|
||||
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
|
||||
raise e
|
||||
|
||||
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
|
||||
return zarr_data
|
||||
|
||||
|
||||
def calculate_coverage(zarr_data):
|
||||
try:
|
||||
import pymunk
|
||||
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
|
||||
except ModuleNotFoundError as e:
|
||||
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
|
||||
raise e
|
||||
|
||||
block_pos = zarr_data["state"][:, 2:4]
|
||||
block_angle = zarr_data["state"][:, 4]
|
||||
|
||||
num_frames = len(block_pos)
|
||||
|
||||
coverage = np.zeros((num_frames,))
|
||||
# 8 keypoints with 2 coords each
|
||||
keypoints = np.zeros((num_frames, 16))
|
||||
|
||||
# Set x, y, theta (in radians)
|
||||
goal_pos_angle = np.array([256, 256, np.pi / 4])
|
||||
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
|
||||
|
||||
for i in range(num_frames):
|
||||
space = pymunk.Space()
|
||||
space.gravity = 0, 0
|
||||
space.damping = 0
|
||||
|
||||
# Add walls.
|
||||
walls = [
|
||||
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
|
||||
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
|
||||
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
|
||||
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
|
||||
]
|
||||
space.add(*walls)
|
||||
|
||||
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||||
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
goal_area = goal_geom.area
|
||||
coverage[i] = intersection_area / goal_area
|
||||
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
|
||||
|
||||
return coverage, keypoints
|
||||
|
||||
|
||||
def calculate_success(coverage: float, success_threshold: float):
|
||||
return coverage > success_threshold
|
||||
|
||||
|
||||
def calculate_reward(coverage: float, success_threshold: float):
|
||||
return np.clip(coverage / success_threshold, 0, 1)
|
||||
|
||||
|
||||
def main(raw_dir: Path, repo_id: str, mode: str = "video", push_to_hub: bool = True):
|
||||
if mode not in ["video", "image", "keypoints"]:
|
||||
raise ValueError(mode)
|
||||
|
||||
if (LEROBOT_HOME / repo_id).exists():
|
||||
shutil.rmtree(LEROBOT_HOME / repo_id)
|
||||
|
||||
if not raw_dir.exists():
|
||||
download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw")
|
||||
|
||||
zarr_data = load_raw_dataset(zarr_path=raw_dir / "pusht_cchi_v7_replay.zarr")
|
||||
|
||||
env_state = zarr_data["state"][:]
|
||||
agent_pos = env_state[:, :2]
|
||||
|
||||
action = zarr_data["action"][:]
|
||||
image = zarr_data["img"] # (b, h, w, c)
|
||||
|
||||
episode_data_index = {
|
||||
"from": np.concatenate(([0], zarr_data.meta["episode_ends"][:-1])),
|
||||
"to": zarr_data.meta["episode_ends"],
|
||||
}
|
||||
|
||||
# Calculate success and reward based on the overlapping area
|
||||
# of the T-object and the T-area.
|
||||
coverage, keypoints = calculate_coverage(zarr_data)
|
||||
success = calculate_success(coverage, success_threshold=0.95)
|
||||
reward = calculate_reward(coverage, success_threshold=0.95)
|
||||
|
||||
features = build_features(mode)
|
||||
dataset = LeRobotDataset.create(
|
||||
repo_id=repo_id,
|
||||
fps=10,
|
||||
robot_type="2d pointer",
|
||||
features=features,
|
||||
image_writer_threads=4,
|
||||
)
|
||||
episodes = range(len(episode_data_index["from"]))
|
||||
for ep_idx in episodes:
|
||||
from_idx = episode_data_index["from"][ep_idx]
|
||||
to_idx = episode_data_index["to"][ep_idx]
|
||||
num_frames = to_idx - from_idx
|
||||
|
||||
for frame_idx in range(num_frames):
|
||||
i = from_idx + frame_idx
|
||||
frame = {
|
||||
"action": torch.from_numpy(action[i]),
|
||||
# Shift reward and success by +1 until the last item of the episode
|
||||
"next.reward": reward[i + (frame_idx < num_frames - 1)],
|
||||
"next.success": success[i + (frame_idx < num_frames - 1)],
|
||||
}
|
||||
|
||||
frame["observation.state"] = torch.from_numpy(agent_pos[i])
|
||||
|
||||
if mode == "keypoints":
|
||||
frame["observation.environment_state"] = torch.from_numpy(keypoints[i])
|
||||
else:
|
||||
frame["observation.image"] = torch.from_numpy(image[i])
|
||||
|
||||
dataset.add_frame(frame)
|
||||
|
||||
dataset.save_episode(task=PUSHT_TASK)
|
||||
|
||||
dataset.consolidate()
|
||||
|
||||
if push_to_hub:
|
||||
dataset.push_to_hub()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# To try this script, modify the repo id with your own HuggingFace user (e.g cadene/pusht)
|
||||
repo_id = "lerobot/pusht"
|
||||
|
||||
modes = ["video", "image", "keypoints"]
|
||||
# Uncomment if you want to try with a specific mode
|
||||
# modes = ["video"]
|
||||
# modes = ["image"]
|
||||
# modes = ["keypoints"]
|
||||
|
||||
raw_dir = Path("data/lerobot-raw/pusht_raw")
|
||||
for mode in modes:
|
||||
if mode in ["image", "keypoints"]:
|
||||
repo_id += f"_{mode}"
|
||||
|
||||
# download and load raw dataset, create LeRobotDataset, populate it, push to hub
|
||||
main(raw_dir, repo_id=repo_id, mode=mode)
|
||||
|
||||
# Uncomment if you want to load the local dataset and explore it
|
||||
# dataset = LeRobotDataset(repo_id=repo_id, local_files_only=True)
|
||||
# breakpoint()
|
||||
4
lerobot/common/cameras/__init__.py
Normal file
4
lerobot/common/cameras/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig
|
||||
|
||||
__all__ = ["Camera", "CameraConfig"]
|
||||
25
lerobot/common/cameras/camera.py
Normal file
25
lerobot/common/cameras/camera.py
Normal file
@@ -0,0 +1,25 @@
|
||||
import abc
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Camera(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def connect(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def async_read(self) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def disconnect(self):
|
||||
pass
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
11
lerobot/common/cameras/configs.py
Normal file
11
lerobot/common/cameras/configs.py
Normal file
@@ -0,0 +1,11 @@
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass
|
||||
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
4
lerobot/common/cameras/intel/__init__.py
Normal file
4
lerobot/common/cameras/intel/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .camera_realsense import RealSenseCamera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
__all__ = ["RealSenseCamera", "RealSenseCameraConfig"]
|
||||
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file contains utilities for recording frames from Intel Realsense cameras.
|
||||
"""
|
||||
@@ -17,14 +31,15 @@ from threading import Thread
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.robot_utils import (
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
SERIAL_NUMBER_INDEX = 1
|
||||
|
||||
|
||||
@@ -34,7 +49,7 @@ def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
|
||||
connected to the computer.
|
||||
"""
|
||||
if mock:
|
||||
import tests.mock_pyrealsense2 as rs
|
||||
import tests.cameras.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
@@ -86,7 +101,7 @@ def save_images_from_cameras(
|
||||
serial_numbers = [cam["serial_number"] for cam in camera_infos]
|
||||
|
||||
if mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
@@ -94,13 +109,11 @@ def save_images_from_cameras(
|
||||
cameras = []
|
||||
for cam_sn in serial_numbers:
|
||||
print(f"{cam_sn=}")
|
||||
config = IntelRealSenseCameraConfig(
|
||||
serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock
|
||||
)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
config = RealSenseCameraConfig(serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect()
|
||||
print(
|
||||
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.width}, height={camera.height}, color_mode={camera.color_mode})"
|
||||
f"RealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
@@ -152,11 +165,11 @@ def save_images_from_cameras(
|
||||
camera.disconnect()
|
||||
|
||||
|
||||
class IntelRealSenseCamera:
|
||||
class RealSenseCamera(Camera):
|
||||
"""
|
||||
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
|
||||
The RealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
|
||||
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
|
||||
- can also be instantiated with the camera's name — if it's unique — using IntelRealSenseCamera.init_from_name(),
|
||||
- can also be instantiated with the camera's name — if it's unique — using RealSenseCamera.init_from_name(),
|
||||
- depth map can be returned.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
|
||||
@@ -164,15 +177,15 @@ class IntelRealSenseCamera:
|
||||
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
|
||||
```
|
||||
|
||||
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
When an RealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
|
||||
Example of instantiating with a serial number:
|
||||
```python
|
||||
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
|
||||
from lerobot.common.robot_devices.cameras.configs import RealSenseCameraConfig
|
||||
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347)
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
@@ -181,21 +194,21 @@ class IntelRealSenseCamera:
|
||||
|
||||
Example of instantiating with a name if it's unique:
|
||||
```
|
||||
config = IntelRealSenseCameraConfig(name="Intel RealSense D405")
|
||||
config = RealSenseCameraConfig(name="Intel RealSense D405")
|
||||
```
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
|
||||
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
|
||||
```
|
||||
|
||||
Example of returning depth:
|
||||
```python
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, use_depth=True)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
config = RealSenseCameraConfig(serial_number=128422271347, use_depth=True)
|
||||
camera = RealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image, depth_map = camera.read()
|
||||
```
|
||||
@@ -203,16 +216,27 @@ class IntelRealSenseCamera:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: IntelRealSenseCameraConfig,
|
||||
config: RealSenseCameraConfig,
|
||||
):
|
||||
self.config = config
|
||||
if config.name is not None:
|
||||
self.serial_number = self.find_serial_number_from_name(config.name)
|
||||
else:
|
||||
self.serial_number = config.serial_number
|
||||
|
||||
# Store the raw (capture) resolution from the config.
|
||||
self.capture_width = config.width
|
||||
self.capture_height = config.height
|
||||
|
||||
# If rotated by ±90, swap width and height.
|
||||
if config.rotation in [-90, 90]:
|
||||
self.width = config.height
|
||||
self.height = config.width
|
||||
else:
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
|
||||
self.fps = config.fps
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
self.channels = config.channels
|
||||
self.color_mode = config.color_mode
|
||||
self.use_depth = config.use_depth
|
||||
@@ -228,11 +252,10 @@ class IntelRealSenseCamera:
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
# TODO(alibets): Do we keep original width/height or do we define them after rotation?
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
@@ -258,27 +281,29 @@ class IntelRealSenseCamera:
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is already connected."
|
||||
)
|
||||
raise DeviceAlreadyConnectedError(f"RealSenseCamera({self.serial_number}) is already connected.")
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_pyrealsense2 as rs
|
||||
import tests.cameras.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
config = rs.config()
|
||||
config.enable_device(str(self.serial_number))
|
||||
|
||||
if self.fps and self.width and self.height:
|
||||
if self.fps and self.capture_width and self.capture_height:
|
||||
# TODO(rcadene): can we set rgb8 directly?
|
||||
config.enable_stream(rs.stream.color, self.width, self.height, rs.format.rgb8, self.fps)
|
||||
config.enable_stream(
|
||||
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.color)
|
||||
|
||||
if self.use_depth:
|
||||
if self.fps and self.width and self.height:
|
||||
config.enable_stream(rs.stream.depth, self.width, self.height, rs.format.z16, self.fps)
|
||||
if self.fps and self.capture_width and self.capture_height:
|
||||
config.enable_stream(
|
||||
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.depth)
|
||||
|
||||
@@ -302,7 +327,7 @@ class IntelRealSenseCamera:
|
||||
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
|
||||
)
|
||||
|
||||
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
|
||||
raise OSError(f"Can't access RealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_stream = profile.get_stream(rs.stream.color)
|
||||
color_profile = color_stream.as_video_stream_profile()
|
||||
@@ -314,20 +339,20 @@ class IntelRealSenseCamera:
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
f"Can't set {self.fps=} for RealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.width is not None and self.width != actual_width:
|
||||
if self.capture_width is not None and self.capture_width != actual_width:
|
||||
raise OSError(
|
||||
f"Can't set {self.width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
|
||||
f"Can't set {self.capture_width=} for RealSenseCamera({self.serial_number}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.height is not None and self.height != actual_height:
|
||||
if self.capture_height is not None and self.capture_height != actual_height:
|
||||
raise OSError(
|
||||
f"Can't set {self.height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
|
||||
f"Can't set {self.capture_height=} for RealSenseCamera({self.serial_number}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.width = round(actual_width)
|
||||
self.height = round(actual_height)
|
||||
self.capture_width = round(actual_width)
|
||||
self.capture_height = round(actual_height)
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
@@ -342,12 +367,12 @@ class IntelRealSenseCamera:
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
@@ -358,7 +383,7 @@ class IntelRealSenseCamera:
|
||||
color_frame = frame.get_color_frame()
|
||||
|
||||
if not color_frame:
|
||||
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
|
||||
raise OSError(f"Can't capture color image from RealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
@@ -373,7 +398,7 @@ class IntelRealSenseCamera:
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.height or w != self.width:
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
@@ -390,12 +415,12 @@ class IntelRealSenseCamera:
|
||||
if self.use_depth:
|
||||
depth_frame = frame.get_depth_frame()
|
||||
if not depth_frame:
|
||||
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
|
||||
raise OSError(f"Can't capture depth image from RealSenseCamera({self.serial_number}).")
|
||||
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
h, w = depth_map.shape
|
||||
if h != self.height or w != self.width:
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
@@ -417,8 +442,8 @@ class IntelRealSenseCamera:
|
||||
def async_read(self):
|
||||
"""Access the latest color image"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
@@ -444,8 +469,8 @@ class IntelRealSenseCamera:
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
raise DeviceNotConnectedError(
|
||||
f"RealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
@@ -467,14 +492,14 @@ class IntelRealSenseCamera:
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
|
||||
description="Save a few frames using `RealSenseCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--serial-numbers",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
|
||||
help="List of serial numbers used to instantiate the `RealSenseCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
@@ -1,64 +1,35 @@
|
||||
import abc
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass
|
||||
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("opencv")
|
||||
@dataclass
|
||||
class OpenCVCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
OpenCVCameraConfig(0, 30, 640, 480)
|
||||
OpenCVCameraConfig(0, 60, 640, 480)
|
||||
OpenCVCameraConfig(0, 90, 640, 480)
|
||||
OpenCVCameraConfig(0, 30, 1280, 720)
|
||||
```
|
||||
"""
|
||||
|
||||
camera_index: int
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
from ..configs import CameraConfig
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("intelrealsense")
|
||||
@dataclass
|
||||
class IntelRealSenseCameraConfig(CameraConfig):
|
||||
class RealSenseCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 60, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 90, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 1280, 720)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 60, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 90, 640, 480)
|
||||
RealSenseCameraConfig(128422271347, 30, 1280, 720)
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
|
||||
```
|
||||
"""
|
||||
|
||||
305
lerobot/common/cameras/interface_camera_sdk.py
Normal file
305
lerobot/common/cameras/interface_camera_sdk.py
Normal file
@@ -0,0 +1,305 @@
|
||||
# ruff: noqa: N802,N803
|
||||
import abc
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
# --- Interface Definition ---
|
||||
class IVideoCapture(abc.ABC):
|
||||
"""Interface for the cv2.VideoCapture class."""
|
||||
|
||||
@abc.abstractmethod
|
||||
def __init__(self, index: int | str, backend: Optional[int] = None):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def isOpened(self) -> bool:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def release(self) -> None:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def set(self, propId: int, value: float) -> bool:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get(self, propId: int) -> float:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def read(self) -> Tuple[bool, Optional[np.ndarray]]:
|
||||
pass
|
||||
|
||||
|
||||
class IOpenCVSDK(abc.ABC):
|
||||
"""Interface defining the contract for OpenCV SDK interactions."""
|
||||
|
||||
# --- Constants ---
|
||||
CAP_PROP_FPS: int
|
||||
CAP_PROP_FRAME_WIDTH: int
|
||||
CAP_PROP_FRAME_HEIGHT: int
|
||||
COLOR_BGR2RGB: int
|
||||
ROTATE_90_COUNTERCLOCKWISE: int
|
||||
ROTATE_90_CLOCKWISE: int
|
||||
ROTATE_180: int
|
||||
CAP_V4L2: int
|
||||
CAP_DSHOW: int
|
||||
CAP_AVFOUNDATION: int
|
||||
CAP_ANY: int
|
||||
|
||||
# --- Inner Class Type Hint ---
|
||||
VideoCapture: type[IVideoCapture]
|
||||
|
||||
# --- Methods ---
|
||||
@abc.abstractmethod
|
||||
def setNumThreads(self, nthreads: int) -> None:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def cvtColor(self, src: np.ndarray, code: int) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def rotate(self, src: np.ndarray, rotateCode: int) -> np.ndarray:
|
||||
pass
|
||||
|
||||
|
||||
# --- Real SDK Adapter ---
|
||||
class OpenCVSDKAdapter(IOpenCVSDK):
|
||||
"""Adapts the real cv2 library to the IOpenCVSDK interface."""
|
||||
|
||||
_cv2 = None
|
||||
|
||||
def __init__(self):
|
||||
try:
|
||||
import cv2
|
||||
|
||||
OpenCVSDKAdapter._cv2 = cv2
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"OpenCV (cv2) is not installed. Please install it to use the real camera."
|
||||
) from e
|
||||
|
||||
# --- Constants ---
|
||||
self.CAP_PROP_FPS = self._cv2.CAP_PROP_FPS
|
||||
self.CAP_PROP_FRAME_WIDTH = self._cv2.CAP_PROP_FRAME_WIDTH
|
||||
self.CAP_PROP_FRAME_HEIGHT = self._cv2.CAP_PROP_FRAME_HEIGHT
|
||||
self.COLOR_BGR2RGB = self._cv2.COLOR_BGR2RGB
|
||||
self.ROTATE_90_COUNTERCLOCKWISE = self._cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
self.ROTATE_90_CLOCKWISE = self._cv2.ROTATE_90_CLOCKWISE
|
||||
self.ROTATE_180 = self._cv2.ROTATE_180
|
||||
self.CAP_V4L2 = self._cv2.CAP_V4L2
|
||||
self.CAP_DSHOW = self._cv2.CAP_DSHOW
|
||||
self.CAP_AVFOUNDATION = self._cv2.CAP_AVFOUNDATION
|
||||
self.CAP_ANY = self._cv2.CAP_ANY
|
||||
|
||||
# --- Inner Class Implementation ---
|
||||
class RealVideoCapture(IVideoCapture):
|
||||
def __init__(self, index: int | str, backend: Optional[int] = None):
|
||||
self._cap = OpenCVSDKAdapter._cv2.VideoCapture(index, backend)
|
||||
|
||||
def isOpened(self) -> bool:
|
||||
return self._cap.isOpened()
|
||||
|
||||
def release(self) -> None:
|
||||
self._cap.release()
|
||||
|
||||
def set(self, propId: int, value: float) -> bool:
|
||||
return self._cap.set(propId, value)
|
||||
|
||||
def get(self, propId: int) -> float:
|
||||
return self._cap.get(propId)
|
||||
|
||||
def read(self) -> Tuple[bool, Optional[np.ndarray]]:
|
||||
return self._cap.read()
|
||||
|
||||
def __del__(self):
|
||||
if hasattr(self, "_cap") and self._cap and self._cap.isOpened():
|
||||
self._cap.release()
|
||||
|
||||
self.VideoCapture = RealVideoCapture
|
||||
|
||||
# --- Methods ---
|
||||
def setNumThreads(self, nthreads: int) -> None:
|
||||
self._cv2.setNumThreads(nthreads)
|
||||
|
||||
def cvtColor(self, src: np.ndarray, code: int) -> np.ndarray:
|
||||
return self._cv2.cvtColor(src, code)
|
||||
|
||||
def rotate(self, src: np.ndarray, rotateCode: int) -> np.ndarray:
|
||||
return self._cv2.rotate(src, rotateCode)
|
||||
|
||||
|
||||
# Emulates the cheap USB camera
|
||||
VALID_INDICES = {0, 1, 2, "/dev/video0", "/dev/video1", "/dev/video2"}
|
||||
DEFAULT_FPS = 30.0
|
||||
DEFAULT_WIDTH = 1280
|
||||
DEFAULT_HEIGHT = 720
|
||||
|
||||
|
||||
# --- Fake SDK Adapter ---
|
||||
class FakeOpenCVSDKAdapter(IOpenCVSDK):
|
||||
"""Implements the IOpenCVSDK interface with fake behavior for testing."""
|
||||
|
||||
# --- Constants ---
|
||||
CAP_PROP_FPS = DEFAULT_FPS
|
||||
CAP_PROP_FRAME_WIDTH = DEFAULT_WIDTH
|
||||
CAP_PROP_FRAME_HEIGHT = DEFAULT_HEIGHT
|
||||
COLOR_BGR2RGB = 99
|
||||
ROTATE_90_COUNTERCLOCKWISE = -90
|
||||
ROTATE_90_CLOCKWISE = 90
|
||||
ROTATE_180 = 180
|
||||
CAP_V4L2 = 91
|
||||
CAP_DSHOW = 92
|
||||
CAP_AVFOUNDATION = 93
|
||||
CAP_ANY = 90
|
||||
|
||||
_cameras_opened: dict[int | str, bool] = {}
|
||||
_camera_properties: dict[tuple[int | str, int], float] = {}
|
||||
_simulated_image: np.ndarray = np.random.randint(
|
||||
0, 256, (DEFAULT_HEIGHT, DEFAULT_WIDTH, 3), dtype=np.uint8
|
||||
)
|
||||
_simulated_fps: float = DEFAULT_FPS
|
||||
_image_read_count: int = 0
|
||||
_fail_read_after: Optional[int] = None # Simulate read failure
|
||||
|
||||
@classmethod
|
||||
def init_configure_fake(
|
||||
cls,
|
||||
simulated_image: Optional[np.ndarray] = None,
|
||||
simulated_fps: Optional[float] = None,
|
||||
fail_read_after: Optional[int] = None,
|
||||
):
|
||||
if simulated_image is not None:
|
||||
cls._simulated_image = simulated_image
|
||||
if simulated_fps is not None:
|
||||
cls._simulated_fps = simulated_fps
|
||||
cls._fail_read_after = fail_read_after
|
||||
cls._image_read_count = 0
|
||||
cls._cameras_opened = {}
|
||||
cls._camera_properties = {}
|
||||
|
||||
@classmethod
|
||||
def configure_fake_simulated_image(cls, simulated_image: Optional[np.ndarray] = None):
|
||||
if simulated_image is not None:
|
||||
cls._simulated_image = simulated_image
|
||||
|
||||
@classmethod
|
||||
def configure_fail_read_after(cls, fail_read_after: Optional[int] = None):
|
||||
cls._fail_read_after = fail_read_after
|
||||
|
||||
@classmethod
|
||||
def configure_fake_simulated_fps(cls, simulated_fps: Optional[float] = None):
|
||||
if simulated_fps is not None:
|
||||
cls._simulated_fps = simulated_fps
|
||||
|
||||
# --- Inner Class Implementation ---
|
||||
class FakeVideoCapture(IVideoCapture):
|
||||
def __init__(self, index: int | str, backend: Optional[int] = None):
|
||||
self.index = index
|
||||
self.backend = backend
|
||||
valid_indices = VALID_INDICES
|
||||
if self.index in valid_indices:
|
||||
FakeOpenCVSDKAdapter._cameras_opened[self.index] = True
|
||||
print(f"[FAKE SDK] Opened camera {self.index}")
|
||||
# Set some default fake properties
|
||||
FakeOpenCVSDKAdapter._camera_properties[(self.index, FakeOpenCVSDKAdapter.CAP_PROP_FPS)] = (
|
||||
DEFAULT_FPS
|
||||
)
|
||||
FakeOpenCVSDKAdapter._camera_properties[
|
||||
(self.index, FakeOpenCVSDKAdapter.CAP_PROP_FRAME_WIDTH)
|
||||
] = float(FakeOpenCVSDKAdapter._simulated_image.shape[1])
|
||||
FakeOpenCVSDKAdapter._camera_properties[
|
||||
(self.index, FakeOpenCVSDKAdapter.CAP_PROP_FRAME_HEIGHT)
|
||||
] = float(FakeOpenCVSDKAdapter._simulated_image.shape[0])
|
||||
else:
|
||||
FakeOpenCVSDKAdapter._cameras_opened[self.index] = False
|
||||
print(f"[FAKE SDK] Failed to open camera {self.index}")
|
||||
|
||||
def isOpened(self) -> bool:
|
||||
return FakeOpenCVSDKAdapter._cameras_opened.get(self.index, False)
|
||||
|
||||
def release(self) -> None:
|
||||
if self.index in FakeOpenCVSDKAdapter._cameras_opened:
|
||||
FakeOpenCVSDKAdapter._cameras_opened[self.index] = False
|
||||
print(f"[FAKE SDK] Released camera {self.index}")
|
||||
# Clear properties on release
|
||||
props_to_remove = [k for k in FakeOpenCVSDKAdapter._camera_properties if k[0] == self.index]
|
||||
for k in props_to_remove:
|
||||
del FakeOpenCVSDKAdapter._camera_properties[k]
|
||||
|
||||
def set(self, propId: int, value: float) -> bool:
|
||||
if not self.isOpened():
|
||||
return False
|
||||
print(
|
||||
f"[FAKE SDK] Ignoring set property {propId} = {value} for camera {self.index} to preserve state."
|
||||
)
|
||||
# FakeOpenCVSDKAdapter._camera_properties[(self.index, propId)] = value
|
||||
# Simulate failure for specific unrealistic settings if needed
|
||||
return True
|
||||
|
||||
def get(self, propId: int) -> float:
|
||||
if not self.isOpened():
|
||||
return 0.0 # Or raise error? Mimic cv2 behavior
|
||||
val = FakeOpenCVSDKAdapter._camera_properties.get((self.index, propId))
|
||||
print(f"[FAKE SDK] Get property {propId} for camera {self.index} -> {val}")
|
||||
return val
|
||||
|
||||
def read(self) -> Tuple[bool, Optional[np.ndarray]]:
|
||||
if not self.isOpened():
|
||||
print(f"[FAKE SDK] Read failed: Camera {self.index} not open.")
|
||||
return False, None
|
||||
|
||||
FakeOpenCVSDKAdapter._image_read_count += 1
|
||||
if (
|
||||
FakeOpenCVSDKAdapter._fail_read_after is not None
|
||||
and FakeOpenCVSDKAdapter._image_read_count > FakeOpenCVSDKAdapter._fail_read_after
|
||||
):
|
||||
print(
|
||||
f"[FAKE SDK] Simulated read failure for camera {self.index} after {FakeOpenCVSDKAdapter._fail_read_after} reads."
|
||||
)
|
||||
return False, None
|
||||
|
||||
print(
|
||||
f"[FAKE SDK] Read image from camera {self.index} (read #{FakeOpenCVSDKAdapter._image_read_count})"
|
||||
)
|
||||
# Return a copy to prevent modification issues if the caller changes it
|
||||
return True, FakeOpenCVSDKAdapter._simulated_image.copy()
|
||||
|
||||
def __del__(self):
|
||||
# Ensure cleanup if garbage collected
|
||||
self.release()
|
||||
|
||||
VideoCapture = FakeVideoCapture # Assign inner class
|
||||
|
||||
# --- Methods ---
|
||||
def setNumThreads(self, nthreads: int) -> None:
|
||||
print(f"[FAKE SDK] setNumThreads({nthreads}) called.")
|
||||
# No actual behavior needed in fake
|
||||
|
||||
def cvtColor(self, src: np.ndarray, code: int) -> np.ndarray:
|
||||
print(f"[FAKE SDK] cvtColor called with code {code}.")
|
||||
# Just return the source image, or simulate channel swap if needed
|
||||
if code == self.COLOR_BGR2RGB and src.shape[2] == 3:
|
||||
print("[FAKE SDK] Simulating BGR -> RGB conversion.")
|
||||
return src[..., ::-1]
|
||||
return src.copy()
|
||||
|
||||
def rotate(self, src: np.ndarray, rotateCode: int) -> np.ndarray:
|
||||
print(f"[FAKE SDK] rotate called with code {rotateCode}.")
|
||||
if rotateCode == self.ROTATE_90_COUNTERCLOCKWISE:
|
||||
print("[FAKE SDK] Simulating 90 degree counter-clockwise rotation.")
|
||||
rotated_img = np.rot90(np.rot90(np.rot90(src.copy())))
|
||||
return rotated_img
|
||||
elif rotateCode == self.ROTATE_90_CLOCKWISE:
|
||||
print("[FAKE SDK] Simulating 90 degree clockwise rotation.")
|
||||
rotated_img = np.rot90(src.copy())
|
||||
return rotated_img
|
||||
elif rotateCode == self.ROTATE_180:
|
||||
print("[FAKE SDK] Simulating 180 degree rotation.")
|
||||
rotated_img = np.rot90(np.rot90(src.copy()))
|
||||
return rotated_img
|
||||
return src.copy()
|
||||
4
lerobot/common/cameras/opencv/__init__.py
Normal file
4
lerobot/common/cameras/opencv/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .camera_opencv import OpenCVCamera
|
||||
from .configuration_opencv import OpenCVCameraConfig
|
||||
|
||||
__all__ = ["OpenCVCamera", "OpenCVCameraConfig"]
|
||||
@@ -1,3 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
|
||||
"""
|
||||
@@ -10,19 +24,20 @@ import shutil
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.robot_utils import (
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from ..interface_camera_sdk import IOpenCVSDK, OpenCVSDKAdapter
|
||||
from .configuration_opencv import OpenCVCameraConfig
|
||||
|
||||
# The maximum opencv device index depends on your operating system. For instance,
|
||||
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
|
||||
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
|
||||
@@ -31,12 +46,17 @@ from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
|
||||
def find_cameras(
|
||||
raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, cv2_sdk: IOpenCVSDK = None
|
||||
) -> list[dict]:
|
||||
if cv2_sdk is None:
|
||||
cv2_sdk = OpenCVSDKAdapter()
|
||||
|
||||
cameras = []
|
||||
if platform.system() == "Linux":
|
||||
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
|
||||
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
|
||||
ports = _find_cameras(possible_ports, mock=mock)
|
||||
ports = _find_cameras(possible_ports, cv2_sdk=cv2_sdk)
|
||||
for port in ports:
|
||||
cameras.append(
|
||||
{
|
||||
@@ -50,7 +70,7 @@ def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX
|
||||
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
|
||||
)
|
||||
possible_indices = range(max_index_search_range)
|
||||
indices = _find_cameras(possible_indices, mock=mock)
|
||||
indices = _find_cameras(possible_indices, cv2_sdk=cv2_sdk)
|
||||
for index in indices:
|
||||
cameras.append(
|
||||
{
|
||||
@@ -63,16 +83,14 @@ def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX
|
||||
|
||||
|
||||
def _find_cameras(
|
||||
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
|
||||
possible_camera_ids: list[int | str], raise_when_empty=False, cv2_sdk: IOpenCVSDK = None
|
||||
) -> list[int | str]:
|
||||
if mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
if cv2_sdk is None:
|
||||
cv2_sdk = OpenCVSDKAdapter()
|
||||
|
||||
camera_ids = []
|
||||
for camera_idx in possible_camera_ids:
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
camera = cv2_sdk.VideoCapture(camera_idx)
|
||||
is_open = camera.isOpened()
|
||||
camera.release()
|
||||
|
||||
@@ -113,25 +131,28 @@ def save_images_from_cameras(
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
cv2_sdk: IOpenCVSDK = None,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given camera index.
|
||||
"""
|
||||
if cv2_sdk is None:
|
||||
cv2_sdk = OpenCVSDKAdapter()
|
||||
|
||||
if camera_ids is None or len(camera_ids) == 0:
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
camera_infos = find_cameras(cv2_sdk=cv2_sdk)
|
||||
camera_ids = [cam["index"] for cam in camera_infos]
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_idx in camera_ids:
|
||||
config = OpenCVCameraConfig(camera_index=cam_idx, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = OpenCVCamera(config)
|
||||
config = OpenCVCameraConfig(camera_index=cam_idx, fps=fps, width=width, height=height)
|
||||
camera = OpenCVCamera(config, cv2_sdk=cv2_sdk)
|
||||
camera.connect()
|
||||
print(
|
||||
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.width}, "
|
||||
f"height={camera.height}, color_mode={camera.color_mode})"
|
||||
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.capture_width}, "
|
||||
f"height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
@@ -176,7 +197,7 @@ def save_images_from_cameras(
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
|
||||
|
||||
class OpenCVCamera:
|
||||
class OpenCVCamera(Camera):
|
||||
"""
|
||||
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
|
||||
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
@@ -214,11 +235,16 @@ class OpenCVCamera:
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: OpenCVCameraConfig):
|
||||
def __init__(self, config: OpenCVCameraConfig, cv2_sdk: IOpenCVSDK = None):
|
||||
self.config = config
|
||||
self.camera_index = config.camera_index
|
||||
self.port = None
|
||||
|
||||
if cv2_sdk is None:
|
||||
cv2_sdk = OpenCVSDKAdapter()
|
||||
|
||||
self.cv2_sdk = cv2_sdk
|
||||
|
||||
# Linux uses ports for connecting to cameras
|
||||
if platform.system() == "Linux":
|
||||
if isinstance(self.camera_index, int):
|
||||
@@ -230,12 +256,21 @@ class OpenCVCamera:
|
||||
else:
|
||||
raise ValueError(f"Please check the provided camera_index: {self.camera_index}")
|
||||
|
||||
# Store the raw (capture) resolution from the config.
|
||||
self.capture_width = config.width
|
||||
self.capture_height = config.height
|
||||
|
||||
# If rotated by ±90, swap width and height.
|
||||
if config.rotation in [-90, 90]:
|
||||
self.width = config.height
|
||||
self.height = config.width
|
||||
else:
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
|
||||
self.fps = config.fps
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
self.channels = config.channels
|
||||
self.color_mode = config.color_mode
|
||||
self.mock = config.mock
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
@@ -244,37 +279,38 @@ class OpenCVCamera:
|
||||
self.color_image = None
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
# TODO(aliberts): Do we keep original width/height or do we define them after rotation?
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
self.rotation = cv2_sdk.ROTATE_90_COUNTERCLOCKWISE
|
||||
elif config.rotation == 90:
|
||||
self.rotation = cv2.ROTATE_90_CLOCKWISE
|
||||
self.rotation = cv2_sdk.ROTATE_90_CLOCKWISE
|
||||
elif config.rotation == 180:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
self.rotation = cv2_sdk.ROTATE_180
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
raise DeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
cv2_sdk = self.cv2_sdk
|
||||
|
||||
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
|
||||
# when other threads are used to save the images.
|
||||
cv2.setNumThreads(1)
|
||||
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
|
||||
# when other threads are used to save the images.
|
||||
cv2_sdk.setNumThreads(1)
|
||||
|
||||
backend = (
|
||||
cv2_sdk.CAP_V4L2
|
||||
if platform.system() == "Linux"
|
||||
else cv2_sdk.CAP_DSHOW
|
||||
if platform.system() == "Windows"
|
||||
else cv2_sdk.CAP_AVFOUNDATION
|
||||
if platform.system() == "Darwin"
|
||||
else cv2_sdk.CAP_ANY
|
||||
)
|
||||
|
||||
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
|
||||
# First create a temporary camera trying to access `camera_index`,
|
||||
# and verify it is a valid camera by calling `isOpened`.
|
||||
tmp_camera = cv2.VideoCapture(camera_idx)
|
||||
tmp_camera = cv2_sdk.VideoCapture(camera_idx, backend)
|
||||
is_camera_open = tmp_camera.isOpened()
|
||||
# Release camera to make it accessible for `find_camera_indices`
|
||||
tmp_camera.release()
|
||||
@@ -284,7 +320,7 @@ class OpenCVCamera:
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `camera_index` is valid before printing the traceback
|
||||
cameras_info = find_cameras()
|
||||
cameras_info = find_cameras(cv2_sdk=cv2_sdk)
|
||||
available_cam_ids = [cam["index"] for cam in cameras_info]
|
||||
if self.camera_index not in available_cam_ids:
|
||||
raise ValueError(
|
||||
@@ -297,18 +333,18 @@ class OpenCVCamera:
|
||||
# Secondly, create the camera that will be used downstream.
|
||||
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
|
||||
# needs to be re-created.
|
||||
self.camera = cv2.VideoCapture(camera_idx)
|
||||
self.camera = cv2_sdk.VideoCapture(camera_idx, backend)
|
||||
|
||||
if self.fps is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
|
||||
if self.width is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
|
||||
if self.height is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
|
||||
self.camera.set(cv2_sdk.CAP_PROP_FPS, self.fps)
|
||||
if self.capture_width is not None:
|
||||
self.camera.set(cv2_sdk.CAP_PROP_FRAME_WIDTH, self.capture_width)
|
||||
if self.capture_height is not None:
|
||||
self.camera.set(cv2_sdk.CAP_PROP_FRAME_HEIGHT, self.capture_height)
|
||||
|
||||
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
|
||||
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||||
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||||
actual_fps = self.camera.get(cv2_sdk.CAP_PROP_FPS)
|
||||
actual_width = self.camera.get(cv2_sdk.CAP_PROP_FRAME_WIDTH)
|
||||
actual_height = self.camera.get(cv2_sdk.CAP_PROP_FRAME_HEIGHT)
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
@@ -316,19 +352,22 @@ class OpenCVCamera:
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.width is not None and not math.isclose(self.width, actual_width, rel_tol=1e-3):
|
||||
if self.capture_width is not None and not math.isclose(
|
||||
self.capture_width, actual_width, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
|
||||
f"Can't set {self.capture_width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.height is not None and not math.isclose(self.height, actual_height, rel_tol=1e-3):
|
||||
if self.capture_height is not None and not math.isclose(
|
||||
self.capture_height, actual_height, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
|
||||
f"Can't set {self.capture_height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.width = round(actual_width)
|
||||
self.height = round(actual_height)
|
||||
|
||||
self.capture_width = round(actual_width)
|
||||
self.capture_height = round(actual_height)
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
|
||||
@@ -339,10 +378,12 @@ class OpenCVCamera:
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
raise DeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
cv2_sdk = self.cv2_sdk
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, color_image = self.camera.read()
|
||||
@@ -361,21 +402,16 @@ class OpenCVCamera:
|
||||
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
|
||||
# so we convert the image color from BGR to RGB.
|
||||
if requested_color_mode == "rgb":
|
||||
if self.mock:
|
||||
import tests.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
color_image = cv2_sdk.cvtColor(color_image, cv2_sdk.COLOR_BGR2RGB)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.height or w != self.width:
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
color_image = cv2.rotate(color_image, self.rotation)
|
||||
color_image = cv2_sdk.rotate(color_image, self.rotation)
|
||||
|
||||
# log the number of seconds it took to read the image
|
||||
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
|
||||
@@ -396,13 +432,13 @@ class OpenCVCamera:
|
||||
|
||||
def async_read(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
raise DeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread = threading.Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
|
||||
@@ -418,7 +454,7 @@ class OpenCVCamera:
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
raise DeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
37
lerobot/common/cameras/opencv/configuration_opencv.py
Normal file
37
lerobot/common/cameras/opencv/configuration_opencv.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..configs import CameraConfig
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("opencv")
|
||||
@dataclass
|
||||
class OpenCVCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
OpenCVCameraConfig(0, 30, 640, 480)
|
||||
OpenCVCameraConfig(0, 60, 640, 480)
|
||||
OpenCVCameraConfig(0, 90, 640, 480)
|
||||
OpenCVCameraConfig(0, 30, 1280, 720)
|
||||
```
|
||||
"""
|
||||
|
||||
camera_index: int
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
rotation: int | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
21
lerobot/common/cameras/utils.py
Normal file
21
lerobot/common/cameras/utils.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig
|
||||
|
||||
|
||||
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
|
||||
cameras = {}
|
||||
|
||||
for key, cfg in camera_configs.items():
|
||||
if cfg.type == "opencv":
|
||||
from .opencv import OpenCVCamera
|
||||
|
||||
cameras[key] = OpenCVCamera(cfg)
|
||||
|
||||
elif cfg.type == "intelrealsense":
|
||||
from .intel.camera_realsense import RealSenseCamera
|
||||
|
||||
cameras[key] = RealSenseCamera(cfg)
|
||||
else:
|
||||
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
|
||||
|
||||
return cameras
|
||||
@@ -1,10 +1,31 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# keys
|
||||
OBS_ENV = "observation.environment_state"
|
||||
OBS_ROBOT = "observation.state"
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub.constants import HF_HOME
|
||||
|
||||
OBS_ENV_STATE = "observation.environment_state"
|
||||
OBS_STATE = "observation.state"
|
||||
OBS_IMAGE = "observation.image"
|
||||
OBS_IMAGES = "observation.images"
|
||||
ACTION = "action"
|
||||
|
||||
ROBOTS = "robots"
|
||||
TELEOPERATORS = "teleoperators"
|
||||
|
||||
# files & directories
|
||||
CHECKPOINTS_DIR = "checkpoints"
|
||||
LAST_CHECKPOINT_LINK = "last"
|
||||
@@ -15,3 +36,17 @@ TRAINING_STEP = "training_step.json"
|
||||
OPTIMIZER_STATE = "optimizer_state.safetensors"
|
||||
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
|
||||
SCHEDULER_STATE = "scheduler_state.json"
|
||||
|
||||
if "LEROBOT_HOME" in os.environ:
|
||||
raise ValueError(
|
||||
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
|
||||
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
|
||||
)
|
||||
|
||||
# cache dir
|
||||
default_cache_path = Path(HF_HOME) / "lerobot"
|
||||
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
|
||||
|
||||
# calibration dir
|
||||
default_calibration_path = HF_LEROBOT_HOME / ".calibration"
|
||||
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()
|
||||
|
||||
68
lerobot/common/datasets/backward_compatibility.py
Normal file
68
lerobot/common/datasets/backward_compatibility.py
Normal file
@@ -0,0 +1,68 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import packaging.version
|
||||
|
||||
V2_MESSAGE = """
|
||||
The dataset you requested ({repo_id}) is in {version} format.
|
||||
|
||||
We introduced a new format since v2.0 which is not backward compatible with v1.x.
|
||||
Please, use our conversion script. Modify the following command with your own task description:
|
||||
```
|
||||
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
|
||||
--repo-id {repo_id} \\
|
||||
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
|
||||
```
|
||||
|
||||
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.", "Insert the
|
||||
peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.", "Open the top
|
||||
cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped
|
||||
target.", "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the
|
||||
sweatshirt.", ...
|
||||
|
||||
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
|
||||
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
||||
"""
|
||||
|
||||
V21_MESSAGE = """
|
||||
The dataset you requested ({repo_id}) is in {version} format.
|
||||
While current version of LeRobot is backward-compatible with it, the version of your dataset still uses global
|
||||
stats instead of per-episode stats. Update your dataset stats to the new format using this command:
|
||||
```
|
||||
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py --repo-id={repo_id}
|
||||
```
|
||||
|
||||
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
|
||||
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
||||
"""
|
||||
|
||||
FUTURE_MESSAGE = """
|
||||
The dataset you requested ({repo_id}) is only available in {version} format.
|
||||
As we cannot ensure forward compatibility with it, please update your current version of lerobot.
|
||||
"""
|
||||
|
||||
|
||||
class CompatibilityError(Exception): ...
|
||||
|
||||
|
||||
class BackwardCompatibilityError(CompatibilityError):
|
||||
def __init__(self, repo_id: str, version: packaging.version.Version):
|
||||
message = V2_MESSAGE.format(repo_id=repo_id, version=version)
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class ForwardCompatibilityError(CompatibilityError):
|
||||
def __init__(self, repo_id: str, version: packaging.version.Version):
|
||||
message = FUTURE_MESSAGE.format(repo_id=repo_id, version=version)
|
||||
super().__init__(message)
|
||||
@@ -13,202 +13,164 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from copy import deepcopy
|
||||
from math import ceil
|
||||
import numpy as np
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import tqdm
|
||||
from lerobot.common.datasets.utils import load_image_as_numpy
|
||||
|
||||
|
||||
def get_stats_einops_patterns(dataset, num_workers=0):
|
||||
"""These einops patterns will be used to aggregate batches and compute statistics.
|
||||
def estimate_num_samples(
|
||||
dataset_len: int, min_num_samples: int = 100, max_num_samples: int = 10_000, power: float = 0.75
|
||||
) -> int:
|
||||
"""Heuristic to estimate the number of samples based on dataset size.
|
||||
The power controls the sample growth relative to dataset size.
|
||||
Lower the power for less number of samples.
|
||||
|
||||
Note: We assume the images are in channel first format
|
||||
For default arguments, we have:
|
||||
- from 1 to ~500, num_samples=100
|
||||
- at 1000, num_samples=177
|
||||
- at 2000, num_samples=299
|
||||
- at 5000, num_samples=594
|
||||
- at 10000, num_samples=1000
|
||||
- at 20000, num_samples=1681
|
||||
"""
|
||||
if dataset_len < min_num_samples:
|
||||
min_num_samples = dataset_len
|
||||
return max(min_num_samples, min(int(dataset_len**power), max_num_samples))
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=num_workers,
|
||||
batch_size=2,
|
||||
shuffle=False,
|
||||
)
|
||||
batch = next(iter(dataloader))
|
||||
|
||||
stats_patterns = {}
|
||||
def sample_indices(data_len: int) -> list[int]:
|
||||
num_samples = estimate_num_samples(data_len)
|
||||
return np.round(np.linspace(0, data_len - 1, num_samples)).astype(int).tolist()
|
||||
|
||||
for key in dataset.features:
|
||||
# sanity check that tensors are not float64
|
||||
assert batch[key].dtype != torch.float64
|
||||
|
||||
# if isinstance(feats_type, (VideoFrame, Image)):
|
||||
if key in dataset.meta.camera_keys:
|
||||
# sanity check that images are channel first
|
||||
_, c, h, w = batch[key].shape
|
||||
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
|
||||
def auto_downsample_height_width(img: np.ndarray, target_size: int = 150, max_size_threshold: int = 300):
|
||||
_, height, width = img.shape
|
||||
|
||||
# sanity check that images are float32 in range [0,1]
|
||||
assert batch[key].dtype == torch.float32, f"expect torch.float32, but instead {batch[key].dtype=}"
|
||||
assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
|
||||
assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
|
||||
if max(width, height) < max_size_threshold:
|
||||
# no downsampling needed
|
||||
return img
|
||||
|
||||
stats_patterns[key] = "b c h w -> c 1 1"
|
||||
elif batch[key].ndim == 2:
|
||||
stats_patterns[key] = "b c -> c "
|
||||
elif batch[key].ndim == 1:
|
||||
stats_patterns[key] = "b -> 1"
|
||||
downsample_factor = int(width / target_size) if width > height else int(height / target_size)
|
||||
return img[:, ::downsample_factor, ::downsample_factor]
|
||||
|
||||
|
||||
def sample_images(image_paths: list[str]) -> np.ndarray:
|
||||
sampled_indices = sample_indices(len(image_paths))
|
||||
|
||||
images = None
|
||||
for i, idx in enumerate(sampled_indices):
|
||||
path = image_paths[idx]
|
||||
# we load as uint8 to reduce memory usage
|
||||
img = load_image_as_numpy(path, dtype=np.uint8, channel_first=True)
|
||||
img = auto_downsample_height_width(img)
|
||||
|
||||
if images is None:
|
||||
images = np.empty((len(sampled_indices), *img.shape), dtype=np.uint8)
|
||||
|
||||
images[i] = img
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def get_feature_stats(array: np.ndarray, axis: tuple, keepdims: bool) -> dict[str, np.ndarray]:
|
||||
return {
|
||||
"min": np.min(array, axis=axis, keepdims=keepdims),
|
||||
"max": np.max(array, axis=axis, keepdims=keepdims),
|
||||
"mean": np.mean(array, axis=axis, keepdims=keepdims),
|
||||
"std": np.std(array, axis=axis, keepdims=keepdims),
|
||||
"count": np.array([len(array)]),
|
||||
}
|
||||
|
||||
|
||||
def compute_episode_stats(episode_data: dict[str, list[str] | np.ndarray], features: dict) -> dict:
|
||||
ep_stats = {}
|
||||
for key, data in episode_data.items():
|
||||
if features[key]["dtype"] == "string":
|
||||
continue # HACK: we should receive np.arrays of strings
|
||||
elif features[key]["dtype"] in ["image", "video"]:
|
||||
ep_ft_array = sample_images(data) # data is a list of image paths
|
||||
axes_to_reduce = (0, 2, 3) # keep channel dim
|
||||
keepdims = True
|
||||
else:
|
||||
raise ValueError(f"{key}, {batch[key].shape}")
|
||||
ep_ft_array = data # data is already a np.ndarray
|
||||
axes_to_reduce = 0 # compute stats over the first axis
|
||||
keepdims = data.ndim == 1 # keep as np.array
|
||||
|
||||
return stats_patterns
|
||||
ep_stats[key] = get_feature_stats(ep_ft_array, axis=axes_to_reduce, keepdims=keepdims)
|
||||
|
||||
# finally, we normalize and remove batch dim for images
|
||||
if features[key]["dtype"] in ["image", "video"]:
|
||||
ep_stats[key] = {
|
||||
k: v if k == "count" else np.squeeze(v / 255.0, axis=0) for k, v in ep_stats[key].items()
|
||||
}
|
||||
|
||||
return ep_stats
|
||||
|
||||
|
||||
def compute_stats(dataset, batch_size=8, num_workers=8, max_num_samples=None):
|
||||
"""Compute mean/std and min/max statistics of all data keys in a LeRobotDataset."""
|
||||
if max_num_samples is None:
|
||||
max_num_samples = len(dataset)
|
||||
|
||||
# for more info on why we need to set the same number of workers, see `load_from_videos`
|
||||
stats_patterns = get_stats_einops_patterns(dataset, num_workers)
|
||||
|
||||
# mean and std will be computed incrementally while max and min will track the running value.
|
||||
mean, std, max, min = {}, {}, {}, {}
|
||||
for key in stats_patterns:
|
||||
mean[key] = torch.tensor(0.0).float()
|
||||
std[key] = torch.tensor(0.0).float()
|
||||
max[key] = torch.tensor(-float("inf")).float()
|
||||
min[key] = torch.tensor(float("inf")).float()
|
||||
|
||||
def create_seeded_dataloader(dataset, batch_size, seed):
|
||||
generator = torch.Generator()
|
||||
generator.manual_seed(seed)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=num_workers,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
drop_last=False,
|
||||
generator=generator,
|
||||
)
|
||||
return dataloader
|
||||
|
||||
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
|
||||
# surprises when rerunning the sampler.
|
||||
first_batch = None
|
||||
running_item_count = 0 # for online mean computation
|
||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
||||
for i, batch in enumerate(
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
|
||||
):
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
if first_batch is None:
|
||||
first_batch = deepcopy(batch)
|
||||
for key, pattern in stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
# Numerically stable update step for mean computation.
|
||||
batch_mean = einops.reduce(batch[key], pattern, "mean")
|
||||
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
|
||||
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
|
||||
# and x is the current batch mean. Some rearrangement is then required to avoid risking
|
||||
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
|
||||
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
|
||||
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
|
||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
||||
|
||||
if i == ceil(max_num_samples / batch_size) - 1:
|
||||
break
|
||||
|
||||
first_batch_ = None
|
||||
running_item_count = 0 # for online std computation
|
||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
||||
for i, batch in enumerate(
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
|
||||
):
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
# Sanity check to make sure the batches are still in the same order as before.
|
||||
if first_batch_ is None:
|
||||
first_batch_ = deepcopy(batch)
|
||||
for key in stats_patterns:
|
||||
assert torch.equal(first_batch_[key], first_batch[key])
|
||||
for key, pattern in stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
# Numerically stable update step for mean computation (where the mean is over squared
|
||||
# residuals).See notes in the mean computation loop above.
|
||||
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
|
||||
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
|
||||
|
||||
if i == ceil(max_num_samples / batch_size) - 1:
|
||||
break
|
||||
|
||||
for key in stats_patterns:
|
||||
std[key] = torch.sqrt(std[key])
|
||||
|
||||
stats = {}
|
||||
for key in stats_patterns:
|
||||
stats[key] = {
|
||||
"mean": mean[key],
|
||||
"std": std[key],
|
||||
"max": max[key],
|
||||
"min": min[key],
|
||||
}
|
||||
return stats
|
||||
def _assert_type_and_shape(stats_list: list[dict[str, dict]]):
|
||||
for i in range(len(stats_list)):
|
||||
for fkey in stats_list[i]:
|
||||
for k, v in stats_list[i][fkey].items():
|
||||
if not isinstance(v, np.ndarray):
|
||||
raise ValueError(
|
||||
f"Stats must be composed of numpy array, but key '{k}' of feature '{fkey}' is of type '{type(v)}' instead."
|
||||
)
|
||||
if v.ndim == 0:
|
||||
raise ValueError("Number of dimensions must be at least 1, and is 0 instead.")
|
||||
if k == "count" and v.shape != (1,):
|
||||
raise ValueError(f"Shape of 'count' must be (1), but is {v.shape} instead.")
|
||||
if "image" in fkey and k != "count" and v.shape != (3, 1, 1):
|
||||
raise ValueError(f"Shape of '{k}' must be (3,1,1), but is {v.shape} instead.")
|
||||
|
||||
|
||||
def aggregate_stats(ls_datasets) -> dict[str, torch.Tensor]:
|
||||
"""Aggregate stats of multiple LeRobot datasets into one set of stats without recomputing from scratch.
|
||||
def aggregate_feature_stats(stats_ft_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
|
||||
"""Aggregates stats for a single feature."""
|
||||
means = np.stack([s["mean"] for s in stats_ft_list])
|
||||
variances = np.stack([s["std"] ** 2 for s in stats_ft_list])
|
||||
counts = np.stack([s["count"] for s in stats_ft_list])
|
||||
total_count = counts.sum(axis=0)
|
||||
|
||||
The final stats will have the union of all data keys from each of the datasets.
|
||||
# Prepare weighted mean by matching number of dimensions
|
||||
while counts.ndim < means.ndim:
|
||||
counts = np.expand_dims(counts, axis=-1)
|
||||
|
||||
The final stats will have the union of all data keys from each of the datasets. For instance:
|
||||
- new_max = max(max_dataset_0, max_dataset_1, ...)
|
||||
# Compute the weighted mean
|
||||
weighted_means = means * counts
|
||||
total_mean = weighted_means.sum(axis=0) / total_count
|
||||
|
||||
# Compute the variance using the parallel algorithm
|
||||
delta_means = means - total_mean
|
||||
weighted_variances = (variances + delta_means**2) * counts
|
||||
total_variance = weighted_variances.sum(axis=0) / total_count
|
||||
|
||||
return {
|
||||
"min": np.min(np.stack([s["min"] for s in stats_ft_list]), axis=0),
|
||||
"max": np.max(np.stack([s["max"] for s in stats_ft_list]), axis=0),
|
||||
"mean": total_mean,
|
||||
"std": np.sqrt(total_variance),
|
||||
"count": total_count,
|
||||
}
|
||||
|
||||
|
||||
def aggregate_stats(stats_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
|
||||
"""Aggregate stats from multiple compute_stats outputs into a single set of stats.
|
||||
|
||||
The final stats will have the union of all data keys from each of the stats dicts.
|
||||
|
||||
For instance:
|
||||
- new_min = min(min_dataset_0, min_dataset_1, ...)
|
||||
- new_mean = (mean of all data)
|
||||
- new_max = max(max_dataset_0, max_dataset_1, ...)
|
||||
- new_mean = (mean of all data, weighted by counts)
|
||||
- new_std = (std of all data)
|
||||
"""
|
||||
data_keys = set()
|
||||
for dataset in ls_datasets:
|
||||
data_keys.update(dataset.meta.stats.keys())
|
||||
stats = {k: {} for k in data_keys}
|
||||
for data_key in data_keys:
|
||||
for stat_key in ["min", "max"]:
|
||||
# compute `max(dataset_0["max"], dataset_1["max"], ...)`
|
||||
stats[data_key][stat_key] = einops.reduce(
|
||||
torch.stack(
|
||||
[ds.meta.stats[data_key][stat_key] for ds in ls_datasets if data_key in ds.meta.stats],
|
||||
dim=0,
|
||||
),
|
||||
"n ... -> ...",
|
||||
stat_key,
|
||||
)
|
||||
total_samples = sum(d.num_frames for d in ls_datasets if data_key in d.meta.stats)
|
||||
# Compute the "sum" statistic by multiplying each mean by the number of samples in the respective
|
||||
# dataset, then divide by total_samples to get the overall "mean".
|
||||
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
|
||||
# numerical overflow!
|
||||
stats[data_key]["mean"] = sum(
|
||||
d.meta.stats[data_key]["mean"] * (d.num_frames / total_samples)
|
||||
for d in ls_datasets
|
||||
if data_key in d.meta.stats
|
||||
)
|
||||
# The derivation for standard deviation is a little more involved but is much in the same spirit as
|
||||
# the computation of the mean.
|
||||
# Given two sets of data where the statistics are known:
|
||||
# σ_combined = sqrt[ (n1 * (σ1^2 + d1^2) + n2 * (σ2^2 + d2^2)) / (n1 + n2) ]
|
||||
# where d1 = μ1 - μ_combined, d2 = μ2 - μ_combined
|
||||
# NOTE: the brackets around (d.num_frames / total_samples) are needed tor minimize the risk of
|
||||
# numerical overflow!
|
||||
stats[data_key]["std"] = torch.sqrt(
|
||||
sum(
|
||||
(
|
||||
d.meta.stats[data_key]["std"] ** 2
|
||||
+ (d.meta.stats[data_key]["mean"] - stats[data_key]["mean"]) ** 2
|
||||
)
|
||||
* (d.num_frames / total_samples)
|
||||
for d in ls_datasets
|
||||
if data_key in d.meta.stats
|
||||
)
|
||||
)
|
||||
return stats
|
||||
|
||||
_assert_type_and_shape(stats_list)
|
||||
|
||||
data_keys = {key for stats in stats_list for key in stats}
|
||||
aggregated_stats = {key: {} for key in data_keys}
|
||||
|
||||
for key in data_keys:
|
||||
stats_with_key = [stats[key] for stats in stats_list if key in stats]
|
||||
aggregated_stats[key] = aggregate_feature_stats(stats_with_key)
|
||||
|
||||
return aggregated_stats
|
||||
|
||||
@@ -83,15 +83,18 @@ def make_dataset(cfg: TrainPipelineConfig) -> LeRobotDataset | MultiLeRobotDatas
|
||||
)
|
||||
|
||||
if isinstance(cfg.dataset.repo_id, str):
|
||||
ds_meta = LeRobotDatasetMetadata(cfg.dataset.repo_id, local_files_only=cfg.dataset.local_files_only)
|
||||
ds_meta = LeRobotDatasetMetadata(
|
||||
cfg.dataset.repo_id, root=cfg.dataset.root, revision=cfg.dataset.revision
|
||||
)
|
||||
delta_timestamps = resolve_delta_timestamps(cfg.policy, ds_meta)
|
||||
dataset = LeRobotDataset(
|
||||
cfg.dataset.repo_id,
|
||||
root=cfg.dataset.root,
|
||||
episodes=cfg.dataset.episodes,
|
||||
delta_timestamps=delta_timestamps,
|
||||
image_transforms=image_transforms,
|
||||
revision=cfg.dataset.revision,
|
||||
video_backend=cfg.dataset.video_backend,
|
||||
local_files_only=cfg.dataset.local_files_only,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError("The MultiLeRobotDataset isn't supported for now.")
|
||||
|
||||
@@ -38,22 +38,40 @@ def safe_stop_image_writer(func):
|
||||
return wrapper
|
||||
|
||||
|
||||
def image_array_to_image(image_array: np.ndarray) -> PIL.Image.Image:
|
||||
def image_array_to_pil_image(image_array: np.ndarray, range_check: bool = True) -> PIL.Image.Image:
|
||||
# TODO(aliberts): handle 1 channel and 4 for depth images
|
||||
if image_array.ndim == 3 and image_array.shape[0] in [1, 3]:
|
||||
if image_array.ndim != 3:
|
||||
raise ValueError(f"The array has {image_array.ndim} dimensions, but 3 is expected for an image.")
|
||||
|
||||
if image_array.shape[0] == 3:
|
||||
# Transpose from pytorch convention (C, H, W) to (H, W, C)
|
||||
image_array = image_array.transpose(1, 2, 0)
|
||||
|
||||
elif image_array.shape[-1] != 3:
|
||||
raise NotImplementedError(
|
||||
f"The image has {image_array.shape[-1]} channels, but 3 is required for now."
|
||||
)
|
||||
|
||||
if image_array.dtype != np.uint8:
|
||||
# Assume the image is in [0, 1] range for floating-point data
|
||||
image_array = np.clip(image_array, 0, 1)
|
||||
if range_check:
|
||||
max_ = image_array.max().item()
|
||||
min_ = image_array.min().item()
|
||||
if max_ > 1.0 or min_ < 0.0:
|
||||
raise ValueError(
|
||||
"The image data type is float, which requires values in the range [0.0, 1.0]. "
|
||||
f"However, the provided range is [{min_}, {max_}]. Please adjust the range or "
|
||||
"provide a uint8 image with values in the range [0, 255]."
|
||||
)
|
||||
|
||||
image_array = (image_array * 255).astype(np.uint8)
|
||||
|
||||
return PIL.Image.fromarray(image_array)
|
||||
|
||||
|
||||
def write_image(image: np.ndarray | PIL.Image.Image, fpath: Path):
|
||||
try:
|
||||
if isinstance(image, np.ndarray):
|
||||
img = image_array_to_image(image)
|
||||
img = image_array_to_pil_image(image)
|
||||
elif isinstance(image, PIL.Image.Image):
|
||||
img = image
|
||||
else:
|
||||
|
||||
@@ -13,62 +13,68 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import contextlib
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import packaging.version
|
||||
import PIL.Image
|
||||
import torch
|
||||
import torch.utils
|
||||
from datasets import load_dataset
|
||||
from huggingface_hub import create_repo, snapshot_download, upload_folder
|
||||
from datasets import concatenate_datasets, load_dataset
|
||||
from huggingface_hub import HfApi, snapshot_download
|
||||
from huggingface_hub.constants import REPOCARD_NAME
|
||||
from huggingface_hub.errors import RevisionNotFoundError
|
||||
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_stats
|
||||
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
|
||||
from lerobot.common.datasets.image_writer import AsyncImageWriter, write_image
|
||||
from lerobot.common.datasets.utils import (
|
||||
DEFAULT_FEATURES,
|
||||
DEFAULT_IMAGE_PATH,
|
||||
EPISODES_PATH,
|
||||
INFO_PATH,
|
||||
STATS_PATH,
|
||||
TASKS_PATH,
|
||||
append_jsonlines,
|
||||
backward_compatible_episodes_stats,
|
||||
check_delta_timestamps,
|
||||
check_timestamps_sync,
|
||||
check_version_compatibility,
|
||||
create_branch,
|
||||
create_empty_dataset_info,
|
||||
create_lerobot_dataset_card,
|
||||
embed_images,
|
||||
get_delta_indices,
|
||||
get_episode_data_index,
|
||||
get_features_from_robot,
|
||||
get_hf_features_from_features,
|
||||
get_hub_safe_version,
|
||||
get_safe_version,
|
||||
hf_transform_to_torch,
|
||||
is_valid_version,
|
||||
load_episodes,
|
||||
load_episodes_stats,
|
||||
load_info,
|
||||
load_stats,
|
||||
load_tasks,
|
||||
serialize_dict,
|
||||
validate_episode_buffer,
|
||||
validate_frame,
|
||||
write_episode,
|
||||
write_episode_stats,
|
||||
write_info,
|
||||
write_json,
|
||||
write_parquet,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import (
|
||||
VideoFrame,
|
||||
decode_video_frames_torchvision,
|
||||
decode_video_frames,
|
||||
encode_video_frames,
|
||||
get_safe_default_codec,
|
||||
get_video_info,
|
||||
)
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.robots.utils import Robot
|
||||
|
||||
# For maintainers, see lerobot/common/datasets/push_dataset_to_hub/CODEBASE_VERSION.md
|
||||
CODEBASE_VERSION = "v2.0"
|
||||
LEROBOT_HOME = Path(os.getenv("LEROBOT_HOME", "~/.cache/huggingface/lerobot")).expanduser()
|
||||
CODEBASE_VERSION = "v2.1"
|
||||
|
||||
|
||||
class LeRobotDatasetMetadata:
|
||||
@@ -76,19 +82,36 @@ class LeRobotDatasetMetadata:
|
||||
self,
|
||||
repo_id: str,
|
||||
root: str | Path | None = None,
|
||||
local_files_only: bool = False,
|
||||
revision: str | None = None,
|
||||
force_cache_sync: bool = False,
|
||||
):
|
||||
self.repo_id = repo_id
|
||||
self.root = Path(root) if root is not None else LEROBOT_HOME / repo_id
|
||||
self.local_files_only = local_files_only
|
||||
self.revision = revision if revision else CODEBASE_VERSION
|
||||
self.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id
|
||||
|
||||
# Load metadata
|
||||
(self.root / "meta").mkdir(exist_ok=True, parents=True)
|
||||
self.pull_from_repo(allow_patterns="meta/")
|
||||
try:
|
||||
if force_cache_sync:
|
||||
raise FileNotFoundError
|
||||
self.load_metadata()
|
||||
except (FileNotFoundError, NotADirectoryError):
|
||||
if is_valid_version(self.revision):
|
||||
self.revision = get_safe_version(self.repo_id, self.revision)
|
||||
|
||||
(self.root / "meta").mkdir(exist_ok=True, parents=True)
|
||||
self.pull_from_repo(allow_patterns="meta/")
|
||||
self.load_metadata()
|
||||
|
||||
def load_metadata(self):
|
||||
self.info = load_info(self.root)
|
||||
self.stats = load_stats(self.root)
|
||||
self.tasks = load_tasks(self.root)
|
||||
check_version_compatibility(self.repo_id, self._version, CODEBASE_VERSION)
|
||||
self.tasks, self.task_to_task_index = load_tasks(self.root)
|
||||
self.episodes = load_episodes(self.root)
|
||||
if self._version < packaging.version.parse("v2.1"):
|
||||
self.stats = load_stats(self.root)
|
||||
self.episodes_stats = backward_compatible_episodes_stats(self.stats, self.episodes)
|
||||
else:
|
||||
self.episodes_stats = load_episodes_stats(self.root)
|
||||
self.stats = aggregate_stats(list(self.episodes_stats.values()))
|
||||
|
||||
def pull_from_repo(
|
||||
self,
|
||||
@@ -98,21 +121,16 @@ class LeRobotDatasetMetadata:
|
||||
snapshot_download(
|
||||
self.repo_id,
|
||||
repo_type="dataset",
|
||||
revision=self._hub_version,
|
||||
revision=self.revision,
|
||||
local_dir=self.root,
|
||||
allow_patterns=allow_patterns,
|
||||
ignore_patterns=ignore_patterns,
|
||||
local_files_only=self.local_files_only,
|
||||
)
|
||||
|
||||
@cached_property
|
||||
def _hub_version(self) -> str | None:
|
||||
return None if self.local_files_only else get_hub_safe_version(self.repo_id, CODEBASE_VERSION)
|
||||
|
||||
@property
|
||||
def _version(self) -> str:
|
||||
def _version(self) -> packaging.version.Version:
|
||||
"""Codebase version used to create this dataset."""
|
||||
return self.info["codebase_version"]
|
||||
return packaging.version.parse(self.info["codebase_version"])
|
||||
|
||||
def get_data_file_path(self, ep_index: int) -> Path:
|
||||
ep_chunk = self.get_episode_chunk(ep_index)
|
||||
@@ -202,54 +220,65 @@ class LeRobotDatasetMetadata:
|
||||
"""Max number of episodes per chunk."""
|
||||
return self.info["chunks_size"]
|
||||
|
||||
@property
|
||||
def task_to_task_index(self) -> dict:
|
||||
return {task: task_idx for task_idx, task in self.tasks.items()}
|
||||
|
||||
def get_task_index(self, task: str) -> int:
|
||||
def get_task_index(self, task: str) -> int | None:
|
||||
"""
|
||||
Given a task in natural language, returns its task_index if the task already exists in the dataset,
|
||||
otherwise creates a new task_index.
|
||||
otherwise return None.
|
||||
"""
|
||||
task_index = self.task_to_task_index.get(task, None)
|
||||
return task_index if task_index is not None else self.total_tasks
|
||||
return self.task_to_task_index.get(task, None)
|
||||
|
||||
def save_episode(self, episode_index: int, episode_length: int, task: str, task_index: int) -> None:
|
||||
def add_task(self, task: str):
|
||||
"""
|
||||
Given a task in natural language, add it to the dictionary of tasks.
|
||||
"""
|
||||
if task in self.task_to_task_index:
|
||||
raise ValueError(f"The task '{task}' already exists and can't be added twice.")
|
||||
|
||||
task_index = self.info["total_tasks"]
|
||||
self.task_to_task_index[task] = task_index
|
||||
self.tasks[task_index] = task
|
||||
self.info["total_tasks"] += 1
|
||||
|
||||
task_dict = {
|
||||
"task_index": task_index,
|
||||
"task": task,
|
||||
}
|
||||
append_jsonlines(task_dict, self.root / TASKS_PATH)
|
||||
|
||||
def save_episode(
|
||||
self,
|
||||
episode_index: int,
|
||||
episode_length: int,
|
||||
episode_tasks: list[str],
|
||||
episode_stats: dict[str, dict],
|
||||
) -> None:
|
||||
self.info["total_episodes"] += 1
|
||||
self.info["total_frames"] += episode_length
|
||||
|
||||
if task_index not in self.tasks:
|
||||
self.info["total_tasks"] += 1
|
||||
self.tasks[task_index] = task
|
||||
task_dict = {
|
||||
"task_index": task_index,
|
||||
"task": task,
|
||||
}
|
||||
append_jsonlines(task_dict, self.root / TASKS_PATH)
|
||||
|
||||
chunk = self.get_episode_chunk(episode_index)
|
||||
if chunk >= self.total_chunks:
|
||||
self.info["total_chunks"] += 1
|
||||
|
||||
self.info["splits"] = {"train": f"0:{self.info['total_episodes']}"}
|
||||
self.info["total_videos"] += len(self.video_keys)
|
||||
write_json(self.info, self.root / INFO_PATH)
|
||||
if len(self.video_keys) > 0:
|
||||
self.update_video_info()
|
||||
|
||||
write_info(self.info, self.root)
|
||||
|
||||
episode_dict = {
|
||||
"episode_index": episode_index,
|
||||
"tasks": [task],
|
||||
"tasks": episode_tasks,
|
||||
"length": episode_length,
|
||||
}
|
||||
self.episodes.append(episode_dict)
|
||||
append_jsonlines(episode_dict, self.root / EPISODES_PATH)
|
||||
self.episodes[episode_index] = episode_dict
|
||||
write_episode(episode_dict, self.root)
|
||||
|
||||
# TODO(aliberts): refactor stats in save_episodes
|
||||
# image_sampling = int(self.fps / 2) # sample 2 img/s for the stats
|
||||
# ep_stats = compute_episode_stats(episode_buffer, self.features, episode_length, image_sampling=image_sampling)
|
||||
# ep_stats = serialize_dict(ep_stats)
|
||||
# append_jsonlines(ep_stats, self.root / STATS_PATH)
|
||||
self.episodes_stats[episode_index] = episode_stats
|
||||
self.stats = aggregate_stats([self.stats, episode_stats]) if self.stats else episode_stats
|
||||
write_episode_stats(episode_index, episode_stats, self.root)
|
||||
|
||||
def write_video_info(self) -> None:
|
||||
def update_video_info(self) -> None:
|
||||
"""
|
||||
Warning: this function writes info from first episode videos, implicitly assuming that all videos have
|
||||
been encoded the same way. Also, this means it assumes the first episode exists.
|
||||
@@ -259,8 +288,6 @@ class LeRobotDatasetMetadata:
|
||||
video_path = self.root / self.get_video_file_path(ep_index=0, vid_key=key)
|
||||
self.info["features"][key]["info"] = get_video_info(video_path)
|
||||
|
||||
write_json(self.info, self.root / INFO_PATH)
|
||||
|
||||
def __repr__(self):
|
||||
feature_keys = list(self.features)
|
||||
return (
|
||||
@@ -286,7 +313,7 @@ class LeRobotDatasetMetadata:
|
||||
"""Creates metadata for a LeRobotDataset."""
|
||||
obj = cls.__new__(cls)
|
||||
obj.repo_id = repo_id
|
||||
obj.root = Path(root) if root is not None else LEROBOT_HOME / repo_id
|
||||
obj.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id
|
||||
|
||||
obj.root.mkdir(parents=True, exist_ok=False)
|
||||
|
||||
@@ -304,6 +331,7 @@ class LeRobotDatasetMetadata:
|
||||
)
|
||||
else:
|
||||
# TODO(aliberts, rcadene): implement sanity check for features
|
||||
features = {**features, **DEFAULT_FEATURES}
|
||||
|
||||
# check if none of the features contains a "/" in their names,
|
||||
# as this would break the dict flattening in the stats computation, which uses '/' as separator
|
||||
@@ -313,12 +341,13 @@ class LeRobotDatasetMetadata:
|
||||
|
||||
features = {**features, **DEFAULT_FEATURES}
|
||||
|
||||
obj.tasks, obj.stats, obj.episodes = {}, {}, []
|
||||
obj.tasks, obj.task_to_task_index = {}, {}
|
||||
obj.episodes_stats, obj.stats, obj.episodes = {}, {}, {}
|
||||
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
|
||||
if len(obj.video_keys) > 0 and not use_videos:
|
||||
raise ValueError()
|
||||
write_json(obj.info, obj.root / INFO_PATH)
|
||||
obj.local_files_only = True
|
||||
obj.revision = None
|
||||
return obj
|
||||
|
||||
|
||||
@@ -331,8 +360,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
image_transforms: Callable | None = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
tolerance_s: float = 1e-4,
|
||||
revision: str | None = None,
|
||||
force_cache_sync: bool = False,
|
||||
download_videos: bool = True,
|
||||
local_files_only: bool = False,
|
||||
video_backend: str | None = None,
|
||||
):
|
||||
"""
|
||||
@@ -342,7 +372,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
- On your local disk in the 'root' folder. This is typically the case when you recorded your
|
||||
dataset locally and you may or may not have pushed it to the hub yet. Instantiating this class
|
||||
with 'root' will load your dataset directly from disk. This can happen while you're offline (no
|
||||
internet connection), in that case, use local_files_only=True.
|
||||
internet connection).
|
||||
|
||||
- On the Hugging Face Hub at the address https://huggingface.co/datasets/{repo_id} and not on
|
||||
your local disk in the 'root' folder. Instantiating this class with this 'repo_id' will download
|
||||
@@ -362,7 +392,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
- info contains various information about the dataset like shapes, keys, fps etc.
|
||||
- stats stores the dataset statistics of the different modalities for normalization
|
||||
- tasks contains the prompts for each task of the dataset, which can be used for
|
||||
task-conditionned training.
|
||||
task-conditioned training.
|
||||
- hf_dataset (from datasets.Dataset), which will read any values from parquet files.
|
||||
- videos (optional) from which frames are loaded to be synchronous with data from parquet files.
|
||||
|
||||
@@ -424,24 +454,28 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
timestamps is separated to the next by 1/fps +/- tolerance_s. This also applies to frames
|
||||
decoded from video files. It is also used to check that `delta_timestamps` (when provided) are
|
||||
multiples of 1/fps. Defaults to 1e-4.
|
||||
revision (str, optional): An optional Git revision id which can be a branch name, a tag, or a
|
||||
commit hash. Defaults to current codebase version tag.
|
||||
sync_cache_first (bool, optional): Flag to sync and refresh local files first. If True and files
|
||||
are already present in the local cache, this will be faster. However, files loaded might not
|
||||
be in sync with the version on the hub, especially if you specified 'revision'. Defaults to
|
||||
False.
|
||||
download_videos (bool, optional): Flag to download the videos. Note that when set to True but the
|
||||
video files are already present on local disk, they won't be downloaded again. Defaults to
|
||||
True.
|
||||
local_files_only (bool, optional): Flag to use local files only. If True, no requests to the hub
|
||||
will be made. Defaults to False.
|
||||
video_backend (str | None, optional): Video backend to use for decoding videos. There is currently
|
||||
a single option which is the pyav decoder used by Torchvision. Defaults to pyav.
|
||||
video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec when available int the platform; otherwise, defaults to 'pyav'.
|
||||
You can also use the 'pyav' decoder used by Torchvision, which used to be the default option, or 'video_reader' which is another decoder of Torchvision.
|
||||
"""
|
||||
super().__init__()
|
||||
self.repo_id = repo_id
|
||||
self.root = Path(root) if root else LEROBOT_HOME / repo_id
|
||||
self.root = Path(root) if root else HF_LEROBOT_HOME / repo_id
|
||||
self.image_transforms = image_transforms
|
||||
self.delta_timestamps = delta_timestamps
|
||||
self.episodes = episodes
|
||||
self.tolerance_s = tolerance_s
|
||||
self.video_backend = video_backend if video_backend else "pyav"
|
||||
self.revision = revision if revision else CODEBASE_VERSION
|
||||
self.video_backend = video_backend if video_backend else get_safe_default_codec()
|
||||
self.delta_indices = None
|
||||
self.local_files_only = local_files_only
|
||||
|
||||
# Unused attributes
|
||||
self.image_writer = None
|
||||
@@ -450,64 +484,92 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
self.root.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
# Load metadata
|
||||
self.meta = LeRobotDatasetMetadata(self.repo_id, self.root, self.local_files_only)
|
||||
|
||||
# Check version
|
||||
check_version_compatibility(self.repo_id, self.meta._version, CODEBASE_VERSION)
|
||||
self.meta = LeRobotDatasetMetadata(
|
||||
self.repo_id, self.root, self.revision, force_cache_sync=force_cache_sync
|
||||
)
|
||||
if self.episodes is not None and self.meta._version >= packaging.version.parse("v2.1"):
|
||||
episodes_stats = [self.meta.episodes_stats[ep_idx] for ep_idx in self.episodes]
|
||||
self.stats = aggregate_stats(episodes_stats)
|
||||
|
||||
# Load actual data
|
||||
self.download_episodes(download_videos)
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
try:
|
||||
if force_cache_sync:
|
||||
raise FileNotFoundError
|
||||
assert all((self.root / fpath).is_file() for fpath in self.get_episodes_file_paths())
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
except (AssertionError, FileNotFoundError, NotADirectoryError):
|
||||
self.revision = get_safe_version(self.repo_id, self.revision)
|
||||
self.download_episodes(download_videos)
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
|
||||
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
||||
|
||||
# Check timestamps
|
||||
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
|
||||
timestamps = torch.stack(self.hf_dataset["timestamp"]).numpy()
|
||||
episode_indices = torch.stack(self.hf_dataset["episode_index"]).numpy()
|
||||
ep_data_index_np = {k: t.numpy() for k, t in self.episode_data_index.items()}
|
||||
check_timestamps_sync(timestamps, episode_indices, ep_data_index_np, self.fps, self.tolerance_s)
|
||||
|
||||
# Setup delta_indices
|
||||
if self.delta_timestamps is not None:
|
||||
check_delta_timestamps(self.delta_timestamps, self.fps, self.tolerance_s)
|
||||
self.delta_indices = get_delta_indices(self.delta_timestamps, self.fps)
|
||||
|
||||
# Available stats implies all videos have been encoded and dataset is iterable
|
||||
self.consolidated = self.meta.stats is not None
|
||||
|
||||
def push_to_hub(
|
||||
self,
|
||||
branch: str | None = None,
|
||||
tags: list | None = None,
|
||||
license: str | None = "apache-2.0",
|
||||
tag_version: bool = True,
|
||||
push_videos: bool = True,
|
||||
private: bool = False,
|
||||
allow_patterns: list[str] | str | None = None,
|
||||
upload_large_folder: bool = False,
|
||||
**card_kwargs,
|
||||
) -> None:
|
||||
if not self.consolidated:
|
||||
logging.warning(
|
||||
"You are trying to upload to the hub a LeRobotDataset that has not been consolidated yet. "
|
||||
"Consolidating first."
|
||||
)
|
||||
self.consolidate()
|
||||
|
||||
ignore_patterns = ["images/"]
|
||||
if not push_videos:
|
||||
ignore_patterns.append("videos/")
|
||||
|
||||
create_repo(
|
||||
hub_api = HfApi()
|
||||
hub_api.create_repo(
|
||||
repo_id=self.repo_id,
|
||||
private=private,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
if branch:
|
||||
hub_api.create_branch(
|
||||
repo_id=self.repo_id,
|
||||
branch=branch,
|
||||
revision=self.revision,
|
||||
repo_type="dataset",
|
||||
exist_ok=True,
|
||||
)
|
||||
|
||||
upload_folder(
|
||||
repo_id=self.repo_id,
|
||||
folder_path=self.root,
|
||||
repo_type="dataset",
|
||||
ignore_patterns=ignore_patterns,
|
||||
)
|
||||
card = create_lerobot_dataset_card(
|
||||
tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
|
||||
)
|
||||
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset")
|
||||
create_branch(repo_id=self.repo_id, branch=CODEBASE_VERSION, repo_type="dataset")
|
||||
upload_kwargs = {
|
||||
"repo_id": self.repo_id,
|
||||
"folder_path": self.root,
|
||||
"repo_type": "dataset",
|
||||
"revision": branch,
|
||||
"allow_patterns": allow_patterns,
|
||||
"ignore_patterns": ignore_patterns,
|
||||
}
|
||||
if upload_large_folder:
|
||||
hub_api.upload_large_folder(**upload_kwargs)
|
||||
else:
|
||||
hub_api.upload_folder(**upload_kwargs)
|
||||
|
||||
if not hub_api.file_exists(self.repo_id, REPOCARD_NAME, repo_type="dataset", revision=branch):
|
||||
card = create_lerobot_dataset_card(
|
||||
tags=tags, dataset_info=self.meta.info, license=license, **card_kwargs
|
||||
)
|
||||
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=branch)
|
||||
|
||||
if tag_version:
|
||||
with contextlib.suppress(RevisionNotFoundError):
|
||||
hub_api.delete_tag(self.repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
|
||||
hub_api.create_tag(self.repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
|
||||
|
||||
def pull_from_repo(
|
||||
self,
|
||||
@@ -517,11 +579,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
snapshot_download(
|
||||
self.repo_id,
|
||||
repo_type="dataset",
|
||||
revision=self.meta._hub_version,
|
||||
revision=self.revision,
|
||||
local_dir=self.root,
|
||||
allow_patterns=allow_patterns,
|
||||
ignore_patterns=ignore_patterns,
|
||||
local_files_only=self.local_files_only,
|
||||
)
|
||||
|
||||
def download_episodes(self, download_videos: bool = True) -> None:
|
||||
@@ -535,17 +596,23 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
files = None
|
||||
ignore_patterns = None if download_videos else "videos/"
|
||||
if self.episodes is not None:
|
||||
files = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in self.episodes]
|
||||
if len(self.meta.video_keys) > 0 and download_videos:
|
||||
video_files = [
|
||||
str(self.meta.get_video_file_path(ep_idx, vid_key))
|
||||
for vid_key in self.meta.video_keys
|
||||
for ep_idx in self.episodes
|
||||
]
|
||||
files += video_files
|
||||
files = self.get_episodes_file_paths()
|
||||
|
||||
self.pull_from_repo(allow_patterns=files, ignore_patterns=ignore_patterns)
|
||||
|
||||
def get_episodes_file_paths(self) -> list[Path]:
|
||||
episodes = self.episodes if self.episodes is not None else list(range(self.meta.total_episodes))
|
||||
fpaths = [str(self.meta.get_data_file_path(ep_idx)) for ep_idx in episodes]
|
||||
if len(self.meta.video_keys) > 0:
|
||||
video_files = [
|
||||
str(self.meta.get_video_file_path(ep_idx, vid_key))
|
||||
for vid_key in self.meta.video_keys
|
||||
for ep_idx in episodes
|
||||
]
|
||||
fpaths += video_files
|
||||
|
||||
return fpaths
|
||||
|
||||
def load_hf_dataset(self) -> datasets.Dataset:
|
||||
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
|
||||
if self.episodes is None:
|
||||
@@ -557,7 +624,15 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
# TODO(aliberts): hf_dataset.set_format("torch")
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
def create_hf_dataset(self) -> datasets.Dataset:
|
||||
features = get_hf_features_from_features(self.features)
|
||||
ft_dict = {col: [] for col in features}
|
||||
hf_dataset = datasets.Dataset.from_dict(ft_dict, features=features, split="train")
|
||||
|
||||
# TODO(aliberts): hf_dataset.set_format("torch")
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
@property
|
||||
@@ -624,7 +699,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
if key not in self.meta.video_keys
|
||||
}
|
||||
|
||||
def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict:
|
||||
def _query_videos(self, query_timestamps: dict[str, list[float]], ep_idx: int) -> dict[str, torch.Tensor]:
|
||||
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
|
||||
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a
|
||||
Segmentation Fault. This probably happens because a memory reference to the video loader is created in
|
||||
@@ -633,9 +708,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
item = {}
|
||||
for vid_key, query_ts in query_timestamps.items():
|
||||
video_path = self.root / self.meta.get_video_file_path(ep_idx, vid_key)
|
||||
frames = decode_video_frames_torchvision(
|
||||
video_path, query_ts, self.tolerance_s, self.video_backend
|
||||
)
|
||||
frames = decode_video_frames(video_path, query_ts, self.tolerance_s, self.video_backend)
|
||||
item[vid_key] = frames.squeeze(0)
|
||||
|
||||
return item
|
||||
@@ -654,8 +727,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
query_indices = None
|
||||
if self.delta_indices is not None:
|
||||
current_ep_idx = self.episodes.index(ep_idx) if self.episodes is not None else ep_idx
|
||||
query_indices, padding = self._get_query_indices(idx, current_ep_idx)
|
||||
query_indices, padding = self._get_query_indices(idx, ep_idx)
|
||||
query_result = self._query_hf_dataset(query_indices)
|
||||
item = {**item, **padding}
|
||||
for key, val in query_result.items():
|
||||
@@ -691,10 +763,13 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
def create_episode_buffer(self, episode_index: int | None = None) -> dict:
|
||||
current_ep_idx = self.meta.total_episodes if episode_index is None else episode_index
|
||||
return {
|
||||
"size": 0,
|
||||
**{key: current_ep_idx if key == "episode_index" else [] for key in self.features},
|
||||
}
|
||||
ep_buffer = {}
|
||||
# size and task are special cases that are not in self.features
|
||||
ep_buffer["size"] = 0
|
||||
ep_buffer["task"] = []
|
||||
for key in self.features:
|
||||
ep_buffer[key] = current_ep_idx if key == "episode_index" else []
|
||||
return ep_buffer
|
||||
|
||||
def _get_image_file_path(self, episode_index: int, image_key: str, frame_index: int) -> Path:
|
||||
fpath = DEFAULT_IMAGE_PATH.format(
|
||||
@@ -716,25 +791,35 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
|
||||
then needs to be called.
|
||||
"""
|
||||
# TODO(aliberts, rcadene): Add sanity check for the input, check it's numpy or torch,
|
||||
# check the dtype and shape matches, etc.
|
||||
# Convert torch to numpy if needed
|
||||
for name in frame:
|
||||
if isinstance(frame[name], torch.Tensor):
|
||||
frame[name] = frame[name].numpy()
|
||||
|
||||
validate_frame(frame, self.features)
|
||||
|
||||
if self.episode_buffer is None:
|
||||
self.episode_buffer = self.create_episode_buffer()
|
||||
|
||||
# Automatically add frame_index and timestamp to episode buffer
|
||||
frame_index = self.episode_buffer["size"]
|
||||
timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
|
||||
self.episode_buffer["frame_index"].append(frame_index)
|
||||
self.episode_buffer["timestamp"].append(timestamp)
|
||||
|
||||
# Add frame features to episode_buffer
|
||||
for key in frame:
|
||||
if key not in self.features:
|
||||
raise ValueError(key)
|
||||
if key == "task":
|
||||
# Note: we associate the task in natural language to its task index during `save_episode`
|
||||
self.episode_buffer["task"].append(frame["task"])
|
||||
continue
|
||||
|
||||
if self.features[key]["dtype"] not in ["image", "video"]:
|
||||
item = frame[key].numpy() if isinstance(frame[key], torch.Tensor) else frame[key]
|
||||
self.episode_buffer[key].append(item)
|
||||
elif self.features[key]["dtype"] in ["image", "video"]:
|
||||
if key not in self.features:
|
||||
raise ValueError(
|
||||
f"An element of the frame is not in the features. '{key}' not in '{self.features.keys()}'."
|
||||
)
|
||||
|
||||
if self.features[key]["dtype"] in ["image", "video"]:
|
||||
img_path = self._get_image_file_path(
|
||||
episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
|
||||
)
|
||||
@@ -742,80 +827,95 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
img_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
self._save_image(frame[key], img_path)
|
||||
self.episode_buffer[key].append(str(img_path))
|
||||
else:
|
||||
self.episode_buffer[key].append(frame[key])
|
||||
|
||||
self.episode_buffer["size"] += 1
|
||||
|
||||
def save_episode(self, task: str, encode_videos: bool = True, episode_data: dict | None = None) -> None:
|
||||
def save_episode(self, episode_data: dict | None = None) -> None:
|
||||
"""
|
||||
This will save to disk the current episode in self.episode_buffer. Note that since it affects files on
|
||||
disk, it sets self.consolidated to False to ensure proper consolidation later on before uploading to
|
||||
the hub.
|
||||
This will save to disk the current episode in self.episode_buffer.
|
||||
|
||||
Use 'encode_videos' if you want to encode videos during the saving of this episode. Otherwise,
|
||||
you can do it later with dataset.consolidate(). This is to give more flexibility on when to spend
|
||||
time for video encoding.
|
||||
Args:
|
||||
episode_data (dict | None, optional): Dict containing the episode data to save. If None, this will
|
||||
save the current episode in self.episode_buffer, which is filled with 'add_frame'. Defaults to
|
||||
None.
|
||||
"""
|
||||
if not episode_data:
|
||||
episode_buffer = self.episode_buffer
|
||||
|
||||
validate_episode_buffer(episode_buffer, self.meta.total_episodes, self.features)
|
||||
|
||||
# size and task are special cases that won't be added to hf_dataset
|
||||
episode_length = episode_buffer.pop("size")
|
||||
tasks = episode_buffer.pop("task")
|
||||
episode_tasks = list(set(tasks))
|
||||
episode_index = episode_buffer["episode_index"]
|
||||
if episode_index != self.meta.total_episodes:
|
||||
# TODO(aliberts): Add option to use existing episode_index
|
||||
raise NotImplementedError(
|
||||
"You might have manually provided the episode_buffer with an episode_index that doesn't "
|
||||
"match the total number of episodes in the dataset. This is not supported for now."
|
||||
)
|
||||
|
||||
if episode_length == 0:
|
||||
raise ValueError(
|
||||
"You must add one or several frames with `add_frame` before calling `add_episode`."
|
||||
)
|
||||
episode_buffer["index"] = np.arange(self.meta.total_frames, self.meta.total_frames + episode_length)
|
||||
episode_buffer["episode_index"] = np.full((episode_length,), episode_index)
|
||||
|
||||
task_index = self.meta.get_task_index(task)
|
||||
# Add new tasks to the tasks dictionary
|
||||
for task in episode_tasks:
|
||||
task_index = self.meta.get_task_index(task)
|
||||
if task_index is None:
|
||||
self.meta.add_task(task)
|
||||
|
||||
if not set(episode_buffer.keys()) == set(self.features):
|
||||
raise ValueError()
|
||||
# Given tasks in natural language, find their corresponding task indices
|
||||
episode_buffer["task_index"] = np.array([self.meta.get_task_index(task) for task in tasks])
|
||||
|
||||
for key, ft in self.features.items():
|
||||
if key == "index":
|
||||
episode_buffer[key] = np.arange(
|
||||
self.meta.total_frames, self.meta.total_frames + episode_length
|
||||
)
|
||||
elif key == "episode_index":
|
||||
episode_buffer[key] = np.full((episode_length,), episode_index)
|
||||
elif key == "task_index":
|
||||
episode_buffer[key] = np.full((episode_length,), task_index)
|
||||
elif ft["dtype"] in ["image", "video"]:
|
||||
# index, episode_index, task_index are already processed above, and image and video
|
||||
# are processed separately by storing image path and frame info as meta data
|
||||
if key in ["index", "episode_index", "task_index"] or ft["dtype"] in ["image", "video"]:
|
||||
continue
|
||||
elif len(ft["shape"]) == 1 and ft["shape"][0] == 1:
|
||||
episode_buffer[key] = np.array(episode_buffer[key], dtype=ft["dtype"])
|
||||
elif len(ft["shape"]) == 1 and ft["shape"][0] > 1:
|
||||
episode_buffer[key] = np.stack(episode_buffer[key])
|
||||
else:
|
||||
raise ValueError(key)
|
||||
episode_buffer[key] = np.stack(episode_buffer[key])
|
||||
|
||||
self._wait_image_writer()
|
||||
self._save_episode_table(episode_buffer, episode_index)
|
||||
ep_stats = compute_episode_stats(episode_buffer, self.features)
|
||||
|
||||
self.meta.save_episode(episode_index, episode_length, task, task_index)
|
||||
|
||||
if encode_videos and len(self.meta.video_keys) > 0:
|
||||
if len(self.meta.video_keys) > 0:
|
||||
video_paths = self.encode_episode_videos(episode_index)
|
||||
for key in self.meta.video_keys:
|
||||
episode_buffer[key] = video_paths[key]
|
||||
|
||||
# `meta.save_episode` be executed after encoding the videos
|
||||
self.meta.save_episode(episode_index, episode_length, episode_tasks, ep_stats)
|
||||
|
||||
ep_data_index = get_episode_data_index(self.meta.episodes, [episode_index])
|
||||
ep_data_index_np = {k: t.numpy() for k, t in ep_data_index.items()}
|
||||
check_timestamps_sync(
|
||||
episode_buffer["timestamp"],
|
||||
episode_buffer["episode_index"],
|
||||
ep_data_index_np,
|
||||
self.fps,
|
||||
self.tolerance_s,
|
||||
)
|
||||
|
||||
video_files = list(self.root.rglob("*.mp4"))
|
||||
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
|
||||
|
||||
parquet_files = list(self.root.rglob("*.parquet"))
|
||||
assert len(parquet_files) == self.num_episodes
|
||||
|
||||
# delete images
|
||||
img_dir = self.root / "images"
|
||||
if img_dir.is_dir():
|
||||
shutil.rmtree(self.root / "images")
|
||||
|
||||
if not episode_data: # Reset the buffer
|
||||
self.episode_buffer = self.create_episode_buffer()
|
||||
|
||||
self.consolidated = False
|
||||
|
||||
def _save_episode_table(self, episode_buffer: dict, episode_index: int) -> None:
|
||||
episode_dict = {key: episode_buffer[key] for key in self.hf_features}
|
||||
ep_dataset = datasets.Dataset.from_dict(episode_dict, features=self.hf_features, split="train")
|
||||
ep_dataset = embed_images(ep_dataset)
|
||||
self.hf_dataset = concatenate_datasets([self.hf_dataset, ep_dataset])
|
||||
self.hf_dataset.set_transform(hf_transform_to_torch)
|
||||
ep_data_path = self.root / self.meta.get_data_file_path(ep_index=episode_index)
|
||||
ep_data_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
write_parquet(ep_dataset, ep_data_path)
|
||||
ep_dataset.to_parquet(ep_data_path)
|
||||
|
||||
def clear_episode_buffer(self) -> None:
|
||||
episode_index = self.episode_buffer["episode_index"]
|
||||
@@ -884,38 +984,6 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
return video_paths
|
||||
|
||||
def consolidate(self, run_compute_stats: bool = True, keep_image_files: bool = False) -> None:
|
||||
self.hf_dataset = self.load_hf_dataset()
|
||||
self.episode_data_index = get_episode_data_index(self.meta.episodes, self.episodes)
|
||||
check_timestamps_sync(self.hf_dataset, self.episode_data_index, self.fps, self.tolerance_s)
|
||||
|
||||
if len(self.meta.video_keys) > 0:
|
||||
self.encode_videos()
|
||||
self.meta.write_video_info()
|
||||
|
||||
if not keep_image_files:
|
||||
img_dir = self.root / "images"
|
||||
if img_dir.is_dir():
|
||||
shutil.rmtree(self.root / "images")
|
||||
|
||||
video_files = list(self.root.rglob("*.mp4"))
|
||||
assert len(video_files) == self.num_episodes * len(self.meta.video_keys)
|
||||
|
||||
parquet_files = list(self.root.rglob("*.parquet"))
|
||||
assert len(parquet_files) == self.num_episodes
|
||||
|
||||
if run_compute_stats:
|
||||
self.stop_image_writer()
|
||||
# TODO(aliberts): refactor stats in save_episodes
|
||||
self.meta.stats = compute_stats(self)
|
||||
serialized_stats = serialize_dict(self.meta.stats)
|
||||
write_json(serialized_stats, self.root / STATS_PATH)
|
||||
self.consolidated = True
|
||||
else:
|
||||
logging.warning(
|
||||
"Skipping computation of the dataset statistics, dataset is not fully consolidated."
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def create(
|
||||
cls,
|
||||
@@ -944,7 +1012,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
)
|
||||
obj.repo_id = obj.meta.repo_id
|
||||
obj.root = obj.meta.root
|
||||
obj.local_files_only = obj.meta.local_files_only
|
||||
obj.revision = None
|
||||
obj.tolerance_s = tolerance_s
|
||||
obj.image_writer = None
|
||||
|
||||
@@ -954,19 +1022,13 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
# TODO(aliberts, rcadene, alexander-soare): Merge this with OnlineBuffer/DataBuffer
|
||||
obj.episode_buffer = obj.create_episode_buffer()
|
||||
|
||||
# This bool indicates that the current LeRobotDataset instance is in sync with the files on disk. It
|
||||
# is used to know when certain operations are need (for instance, computing dataset statistics). In
|
||||
# order to be able to push the dataset to the hub, it needs to be consolidated first by calling
|
||||
# self.consolidate().
|
||||
obj.consolidated = True
|
||||
|
||||
obj.episodes = None
|
||||
obj.hf_dataset = None
|
||||
obj.hf_dataset = obj.create_hf_dataset()
|
||||
obj.image_transforms = None
|
||||
obj.delta_timestamps = None
|
||||
obj.delta_indices = None
|
||||
obj.episode_data_index = None
|
||||
obj.video_backend = video_backend if video_backend is not None else "pyav"
|
||||
obj.video_backend = video_backend if video_backend is not None else get_safe_default_codec()
|
||||
return obj
|
||||
|
||||
|
||||
@@ -986,13 +1048,12 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
tolerances_s: dict | None = None,
|
||||
download_videos: bool = True,
|
||||
local_files_only: bool = False,
|
||||
video_backend: str | None = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.repo_ids = repo_ids
|
||||
self.root = Path(root) if root else LEROBOT_HOME
|
||||
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
|
||||
self.root = Path(root) if root else HF_LEROBOT_HOME
|
||||
self.tolerances_s = tolerances_s if tolerances_s else dict.fromkeys(repo_ids, 0.0001)
|
||||
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
|
||||
# are handled by this class.
|
||||
self._datasets = [
|
||||
@@ -1004,7 +1065,6 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
delta_timestamps=delta_timestamps,
|
||||
tolerance_s=self.tolerances_s[repo_id],
|
||||
download_videos=download_videos,
|
||||
local_files_only=local_files_only,
|
||||
video_backend=video_backend,
|
||||
)
|
||||
for repo_id in repo_ids
|
||||
@@ -1032,7 +1092,10 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
self.image_transforms = image_transforms
|
||||
self.delta_timestamps = delta_timestamps
|
||||
self.stats = aggregate_stats(self._datasets)
|
||||
# TODO(rcadene, aliberts): We should not perform this aggregation for datasets
|
||||
# with multiple robots of different ranges. Instead we should have one normalization
|
||||
# per robot.
|
||||
self.stats = aggregate_stats([dataset.meta.stats for dataset in self._datasets])
|
||||
|
||||
@property
|
||||
def repo_id_to_index(self):
|
||||
|
||||
@@ -1,56 +0,0 @@
|
||||
## Using / Updating `CODEBASE_VERSION` (for maintainers)
|
||||
|
||||
Since our dataset pushed to the hub are decoupled with the evolution of this repo, we ensure compatibility of
|
||||
the datasets with our code, we use a `CODEBASE_VERSION` (defined in
|
||||
lerobot/common/datasets/lerobot_dataset.py) variable.
|
||||
|
||||
For instance, [`lerobot/pusht`](https://huggingface.co/datasets/lerobot/pusht) has many versions to maintain backward compatibility between LeRobot codebase versions:
|
||||
- [v1.0](https://huggingface.co/datasets/lerobot/pusht/tree/v1.0)
|
||||
- [v1.1](https://huggingface.co/datasets/lerobot/pusht/tree/v1.1)
|
||||
- [v1.2](https://huggingface.co/datasets/lerobot/pusht/tree/v1.2)
|
||||
- [v1.3](https://huggingface.co/datasets/lerobot/pusht/tree/v1.3)
|
||||
- [v1.4](https://huggingface.co/datasets/lerobot/pusht/tree/v1.4)
|
||||
- [v1.5](https://huggingface.co/datasets/lerobot/pusht/tree/v1.5)
|
||||
- [v1.6](https://huggingface.co/datasets/lerobot/pusht/tree/v1.6) <-- last version
|
||||
- [main](https://huggingface.co/datasets/lerobot/pusht/tree/main) <-- points to the last version
|
||||
|
||||
Starting with v1.6, every dataset pushed to the hub or saved locally also have this version number in their
|
||||
`info.json` metadata.
|
||||
|
||||
### Uploading a new dataset
|
||||
If you are pushing a new dataset, you don't need to worry about any of the instructions below, nor to be
|
||||
compatible with previous codebase versions. The `push_dataset_to_hub.py` script will automatically tag your
|
||||
dataset with the current `CODEBASE_VERSION`.
|
||||
|
||||
### Updating an existing dataset
|
||||
If you want to update an existing dataset, you need to change the `CODEBASE_VERSION` from `lerobot_dataset.py`
|
||||
before running `push_dataset_to_hub.py`. This is especially useful if you introduce a breaking change
|
||||
intentionally or not (i.e. something not backward compatible such as modifying the reward functions used,
|
||||
deleting some frames at the end of an episode, etc.). That way, people running a previous version of the
|
||||
codebase won't be affected by your change and backward compatibility is maintained.
|
||||
|
||||
However, you will need to update the version of ALL the other datasets so that they have the new
|
||||
`CODEBASE_VERSION` as a branch in their hugging face dataset repository. Don't worry, there is an easy way
|
||||
that doesn't require to run `push_dataset_to_hub.py`. You can just "branch-out" from the `main` branch on HF
|
||||
dataset repo by running this script which corresponds to a `git checkout -b` (so no copy or upload needed):
|
||||
|
||||
```python
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
|
||||
api = HfApi()
|
||||
|
||||
for repo_id in available_datasets:
|
||||
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
|
||||
branches = [b.name for b in dataset_info.branches]
|
||||
if CODEBASE_VERSION in branches:
|
||||
print(f"{repo_id} already @{CODEBASE_VERSION}, skipping.")
|
||||
continue
|
||||
else:
|
||||
# Now create a branch named after the new version by branching out from "main"
|
||||
# which is expected to be the preceding version
|
||||
api.create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION, revision="main")
|
||||
print(f"{repo_id} successfully updated @{CODEBASE_VERSION}")
|
||||
```
|
||||
@@ -1,85 +0,0 @@
|
||||
https://drive.google.com/file/d/1_SOJkgfP5yZyVjMhTt3nwhvyUjcnlI51/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rmgN8UUzph1qwJnzG1d-uOafodn-gLvb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NYQ-XxsBVinB6dUoZmVWweT83367P3i2/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oAv_j74zxxCJieMG7r5Vl2BeHK1__3s3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wFUJQROsrTJt64YRuIeExhFjr2wnK5uu/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1KzL3Tt0Le7jVl58XVRUcmigmXjyiuhbK/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qy_YBladeHtianSSGtgAPSHtMin7msvf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rA_F0V_qL_nyuC_0aBKCisF4-0TIkF2Y/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hw-8qMpz9VgSt62XoASqNRuPECpCwJQP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1BpHOl9rKMzdvNGka6js7C0s40hH6vnDA/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PazhkhiDnJ-OUMyDVDFxEZNKQQqHiNWS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lZ665R6ATl57dypxH4dGJ2NSt6XYnbuz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1V9HzLaf-tlG15wUzT7KrTDCS_z1vi5NV/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1aKauWiXoKqbNwn_2xs4MrmLlaNYlVNmO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WVD5DFhriO1YmmOgiVHhacR6HWoTPxav/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_X43WgeBAsfkhH9EmpyPki8U9joMeAGC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t8x0GqWoNKWtnBsB7_D40Z34nL9ak4kf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15V_f26WaKOXjKnq2T3HRWAmtQUi4lbu2/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11VFIAsiSDsMOBANgrOcZBpKB9AFWnLy7/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1M0NS7vVaxJv3FHnuRYtdwTFYF7We4LxP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mR0OItTNqFnVLoczcyKYlm6drAy778lO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NbVFWDQAh-z4JJ4D-Zw6Lps9kdvpqh2j/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JQoZGBzl4W3QG26-n39tefcGN0fDRMbB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VBjHl-TvZpncopvasIP5G9gecbB2a5f6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VzSf6zaB21nahm7MsPwroXbJ84NIwq0b/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OtNnfMEydNtZOcivs4k6E_uJSpf8PkGy/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14nVvpvsrFr_03Pa_N7MKzwnRwibOUYM6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1M8li6duiO2r3lv_9HhF_XJn0oZUIEK5F/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Cpzea6fO14lxAaNfSBifqoa4ekhCiLD1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mbxRTm5vlbsY9UJ0jfjM6j9D7kPJjBpG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1RXD1i6IfWsHRlCxVmG04h2h5Ycm_WwZN/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QFqFSwDGOk1BkgGmqgCcc2BRWnJ6R3MA/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bFqWR8DQM0ZUxxtS2bl-RANQvukeFLzp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pR-rH3yNGoyPdD4hJ6-3lXQ-PstBx9du/view?usp=drive_link
|
||||
https://drive.google.com/file/d/107OAwLY-hva9HeQLIK7VCh-ytdDabVjr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Tpl08QOaSZ37GTO4awFWSdD8wBR9xdlT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MR164AOM-0S1T6RX8xKTV2IHyaCvpqAW/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_wknJfVnStIhJ82lU_QtcrwahsqYIsr8/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ZuEktWrbYkTx0l5pj3WiZ2CJrfbDOHNo/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15G_10hkkkq6yxvyI5NGZirlF-RzduR2F/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1DBKxg3ONqh7dhLuX6oh1Yyo2x383V1Hp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1B5iDBkTUr5vopDddV_fHud18SqAHhauS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1acwFV0eenRkki1QcjSKH5xqOtys-P3Pr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1S47BI83xyrh-FKXsvAQqer98Biu_p8XK/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JL6DmBZl3uyq9dyLfgSqtGF06e7E9JwM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16WvRS4Kjog8Pxgr0E3sGGnI01YwL9Uql/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12ttGqL33IPWg0-s1SD44rr22M6LiSQBr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OyZqqnldTU_DliRbr6x0C4a_iWPwIN7j/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oYk00IpLnR9fesLfD15Ebe7nVBffEbcS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1eyE2-MQduCEqCd-5_kl5zsoOEERAzpZD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ir1Ya-vO0d97pfvbePlUeuKTTRc0qIMU/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hOi-JnqlMt47gVnLZHMTqeojyYVErohl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NFFw5_PqigQ7xGqsL-MNq2B1r5yAscCf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1uftq1-Zlh8d2sNLWrlVcKYQUwZTD7o24/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-ax19dSLPacVgk000T-m3l4flPcg07pM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/126y-lgn86-ZmCz8hooF1THKJGGObw3OB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JiDniK0VmDIkk92AbBILb8J2Ba59PWML/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1kr8nPIRljiU0R4J9SMgj80o1FPQxzu9z/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bbThWRij1pKBh_kFgV8FwK0sXtTHBoLX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WenzDW6lxk1xkOFm-OiGFfc0ROskAuKU/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MiKRzuzUn1yN-k_6kPJJzIGy7dT-nnsD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17rRg2tcmB-gNhQ0KoZJQmNfyFeoij1jH/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11mokBpvrY3ld6sY5WztREtJ1jgqfQV70/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Il_6IOx9NDp1bX_KHizJfBwzTufTmn86/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1KswtJGsxJ7eeBDAmNA_aeLjOxcH6MIxa/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1gzMhi5uWu4C3Y6WbQ3L-08V96GxTZrRR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nRQFtaBxfUCYc2W90Qibh0kHCt6YQCfc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1vs-gyW-KheqHbUATwAhA2mmR9GOGw7f_/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MuxzGOA2fgLaHryq82KkQumtuRJGcUOC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IIwxZnGlqrXLUXqG6yMO0r7uhCvhpk9e/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1vE7XPyaFcXP4DtTY5Y9WKIt7zWgmX-Cr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1j-bIV09gr21RC3-x1N_pK4RPLV3fmWKz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t3nW1rD3S-EL0Oymb5U7ZAj5UMkydkln/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14hbfHCdMKtJZ41F9CQReMec2jeRFTOqR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1x-hUyOSne5BW0AzQ3W6_Pf4g5yXQWi9M/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1sw9JqRg6E-3P84I3ZhzTrJMu0vuiaMmP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LuqhQlL4MGZhB_6THmkovRxrlP26BbdC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15C5K6v_lkjnMSmUvVyqHQKwh2N166e7K/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ns_9eSsQeeoZ10nlbkLy8tu0GmJFSnkt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NpzWJeK6CqjxzjIMYe6aYdX8xGsQwD4o/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NMLezwufKJ9_8xTc9KQThSzVVD71B9Ui/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1aa71DCUqs6oXlIxX35jgsmsgm-NlDxPV/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1UJzkIZzAL0j-D5YQBnoq7mHvttASy12O/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nPgx36HIJFb7oI94VbRzWjpPP2GANxzG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NovAP-KVJjqcuvWy3d6G4ptGGAIDqcCx/view?usp=drive_link
|
||||
@@ -1,55 +0,0 @@
|
||||
https://drive.google.com/file/d/11M3Ye0r5agMaaicPbVGD0q2Hb3rGklbb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-tx7SvYYgSvXCvnf_EI2OVdwK-CkFY6S/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EWJunmOpMHaU1hE106wwpbkGYcjQXYAF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IDn95Z7FSiCckrSENtGV4u3RyFHNQSDY/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1CwzvWj1i7QOtqrZvsCZ6BdZaKNDfpN32/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1HvAvlhm77nAD3Td24QPSeq8lw-Rl_aOh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t-suKYOPhXH666RpAYNRp2QU_DOy3AeM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18xpKgWh7RWyjMN5PkLTOo-AxsAadAuRw/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oci5Eto-ztv-AQNz8EnwZveBIhxvk-xJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Y-t_4vxdE6NpHO0DLJR8f3mD0Q-Wj5-c/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lylRqbbbB8bgtpsBWMPACmHJreuKmllv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1yliSyMig_NXShWfQx6qyW7Ijf2Y5lFK6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1XXhwJsJbeb7KXAooGvJapnm9bjnGUmxS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_xs1f3hW2JArKyvfF7UWubWjyROGTLs6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WVEHpr6EqKCZbkHapQSTXJq4xE4SWFT-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1RqOHv9pEQGvW8NUA7ynffFmG999TL_Az/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1cu5AgD2gh-uA3PFJmzxxzNaF3qOSlYY1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1SsrXqiPclNrnYToPZ9Uq-k3y0C4qdHT1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-J7EXf0vjkLIfSqT8ICEsP6CTjzSLBop/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11O7ewUmoZXfyyKjy_6B5RW4DpjICxqBT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1iic44kZoCsjNsfAz2cMstZ9-WQvAhblF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1yLV1lVX-2WnWQldGlnQZ0x7QBuDiVkL3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Tybp9ru98TTbGn4eyROpUQwDFuALWXmk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/13E9OTMiipVJByDs5-J19oWwAz7l94LTN/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EeTpJQdMSliw4JzSMtJ6CyTvVdexjM4M/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NHyNwoFqzeAu-1_PSpq5JfxaiD_xbpn9/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fJcS0phDp4xm_FyGaJ5wr9Pe4KqtHaxD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12AqrLUaewDPEcFRqPZeZFb_TQ0Lfi3At/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1x_hd4Qsq1oJS-aj2t3qM7WbbV7KZj05b/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14OUSUArmsB068hs6BuEIXQhI1Cyz8Sf0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16zlzh1T5zeUJQnFf382NXkFEKEnDub4O/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IbDltmN-NEFCNtr1TO4ILxEgQ94rtjWv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15gmlf8Gx9455pZ1AlqcCSwh3nDPxMzSr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qHpRL1oZfIMo_vxnm8qfwQ-7l0BZIVva/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1H1xskIgiFZivkYn23rMzH3xePGOh3VTC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1avls6Pv0kYiCMNVknbc1zQsgy64MUDMM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MmWVgCj5khc8KMIifmt3EzF1o-CtPyyn/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1U0kCc_xqW0WNppf4sbnK14euWKdPZtzB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16CaEyQscOuhLj23PEGDTL9DeyNkohkMn/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Iu8uM6UUJ0zW8tvN-9UiOe_4oSNzEutg/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1UImqiBaIxCR-1DNJaZhHqeHhaySOtVIr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VpU2V_leIoRIyv_lAvE7eLHBG8DxCTnp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_Q8J27OT3Xby7QY6yHvIJauFRWEMxkRm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bantmVo1L9Xz4tbiNw_a1UC2Z_HPO1wT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IRIXMJMCBDkBjbaHvAlEiBogSvZ1jK_3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mAHXKjiFbjwydypW2t5Lv8_H5x6nHegl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1SfyY796fLrBCMY39OcyuxZafqSCRZPZk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1X-44sZ8CcfzIskc0dvSx882o1yFhHaZB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1BOIWCCCk6DLD4Bmvc75ZbbLi9AQm-1ao/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1RuyDtRE1kk76sw-wP8vx5SgLoPF3PA_H/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1c4eoQiBbGuy3CTAQDUSkd84Ponh1roAQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/19PXB9z4Ljq6dsbf9TqcOrrP5SRbw2Tc_/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nn1VVZVoIXWdYDozR7XHXE4mPLQG80PQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MBdFGOKPV8GUhwoSsJ_Ky3qAMLM2Bv3K/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1of3k_M-7Nh3I1TndcWedxK4ca9dn8Sc5/view?usp=drive_link
|
||||
@@ -1,20 +0,0 @@
|
||||
https://drive.google.com/file/d/12ctkOAdkCNGN1JLbZb5ww3XTBn2LFpGI/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1G_Vd46_4fq6O64gHHjUbJX5Ld44ZZx0y/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1uKgUy73B3xBogQAOUhfZjO0X5qZGsi2c/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fu9cIrfI-fE2LhdGUxbx7-8Ci_PF8Ypm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ygk9ZPJzx8xw2A9JF3NHbJ44TqnvSTQR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18m5xPuccNsEB20WPshm3zhxmXc6k63ED/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1DiqqxC44rriviRQpqogcv0-EB-Y6nr9g/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qPdaoTVDizJXkfXLioWU7iJ8hqCXSyOQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Fj9kIA_mG7f67WFfACJEaZ7izcHG7vUm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WpYehZnI2P7dUdJPfkE-ij1rqCnjZEbB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_zwWkT4jPyzB38STWb6whlzsPzXmfA9r/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1U6-J4I_fPlSFFGfhZPxS5_YzKXwXIZYp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pRhxxcTfZp5tQo_EScvJUwfc3amiS6Vk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lWLntqra83RlYU_gN7Vostnfydf6gutd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1vIBKo0x-NYEHV1FvRpco1lQMpRdAWAIL/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pdrLV3JTQou_XH0Aap61Ssf60iVKm1jJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QTsLoQ7SwmKdQHjBGVDaR2uTwfFwtrOf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Gytai8M_12J36GY6L_TulEcOC-035jwS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14LJudNc629NT-i8xreXtzl27ce_DxOFJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1sBvPCODbzxGAI0S3lgN5cSG9Go3lRi00/view?usp=drive_link
|
||||
@@ -1,18 +0,0 @@
|
||||
https://drive.google.com/file/d/1MJn9GbC8p9lN4gC9KDMLEkTkP_gGpXj0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-4LXgjl7ZCOgp-8GCJmFRD8OeqN5Jf7-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ho06Ce0SPbqU3juaMxNUwAt3zCRLGC8W/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ivHoj7_7olBSxH-Y8kqXEW7ttITK-45j/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qjY4hM_IvZ8cq2II_n9MeJbvyeuN4oBP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rKVhO_f92-7sw13T8hTVrza3B9oAVgoy/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pcLPHO8fBkc1-CRa88tyQtEueE4xiXNi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Vev_chCsIeEdvQ8poEYNsOJFGy_QU8kZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1l5G4zpRkxSLCQjvGPYSN4zfCvVRQuzMz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14vgthE1eoakXkr2-DRw50E6lAqYOiUuE/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17nPSmKKmgQ2B7zkzWrZYiLM3RBuFod82/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QcDsxplVvb_ID9BVrihl5FvlC-j7waXi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18pEejBpI-eEVaWAAjBCyC0vgbX3T1Esj/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1H8eH6_IRODtEFT6WoM77ltR5OoOrqXmI/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IWlpFRZhoxyG4nS13CWK4leZVk5wbNx4/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PbZA8_OCGmMLxNP9xbkLRSChniL4uGxl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1p9XAdmG2f_WeflNO4DIJ_tr1rK6M9B4B/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nS59Et1cNAvKo3Y4SeSGRuZD5TvBbCF3/view?usp=drive_link
|
||||
@@ -1 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1S8eFg98IaGAIKVZ8QFWG1bx4mHa-O204
|
||||
@@ -1,4 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1tC_g1AJ8lglBLY-fjsQrG6DMBa3Ucp-0
|
||||
https://drive.google.com/file/d/1fG_Yi2MJrFjiUVN3XoiWXLtTxHlwwaDv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WX32VWfzzX3Blmd06DRxLwFbMJfVe7P4/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18onsX3vXg3xkFwP5bVUCjdV4n9TRn0C9/view?usp=drive_link
|
||||
@@ -1,3 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF
|
||||
https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link
|
||||
@@ -1,3 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N
|
||||
https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link
|
||||
@@ -1,3 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo
|
||||
https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link
|
||||
@@ -1,3 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj
|
||||
https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/19qS_n7vKgDcPeTMnvDHQ5-n73xEbJz5D
|
||||
https://drive.google.com/file/d/1oC31By0A2bsBeHyUwBdQw1z4ng6yi9Za/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1m5rQ6UVH8Q9RQp_6c0CxkQ88-L-ScO7q
|
||||
https://drive.google.com/file/d/1wHz2qcmwcVG0C0CZ9MjQDQcmj4OY9_a3/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1seQGay470nGQ-knBI5TjsTr8iL9Qws5q
|
||||
https://drive.google.com/file/d/1T89hSX5U99wLGvGTE7yUBaQPOpyj6Sai/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1t3eDc5Rg0DveyRe8oTm6Dia_FYU5mXyf
|
||||
https://drive.google.com/file/d/1TXFaduTakvS0ZWJqKCX-HIvYglum_5CY/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1Z9X3DNzd6LS0FFjQemNUMoMA5yk5VQOh
|
||||
https://drive.google.com/file/d/1Wlyc0vTkjXuWB6zbaVOWhEfD7BmPgUV_/view?usp=drive_link
|
||||
@@ -1,53 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1DYgB4ifX4uIid9m9jnC0Zdz8Nf7ZC0fc
|
||||
https://drive.google.com/file/d/1Eb-NRNk_FmVleCbU_Ng5Y4dfcjTKN7Rv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1dkhjEADakT-44l9jf-nK4x89kr4yG_qb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14hDhgcZkVqNExGb4tIXpSjMshhqZETch/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1zVMEHpHbuNyP5A_lYU7RPSLB-4V0yfZw/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JtgDjBvy7FnRpFzrx_foC3quorYQFAR-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EHdneB6F-PP0dQlX8qPaXbxmKoBy_YwO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17Z0jjVBy1OPKREPu77_n_rQzorDiapji/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1F4i23qPJ_qTf5jWjfLo4ARGJChznYWt3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1kZtXWM3uS0-rLblydBfJ0mMcVnMMXw9w/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mNODox87xFfY5Z_o5mcLsr8SHb39jDik/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ob44VdmEUA93FKDECiRb5Ogz2xQg5IWp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fdQLdjj3Cwv33R1wZhfrLz9Del8mqgHb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Yu3L3ft21zP__XL8pCfhb788ZleuW1n5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ozBBWXVZ9hXDh9ooHUNroHdYm8UDqnhJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1o0TGqvfWw_Lunxb5ubKDS21Lr_WC0h75/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1jZnd5eP5L6BH5l98BPN6OnoQx3fu8e9n/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1S5sYbz8wcLYp0V67v13i4PRcBxodn4Hg/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rFeg_x6ftJYwPtBv34D3h2L2cpDLeR4G/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1GvS3lcm4o6nm_scUk0XxKeVFNmzjucDZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-9i0riphC7NhhDahcQfD1QoBXP5gF90A/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15p_IqGsMbKuvzMS872THAZr-3SBtb1Fr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ToyYcBfJL8gbQn0q_59zPLsFmm7dmMJo/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1e_7PNH7CYafE4pAebP7ZdI7XFbmEcy_i/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JoabvGVsIQdug2xOhUIhetEIyDM91y_Y/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1kOMw1y0lmnVaCjwZICfzCsx6e0Z8MNGR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16it_wd1JOevUQTK2_CvF_pBACTgpIPgM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IRcCj9HnJSfbyMgr5XEERGlEnWeZQwOc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Z2dIJfq_S3liGmPN9Rphvkmucnmw7tlb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1J3NoAjzndGx9yNyaBOJHdNny1epzUoBt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18nOvxV1k8FSmBrhT4TPo2sKKSZXougyx/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1CT8FxclafFMjSd7gCWVw3VSeryeiF04i/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16M9KVqQMFfSsXfypK0bocFft8Nz3j2Rt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18QPVkw6bj6HW8LTPrQLWrrUX4R6RcF42/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hQTVtA5hBTE_StXpJafTZJ3tgt2VQQ_t/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Dn-d5g69H6EgAWgsFdrcbJKtz7ySsCQ8/view?usp=drive_link
|
||||
https://drive.google.com/file/d/13hMr16483P7ALYv73yMRUN37fJdVQM62/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1848yN3XMN5zJMEgApt6KzrWgfRPfimtv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oAD9kSnS0fTgj-CjD4u9VdZ5X67IOIMa/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ilzIWLCCG5b_KgF5s0wdN2I5-lFNpwC1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rjsT2YBjnidxod1s9s-myAYz8boHr-WB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18Gg48HTub15bd8qzbhiCUufbVy0fbN5G/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WsSnQSqmMTVSRwrhT1Y-v782My2zcjLm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ea9ZCvoyc-xqiFXgeDcA_mOWsw7VUuoi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wv1v3-XhPgbNzp62BXbJTDzMPu2tlDUc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18-ikzt8LoZ83Gi3goKCELs4U4z8hrRoF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16Bjhp7JNCXkGuLvyNcZowAx3W-Y-15DV/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Gc-KRI-xwcp1fMR55ugbrLg_5y3SPde-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oP72Q386Z4Sy5MMm-t5yNogIe5Van_9k/view?usp=drive_link
|
||||
https://drive.google.com/file/d/112T90eDUDVH-SyOV7UnZl5bscAH2hcfq/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1y-uKOesRRhjgDtFbG_j65f4SGg0v8XDg/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LOP05OagoI3km-ZKQBrS204A85UVk7Ok/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QkHQKgasVzWsmdPvkXgGhWyQ84d93_Az/view?usp=drive_link
|
||||
@@ -1 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1Ut2cv6o6Pkfgg46DgwVUM7Z5PkNG8eJ-
|
||||
@@ -1 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1FqxPV0PgvgIu8XFjtvZSPSExuNcxVVAY
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1SKtG0ct9q0nVdYssJNMWSOjikcXliT58
|
||||
https://drive.google.com/file/d/1nchD21O30B3i3LDoqramo1zgW5YvpJIN/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1_4DHf2cma0xsChLQFghwigX6Ukti5-zQ
|
||||
https://drive.google.com/file/d/1_8vS4hDNDgUQY-SmekrNaa7dF67QJYU-/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1_4DHf2cma0xsChLQFghwigX6Ukti5-zQ
|
||||
https://drive.google.com/file/d/1_8vS4hDNDgUQY-SmekrNaa7dF67QJYU-/view?usp=drive_link
|
||||
@@ -1,2 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1fAD7vkyTGTFB_nGXIKofCU1U05oE3MFv
|
||||
https://drive.google.com/file/d/1XzyQ2B6LLvcurIonOpEu4nij2qwNWshH/view?usp=drive_link
|
||||
@@ -1,53 +0,0 @@
|
||||
https://drive.google.com/drive/folders/13EQsVsnxT86K20QAoyE_YpsFbQ7fZQdu
|
||||
https://drive.google.com/file/d/1-W_JHghZG65FNTVhw1SXhtQrazdLL3Ue/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VwRJgdWUo-2nQaNM7Bs77-fsm8iwUxEo/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wFzGRo5iYA13WLi6IV1ry64RyahQBFio/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IKtQzQ-n-UTv64hYpReu2R4cqUvmNQqD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1GicVci9OiuuZZH79i5Mg7AtWod94MzwT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JVnIoR7EIQp70T4eAf9RX65JcTrzsjQc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1W2xr4h23ucjPrc-mBEeqnACsfaImpc0p/view?usp=drive_link
|
||||
https://drive.google.com/file/d/10xj_0V7A07o3uCa7v5omUrTC0YlPW8H3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1FOc3EMaCy8Mb0_a7PuXLAwKwvxkbKmwU/view?usp=drive_link
|
||||
https://drive.google.com/file/d/143PgDXBcf2GQ0Q07ZPMVMfBgZDd5sLJG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pE5Tyj0LlGbGWvUzuhixp86Ibu55Ez3I/view?usp=drive_link
|
||||
https://drive.google.com/file/d/141668b1VzX80ncrVJPzhkoAeIFB4MEK9/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bw12lo37p1ZvRvErHsll7cEYi2OxscvZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1zfnMFvbgBjl6SzYhksbaOzfbwLrCN6tb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-GIszA6mUJMaNB-tdh9r9skc77SWA0VX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fTB0zWFYU6zh4IIUFT2zX_OkwYqmElwY/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1gPIPNKGmrO9c7gKF7SP0SuUYbIBBq8z1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12JeJ-dQd5lYyn6PlDOGdE-ChVeiZ-Uv0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/100_20cgCqerU6qoh3TfTbwLy9mlDAFEG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/111oAGJ76ku_pYgbBoIdZAC1_XEQcPI__/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1UhC8L-354ZQ2gblPFGI35EMsVwfpuKa0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1sIXQSgUR_xdrNtGrL6QGBnkLMKErsIp1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16Ax77bDSIXnsn4GFL8XYKKT1P6bPpfMd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pgRVYwwVIsWq_qsWqZpe1UBzZfF5Fa9D/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1jtimaZkWsY1P5gC2bbS64H_WCUU7HXN2/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1N6Bh02P-RiTEgtx1YH1Db_X3TGpP-X_r/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14Fy8EwJ8d9Vh97Yt1VOvUChSCrfIjBij/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IRuv42dvIMPuKhcMZmuXaBjJ-lPFOmQd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16XWzNY2D8ucVVn5geBgsVdhm3ppO4que/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1xsVOoQgthK_L_SDrmq_JvQgUpAvPEAY8/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bZbw66DyEMvnJnzkdUUNbKjvNKg8KFYM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1CyTVkdrNGGpouCXr4CfhKbMzE6Ah3oo3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hDRyeM-XEDpHXpptbT8LvNnlQUR3PWOh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1XhHWxbra8Iy5irQZ83IvxwaJqHq9x4s1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1haZcn6aM1o4JlmP9tJj3x2enrxiPaDSD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ypDyuUTbljaBZ34f-t7lj3O_0bRmyX2n/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ILEEZo_tA9_ChIAprr2mPaNVKZi5vXsO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1U7nVYFaGE8vVTfLCW33D74xOjDcqfgyJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rZ93_rmCov5SMDxPkfM3qthcRELZrQX6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mYO1b_csddtyE3qT6cwLiw-m2w2_1Lxh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1xz7Q5x2jikY8wJQjMRQpRws6AnfWlHm5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OO8GaO-0FrSZRd1kxMYwBmubyiLOWnbl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EXn4NVDmf-4_HCy34mYwT-vwK2CFI9ev/view?usp=drive_link
|
||||
https://drive.google.com/file/d/10hH70XhXRL9C5SnAG4toHtfHqfJUJo4H/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18tiBcxea0guUai4lwsXQvt0q2LZ8ZnnJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Q8R8qv37vk5PQ5kQ2ibx6BFLOySD0VpX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17aNriHzjhdibCyuUjQoMFZqjybJZtggG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LVjEYHSdeKm6CotU1QguIeNEPaIaFl_1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ufAhE_EkgJ85slg2EW8aW_grOzE_Lmxd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wtzLtXrkw9eXRGESTPIOlpl1tInu-b2m/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Mk5qvVtD_QHwGOUApRq76TUw2T5THu6f/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1y1WQ3hboWVJ68KEYQQ3OhreGuaUpSgwc/view?usp=drive_link
|
||||
@@ -1,52 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1dxWh6YFZUDt6qXIoxgD9bla3CiFjZ11C
|
||||
https://drive.google.com/file/d/1hNBJN00SCAlOl0ZEgm7RRGbAGDjyBs0p/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17He0CVwXGeoMmXg4SHKo-osNn7YPKVL7/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1laNKUVID1x2CV6a2O2WQjwFewKu4lidL/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pNf36xbZJGRArYLmNAvRj5y6CoqdC6kB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_4E1-y3JXk5I0ebycLYM70YDPK9g52gZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PHfzhGPdbolKyOpS3FnR2w7Q8zUlJXSk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17ls2PPN-Pi3tEuK059cwV2_iDT8aGhOO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LWsg6PmCT00Kv_N_slrmcwKmQPGoBT3k/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12LckrchoHTUVH7rxi8J7zD9dA19GXvoW/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VqrJKjAIkj5gtFXL69grdSeu9CyaqnSw/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1g5rQYDBZvW-kUtYPeyF3qmd53v6k7kXu/view?usp=drive_link
|
||||
https://drive.google.com/file/d/10kUgaSJ0TS7teaG83G3Rf_DG4XGrBt6A/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1je9XmneZQZvTma5adMJICUPDovW3ppei/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1v28r6bedwZGbUPVVTVImXhK-42XdtGfj/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-TEEx9sGVvzMMaNXYfQMtY2JJ6cvl0dT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1YdBKdJFP9rJWBUX7qrOYL_gfUA8o6J9M/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1X9vffwQHNUSKLXr2RlYNtbWDIFCIDfdF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11hqesqa5kvEe5FABUnZRcvmOhR373cYM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ltTTECjEcbQPgS3UPRgMzaE2x9n6H7dC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Zxqfa29JdwT-bfMpivi6IG2vz34d21dD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11LQlVxS5hz494dYUJ_PNRPx2NHIJbQns/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1i1JhNtnZpO_E8rAv8gxBP3ZTZRvcvsZi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11jOXAr2EULUO4Qkm748634lg4UUFho5U/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rj67wur8DdB_Pipwx24bY43xu4X1eQ5e/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15ZTm6lO6f_JQy_4SNfrOu3iPYn1Ro8mh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1q4gBtqWPJtCwXEvknGgN0WHGp7Vfn1b9/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t17keyre47AYqm8GgXiQ7EcvcUkeSiDQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OYUPGxtZgOF86Ng_BEOTXm_XOYpuQPsO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1cBjbGHi3dwWHtx6r9EQJi0JT_CE3LuHt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14qaMyF0mcbCB-fCYKNyo5_2NahSC6D5u/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12FgX86eA7Y5co9ULBVK80XMsiKQSs-Ri/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1yvoHWidf-jdBVw6qCCXOFfkVwKj_2hPk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1a2SugsSDlC8UtUrFzp-_KAwyZckQOvdQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1l8pILBFSAosypWJMza2K09Vm7rug9axm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hfPQ8dBCk97PnOhq6_MIISm3IEzcOxJG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PPAUwlJCFKpms8cqF_k1v2_fCgDBOc3S/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lVKQZeqFfK3amEmLuFhYLUFQ2eyE8rOW/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1K9iPMLfDowcIFoyzpvgn88dQ6x6kVwNG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PNvMqG9tL7QxeLaYBGHiWYR6SYb5iIct/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1xkRtzbvIkUsylx9hrFLGQsJn0h1EYu-5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nxMRrJlSayjDIfr5CmHO1NzAw3COhsLi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Qs3WEyMGrmagiHIkkFEueWNnJhkUeR1s/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1D-G2_Q0SS3M8zyJbg_XzkF2ANPw1HTuX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mdmJsDGO-YtJAOF_yPKl6lq4PJOIbQhT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11m9bwfop_sPmnQr_8amB6EEsrbAeG_z5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/19tyYt5FMn5kru0g9o2nMJhKPnsDqkIZv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1XvTpUdsVTZ-vydvdYYmynbma--HfUGSl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MO3hFu68J6NohTzr9aB_fY02VA6QSOqj/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Lh-UjwAk__04YOTWINF_QGVU8SjetVaY/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1jkSOUwZV5GJ7rZlVeErjcu0DBQs8Np0d/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VIN1eLI-93WrVQwCjsv6XQr353DqqBYA/view?usp=drive_link
|
||||
@@ -1,8 +0,0 @@
|
||||
https://drive.google.com/drive/folders/1EgKar7rWBmTIRmeJYZciSwjZx3uP2mHO
|
||||
https://drive.google.com/file/d/12eYWQO15atK2hBjXhynPJd9MKAj_42pz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ul4oEeICJDjgfYTl4H1uaisTzVYIM6wd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WSF-OG8lKSe2wVYCv5D1aJNipxpgddk-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_ppD5j5sFh26aWW0JmhLzJMeNB-lCArk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WUp846dgWXYhu4oJfhHxiU6YL_7N6s4W/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1HRZNAIoAQw_uYiPwnBvtBioQoqiqoXdA/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hedGq-QDMnIn8GlXXBC3GiEJ_Y-LTxyt/view?usp=drive_link
|
||||
@@ -1,634 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Helper code for loading PushT dataset from Diffusion Policy (https://diffusion-policy.cs.columbia.edu/)
|
||||
|
||||
Copied from the original Diffusion Policy repository and used in our `download_and_upload_dataset.py` script.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import numbers
|
||||
import os
|
||||
from functools import cached_property
|
||||
|
||||
import numcodecs
|
||||
import numpy as np
|
||||
import zarr
|
||||
|
||||
|
||||
def check_chunks_compatible(chunks: tuple, shape: tuple):
|
||||
assert len(shape) == len(chunks)
|
||||
for c in chunks:
|
||||
assert isinstance(c, numbers.Integral)
|
||||
assert c > 0
|
||||
|
||||
|
||||
def rechunk_recompress_array(group, name, chunks=None, chunk_length=None, compressor=None, tmp_key="_temp"):
|
||||
old_arr = group[name]
|
||||
if chunks is None:
|
||||
chunks = (chunk_length,) + old_arr.chunks[1:] if chunk_length is not None else old_arr.chunks
|
||||
check_chunks_compatible(chunks, old_arr.shape)
|
||||
|
||||
if compressor is None:
|
||||
compressor = old_arr.compressor
|
||||
|
||||
if (chunks == old_arr.chunks) and (compressor == old_arr.compressor):
|
||||
# no change
|
||||
return old_arr
|
||||
|
||||
# rechunk recompress
|
||||
group.move(name, tmp_key)
|
||||
old_arr = group[tmp_key]
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy(
|
||||
source=old_arr,
|
||||
dest=group,
|
||||
name=name,
|
||||
chunks=chunks,
|
||||
compressor=compressor,
|
||||
)
|
||||
del group[tmp_key]
|
||||
arr = group[name]
|
||||
return arr
|
||||
|
||||
|
||||
def get_optimal_chunks(shape, dtype, target_chunk_bytes=2e6, max_chunk_length=None):
|
||||
"""
|
||||
Common shapes
|
||||
T,D
|
||||
T,N,D
|
||||
T,H,W,C
|
||||
T,N,H,W,C
|
||||
"""
|
||||
itemsize = np.dtype(dtype).itemsize
|
||||
# reversed
|
||||
rshape = list(shape[::-1])
|
||||
if max_chunk_length is not None:
|
||||
rshape[-1] = int(max_chunk_length)
|
||||
split_idx = len(shape) - 1
|
||||
for i in range(len(shape) - 1):
|
||||
this_chunk_bytes = itemsize * np.prod(rshape[:i])
|
||||
next_chunk_bytes = itemsize * np.prod(rshape[: i + 1])
|
||||
if this_chunk_bytes <= target_chunk_bytes and next_chunk_bytes > target_chunk_bytes:
|
||||
split_idx = i
|
||||
|
||||
rchunks = rshape[:split_idx]
|
||||
item_chunk_bytes = itemsize * np.prod(rshape[:split_idx])
|
||||
this_max_chunk_length = rshape[split_idx]
|
||||
next_chunk_length = min(this_max_chunk_length, math.ceil(target_chunk_bytes / item_chunk_bytes))
|
||||
rchunks.append(next_chunk_length)
|
||||
len_diff = len(shape) - len(rchunks)
|
||||
rchunks.extend([1] * len_diff)
|
||||
chunks = tuple(rchunks[::-1])
|
||||
# print(np.prod(chunks) * itemsize / target_chunk_bytes)
|
||||
return chunks
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
"""
|
||||
Zarr-based temporal datastructure.
|
||||
Assumes first dimension to be time. Only chunk in time dimension.
|
||||
"""
|
||||
|
||||
def __init__(self, root: zarr.Group | dict[str, dict]):
|
||||
"""
|
||||
Dummy constructor. Use copy_from* and create_from* class methods instead.
|
||||
"""
|
||||
assert "data" in root
|
||||
assert "meta" in root
|
||||
assert "episode_ends" in root["meta"]
|
||||
for value in root["data"].values():
|
||||
assert value.shape[0] == root["meta"]["episode_ends"][-1]
|
||||
self.root = root
|
||||
|
||||
# ============= create constructors ===============
|
||||
@classmethod
|
||||
def create_empty_zarr(cls, storage=None, root=None):
|
||||
if root is None:
|
||||
if storage is None:
|
||||
storage = zarr.MemoryStore()
|
||||
root = zarr.group(store=storage)
|
||||
root.require_group("data", overwrite=False)
|
||||
meta = root.require_group("meta", overwrite=False)
|
||||
if "episode_ends" not in meta:
|
||||
meta.zeros("episode_ends", shape=(0,), dtype=np.int64, compressor=None, overwrite=False)
|
||||
return cls(root=root)
|
||||
|
||||
@classmethod
|
||||
def create_empty_numpy(cls):
|
||||
root = {"data": {}, "meta": {"episode_ends": np.zeros((0,), dtype=np.int64)}}
|
||||
return cls(root=root)
|
||||
|
||||
@classmethod
|
||||
def create_from_group(cls, group, **kwargs):
|
||||
if "data" not in group:
|
||||
# create from stratch
|
||||
buffer = cls.create_empty_zarr(root=group, **kwargs)
|
||||
else:
|
||||
# already exist
|
||||
buffer = cls(root=group, **kwargs)
|
||||
return buffer
|
||||
|
||||
@classmethod
|
||||
def create_from_path(cls, zarr_path, mode="r", **kwargs):
|
||||
"""
|
||||
Open a on-disk zarr directly (for dataset larger than memory).
|
||||
Slower.
|
||||
"""
|
||||
group = zarr.open(os.path.expanduser(zarr_path), mode)
|
||||
return cls.create_from_group(group, **kwargs)
|
||||
|
||||
# ============= copy constructors ===============
|
||||
@classmethod
|
||||
def copy_from_store(
|
||||
cls,
|
||||
src_store,
|
||||
store=None,
|
||||
keys=None,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: dict | str | numcodecs.abc.Codec | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Load to memory.
|
||||
"""
|
||||
src_root = zarr.group(src_store)
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
root = None
|
||||
if store is None:
|
||||
# numpy backend
|
||||
meta = {}
|
||||
for key, value in src_root["meta"].items():
|
||||
if len(value.shape) == 0:
|
||||
meta[key] = np.array(value)
|
||||
else:
|
||||
meta[key] = value[:]
|
||||
|
||||
if keys is None:
|
||||
keys = src_root["data"].keys()
|
||||
data = {}
|
||||
for key in keys:
|
||||
arr = src_root["data"][key]
|
||||
data[key] = arr[:]
|
||||
|
||||
root = {"meta": meta, "data": data}
|
||||
else:
|
||||
root = zarr.group(store=store)
|
||||
# copy without recompression
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=src_store, dest=store, source_path="/meta", dest_path="/meta", if_exists=if_exists
|
||||
)
|
||||
data_group = root.create_group("data", overwrite=True)
|
||||
if keys is None:
|
||||
keys = src_root["data"].keys()
|
||||
for key in keys:
|
||||
value = src_root["data"][key]
|
||||
cks = cls._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = cls._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
if cks == value.chunks and cpr == value.compressor:
|
||||
# copy without recompression
|
||||
this_path = "/data/" + key
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=src_store,
|
||||
dest=store,
|
||||
source_path=this_path,
|
||||
dest_path=this_path,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
# copy with recompression
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy(
|
||||
source=value,
|
||||
dest=data_group,
|
||||
name=key,
|
||||
chunks=cks,
|
||||
compressor=cpr,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
buffer = cls(root=root)
|
||||
return buffer
|
||||
|
||||
@classmethod
|
||||
def copy_from_path(
|
||||
cls,
|
||||
zarr_path,
|
||||
backend=None,
|
||||
store=None,
|
||||
keys=None,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: dict | str | numcodecs.abc.Codec | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Copy a on-disk zarr to in-memory compressed.
|
||||
Recommended
|
||||
"""
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
if backend == "numpy":
|
||||
print("backend argument is deprecated!")
|
||||
store = None
|
||||
group = zarr.open(os.path.expanduser(zarr_path), "r")
|
||||
return cls.copy_from_store(
|
||||
src_store=group.store,
|
||||
store=store,
|
||||
keys=keys,
|
||||
chunks=chunks,
|
||||
compressors=compressors,
|
||||
if_exists=if_exists,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# ============= save methods ===============
|
||||
def save_to_store(
|
||||
self,
|
||||
store,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: str | numcodecs.abc.Codec | dict | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
root = zarr.group(store)
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
if self.backend == "zarr":
|
||||
# recompression free copy
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=self.root.store,
|
||||
dest=store,
|
||||
source_path="/meta",
|
||||
dest_path="/meta",
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
meta_group = root.create_group("meta", overwrite=True)
|
||||
# save meta, no chunking
|
||||
for key, value in self.root["meta"].items():
|
||||
_ = meta_group.array(name=key, data=value, shape=value.shape, chunks=value.shape)
|
||||
|
||||
# save data, chunk
|
||||
data_group = root.create_group("data", overwrite=True)
|
||||
for key, value in self.root["data"].items():
|
||||
cks = self._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = self._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
if isinstance(value, zarr.Array):
|
||||
if cks == value.chunks and cpr == value.compressor:
|
||||
# copy without recompression
|
||||
this_path = "/data/" + key
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy_store(
|
||||
source=self.root.store,
|
||||
dest=store,
|
||||
source_path=this_path,
|
||||
dest_path=this_path,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
# copy with recompression
|
||||
n_copied, n_skipped, n_bytes_copied = zarr.copy(
|
||||
source=value,
|
||||
dest=data_group,
|
||||
name=key,
|
||||
chunks=cks,
|
||||
compressor=cpr,
|
||||
if_exists=if_exists,
|
||||
)
|
||||
else:
|
||||
# numpy
|
||||
_ = data_group.array(name=key, data=value, chunks=cks, compressor=cpr)
|
||||
return store
|
||||
|
||||
def save_to_path(
|
||||
self,
|
||||
zarr_path,
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: str | numcodecs.abc.Codec | dict | None = None,
|
||||
if_exists="replace",
|
||||
**kwargs,
|
||||
):
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
store = zarr.DirectoryStore(os.path.expanduser(zarr_path))
|
||||
return self.save_to_store(
|
||||
store, chunks=chunks, compressors=compressors, if_exists=if_exists, **kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def resolve_compressor(compressor="default"):
|
||||
if compressor == "default":
|
||||
compressor = numcodecs.Blosc(cname="lz4", clevel=5, shuffle=numcodecs.Blosc.NOSHUFFLE)
|
||||
elif compressor == "disk":
|
||||
compressor = numcodecs.Blosc("zstd", clevel=5, shuffle=numcodecs.Blosc.BITSHUFFLE)
|
||||
return compressor
|
||||
|
||||
@classmethod
|
||||
def _resolve_array_compressor(cls, compressors: dict | str | numcodecs.abc.Codec, key, array):
|
||||
# allows compressor to be explicitly set to None
|
||||
cpr = "nil"
|
||||
if isinstance(compressors, dict):
|
||||
if key in compressors:
|
||||
cpr = cls.resolve_compressor(compressors[key])
|
||||
elif isinstance(array, zarr.Array):
|
||||
cpr = array.compressor
|
||||
else:
|
||||
cpr = cls.resolve_compressor(compressors)
|
||||
# backup default
|
||||
if cpr == "nil":
|
||||
cpr = cls.resolve_compressor("default")
|
||||
return cpr
|
||||
|
||||
@classmethod
|
||||
def _resolve_array_chunks(cls, chunks: dict | tuple, key, array):
|
||||
cks = None
|
||||
if isinstance(chunks, dict):
|
||||
if key in chunks:
|
||||
cks = chunks[key]
|
||||
elif isinstance(array, zarr.Array):
|
||||
cks = array.chunks
|
||||
elif isinstance(chunks, tuple):
|
||||
cks = chunks
|
||||
else:
|
||||
raise TypeError(f"Unsupported chunks type {type(chunks)}")
|
||||
# backup default
|
||||
if cks is None:
|
||||
cks = get_optimal_chunks(shape=array.shape, dtype=array.dtype)
|
||||
# check
|
||||
check_chunks_compatible(chunks=cks, shape=array.shape)
|
||||
return cks
|
||||
|
||||
# ============= properties =================
|
||||
@cached_property
|
||||
def data(self):
|
||||
return self.root["data"]
|
||||
|
||||
@cached_property
|
||||
def meta(self):
|
||||
return self.root["meta"]
|
||||
|
||||
def update_meta(self, data):
|
||||
# sanitize data
|
||||
np_data = {}
|
||||
for key, value in data.items():
|
||||
if isinstance(value, np.ndarray):
|
||||
np_data[key] = value
|
||||
else:
|
||||
arr = np.array(value)
|
||||
if arr.dtype == object:
|
||||
raise TypeError(f"Invalid value type {type(value)}")
|
||||
np_data[key] = arr
|
||||
|
||||
meta_group = self.meta
|
||||
if self.backend == "zarr":
|
||||
for key, value in np_data.items():
|
||||
_ = meta_group.array(
|
||||
name=key, data=value, shape=value.shape, chunks=value.shape, overwrite=True
|
||||
)
|
||||
else:
|
||||
meta_group.update(np_data)
|
||||
|
||||
return meta_group
|
||||
|
||||
@property
|
||||
def episode_ends(self):
|
||||
return self.meta["episode_ends"]
|
||||
|
||||
def get_episode_idxs(self):
|
||||
import numba
|
||||
|
||||
numba.jit(nopython=True)
|
||||
|
||||
def _get_episode_idxs(episode_ends):
|
||||
result = np.zeros((episode_ends[-1],), dtype=np.int64)
|
||||
for i in range(len(episode_ends)):
|
||||
start = 0
|
||||
if i > 0:
|
||||
start = episode_ends[i - 1]
|
||||
end = episode_ends[i]
|
||||
for idx in range(start, end):
|
||||
result[idx] = i
|
||||
return result
|
||||
|
||||
return _get_episode_idxs(self.episode_ends)
|
||||
|
||||
@property
|
||||
def backend(self):
|
||||
backend = "numpy"
|
||||
if isinstance(self.root, zarr.Group):
|
||||
backend = "zarr"
|
||||
return backend
|
||||
|
||||
# =========== dict-like API ==============
|
||||
def __repr__(self) -> str:
|
||||
if self.backend == "zarr":
|
||||
return str(self.root.tree())
|
||||
else:
|
||||
return super().__repr__()
|
||||
|
||||
def keys(self):
|
||||
return self.data.keys()
|
||||
|
||||
def values(self):
|
||||
return self.data.values()
|
||||
|
||||
def items(self):
|
||||
return self.data.items()
|
||||
|
||||
def __getitem__(self, key):
|
||||
return self.data[key]
|
||||
|
||||
def __contains__(self, key):
|
||||
return key in self.data
|
||||
|
||||
# =========== our API ==============
|
||||
@property
|
||||
def n_steps(self):
|
||||
if len(self.episode_ends) == 0:
|
||||
return 0
|
||||
return self.episode_ends[-1]
|
||||
|
||||
@property
|
||||
def n_episodes(self):
|
||||
return len(self.episode_ends)
|
||||
|
||||
@property
|
||||
def chunk_size(self):
|
||||
if self.backend == "zarr":
|
||||
return next(iter(self.data.arrays()))[-1].chunks[0]
|
||||
return None
|
||||
|
||||
@property
|
||||
def episode_lengths(self):
|
||||
ends = self.episode_ends[:]
|
||||
ends = np.insert(ends, 0, 0)
|
||||
lengths = np.diff(ends)
|
||||
return lengths
|
||||
|
||||
def add_episode(
|
||||
self,
|
||||
data: dict[str, np.ndarray],
|
||||
chunks: dict[str, tuple] | None = None,
|
||||
compressors: str | numcodecs.abc.Codec | dict | None = None,
|
||||
):
|
||||
if chunks is None:
|
||||
chunks = {}
|
||||
if compressors is None:
|
||||
compressors = {}
|
||||
assert len(data) > 0
|
||||
is_zarr = self.backend == "zarr"
|
||||
|
||||
curr_len = self.n_steps
|
||||
episode_length = None
|
||||
for value in data.values():
|
||||
assert len(value.shape) >= 1
|
||||
if episode_length is None:
|
||||
episode_length = len(value)
|
||||
else:
|
||||
assert episode_length == len(value)
|
||||
new_len = curr_len + episode_length
|
||||
|
||||
for key, value in data.items():
|
||||
new_shape = (new_len,) + value.shape[1:]
|
||||
# create array
|
||||
if key not in self.data:
|
||||
if is_zarr:
|
||||
cks = self._resolve_array_chunks(chunks=chunks, key=key, array=value)
|
||||
cpr = self._resolve_array_compressor(compressors=compressors, key=key, array=value)
|
||||
arr = self.data.zeros(
|
||||
name=key, shape=new_shape, chunks=cks, dtype=value.dtype, compressor=cpr
|
||||
)
|
||||
else:
|
||||
# copy data to prevent modify
|
||||
arr = np.zeros(shape=new_shape, dtype=value.dtype)
|
||||
self.data[key] = arr
|
||||
else:
|
||||
arr = self.data[key]
|
||||
assert value.shape[1:] == arr.shape[1:]
|
||||
# same method for both zarr and numpy
|
||||
if is_zarr:
|
||||
arr.resize(new_shape)
|
||||
else:
|
||||
arr.resize(new_shape, refcheck=False)
|
||||
# copy data
|
||||
arr[-value.shape[0] :] = value
|
||||
|
||||
# append to episode ends
|
||||
episode_ends = self.episode_ends
|
||||
if is_zarr:
|
||||
episode_ends.resize(episode_ends.shape[0] + 1)
|
||||
else:
|
||||
episode_ends.resize(episode_ends.shape[0] + 1, refcheck=False)
|
||||
episode_ends[-1] = new_len
|
||||
|
||||
# rechunk
|
||||
if is_zarr and episode_ends.chunks[0] < episode_ends.shape[0]:
|
||||
rechunk_recompress_array(self.meta, "episode_ends", chunk_length=int(episode_ends.shape[0] * 1.5))
|
||||
|
||||
def drop_episode(self):
|
||||
is_zarr = self.backend == "zarr"
|
||||
episode_ends = self.episode_ends[:].copy()
|
||||
assert len(episode_ends) > 0
|
||||
start_idx = 0
|
||||
if len(episode_ends) > 1:
|
||||
start_idx = episode_ends[-2]
|
||||
for value in self.data.values():
|
||||
new_shape = (start_idx,) + value.shape[1:]
|
||||
if is_zarr:
|
||||
value.resize(new_shape)
|
||||
else:
|
||||
value.resize(new_shape, refcheck=False)
|
||||
if is_zarr:
|
||||
self.episode_ends.resize(len(episode_ends) - 1)
|
||||
else:
|
||||
self.episode_ends.resize(len(episode_ends) - 1, refcheck=False)
|
||||
|
||||
def pop_episode(self):
|
||||
assert self.n_episodes > 0
|
||||
episode = self.get_episode(self.n_episodes - 1, copy=True)
|
||||
self.drop_episode()
|
||||
return episode
|
||||
|
||||
def extend(self, data):
|
||||
self.add_episode(data)
|
||||
|
||||
def get_episode(self, idx, copy=False):
|
||||
idx = list(range(len(self.episode_ends)))[idx]
|
||||
start_idx = 0
|
||||
if idx > 0:
|
||||
start_idx = self.episode_ends[idx - 1]
|
||||
end_idx = self.episode_ends[idx]
|
||||
result = self.get_steps_slice(start_idx, end_idx, copy=copy)
|
||||
return result
|
||||
|
||||
def get_episode_slice(self, idx):
|
||||
start_idx = 0
|
||||
if idx > 0:
|
||||
start_idx = self.episode_ends[idx - 1]
|
||||
end_idx = self.episode_ends[idx]
|
||||
return slice(start_idx, end_idx)
|
||||
|
||||
def get_steps_slice(self, start, stop, step=None, copy=False):
|
||||
_slice = slice(start, stop, step)
|
||||
|
||||
result = {}
|
||||
for key, value in self.data.items():
|
||||
x = value[_slice]
|
||||
if copy and isinstance(value, np.ndarray):
|
||||
x = x.copy()
|
||||
result[key] = x
|
||||
return result
|
||||
|
||||
# =========== chunking =============
|
||||
def get_chunks(self) -> dict:
|
||||
assert self.backend == "zarr"
|
||||
chunks = {}
|
||||
for key, value in self.data.items():
|
||||
chunks[key] = value.chunks
|
||||
return chunks
|
||||
|
||||
def set_chunks(self, chunks: dict):
|
||||
assert self.backend == "zarr"
|
||||
for key, value in chunks.items():
|
||||
if key in self.data:
|
||||
arr = self.data[key]
|
||||
if value != arr.chunks:
|
||||
check_chunks_compatible(chunks=value, shape=arr.shape)
|
||||
rechunk_recompress_array(self.data, key, chunks=value)
|
||||
|
||||
def get_compressors(self) -> dict:
|
||||
assert self.backend == "zarr"
|
||||
compressors = {}
|
||||
for key, value in self.data.items():
|
||||
compressors[key] = value.compressor
|
||||
return compressors
|
||||
|
||||
def set_compressors(self, compressors: dict):
|
||||
assert self.backend == "zarr"
|
||||
for key, value in compressors.items():
|
||||
if key in self.data:
|
||||
arr = self.data[key]
|
||||
compressor = self.resolve_compressor(value)
|
||||
if compressor != arr.compressor:
|
||||
rechunk_recompress_array(self.data, key, compressor=compressor)
|
||||
@@ -1,202 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This file contains download scripts for raw datasets.
|
||||
|
||||
Example of usage:
|
||||
```
|
||||
python lerobot/common/datasets/push_dataset_to_hub/_download_raw.py \
|
||||
--raw-dir data/lerobot-raw/pusht_raw \
|
||||
--repo-id lerobot-raw/pusht_raw
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
|
||||
|
||||
# {raw_repo_id: raw_format}
|
||||
AVAILABLE_RAW_REPO_IDS = {
|
||||
"lerobot-raw/aloha_mobile_cabinet_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_chair_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_elevator_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_shrimp_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_wash_pan_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_mobile_wipe_wine_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_insertion_human_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_insertion_scripted_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_transfer_cube_human_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_sim_transfer_cube_scripted_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_battery_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_candy_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_coffee_new_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_coffee_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_cups_open_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_fork_pick_up_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_pingpong_test_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_pro_pencil_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_screw_driver_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_tape_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_thread_velcro_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_towel_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_vinh_cup_left_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_vinh_cup_raw": "aloha_hdf5",
|
||||
"lerobot-raw/aloha_static_ziploc_slide_raw": "aloha_hdf5",
|
||||
"lerobot-raw/umi_cup_in_the_wild_raw": "umi_zarr",
|
||||
"lerobot-raw/pusht_raw": "pusht_zarr",
|
||||
"lerobot-raw/unitreeh1_fold_clothes_raw": "aloha_hdf5",
|
||||
"lerobot-raw/unitreeh1_rearrange_objects_raw": "aloha_hdf5",
|
||||
"lerobot-raw/unitreeh1_two_robot_greeting_raw": "aloha_hdf5",
|
||||
"lerobot-raw/unitreeh1_warehouse_raw": "aloha_hdf5",
|
||||
"lerobot-raw/xarm_lift_medium_raw": "xarm_pkl",
|
||||
"lerobot-raw/xarm_lift_medium_replay_raw": "xarm_pkl",
|
||||
"lerobot-raw/xarm_push_medium_raw": "xarm_pkl",
|
||||
"lerobot-raw/xarm_push_medium_replay_raw": "xarm_pkl",
|
||||
"lerobot-raw/fractal20220817_data_raw": "openx_rlds.fractal20220817_data",
|
||||
"lerobot-raw/kuka_raw": "openx_rlds.kuka",
|
||||
"lerobot-raw/bridge_openx_raw": "openx_rlds.bridge_openx",
|
||||
"lerobot-raw/taco_play_raw": "openx_rlds.taco_play",
|
||||
"lerobot-raw/jaco_play_raw": "openx_rlds.jaco_play",
|
||||
"lerobot-raw/berkeley_cable_routing_raw": "openx_rlds.berkeley_cable_routing",
|
||||
"lerobot-raw/roboturk_raw": "openx_rlds.roboturk",
|
||||
"lerobot-raw/nyu_door_opening_surprising_effectiveness_raw": "openx_rlds.nyu_door_opening_surprising_effectiveness",
|
||||
"lerobot-raw/viola_raw": "openx_rlds.viola",
|
||||
"lerobot-raw/berkeley_autolab_ur5_raw": "openx_rlds.berkeley_autolab_ur5",
|
||||
"lerobot-raw/toto_raw": "openx_rlds.toto",
|
||||
"lerobot-raw/language_table_raw": "openx_rlds.language_table",
|
||||
"lerobot-raw/columbia_cairlab_pusht_real_raw": "openx_rlds.columbia_cairlab_pusht_real",
|
||||
"lerobot-raw/stanford_kuka_multimodal_dataset_raw": "openx_rlds.stanford_kuka_multimodal_dataset",
|
||||
"lerobot-raw/nyu_rot_dataset_raw": "openx_rlds.nyu_rot_dataset",
|
||||
"lerobot-raw/io_ai_tech_raw": "openx_rlds.io_ai_tech",
|
||||
"lerobot-raw/stanford_hydra_dataset_raw": "openx_rlds.stanford_hydra_dataset",
|
||||
"lerobot-raw/austin_buds_dataset_raw": "openx_rlds.austin_buds_dataset",
|
||||
"lerobot-raw/nyu_franka_play_dataset_raw": "openx_rlds.nyu_franka_play_dataset",
|
||||
"lerobot-raw/maniskill_dataset_raw": "openx_rlds.maniskill_dataset",
|
||||
"lerobot-raw/furniture_bench_dataset_raw": "openx_rlds.furniture_bench_dataset",
|
||||
"lerobot-raw/cmu_franka_exploration_dataset_raw": "openx_rlds.cmu_franka_exploration_dataset",
|
||||
"lerobot-raw/ucsd_kitchen_dataset_raw": "openx_rlds.ucsd_kitchen_dataset",
|
||||
"lerobot-raw/ucsd_pick_and_place_dataset_raw": "openx_rlds.ucsd_pick_and_place_dataset",
|
||||
"lerobot-raw/spoc_raw": "openx_rlds.spoc",
|
||||
"lerobot-raw/austin_sailor_dataset_raw": "openx_rlds.austin_sailor_dataset",
|
||||
"lerobot-raw/austin_sirius_dataset_raw": "openx_rlds.austin_sirius_dataset",
|
||||
"lerobot-raw/bc_z_raw": "openx_rlds.bc_z",
|
||||
"lerobot-raw/utokyo_pr2_opening_fridge_raw": "openx_rlds.utokyo_pr2_opening_fridge",
|
||||
"lerobot-raw/utokyo_pr2_tabletop_manipulation_raw": "openx_rlds.utokyo_pr2_tabletop_manipulation",
|
||||
"lerobot-raw/utokyo_xarm_pick_and_place_raw": "openx_rlds.utokyo_xarm_pick_and_place",
|
||||
"lerobot-raw/utokyo_xarm_bimanual_raw": "openx_rlds.utokyo_xarm_bimanual",
|
||||
"lerobot-raw/utokyo_saytap_raw": "openx_rlds.utokyo_saytap",
|
||||
"lerobot-raw/robo_net_raw": "openx_rlds.robo_net",
|
||||
"lerobot-raw/robo_set_raw": "openx_rlds.robo_set",
|
||||
"lerobot-raw/berkeley_mvp_raw": "openx_rlds.berkeley_mvp",
|
||||
"lerobot-raw/berkeley_rpt_raw": "openx_rlds.berkeley_rpt",
|
||||
"lerobot-raw/kaist_nonprehensile_raw": "openx_rlds.kaist_nonprehensile",
|
||||
"lerobot-raw/stanford_mask_vit_raw": "openx_rlds.stanford_mask_vit",
|
||||
"lerobot-raw/tokyo_u_lsmo_raw": "openx_rlds.tokyo_u_lsmo",
|
||||
"lerobot-raw/dlr_sara_pour_raw": "openx_rlds.dlr_sara_pour",
|
||||
"lerobot-raw/dlr_sara_grid_clamp_raw": "openx_rlds.dlr_sara_grid_clamp",
|
||||
"lerobot-raw/dlr_edan_shared_control_raw": "openx_rlds.dlr_edan_shared_control",
|
||||
"lerobot-raw/asu_table_top_raw": "openx_rlds.asu_table_top",
|
||||
"lerobot-raw/stanford_robocook_raw": "openx_rlds.stanford_robocook",
|
||||
"lerobot-raw/imperialcollege_sawyer_wrist_cam_raw": "openx_rlds.imperialcollege_sawyer_wrist_cam",
|
||||
"lerobot-raw/iamlab_cmu_pickup_insert_raw": "openx_rlds.iamlab_cmu_pickup_insert",
|
||||
"lerobot-raw/uiuc_d3field_raw": "openx_rlds.uiuc_d3field",
|
||||
"lerobot-raw/utaustin_mutex_raw": "openx_rlds.utaustin_mutex",
|
||||
"lerobot-raw/berkeley_fanuc_manipulation_raw": "openx_rlds.berkeley_fanuc_manipulation",
|
||||
"lerobot-raw/cmu_playing_with_food_raw": "openx_rlds.cmu_playing_with_food",
|
||||
"lerobot-raw/cmu_play_fusion_raw": "openx_rlds.cmu_play_fusion",
|
||||
"lerobot-raw/cmu_stretch_raw": "openx_rlds.cmu_stretch",
|
||||
"lerobot-raw/berkeley_gnm_recon_raw": "openx_rlds.berkeley_gnm_recon",
|
||||
"lerobot-raw/berkeley_gnm_cory_hall_raw": "openx_rlds.berkeley_gnm_cory_hall",
|
||||
"lerobot-raw/berkeley_gnm_sac_son_raw": "openx_rlds.berkeley_gnm_sac_son",
|
||||
"lerobot-raw/droid_raw": "openx_rlds.droid",
|
||||
"lerobot-raw/droid_100_raw": "openx_rlds.droid100",
|
||||
"lerobot-raw/fmb_raw": "openx_rlds.fmb",
|
||||
"lerobot-raw/dobbe_raw": "openx_rlds.dobbe",
|
||||
"lerobot-raw/usc_cloth_sim_raw": "openx_rlds.usc_cloth_sim",
|
||||
"lerobot-raw/plex_robosuite_raw": "openx_rlds.plex_robosuite",
|
||||
"lerobot-raw/conq_hose_manipulation_raw": "openx_rlds.conq_hose_manipulation",
|
||||
"lerobot-raw/vima_raw": "openx_rlds.vima",
|
||||
"lerobot-raw/robot_vqa_raw": "openx_rlds.robot_vqa",
|
||||
"lerobot-raw/mimic_play_raw": "openx_rlds.mimic_play",
|
||||
"lerobot-raw/tidybot_raw": "openx_rlds.tidybot",
|
||||
"lerobot-raw/eth_agent_affordances_raw": "openx_rlds.eth_agent_affordances",
|
||||
}
|
||||
|
||||
|
||||
def download_raw(raw_dir: Path, repo_id: str):
|
||||
check_repo_id(repo_id)
|
||||
user_id, dataset_id = repo_id.split("/")
|
||||
|
||||
if not dataset_id.endswith("_raw"):
|
||||
warnings.warn(
|
||||
f"""`dataset_id` ({dataset_id}) doesn't end with '_raw' (e.g. 'lerobot/pusht_raw'). Following this
|
||||
naming convention by renaming your repository is advised, but not mandatory.""",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
# Send warning if raw_dir isn't well formated
|
||||
if raw_dir.parts[-2] != user_id or raw_dir.parts[-1] != dataset_id:
|
||||
warnings.warn(
|
||||
f"""`raw_dir` ({raw_dir}) doesn't contain a community or user id `/` the name of the dataset that
|
||||
match the `repo_id` (e.g. 'data/lerobot/pusht_raw'). Following this naming convention is advised,
|
||||
but not mandatory.""",
|
||||
stacklevel=1,
|
||||
)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
logging.info(f"Start downloading from huggingface.co/{user_id} for {dataset_id}")
|
||||
snapshot_download(repo_id, repo_type="dataset", local_dir=raw_dir)
|
||||
logging.info(f"Finish downloading from huggingface.co/{user_id} for {dataset_id}")
|
||||
|
||||
|
||||
def download_all_raw_datasets(data_dir: Path | None = None):
|
||||
if data_dir is None:
|
||||
data_dir = Path("data")
|
||||
for repo_id in AVAILABLE_RAW_REPO_IDS:
|
||||
raw_dir = data_dir / repo_id
|
||||
download_raw(raw_dir, repo_id)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description=f"""A script to download raw datasets from Hugging Face hub to a local directory. Here is a
|
||||
non exhaustive list of available repositories to use in `--repo-id`: {list(AVAILABLE_RAW_REPO_IDS.keys())}""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
required=True,
|
||||
help="Directory containing input raw datasets (e.g. `data/aloha_mobile_chair_raw` or `data/pusht_raw).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
required=True,
|
||||
help="""Repositery identifier on Hugging Face: a community or a user name `/` the name of
|
||||
the dataset (e.g. `lerobot/pusht_raw`, `cadene/aloha_sim_insertion_human_raw`).""",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
download_raw(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,184 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Use this script to batch encode lerobot dataset from their raw format to LeRobotDataset and push their updated
|
||||
version to the hub. Under the hood, this script reuses 'push_dataset_to_hub.py'. It assumes that you already
|
||||
downloaded raw datasets, which you can do with the related '_download_raw.py' script.
|
||||
|
||||
For instance, for codebase_version = 'v1.6', the following command was run, assuming raw datasets from
|
||||
lerobot-raw were downloaded in 'raw/datasets/directory':
|
||||
```bash
|
||||
python lerobot/common/datasets/push_dataset_to_hub/_encode_datasets.py \
|
||||
--raw-dir raw/datasets/directory \
|
||||
--raw-repo-ids lerobot-raw \
|
||||
--local-dir push/datasets/directory \
|
||||
--tests-data-dir tests/data \
|
||||
--push-repo lerobot \
|
||||
--vcodec libsvtav1 \
|
||||
--pix-fmt yuv420p \
|
||||
--g 2 \
|
||||
--crf 30
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub._download_raw import AVAILABLE_RAW_REPO_IDS
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import check_repo_id
|
||||
from lerobot.scripts.push_dataset_to_hub import push_dataset_to_hub
|
||||
|
||||
|
||||
def get_push_repo_id_from_raw(raw_repo_id: str, push_repo: str) -> str:
|
||||
dataset_id_raw = raw_repo_id.split("/")[1]
|
||||
dataset_id = dataset_id_raw.removesuffix("_raw")
|
||||
return f"{push_repo}/{dataset_id}"
|
||||
|
||||
|
||||
def encode_datasets(
|
||||
raw_dir: Path,
|
||||
raw_repo_ids: list[str],
|
||||
push_repo: str,
|
||||
vcodec: str,
|
||||
pix_fmt: str,
|
||||
g: int,
|
||||
crf: int,
|
||||
local_dir: Path | None = None,
|
||||
tests_data_dir: Path | None = None,
|
||||
raw_format: str | None = None,
|
||||
dry_run: bool = False,
|
||||
) -> None:
|
||||
if len(raw_repo_ids) == 1 and raw_repo_ids[0].lower() == "lerobot-raw":
|
||||
raw_repo_ids_format = AVAILABLE_RAW_REPO_IDS
|
||||
else:
|
||||
if raw_format is None:
|
||||
raise ValueError(raw_format)
|
||||
raw_repo_ids_format = {id_: raw_format for id_ in raw_repo_ids}
|
||||
|
||||
for raw_repo_id, repo_raw_format in raw_repo_ids_format.items():
|
||||
check_repo_id(raw_repo_id)
|
||||
dataset_repo_id_push = get_push_repo_id_from_raw(raw_repo_id, push_repo)
|
||||
dataset_raw_dir = raw_dir / raw_repo_id
|
||||
dataset_dir = local_dir / dataset_repo_id_push if local_dir is not None else None
|
||||
encoding = {
|
||||
"vcodec": vcodec,
|
||||
"pix_fmt": pix_fmt,
|
||||
"g": g,
|
||||
"crf": crf,
|
||||
}
|
||||
|
||||
if not (dataset_raw_dir).is_dir():
|
||||
raise NotADirectoryError(dataset_raw_dir)
|
||||
|
||||
if not dry_run:
|
||||
push_dataset_to_hub(
|
||||
dataset_raw_dir,
|
||||
raw_format=repo_raw_format,
|
||||
repo_id=dataset_repo_id_push,
|
||||
local_dir=dataset_dir,
|
||||
resume=True,
|
||||
encoding=encoding,
|
||||
tests_data_dir=tests_data_dir,
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"DRY RUN: {dataset_raw_dir} --> {dataset_dir} --> {dataset_repo_id_push}@{CODEBASE_VERSION}"
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--raw-dir",
|
||||
type=Path,
|
||||
default=Path("data"),
|
||||
help="Directory where raw datasets are located.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--raw-repo-ids",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=["lerobot-raw"],
|
||||
help="""Raw dataset repo ids. if 'lerobot-raw', the keys from `AVAILABLE_RAW_REPO_IDS` will be
|
||||
used and raw datasets will be fetched from the 'lerobot-raw/' repo and pushed with their
|
||||
associated format. It is assumed that each dataset is located at `raw_dir / raw_repo_id` """,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--raw-format",
|
||||
type=str,
|
||||
default=None,
|
||||
help="""Raw format to use for the raw repo-ids. Must be specified if --raw-repo-ids is not
|
||||
'lerobot-raw'""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--local-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="""When provided, writes the dataset converted to LeRobotDataset format in this directory
|
||||
(e.g. `data/lerobot/aloha_mobile_chair`).""",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--push-repo",
|
||||
type=str,
|
||||
default="lerobot",
|
||||
help="Repo to upload datasets to",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vcodec",
|
||||
type=str,
|
||||
default="libsvtav1",
|
||||
help="Codec to use for encoding videos",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--pix-fmt",
|
||||
type=str,
|
||||
default="yuv420p",
|
||||
help="Pixel formats (chroma subsampling) to be used for encoding",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--g",
|
||||
type=int,
|
||||
default=2,
|
||||
help="Group of pictures sizes to be used for encoding.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--crf",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Constant rate factors to be used for encoding.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tests-data-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help=(
|
||||
"When provided, save tests artifacts into the given directory "
|
||||
"(e.g. `--tests-data-dir tests/data` will save to tests/data/{--repo-id})."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dry-run",
|
||||
type=int,
|
||||
default=0,
|
||||
help="If not set to 0, this script won't download or upload anything.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
encode_datasets(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,326 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# imagecodecs/numcodecs.py
|
||||
|
||||
# Copyright (c) 2021-2022, Christoph Gohlke
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice,
|
||||
# this list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# 3. Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
# Copied from: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/codecs/imagecodecs_numcodecs.py#L1
|
||||
"""Additional numcodecs implemented using imagecodecs."""
|
||||
|
||||
__version__ = "2022.9.26"
|
||||
|
||||
__all__ = ("register_codecs",)
|
||||
|
||||
import imagecodecs
|
||||
import numpy
|
||||
from numcodecs.abc import Codec
|
||||
from numcodecs.registry import get_codec, register_codec
|
||||
|
||||
# TODO (azouitine): Remove useless codecs
|
||||
|
||||
|
||||
def protective_squeeze(x: numpy.ndarray):
|
||||
"""
|
||||
Squeeze dim only if it's not the last dim.
|
||||
Image dim expected to be *, H, W, C
|
||||
"""
|
||||
img_shape = x.shape[-3:]
|
||||
if len(x.shape) > 3:
|
||||
n_imgs = numpy.prod(x.shape[:-3])
|
||||
if n_imgs > 1:
|
||||
img_shape = (-1,) + img_shape
|
||||
return x.reshape(img_shape)
|
||||
|
||||
|
||||
def get_default_image_compressor(**kwargs):
|
||||
if imagecodecs.JPEGXL:
|
||||
# has JPEGXL
|
||||
this_kwargs = {
|
||||
"effort": 3,
|
||||
"distance": 0.3,
|
||||
# bug in libjxl, invalid codestream for non-lossless
|
||||
# when decoding speed > 1
|
||||
"decodingspeed": 1,
|
||||
}
|
||||
this_kwargs.update(kwargs)
|
||||
return JpegXl(**this_kwargs)
|
||||
else:
|
||||
this_kwargs = {"level": 50}
|
||||
this_kwargs.update(kwargs)
|
||||
return Jpeg2k(**this_kwargs)
|
||||
|
||||
|
||||
class Jpeg2k(Codec):
|
||||
"""JPEG 2000 codec for numcodecs."""
|
||||
|
||||
codec_id = "imagecodecs_jpeg2k"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
level=None,
|
||||
codecformat=None,
|
||||
colorspace=None,
|
||||
tile=None,
|
||||
reversible=None,
|
||||
bitspersample=None,
|
||||
resolutions=None,
|
||||
numthreads=None,
|
||||
verbose=0,
|
||||
):
|
||||
self.level = level
|
||||
self.codecformat = codecformat
|
||||
self.colorspace = colorspace
|
||||
self.tile = None if tile is None else tuple(tile)
|
||||
self.reversible = reversible
|
||||
self.bitspersample = bitspersample
|
||||
self.resolutions = resolutions
|
||||
self.numthreads = numthreads
|
||||
self.verbose = verbose
|
||||
|
||||
def encode(self, buf):
|
||||
buf = protective_squeeze(numpy.asarray(buf))
|
||||
return imagecodecs.jpeg2k_encode(
|
||||
buf,
|
||||
level=self.level,
|
||||
codecformat=self.codecformat,
|
||||
colorspace=self.colorspace,
|
||||
tile=self.tile,
|
||||
reversible=self.reversible,
|
||||
bitspersample=self.bitspersample,
|
||||
resolutions=self.resolutions,
|
||||
numthreads=self.numthreads,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
|
||||
def decode(self, buf, out=None):
|
||||
return imagecodecs.jpeg2k_decode(buf, verbose=self.verbose, numthreads=self.numthreads, out=out)
|
||||
|
||||
|
||||
class JpegXl(Codec):
|
||||
"""JPEG XL codec for numcodecs."""
|
||||
|
||||
codec_id = "imagecodecs_jpegxl"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
# encode
|
||||
level=None,
|
||||
effort=None,
|
||||
distance=None,
|
||||
lossless=None,
|
||||
decodingspeed=None,
|
||||
photometric=None,
|
||||
planar=None,
|
||||
usecontainer=None,
|
||||
# decode
|
||||
index=None,
|
||||
keeporientation=None,
|
||||
# both
|
||||
numthreads=None,
|
||||
):
|
||||
"""
|
||||
Return JPEG XL image from numpy array.
|
||||
Float must be in nominal range 0..1.
|
||||
|
||||
Currently L, LA, RGB, RGBA images are supported in contig mode.
|
||||
Extra channels are only supported for grayscale images in planar mode.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
level : Default to None, i.e. not overwriting lossess and decodingspeed options.
|
||||
When < 0: Use lossless compression
|
||||
When in [0,1,2,3,4]: Sets the decoding speed tier for the provided options.
|
||||
Minimum is 0 (slowest to decode, best quality/density), and maximum
|
||||
is 4 (fastest to decode, at the cost of some quality/density).
|
||||
effort : Default to 3.
|
||||
Sets encoder effort/speed level without affecting decoding speed.
|
||||
Valid values are, from faster to slower speed: 1:lightning 2:thunder
|
||||
3:falcon 4:cheetah 5:hare 6:wombat 7:squirrel 8:kitten 9:tortoise.
|
||||
Speed: lightning, thunder, falcon, cheetah, hare, wombat, squirrel, kitten, tortoise
|
||||
control the encoder effort in ascending order.
|
||||
This also affects memory usage: using lower effort will typically reduce memory
|
||||
consumption during encoding.
|
||||
lightning and thunder are fast modes useful for lossless mode (modular).
|
||||
falcon disables all of the following tools.
|
||||
cheetah enables coefficient reordering, context clustering, and heuristics for selecting DCT sizes and quantization steps.
|
||||
hare enables Gaborish filtering, chroma from luma, and an initial estimate of quantization steps.
|
||||
wombat enables error diffusion quantization and full DCT size selection heuristics.
|
||||
squirrel (default) enables dots, patches, and spline detection, and full context clustering.
|
||||
kitten optimizes the adaptive quantization for a psychovisual metric.
|
||||
tortoise enables a more thorough adaptive quantization search.
|
||||
distance : Default to 1.0
|
||||
Sets the distance level for lossy compression: target max butteraugli distance,
|
||||
lower = higher quality. Range: 0 .. 15. 0.0 = mathematically lossless
|
||||
(however, use JxlEncoderSetFrameLossless instead to use true lossless,
|
||||
as setting distance to 0 alone is not the only requirement).
|
||||
1.0 = visually lossless. Recommended range: 0.5 .. 3.0.
|
||||
lossess : Default to False.
|
||||
Use lossess encoding.
|
||||
decodingspeed : Default to 0.
|
||||
Duplicate to level. [0,4]
|
||||
photometric : Return JxlColorSpace value.
|
||||
Default logic is quite complicated but works most of the time.
|
||||
Accepted value:
|
||||
int: [-1,3]
|
||||
str: ['RGB',
|
||||
'WHITEISZERO', 'MINISWHITE',
|
||||
'BLACKISZERO', 'MINISBLACK', 'GRAY',
|
||||
'XYB', 'KNOWN']
|
||||
planar : Enable multi-channel mode.
|
||||
Default to false.
|
||||
usecontainer :
|
||||
Forces the encoder to use the box-based container format (BMFF)
|
||||
even when not necessary.
|
||||
When using JxlEncoderUseBoxes, JxlEncoderStoreJPEGMetadata or
|
||||
JxlEncoderSetCodestreamLevel with level 10, the encoder will
|
||||
automatically also use the container format, it is not necessary
|
||||
to use JxlEncoderUseContainer for those use cases.
|
||||
By default this setting is disabled.
|
||||
index : Selectively decode frames for animation.
|
||||
Default to 0, decode all frames.
|
||||
When set to > 0, decode that frame index only.
|
||||
keeporientation :
|
||||
Enables or disables preserving of as-in-bitstream pixeldata orientation.
|
||||
Some images are encoded with an Orientation tag indicating that the
|
||||
decoder must perform a rotation and/or mirroring to the encoded image data.
|
||||
|
||||
If skip_reorientation is JXL_FALSE (the default): the decoder will apply
|
||||
the transformation from the orientation setting, hence rendering the image
|
||||
according to its specified intent. When producing a JxlBasicInfo, the decoder
|
||||
will always set the orientation field to JXL_ORIENT_IDENTITY (matching the
|
||||
returned pixel data) and also align xsize and ysize so that they correspond
|
||||
to the width and the height of the returned pixel data.
|
||||
|
||||
If skip_reorientation is JXL_TRUE: the decoder will skip applying the
|
||||
transformation from the orientation setting, returning the image in
|
||||
the as-in-bitstream pixeldata orientation. This may be faster to decode
|
||||
since the decoder doesnt have to apply the transformation, but can
|
||||
cause wrong display of the image if the orientation tag is not correctly
|
||||
taken into account by the user.
|
||||
|
||||
By default, this option is disabled, and the returned pixel data is
|
||||
re-oriented according to the images Orientation setting.
|
||||
threads : Default to 1.
|
||||
If <= 0, use all cores.
|
||||
If > 32, clipped to 32.
|
||||
"""
|
||||
|
||||
self.level = level
|
||||
self.effort = effort
|
||||
self.distance = distance
|
||||
self.lossless = bool(lossless)
|
||||
self.decodingspeed = decodingspeed
|
||||
self.photometric = photometric
|
||||
self.planar = planar
|
||||
self.usecontainer = usecontainer
|
||||
self.index = index
|
||||
self.keeporientation = keeporientation
|
||||
self.numthreads = numthreads
|
||||
|
||||
def encode(self, buf):
|
||||
# TODO: only squeeze all but last dim
|
||||
buf = protective_squeeze(numpy.asarray(buf))
|
||||
return imagecodecs.jpegxl_encode(
|
||||
buf,
|
||||
level=self.level,
|
||||
effort=self.effort,
|
||||
distance=self.distance,
|
||||
lossless=self.lossless,
|
||||
decodingspeed=self.decodingspeed,
|
||||
photometric=self.photometric,
|
||||
planar=self.planar,
|
||||
usecontainer=self.usecontainer,
|
||||
numthreads=self.numthreads,
|
||||
)
|
||||
|
||||
def decode(self, buf, out=None):
|
||||
return imagecodecs.jpegxl_decode(
|
||||
buf,
|
||||
index=self.index,
|
||||
keeporientation=self.keeporientation,
|
||||
numthreads=self.numthreads,
|
||||
out=out,
|
||||
)
|
||||
|
||||
|
||||
def _flat(out):
|
||||
"""Return numpy array as contiguous view of bytes if possible."""
|
||||
if out is None:
|
||||
return None
|
||||
view = memoryview(out)
|
||||
if view.readonly or not view.contiguous:
|
||||
return None
|
||||
return view.cast("B")
|
||||
|
||||
|
||||
def register_codecs(codecs=None, force=False, verbose=True):
|
||||
"""Register codecs in this module with numcodecs."""
|
||||
for name, cls in globals().items():
|
||||
if not hasattr(cls, "codec_id") or name == "Codec":
|
||||
continue
|
||||
if codecs is not None and cls.codec_id not in codecs:
|
||||
continue
|
||||
try:
|
||||
try: # noqa: SIM105
|
||||
get_codec({"id": cls.codec_id})
|
||||
except TypeError:
|
||||
# registered, but failed
|
||||
pass
|
||||
except ValueError:
|
||||
# not registered yet
|
||||
pass
|
||||
else:
|
||||
if not force:
|
||||
if verbose:
|
||||
log_warning(f"numcodec {cls.codec_id!r} already registered")
|
||||
continue
|
||||
if verbose:
|
||||
log_warning(f"replacing registered numcodec {cls.codec_id!r}")
|
||||
register_codec(cls)
|
||||
|
||||
|
||||
def log_warning(msg, *args, **kwargs):
|
||||
"""Log message with level WARNING."""
|
||||
import logging
|
||||
|
||||
logging.getLogger(__name__).warning(msg, *args, **kwargs)
|
||||
@@ -1,233 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contains utilities to process raw data format of HDF5 files like in: https://github.com/tonyzhaozh/act
|
||||
"""
|
||||
|
||||
import gc
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def get_cameras(hdf5_data):
|
||||
# ignore depth channel, not currently handled
|
||||
# TODO(rcadene): add depth
|
||||
rgb_cameras = [key for key in hdf5_data["/observations/images"].keys() if "depth" not in key] # noqa: SIM118
|
||||
return rgb_cameras
|
||||
|
||||
|
||||
def check_format(raw_dir) -> bool:
|
||||
# only frames from simulation are uncompressed
|
||||
compressed_images = "sim" not in raw_dir.name
|
||||
|
||||
hdf5_paths = list(raw_dir.glob("episode_*.hdf5"))
|
||||
assert len(hdf5_paths) != 0
|
||||
for hdf5_path in hdf5_paths:
|
||||
with h5py.File(hdf5_path, "r") as data:
|
||||
assert "/action" in data
|
||||
assert "/observations/qpos" in data
|
||||
|
||||
assert data["/action"].ndim == 2
|
||||
assert data["/observations/qpos"].ndim == 2
|
||||
|
||||
num_frames = data["/action"].shape[0]
|
||||
assert num_frames == data["/observations/qpos"].shape[0]
|
||||
|
||||
for camera in get_cameras(data):
|
||||
assert num_frames == data[f"/observations/images/{camera}"].shape[0]
|
||||
|
||||
if compressed_images:
|
||||
assert data[f"/observations/images/{camera}"].ndim == 2
|
||||
else:
|
||||
assert data[f"/observations/images/{camera}"].ndim == 4
|
||||
b, h, w, c = data[f"/observations/images/{camera}"].shape
|
||||
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# only frames from simulation are uncompressed
|
||||
compressed_images = "sim" not in raw_dir.name
|
||||
|
||||
hdf5_files = sorted(raw_dir.glob("episode_*.hdf5"))
|
||||
num_episodes = len(hdf5_files)
|
||||
|
||||
ep_dicts = []
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx in tqdm.tqdm(ep_ids):
|
||||
ep_path = hdf5_files[ep_idx]
|
||||
with h5py.File(ep_path, "r") as ep:
|
||||
num_frames = ep["/action"].shape[0]
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
done[-1] = True
|
||||
|
||||
state = torch.from_numpy(ep["/observations/qpos"][:])
|
||||
action = torch.from_numpy(ep["/action"][:])
|
||||
if "/observations/qvel" in ep:
|
||||
velocity = torch.from_numpy(ep["/observations/qvel"][:])
|
||||
if "/observations/effort" in ep:
|
||||
effort = torch.from_numpy(ep["/observations/effort"][:])
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
for camera in get_cameras(ep):
|
||||
img_key = f"observation.images.{camera}"
|
||||
|
||||
if compressed_images:
|
||||
import cv2
|
||||
|
||||
# load one compressed image after the other in RAM and uncompress
|
||||
imgs_array = []
|
||||
for data in ep[f"/observations/images/{camera}"]:
|
||||
imgs_array.append(cv2.imdecode(data, 1))
|
||||
imgs_array = np.array(imgs_array)
|
||||
|
||||
else:
|
||||
# load all images in RAM
|
||||
imgs_array = ep[f"/observations/images/{camera}"][:]
|
||||
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
if "/observations/velocity" in ep:
|
||||
ep_dict["observation.velocity"] = velocity
|
||||
if "/observations/effort" in ep:
|
||||
ep_dict["observation.effort"] = effort
|
||||
ep_dict["action"] = action
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["next.done"] = done
|
||||
# TODO(rcadene): add reward and success by computing them in sim
|
||||
|
||||
assert isinstance(ep_idx, int)
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
gc.collect()
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
|
||||
keys = [key for key in data_dict if "observation.images." in key]
|
||||
for key in keys:
|
||||
if video:
|
||||
features[key] = VideoFrame()
|
||||
else:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 50
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,107 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contains utilities to process raw data format of png images files recorded with capture_camera_feed.py
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from datasets import Dataset, Features, Image, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
concatenate_episodes,
|
||||
)
|
||||
from lerobot.common.datasets.utils import hf_transform_to_torch
|
||||
from lerobot.common.datasets.video_utils import VideoFrame
|
||||
|
||||
|
||||
def check_format(raw_dir: Path) -> bool:
|
||||
image_paths = list(raw_dir.glob("frame_*.png"))
|
||||
if len(image_paths) == 0:
|
||||
raise ValueError
|
||||
|
||||
|
||||
def load_from_raw(raw_dir: Path, fps: int, episodes: list[int] | None = None):
|
||||
if episodes is not None:
|
||||
# TODO(aliberts): add support for multi-episodes.
|
||||
raise NotImplementedError()
|
||||
|
||||
ep_dict = {}
|
||||
ep_idx = 0
|
||||
|
||||
image_paths = sorted(raw_dir.glob("frame_*.png"))
|
||||
num_frames = len(image_paths)
|
||||
|
||||
ep_dict["observation.image"] = [PILImage.open(x) for x in image_paths]
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
|
||||
ep_dicts = [ep_dict]
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
if video or episodes or encoding is not None:
|
||||
# TODO(aliberts): support this
|
||||
raise NotImplementedError
|
||||
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 30
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,233 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contains utilities to process raw data format from dora-record
|
||||
"""
|
||||
|
||||
import re
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame
|
||||
|
||||
|
||||
def check_format(raw_dir) -> bool:
|
||||
assert raw_dir.exists()
|
||||
|
||||
leader_file = list(raw_dir.glob("*.parquet"))
|
||||
if len(leader_file) == 0:
|
||||
raise ValueError(f"Missing parquet files in '{raw_dir}'")
|
||||
return True
|
||||
|
||||
|
||||
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
|
||||
# Load data stream that will be used as reference for the timestamps synchronization
|
||||
reference_files = list(raw_dir.glob("observation.images.cam_*.parquet"))
|
||||
if len(reference_files) == 0:
|
||||
raise ValueError(f"Missing reference files for camera, starting with in '{raw_dir}'")
|
||||
# select first camera in alphanumeric order
|
||||
reference_key = sorted(reference_files)[0].stem
|
||||
reference_df = pd.read_parquet(raw_dir / f"{reference_key}.parquet")
|
||||
reference_df = reference_df[["timestamp_utc", reference_key]]
|
||||
|
||||
# Merge all data stream using nearest backward strategy
|
||||
df = reference_df
|
||||
for path in raw_dir.glob("*.parquet"):
|
||||
key = path.stem # action or observation.state or ...
|
||||
if key == reference_key:
|
||||
continue
|
||||
if "failed_episode_index" in key:
|
||||
# TODO(rcadene): add support for removing episodes that are tagged as "failed"
|
||||
continue
|
||||
modality_df = pd.read_parquet(path)
|
||||
modality_df = modality_df[["timestamp_utc", key]]
|
||||
df = pd.merge_asof(
|
||||
df,
|
||||
modality_df,
|
||||
on="timestamp_utc",
|
||||
# "nearest" is the best option over "backward", since the latter can desynchronizes camera timestamps by
|
||||
# matching timestamps that are too far appart, in order to fit the backward constraints. It's not the case for "nearest".
|
||||
# However, note that "nearest" might synchronize the reference camera with other cameras on slightly future timestamps.
|
||||
# are too far appart.
|
||||
direction="nearest",
|
||||
tolerance=pd.Timedelta(f"{1 / fps} seconds"),
|
||||
)
|
||||
# Remove rows with episode_index -1 which indicates data that correspond to in-between episodes
|
||||
df = df[df["episode_index"] != -1]
|
||||
|
||||
image_keys = [key for key in df if "observation.images." in key]
|
||||
|
||||
def get_episode_index(row):
|
||||
episode_index_per_cam = {}
|
||||
for key in image_keys:
|
||||
path = row[key][0]["path"]
|
||||
match = re.search(r"_(\d{6}).mp4", path)
|
||||
if not match:
|
||||
raise ValueError(path)
|
||||
episode_index = int(match.group(1))
|
||||
episode_index_per_cam[key] = episode_index
|
||||
if len(set(episode_index_per_cam.values())) != 1:
|
||||
raise ValueError(
|
||||
f"All cameras are expected to belong to the same episode, but getting {episode_index_per_cam}"
|
||||
)
|
||||
return episode_index
|
||||
|
||||
df["episode_index"] = df.apply(get_episode_index, axis=1)
|
||||
|
||||
# dora only use arrays, so single values are encapsulated into a list
|
||||
df["frame_index"] = df.groupby("episode_index").cumcount()
|
||||
df = df.reset_index()
|
||||
df["index"] = df.index
|
||||
|
||||
# set 'next.done' to True for the last frame of each episode
|
||||
df["next.done"] = False
|
||||
df.loc[df.groupby("episode_index").tail(1).index, "next.done"] = True
|
||||
|
||||
df["timestamp"] = df["timestamp_utc"].map(lambda x: x.timestamp())
|
||||
# each episode starts with timestamp 0 to match the ones from the video
|
||||
df["timestamp"] = df.groupby("episode_index")["timestamp"].transform(lambda x: x - x.iloc[0])
|
||||
|
||||
del df["timestamp_utc"]
|
||||
|
||||
# sanity check
|
||||
has_nan = df.isna().any().any()
|
||||
if has_nan:
|
||||
raise ValueError("Dataset contains Nan values.")
|
||||
|
||||
# sanity check episode indices go from 0 to n-1
|
||||
ep_ids = [ep_idx for ep_idx, _ in df.groupby("episode_index")]
|
||||
expected_ep_ids = list(range(df["episode_index"].max() + 1))
|
||||
if ep_ids != expected_ep_ids:
|
||||
raise ValueError(f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}")
|
||||
|
||||
# Create symlink to raw videos directory (that needs to be absolute not relative)
|
||||
videos_dir.parent.mkdir(parents=True, exist_ok=True)
|
||||
videos_dir.symlink_to((raw_dir / "videos").absolute())
|
||||
|
||||
# sanity check the video paths are well formated
|
||||
for key in df:
|
||||
if "observation.images." not in key:
|
||||
continue
|
||||
for ep_idx in ep_ids:
|
||||
video_path = videos_dir / f"{key}_episode_{ep_idx:06d}.mp4"
|
||||
if not video_path.exists():
|
||||
raise ValueError(f"Video file not found in {video_path}")
|
||||
|
||||
data_dict = {}
|
||||
for key in df:
|
||||
# is video frame
|
||||
if "observation.images." in key:
|
||||
# we need `[0] because dora only use arrays, so single values are encapsulated into a list.
|
||||
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
|
||||
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
|
||||
|
||||
# sanity check the video path is well formated
|
||||
video_path = videos_dir.parent / data_dict[key][0]["path"]
|
||||
if not video_path.exists():
|
||||
raise ValueError(f"Video file not found in {video_path}")
|
||||
# is number
|
||||
elif df[key].iloc[0].ndim == 0 or df[key].iloc[0].shape[0] == 1:
|
||||
data_dict[key] = torch.from_numpy(df[key].values)
|
||||
# is vector
|
||||
elif df[key].iloc[0].shape[0] > 1:
|
||||
data_dict[key] = torch.stack([torch.from_numpy(x.copy()) for x in df[key].values])
|
||||
else:
|
||||
raise ValueError(key)
|
||||
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
|
||||
keys = [key for key in data_dict if "observation.images." in key]
|
||||
for key in keys:
|
||||
if video:
|
||||
features[key] = VideoFrame()
|
||||
else:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 30
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
if not video:
|
||||
raise NotImplementedError()
|
||||
|
||||
if encoding is not None:
|
||||
warnings.warn(
|
||||
"Video encoding is currently done outside of LeRobot for the dora_parquet format.",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
data_df = load_from_raw(raw_dir, videos_dir, fps, episodes)
|
||||
hf_dataset = to_hf_dataset(data_df, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = "unknown"
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,312 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
For all datasets in the RLDS format.
|
||||
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
|
||||
|
||||
NOTE: You need to install tensorflow and tensorflow_datsets before running this script.
|
||||
|
||||
Example:
|
||||
python lerobot/scripts/push_dataset_to_hub.py \
|
||||
--raw-dir /path/to/data/bridge_dataset/1.0.0/ \
|
||||
--repo-id your_hub/sampled_bridge_data_v2 \
|
||||
--raw-format rlds \
|
||||
--episodes 3 4 5 8 9
|
||||
|
||||
Exact dataset fps defined in openx/config.py, obtained from:
|
||||
https://docs.google.com/spreadsheets/d/1rPBD77tk60AEIGZrGSODwyyzs5FgCU9Uz3h-3_t2A9g/edit?gid=0#gid=0&range=R:R
|
||||
"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
np.set_printoptions(precision=2)
|
||||
|
||||
|
||||
def tf_to_torch(data):
|
||||
return torch.from_numpy(data.numpy())
|
||||
|
||||
|
||||
def tf_img_convert(img):
|
||||
if img.dtype == tf.string:
|
||||
img = tf.io.decode_image(img, expand_animations=False, dtype=tf.uint8)
|
||||
elif img.dtype != tf.uint8:
|
||||
raise ValueError(f"Unsupported image dtype: found with dtype {img.dtype}")
|
||||
return img.numpy()
|
||||
|
||||
|
||||
def _broadcast_metadata_rlds(i: tf.Tensor, traj: dict) -> dict:
|
||||
"""
|
||||
In the RLDS format, each trajectory has some top-level metadata that is explicitly separated out, and a "steps"
|
||||
entry. This function moves the "steps" entry to the top level, broadcasting any metadata to the length of the
|
||||
trajectory. This function also adds the extra metadata fields `_len`, `_traj_index`, and `_frame_index`.
|
||||
|
||||
NOTE: adapted from DLimp library https://github.com/kvablack/dlimp/
|
||||
"""
|
||||
steps = traj.pop("steps")
|
||||
|
||||
traj_len = tf.shape(tf.nest.flatten(steps)[0])[0]
|
||||
|
||||
# broadcast metadata to the length of the trajectory
|
||||
metadata = tf.nest.map_structure(lambda x: tf.repeat(x, traj_len), traj)
|
||||
|
||||
# put steps back in
|
||||
assert "traj_metadata" not in steps
|
||||
traj = {**steps, "traj_metadata": metadata}
|
||||
|
||||
assert "_len" not in traj
|
||||
assert "_traj_index" not in traj
|
||||
assert "_frame_index" not in traj
|
||||
traj["_len"] = tf.repeat(traj_len, traj_len)
|
||||
traj["_traj_index"] = tf.repeat(i, traj_len)
|
||||
traj["_frame_index"] = tf.range(traj_len)
|
||||
|
||||
return traj
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
raw_dir (Path): _description_
|
||||
videos_dir (Path): _description_
|
||||
fps (int): _description_
|
||||
video (bool): _description_
|
||||
episodes (list[int] | None, optional): _description_. Defaults to None.
|
||||
"""
|
||||
ds_builder = tfds.builder_from_directory(str(raw_dir))
|
||||
dataset = ds_builder.as_dataset(
|
||||
split="all",
|
||||
decoders={"steps": tfds.decode.SkipDecoding()},
|
||||
)
|
||||
|
||||
dataset_info = ds_builder.info
|
||||
print("dataset_info: ", dataset_info)
|
||||
|
||||
ds_length = len(dataset)
|
||||
dataset = dataset.take(ds_length)
|
||||
# "flatten" the dataset as such we can apply trajectory level map() easily
|
||||
# each [obs][key] has a shape of (frame_size, ...)
|
||||
dataset = dataset.enumerate().map(_broadcast_metadata_rlds)
|
||||
|
||||
# we will apply the standardization transform if the dataset_name is provided
|
||||
# if the dataset name is not provided and the goal is to convert any rlds formatted dataset
|
||||
# search for 'image' keys in the observations
|
||||
image_keys = []
|
||||
state_keys = []
|
||||
observation_info = dataset_info.features["steps"]["observation"]
|
||||
for key in observation_info:
|
||||
# check whether the key is for an image or a vector observation
|
||||
if len(observation_info[key].shape) == 3:
|
||||
# only adding uint8 images discards depth images
|
||||
if observation_info[key].dtype == tf.uint8:
|
||||
image_keys.append(key)
|
||||
else:
|
||||
state_keys.append(key)
|
||||
|
||||
lang_key = "language_instruction" if "language_instruction" in dataset.element_spec else None
|
||||
|
||||
print(" - image_keys: ", image_keys)
|
||||
print(" - lang_key: ", lang_key)
|
||||
|
||||
it = iter(dataset)
|
||||
|
||||
ep_dicts = []
|
||||
# Init temp path to save ep_dicts in case of crash
|
||||
tmp_ep_dicts_dir = videos_dir.parent.joinpath("ep_dicts")
|
||||
tmp_ep_dicts_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# check if ep_dicts have already been saved in /tmp
|
||||
starting_ep_idx = 0
|
||||
saved_ep_dicts = [ep.__str__() for ep in tmp_ep_dicts_dir.iterdir()]
|
||||
if len(saved_ep_dicts) > 0:
|
||||
saved_ep_dicts.sort()
|
||||
# get last ep_idx number
|
||||
starting_ep_idx = int(saved_ep_dicts[-1][-13:-3]) + 1
|
||||
for i in range(starting_ep_idx):
|
||||
episode = next(it)
|
||||
ep_dicts.append(torch.load(saved_ep_dicts[i]))
|
||||
|
||||
# if we user specified episodes, skip the ones not in the list
|
||||
if episodes is not None:
|
||||
if ds_length == 0:
|
||||
raise ValueError("No episodes found.")
|
||||
# convert episodes index to sorted list
|
||||
episodes = sorted(episodes)
|
||||
|
||||
for ep_idx in tqdm.tqdm(range(starting_ep_idx, ds_length)):
|
||||
episode = next(it)
|
||||
|
||||
# if user specified episodes, skip the ones not in the list
|
||||
if episodes is not None:
|
||||
if len(episodes) == 0:
|
||||
break
|
||||
if ep_idx == episodes[0]:
|
||||
# process this episode
|
||||
print(" selecting episode idx: ", ep_idx)
|
||||
episodes.pop(0)
|
||||
else:
|
||||
continue # skip
|
||||
|
||||
num_frames = episode["action"].shape[0]
|
||||
|
||||
ep_dict = {}
|
||||
for key in state_keys:
|
||||
ep_dict[f"observation.{key}"] = tf_to_torch(episode["observation"][key])
|
||||
|
||||
ep_dict["action"] = tf_to_torch(episode["action"])
|
||||
ep_dict["next.reward"] = tf_to_torch(episode["reward"]).float()
|
||||
ep_dict["next.done"] = tf_to_torch(episode["is_last"])
|
||||
ep_dict["is_terminal"] = tf_to_torch(episode["is_terminal"])
|
||||
ep_dict["is_first"] = tf_to_torch(episode["is_first"])
|
||||
ep_dict["discount"] = tf_to_torch(episode["discount"])
|
||||
|
||||
# If lang_key is present, convert the entire tensor at once
|
||||
if lang_key is not None:
|
||||
ep_dict["language_instruction"] = [x.numpy().decode("utf-8") for x in episode[lang_key]]
|
||||
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
|
||||
image_array_dict = {key: [] for key in image_keys}
|
||||
|
||||
for im_key in image_keys:
|
||||
imgs = episode["observation"][im_key]
|
||||
image_array_dict[im_key] = [tf_img_convert(img) for img in imgs]
|
||||
|
||||
# loop through all cameras
|
||||
for im_key in image_keys:
|
||||
img_key = f"observation.images.{im_key}"
|
||||
imgs_array = image_array_dict[im_key]
|
||||
imgs_array = np.array(imgs_array)
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
path_ep_dict = tmp_ep_dicts_dir.joinpath(
|
||||
"ep_dict_" + "0" * (10 - len(str(ep_idx))) + str(ep_idx) + ".pt"
|
||||
)
|
||||
torch.save(ep_dict, path_ep_dict)
|
||||
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
|
||||
for key in data_dict:
|
||||
# check if vector state obs
|
||||
if key.startswith("observation.") and "observation.images." not in key:
|
||||
features[key] = Sequence(length=data_dict[key].shape[1], feature=Value(dtype="float32", id=None))
|
||||
# check if image obs
|
||||
elif "observation.images." in key:
|
||||
if video:
|
||||
features[key] = VideoFrame()
|
||||
else:
|
||||
features[key] = Image()
|
||||
|
||||
if "language_instruction" in data_dict:
|
||||
features["language_instruction"] = Value(dtype="string", id=None)
|
||||
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
|
||||
features["is_terminal"] = Value(dtype="bool", id=None)
|
||||
features["is_first"] = Value(dtype="bool", id=None)
|
||||
features["discount"] = Value(dtype="float32", id=None)
|
||||
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.reward"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,275 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process zarr files formatted like in: https://github.com/real-stanford/diffusion_policy"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
import zarr
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def check_format(raw_dir):
|
||||
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
|
||||
zarr_data = zarr.open(zarr_path, mode="r")
|
||||
|
||||
required_datasets = {
|
||||
"data/action",
|
||||
"data/img",
|
||||
"data/keypoint",
|
||||
"data/n_contacts",
|
||||
"data/state",
|
||||
"meta/episode_ends",
|
||||
}
|
||||
for dataset in required_datasets:
|
||||
assert dataset in zarr_data
|
||||
nb_frames = zarr_data["data/img"].shape[0]
|
||||
|
||||
required_datasets.remove("meta/episode_ends")
|
||||
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
keypoints_instead_of_image: bool = False,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
try:
|
||||
import pymunk
|
||||
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import (
|
||||
ReplayBuffer as DiffusionPolicyReplayBuffer,
|
||||
)
|
||||
except ModuleNotFoundError as e:
|
||||
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
|
||||
raise e
|
||||
# as define in gmy-pusht env: https://github.com/huggingface/gym-pusht/blob/e0684ff988d223808c0a9dcfaba9dc4991791370/gym_pusht/envs/pusht.py#L174
|
||||
success_threshold = 0.95 # 95% coverage,
|
||||
|
||||
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
|
||||
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
|
||||
|
||||
episode_ids = torch.from_numpy(zarr_data.get_episode_idxs())
|
||||
assert len(
|
||||
{zarr_data[key].shape[0] for key in zarr_data.keys()} # noqa: SIM118
|
||||
), "Some data type dont have the same number of total frames."
|
||||
|
||||
# TODO(rcadene): verify that goal pose is expected to be fixed
|
||||
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
|
||||
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
|
||||
|
||||
imgs = torch.from_numpy(zarr_data["img"]) # b h w c
|
||||
states = torch.from_numpy(zarr_data["state"])
|
||||
actions = torch.from_numpy(zarr_data["action"])
|
||||
|
||||
# load data indices from which each episode starts and ends
|
||||
from_ids, to_ids = [], []
|
||||
from_idx = 0
|
||||
for to_idx in zarr_data.meta["episode_ends"]:
|
||||
from_ids.append(from_idx)
|
||||
to_ids.append(to_idx)
|
||||
from_idx = to_idx
|
||||
|
||||
num_episodes = len(from_ids)
|
||||
|
||||
ep_dicts = []
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
|
||||
from_idx = from_ids[selected_ep_idx]
|
||||
to_idx = to_ids[selected_ep_idx]
|
||||
num_frames = to_idx - from_idx
|
||||
|
||||
# sanity check
|
||||
assert (episode_ids[from_idx:to_idx] == ep_idx).all()
|
||||
|
||||
# get image
|
||||
if not keypoints_instead_of_image:
|
||||
image = imgs[from_idx:to_idx]
|
||||
assert image.min() >= 0.0
|
||||
assert image.max() <= 255.0
|
||||
image = image.type(torch.uint8)
|
||||
|
||||
# get state
|
||||
state = states[from_idx:to_idx]
|
||||
agent_pos = state[:, :2]
|
||||
block_pos = state[:, 2:4]
|
||||
block_angle = state[:, 4]
|
||||
|
||||
# get reward, success, done, and (maybe) keypoints
|
||||
reward = torch.zeros(num_frames)
|
||||
success = torch.zeros(num_frames, dtype=torch.bool)
|
||||
if keypoints_instead_of_image:
|
||||
keypoints = torch.zeros(num_frames, 16) # 8 keypoints each with 2 coords
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
for i in range(num_frames):
|
||||
space = pymunk.Space()
|
||||
space.gravity = 0, 0
|
||||
space.damping = 0
|
||||
|
||||
# Add walls.
|
||||
walls = [
|
||||
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
|
||||
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
|
||||
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
|
||||
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
|
||||
]
|
||||
space.add(*walls)
|
||||
|
||||
block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||||
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
goal_area = goal_geom.area
|
||||
coverage = intersection_area / goal_area
|
||||
reward[i] = np.clip(coverage / success_threshold, 0, 1)
|
||||
success[i] = coverage > success_threshold
|
||||
if keypoints_instead_of_image:
|
||||
keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten())
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done[-1] = True
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
if not keypoints_instead_of_image:
|
||||
imgs_array = [x.numpy() for x in image]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = agent_pos
|
||||
if keypoints_instead_of_image:
|
||||
ep_dict["observation.environment_state"] = keypoints
|
||||
ep_dict["action"] = actions[from_idx:to_idx]
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
# ep_dict["next.observation.image"] = image[1:],
|
||||
# ep_dict["next.observation.state"] = agent_pos[1:],
|
||||
# TODO(rcadene)] = verify that reward and done are aligned with image and agent_pos
|
||||
ep_dict["next.reward"] = torch.cat([reward[1:], reward[[-1]]])
|
||||
ep_dict["next.done"] = torch.cat([done[1:], done[[-1]]])
|
||||
ep_dict["next.success"] = torch.cat([success[1:], success[[-1]]])
|
||||
ep_dicts.append(ep_dict)
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video, keypoints_instead_of_image: bool = False):
|
||||
features = {}
|
||||
|
||||
if not keypoints_instead_of_image:
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if keypoints_instead_of_image:
|
||||
features["observation.environment_state"] = Sequence(
|
||||
length=data_dict["observation.environment_state"].shape[1],
|
||||
feature=Value(dtype="float32", id=None),
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.reward"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["next.success"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# Manually change this to True to use keypoints of the T instead of an image observation (but don't merge
|
||||
# with True). Also make sure to use video = 0 in the `push_dataset_to_hub.py` script.
|
||||
keypoints_instead_of_image = False
|
||||
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 10
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, keypoints_instead_of_image, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video, keypoints_instead_of_image)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video if not keypoints_instead_of_image else 0,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,234 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process UMI (Universal Manipulation Interface) data stored in Zarr format like in: https://github.com/real-stanford/universal_manipulation_interface"""
|
||||
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import tqdm
|
||||
import zarr
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def check_format(raw_dir) -> bool:
|
||||
zarr_path = raw_dir / "cup_in_the_wild.zarr"
|
||||
zarr_data = zarr.open(zarr_path, mode="r")
|
||||
|
||||
required_datasets = {
|
||||
"data/robot0_demo_end_pose",
|
||||
"data/robot0_demo_start_pose",
|
||||
"data/robot0_eef_pos",
|
||||
"data/robot0_eef_rot_axis_angle",
|
||||
"data/robot0_gripper_width",
|
||||
"meta/episode_ends",
|
||||
"data/camera0_rgb",
|
||||
}
|
||||
for dataset in required_datasets:
|
||||
if dataset not in zarr_data:
|
||||
return False
|
||||
|
||||
# mandatory to access zarr_data
|
||||
register_codecs()
|
||||
nb_frames = zarr_data["data/camera0_rgb"].shape[0]
|
||||
|
||||
required_datasets.remove("meta/episode_ends")
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
zarr_path = raw_dir / "cup_in_the_wild.zarr"
|
||||
zarr_data = zarr.open(zarr_path, mode="r")
|
||||
|
||||
# We process the image data separately because it is too large to fit in memory
|
||||
end_pose = torch.from_numpy(zarr_data["data/robot0_demo_end_pose"][:])
|
||||
start_pos = torch.from_numpy(zarr_data["data/robot0_demo_start_pose"][:])
|
||||
eff_pos = torch.from_numpy(zarr_data["data/robot0_eef_pos"][:])
|
||||
eff_rot_axis_angle = torch.from_numpy(zarr_data["data/robot0_eef_rot_axis_angle"][:])
|
||||
gripper_width = torch.from_numpy(zarr_data["data/robot0_gripper_width"][:])
|
||||
|
||||
states_pos = torch.cat([eff_pos, eff_rot_axis_angle], dim=1)
|
||||
states = torch.cat([states_pos, gripper_width], dim=1)
|
||||
|
||||
episode_ends = zarr_data["meta/episode_ends"][:]
|
||||
num_episodes = episode_ends.shape[0]
|
||||
|
||||
# We convert it in torch tensor later because the jit function does not support torch tensors
|
||||
episode_ends = torch.from_numpy(episode_ends)
|
||||
|
||||
# load data indices from which each episode starts and ends
|
||||
from_ids, to_ids = [], []
|
||||
from_idx = 0
|
||||
for to_idx in episode_ends:
|
||||
from_ids.append(from_idx)
|
||||
to_ids.append(to_idx)
|
||||
from_idx = to_idx
|
||||
|
||||
ep_dicts_dir = videos_dir / "ep_dicts"
|
||||
ep_dicts_dir.mkdir(exist_ok=True, parents=True)
|
||||
ep_dicts = []
|
||||
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
|
||||
ep_dict_path = ep_dicts_dir / f"{ep_idx}"
|
||||
if not ep_dict_path.is_file():
|
||||
from_idx = from_ids[selected_ep_idx]
|
||||
to_idx = to_ids[selected_ep_idx]
|
||||
num_frames = to_idx - from_idx
|
||||
|
||||
# TODO(rcadene): save temporary images of the episode?
|
||||
|
||||
state = states[from_idx:to_idx]
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
# load 57MB of images in RAM (400x224x224x3 uint8)
|
||||
imgs_array = zarr_data["data/camera0_rgb"][from_idx:to_idx]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
if not video_path.is_file():
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_data_index_from"] = torch.tensor([from_idx] * num_frames)
|
||||
ep_dict["episode_data_index_to"] = torch.tensor([from_idx + num_frames] * num_frames)
|
||||
ep_dict["end_pose"] = end_pose[from_idx:to_idx]
|
||||
ep_dict["start_pos"] = start_pos[from_idx:to_idx]
|
||||
ep_dict["gripper_width"] = gripper_width[from_idx:to_idx]
|
||||
torch.save(ep_dict, ep_dict_path)
|
||||
else:
|
||||
ep_dict = torch.load(ep_dict_path)
|
||||
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
features = {}
|
||||
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
features["episode_data_index_from"] = Value(dtype="int64", id=None)
|
||||
features["episode_data_index_to"] = Value(dtype="int64", id=None)
|
||||
# `start_pos` and `end_pos` respectively represent the positions of the end-effector
|
||||
# at the beginning and the end of the episode.
|
||||
# `gripper_width` indicates the distance between the grippers, and this value is included
|
||||
# in the state vector, which comprises the concatenation of the end-effector position
|
||||
# and gripper width.
|
||||
features["end_pose"] = Sequence(
|
||||
length=data_dict["end_pose"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["start_pos"] = Sequence(
|
||||
length=data_dict["start_pos"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["gripper_width"] = Sequence(
|
||||
length=data_dict["gripper_width"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
# For umi cup in the wild: https://arxiv.org/pdf/2402.10329#table.caption.16
|
||||
fps = 10
|
||||
|
||||
if not video:
|
||||
logging.warning(
|
||||
"Generating UMI dataset without `video=True` creates ~150GB on disk and requires ~80GB in RAM."
|
||||
)
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,200 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process pickle files formatted like in: https://github.com/fyhMer/fowm"""
|
||||
|
||||
import pickle
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import (
|
||||
calculate_episode_data_index,
|
||||
concatenate_episodes,
|
||||
get_default_encoding,
|
||||
save_images_concurrently,
|
||||
)
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def check_format(raw_dir):
|
||||
keys = {"actions", "rewards", "dones"}
|
||||
nested_keys = {"observations": {"rgb", "state"}, "next_observations": {"rgb", "state"}}
|
||||
|
||||
xarm_files = list(raw_dir.glob("*.pkl"))
|
||||
assert len(xarm_files) > 0
|
||||
|
||||
with open(xarm_files[0], "rb") as f:
|
||||
dataset_dict = pickle.load(f)
|
||||
|
||||
assert isinstance(dataset_dict, dict)
|
||||
assert all(k in dataset_dict for k in keys)
|
||||
|
||||
# Check for consistent lengths in nested keys
|
||||
expected_len = len(dataset_dict["actions"])
|
||||
assert all(len(dataset_dict[key]) == expected_len for key in keys if key in dataset_dict)
|
||||
|
||||
for key, subkeys in nested_keys.items():
|
||||
nested_dict = dataset_dict.get(key, {})
|
||||
assert all(len(nested_dict[subkey]) == expected_len for subkey in subkeys if subkey in nested_dict)
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
pkl_path = raw_dir / "buffer.pkl"
|
||||
|
||||
with open(pkl_path, "rb") as f:
|
||||
pkl_data = pickle.load(f)
|
||||
|
||||
# load data indices from which each episode starts and ends
|
||||
from_ids, to_ids = [], []
|
||||
from_idx, to_idx = 0, 0
|
||||
for done in pkl_data["dones"]:
|
||||
to_idx += 1
|
||||
if not done:
|
||||
continue
|
||||
from_ids.append(from_idx)
|
||||
to_ids.append(to_idx)
|
||||
from_idx = to_idx
|
||||
|
||||
num_episodes = len(from_ids)
|
||||
|
||||
ep_dicts = []
|
||||
ep_ids = episodes if episodes else range(num_episodes)
|
||||
for ep_idx, selected_ep_idx in tqdm.tqdm(enumerate(ep_ids)):
|
||||
from_idx = from_ids[selected_ep_idx]
|
||||
to_idx = to_ids[selected_ep_idx]
|
||||
num_frames = to_idx - from_idx
|
||||
|
||||
image = torch.tensor(pkl_data["observations"]["rgb"][from_idx:to_idx])
|
||||
image = einops.rearrange(image, "b c h w -> b h w c")
|
||||
state = torch.tensor(pkl_data["observations"]["state"][from_idx:to_idx])
|
||||
action = torch.tensor(pkl_data["actions"][from_idx:to_idx])
|
||||
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
|
||||
# it is critical to have this frame for tdmpc to predict a "done observation/state"
|
||||
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][from_idx:to_idx])
|
||||
# next_state = torch.tensor(pkl_data["next_observations"]["state"][from_idx:to_idx])
|
||||
next_reward = torch.tensor(pkl_data["rewards"][from_idx:to_idx])
|
||||
next_done = torch.tensor(pkl_data["dones"][from_idx:to_idx])
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
imgs_array = [x.numpy() for x in image]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps, **(encoding or {}))
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["action"] = action
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
# ep_dict["next.observation.image"] = next_image
|
||||
# ep_dict["next.observation.state"] = next_state
|
||||
ep_dict["next.reward"] = next_reward
|
||||
ep_dict["next.done"] = next_done
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
features = {}
|
||||
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.reward"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
# TODO(rcadene): add success
|
||||
# features["next.success"] = Value(dtype='bool', id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
encoding: dict | None = None,
|
||||
):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 15
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes, encoding)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"codebase_version": CODEBASE_VERSION,
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
if video:
|
||||
info["encoding"] = get_default_encoding()
|
||||
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -13,10 +13,10 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import contextlib
|
||||
import importlib.resources
|
||||
import json
|
||||
import logging
|
||||
import textwrap
|
||||
from collections.abc import Iterator
|
||||
from itertools import accumulate
|
||||
from pathlib import Path
|
||||
@@ -27,14 +27,21 @@ from typing import Any
|
||||
import datasets
|
||||
import jsonlines
|
||||
import numpy as np
|
||||
import pyarrow.compute as pc
|
||||
import packaging.version
|
||||
import torch
|
||||
from datasets.table import embed_table_storage
|
||||
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
|
||||
from huggingface_hub.errors import RevisionNotFoundError
|
||||
from PIL import Image as PILImage
|
||||
from torchvision import transforms
|
||||
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.datasets.backward_compatibility import (
|
||||
V21_MESSAGE,
|
||||
BackwardCompatibilityError,
|
||||
ForwardCompatibilityError,
|
||||
)
|
||||
from lerobot.common.robots.utils import Robot
|
||||
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
|
||||
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
|
||||
|
||||
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
|
||||
@@ -42,6 +49,7 @@ DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
|
||||
INFO_PATH = "meta/info.json"
|
||||
EPISODES_PATH = "meta/episodes.jsonl"
|
||||
STATS_PATH = "meta/stats.json"
|
||||
EPISODES_STATS_PATH = "meta/episodes_stats.jsonl"
|
||||
TASKS_PATH = "meta/tasks.jsonl"
|
||||
|
||||
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||
@@ -112,17 +120,26 @@ def get_nested_item(obj: DictLike, flattened_key: str, sep: str = "/") -> Any:
|
||||
|
||||
|
||||
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
|
||||
serialized_dict = {key: value.tolist() for key, value in flatten_dict(stats).items()}
|
||||
serialized_dict = {}
|
||||
for key, value in flatten_dict(stats).items():
|
||||
if isinstance(value, (torch.Tensor, np.ndarray)):
|
||||
serialized_dict[key] = value.tolist()
|
||||
elif isinstance(value, np.generic):
|
||||
serialized_dict[key] = value.item()
|
||||
elif isinstance(value, (int, float)):
|
||||
serialized_dict[key] = value
|
||||
else:
|
||||
raise NotImplementedError(f"The value '{value}' of type '{type(value)}' is not supported.")
|
||||
return unflatten_dict(serialized_dict)
|
||||
|
||||
|
||||
def write_parquet(dataset: datasets.Dataset, fpath: Path) -> None:
|
||||
def embed_images(dataset: datasets.Dataset) -> datasets.Dataset:
|
||||
# Embed image bytes into the table before saving to parquet
|
||||
format = dataset.format
|
||||
dataset = dataset.with_format("arrow")
|
||||
dataset = dataset.map(embed_table_storage, batched=False)
|
||||
dataset = dataset.with_format(**format)
|
||||
dataset.to_parquet(fpath)
|
||||
return dataset
|
||||
|
||||
|
||||
def load_json(fpath: Path) -> Any:
|
||||
@@ -153,6 +170,10 @@ def append_jsonlines(data: dict, fpath: Path) -> None:
|
||||
writer.write(data)
|
||||
|
||||
|
||||
def write_info(info: dict, local_dir: Path):
|
||||
write_json(info, local_dir / INFO_PATH)
|
||||
|
||||
|
||||
def load_info(local_dir: Path) -> dict:
|
||||
info = load_json(local_dir / INFO_PATH)
|
||||
for ft in info["features"].values():
|
||||
@@ -160,29 +181,76 @@ def load_info(local_dir: Path) -> dict:
|
||||
return info
|
||||
|
||||
|
||||
def load_stats(local_dir: Path) -> dict:
|
||||
if not (local_dir / STATS_PATH).exists():
|
||||
return None
|
||||
stats = load_json(local_dir / STATS_PATH)
|
||||
stats = {key: torch.tensor(value) for key, value in flatten_dict(stats).items()}
|
||||
def write_stats(stats: dict, local_dir: Path):
|
||||
serialized_stats = serialize_dict(stats)
|
||||
write_json(serialized_stats, local_dir / STATS_PATH)
|
||||
|
||||
|
||||
def cast_stats_to_numpy(stats) -> dict[str, dict[str, np.ndarray]]:
|
||||
stats = {key: np.array(value) for key, value in flatten_dict(stats).items()}
|
||||
return unflatten_dict(stats)
|
||||
|
||||
|
||||
def load_tasks(local_dir: Path) -> dict:
|
||||
def load_stats(local_dir: Path) -> dict[str, dict[str, np.ndarray]]:
|
||||
if not (local_dir / STATS_PATH).exists():
|
||||
return None
|
||||
stats = load_json(local_dir / STATS_PATH)
|
||||
return cast_stats_to_numpy(stats)
|
||||
|
||||
|
||||
def write_task(task_index: int, task: dict, local_dir: Path):
|
||||
task_dict = {
|
||||
"task_index": task_index,
|
||||
"task": task,
|
||||
}
|
||||
append_jsonlines(task_dict, local_dir / TASKS_PATH)
|
||||
|
||||
|
||||
def load_tasks(local_dir: Path) -> tuple[dict, dict]:
|
||||
tasks = load_jsonlines(local_dir / TASKS_PATH)
|
||||
return {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
|
||||
tasks = {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
|
||||
task_to_task_index = {task: task_index for task_index, task in tasks.items()}
|
||||
return tasks, task_to_task_index
|
||||
|
||||
|
||||
def write_episode(episode: dict, local_dir: Path):
|
||||
append_jsonlines(episode, local_dir / EPISODES_PATH)
|
||||
|
||||
|
||||
def load_episodes(local_dir: Path) -> dict:
|
||||
return load_jsonlines(local_dir / EPISODES_PATH)
|
||||
episodes = load_jsonlines(local_dir / EPISODES_PATH)
|
||||
return {item["episode_index"]: item for item in sorted(episodes, key=lambda x: x["episode_index"])}
|
||||
|
||||
|
||||
def load_image_as_numpy(fpath: str | Path, dtype="float32", channel_first: bool = True) -> np.ndarray:
|
||||
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
|
||||
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
|
||||
# is a dictionary of stats and not an integer.
|
||||
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
|
||||
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
|
||||
|
||||
|
||||
def load_episodes_stats(local_dir: Path) -> dict:
|
||||
episodes_stats = load_jsonlines(local_dir / EPISODES_STATS_PATH)
|
||||
return {
|
||||
item["episode_index"]: cast_stats_to_numpy(item["stats"])
|
||||
for item in sorted(episodes_stats, key=lambda x: x["episode_index"])
|
||||
}
|
||||
|
||||
|
||||
def backward_compatible_episodes_stats(
|
||||
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
|
||||
) -> dict[str, dict[str, np.ndarray]]:
|
||||
return dict.fromkeys(episodes, stats)
|
||||
|
||||
|
||||
def load_image_as_numpy(
|
||||
fpath: str | Path, dtype: np.dtype = np.float32, channel_first: bool = True
|
||||
) -> np.ndarray:
|
||||
img = PILImage.open(fpath).convert("RGB")
|
||||
img_array = np.array(img, dtype=dtype)
|
||||
if channel_first: # (H, W, C) -> (C, H, W)
|
||||
img_array = np.transpose(img_array, (2, 0, 1))
|
||||
if "float" in dtype:
|
||||
if np.issubdtype(dtype, np.floating):
|
||||
img_array /= 255.0
|
||||
return img_array
|
||||
|
||||
@@ -201,77 +269,95 @@ def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
|
||||
elif first_item is None:
|
||||
pass
|
||||
else:
|
||||
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
|
||||
items_dict[key] = [x if isinstance(x, str) else torch.tensor(x) for x in items_dict[key]]
|
||||
return items_dict
|
||||
|
||||
|
||||
def _get_major_minor(version: str) -> tuple[int]:
|
||||
split = version.strip("v").split(".")
|
||||
return int(split[0]), int(split[1])
|
||||
|
||||
|
||||
class BackwardCompatibilityError(Exception):
|
||||
def __init__(self, repo_id, version):
|
||||
message = textwrap.dedent(f"""
|
||||
BackwardCompatibilityError: The dataset you requested ({repo_id}) is in {version} format.
|
||||
|
||||
We introduced a new format since v2.0 which is not backward compatible with v1.x.
|
||||
Please, use our conversion script. Modify the following command with your own task description:
|
||||
```
|
||||
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
|
||||
--repo-id {repo_id} \\
|
||||
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
|
||||
```
|
||||
|
||||
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.",
|
||||
"Insert the peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.",
|
||||
"Open the top cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped target.",
|
||||
"Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the sweatshirt.", ...
|
||||
|
||||
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
|
||||
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
|
||||
""")
|
||||
super().__init__(message)
|
||||
def is_valid_version(version: str) -> bool:
|
||||
try:
|
||||
packaging.version.parse(version)
|
||||
return True
|
||||
except packaging.version.InvalidVersion:
|
||||
return False
|
||||
|
||||
|
||||
def check_version_compatibility(
|
||||
repo_id: str, version_to_check: str, current_version: str, enforce_breaking_major: bool = True
|
||||
repo_id: str,
|
||||
version_to_check: str | packaging.version.Version,
|
||||
current_version: str | packaging.version.Version,
|
||||
enforce_breaking_major: bool = True,
|
||||
) -> None:
|
||||
current_major, _ = _get_major_minor(current_version)
|
||||
major_to_check, _ = _get_major_minor(version_to_check)
|
||||
if major_to_check < current_major and enforce_breaking_major:
|
||||
raise BackwardCompatibilityError(repo_id, version_to_check)
|
||||
elif float(version_to_check.strip("v")) < float(current_version.strip("v")):
|
||||
logging.warning(
|
||||
f"""The dataset you requested ({repo_id}) was created with a previous version ({version_to_check}) of the
|
||||
codebase. The current codebase version is {current_version}. You should be fine since
|
||||
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
|
||||
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
|
||||
)
|
||||
v_check = (
|
||||
packaging.version.parse(version_to_check)
|
||||
if not isinstance(version_to_check, packaging.version.Version)
|
||||
else version_to_check
|
||||
)
|
||||
v_current = (
|
||||
packaging.version.parse(current_version)
|
||||
if not isinstance(current_version, packaging.version.Version)
|
||||
else current_version
|
||||
)
|
||||
if v_check.major < v_current.major and enforce_breaking_major:
|
||||
raise BackwardCompatibilityError(repo_id, v_check)
|
||||
elif v_check.minor < v_current.minor:
|
||||
logging.warning(V21_MESSAGE.format(repo_id=repo_id, version=v_check))
|
||||
|
||||
|
||||
def get_hub_safe_version(repo_id: str, version: str) -> str:
|
||||
def get_repo_versions(repo_id: str) -> list[packaging.version.Version]:
|
||||
"""Returns available valid versions (branches and tags) on given repo."""
|
||||
api = HfApi()
|
||||
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
|
||||
branches = [b.name for b in dataset_info.branches]
|
||||
if version not in branches:
|
||||
num_version = float(version.strip("v"))
|
||||
hub_num_versions = [float(v.strip("v")) for v in branches if v.startswith("v")]
|
||||
if num_version >= 2.0 and all(v < 2.0 for v in hub_num_versions):
|
||||
raise BackwardCompatibilityError(repo_id, version)
|
||||
repo_refs = api.list_repo_refs(repo_id, repo_type="dataset")
|
||||
repo_refs = [b.name for b in repo_refs.branches + repo_refs.tags]
|
||||
repo_versions = []
|
||||
for ref in repo_refs:
|
||||
with contextlib.suppress(packaging.version.InvalidVersion):
|
||||
repo_versions.append(packaging.version.parse(ref))
|
||||
|
||||
logging.warning(
|
||||
f"""You are trying to load a dataset from {repo_id} created with a previous version of the
|
||||
codebase. The following versions are available: {branches}.
|
||||
The requested version ('{version}') is not found. You should be fine since
|
||||
backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on
|
||||
Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""",
|
||||
return repo_versions
|
||||
|
||||
|
||||
def get_safe_version(repo_id: str, version: str | packaging.version.Version) -> str:
|
||||
"""
|
||||
Returns the version if available on repo or the latest compatible one.
|
||||
Otherwise, will throw a `CompatibilityError`.
|
||||
"""
|
||||
target_version = (
|
||||
packaging.version.parse(version) if not isinstance(version, packaging.version.Version) else version
|
||||
)
|
||||
hub_versions = get_repo_versions(repo_id)
|
||||
|
||||
if not hub_versions:
|
||||
raise RevisionNotFoundError(
|
||||
f"""Your dataset must be tagged with a codebase version.
|
||||
Assuming _version_ is the codebase_version value in the info.json, you can run this:
|
||||
```python
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
hub_api = HfApi()
|
||||
hub_api.create_tag("{repo_id}", tag="_version_", repo_type="dataset")
|
||||
```
|
||||
"""
|
||||
)
|
||||
if "main" not in branches:
|
||||
raise ValueError(f"Version 'main' not found on {repo_id}")
|
||||
return "main"
|
||||
else:
|
||||
return version
|
||||
|
||||
if target_version in hub_versions:
|
||||
return f"v{target_version}"
|
||||
|
||||
compatibles = [
|
||||
v for v in hub_versions if v.major == target_version.major and v.minor <= target_version.minor
|
||||
]
|
||||
if compatibles:
|
||||
return_version = max(compatibles)
|
||||
if return_version < target_version:
|
||||
logging.warning(f"Revision {version} for {repo_id} not found, using version v{return_version}")
|
||||
return f"v{return_version}"
|
||||
|
||||
lower_major = [v for v in hub_versions if v.major < target_version.major]
|
||||
if lower_major:
|
||||
raise BackwardCompatibilityError(repo_id, max(lower_major))
|
||||
|
||||
upper_versions = [v for v in hub_versions if v > target_version]
|
||||
assert len(upper_versions) > 0
|
||||
raise ForwardCompatibilityError(repo_id, min(upper_versions))
|
||||
|
||||
|
||||
def get_hf_features_from_features(features: dict) -> datasets.Features:
|
||||
@@ -283,11 +369,20 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
|
||||
hf_features[key] = datasets.Image()
|
||||
elif ft["shape"] == (1,):
|
||||
hf_features[key] = datasets.Value(dtype=ft["dtype"])
|
||||
else:
|
||||
assert len(ft["shape"]) == 1
|
||||
elif len(ft["shape"]) == 1:
|
||||
hf_features[key] = datasets.Sequence(
|
||||
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
|
||||
)
|
||||
elif len(ft["shape"]) == 2:
|
||||
hf_features[key] = datasets.Array2D(shape=ft["shape"], dtype=ft["dtype"])
|
||||
elif len(ft["shape"]) == 3:
|
||||
hf_features[key] = datasets.Array3D(shape=ft["shape"], dtype=ft["dtype"])
|
||||
elif len(ft["shape"]) == 4:
|
||||
hf_features[key] = datasets.Array4D(shape=ft["shape"], dtype=ft["dtype"])
|
||||
elif len(ft["shape"]) == 5:
|
||||
hf_features[key] = datasets.Array5D(shape=ft["shape"], dtype=ft["dtype"])
|
||||
else:
|
||||
raise ValueError(f"Corresponding feature is not valid: {ft}")
|
||||
|
||||
return datasets.Features(hf_features)
|
||||
|
||||
@@ -358,88 +453,85 @@ def create_empty_dataset_info(
|
||||
|
||||
|
||||
def get_episode_data_index(
|
||||
episode_dicts: list[dict], episodes: list[int] | None = None
|
||||
episode_dicts: dict[dict], episodes: list[int] | None = None
|
||||
) -> dict[str, torch.Tensor]:
|
||||
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
|
||||
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in episode_dicts.items()}
|
||||
if episodes is not None:
|
||||
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
|
||||
|
||||
cumulative_lenghts = list(accumulate(episode_lengths.values()))
|
||||
cumulative_lengths = list(accumulate(episode_lengths.values()))
|
||||
return {
|
||||
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
|
||||
"to": torch.LongTensor(cumulative_lenghts),
|
||||
}
|
||||
|
||||
|
||||
def calculate_total_episode(
|
||||
hf_dataset: datasets.Dataset, raise_if_not_contiguous: bool = True
|
||||
) -> dict[str, torch.Tensor]:
|
||||
episode_indices = sorted(hf_dataset.unique("episode_index"))
|
||||
total_episodes = len(episode_indices)
|
||||
if raise_if_not_contiguous and episode_indices != list(range(total_episodes)):
|
||||
raise ValueError("episode_index values are not sorted and contiguous.")
|
||||
return total_episodes
|
||||
|
||||
|
||||
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, torch.Tensor]:
|
||||
episode_lengths = []
|
||||
table = hf_dataset.data.table
|
||||
total_episodes = calculate_total_episode(hf_dataset)
|
||||
for ep_idx in range(total_episodes):
|
||||
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
|
||||
episode_lengths.insert(ep_idx, len(ep_table))
|
||||
|
||||
cumulative_lenghts = list(accumulate(episode_lengths))
|
||||
return {
|
||||
"from": torch.LongTensor([0] + cumulative_lenghts[:-1]),
|
||||
"to": torch.LongTensor(cumulative_lenghts),
|
||||
"from": torch.LongTensor([0] + cumulative_lengths[:-1]),
|
||||
"to": torch.LongTensor(cumulative_lengths),
|
||||
}
|
||||
|
||||
|
||||
def check_timestamps_sync(
|
||||
hf_dataset: datasets.Dataset,
|
||||
episode_data_index: dict[str, torch.Tensor],
|
||||
timestamps: np.ndarray,
|
||||
episode_indices: np.ndarray,
|
||||
episode_data_index: dict[str, np.ndarray],
|
||||
fps: int,
|
||||
tolerance_s: float,
|
||||
raise_value_error: bool = True,
|
||||
) -> bool:
|
||||
"""
|
||||
This check is to make sure that each timestamps is separated to the next by 1/fps +/- tolerance to
|
||||
account for possible numerical error.
|
||||
"""
|
||||
timestamps = torch.stack(hf_dataset["timestamp"])
|
||||
diffs = torch.diff(timestamps)
|
||||
within_tolerance = torch.abs(diffs - 1 / fps) <= tolerance_s
|
||||
This check is to make sure that each timestamp is separated from the next by (1/fps) +/- tolerance
|
||||
to account for possible numerical error.
|
||||
|
||||
# We mask differences between the timestamp at the end of an episode
|
||||
# and the one at the start of the next episode since these are expected
|
||||
# to be outside tolerance.
|
||||
mask = torch.ones(len(diffs), dtype=torch.bool)
|
||||
ignored_diffs = episode_data_index["to"][:-1] - 1
|
||||
Args:
|
||||
timestamps (np.ndarray): Array of timestamps in seconds.
|
||||
episode_indices (np.ndarray): Array indicating the episode index for each timestamp.
|
||||
episode_data_index (dict[str, np.ndarray]): A dictionary that includes 'to',
|
||||
which identifies indices for the end of each episode.
|
||||
fps (int): Frames per second. Used to check the expected difference between consecutive timestamps.
|
||||
tolerance_s (float): Allowed deviation from the expected (1/fps) difference.
|
||||
raise_value_error (bool): Whether to raise a ValueError if the check fails.
|
||||
|
||||
Returns:
|
||||
bool: True if all checked timestamp differences lie within tolerance, False otherwise.
|
||||
|
||||
Raises:
|
||||
ValueError: If the check fails and `raise_value_error` is True.
|
||||
"""
|
||||
if timestamps.shape != episode_indices.shape:
|
||||
raise ValueError(
|
||||
"timestamps and episode_indices should have the same shape. "
|
||||
f"Found {timestamps.shape=} and {episode_indices.shape=}."
|
||||
)
|
||||
|
||||
# Consecutive differences
|
||||
diffs = np.diff(timestamps)
|
||||
within_tolerance = np.abs(diffs - (1.0 / fps)) <= tolerance_s
|
||||
|
||||
# Mask to ignore differences at the boundaries between episodes
|
||||
mask = np.ones(len(diffs), dtype=bool)
|
||||
ignored_diffs = episode_data_index["to"][:-1] - 1 # indices at the end of each episode
|
||||
mask[ignored_diffs] = False
|
||||
filtered_within_tolerance = within_tolerance[mask]
|
||||
|
||||
if not torch.all(filtered_within_tolerance):
|
||||
# Check if all remaining diffs are within tolerance
|
||||
if not np.all(filtered_within_tolerance):
|
||||
# Track original indices before masking
|
||||
original_indices = torch.arange(len(diffs))
|
||||
original_indices = np.arange(len(diffs))
|
||||
filtered_indices = original_indices[mask]
|
||||
outside_tolerance_filtered_indices = torch.nonzero(~filtered_within_tolerance) # .squeeze()
|
||||
outside_tolerance_filtered_indices = np.nonzero(~filtered_within_tolerance)[0]
|
||||
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
|
||||
episode_indices = torch.stack(hf_dataset["episode_index"])
|
||||
|
||||
outside_tolerances = []
|
||||
for idx in outside_tolerance_indices:
|
||||
entry = {
|
||||
"timestamps": [timestamps[idx], timestamps[idx + 1]],
|
||||
"diff": diffs[idx],
|
||||
"episode_index": episode_indices[idx].item(),
|
||||
"episode_index": episode_indices[idx].item()
|
||||
if hasattr(episode_indices[idx], "item")
|
||||
else episode_indices[idx],
|
||||
}
|
||||
outside_tolerances.append(entry)
|
||||
|
||||
if raise_value_error:
|
||||
raise ValueError(
|
||||
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
|
||||
This might be due to synchronization issues with timestamps during data collection.
|
||||
This might be due to synchronization issues during data collection.
|
||||
\n{pformat(outside_tolerances)}"""
|
||||
)
|
||||
return False
|
||||
@@ -604,3 +696,118 @@ class IterableNamespace(SimpleNamespace):
|
||||
|
||||
def keys(self):
|
||||
return vars(self).keys()
|
||||
|
||||
|
||||
def validate_frame(frame: dict, features: dict):
|
||||
optional_features = {"timestamp"}
|
||||
expected_features = (set(features) - set(DEFAULT_FEATURES.keys())) | {"task"}
|
||||
actual_features = set(frame.keys())
|
||||
|
||||
error_message = validate_features_presence(actual_features, expected_features, optional_features)
|
||||
|
||||
if "task" in frame:
|
||||
error_message += validate_feature_string("task", frame["task"])
|
||||
|
||||
common_features = actual_features & (expected_features | optional_features)
|
||||
for name in common_features - {"task"}:
|
||||
error_message += validate_feature_dtype_and_shape(name, features[name], frame[name])
|
||||
|
||||
if error_message:
|
||||
raise ValueError(error_message)
|
||||
|
||||
|
||||
def validate_features_presence(
|
||||
actual_features: set[str], expected_features: set[str], optional_features: set[str]
|
||||
):
|
||||
error_message = ""
|
||||
missing_features = expected_features - actual_features
|
||||
extra_features = actual_features - (expected_features | optional_features)
|
||||
|
||||
if missing_features or extra_features:
|
||||
error_message += "Feature mismatch in `frame` dictionary:\n"
|
||||
if missing_features:
|
||||
error_message += f"Missing features: {missing_features}\n"
|
||||
if extra_features:
|
||||
error_message += f"Extra features: {extra_features}\n"
|
||||
|
||||
return error_message
|
||||
|
||||
|
||||
def validate_feature_dtype_and_shape(name: str, feature: dict, value: np.ndarray | PILImage.Image | str):
|
||||
expected_dtype = feature["dtype"]
|
||||
expected_shape = feature["shape"]
|
||||
if is_valid_numpy_dtype_string(expected_dtype):
|
||||
return validate_feature_numpy_array(name, expected_dtype, expected_shape, value)
|
||||
elif expected_dtype in ["image", "video"]:
|
||||
return validate_feature_image_or_video(name, expected_shape, value)
|
||||
elif expected_dtype == "string":
|
||||
return validate_feature_string(name, value)
|
||||
else:
|
||||
raise NotImplementedError(f"The feature dtype '{expected_dtype}' is not implemented yet.")
|
||||
|
||||
|
||||
def validate_feature_numpy_array(
|
||||
name: str, expected_dtype: str, expected_shape: list[int], value: np.ndarray
|
||||
):
|
||||
error_message = ""
|
||||
if isinstance(value, np.ndarray):
|
||||
actual_dtype = value.dtype
|
||||
actual_shape = value.shape
|
||||
|
||||
if actual_dtype != np.dtype(expected_dtype):
|
||||
error_message += f"The feature '{name}' of dtype '{actual_dtype}' is not of the expected dtype '{expected_dtype}'.\n"
|
||||
|
||||
if actual_shape != expected_shape:
|
||||
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{expected_shape}'.\n"
|
||||
else:
|
||||
error_message += f"The feature '{name}' is not a 'np.ndarray'. Expected type is '{expected_dtype}', but type '{type(value)}' provided instead.\n"
|
||||
|
||||
return error_message
|
||||
|
||||
|
||||
def validate_feature_image_or_video(name: str, expected_shape: list[str], value: np.ndarray | PILImage.Image):
|
||||
# Note: The check of pixels range ([0,1] for float and [0,255] for uint8) is done by the image writer threads.
|
||||
error_message = ""
|
||||
if isinstance(value, np.ndarray):
|
||||
actual_shape = value.shape
|
||||
c, h, w = expected_shape
|
||||
if len(actual_shape) != 3 or (actual_shape != (c, h, w) and actual_shape != (h, w, c)):
|
||||
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{(c, h, w)}' or '{(h, w, c)}'.\n"
|
||||
elif isinstance(value, PILImage.Image):
|
||||
pass
|
||||
else:
|
||||
error_message += f"The feature '{name}' is expected to be of type 'PIL.Image' or 'np.ndarray' channel first or channel last, but type '{type(value)}' provided instead.\n"
|
||||
|
||||
return error_message
|
||||
|
||||
|
||||
def validate_feature_string(name: str, value: str):
|
||||
if not isinstance(value, str):
|
||||
return f"The feature '{name}' is expected to be of type 'str', but type '{type(value)}' provided instead.\n"
|
||||
return ""
|
||||
|
||||
|
||||
def validate_episode_buffer(episode_buffer: dict, total_episodes: int, features: dict):
|
||||
if "size" not in episode_buffer:
|
||||
raise ValueError("size key not found in episode_buffer")
|
||||
|
||||
if "task" not in episode_buffer:
|
||||
raise ValueError("task key not found in episode_buffer")
|
||||
|
||||
if episode_buffer["episode_index"] != total_episodes:
|
||||
# TODO(aliberts): Add option to use existing episode_index
|
||||
raise NotImplementedError(
|
||||
"You might have manually provided the episode_buffer with an episode_index that doesn't "
|
||||
"match the total number of episodes already in the dataset. This is not supported for now."
|
||||
)
|
||||
|
||||
if episode_buffer["size"] == 0:
|
||||
raise ValueError("You must add one or several frames with `add_frame` before calling `add_episode`.")
|
||||
|
||||
buffer_keys = set(episode_buffer.keys()) - {"task", "size"}
|
||||
if not buffer_keys == set(features):
|
||||
raise ValueError(
|
||||
f"Features from `episode_buffer` don't match the ones in `features`."
|
||||
f"In episode_buffer not in features: {buffer_keys - set(features)}"
|
||||
f"In features not in episode_buffer: {set(features) - buffer_keys}"
|
||||
)
|
||||
|
||||
@@ -27,10 +27,11 @@ from textwrap import dedent
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
|
||||
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
|
||||
from lerobot.common.robots.aloha.configuration_aloha import AlohaRobotConfig
|
||||
|
||||
LOCAL_DIR = Path("data/")
|
||||
|
||||
# spellchecker:off
|
||||
ALOHA_MOBILE_INFO = {
|
||||
"robot_config": AlohaRobotConfig(),
|
||||
"license": "mit",
|
||||
@@ -856,6 +857,7 @@ DATASETS = {
|
||||
}""").lstrip(),
|
||||
},
|
||||
}
|
||||
# spellchecker:on
|
||||
|
||||
|
||||
def batch_convert():
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
"""
|
||||
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
|
||||
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
|
||||
for each of the task performed in the dataset. This will allow to easily train models with task-conditionning.
|
||||
for each of the task performed in the dataset. This will allow to easily train models with task-conditioning.
|
||||
|
||||
We support 3 different scenarios for these tasks (see instructions below):
|
||||
1. Single task dataset: all episodes of your dataset have the same single task.
|
||||
@@ -130,7 +130,7 @@ from lerobot.common.datasets.utils import (
|
||||
create_branch,
|
||||
create_lerobot_dataset_card,
|
||||
flatten_dict,
|
||||
get_hub_safe_version,
|
||||
get_safe_version,
|
||||
load_json,
|
||||
unflatten_dict,
|
||||
write_json,
|
||||
@@ -141,8 +141,8 @@ from lerobot.common.datasets.video_utils import (
|
||||
get_image_pixel_channels,
|
||||
get_video_info,
|
||||
)
|
||||
from lerobot.common.robot_devices.robots.configs import RobotConfig
|
||||
from lerobot.common.robot_devices.robots.utils import make_robot_config
|
||||
from lerobot.common.robots import RobotConfig
|
||||
from lerobot.common.robots.utils import make_robot_config
|
||||
|
||||
V16 = "v1.6"
|
||||
V20 = "v2.0"
|
||||
@@ -443,7 +443,7 @@ def convert_dataset(
|
||||
test_branch: str | None = None,
|
||||
**card_kwargs,
|
||||
):
|
||||
v1 = get_hub_safe_version(repo_id, V16)
|
||||
v1 = get_safe_version(repo_id, V16)
|
||||
v1x_dir = local_dir / V16 / repo_id
|
||||
v20_dir = local_dir / V20 / repo_id
|
||||
v1x_dir.mkdir(parents=True, exist_ok=True)
|
||||
@@ -481,7 +481,7 @@ def convert_dataset(
|
||||
|
||||
# Tasks
|
||||
if single_task:
|
||||
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices}
|
||||
tasks_by_episodes = dict.fromkeys(episode_indices, single_task)
|
||||
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
|
||||
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
|
||||
elif tasks_path:
|
||||
|
||||
87
lerobot/common/datasets/v21/_remove_language_instruction.py
Normal file
87
lerobot/common/datasets/v21/_remove_language_instruction.py
Normal file
@@ -0,0 +1,87 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
|
||||
from datasets import get_dataset_config_info
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
|
||||
from lerobot.common.datasets.utils import INFO_PATH, write_info
|
||||
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V20, SuppressWarnings
|
||||
|
||||
LOCAL_DIR = Path("data/")
|
||||
|
||||
hub_api = HfApi()
|
||||
|
||||
|
||||
def fix_dataset(repo_id: str) -> str:
|
||||
if not hub_api.revision_exists(repo_id, V20, repo_type="dataset"):
|
||||
return f"{repo_id}: skipped (not in {V20})."
|
||||
|
||||
dataset_info = get_dataset_config_info(repo_id, "default")
|
||||
with SuppressWarnings():
|
||||
lerobot_metadata = LeRobotDatasetMetadata(repo_id, revision=V20, force_cache_sync=True)
|
||||
|
||||
meta_features = {key for key, ft in lerobot_metadata.features.items() if ft["dtype"] != "video"}
|
||||
parquet_features = set(dataset_info.features)
|
||||
|
||||
diff_parquet_meta = parquet_features - meta_features
|
||||
diff_meta_parquet = meta_features - parquet_features
|
||||
|
||||
if diff_parquet_meta:
|
||||
raise ValueError(f"In parquet not in info.json: {parquet_features - meta_features}")
|
||||
|
||||
if not diff_meta_parquet:
|
||||
return f"{repo_id}: skipped (no diff)"
|
||||
|
||||
if diff_meta_parquet:
|
||||
logging.warning(f"In info.json not in parquet: {meta_features - parquet_features}")
|
||||
assert diff_meta_parquet == {"language_instruction"}
|
||||
lerobot_metadata.features.pop("language_instruction")
|
||||
write_info(lerobot_metadata.info, lerobot_metadata.root)
|
||||
commit_info = hub_api.upload_file(
|
||||
path_or_fileobj=lerobot_metadata.root / INFO_PATH,
|
||||
path_in_repo=INFO_PATH,
|
||||
repo_id=repo_id,
|
||||
repo_type="dataset",
|
||||
revision=V20,
|
||||
commit_message="Remove 'language_instruction'",
|
||||
create_pr=True,
|
||||
)
|
||||
return f"{repo_id}: success - PR: {commit_info.pr_url}"
|
||||
|
||||
|
||||
def batch_fix():
|
||||
status = {}
|
||||
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
|
||||
logfile = LOCAL_DIR / "fix_features_v20.txt"
|
||||
for num, repo_id in enumerate(available_datasets):
|
||||
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
|
||||
print("---------------------------------------------------------")
|
||||
try:
|
||||
status = fix_dataset(repo_id)
|
||||
except Exception:
|
||||
status = f"{repo_id}: failed\n {traceback.format_exc()}"
|
||||
|
||||
logging.info(status)
|
||||
with open(logfile, "a") as file:
|
||||
file.write(status + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
batch_fix()
|
||||
@@ -0,0 +1,54 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script is for internal use to convert all datasets under the 'lerobot' hub user account to v2.1.
|
||||
"""
|
||||
|
||||
import traceback
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V21, convert_dataset
|
||||
|
||||
LOCAL_DIR = Path("data/")
|
||||
|
||||
|
||||
def batch_convert():
|
||||
status = {}
|
||||
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
|
||||
logfile = LOCAL_DIR / "conversion_log_v21.txt"
|
||||
hub_api = HfApi()
|
||||
for num, repo_id in enumerate(available_datasets):
|
||||
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
|
||||
print("---------------------------------------------------------")
|
||||
try:
|
||||
if hub_api.revision_exists(repo_id, V21, repo_type="dataset"):
|
||||
status = f"{repo_id}: success (already in {V21})."
|
||||
else:
|
||||
convert_dataset(repo_id)
|
||||
status = f"{repo_id}: success."
|
||||
except Exception:
|
||||
status = f"{repo_id}: failed\n {traceback.format_exc()}"
|
||||
|
||||
with open(logfile, "a") as file:
|
||||
file.write(status + "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
batch_convert()
|
||||
114
lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py
Normal file
114
lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py
Normal file
@@ -0,0 +1,114 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 2.0 to
|
||||
2.1. It will:
|
||||
|
||||
- Generate per-episodes stats and writes them in `episodes_stats.jsonl`
|
||||
- Check consistency between these new stats and the old ones.
|
||||
- Remove the deprecated `stats.json`.
|
||||
- Update codebase_version in `info.json`.
|
||||
- Push this new version to the hub on the 'main' branch and tags it with "v2.1".
|
||||
|
||||
Usage:
|
||||
|
||||
```bash
|
||||
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py \
|
||||
--repo-id=aliberts/koch_tutorial
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
||||
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
|
||||
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats
|
||||
|
||||
V20 = "v2.0"
|
||||
V21 = "v2.1"
|
||||
|
||||
|
||||
class SuppressWarnings:
|
||||
def __enter__(self):
|
||||
self.previous_level = logging.getLogger().getEffectiveLevel()
|
||||
logging.getLogger().setLevel(logging.ERROR)
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
logging.getLogger().setLevel(self.previous_level)
|
||||
|
||||
|
||||
def convert_dataset(
|
||||
repo_id: str,
|
||||
branch: str | None = None,
|
||||
num_workers: int = 4,
|
||||
):
|
||||
with SuppressWarnings():
|
||||
dataset = LeRobotDataset(repo_id, revision=V20, force_cache_sync=True)
|
||||
|
||||
if (dataset.root / EPISODES_STATS_PATH).is_file():
|
||||
(dataset.root / EPISODES_STATS_PATH).unlink()
|
||||
|
||||
convert_stats(dataset, num_workers=num_workers)
|
||||
ref_stats = load_stats(dataset.root)
|
||||
check_aggregate_stats(dataset, ref_stats)
|
||||
|
||||
dataset.meta.info["codebase_version"] = CODEBASE_VERSION
|
||||
write_info(dataset.meta.info, dataset.root)
|
||||
|
||||
dataset.push_to_hub(branch=branch, tag_version=False, allow_patterns="meta/")
|
||||
|
||||
# delete old stats.json file
|
||||
if (dataset.root / STATS_PATH).is_file:
|
||||
(dataset.root / STATS_PATH).unlink()
|
||||
|
||||
hub_api = HfApi()
|
||||
if hub_api.file_exists(
|
||||
repo_id=dataset.repo_id, filename=STATS_PATH, revision=branch, repo_type="dataset"
|
||||
):
|
||||
hub_api.delete_file(
|
||||
path_in_repo=STATS_PATH, repo_id=dataset.repo_id, revision=branch, repo_type="dataset"
|
||||
)
|
||||
|
||||
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset "
|
||||
"(e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--branch",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Repo branch to push your dataset. Defaults to the main branch.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of workers for parallelizing stats compute. Defaults to 4.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
convert_dataset(**vars(args))
|
||||
99
lerobot/common/datasets/v21/convert_stats.py
Normal file
99
lerobot/common/datasets/v21/convert_stats.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import write_episode_stats
|
||||
|
||||
|
||||
def sample_episode_video_frames(dataset: LeRobotDataset, episode_index: int, ft_key: str) -> np.ndarray:
|
||||
ep_len = dataset.meta.episodes[episode_index]["length"]
|
||||
sampled_indices = sample_indices(ep_len)
|
||||
query_timestamps = dataset._get_query_timestamps(0.0, {ft_key: sampled_indices})
|
||||
video_frames = dataset._query_videos(query_timestamps, episode_index)
|
||||
return video_frames[ft_key].numpy()
|
||||
|
||||
|
||||
def convert_episode_stats(dataset: LeRobotDataset, ep_idx: int):
|
||||
ep_start_idx = dataset.episode_data_index["from"][ep_idx]
|
||||
ep_end_idx = dataset.episode_data_index["to"][ep_idx]
|
||||
ep_data = dataset.hf_dataset.select(range(ep_start_idx, ep_end_idx))
|
||||
|
||||
ep_stats = {}
|
||||
for key, ft in dataset.features.items():
|
||||
if ft["dtype"] == "video":
|
||||
# We sample only for videos
|
||||
ep_ft_data = sample_episode_video_frames(dataset, ep_idx, key)
|
||||
else:
|
||||
ep_ft_data = np.array(ep_data[key])
|
||||
|
||||
axes_to_reduce = (0, 2, 3) if ft["dtype"] in ["image", "video"] else 0
|
||||
keepdims = True if ft["dtype"] in ["image", "video"] else ep_ft_data.ndim == 1
|
||||
ep_stats[key] = get_feature_stats(ep_ft_data, axis=axes_to_reduce, keepdims=keepdims)
|
||||
|
||||
if ft["dtype"] in ["image", "video"]: # remove batch dim
|
||||
ep_stats[key] = {
|
||||
k: v if k == "count" else np.squeeze(v, axis=0) for k, v in ep_stats[key].items()
|
||||
}
|
||||
|
||||
dataset.meta.episodes_stats[ep_idx] = ep_stats
|
||||
|
||||
|
||||
def convert_stats(dataset: LeRobotDataset, num_workers: int = 0):
|
||||
assert dataset.episodes is None
|
||||
print("Computing episodes stats")
|
||||
total_episodes = dataset.meta.total_episodes
|
||||
if num_workers > 0:
|
||||
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
||||
futures = {
|
||||
executor.submit(convert_episode_stats, dataset, ep_idx): ep_idx
|
||||
for ep_idx in range(total_episodes)
|
||||
}
|
||||
for future in tqdm(as_completed(futures), total=total_episodes):
|
||||
future.result()
|
||||
else:
|
||||
for ep_idx in tqdm(range(total_episodes)):
|
||||
convert_episode_stats(dataset, ep_idx)
|
||||
|
||||
for ep_idx in tqdm(range(total_episodes)):
|
||||
write_episode_stats(ep_idx, dataset.meta.episodes_stats[ep_idx], dataset.root)
|
||||
|
||||
|
||||
def check_aggregate_stats(
|
||||
dataset: LeRobotDataset,
|
||||
reference_stats: dict[str, dict[str, np.ndarray]],
|
||||
video_rtol_atol: tuple[float] = (1e-2, 1e-2),
|
||||
default_rtol_atol: tuple[float] = (5e-6, 6e-5),
|
||||
):
|
||||
"""Verifies that the aggregated stats from episodes_stats are close to reference stats."""
|
||||
agg_stats = aggregate_stats(list(dataset.meta.episodes_stats.values()))
|
||||
for key, ft in dataset.features.items():
|
||||
# These values might need some fine-tuning
|
||||
if ft["dtype"] == "video":
|
||||
# to account for image sub-sampling
|
||||
rtol, atol = video_rtol_atol
|
||||
else:
|
||||
rtol, atol = default_rtol_atol
|
||||
|
||||
for stat, val in agg_stats[key].items():
|
||||
if key in reference_stats and stat in reference_stats[key]:
|
||||
err_msg = f"feature='{key}' stats='{stat}'"
|
||||
np.testing.assert_allclose(
|
||||
val, reference_stats[key][stat], rtol=rtol, atol=atol, err_msg=err_msg
|
||||
)
|
||||
@@ -13,6 +13,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import importlib
|
||||
import json
|
||||
import logging
|
||||
import subprocess
|
||||
@@ -29,6 +30,46 @@ from datasets.features.features import register_feature
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def get_safe_default_codec():
|
||||
if importlib.util.find_spec("torchcodec"):
|
||||
return "torchcodec"
|
||||
else:
|
||||
logging.warning(
|
||||
"'torchcodec' is not available in your platform, falling back to 'pyav' as a default decoder"
|
||||
)
|
||||
return "pyav"
|
||||
|
||||
|
||||
def decode_video_frames(
|
||||
video_path: Path | str,
|
||||
timestamps: list[float],
|
||||
tolerance_s: float,
|
||||
backend: str | None = None,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Decodes video frames using the specified backend.
|
||||
|
||||
Args:
|
||||
video_path (Path): Path to the video file.
|
||||
timestamps (list[float]): List of timestamps to extract frames.
|
||||
tolerance_s (float): Allowed deviation in seconds for frame retrieval.
|
||||
backend (str, optional): Backend to use for decoding. Defaults to "torchcodec" when available in the platform; otherwise, defaults to "pyav"..
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Decoded frames.
|
||||
|
||||
Currently supports torchcodec on cpu and pyav.
|
||||
"""
|
||||
if backend is None:
|
||||
backend = get_safe_default_codec()
|
||||
if backend == "torchcodec":
|
||||
return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s)
|
||||
elif backend in ["pyav", "video_reader"]:
|
||||
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
|
||||
else:
|
||||
raise ValueError(f"Unsupported video backend: {backend}")
|
||||
|
||||
|
||||
def decode_video_frames_torchvision(
|
||||
video_path: Path | str,
|
||||
timestamps: list[float],
|
||||
@@ -69,11 +110,11 @@ def decode_video_frames_torchvision(
|
||||
|
||||
# set the first and last requested timestamps
|
||||
# Note: previous timestamps are usually loaded, since we need to access the previous key frame
|
||||
first_ts = timestamps[0]
|
||||
last_ts = timestamps[-1]
|
||||
first_ts = min(timestamps)
|
||||
last_ts = max(timestamps)
|
||||
|
||||
# access closest key frame of the first requested frame
|
||||
# Note: closest key frame timestamp is usally smaller than `first_ts` (e.g. key frame can be the first frame of the video)
|
||||
# Note: closest key frame timestamp is usually smaller than `first_ts` (e.g. key frame can be the first frame of the video)
|
||||
# for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
|
||||
reader.seek(first_ts, keyframes_only=keyframes_only)
|
||||
|
||||
@@ -127,6 +168,81 @@ def decode_video_frames_torchvision(
|
||||
return closest_frames
|
||||
|
||||
|
||||
def decode_video_frames_torchcodec(
|
||||
video_path: Path | str,
|
||||
timestamps: list[float],
|
||||
tolerance_s: float,
|
||||
device: str = "cpu",
|
||||
log_loaded_timestamps: bool = False,
|
||||
) -> torch.Tensor:
|
||||
"""Loads frames associated with the requested timestamps of a video using torchcodec.
|
||||
|
||||
Note: Setting device="cuda" outside the main process, e.g. in data loader workers, will lead to CUDA initialization errors.
|
||||
|
||||
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
|
||||
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
|
||||
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
|
||||
and all subsequent frames until reaching the requested frame. The number of key frames in a video
|
||||
can be adjusted during encoding to take into account decoding time and video size in bytes.
|
||||
"""
|
||||
|
||||
if importlib.util.find_spec("torchcodec"):
|
||||
from torchcodec.decoders import VideoDecoder
|
||||
else:
|
||||
raise ImportError("torchcodec is required but not available.")
|
||||
|
||||
# initialize video decoder
|
||||
decoder = VideoDecoder(video_path, device=device, seek_mode="approximate")
|
||||
loaded_frames = []
|
||||
loaded_ts = []
|
||||
# get metadata for frame information
|
||||
metadata = decoder.metadata
|
||||
average_fps = metadata.average_fps
|
||||
|
||||
# convert timestamps to frame indices
|
||||
frame_indices = [round(ts * average_fps) for ts in timestamps]
|
||||
|
||||
# retrieve frames based on indices
|
||||
frames_batch = decoder.get_frames_at(indices=frame_indices)
|
||||
|
||||
for frame, pts in zip(frames_batch.data, frames_batch.pts_seconds, strict=False):
|
||||
loaded_frames.append(frame)
|
||||
loaded_ts.append(pts.item())
|
||||
if log_loaded_timestamps:
|
||||
logging.info(f"Frame loaded at timestamp={pts:.4f}")
|
||||
|
||||
query_ts = torch.tensor(timestamps)
|
||||
loaded_ts = torch.tensor(loaded_ts)
|
||||
|
||||
# compute distances between each query timestamp and loaded timestamps
|
||||
dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
|
||||
min_, argmin_ = dist.min(1)
|
||||
|
||||
is_within_tol = min_ < tolerance_s
|
||||
assert is_within_tol.all(), (
|
||||
f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
|
||||
"It means that the closest frame that can be loaded from the video is too far away in time."
|
||||
"This might be due to synchronization issues with timestamps during data collection."
|
||||
"To be safe, we advise to ignore this item during training."
|
||||
f"\nqueried timestamps: {query_ts}"
|
||||
f"\nloaded timestamps: {loaded_ts}"
|
||||
f"\nvideo: {video_path}"
|
||||
)
|
||||
|
||||
# get closest frames to the query timestamps
|
||||
closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
|
||||
closest_ts = loaded_ts[argmin_]
|
||||
|
||||
if log_loaded_timestamps:
|
||||
logging.info(f"{closest_ts=}")
|
||||
|
||||
# convert to float32 in [0,1] range (channel first)
|
||||
closest_frames = closest_frames.type(torch.float32) / 255
|
||||
|
||||
assert len(timestamps) == len(closest_frames)
|
||||
return closest_frames
|
||||
|
||||
|
||||
def encode_video_frames(
|
||||
imgs_dir: Path | str,
|
||||
video_path: Path | str,
|
||||
@@ -141,6 +257,7 @@ def encode_video_frames(
|
||||
) -> None:
|
||||
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
|
||||
video_path = Path(video_path)
|
||||
imgs_dir = Path(imgs_dir)
|
||||
video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
ffmpeg_args = OrderedDict(
|
||||
|
||||
@@ -1 +1,15 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv # noqa: F401
|
||||
|
||||
@@ -1,9 +1,23 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
|
||||
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
|
||||
from lerobot.configs.types import FeatureType, PolicyFeature
|
||||
|
||||
|
||||
@@ -39,7 +53,7 @@ class AlohaEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"agent_pos": OBS_STATE,
|
||||
"top": f"{OBS_IMAGE}.top",
|
||||
"pixels/top": f"{OBS_IMAGES}.top",
|
||||
}
|
||||
@@ -80,8 +94,8 @@ class PushtEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"environment_state": OBS_ENV,
|
||||
"agent_pos": OBS_STATE,
|
||||
"environment_state": OBS_ENV_STATE,
|
||||
"pixels": OBS_IMAGE,
|
||||
}
|
||||
)
|
||||
@@ -122,7 +136,7 @@ class XarmEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"agent_pos": OBS_STATE,
|
||||
"pixels": OBS_IMAGE,
|
||||
}
|
||||
)
|
||||
|
||||
@@ -37,12 +37,12 @@ def make_env(cfg: EnvConfig, n_envs: int = 1, use_async_envs: bool = False) -> g
|
||||
Args:
|
||||
cfg (EnvConfig): the config of the environment to instantiate.
|
||||
n_envs (int, optional): The number of parallelized env to return. Defaults to 1.
|
||||
use_async_envs (bool, optional): Wether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
|
||||
use_async_envs (bool, optional): Whether to return an AsyncVectorEnv or a SyncVectorEnv. Defaults to
|
||||
False.
|
||||
|
||||
Raises:
|
||||
ValueError: if n_envs < 1
|
||||
ModuleNotFoundError: If the requested env package is not intalled
|
||||
ModuleNotFoundError: If the requested env package is not installed
|
||||
|
||||
Returns:
|
||||
gym.vector.VectorEnv: The parallelized gym.env instance.
|
||||
|
||||
@@ -13,7 +13,11 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import warnings
|
||||
from typing import Any
|
||||
|
||||
import einops
|
||||
import gymnasium as gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
@@ -86,3 +90,38 @@ def env_to_policy_features(env_cfg: EnvConfig) -> dict[str, PolicyFeature]:
|
||||
policy_features[policy_key] = feature
|
||||
|
||||
return policy_features
|
||||
|
||||
|
||||
def are_all_envs_same_type(env: gym.vector.VectorEnv) -> bool:
|
||||
first_type = type(env.envs[0]) # Get type of first env
|
||||
return all(type(e) is first_type for e in env.envs) # Fast type check
|
||||
|
||||
|
||||
def check_env_attributes_and_types(env: gym.vector.VectorEnv) -> None:
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("once", UserWarning) # Apply filter only in this function
|
||||
|
||||
if not (hasattr(env.envs[0], "task_description") and hasattr(env.envs[0], "task")):
|
||||
warnings.warn(
|
||||
"The environment does not have 'task_description' and 'task'. Some policies require these features.",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
if not are_all_envs_same_type(env):
|
||||
warnings.warn(
|
||||
"The environments have different types. Make sure you infer the right task from each environment. Empty task will be passed instead.",
|
||||
UserWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
|
||||
def add_envs_task(env: gym.vector.VectorEnv, observation: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Adds task feature to the observation dict with respect to the first environment attribute."""
|
||||
if hasattr(env.envs[0], "task_description"):
|
||||
observation["task"] = env.call("task_description")
|
||||
elif hasattr(env.envs[0], "task"):
|
||||
observation["task"] = env.call("task")
|
||||
else: # For envs without language instructions, e.g. aloha transfer cube and etc.
|
||||
num_envs = observation[list(observation.keys())[0]].shape[0]
|
||||
observation["task"] = ["" for _ in range(num_envs)]
|
||||
return observation
|
||||
|
||||
17
lerobot/common/errors.py
Normal file
17
lerobot/common/errors.py
Normal file
@@ -0,0 +1,17 @@
|
||||
class DeviceNotConnectedError(ConnectionError):
|
||||
"""Exception raised when the device is not connected."""
|
||||
|
||||
def __init__(self, message="This device is not connected. Try calling `connect()` first."):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class DeviceAlreadyConnectedError(ConnectionError):
|
||||
"""Exception raised when the device is already connected."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
message="This device is already connected. Try not calling `connect()` twice.",
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
1
lerobot/common/motors/__init__.py
Normal file
1
lerobot/common/motors/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .motors_bus import Motor, MotorCalibration, MotorNormMode, MotorsBus
|
||||
41
lerobot/common/motors/configs.py
Normal file
41
lerobot/common/motors/configs.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass
|
||||
class MotorsBusConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
|
||||
@MotorsBusConfig.register_subclass("dynamixel")
|
||||
@dataclass
|
||||
class DynamixelMotorsBusConfig(MotorsBusConfig):
|
||||
port: str
|
||||
motors: dict[str, tuple[int, str]]
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@MotorsBusConfig.register_subclass("feetech")
|
||||
@dataclass
|
||||
class FeetechMotorsBusConfig(MotorsBusConfig):
|
||||
port: str
|
||||
motors: dict[str, tuple[int, str]]
|
||||
mock: bool = False
|
||||
3
lerobot/common/motors/dynamixel/__init__.py
Normal file
3
lerobot/common/motors/dynamixel/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .dynamixel import DriveMode, DynamixelMotorsBus, OperatingMode, TorqueMode
|
||||
from .dynamixel_calibration import run_arm_calibration
|
||||
from .tables import *
|
||||
206
lerobot/common/motors/dynamixel/dynamixel.py
Normal file
206
lerobot/common/motors/dynamixel/dynamixel.py
Normal file
@@ -0,0 +1,206 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO(aliberts): Should we implement FastSyncRead/Write?
|
||||
# https://github.com/ROBOTIS-GIT/DynamixelSDK/pull/643
|
||||
# https://github.com/ROBOTIS-GIT/DynamixelSDK/releases/tag/3.8.2
|
||||
# https://emanual.robotis.com/docs/en/dxl/protocol2/#fast-sync-read-0x8a
|
||||
# -> Need to check compatibility across models
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
|
||||
from lerobot.common.utils.encoding_utils import decode_twos_complement, encode_twos_complement
|
||||
|
||||
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value
|
||||
from .tables import (
|
||||
AVAILABLE_BAUDRATES,
|
||||
MODEL_BAUDRATE_TABLE,
|
||||
MODEL_CONTROL_TABLE,
|
||||
MODEL_ENCODING_TABLE,
|
||||
MODEL_NUMBER_TABLE,
|
||||
MODEL_RESOLUTION,
|
||||
)
|
||||
|
||||
PROTOCOL_VERSION = 2.0
|
||||
BAUDRATE = 1_000_000
|
||||
DEFAULT_TIMEOUT_MS = 1000
|
||||
|
||||
NORMALIZED_DATA = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OperatingMode(Enum):
|
||||
# DYNAMIXEL only controls current(torque) regardless of speed and position. This mode is ideal for a
|
||||
# gripper or a system that only uses current(torque) control or a system that has additional
|
||||
# velocity/position controllers.
|
||||
CURRENT = 0
|
||||
|
||||
# This mode controls velocity. This mode is identical to the Wheel Mode(endless) from existing DYNAMIXEL.
|
||||
# This mode is ideal for wheel-type robots.
|
||||
VELOCITY = 1
|
||||
|
||||
# This mode controls position. This mode is identical to the Joint Mode from existing DYNAMIXEL. Operating
|
||||
# position range is limited by the Max Position Limit(48) and the Min Position Limit(52). This mode is
|
||||
# ideal for articulated robots that each joint rotates less than 360 degrees.
|
||||
POSITION = 3
|
||||
|
||||
# This mode controls position. This mode is identical to the Multi-turn Position Control from existing
|
||||
# DYNAMIXEL. 512 turns are supported(-256[rev] ~ 256[rev]). This mode is ideal for multi-turn wrists or
|
||||
# conveyer systems or a system that requires an additional reduction gear. Note that Max Position
|
||||
# Limit(48), Min Position Limit(52) are not used on Extended Position Control Mode.
|
||||
EXTENDED_POSITION = 4
|
||||
|
||||
# This mode controls both position and current(torque). Up to 512 turns are supported (-256[rev] ~
|
||||
# 256[rev]). This mode is ideal for a system that requires both position and current control such as
|
||||
# articulated robots or grippers.
|
||||
CURRENT_POSITION = 5
|
||||
|
||||
# This mode directly controls PWM output. (Voltage Control Mode)
|
||||
PWM = 16
|
||||
|
||||
|
||||
class DriveMode(Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class TorqueMode(Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
def _split_into_byte_chunks(value: int, length: int) -> list[int]:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if length == 1:
|
||||
data = [value]
|
||||
elif length == 2:
|
||||
data = [dxl.DXL_LOBYTE(value), dxl.DXL_HIBYTE(value)]
|
||||
elif length == 4:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
|
||||
]
|
||||
return data
|
||||
|
||||
|
||||
class DynamixelMotorsBus(MotorsBus):
|
||||
"""
|
||||
The Dynamixel implementation for a MotorsBus. It relies on the python dynamixel sdk to communicate with
|
||||
the motors. For more info, see the Dynamixel SDK Documentation:
|
||||
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20
|
||||
"""
|
||||
|
||||
available_baudrates = deepcopy(AVAILABLE_BAUDRATES)
|
||||
default_timeout = DEFAULT_TIMEOUT_MS
|
||||
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
|
||||
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
model_encoding_table = deepcopy(MODEL_ENCODING_TABLE)
|
||||
model_number_table = deepcopy(MODEL_NUMBER_TABLE)
|
||||
model_resolution_table = deepcopy(MODEL_RESOLUTION)
|
||||
normalized_data = deepcopy(NORMALIZED_DATA)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
port: str,
|
||||
motors: dict[str, Motor],
|
||||
calibration: dict[str, MotorCalibration] | None = None,
|
||||
):
|
||||
super().__init__(port, motors, calibration)
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
self.port_handler = dxl.PortHandler(self.port)
|
||||
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
||||
self.sync_reader = dxl.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
|
||||
self.sync_writer = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
|
||||
self._comm_success = dxl.COMM_SUCCESS
|
||||
self._no_error = 0x00
|
||||
|
||||
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
|
||||
pass
|
||||
|
||||
def _handshake(self) -> None:
|
||||
self._assert_motors_exist()
|
||||
|
||||
def configure_motors(self) -> None:
|
||||
# By default, Dynamixel motors have a 500µs delay response time (corresponding to a value of 250 on
|
||||
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
|
||||
for motor in self.motors:
|
||||
self.write("Return_Delay_Time", motor, 0)
|
||||
|
||||
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for name in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", name, TorqueMode.DISABLED.value, num_retry=num_retry)
|
||||
|
||||
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for name in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", name, TorqueMode.ENABLED.value, num_retry=num_retry)
|
||||
|
||||
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
n_bytes = encoding_table[data_name]
|
||||
ids_values[id_] = encode_twos_complement(ids_values[id_], n_bytes)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
n_bytes = encoding_table[data_name]
|
||||
ids_values[id_] = decode_twos_complement(ids_values[id_], n_bytes)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
|
||||
"""
|
||||
On Dynamixel Motors:
|
||||
Present_Position = Actual_Position + Homing_Offset
|
||||
"""
|
||||
half_turn_homings = {}
|
||||
for motor, pos in positions.items():
|
||||
model = self._get_motor_model(motor)
|
||||
max_res = self.model_resolution_table[model] - 1
|
||||
half_turn_homings[motor] = int(max_res / 2) - pos
|
||||
|
||||
return half_turn_homings
|
||||
|
||||
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
|
||||
return _split_into_byte_chunks(value, length)
|
||||
|
||||
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
|
||||
for n_try in range(1 + num_retry):
|
||||
data_list, comm = self.packet_handler.broadcastPing(self.port_handler)
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(f"Broadcast ping failed on port '{self.port}' ({n_try=})")
|
||||
logger.debug(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
if not self._is_comm_success(comm):
|
||||
if raise_on_error:
|
||||
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
return
|
||||
|
||||
return {id_: data[0] for id_, data in data_list.items()}
|
||||
@@ -1,14 +1,25 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Logic to calibrate a robot arm built with dynamixel motors"""
|
||||
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
from ..motors_bus import MotorNormMode, MotorsBus
|
||||
from .dynamixel import TorqueMode
|
||||
from .tables import MODEL_RESOLUTION
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
@@ -35,6 +46,17 @@ def apply_drive_mode(position, drive_mode):
|
||||
return position
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
"""
|
||||
resolutions = [MODEL_RESOLUTION[model] for model in models]
|
||||
steps = degrees / 180 * np.array(resolutions) / 2
|
||||
steps = steps.astype(int)
|
||||
return steps
|
||||
|
||||
|
||||
def compute_nearest_rounded_position(position, models):
|
||||
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
|
||||
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
|
||||
@@ -75,11 +97,11 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.models)
|
||||
homing_offset = zero_target_pos - zero_nearest_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
@@ -87,13 +109,13 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarely rotate clockwise from the point of view
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
@@ -102,7 +124,7 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.models)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
@@ -111,13 +133,13 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
|
||||
calib_mode = [MotorNormMode.DEGREE.name] * len(arm.names)
|
||||
|
||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
|
||||
# Joints with linear motions (like gripper of Aloha) are experessed in nominal range of [0, 100]
|
||||
calib_idx = arm.motor_names.index("gripper")
|
||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||
if robot_type in ["aloha"] and "gripper" in arm.names:
|
||||
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||
calib_idx = arm.names.index("gripper")
|
||||
calib_mode[calib_idx] = MotorNormMode.LINEAR.name
|
||||
|
||||
calib_data = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
@@ -125,6 +147,6 @@ def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_mode,
|
||||
"motor_names": arm.motor_names,
|
||||
"motor_names": arm.names,
|
||||
}
|
||||
return calib_data
|
||||
162
lerobot/common/motors/dynamixel/tables.py
Normal file
162
lerobot/common/motors/dynamixel/tables.py
Normal file
@@ -0,0 +1,162 @@
|
||||
# {data_name: (address, size_byte)}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table
|
||||
X_SERIES_CONTROL_TABLE = {
|
||||
"Model_Number": (0, 2),
|
||||
"Model_Information": (2, 4),
|
||||
"Firmware_Version": (6, 1),
|
||||
"ID": (7, 1),
|
||||
"Baud_Rate": (8, 1),
|
||||
"Return_Delay_Time": (9, 1),
|
||||
"Drive_Mode": (10, 1),
|
||||
"Operating_Mode": (11, 1),
|
||||
"Secondary_ID": (12, 1),
|
||||
"Protocol_Type": (13, 1),
|
||||
"Homing_Offset": (20, 4),
|
||||
"Moving_Threshold": (24, 4),
|
||||
"Temperature_Limit": (31, 1),
|
||||
"Max_Voltage_Limit": (32, 2),
|
||||
"Min_Voltage_Limit": (34, 2),
|
||||
"PWM_Limit": (36, 2),
|
||||
"Current_Limit": (38, 2),
|
||||
"Acceleration_Limit": (40, 4),
|
||||
"Velocity_Limit": (44, 4),
|
||||
"Max_Position_Limit": (48, 4),
|
||||
"Min_Position_Limit": (52, 4),
|
||||
"Shutdown": (63, 1),
|
||||
"Torque_Enable": (64, 1),
|
||||
"LED": (65, 1),
|
||||
"Status_Return_Level": (68, 1),
|
||||
"Registered_Instruction": (69, 1),
|
||||
"Hardware_Error_Status": (70, 1),
|
||||
"Velocity_I_Gain": (76, 2),
|
||||
"Velocity_P_Gain": (78, 2),
|
||||
"Position_D_Gain": (80, 2),
|
||||
"Position_I_Gain": (82, 2),
|
||||
"Position_P_Gain": (84, 2),
|
||||
"Feedforward_2nd_Gain": (88, 2),
|
||||
"Feedforward_1st_Gain": (90, 2),
|
||||
"Bus_Watchdog": (98, 1),
|
||||
"Goal_PWM": (100, 2),
|
||||
"Goal_Current": (102, 2),
|
||||
"Goal_Velocity": (104, 4),
|
||||
"Profile_Acceleration": (108, 4),
|
||||
"Profile_Velocity": (112, 4),
|
||||
"Goal_Position": (116, 4),
|
||||
"Realtime_Tick": (120, 2),
|
||||
"Moving": (122, 1),
|
||||
"Moving_Status": (123, 1),
|
||||
"Present_PWM": (124, 2),
|
||||
"Present_Current": (126, 2),
|
||||
"Present_Velocity": (128, 4),
|
||||
"Present_Position": (132, 4),
|
||||
"Velocity_Trajectory": (136, 4),
|
||||
"Position_Trajectory": (140, 4),
|
||||
"Present_Input_Voltage": (144, 2),
|
||||
"Present_Temperature": (146, 1),
|
||||
}
|
||||
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#baud-rate8
|
||||
X_SERIES_BAUDRATE_TABLE = {
|
||||
0: 9_600,
|
||||
1: 57_600,
|
||||
2: 115_200,
|
||||
3: 1_000_000,
|
||||
4: 2_000_000,
|
||||
5: 3_000_000,
|
||||
6: 4_000_000,
|
||||
}
|
||||
|
||||
# {data_name: size_byte}
|
||||
X_SERIES_ENCODINGS_TABLE = {
|
||||
"Homing_Offset": X_SERIES_CONTROL_TABLE["Homing_Offset"][1],
|
||||
"Goal_PWM": X_SERIES_CONTROL_TABLE["Goal_PWM"][1],
|
||||
"Goal_Current": X_SERIES_CONTROL_TABLE["Goal_Current"][1],
|
||||
"Goal_Velocity": X_SERIES_CONTROL_TABLE["Goal_Velocity"][1],
|
||||
"Present_PWM": X_SERIES_CONTROL_TABLE["Present_PWM"][1],
|
||||
"Present_Current": X_SERIES_CONTROL_TABLE["Present_Current"][1],
|
||||
"Present_Velocity": X_SERIES_CONTROL_TABLE["Present_Velocity"][1],
|
||||
}
|
||||
|
||||
MODEL_ENCODING_TABLE = {
|
||||
"x_series": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl330-m077": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl330-m288": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl430-w250": X_SERIES_ENCODINGS_TABLE,
|
||||
"xm430-w350": X_SERIES_ENCODINGS_TABLE,
|
||||
"xm540-w270": X_SERIES_ENCODINGS_TABLE,
|
||||
"xc430-w150": X_SERIES_ENCODINGS_TABLE,
|
||||
}
|
||||
|
||||
# {model: model_resolution}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#specifications
|
||||
MODEL_RESOLUTION = {
|
||||
"x_series": 4096,
|
||||
"xl330-m077": 4096,
|
||||
"xl330-m288": 4096,
|
||||
"xl430-w250": 4096,
|
||||
"xm430-w350": 4096,
|
||||
"xm540-w270": 4096,
|
||||
"xc430-w150": 4096,
|
||||
}
|
||||
|
||||
# {model: model_number}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table-of-eeprom-area
|
||||
MODEL_NUMBER_TABLE = {
|
||||
"xl330-m077": 1190,
|
||||
"xl330-m288": 1200,
|
||||
"xl430-w250": 1060,
|
||||
"xm430-w350": 1020,
|
||||
"xm540-w270": 1120,
|
||||
"xc430-w150": 1070,
|
||||
}
|
||||
|
||||
# {model: available_operating_modes}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#operating-mode11
|
||||
MODEL_OPERATING_MODES = {
|
||||
"xl330-m077": [0, 1, 3, 4, 5, 16],
|
||||
"xl330-m288": [0, 1, 3, 4, 5, 16],
|
||||
"xl430-w250": [1, 3, 4, 16],
|
||||
"xm430-w350": [0, 1, 3, 4, 5, 16],
|
||||
"xm540-w270": [0, 1, 3, 4, 5, 16],
|
||||
"xc430-w150": [1, 3, 4, 16],
|
||||
}
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"x_series": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m077": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m288": X_SERIES_CONTROL_TABLE,
|
||||
"xl430-w250": X_SERIES_CONTROL_TABLE,
|
||||
"xm430-w350": X_SERIES_CONTROL_TABLE,
|
||||
"xm540-w270": X_SERIES_CONTROL_TABLE,
|
||||
"xc430-w150": X_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"x_series": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
|
||||
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
AVAILABLE_BAUDRATES = [
|
||||
9_600,
|
||||
19_200,
|
||||
38_400,
|
||||
57_600,
|
||||
115_200,
|
||||
230_400,
|
||||
460_800,
|
||||
500_000,
|
||||
576_000,
|
||||
921_600,
|
||||
1_000_000,
|
||||
1_152_000,
|
||||
2_000_000,
|
||||
2_500_000,
|
||||
3_000_000,
|
||||
3_500_000,
|
||||
4_000_000,
|
||||
]
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user