Compare commits
383 Commits
fix_path
...
alexander-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
946d191919 | ||
|
|
3b86050ab0 | ||
|
|
6d39b73399 | ||
|
|
aca424a481 | ||
|
|
35c1ce7a66 | ||
|
|
e67da1d7a6 | ||
|
|
b6c216b590 | ||
|
|
2b270d085b | ||
|
|
c4da689171 | ||
|
|
9b62c25f6c | ||
|
|
01eae09ba6 | ||
|
|
bceab3d303 | ||
|
|
19dfb9144a | ||
|
|
096149b118 | ||
|
|
5ec0af62c6 | ||
|
|
625f0557ef | ||
|
|
4d7d41cdee | ||
|
|
c9069df9f1 | ||
|
|
68c1b13406 | ||
|
|
f52f4f2cd2 | ||
|
|
89c6be84ca | ||
|
|
fc5cf3d84a | ||
|
|
29a196c5dd | ||
|
|
ced3de4c94 | ||
|
|
7b47ab211b | ||
|
|
1249aee3ac | ||
|
|
b187942db4 | ||
|
|
473345fdf6 | ||
|
|
e89521dfa0 | ||
|
|
7bb5b15f4c | ||
|
|
df914aa76c | ||
|
|
0ea7a8b2a3 | ||
|
|
460df2ccea | ||
|
|
f5de57b385 | ||
|
|
47de07658c | ||
|
|
26d9a070d8 | ||
|
|
eb6bfe01b2 | ||
|
|
a8e245fb31 | ||
|
|
f5e76393eb | ||
|
|
b699a2f484 | ||
|
|
6eaffbef1d | ||
|
|
6e6feae09e | ||
|
|
f6fe162432 | ||
|
|
f3bba0270d | ||
|
|
d747195c57 | ||
|
|
c77633c38c | ||
|
|
19812ca470 | ||
|
|
c015252e20 | ||
|
|
bccee745c3 | ||
|
|
b7b69fcc3d | ||
|
|
b2cda12f87 | ||
|
|
c1668924ab | ||
|
|
d1855a202a | ||
|
|
a4891095e4 | ||
|
|
01d5490d44 | ||
|
|
986583dc5c | ||
|
|
9d60dce6f3 | ||
|
|
e4e739f4f8 | ||
|
|
2765877f28 | ||
|
|
1ec5f77f7c | ||
|
|
508bd92d03 | ||
|
|
5b4fd8891d | ||
|
|
ccffa9e406 | ||
|
|
791506dfb8 | ||
|
|
55dc9f7f51 | ||
|
|
81e490d46f | ||
|
|
a4b6c5e3b1 | ||
|
|
bf2eebb090 | ||
|
|
fe2b9af64f | ||
|
|
fdf6a0c4e3 | ||
|
|
45f351c618 | ||
|
|
b980c5dd9e | ||
|
|
659c69a1c0 | ||
|
|
e760e4cd63 | ||
|
|
c1bcf857c5 | ||
|
|
1030ea0070 | ||
|
|
e2168163cd | ||
|
|
ac0ab27333 | ||
|
|
8d980940a2 | ||
|
|
7ad1909641 | ||
|
|
0928afd37d | ||
|
|
d5c4b0c344 | ||
|
|
dd9c6eed15 | ||
|
|
2298ddf226 | ||
|
|
63e5ec6483 | ||
|
|
c50a13ab31 | ||
|
|
18dd8f32cd | ||
|
|
6d78bca749 | ||
|
|
296bbfe1ad | ||
|
|
c9454333d8 | ||
|
|
1331d3b4e4 | ||
|
|
bff4b673c9 | ||
|
|
3f1c322d56 | ||
|
|
fbc31d906c | ||
|
|
4057cc6c28 | ||
|
|
91badebdfc | ||
|
|
4327e43f19 | ||
|
|
36d9e885ef | ||
|
|
b241ea46dd | ||
|
|
e09d25267e | ||
|
|
4a3eac4743 | ||
|
|
69eeced9d9 | ||
|
|
0980fff6cc | ||
|
|
5edd9a89a0 | ||
|
|
c7a8218620 | ||
|
|
67d79732f9 | ||
|
|
c6aca7fe44 | ||
|
|
cb3978b5f3 | ||
|
|
4ed55c3ba3 | ||
|
|
0eb899de73 | ||
|
|
a8ddefcfd4 | ||
|
|
a9496fde39 | ||
|
|
8a322da422 | ||
|
|
23be5e1e7b | ||
|
|
43a614c173 | ||
|
|
9c2f10bd04 | ||
|
|
03b08eb74e | ||
|
|
38ef878eed | ||
|
|
dee174f678 | ||
|
|
70e8de95f7 | ||
|
|
376d75f8d3 | ||
|
|
a621ec8d88 | ||
|
|
f9b48abe64 | ||
|
|
352010b718 | ||
|
|
5608e659e6 | ||
|
|
14f3ffb412 | ||
|
|
e37f4e8c53 | ||
|
|
30023535f9 | ||
|
|
40d417ef60 | ||
|
|
9241b5e830 | ||
|
|
2ccf89d78c | ||
|
|
ef4bd9e25c | ||
|
|
34f00753eb | ||
|
|
55e484124a | ||
|
|
6d0a45a97d | ||
|
|
5666ec3ec7 | ||
|
|
94cc22da9e | ||
|
|
976a197f98 | ||
|
|
5bd953e8e7 | ||
|
|
c1a618e567 | ||
|
|
4216636084 | ||
|
|
8e5b4365ac | ||
|
|
84d2468da1 | ||
|
|
5be83fbff6 | ||
|
|
a605eec7e9 | ||
|
|
2f4af32d3f | ||
|
|
36de77ac18 | ||
|
|
92701088a3 | ||
|
|
657b27cc8f | ||
|
|
9229226522 | ||
|
|
35069bb3e2 | ||
|
|
0593d20348 | ||
|
|
949f4d1a5b | ||
|
|
3914831585 | ||
|
|
f8c5a2eb10 | ||
|
|
9874652c2f | ||
|
|
4c3d8b061e | ||
|
|
0f0113a7a6 | ||
|
|
daecc3b64c | ||
|
|
e8622154f8 | ||
|
|
8866b22db1 | ||
|
|
2186429fa8 | ||
|
|
693f620df0 | ||
|
|
79542ecd13 | ||
|
|
48ec479660 | ||
|
|
a18bcb39a7 | ||
|
|
ec4bf115d0 | ||
|
|
c08003278e | ||
|
|
6082a7bc73 | ||
|
|
7c8eb7ff19 | ||
|
|
06573d7f67 | ||
|
|
91ff69d64c | ||
|
|
07c28a21ea | ||
|
|
575891e8ac | ||
|
|
7f4ff0b170 | ||
|
|
d44950e020 | ||
|
|
dba0375089 | ||
|
|
d21543eb4f | ||
|
|
dfaacbcf5a | ||
|
|
2573e89e1d | ||
|
|
274f20b49d | ||
|
|
d9019d9e7e | ||
|
|
e6c6c2367f | ||
|
|
19e7661b8d | ||
|
|
253e495df2 | ||
|
|
6902e01db0 | ||
|
|
73dfa3c8e3 | ||
|
|
50e4c8050c | ||
|
|
1e09507bc1 | ||
|
|
1149894e1d | ||
|
|
9c96349926 | ||
|
|
6c792f0d3d | ||
|
|
3f6dfa4916 | ||
|
|
5dff6d8339 | ||
|
|
70aaf1c4cb | ||
|
|
91e0e4e175 | ||
|
|
0b4c42f4ff | ||
|
|
62b18a7607 | ||
|
|
86365adf9f | ||
|
|
0a721f3d94 | ||
|
|
863f28ffd8 | ||
|
|
1bab4a1dd5 | ||
|
|
e982c732f1 | ||
|
|
e1ac5dc62f | ||
|
|
4371a5570d | ||
|
|
44656d2706 | ||
|
|
8d2463f45b | ||
|
|
ecc7dd3b17 | ||
|
|
5eff40b3d6 | ||
|
|
a2d3588fca | ||
|
|
29032fbcd3 | ||
|
|
ab2286025b | ||
|
|
1e71196fe3 | ||
|
|
26602269cd | ||
|
|
9c28ac8aa4 | ||
|
|
f56b1a0e16 | ||
|
|
ab3cd3a7ba | ||
|
|
0b8d27ff2c | ||
|
|
c17dffe944 | ||
|
|
8ba88ba250 | ||
|
|
a420714ee4 | ||
|
|
4863e54ce9 | ||
|
|
ad3379a73a | ||
|
|
9d77f5773d | ||
|
|
edb125b351 | ||
|
|
5af00d0c1e | ||
|
|
3a4dfa82fe | ||
|
|
c93ce35d8c | ||
|
|
1cdfbc8b52 | ||
|
|
278336a39a | ||
|
|
110ac5ffa1 | ||
|
|
c7d70a8db9 | ||
|
|
920e0d118b | ||
|
|
caf4ffcf65 | ||
|
|
a6ec4fbf58 | ||
|
|
c50a62dd6d | ||
|
|
e9eb262293 | ||
|
|
7242953197 | ||
|
|
65ef8c30d0 | ||
|
|
2b928eedd4 | ||
|
|
c3234adc7d | ||
|
|
148df1c1d5 | ||
|
|
a6edb85da4 | ||
|
|
95293d459d | ||
|
|
11cbf1bea1 | ||
|
|
f1148b8c2d | ||
|
|
2a98cc71ed | ||
|
|
a7c9b78e56 | ||
|
|
404b8f8a75 | ||
|
|
17c2bbbeb8 | ||
|
|
006e5feabf | ||
|
|
b99ee8180a | ||
|
|
6bddcb647e | ||
|
|
58df2066a9 | ||
|
|
c89aa4f8ed | ||
|
|
62aad7104b | ||
|
|
9d9148dad8 | ||
|
|
1b6cb2b1be | ||
|
|
6f1a0aefab | ||
|
|
b7c9c33072 | ||
|
|
120f0aef5c | ||
|
|
032200e32c | ||
|
|
de1e9187c8 | ||
|
|
4f8f1926f9 | ||
|
|
6710121a29 | ||
|
|
5f4b8ab899 | ||
|
|
18e7f4c3e6 | ||
|
|
643d64e2a8 | ||
|
|
c037722e23 | ||
|
|
6cd671040f | ||
|
|
b6353964ba | ||
|
|
64c8851c40 | ||
|
|
dc745e3037 | ||
|
|
6f0c2445ca | ||
|
|
d1d2229407 | ||
|
|
68d02c80cf | ||
|
|
011f2d27fe | ||
|
|
be4441c7ff | ||
|
|
1ed0110900 | ||
|
|
cb6d1e0871 | ||
|
|
9ced0cf1fb | ||
|
|
98534d1a63 | ||
|
|
edacc1d2a0 | ||
|
|
5a46b8a2a9 | ||
|
|
4a8c5e238e | ||
|
|
1a1308d62f | ||
|
|
203bcd7ca5 | ||
|
|
98b9631aa6 | ||
|
|
c5635b7d94 | ||
|
|
f00252552a | ||
|
|
90f6af9736 | ||
|
|
bcfdba109f | ||
|
|
0fae5b206b | ||
|
|
7cdd6d2450 | ||
|
|
058ac991eb | ||
|
|
d3adaf1379 | ||
|
|
dc89166bee | ||
|
|
5ef813ff1e | ||
|
|
a2ac83276b | ||
|
|
c0833f1c2d | ||
|
|
de5c30405e | ||
|
|
462e7469e8 | ||
|
|
298d391b26 | ||
|
|
be6364f109 | ||
|
|
127de1258d | ||
|
|
b905111895 | ||
|
|
0c41675986 | ||
|
|
1c24bbda3f | ||
|
|
e41c420a96 | ||
|
|
4a48b77540 | ||
|
|
f3cfc8b3b4 | ||
|
|
d2ef43436c | ||
|
|
40f3783fca | ||
|
|
e21ed6f510 | ||
|
|
bd40ffc53c | ||
|
|
d43fa600a0 | ||
|
|
e698d38a35 | ||
|
|
15ff3b3af8 | ||
|
|
a80d9c0257 | ||
|
|
b9047fbdd2 | ||
|
|
115927d0f6 | ||
|
|
529f42643d | ||
|
|
1b279a1fc0 | ||
|
|
3f0f95f4c0 | ||
|
|
8720c568d0 | ||
|
|
b633748987 | ||
|
|
41912b962b | ||
|
|
98361073ef | ||
|
|
48df15ed26 | ||
|
|
b562f89c3b | ||
|
|
4e10cd306b | ||
|
|
72d3c3120b | ||
|
|
acf1174447 | ||
|
|
1bd50122be | ||
|
|
2b0221052a | ||
|
|
4631d36c05 | ||
|
|
f23a53c3e4 | ||
|
|
82e6e01651 | ||
|
|
d323993569 | ||
|
|
ec536ef0fa | ||
|
|
3910c48e43 | ||
|
|
4b7ec81dde | ||
|
|
98a816f0f8 | ||
|
|
45a4a02b7e | ||
|
|
8bed0fc465 | ||
|
|
32e3f71dd1 | ||
|
|
5332766a82 | ||
|
|
b1ec3da035 | ||
|
|
d16f6a93b3 | ||
|
|
52e149fbfd | ||
|
|
4f1955edfd | ||
|
|
c5010fee9a | ||
|
|
18fa88475b | ||
|
|
b54cdc9a0f | ||
|
|
46ac87d2a6 | ||
|
|
896a11f60e | ||
|
|
2d5abbbd6f | ||
|
|
7d5d99e036 | ||
|
|
b420ab88f4 | ||
|
|
e799dc5e3f | ||
|
|
10034e85c4 | ||
|
|
ea17f4ce50 | ||
|
|
6a1a29386a | ||
|
|
88347965c2 | ||
|
|
09ddd9bf92 | ||
|
|
099a465367 | ||
|
|
8e346b379d | ||
|
|
bae7e7b41c | ||
|
|
75cc10198f | ||
|
|
3124f71ebd | ||
|
|
4ecfd17f9e | ||
|
|
58d1787ee3 | ||
|
|
b752833f3f | ||
|
|
a45896dc8d | ||
|
|
a222c88c99 | ||
|
|
736bc969ca | ||
|
|
4822d63dbe | ||
|
|
ba91976944 | ||
|
|
98484ac68e | ||
|
|
9512d1d2f3 | ||
|
|
87fcc536f9 | ||
|
|
304355c917 | ||
|
|
2a01487494 |
142
.dockerignore
Normal file
142
.dockerignore
Normal file
@@ -0,0 +1,142 @@
|
||||
# Misc
|
||||
.git
|
||||
tmp
|
||||
wandb
|
||||
data
|
||||
outputs
|
||||
.vscode
|
||||
rl
|
||||
media
|
||||
|
||||
|
||||
# Logging
|
||||
logs
|
||||
|
||||
# HPC
|
||||
nautilus/*.yaml
|
||||
*.key
|
||||
|
||||
# Slurm
|
||||
sbatch*.sh
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
pip-wheel-metadata/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
!tests/data
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
5
.gitattributes
vendored
5
.gitattributes
vendored
@@ -1 +1,6 @@
|
||||
*.memmap filter=lfs diff=lfs merge=lfs -text
|
||||
*.stl filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.json filter=lfs diff=lfs merge=lfs -text
|
||||
|
||||
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
54
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
@@ -0,0 +1,54 @@
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Submit a bug report to help us improve LeRobot
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to submit a bug report! 🐛
|
||||
If this is not a bug related to the LeRobot library directly, but instead a general question about your code or the library specifically please use our [discord](https://discord.gg/s3KuuzsPFb).
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: If needed, you can share your lerobot configuration with us by running `python -m lerobot.scripts.display_sys_info` and copy-pasting its outputs below
|
||||
render: Shell
|
||||
placeholder: lerobot version, OS, python version, numpy version, torch version, and lerobot's configuration
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: checkboxes
|
||||
id: information-scripts-examples
|
||||
attributes:
|
||||
label: Information
|
||||
description: 'The problem arises when using:'
|
||||
options:
|
||||
- label: "One of the scripts in the examples/ folder of LeRobot"
|
||||
- label: "My own task or dataset (give details below)"
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
If needed, provide a simple code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
|
||||
Sharing error messages or stack traces could be useful as well!
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Try to avoid screenshots, as they are hard to read and don't allow copy-and-pasting.
|
||||
|
||||
placeholder: |
|
||||
Steps to reproduce the behavior:
|
||||
|
||||
1.
|
||||
2.
|
||||
3.
|
||||
|
||||
- type: textarea
|
||||
id: expected-behavior
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Expected behavior
|
||||
description: "A clear and concise description of what you would expect to happen."
|
||||
34
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
34
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
## What this does
|
||||
Explain what this PR does. Feel free to tag your PR with the appropriate label(s).
|
||||
|
||||
Examples:
|
||||
| Title | Label |
|
||||
|----------------------|-----------------|
|
||||
| Fixes #[issue] | (🐛 Bug) |
|
||||
| Adds new dataset | (🗃️ Dataset) |
|
||||
| Optimizes something | (⚡️ Performance) |
|
||||
|
||||
## How it was tested
|
||||
Explain/show how you tested your changes.
|
||||
|
||||
Examples:
|
||||
- Added `test_something` in `tests/test_stuff.py`.
|
||||
- Added `new_feature` and checked that training converges with policy X on dataset/environment Y.
|
||||
- Optimized `some_function`, it now runs X times faster than previously.
|
||||
|
||||
## How to checkout & try? (for the reviewer)
|
||||
Provide a simple way for the reviewer to try out your changes.
|
||||
|
||||
Examples:
|
||||
```bash
|
||||
DATA_DIR=tests/data pytest -sx tests/test_stuff.py::test_something
|
||||
```
|
||||
```bash
|
||||
python lerobot/scripts/train.py --some.option=true
|
||||
```
|
||||
|
||||
## SECTION TO REMOVE BEFORE SUBMITTING YOUR PR
|
||||
**Note**: Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
|
||||
members/contributors who may be interested in your PR. Try to avoid tagging more than 3 people.
|
||||
|
||||
**Note**: Before submitting this PR, please read the [contributor guideline](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md#submitting-a-pull-request-pr).
|
||||
3126
.github/poetry/cpu/poetry.lock
generated
vendored
3126
.github/poetry/cpu/poetry.lock
generated
vendored
File diff suppressed because it is too large
Load Diff
107
.github/poetry/cpu/pyproject.toml
vendored
107
.github/poetry/cpu/pyproject.toml
vendored
@@ -1,107 +0,0 @@
|
||||
[tool.poetry]
|
||||
name = "lerobot"
|
||||
version = "0.1.0"
|
||||
description = "Le robot is learning"
|
||||
authors = [
|
||||
"Rémi Cadène <re.cadene@gmail.com>",
|
||||
"Simon Alibert <alibert.sim@gmail.com>",
|
||||
]
|
||||
repository = "https://github.com/Cadene/lerobot"
|
||||
readme = "README.md"
|
||||
license = "MIT"
|
||||
classifiers=[
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Software Development :: Build Tools",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
]
|
||||
packages = [{include = "lerobot"}]
|
||||
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
cython = "^3.0.8"
|
||||
termcolor = "^2.4.0"
|
||||
omegaconf = "^2.3.0"
|
||||
dm-env = "^1.6"
|
||||
pandas = "^2.2.1"
|
||||
wandb = "^0.16.3"
|
||||
moviepy = "^1.0.3"
|
||||
imageio = {extras = ["pyav"], version = "^2.34.0"}
|
||||
gdown = "^5.1.0"
|
||||
hydra-core = "^1.3.2"
|
||||
einops = "^0.7.0"
|
||||
pygame = "^2.5.2"
|
||||
pymunk = "^6.6.0"
|
||||
zarr = "^2.17.0"
|
||||
shapely = "^2.0.3"
|
||||
scikit-image = "^0.22.0"
|
||||
numba = "^0.59.0"
|
||||
mpmath = "^1.3.0"
|
||||
torch = {version = "^2.2.1", source = "torch-cpu"}
|
||||
tensordict = {git = "https://github.com/pytorch/tensordict"}
|
||||
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
|
||||
mujoco = "^3.1.2"
|
||||
mujoco-py = "^2.1.2.14"
|
||||
gym = "^0.26.2"
|
||||
opencv-python = "^4.9.0.80"
|
||||
diffusers = "^0.26.3"
|
||||
torchvision = {version = "^0.17.1", source = "torch-cpu"}
|
||||
h5py = "^3.10.0"
|
||||
dm = "^1.3"
|
||||
dm-control = "^1.0.16"
|
||||
huggingface-hub = "^0.21.4"
|
||||
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pre-commit = "^3.6.2"
|
||||
debugpy = "^1.8.1"
|
||||
pytest = "^8.1.0"
|
||||
|
||||
|
||||
[[tool.poetry.source]]
|
||||
name = "torch-cpu"
|
||||
url = "https://download.pytorch.org/whl/cpu"
|
||||
priority = "supplemental"
|
||||
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 110
|
||||
target-version = "py310"
|
||||
exclude = [
|
||||
".bzr",
|
||||
".direnv",
|
||||
".eggs",
|
||||
".git",
|
||||
".git-rewrite",
|
||||
".hg",
|
||||
".mypy_cache",
|
||||
".nox",
|
||||
".pants.d",
|
||||
".pytype",
|
||||
".ruff_cache",
|
||||
".svn",
|
||||
".tox",
|
||||
".venv",
|
||||
"__pypackages__",
|
||||
"_build",
|
||||
"buck-out",
|
||||
"build",
|
||||
"dist",
|
||||
"node_modules",
|
||||
"venv",
|
||||
]
|
||||
|
||||
|
||||
[tool.ruff.lint]
|
||||
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
|
||||
|
||||
|
||||
[tool.poetry-dynamic-versioning]
|
||||
enable = true
|
||||
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning>=1.0.0,<2.0.0"]
|
||||
build-backend = "poetry_dynamic_versioning.backend"
|
||||
127
.github/workflows/build-docker-images.yml
vendored
Normal file
127
.github/workflows/build-docker-images.yml
vendored
Normal file
@@ -0,0 +1,127 @@
|
||||
# Inspired by
|
||||
# https://github.com/huggingface/peft/blob/main/.github/workflows/build_docker_images.yml
|
||||
name: Builds
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
schedule:
|
||||
- cron: "0 1 * * *"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
latest-cpu:
|
||||
name: CPU
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo df -h
|
||||
# sudo ls -l /usr/local/lib/
|
||||
# sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo df -h
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
- name: Build and Push CPU
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
file: ./docker/lerobot-cpu/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/lerobot-cpu
|
||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||
|
||||
|
||||
latest-cuda:
|
||||
name: GPU
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo df -h
|
||||
# sudo ls -l /usr/local/lib/
|
||||
# sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo df -h
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
- name: Build and Push GPU
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
file: ./docker/lerobot-gpu/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/lerobot-gpu
|
||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||
|
||||
|
||||
latest-cuda-dev:
|
||||
name: GPU Dev
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo df -h
|
||||
# sudo ls -l /usr/local/lib/
|
||||
# sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo df -h
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
- name: Build and Push GPU dev
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
context: .
|
||||
file: ./docker/lerobot-gpu-dev/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/lerobot-gpu:dev
|
||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||
79
.github/workflows/nightly-tests.yml
vendored
Normal file
79
.github/workflows/nightly-tests.yml
vendored
Normal file
@@ -0,0 +1,79 @@
|
||||
# Inspired by
|
||||
# https://github.com/huggingface/peft/blob/main/.github/workflows/nightly.yml
|
||||
name: Nightly
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule:
|
||||
- cron: "0 2 * * *"
|
||||
|
||||
env:
|
||||
DATA_DIR: tests/data
|
||||
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
|
||||
|
||||
jobs:
|
||||
run_all_tests_cpu:
|
||||
name: CPU
|
||||
strategy:
|
||||
fail-fast: false
|
||||
runs-on: ubuntu-latest
|
||||
container:
|
||||
image: huggingface/lerobot-cpu:latest
|
||||
options: --shm-size "16gb"
|
||||
credentials:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: /lerobot
|
||||
steps:
|
||||
- name: Tests
|
||||
env:
|
||||
DATA_DIR: tests/data
|
||||
run: pytest -v --cov=./lerobot --disable-warnings tests
|
||||
|
||||
- name: Tests end-to-end
|
||||
env:
|
||||
DATA_DIR: tests/data
|
||||
run: make test-end-to-end
|
||||
|
||||
|
||||
run_all_tests_single_gpu:
|
||||
name: GPU
|
||||
strategy:
|
||||
fail-fast: false
|
||||
runs-on: [single-gpu, nvidia-gpu, t4, ci]
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
TEST_TYPE: "single_gpu"
|
||||
container:
|
||||
image: huggingface/lerobot-gpu:latest
|
||||
options: --gpus all --shm-size "16gb"
|
||||
credentials:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: /lerobot
|
||||
steps:
|
||||
- name: Nvidia-smi
|
||||
run: nvidia-smi
|
||||
|
||||
- name: Test
|
||||
run: pytest -v --cov=./lerobot --cov-report=xml --disable-warnings tests
|
||||
# TODO(aliberts): Link with HF Codecov account
|
||||
# - name: Upload coverage reports to Codecov with GitHub Action
|
||||
# uses: codecov/codecov-action@v4
|
||||
# with:
|
||||
# files: ./coverage.xml
|
||||
# verbose: true
|
||||
- name: Tests end-to-end
|
||||
run: make test-end-to-end
|
||||
|
||||
# - name: Generate Report
|
||||
# if: always()
|
||||
# run: |
|
||||
# pip install slack_sdk tabulate
|
||||
# python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
56
.github/workflows/quality.yml
vendored
Normal file
56
.github/workflows/quality.yml
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
name: Quality
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
style:
|
||||
name: Style
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ env.PYTHON_VERSION }}
|
||||
|
||||
- name: Get Ruff Version from pre-commit-config.yaml
|
||||
id: get-ruff-version
|
||||
run: |
|
||||
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
|
||||
echo "RUFF_VERSION=${RUFF_VERSION}" >> $GITHUB_ENV
|
||||
|
||||
- name: Install Ruff
|
||||
run: python -m pip install "ruff==${{ env.RUFF_VERSION }}"
|
||||
|
||||
- name: Ruff check
|
||||
run: ruff check
|
||||
|
||||
- name: Ruff format
|
||||
run: ruff format --diff
|
||||
|
||||
|
||||
poetry_check:
|
||||
name: Poetry check
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout Repository
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Install poetry
|
||||
run: pipx install poetry
|
||||
|
||||
- name: Poetry check
|
||||
run: poetry check
|
||||
77
.github/workflows/test-docker-build.yml
vendored
Normal file
77
.github/workflows/test-docker-build.yml
vendored
Normal file
@@ -0,0 +1,77 @@
|
||||
# Inspired by
|
||||
# https://github.com/huggingface/peft/blob/main/.github/workflows/test-docker-build.yml
|
||||
name: Test Dockerfiles
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
# Run only when DockerFile files are modified
|
||||
- "docker/**"
|
||||
|
||||
env:
|
||||
PYTHON_VERSION: "3.10"
|
||||
|
||||
jobs:
|
||||
get_changed_files:
|
||||
name: Detect modified Dockerfiles
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v44
|
||||
with:
|
||||
files: docker/**
|
||||
json: "true"
|
||||
|
||||
- name: Run step if only the files listed above change
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
id: set-matrix
|
||||
env:
|
||||
ALL_CHANGED_FILES: ${{ steps.changed-files.outputs.all_changed_files }}
|
||||
run: |
|
||||
echo "matrix=${{ steps.changed-files.outputs.all_changed_files}}" >> $GITHUB_OUTPUT
|
||||
|
||||
|
||||
build_modified_dockerfiles:
|
||||
name: Build modified Docker images
|
||||
needs: get_changed_files
|
||||
runs-on: ubuntu-latest
|
||||
if: ${{ needs.get_changed_files.outputs.matrix }} != ''
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
|
||||
steps:
|
||||
- name: Cleanup disk
|
||||
run: |
|
||||
sudo df -h
|
||||
# sudo ls -l /usr/local/lib/
|
||||
# sudo ls -l /usr/share/
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo du -sh /usr/local/lib/
|
||||
sudo du -sh /usr/share/
|
||||
sudo df -h
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Build Docker image
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
file: ${{ matrix.docker-file }}
|
||||
context: .
|
||||
push: False
|
||||
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
|
||||
226
.github/workflows/test.yml
vendored
226
.github/workflows/test.yml
vendored
@@ -1,144 +1,128 @@
|
||||
name: Test
|
||||
name: Tests
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
types: [opened, synchronize, reopened, labeled]
|
||||
paths:
|
||||
- "lerobot/**"
|
||||
- "tests/**"
|
||||
- "examples/**"
|
||||
- ".github/**"
|
||||
- "poetry.lock"
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
paths:
|
||||
- "lerobot/**"
|
||||
- "tests/**"
|
||||
- "examples/**"
|
||||
- ".github/**"
|
||||
- "poetry.lock"
|
||||
|
||||
jobs:
|
||||
test:
|
||||
if: |
|
||||
${{ github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'CI') }} ||
|
||||
${{ github.event_name == 'push' }}
|
||||
pytest:
|
||||
name: Pytest
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
POETRY_VERSION: 1.8.1
|
||||
DATA_DIR: tests/data
|
||||
TMPDIR: ~/tmp
|
||||
TEMP: ~/tmp
|
||||
TMP: ~/tmp
|
||||
PYOPENGL_PLATFORM: egl
|
||||
MUJOCO_GL: egl
|
||||
LEROBOT_TESTS_DEVICE: cpu
|
||||
steps:
|
||||
#----------------------------------------------
|
||||
# check-out repo and set-up python
|
||||
#----------------------------------------------
|
||||
- name: Check out repository
|
||||
uses: actions/checkout@v4
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
|
||||
- name: Set up python
|
||||
id: setup-python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.10'
|
||||
|
||||
#----------------------------------------------
|
||||
# install & configure poetry
|
||||
#----------------------------------------------
|
||||
- name: Load cached Poetry installation
|
||||
id: restore-poetry-cache
|
||||
uses: actions/cache/restore@v3
|
||||
with:
|
||||
path: ~/.local
|
||||
key: poetry-${{ env.POETRY_VERSION }}
|
||||
|
||||
- name: Install Poetry
|
||||
if: steps.restore-poetry-cache.outputs.cache-hit != 'true'
|
||||
uses: snok/install-poetry@v1
|
||||
with:
|
||||
version: ${{ env.POETRY_VERSION }}
|
||||
virtualenvs-create: true
|
||||
installer-parallel: true
|
||||
|
||||
- name: Save cached Poetry installation
|
||||
if: |
|
||||
steps.restore-poetry-cache.outputs.cache-hit != 'true' &&
|
||||
github.ref_name == 'main'
|
||||
id: save-poetry-cache
|
||||
uses: actions/cache/save@v3
|
||||
with:
|
||||
path: ~/.local
|
||||
key: poetry-${{ env.POETRY_VERSION }}
|
||||
|
||||
- name: Configure Poetry
|
||||
run: poetry config virtualenvs.in-project true
|
||||
|
||||
#----------------------------------------------
|
||||
# install dependencies
|
||||
#----------------------------------------------
|
||||
# TODO(aliberts): move to gpu runners
|
||||
- name: Select cpu dependencies # HACK
|
||||
run: cp -t . .github/poetry/cpu/pyproject.toml .github/poetry/cpu/poetry.lock
|
||||
|
||||
- name: Load cached venv
|
||||
id: restore-dependencies-cache
|
||||
uses: actions/cache/restore@v3
|
||||
with:
|
||||
path: .venv
|
||||
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
|
||||
|
||||
- name: Install dependencies
|
||||
if: steps.restore-dependencies-cache.outputs.cache-hit != 'true'
|
||||
run: |
|
||||
mkdir ~/tmp
|
||||
poetry install --no-interaction --no-root
|
||||
|
||||
- name: Save cached venv
|
||||
if: |
|
||||
steps.restore-dependencies-cache.outputs.cache-hit != 'true' &&
|
||||
github.ref_name == 'main'
|
||||
id: save-dependencies-cache
|
||||
uses: actions/cache/save@v3
|
||||
with:
|
||||
path: .venv
|
||||
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
|
||||
|
||||
- name: Install libegl1-mesa-dev (to use MUJOCO_GL=egl)
|
||||
- name: Install EGL
|
||||
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
|
||||
|
||||
#----------------------------------------------
|
||||
# install project
|
||||
#----------------------------------------------
|
||||
- name: Install project
|
||||
run: poetry install --no-interaction
|
||||
|
||||
#----------------------------------------------
|
||||
# run tests
|
||||
#----------------------------------------------
|
||||
- name: Run tests
|
||||
- name: Install poetry
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
pytest tests
|
||||
pipx install poetry && poetry config virtualenvs.in-project true
|
||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Test train pusht end-to-end
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.job.name=pusht \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
offline_steps=2 \
|
||||
online_steps=0 \
|
||||
device=cpu \
|
||||
save_model=true \
|
||||
save_freq=1 \
|
||||
hydra.run.dir=tests/outputs/
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
cache: "poetry"
|
||||
|
||||
- name: Test eval pusht end-to-end
|
||||
- name: Install poetry dependencies
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
python lerobot/scripts/eval.py \
|
||||
hydra.job.name=pusht \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
eval_episodes=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
policy.pretrained_model_path=tests/outputs/models/1.pt
|
||||
poetry install --all-extras
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest tests -v --cov=./lerobot --durations=0 \
|
||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||
&& rm -rf tests/outputs outputs
|
||||
|
||||
|
||||
pytest-minimal:
|
||||
name: Pytest (minimal install)
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
DATA_DIR: tests/data
|
||||
MUJOCO_GL: egl
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry && poetry config virtualenvs.in-project true
|
||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
|
||||
- name: Install poetry dependencies
|
||||
run: |
|
||||
poetry install --extras "test"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
pytest tests -v --cov=./lerobot --durations=0 \
|
||||
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
|
||||
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
|
||||
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
|
||||
&& rm -rf tests/outputs outputs
|
||||
|
||||
|
||||
end-to-end:
|
||||
name: End-to-end
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
DATA_DIR: tests/data
|
||||
MUJOCO_GL: egl
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
lfs: true # Ensure LFS files are pulled
|
||||
|
||||
- name: Install EGL
|
||||
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
|
||||
|
||||
- name: Install poetry
|
||||
run: |
|
||||
pipx install poetry && poetry config virtualenvs.in-project true
|
||||
echo "${{ github.workspace }}/.venv/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.10"
|
||||
cache: "poetry"
|
||||
|
||||
- name: Install poetry dependencies
|
||||
run: |
|
||||
poetry install --all-extras
|
||||
|
||||
- name: Test end-to-end
|
||||
run: |
|
||||
make test-end-to-end \
|
||||
&& rm -rf outputs
|
||||
|
||||
34
.gitignore
vendored
34
.gitignore
vendored
@@ -2,15 +2,24 @@
|
||||
logs
|
||||
tmp
|
||||
wandb
|
||||
|
||||
# Data
|
||||
data
|
||||
outputs
|
||||
|
||||
# Apple
|
||||
.DS_Store
|
||||
|
||||
# VS Code
|
||||
.vscode
|
||||
rl
|
||||
|
||||
# HPC
|
||||
nautilus/*.yaml
|
||||
*.key
|
||||
|
||||
# Slurm
|
||||
sbatch*.sh
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
@@ -86,6 +95,7 @@ instance/
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
@@ -98,13 +108,6 @@ ipython_config.py
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
@@ -115,6 +118,15 @@ celerybeat.pid
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
@@ -132,3 +144,9 @@ dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
exclude: ^(data/|tests/)
|
||||
exclude: ^(tests/data)
|
||||
default_language_version:
|
||||
python: python3.10
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.5.0
|
||||
rev: v4.6.0
|
||||
hooks:
|
||||
- id: check-added-large-files
|
||||
- id: debug-statements
|
||||
@@ -14,11 +14,11 @@ repos:
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.15.1
|
||||
rev: v3.15.2
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.2
|
||||
rev: v0.4.3
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
|
||||
133
CODE_OF_CONDUCT.md
Normal file
133
CODE_OF_CONDUCT.md
Normal file
@@ -0,0 +1,133 @@
|
||||
|
||||
# Contributor Covenant Code of Conduct
|
||||
|
||||
## Our Pledge
|
||||
|
||||
We as members, contributors, and leaders pledge to make participation in our
|
||||
community a harassment-free experience for everyone, regardless of age, body
|
||||
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
||||
identity and expression, level of experience, education, socio-economic status,
|
||||
nationality, personal appearance, race, caste, color, religion, or sexual
|
||||
identity and orientation.
|
||||
|
||||
We pledge to act and interact in ways that contribute to an open, welcoming,
|
||||
diverse, inclusive, and healthy community.
|
||||
|
||||
## Our Standards
|
||||
|
||||
Examples of behavior that contributes to a positive environment for our
|
||||
community include:
|
||||
|
||||
* Demonstrating empathy and kindness toward other people
|
||||
* Being respectful of differing opinions, viewpoints, and experiences
|
||||
* Giving and gracefully accepting constructive feedback
|
||||
* Accepting responsibility and apologizing to those affected by our mistakes,
|
||||
and learning from the experience
|
||||
* Focusing on what is best not just for us as individuals, but for the overall
|
||||
community
|
||||
|
||||
Examples of unacceptable behavior include:
|
||||
|
||||
* The use of sexualized language or imagery, and sexual attention or advances of
|
||||
any kind
|
||||
* Trolling, insulting or derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or email address,
|
||||
without their explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate in a
|
||||
professional setting
|
||||
|
||||
## Enforcement Responsibilities
|
||||
|
||||
Community leaders are responsible for clarifying and enforcing our standards of
|
||||
acceptable behavior and will take appropriate and fair corrective action in
|
||||
response to any behavior that they deem inappropriate, threatening, offensive,
|
||||
or harmful.
|
||||
|
||||
Community leaders have the right and responsibility to remove, edit, or reject
|
||||
comments, commits, code, wiki edits, issues, and other contributions that are
|
||||
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
||||
decisions when appropriate.
|
||||
|
||||
## Scope
|
||||
|
||||
This Code of Conduct applies within all community spaces, and also applies when
|
||||
an individual is officially representing the community in public spaces.
|
||||
Examples of representing our community include using an official email address,
|
||||
posting via an official social media account, or acting as an appointed
|
||||
representative at an online or offline event.
|
||||
|
||||
## Enforcement
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported to the community leaders responsible for enforcement at
|
||||
[feedback@huggingface.co](mailto:feedback@huggingface.co).
|
||||
All complaints will be reviewed and investigated promptly and fairly.
|
||||
|
||||
All community leaders are obligated to respect the privacy and security of the
|
||||
reporter of any incident.
|
||||
|
||||
## Enforcement Guidelines
|
||||
|
||||
Community leaders will follow these Community Impact Guidelines in determining
|
||||
the consequences for any action they deem in violation of this Code of Conduct:
|
||||
|
||||
### 1. Correction
|
||||
|
||||
**Community Impact**: Use of inappropriate language or other behavior deemed
|
||||
unprofessional or unwelcome in the community.
|
||||
|
||||
**Consequence**: A private, written warning from community leaders, providing
|
||||
clarity around the nature of the violation and an explanation of why the
|
||||
behavior was inappropriate. A public apology may be requested.
|
||||
|
||||
### 2. Warning
|
||||
|
||||
**Community Impact**: A violation through a single incident or series of
|
||||
actions.
|
||||
|
||||
**Consequence**: A warning with consequences for continued behavior. No
|
||||
interaction with the people involved, including unsolicited interaction with
|
||||
those enforcing the Code of Conduct, for a specified period of time. This
|
||||
includes avoiding interactions in community spaces as well as external channels
|
||||
like social media. Violating these terms may lead to a temporary or permanent
|
||||
ban.
|
||||
|
||||
### 3. Temporary Ban
|
||||
|
||||
**Community Impact**: A serious violation of community standards, including
|
||||
sustained inappropriate behavior.
|
||||
|
||||
**Consequence**: A temporary ban from any sort of interaction or public
|
||||
communication with the community for a specified period of time. No public or
|
||||
private interaction with the people involved, including unsolicited interaction
|
||||
with those enforcing the Code of Conduct, is allowed during this period.
|
||||
Violating these terms may lead to a permanent ban.
|
||||
|
||||
### 4. Permanent Ban
|
||||
|
||||
**Community Impact**: Demonstrating a pattern of violation of community
|
||||
standards, including sustained inappropriate behavior, harassment of an
|
||||
individual, or aggression toward or disparagement of classes of individuals.
|
||||
|
||||
**Consequence**: A permanent ban from any sort of public interaction within the
|
||||
community.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
||||
version 2.1, available at
|
||||
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
|
||||
|
||||
Community Impact Guidelines were inspired by
|
||||
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
|
||||
|
||||
For answers to common questions about this code of conduct, see the FAQ at
|
||||
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
|
||||
[https://www.contributor-covenant.org/translations][translations].
|
||||
|
||||
[homepage]: https://www.contributor-covenant.org
|
||||
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
||||
[Mozilla CoC]: https://github.com/mozilla/diversity
|
||||
[FAQ]: https://www.contributor-covenant.org/faq
|
||||
[translations]: https://www.contributor-covenant.org/translations
|
||||
275
CONTRIBUTING.md
Normal file
275
CONTRIBUTING.md
Normal file
@@ -0,0 +1,275 @@
|
||||
# How to contribute to 🤗 LeRobot?
|
||||
|
||||
Everyone is welcome to contribute, and we value everybody's contribution. Code
|
||||
is thus not the only way to help the community. Answering questions, helping
|
||||
others, reaching out and improving the documentations are immensely valuable to
|
||||
the community.
|
||||
|
||||
It also helps us if you spread the word: reference the library from blog posts
|
||||
on the awesome projects it made possible, shout out on Twitter when it has
|
||||
helped you, or simply ⭐️ the repo to say "thank you".
|
||||
|
||||
Whichever way you choose to contribute, please be mindful to respect our
|
||||
[code of conduct](https://github.com/huggingface/lerobot/blob/main/CODE_OF_CONDUCT.md).
|
||||
|
||||
## You can contribute in so many ways!
|
||||
|
||||
Some of the ways you can contribute to 🤗 LeRobot:
|
||||
* Fixing outstanding issues with the existing code.
|
||||
* Implementing new models, datasets or simulation environments.
|
||||
* Contributing to the examples or to the documentation.
|
||||
* Submitting issues related to bugs or desired new features.
|
||||
|
||||
Following the guides below, feel free to open issues and PRs and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](remi.cadene@huggingface.co).
|
||||
|
||||
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/orgs/huggingface/projects/46)
|
||||
|
||||
## Submitting a new issue or feature request
|
||||
|
||||
Do your best to follow these guidelines when submitting an issue or a feature
|
||||
request. It will make it easier for us to come back to you quickly and with good
|
||||
feedback.
|
||||
|
||||
### Did you find a bug?
|
||||
|
||||
The 🤗 LeRobot library is robust and reliable thanks to the users who notify us of
|
||||
the problems they encounter. So thank you for reporting an issue.
|
||||
|
||||
First, we would really appreciate it if you could **make sure the bug was not
|
||||
already reported** (use the search bar on Github under Issues).
|
||||
|
||||
Did not find it? :( So we can act quickly on it, please follow these steps:
|
||||
|
||||
* Include your **OS type and version**, the versions of **Python** and **PyTorch**.
|
||||
* A short, self-contained, code snippet that allows us to reproduce the bug in
|
||||
less than 30s.
|
||||
* The full traceback if an exception is raised.
|
||||
* Attach any other additional information, like screenshots, you think may help.
|
||||
|
||||
### Do you want a new feature?
|
||||
|
||||
A good feature request addresses the following points:
|
||||
|
||||
1. Motivation first:
|
||||
* Is it related to a problem/frustration with the library? If so, please explain
|
||||
why. Providing a code snippet that demonstrates the problem is best.
|
||||
* Is it related to something you would need for a project? We'd love to hear
|
||||
about it!
|
||||
* Is it something you worked on and think could benefit the community?
|
||||
Awesome! Tell us what problem it solved for you.
|
||||
2. Write a *paragraph* describing the feature.
|
||||
3. Provide a **code snippet** that demonstrates its future use.
|
||||
4. In case this is related to a paper, please attach a link.
|
||||
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
|
||||
|
||||
If your issue is well written we're already 80% of the way there by the time you
|
||||
post it.
|
||||
|
||||
## Adding new policies, datasets or environments
|
||||
|
||||
Look at our implementations for [datasets](./lerobot/common/datasets/), [policies](./lerobot/common/policies/),
|
||||
environments ([aloha](https://github.com/huggingface/gym-aloha),
|
||||
[xarm](https://github.com/huggingface/gym-xarm),
|
||||
[pusht](https://github.com/huggingface/gym-pusht))
|
||||
and follow the same api design.
|
||||
|
||||
When implementing a new dataset loadable with LeRobotDataset follow these steps:
|
||||
- Update `available_datasets_per_env` in `lerobot/__init__.py`
|
||||
|
||||
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
|
||||
- Update `available_tasks_per_env` and `available_datasets_per_env` in `lerobot/__init__.py`
|
||||
|
||||
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
|
||||
- Update `available_policies` and `available_policies_per_env`, in `lerobot/__init__.py`
|
||||
- Set the required `name` class attribute.
|
||||
- Update variables in `tests/test_available.py` by importing your new Policy class
|
||||
|
||||
## Submitting a pull request (PR)
|
||||
|
||||
Before writing code, we strongly advise you to search through the existing PRs or
|
||||
issues to make sure that nobody is already working on the same thing. If you are
|
||||
unsure, it is always a good idea to open an issue to get some feedback.
|
||||
|
||||
You will need basic `git` proficiency to be able to contribute to
|
||||
🤗 LeRobot. `git` is not the easiest tool to use but it has the greatest
|
||||
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
|
||||
Git](https://git-scm.com/book/en/v2) is a very good reference.
|
||||
|
||||
Follow these steps to start contributing:
|
||||
|
||||
1. Fork the [repository](https://github.com/huggingface/lerobot) by
|
||||
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
|
||||
under your GitHub user account.
|
||||
|
||||
2. Clone your fork to your local disk, and add the base repository as a remote. The following command
|
||||
assumes you have your public SSH key uploaded to GitHub. See the following guide for more
|
||||
[information](https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository).
|
||||
|
||||
```bash
|
||||
git clone git@github.com:<your Github handle>/lerobot.git
|
||||
cd lerobot
|
||||
git remote add upstream https://github.com/huggingface/lerobot.git
|
||||
```
|
||||
|
||||
3. Create a new branch to hold your development changes, and do this for every new PR you work on.
|
||||
|
||||
Start by synchronizing your `main` branch with the `upstream/main` branch (more details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
|
||||
|
||||
```bash
|
||||
git checkout main
|
||||
git fetch upstream
|
||||
git rebase upstream/main
|
||||
```
|
||||
|
||||
Once your `main` branch is synchronized, create a new branch from it:
|
||||
|
||||
```bash
|
||||
git checkout -b a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
🚨 **Do not** work on the `main` branch.
|
||||
|
||||
4. for development, we use `poetry` instead of just `pip` to easily track our dependencies.
|
||||
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.
|
||||
|
||||
Set up a development environment with conda or miniconda:
|
||||
```bash
|
||||
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
|
||||
```
|
||||
|
||||
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
|
||||
```bash
|
||||
poetry install --sync --extras "dev test"
|
||||
```
|
||||
|
||||
You can also install the project with all its dependencies (including environments):
|
||||
```bash
|
||||
poetry install --sync --all-extras
|
||||
```
|
||||
|
||||
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
|
||||
|
||||
Whichever command you chose to install the project (e.g. `poetry install --sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
|
||||
|
||||
The equivalent of `pip install some-package`, would just be:
|
||||
```bash
|
||||
poetry add some-package
|
||||
```
|
||||
|
||||
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
|
||||
```bash
|
||||
poetry lock --no-update
|
||||
```
|
||||
|
||||
5. Develop the features on your branch.
|
||||
|
||||
As you work on the features, you should make sure that the test suite
|
||||
passes. You should run the tests impacted by your changes like this (see
|
||||
below an explanation regarding the environment variable):
|
||||
|
||||
```bash
|
||||
pytest tests/<TEST_TO_RUN>.py
|
||||
```
|
||||
|
||||
6. Follow our style.
|
||||
|
||||
`lerobot` relies on `ruff` to format its source code
|
||||
consistently. Set up [`pre-commit`](https://pre-commit.com/) to run these checks
|
||||
automatically as Git commit hooks.
|
||||
|
||||
Install `pre-commit` hooks:
|
||||
```bash
|
||||
pre-commit install
|
||||
```
|
||||
|
||||
You can run these hooks whenever you need on staged files with:
|
||||
```bash
|
||||
pre-commit
|
||||
```
|
||||
|
||||
Once you're happy with your changes, add changed files using `git add` and
|
||||
make a commit with `git commit` to record your changes locally:
|
||||
|
||||
```bash
|
||||
git add modified_file.py
|
||||
git commit
|
||||
```
|
||||
|
||||
Note, if you already commited some changes that have a wrong formatting, you can use:
|
||||
```bash
|
||||
pre-commit run --all-files
|
||||
```
|
||||
|
||||
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
|
||||
|
||||
It is a good idea to sync your copy of the code with the original
|
||||
repository regularly. This way you can quickly account for changes:
|
||||
|
||||
```bash
|
||||
git fetch upstream
|
||||
git rebase upstream/main
|
||||
```
|
||||
|
||||
Push the changes to your account using:
|
||||
|
||||
```bash
|
||||
git push -u origin a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
6. Once you are satisfied (**and the checklist below is happy too**), go to the
|
||||
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
|
||||
to the project maintainers for review.
|
||||
|
||||
7. It's ok if maintainers ask you for changes. It happens to core contributors
|
||||
too! So everyone can see the changes in the Pull request, work in your local
|
||||
branch and push the changes to your fork. They will automatically appear in
|
||||
the pull request.
|
||||
|
||||
|
||||
### Checklist
|
||||
|
||||
1. The title of your pull request should be a summary of its contribution;
|
||||
2. If your pull request addresses an issue, please mention the issue number in
|
||||
the pull request description to make sure they are linked (and people
|
||||
consulting the issue know you are working on it);
|
||||
3. To indicate a work in progress please prefix the title with `[WIP]`, or preferably mark
|
||||
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
|
||||
it from PRs ready to be merged;
|
||||
4. Make sure existing tests pass;
|
||||
<!-- 5. Add high-coverage tests. No quality testing = no merge.
|
||||
|
||||
See an example of a good PR here: https://github.com/huggingface/lerobot/pull/ -->
|
||||
|
||||
### Tests
|
||||
|
||||
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the [tests folder](https://github.com/huggingface/lerobot/tree/main/tests).
|
||||
|
||||
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
|
||||
|
||||
On Mac:
|
||||
```bash
|
||||
brew install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
On Ubuntu:
|
||||
```bash
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
Pull artifacts if they're not in [tests/data](tests/data)
|
||||
```bash
|
||||
git lfs pull
|
||||
```
|
||||
|
||||
We use `pytest` in order to run the tests. From the root of the
|
||||
repository, here's how to run tests with `pytest` for the library:
|
||||
|
||||
```bash
|
||||
DATA_DIR="tests/data" python -m pytest -sv ./tests
|
||||
```
|
||||
|
||||
|
||||
You can specify a smaller set of tests in order to test only the feature
|
||||
you're working on.
|
||||
229
LICENSE
229
LICENSE
@@ -253,6 +253,31 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
## Some of lerobot's code is derived from simxarm, which is subject to the following copyright notice:
|
||||
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 Nicklas Hansen & Yanjie Ze
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
|
||||
## Some of lerobot's code is derived from ALOHA, which is subject to the following copyright notice:
|
||||
|
||||
MIT License
|
||||
@@ -276,3 +301,207 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
## Some of lerobot's code is derived from DETR, which is subject to the following copyright notice:
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2020 - present, Facebook, Inc
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
163
Makefile
Normal file
163
Makefile
Normal file
@@ -0,0 +1,163 @@
|
||||
.PHONY: tests
|
||||
|
||||
PYTHON_PATH := $(shell which python)
|
||||
|
||||
# If Poetry is installed, redefine PYTHON_PATH to use the Poetry-managed Python
|
||||
POETRY_CHECK := $(shell command -v poetry)
|
||||
ifneq ($(POETRY_CHECK),)
|
||||
PYTHON_PATH := $(shell poetry run which python)
|
||||
endif
|
||||
|
||||
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
|
||||
|
||||
|
||||
build-cpu:
|
||||
docker build -t lerobot:latest -f docker/lerobot-cpu/Dockerfile .
|
||||
|
||||
build-gpu:
|
||||
docker build -t lerobot:latest -f docker/lerobot-gpu/Dockerfile .
|
||||
|
||||
test-end-to-end:
|
||||
${MAKE} test-act-ete-train
|
||||
${MAKE} test-act-ete-eval
|
||||
${MAKE} test-act-ete-train-amp
|
||||
${MAKE} test-act-ete-eval-amp
|
||||
${MAKE} test-diffusion-ete-train
|
||||
${MAKE} test-diffusion-ete-eval
|
||||
${MAKE} test-tdmpc-ete-train
|
||||
${MAKE} test-tdmpc-ete-eval
|
||||
${MAKE} test-default-ete-eval
|
||||
${MAKE} test-act-pusht-tutorial
|
||||
|
||||
test-act-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
policy.dim_model=64 \
|
||||
env=aloha \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
training.save_freq=2 \
|
||||
policy.n_action_steps=20 \
|
||||
policy.chunk_size=20 \
|
||||
training.batch_size=2 \
|
||||
hydra.run.dir=tests/outputs/act/
|
||||
|
||||
test-act-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/act/checkpoints/000002 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
|
||||
test-act-ete-train-amp:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
policy.dim_model=64 \
|
||||
env=aloha \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
training.save_freq=2 \
|
||||
policy.n_action_steps=20 \
|
||||
policy.chunk_size=20 \
|
||||
training.batch_size=2 \
|
||||
hydra.run.dir=tests/outputs/act/ \
|
||||
use_amp=true
|
||||
|
||||
test-act-ete-eval-amp:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/act/checkpoints/000002 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
use_amp=true
|
||||
|
||||
test-diffusion-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=diffusion \
|
||||
policy.down_dims=\[64,128,256\] \
|
||||
policy.diffusion_step_embed_dim=32 \
|
||||
policy.num_inference_steps=10 \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
training.save_freq=2 \
|
||||
training.batch_size=2 \
|
||||
hydra.run.dir=tests/outputs/diffusion/
|
||||
|
||||
test-diffusion-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/diffusion/checkpoints/000002 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
|
||||
# TODO(alexander-soare): Restore online_steps to 2 when it is reinstated.
|
||||
test-tdmpc-ete-train:
|
||||
python lerobot/scripts/train.py \
|
||||
policy=tdmpc \
|
||||
env=xarm \
|
||||
env.task=XarmLift-v0 \
|
||||
dataset_repo_id=lerobot/xarm_lift_medium \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
training.online_steps=0 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=2 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
training.save_freq=2 \
|
||||
training.batch_size=2 \
|
||||
hydra.run.dir=tests/outputs/tdmpc/
|
||||
|
||||
test-tdmpc-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
-p tests/outputs/tdmpc/checkpoints/000002 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
|
||||
test-default-ete-eval:
|
||||
python lerobot/scripts/eval.py \
|
||||
--config lerobot/configs/default.yaml \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=8 \
|
||||
device=cpu \
|
||||
|
||||
|
||||
test-act-pusht-tutorial:
|
||||
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/created_by_Makefile.yaml
|
||||
python lerobot/scripts/train.py \
|
||||
policy=created_by_Makefile.yaml \
|
||||
env=pusht \
|
||||
wandb.enable=False \
|
||||
training.offline_steps=2 \
|
||||
eval.n_episodes=1 \
|
||||
eval.batch_size=1 \
|
||||
env.episode_length=2 \
|
||||
device=cpu \
|
||||
training.save_model=true \
|
||||
training.save_freq=2 \
|
||||
training.batch_size=2 \
|
||||
hydra.run.dir=tests/outputs/act_pusht/
|
||||
rm lerobot/configs/policy/created_by_Makefile.yaml
|
||||
342
README.md
342
README.md
@@ -1,72 +1,254 @@
|
||||
# LeRobot
|
||||
<p align="center">
|
||||
<picture>
|
||||
<source media="(prefers-color-scheme: dark)" srcset="media/lerobot-logo-thumbnail.png">
|
||||
<source media="(prefers-color-scheme: light)" srcset="media/lerobot-logo-thumbnail.png">
|
||||
<img alt="LeRobot, Hugging Face Robotics Library" src="media/lerobot-logo-thumbnail.png" style="max-width: 100%;">
|
||||
</picture>
|
||||
<br/>
|
||||
<br/>
|
||||
</p>
|
||||
|
||||
<div align="center">
|
||||
|
||||
[](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml?query=branch%3Amain)
|
||||
[](https://codecov.io/gh/huggingface/lerobot)
|
||||
[](https://www.python.org/downloads/)
|
||||
[](https://github.com/huggingface/lerobot/blob/main/LICENSE)
|
||||
[](https://pypi.org/project/lerobot/)
|
||||
[](https://pypi.org/project/lerobot/)
|
||||
[](https://github.com/huggingface/lerobot/tree/main/examples)
|
||||
[](https://github.com/huggingface/lerobot/blob/main/CODE_OF_CONDUCT.md)
|
||||
[](https://discord.gg/s3KuuzsPFb)
|
||||
|
||||
</div>
|
||||
|
||||
<h3 align="center">
|
||||
<p>State-of-the-art Machine Learning for real-world robotics</p>
|
||||
</h3>
|
||||
|
||||
---
|
||||
|
||||
|
||||
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier to entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
|
||||
|
||||
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
|
||||
|
||||
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulation environments to get started without assembling a robot. In the coming weeks, the plan is to add more and more support for real-world robotics on the most affordable and capable robots out there.
|
||||
|
||||
🤗 LeRobot hosts pretrained models and datasets on this Hugging Face community page: [huggingface.co/lerobot](https://huggingface.co/lerobot)
|
||||
|
||||
#### Examples of pretrained models on simulation environments
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="http://remicadene.com/assets/gif/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
|
||||
<td><img src="http://remicadene.com/assets/gif/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
|
||||
<td><img src="http://remicadene.com/assets/gif/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td align="center">ACT policy on ALOHA env</td>
|
||||
<td align="center">TDMPC policy on SimXArm env</td>
|
||||
<td align="center">Diffusion policy on PushT env</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
### Acknowledgment
|
||||
|
||||
- Thanks to Tony Zaho, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
|
||||
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
|
||||
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
|
||||
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
Create a virtual environment with Python 3.10, e.g. using `conda`:
|
||||
```
|
||||
conda create -y -n lerobot python=3.10
|
||||
conda activate lerobot
|
||||
Download our source code:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git && cd lerobot
|
||||
```
|
||||
|
||||
[Install `poetry`](https://python-poetry.org/docs/#installation) (if you don't have it already)
|
||||
```
|
||||
curl -sSL https://install.python-poetry.org | python -
|
||||
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/free/miniconda/index.html):
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10 && conda activate lerobot
|
||||
```
|
||||
|
||||
Install dependencies
|
||||
```
|
||||
poetry install
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
pip install .
|
||||
```
|
||||
|
||||
If you encounter a disk space error, try to change your tmp dir to a location where you have enough disk space, e.g.
|
||||
```
|
||||
mkdir ~/tmp
|
||||
export TMPDIR='~/tmp'
|
||||
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
|
||||
you may need to install `cmake` and `build-essential` for building some of our dependencies.
|
||||
On linux: `sudo apt-get install cmake build-essential`
|
||||
|
||||
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
||||
- [aloha](https://github.com/huggingface/gym-aloha)
|
||||
- [xarm](https://github.com/huggingface/gym-xarm)
|
||||
- [pusht](https://github.com/huggingface/gym-pusht)
|
||||
|
||||
For instance, to install 🤗 LeRobot with aloha and pusht, use:
|
||||
```bash
|
||||
pip install ".[aloha, pusht]"
|
||||
```
|
||||
|
||||
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with
|
||||
```
|
||||
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
|
||||
```bash
|
||||
wandb login
|
||||
```
|
||||
|
||||
## Usage
|
||||
(note: you will also need to enable WandB in the configuration. See below.)
|
||||
|
||||
|
||||
### Train
|
||||
## Walkthrough
|
||||
|
||||
```
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.job.name=pusht \
|
||||
env=pusht
|
||||
.
|
||||
├── examples # contains demonstration examples, start here to learn about LeRobot
|
||||
| └── advanced # contains even more examples for those who have mastered the basics
|
||||
├── lerobot
|
||||
| ├── configs # contains hydra yaml files with all options that you can override in the command line
|
||||
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
|
||||
| | ├── env # various sim environments and their datasets: aloha.yaml, pusht.yaml, xarm.yaml
|
||||
| | └── policy # various policies: act.yaml, diffusion.yaml, tdmpc.yaml
|
||||
| ├── common # contains classes and utilities
|
||||
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
|
||||
| | ├── envs # various sim environments: aloha, pusht, xarm
|
||||
| | ├── policies # various policies: act, diffusion, tdmpc
|
||||
| | └── utils # various utilities
|
||||
| └── scripts # contains functions to execute via command line
|
||||
| ├── eval.py # load policy and evaluate it on an environment
|
||||
| ├── train.py # train a policy via imitation learning and/or reinforcement learning
|
||||
| ├── push_dataset_to_hub.py # convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub
|
||||
| └── visualize_dataset.py # load a dataset and render its demonstrations
|
||||
├── outputs # contains results of scripts execution: logs, videos, model checkpoints
|
||||
└── tests # contains pytest utilities for continuous integration
|
||||
```
|
||||
|
||||
### Visualize offline buffer
|
||||
### Visualize datasets
|
||||
|
||||
```
|
||||
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically download data from the Hugging Face hub.
|
||||
|
||||
You can also locally visualize episodes from a dataset by executing our script from the command line:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset.py \
|
||||
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
|
||||
env=pusht
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
### Visualize online buffer / Eval
|
||||
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
|
||||
|
||||
```
|
||||
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
|
||||
|
||||
|
||||
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
|
||||
|
||||
### Evaluate a pretrained policy
|
||||
|
||||
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
|
||||
|
||||
We also provide a more capable script to parallelize the evaluation over multiple environments during the same rollout. Here is an example with a pretrained model hosted on [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht):
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
|
||||
env=pusht
|
||||
-p lerobot/diffusion_pusht \
|
||||
eval.n_episodes=10 \
|
||||
eval.batch_size=10
|
||||
```
|
||||
|
||||
Note: After training your own policy, you can re-evaluate the checkpoints with:
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
-p PATH/TO/TRAIN/OUTPUT/FOLDER
|
||||
```
|
||||
|
||||
## TODO
|
||||
See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||
|
||||
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/users/Cadene/projects/1)
|
||||
### Train your own policy
|
||||
|
||||
Ask [Remi Cadene](re.cadene@gmail.com) for access if needed.
|
||||
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
|
||||
|
||||
In general, you can use our training script to easily train any policy. Here is an example of training the ACT policy on trajectories collected by humans on the Aloha simulation environment for the insertion task:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
env=aloha \
|
||||
env.task=AlohaInsertion-v0 \
|
||||
dataset_repo_id=lerobot/aloha_sim_insertion_human \
|
||||
```
|
||||
|
||||
The experiment directory is automatically generated and will show up in yellow in your terminal. It looks like `outputs/train/2024-05-05/20-21-12_aloha_act_default`. You can manually specify an experiment directory by adding this argument to the `train.py` python command:
|
||||
```bash
|
||||
hydra.run.dir=your/new/experiment/dir
|
||||
```
|
||||
|
||||
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding:
|
||||
|
||||
```bash
|
||||
wandb.enable=true
|
||||
```
|
||||
|
||||
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser:
|
||||
|
||||

|
||||
|
||||
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. You may use `eval.n_episodes=500` to evaluate on more episodes than the default. Or, after training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||
|
||||
#### Reproduce state-of-the-art (SOTA)
|
||||
|
||||
We have organized our configuration files (found under [`lerobot/configs`](./lerobot/configs)) such that they reproduce SOTA results from a given model variant in their respective original works. Simply running:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=diffusion env=pusht
|
||||
```
|
||||
|
||||
reproduces SOTA results for Diffusion Policy on the PushT task.
|
||||
|
||||
Pretrained policies, along with reproduction details, can be found under the "Models" section of https://huggingface.co/lerobot.
|
||||
|
||||
## Contribute
|
||||
|
||||
If you would like to contribute to 🤗 LeRobot, please check out our [contribution guide](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md).
|
||||
|
||||
### Add a new dataset
|
||||
|
||||
To add a dataset to the hub, you need to login using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Then move your dataset folder in `data` directory (e.g. `data/aloha_static_pingpong_test`), and push your dataset to the hub with:
|
||||
```bash
|
||||
python lerobot/scripts/push_dataset_to_hub.py \
|
||||
--data-dir data \
|
||||
--dataset-id aloha_static_pingpong_test \
|
||||
--raw-format aloha_hdf5 \
|
||||
--community-id lerobot
|
||||
```
|
||||
|
||||
See `python lerobot/scripts/push_dataset_to_hub.py --help` for more instructions.
|
||||
|
||||
If your dataset format is not supported, implement your own in `lerobot/common/datasets/push_dataset_to_hub/${raw_format}_format.py` by copying examples like [pusht_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/pusht_zarr_format.py), [umi_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/umi_zarr_format.py), [aloha_hdf5](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/aloha_hdf5_format.py), or [xarm_pkl](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/xarm_pkl_format.py).
|
||||
|
||||
|
||||
## Profile
|
||||
### Add a pretrained policy
|
||||
|
||||
**Example**
|
||||
Once you have trained a policy you may upload it to the Hugging Face hub using a hub id that looks like `${hf_user}/${repo_name}` (e.g. [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht)).
|
||||
|
||||
You first need to find the checkpoint located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). It should contain:
|
||||
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
|
||||
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
|
||||
- `config.yaml`: A consolidated Hydra training configuration containing the policy, environment, and dataset configs. The policy configuration should match `config.json` exactly. The environment config is useful for anyone who wants to evaluate your policy. The dataset config just serves as a paper trail for reproducibility.
|
||||
|
||||
To upload these to the hub, run the following:
|
||||
```bash
|
||||
huggingface-cli upload ${hf_user}/${repo_name} path/to/checkpoint/dir
|
||||
```
|
||||
|
||||
See [eval.py](https://github.com/huggingface/lerobot/blob/main/lerobot/scripts/eval.py) for an example of how other people may use your policy.
|
||||
|
||||
|
||||
### Improve your code with profiling
|
||||
|
||||
An example of a code snippet to profile the evaluation of a policy:
|
||||
```python
|
||||
from torch.profiler import profile, record_function, ProfilerActivity
|
||||
|
||||
@@ -85,87 +267,17 @@ with profile(
|
||||
with record_function("eval_policy"):
|
||||
for i in range(num_episodes):
|
||||
prof.step()
|
||||
# insert code to profile, potentially whole body of eval_policy function
|
||||
```
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/eval.py \
|
||||
pretrained_model_path=/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt \
|
||||
eval_episodes=7
|
||||
```
|
||||
## Citation
|
||||
|
||||
## Contribute
|
||||
|
||||
**Style**
|
||||
If you want, you can cite this work with:
|
||||
```
|
||||
# install if needed
|
||||
pre-commit install
|
||||
# apply style and linter checks before git commit
|
||||
pre-commit run -a
|
||||
@misc{cadene2024lerobot,
|
||||
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
|
||||
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
|
||||
howpublished = "\url{https://github.com/huggingface/lerobot}",
|
||||
year = {2024}
|
||||
}
|
||||
```
|
||||
|
||||
**Adding dependencies (temporary)**
|
||||
|
||||
Right now, for the CI to work, whenever a new dependency is added it needs to be also added to the cpu env, eg:
|
||||
|
||||
```
|
||||
# Run in this directory, adds the package to the main env with cuda
|
||||
poetry add some-package
|
||||
|
||||
# Adds the same package to the cpu env
|
||||
cd .github/poetry/cpu && poetry add some-package
|
||||
```
|
||||
|
||||
**Tests**
|
||||
|
||||
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
|
||||
|
||||
On Mac:
|
||||
```
|
||||
brew install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
On Ubuntu:
|
||||
```
|
||||
sudo apt-get install git-lfs
|
||||
git lfs install
|
||||
```
|
||||
|
||||
Pull artifacts if they're not in [tests/data](tests/data)
|
||||
```
|
||||
git lfs pull
|
||||
```
|
||||
|
||||
When adding a new dataset, mock it with
|
||||
```
|
||||
python tests/scripts/mock_dataset.py --in-data-dir data/<dataset_id> --out-data-dir tests/data/<dataset_id>
|
||||
```
|
||||
|
||||
Run tests
|
||||
```
|
||||
DATA_DIR="tests/data" pytest -sx tests
|
||||
```
|
||||
|
||||
**Datasets**
|
||||
|
||||
To add a pytorch rl dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
|
||||
```
|
||||
huggingface-cli login --token $HUGGINGFACE_TOKEN --add-to-git-credential
|
||||
```
|
||||
|
||||
Then you can upload it to the hub with:
|
||||
```
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload --repo-type dataset $HF_USER/$DATASET data/$DATASET
|
||||
```
|
||||
|
||||
For instance, for [cadene/pusht](https://huggingface.co/datasets/cadene/pusht), we used:
|
||||
```
|
||||
HF_USER=cadene
|
||||
DATASET=pusht
|
||||
```
|
||||
|
||||
|
||||
## Acknowledgment
|
||||
- Our Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
|
||||
- Our TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
|
||||
- Our ACT policy and ALOHA environment are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha/)
|
||||
|
||||
31
docker/lerobot-cpu/Dockerfile
Normal file
31
docker/lerobot-cpu/Dockerfile
Normal file
@@ -0,0 +1,31 @@
|
||||
# Configure image
|
||||
ARG PYTHON_VERSION=3.10
|
||||
|
||||
FROM python:${PYTHON_VERSION}-slim
|
||||
ARG PYTHON_VERSION
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install apt dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Create virtual environment
|
||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
||||
RUN python -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
|
||||
# Install LeRobot
|
||||
COPY . /lerobot
|
||||
WORKDIR /lerobot
|
||||
RUN pip install --upgrade --no-cache-dir pip
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]" \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
|
||||
# Execute in bash shell rather than python
|
||||
CMD ["/bin/bash"]
|
||||
40
docker/lerobot-gpu-dev/Dockerfile
Normal file
40
docker/lerobot-gpu-dev/Dockerfile
Normal file
@@ -0,0 +1,40 @@
|
||||
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
||||
|
||||
# Configure image
|
||||
ARG PYTHON_VERSION=3.10
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install apt dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake \
|
||||
git git-lfs openssh-client \
|
||||
nano vim less util-linux \
|
||||
htop atop nvtop \
|
||||
sed gawk grep curl wget \
|
||||
tcpdump sysstat screen tmux \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install gh cli tool
|
||||
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
|
||||
&& mkdir -p -m 755 /etc/apt/keyrings \
|
||||
&& wget -qO- https://cli.github.com/packages/githubcli-archive-keyring.gpg | tee /etc/apt/keyrings/githubcli-archive-keyring.gpg > /dev/null \
|
||||
&& chmod go+r /etc/apt/keyrings/githubcli-archive-keyring.gpg \
|
||||
&& echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/packages stable main" | tee /etc/apt/sources.list.d/github-cli.list > /dev/null \
|
||||
&& apt update \
|
||||
&& apt install gh -y \
|
||||
&& apt clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Setup `python`
|
||||
RUN ln -s /usr/bin/python3 /usr/bin/python
|
||||
|
||||
# Install poetry
|
||||
RUN curl -sSL https://install.python-poetry.org | python -
|
||||
ENV PATH="/root/.local/bin:$PATH"
|
||||
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
|
||||
RUN poetry config virtualenvs.create false
|
||||
RUN poetry config virtualenvs.in-project true
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
29
docker/lerobot-gpu/Dockerfile
Normal file
29
docker/lerobot-gpu/Dockerfile
Normal file
@@ -0,0 +1,29 @@
|
||||
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
|
||||
|
||||
# Configure image
|
||||
ARG PYTHON_VERSION=3.10
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
|
||||
# Install apt dependencies
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
build-essential cmake \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
# Create virtual environment
|
||||
RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python
|
||||
RUN python -m venv /opt/venv
|
||||
ENV PATH="/opt/venv/bin:$PATH"
|
||||
RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc
|
||||
|
||||
# Install LeRobot
|
||||
COPY . /lerobot
|
||||
WORKDIR /lerobot
|
||||
RUN pip install --upgrade --no-cache-dir pip
|
||||
RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht]"
|
||||
|
||||
# Set EGL as the rendering backend for MuJoCo
|
||||
ENV MUJOCO_GL="egl"
|
||||
91
examples/1_load_lerobot_dataset.py
Normal file
91
examples/1_load_lerobot_dataset.py
Normal file
@@ -0,0 +1,91 @@
|
||||
"""
|
||||
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
|
||||
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
|
||||
|
||||
Features included in this script:
|
||||
- Loading a dataset and accessing its properties.
|
||||
- Filtering data by episode number.
|
||||
- Converting tensor data for visualization.
|
||||
- Saving video files from dataset frames.
|
||||
- Using advanced dataset features like timestamp-based frame selection.
|
||||
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
|
||||
|
||||
The script ends with examples of how to batch process data using PyTorch's DataLoader.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from pprint import pprint
|
||||
|
||||
import imageio
|
||||
import torch
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
print("List of available datasets:")
|
||||
pprint(lerobot.available_datasets)
|
||||
|
||||
# Let's take one for this example
|
||||
repo_id = "lerobot/pusht"
|
||||
|
||||
# You can easily load a dataset from a Hugging Face repository
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
|
||||
# LeRobotDataset is actually a thin wrapper around an underlying Hugging Face dataset
|
||||
# (see https://huggingface.co/docs/datasets/index for more information).
|
||||
print(dataset)
|
||||
print(dataset.hf_dataset)
|
||||
|
||||
# And provides additional utilities for robotics and compatibility with Pytorch
|
||||
print(f"\naverage number of frames per episode: {dataset.num_samples / dataset.num_episodes:.3f}")
|
||||
print(f"frames per second used during data collection: {dataset.fps=}")
|
||||
print(f"keys to access images from cameras: {dataset.camera_keys=}\n")
|
||||
|
||||
# Access frame indexes associated to first episode
|
||||
episode_index = 0
|
||||
from_idx = dataset.episode_data_index["from"][episode_index].item()
|
||||
to_idx = dataset.episode_data_index["to"][episode_index].item()
|
||||
|
||||
# LeRobot datasets actually subclass PyTorch datasets so you can do everything you know and love from working
|
||||
# with the latter, like iterating through the dataset. Here we grab all the image frames.
|
||||
frames = [dataset[idx]["observation.image"] for idx in range(from_idx, to_idx)]
|
||||
|
||||
# Video frames are now float32 in range [0,1] channel first (c,h,w) to follow pytorch convention. To visualize
|
||||
# them, we convert to uint8 in range [0,255]
|
||||
frames = [(frame * 255).type(torch.uint8) for frame in frames]
|
||||
# and to channel last (h,w,c).
|
||||
frames = [frame.permute((1, 2, 0)).numpy() for frame in frames]
|
||||
|
||||
# Finally, we save the frames to a mp4 video for visualization.
|
||||
Path("outputs/examples/1_load_lerobot_dataset").mkdir(parents=True, exist_ok=True)
|
||||
imageio.mimsave("outputs/examples/1_load_lerobot_dataset/episode_0.mp4", frames, fps=dataset.fps)
|
||||
|
||||
# For many machine learning applications we need to load the history of past observations or trajectories of
|
||||
# future actions. Our datasets can load previous and future frames for each key/modality, using timestamps
|
||||
# differences with the current loaded frame. For instance:
|
||||
delta_timestamps = {
|
||||
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
|
||||
"observation.image": [-1, -0.5, -0.20, 0],
|
||||
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 20 ms, 10 ms, and current frame
|
||||
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, -0.02, -0.01, 0],
|
||||
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
|
||||
"action": [t / dataset.fps for t in range(64)],
|
||||
}
|
||||
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
|
||||
print(f"\n{dataset[0]['observation.image'].shape=}") # (4,c,h,w)
|
||||
print(f"{dataset[0]['observation.state'].shape=}") # (8,c)
|
||||
print(f"{dataset[0]['action'].shape=}\n") # (64,c)
|
||||
|
||||
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers because they are just
|
||||
# PyTorch datasets.
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=0,
|
||||
batch_size=32,
|
||||
shuffle=True,
|
||||
)
|
||||
for batch in dataloader:
|
||||
print(f"{batch['observation.image'].shape=}") # (32,4,c,h,w)
|
||||
print(f"{batch['observation.state'].shape=}") # (32,8,c)
|
||||
print(f"{batch['action'].shape=}") # (32,64,c)
|
||||
break
|
||||
112
examples/2_evaluate_pretrained_policy.py
Normal file
112
examples/2_evaluate_pretrained_policy.py
Normal file
@@ -0,0 +1,112 @@
|
||||
"""
|
||||
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
|
||||
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import gym_pusht # noqa: F401
|
||||
import gymnasium as gym
|
||||
import imageio
|
||||
import numpy
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
|
||||
# Create a directory to store the video of the evaluation
|
||||
output_directory = Path("outputs/eval/example_pusht_diffusion")
|
||||
output_directory.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
device = torch.device("cuda")
|
||||
|
||||
# Download the diffusion policy for pusht environment
|
||||
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
|
||||
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
|
||||
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
|
||||
|
||||
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
|
||||
policy.eval()
|
||||
policy.to(device)
|
||||
|
||||
# Initialize evaluation environment to render two observation types:
|
||||
# an image of the scene and state/position of the agent. The environment
|
||||
# also automatically stops running after 300 interactions/steps.
|
||||
env = gym.make(
|
||||
"gym_pusht/PushT-v0",
|
||||
obs_type="pixels_agent_pos",
|
||||
max_episode_steps=300,
|
||||
)
|
||||
|
||||
# Reset the policy and environmens to prepare for rollout
|
||||
policy.reset()
|
||||
numpy_observation, info = env.reset(seed=42)
|
||||
|
||||
# Prepare to collect every rewards and all the frames of the episode,
|
||||
# from initial state to final state.
|
||||
rewards = []
|
||||
frames = []
|
||||
|
||||
# Render frame of the initial state
|
||||
frames.append(env.render())
|
||||
|
||||
step = 0
|
||||
done = False
|
||||
while not done:
|
||||
# Prepare observation for the policy running in Pytorch
|
||||
state = torch.from_numpy(numpy_observation["agent_pos"])
|
||||
image = torch.from_numpy(numpy_observation["pixels"])
|
||||
|
||||
# Convert to float32 with image from channel first in [0,255]
|
||||
# to channel last in [0,1]
|
||||
state = state.to(torch.float32)
|
||||
image = image.to(torch.float32) / 255
|
||||
image = image.permute(2, 0, 1)
|
||||
|
||||
# Send data tensors from CPU to GPU
|
||||
state = state.to(device, non_blocking=True)
|
||||
image = image.to(device, non_blocking=True)
|
||||
|
||||
# Add extra (empty) batch dimension, required to forward the policy
|
||||
state = state.unsqueeze(0)
|
||||
image = image.unsqueeze(0)
|
||||
|
||||
# Create the policy input dictionary
|
||||
observation = {
|
||||
"observation.state": state,
|
||||
"observation.image": image,
|
||||
}
|
||||
|
||||
# Predict the next action with respect to the current observation
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation)
|
||||
|
||||
# Prepare the action for the environment
|
||||
numpy_action = action.squeeze(0).to("cpu").numpy()
|
||||
|
||||
# Step through the environment and receive a new observation
|
||||
numpy_observation, reward, terminated, truncated, info = env.step(numpy_action)
|
||||
print(f"{step=} {reward=} {terminated=}")
|
||||
|
||||
# Keep track of all the rewards and frames
|
||||
rewards.append(reward)
|
||||
frames.append(env.render())
|
||||
|
||||
# The rollout is considered done when the success state is reach (i.e. terminated is True),
|
||||
# or the maximum number of iterations is reached (i.e. truncated is True)
|
||||
done = terminated | truncated | done
|
||||
step += 1
|
||||
|
||||
if terminated:
|
||||
print("Success!")
|
||||
else:
|
||||
print("Failure!")
|
||||
|
||||
# Get the speed of environment (i.e. its number of frames per second).
|
||||
fps = env.metadata["render_fps"]
|
||||
|
||||
# Encode all frames into a mp4 video.
|
||||
video_path = output_directory / "rollout.mp4"
|
||||
imageio.mimsave(str(video_path), numpy.stack(frames), fps=fps)
|
||||
|
||||
print(f"Video of the evaluation is available in '{video_path}'.")
|
||||
79
examples/3_train_policy.py
Normal file
79
examples/3_train_policy.py
Normal file
@@ -0,0 +1,79 @@
|
||||
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
|
||||
|
||||
Once you have trained a model with this script, you can try to evaluate it on
|
||||
examples/2_evaluate_pretrained_policy.py
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
|
||||
# Create a directory to store the training checkpoint.
|
||||
output_directory = Path("outputs/train/example_pusht_diffusion")
|
||||
output_directory.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Number of offline training steps (we'll only do offline training for this example.)
|
||||
# Adjust as you prefer. 5000 steps are needed to get something worth evaluating.
|
||||
training_steps = 5000
|
||||
device = torch.device("cuda")
|
||||
log_freq = 250
|
||||
|
||||
# Set up the dataset.
|
||||
delta_timestamps = {
|
||||
# Load the previous image and state at -0.1 seconds before current frame,
|
||||
# then load current image and state corresponding to 0.0 second.
|
||||
"observation.image": [-0.1, 0.0],
|
||||
"observation.state": [-0.1, 0.0],
|
||||
# Load the previous action (-0.1), the next action to be executed (0.0),
|
||||
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
|
||||
# used to supervise the policy.
|
||||
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
|
||||
}
|
||||
dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
|
||||
|
||||
# Set up the the policy.
|
||||
# Policies are initialized with a configuration class, in this case `DiffusionConfig`.
|
||||
# For this example, no arguments need to be passed because the defaults are set up for PushT.
|
||||
# If you're doing something different, you will likely need to change at least some of the defaults.
|
||||
cfg = DiffusionConfig()
|
||||
policy = DiffusionPolicy(cfg, dataset_stats=dataset.stats)
|
||||
policy.train()
|
||||
policy.to(device)
|
||||
|
||||
optimizer = torch.optim.Adam(policy.parameters(), lr=1e-4)
|
||||
|
||||
# Create dataloader for offline training.
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=4,
|
||||
batch_size=64,
|
||||
shuffle=True,
|
||||
pin_memory=device != torch.device("cpu"),
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
# Run training loop.
|
||||
step = 0
|
||||
done = False
|
||||
while not done:
|
||||
for batch in dataloader:
|
||||
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
||||
output_dict = policy.forward(batch)
|
||||
loss = output_dict["loss"]
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
if step % log_freq == 0:
|
||||
print(f"step: {step} loss: {loss.item():.3f}")
|
||||
step += 1
|
||||
if step >= training_steps:
|
||||
done = True
|
||||
break
|
||||
|
||||
# Save a policy checkpoint.
|
||||
policy.save_pretrained(output_directory)
|
||||
183
examples/4_train_policy_with_script.md
Normal file
183
examples/4_train_policy_with_script.md
Normal file
@@ -0,0 +1,183 @@
|
||||
This tutorial will explain the training script, how to use it, and particularly the use of Hydra to configure everything needed for the training run.
|
||||
|
||||
## The training script
|
||||
|
||||
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
|
||||
|
||||
- Loads a Hydra configuration file for the following steps (more on Hydra in a moment).
|
||||
- Makes a simulation environment.
|
||||
- Makes a dataset corresponding to that simulation environment.
|
||||
- Makes a policy.
|
||||
- Runs a standard training loop with forward pass, backward pass, optimization step, and occasional logging, evaluation (of the policy on the environment), and checkpointing.
|
||||
|
||||
## Basics of how we use Hydra
|
||||
|
||||
Explaining the ins and outs of [Hydra](https://hydra.cc/docs/intro/) is beyond the scope of this document, but here we'll share the main points you need to know.
|
||||
|
||||
First, `lerobot/configs` has a directory structure like this:
|
||||
|
||||
```
|
||||
.
|
||||
├── default.yaml
|
||||
├── env
|
||||
│ ├── aloha.yaml
|
||||
│ ├── pusht.yaml
|
||||
│ └── xarm.yaml
|
||||
└── policy
|
||||
├── act.yaml
|
||||
├── diffusion.yaml
|
||||
└── tdmpc.yaml
|
||||
```
|
||||
|
||||
**_For brevity, in the rest of this document we'll drop the leading `lerobot/configs` path. So `default.yaml` really refers to `lerobot/configs/default.yaml`._**
|
||||
|
||||
When you run the training script with
|
||||
|
||||
```python
|
||||
python lerobot/scripts/train.py
|
||||
```
|
||||
|
||||
Hydra is set up to read `default.yaml` (via the `@hydra.main` decorator). If you take a look at the `@hydra.main`'s arguments you will see `config_path="../configs", config_name="default"`. At the top of `default.yaml`, is a `defaults` section which looks likes this:
|
||||
|
||||
```yaml
|
||||
defaults:
|
||||
- _self_
|
||||
- env: pusht
|
||||
- policy: diffusion
|
||||
```
|
||||
|
||||
This logic tells Hydra to incorporate configuration parameters from `env/pusht.yaml` and `policy/diffusion.yaml`. _Note: Be aware of the order as any configuration parameters with the same name will be overidden. Thus, `default.yaml` is overriden by `env/pusht.yaml` which is overidden by `policy/diffusion.yaml`_.
|
||||
|
||||
Then, `default.yaml` also contains common configuration parameters such as `device: cuda` or `use_amp: false` (for enabling fp16 training). Some other parameters are set to `???` which indicates that they are expected to be set in additional yaml files. For instance, `training.offline_steps: ???` in `default.yaml` is set to `200000` in `diffusion.yaml`.
|
||||
|
||||
Thanks to this `defaults` section in `default.yaml`, if you want to train Diffusion Policy with PushT, you really only need to run:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py
|
||||
```
|
||||
|
||||
However, you can be more explicit and launch the exact same Diffusion Policy training on PushT with:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=diffusion env=pusht
|
||||
```
|
||||
|
||||
This way of overriding defaults via the CLI is especially useful when you want to change the policy and/or environment. For instance, you can train ACT on the default Aloha environment with:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=aloha
|
||||
```
|
||||
|
||||
There are two things to note here:
|
||||
- Config overrides are passed as `param_name=param_value`.
|
||||
- Here we have overridden the defaults section. `policy=act` tells Hydra to use `policy/act.yaml`, and `env=aloha` tells Hydra to use `env/pusht.yaml`.
|
||||
|
||||
_As an aside: we've set up all of our configurations so that they reproduce state-of-the-art results from papers in the literature._
|
||||
|
||||
## Overriding configuration parameters in the CLI
|
||||
|
||||
Now let's say that we want to train on a different task in the Aloha environment. If you look in `env/aloha.yaml` you will see something like:
|
||||
|
||||
```yaml
|
||||
# lerobot/configs/env/aloha.yaml
|
||||
env:
|
||||
task: AlohaInsertion-v0
|
||||
```
|
||||
|
||||
And if you look in `policy/act.yaml` you will see something like:
|
||||
|
||||
```yaml
|
||||
# lerobot/configs/policy/act.yaml
|
||||
dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||
```
|
||||
|
||||
But our Aloha environment actually supports a cube transfer task as well. To train for this task, you could manually modify the two yaml configuration files respectively.
|
||||
|
||||
First, we'd need to switch to using the cube transfer task for the ALOHA environment.
|
||||
|
||||
```diff
|
||||
# lerobot/configs/env/aloha.yaml
|
||||
env:
|
||||
- task: AlohaInsertion-v0
|
||||
+ task: AlohaTransferCube-v0
|
||||
```
|
||||
|
||||
Then, we'd also need to switch to using the cube transfer dataset.
|
||||
|
||||
```diff
|
||||
# lerobot/configs/policy/act.yaml
|
||||
-dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||
+dataset_repo_id: lerobot/aloha_sim_transfer_cube_human
|
||||
```
|
||||
|
||||
Then, you'd be able to run:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=aloha
|
||||
```
|
||||
|
||||
and you'd be training and evaluating on the cube transfer task.
|
||||
|
||||
An alternative approach to editing the yaml configuration files, would be to override the defaults via the command line:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
policy=act \
|
||||
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||
env=aloha \
|
||||
env.task=AlohaTransferCube-v0
|
||||
```
|
||||
|
||||
There's something new here. Notice the `.` delimiter used to traverse the configuration hierarchy. _But be aware that the `defaults` section is an exception. As you saw above, we didn't need to write `defaults.policy=act` in the CLI. `policy=act` was enough._
|
||||
|
||||
Putting all that knowledge together, here's the command that was used to train https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human \
|
||||
device=cuda
|
||||
env=aloha \
|
||||
env.task=AlohaTransferCube-v0 \
|
||||
dataset_repo_id=lerobot/aloha_sim_transfer_cube_human \
|
||||
policy=act \
|
||||
training.eval_freq=10000 \
|
||||
training.log_freq=250 \
|
||||
training.offline_steps=100000 \
|
||||
training.save_model=true \
|
||||
training.save_freq=25000 \
|
||||
eval.n_episodes=50 \
|
||||
eval.batch_size=50 \
|
||||
wandb.enable=false \
|
||||
```
|
||||
|
||||
There's one new thing here: `hydra.run.dir=outputs/train/act_aloha_sim_transfer_cube_human`, which specifies where to save the training output.
|
||||
|
||||
## Using a configuration file not in `lerobot/configs`
|
||||
|
||||
Above we discusses the our training script is set up such that Hydra looks for `default.yaml` in `lerobot/configs`. But, if you have a configuration file elsewhere in your filesystem you may use:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py --config-dir PARENT/PATH --config-name FILE_NAME_WITHOUT_EXTENSION
|
||||
```
|
||||
|
||||
Note: here we use regular syntax for providing CLI arguments to a Python script, not Hydra's `param_name=param_value` syntax.
|
||||
|
||||
As a concrete example, this becomes particularly handy when you have a folder with training outputs, and would like to re-run the training. For example, say you previously ran the training script with one of the earlier commands and have `outputs/train/my_experiment/checkpoints/pretrained_model/config.yaml`. This `config.yaml` file will have the full set of configuration parameters within it. To run the training with the same configuration again, do:
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py --config-dir outputs/train/my_experiment/checkpoints/pretrained_model --config-name config
|
||||
```
|
||||
|
||||
Note that you may still use the regular syntax for config parameter overrides (eg: by adding `training.offline_steps=200000`).
|
||||
|
||||
---
|
||||
|
||||
So far we've seen how to train Diffusion Policy for PushT and ACT for ALOHA. Now, what if we want to train ACT for PushT? Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
|
||||
```
|
||||
|
||||
Please, head on over to our [advanced tutorial on adapting policy configuration to various environments](./advanced/train_act_pusht/train_act_pusht.md) to learn more.
|
||||
|
||||
Or in the meantime, happy coding! 🤗
|
||||
87
examples/advanced/1_train_act_pusht/act_pusht.yaml
Normal file
87
examples/advanced/1_train_act_pusht/act_pusht.yaml
Normal file
@@ -0,0 +1,87 @@
|
||||
# @package _global_
|
||||
|
||||
# Change the seed to match what PushT eval uses
|
||||
# (to avoid evaluating on seeds used for generating the training data).
|
||||
seed: 100000
|
||||
# Change the dataset repository to the PushT one.
|
||||
dataset_repo_id: lerobot/pusht
|
||||
|
||||
override_dataset_stats:
|
||||
observation.image:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
training:
|
||||
offline_steps: 80000
|
||||
online_steps: 0
|
||||
eval_freq: 10000
|
||||
save_freq: 100000
|
||||
log_freq: 250
|
||||
save_model: true
|
||||
|
||||
batch_size: 8
|
||||
lr: 1e-5
|
||||
lr_backbone: 1e-5
|
||||
weight_decay: 1e-4
|
||||
grad_clip_norm: 10
|
||||
online_steps_between_rollouts: 1
|
||||
|
||||
delta_timestamps:
|
||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||
|
||||
eval:
|
||||
n_episodes: 50
|
||||
batch_size: 50
|
||||
|
||||
# See `configuration_act.py` for more details.
|
||||
policy:
|
||||
name: act
|
||||
|
||||
# Input / output structure.
|
||||
n_obs_steps: 1
|
||||
chunk_size: 100 # chunk_size
|
||||
n_action_steps: 100
|
||||
|
||||
input_shapes:
|
||||
observation.image: [3, 96, 96]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
# Normalization / Unnormalization
|
||||
input_normalization_modes:
|
||||
observation.image: mean_std
|
||||
# Use min_max normalization just because it's more standard.
|
||||
observation.state: min_max
|
||||
output_normalization_modes:
|
||||
# Use min_max normalization just because it's more standard.
|
||||
action: min_max
|
||||
|
||||
# Architecture.
|
||||
# Vision backbone.
|
||||
vision_backbone: resnet18
|
||||
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
|
||||
replace_final_stride_with_dilation: false
|
||||
# Transformer layers.
|
||||
pre_norm: false
|
||||
dim_model: 512
|
||||
n_heads: 8
|
||||
dim_feedforward: 3200
|
||||
feedforward_activation: relu
|
||||
n_encoder_layers: 4
|
||||
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
|
||||
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
|
||||
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
|
||||
n_decoder_layers: 1
|
||||
# VAE.
|
||||
use_vae: true
|
||||
latent_dim: 32
|
||||
n_vae_encoder_layers: 4
|
||||
|
||||
# Inference.
|
||||
temporal_ensemble_momentum: null
|
||||
|
||||
# Training and loss computation.
|
||||
dropout: 0.1
|
||||
kl_weight: 10.0
|
||||
70
examples/advanced/1_train_act_pusht/train_act_pusht.md
Normal file
70
examples/advanced/1_train_act_pusht/train_act_pusht.md
Normal file
@@ -0,0 +1,70 @@
|
||||
In this tutorial we will learn how to adapt a policy configuration to be compatible with a new environment and dataset. As a concrete example, we will adapt the default configuration for ACT to be compatible with the PushT environment and dataset.
|
||||
|
||||
If you haven't already read our tutorial on the [training script and configuration tooling](../4_train_policy_with_script.md) please do so prior to tackling this tutorial.
|
||||
|
||||
Let's get started!
|
||||
|
||||
Suppose we want to train ACT for PushT. Well, there are aspects of the ACT configuration that are specific to the ALOHA environments, and these happen to be incompatible with PushT. Therefore, trying to run the following will almost certainly raise an exception of sorts (eg: feature dimension mismatch):
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act env=pusht dataset_repo_id=lerobot/pusht
|
||||
```
|
||||
|
||||
We need to adapt the parameters of the ACT policy configuration to the PushT environment. The most important ones are the image keys.
|
||||
|
||||
ALOHA's datasets and environments typically use a variable number of cameras. In `lerobot/configs/policy/act.yaml` you may notice two relevant sections. Here we show you the minimal diff needed to adjust to PushT:
|
||||
|
||||
```diff
|
||||
override_dataset_stats:
|
||||
- observation.images.top:
|
||||
+ observation.image:
|
||||
# stats from imagenet, since we use a pretrained vision model
|
||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||
|
||||
policy:
|
||||
input_shapes:
|
||||
- observation.images.top: [3, 480, 640]
|
||||
+ observation.image: [3, 96, 96]
|
||||
observation.state: ["${env.state_dim}"]
|
||||
output_shapes:
|
||||
action: ["${env.action_dim}"]
|
||||
|
||||
input_normalization_modes:
|
||||
- observation.images.top: mean_std
|
||||
+ observation.image: mean_std
|
||||
observation.state: min_max
|
||||
output_normalization_modes:
|
||||
action: min_max
|
||||
```
|
||||
|
||||
Here we've accounted for the following:
|
||||
- PushT uses "observation.image" for its image key.
|
||||
- PushT provides smaller images.
|
||||
|
||||
_Side note: technically we could override these via the CLI, but with many changes it gets a bit messy, and we also have a bit of a challenge in that we're using `.` in our observation keys which is treated by Hydra as a hierarchical separator_.
|
||||
|
||||
For your convenience, we provide [`act_pusht.yaml`](./act_pusht.yaml) in this directory. It contains the diff above, plus some other (optional) ones that are explained within. Please copy it into `lerobot/configs/policy` with:
|
||||
|
||||
```bash
|
||||
cp examples/advanced/1_train_act_pusht/act_pusht.yaml lerobot/configs/policy/act_pusht.yaml
|
||||
```
|
||||
|
||||
(remember from a [previous tutorial](../4_train_policy_with_script.md) that Hydra will look in the `lerobot/configs` directory). Now try running the following.
|
||||
|
||||
<!-- Note to contributor: are you changing this command? Note that it's tested in `Makefile`, so change it there too! -->
|
||||
```bash
|
||||
python lerobot/scripts/train.py policy=act_pusht env=pusht
|
||||
```
|
||||
|
||||
Notice that this is much the same as the command that failed at the start of the tutorial, only:
|
||||
- Now we are using `policy=act_pusht` to point to our new configuration file.
|
||||
- We can drop `dataset_repo_id=lerobot/pusht` as the change is incorporated in our new configuration file.
|
||||
|
||||
Hurrah! You're now training ACT for the PushT environment.
|
||||
|
||||
---
|
||||
|
||||
The bottom line of this tutorial is that when training policies for different environments and datasets you will need to understand what parts of the policy configuration are specific to those and make changes accordingly.
|
||||
|
||||
Happy coding! 🤗
|
||||
90
examples/advanced/2_calculate_validation_loss.py
Normal file
90
examples/advanced/2_calculate_validation_loss.py
Normal file
@@ -0,0 +1,90 @@
|
||||
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
|
||||
|
||||
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy
|
||||
is learning effectively.
|
||||
|
||||
Furthermore, relying on validation loss to evaluate performance is generally not considered a good practice,
|
||||
especially in the context of imitation learning. The most reliable approach is to evaluate the policy directly
|
||||
on the target environment, whether that be in simulation or the real world.
|
||||
"""
|
||||
|
||||
import math
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
|
||||
device = torch.device("cuda")
|
||||
|
||||
# Download the diffusion policy for pusht environment
|
||||
pretrained_policy_path = Path(snapshot_download("lerobot/diffusion_pusht"))
|
||||
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
|
||||
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
|
||||
|
||||
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
|
||||
policy.eval()
|
||||
policy.to(device)
|
||||
|
||||
# Set up the dataset.
|
||||
delta_timestamps = {
|
||||
# Load the previous image and state at -0.1 seconds before current frame,
|
||||
# then load current image and state corresponding to 0.0 second.
|
||||
"observation.image": [-0.1, 0.0],
|
||||
"observation.state": [-0.1, 0.0],
|
||||
# Load the previous action (-0.1), the next action to be executed (0.0),
|
||||
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
|
||||
# used to calculate the loss.
|
||||
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
|
||||
}
|
||||
|
||||
# Load the last 10% of episodes of the dataset as a validation set.
|
||||
# - Load full dataset
|
||||
full_dataset = LeRobotDataset("lerobot/pusht", split="train")
|
||||
# - Calculate train and val subsets
|
||||
num_train_episodes = math.floor(full_dataset.num_episodes * 90 / 100)
|
||||
num_val_episodes = full_dataset.num_episodes - num_train_episodes
|
||||
print(f"Number of episodes in full dataset: {full_dataset.num_episodes}")
|
||||
print(f"Number of episodes in training dataset (90% subset): {num_train_episodes}")
|
||||
print(f"Number of episodes in validation dataset (10% subset): {num_val_episodes}")
|
||||
# - Get first frame index of the validation set
|
||||
first_val_frame_index = full_dataset.episode_data_index["from"][num_train_episodes].item()
|
||||
# - Load frames subset belonging to validation set using the `split` argument.
|
||||
# It utilizes the `datasets` library's syntax for slicing datasets.
|
||||
# For more information on the Slice API, please see:
|
||||
# https://huggingface.co/docs/datasets/v2.19.0/loading#slice-splits
|
||||
train_dataset = LeRobotDataset(
|
||||
"lerobot/pusht", split=f"train[:{first_val_frame_index}]", delta_timestamps=delta_timestamps
|
||||
)
|
||||
val_dataset = LeRobotDataset(
|
||||
"lerobot/pusht", split=f"train[{first_val_frame_index}:]", delta_timestamps=delta_timestamps
|
||||
)
|
||||
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
|
||||
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")
|
||||
|
||||
# Create dataloader for evaluation.
|
||||
val_dataloader = torch.utils.data.DataLoader(
|
||||
val_dataset,
|
||||
num_workers=4,
|
||||
batch_size=64,
|
||||
shuffle=False,
|
||||
pin_memory=device != torch.device("cpu"),
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
# Run validation loop.
|
||||
loss_cumsum = 0
|
||||
n_examples_evaluated = 0
|
||||
for batch in val_dataloader:
|
||||
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
|
||||
output_dict = policy.forward(batch)
|
||||
|
||||
loss_cumsum += output_dict["loss"].item()
|
||||
n_examples_evaluated += batch["index"].shape[0]
|
||||
|
||||
# Calculate the average loss over the validation set.
|
||||
average_loss = loss_cumsum / n_examples_evaluated
|
||||
|
||||
print(f"Average loss on validation set: {average_loss:.4f}")
|
||||
@@ -1 +1,132 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This file contains lists of available environments, dataset and policies to reflect the current state of LeRobot library.
|
||||
We do not want to import all the dependencies, but instead we keep it lightweight to ensure fast access to these variables.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import lerobot
|
||||
print(lerobot.available_envs)
|
||||
print(lerobot.available_tasks_per_env)
|
||||
print(lerobot.available_datasets)
|
||||
print(lerobot.available_datasets_per_env)
|
||||
print(lerobot.available_real_world_datasets)
|
||||
print(lerobot.available_policies)
|
||||
print(lerobot.available_policies_per_env)
|
||||
```
|
||||
|
||||
When implementing a new dataset loadable with LeRobotDataset follow these steps:
|
||||
- Update `available_datasets_per_env` in `lerobot/__init__.py`
|
||||
|
||||
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
|
||||
- Update `available_tasks_per_env` and `available_datasets_per_env` in `lerobot/__init__.py`
|
||||
|
||||
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
|
||||
- Update `available_policies` and `available_policies_per_env`, in `lerobot/__init__.py`
|
||||
- Set the required `name` class attribute.
|
||||
- Update variables in `tests/test_available.py` by importing your new Policy class
|
||||
"""
|
||||
|
||||
import itertools
|
||||
|
||||
from lerobot.__version__ import __version__ # noqa: F401
|
||||
|
||||
available_tasks_per_env = {
|
||||
"aloha": [
|
||||
"AlohaInsertion-v0",
|
||||
"AlohaTransferCube-v0",
|
||||
],
|
||||
"pusht": ["PushT-v0"],
|
||||
"xarm": ["XarmLift-v0"],
|
||||
}
|
||||
available_envs = list(available_tasks_per_env.keys())
|
||||
|
||||
available_datasets_per_env = {
|
||||
"aloha": [
|
||||
"lerobot/aloha_sim_insertion_human",
|
||||
"lerobot/aloha_sim_insertion_scripted",
|
||||
"lerobot/aloha_sim_transfer_cube_human",
|
||||
"lerobot/aloha_sim_transfer_cube_scripted",
|
||||
"lerobot/aloha_sim_insertion_human_image",
|
||||
"lerobot/aloha_sim_insertion_scripted_image",
|
||||
"lerobot/aloha_sim_transfer_cube_human_image",
|
||||
"lerobot/aloha_sim_transfer_cube_scripted_image",
|
||||
],
|
||||
"pusht": ["lerobot/pusht", "lerobot/pusht_image"],
|
||||
"xarm": [
|
||||
"lerobot/xarm_lift_medium",
|
||||
"lerobot/xarm_lift_medium_replay",
|
||||
"lerobot/xarm_push_medium",
|
||||
"lerobot/xarm_push_medium_replay",
|
||||
"lerobot/xarm_lift_medium_image",
|
||||
"lerobot/xarm_lift_medium_replay_image",
|
||||
"lerobot/xarm_push_medium_image",
|
||||
"lerobot/xarm_push_medium_replay_image",
|
||||
],
|
||||
}
|
||||
|
||||
available_real_world_datasets = [
|
||||
"lerobot/aloha_mobile_cabinet",
|
||||
"lerobot/aloha_mobile_chair",
|
||||
"lerobot/aloha_mobile_elevator",
|
||||
"lerobot/aloha_mobile_shrimp",
|
||||
"lerobot/aloha_mobile_wash_pan",
|
||||
"lerobot/aloha_mobile_wipe_wine",
|
||||
"lerobot/aloha_static_battery",
|
||||
"lerobot/aloha_static_candy",
|
||||
"lerobot/aloha_static_coffee",
|
||||
"lerobot/aloha_static_coffee_new",
|
||||
"lerobot/aloha_static_cups_open",
|
||||
"lerobot/aloha_static_fork_pick_up",
|
||||
"lerobot/aloha_static_pingpong_test",
|
||||
"lerobot/aloha_static_pro_pencil",
|
||||
"lerobot/aloha_static_screw_driver",
|
||||
"lerobot/aloha_static_tape",
|
||||
"lerobot/aloha_static_thread_velcro",
|
||||
"lerobot/aloha_static_towel",
|
||||
"lerobot/aloha_static_vinh_cup",
|
||||
"lerobot/aloha_static_vinh_cup_left",
|
||||
"lerobot/aloha_static_ziploc_slide",
|
||||
"lerobot/umi_cup_in_the_wild",
|
||||
]
|
||||
|
||||
available_datasets = list(
|
||||
itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets)
|
||||
)
|
||||
|
||||
available_policies = [
|
||||
"act",
|
||||
"diffusion",
|
||||
"tdmpc",
|
||||
]
|
||||
|
||||
available_policies_per_env = {
|
||||
"aloha": ["act"],
|
||||
"pusht": ["diffusion"],
|
||||
"xarm": ["tdmpc"],
|
||||
}
|
||||
|
||||
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
|
||||
env_dataset_pairs = [
|
||||
(env, dataset) for env, datasets in available_datasets_per_env.items() for dataset in datasets
|
||||
]
|
||||
env_dataset_policy_triplets = [
|
||||
(env, dataset, policy)
|
||||
for env, datasets in available_datasets_per_env.items()
|
||||
for dataset in datasets
|
||||
for policy in available_policies_per_env[env]
|
||||
]
|
||||
|
||||
@@ -1,4 +1,19 @@
|
||||
""" To enable `lerobot.__version__` """
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""To enable `lerobot.__version__`"""
|
||||
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
|
||||
|
||||
334
lerobot/common/datasets/_video_benchmark/README.md
Normal file
334
lerobot/common/datasets/_video_benchmark/README.md
Normal file
@@ -0,0 +1,334 @@
|
||||
# Video benchmark
|
||||
|
||||
|
||||
## Questions
|
||||
|
||||
What is the optimal trade-off between:
|
||||
- maximizing loading time with random access,
|
||||
- minimizing memory space on disk,
|
||||
- maximizing success rate of policies?
|
||||
|
||||
How to encode videos?
|
||||
- How much compression (`-crf`)? Low compression with `0`, normal compression with `20` or extreme with `56`?
|
||||
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
|
||||
- How many key frames (`-g`)? A key frame every `10` frames?
|
||||
|
||||
How to decode videos?
|
||||
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
|
||||
|
||||
## Metrics
|
||||
|
||||
**Percentage of data compression (higher is better)**
|
||||
`compression_factor` is the ratio of the memory space on disk taken by the original images to encode, to the memory space taken by the encoded video. For instance, `compression_factor=4` means that the video takes 4 times less memory space on disk compared to the original images.
|
||||
|
||||
**Percentage of loading time (higher is better)**
|
||||
`load_time_factor` is the ratio of the time it takes to load original images at given timestamps, to the time it takes to decode the exact same frames from the video. Higher is better. For instance, `load_time_factor=0.5` means that decoding from video is 2 times slower than loading the original images.
|
||||
|
||||
**Average L2 error per pixel (lower is better)**
|
||||
`avg_per_pixel_l2_error` is the average L2 error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
|
||||
|
||||
**Loss of a pretrained policy (higher is better)** (not available)
|
||||
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
|
||||
|
||||
**Success rate after retraining (higher is better)** (not available)
|
||||
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best.
|
||||
|
||||
|
||||
## Variables
|
||||
|
||||
**Image content**
|
||||
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an appartment, or in a factory, or outdoor, etc. Hence, we run this benchmark on two datasets: `pusht` (simulation) and `umi` (real-world outdoor).
|
||||
|
||||
**Requested timestamps**
|
||||
In this benchmark, we focus on the loading time of random access, so we are not interested in sequentially loading all frames of a video like in a movie. However, the number of consecutive timestamps requested and their spacing can greatly affect the `load_time_factor`. In fact, it is expected to get faster loading time by decoding a large number of consecutive frames from a video, than to load the same data from individual images. To reflect our robotics use case, we consider a few settings:
|
||||
- `single_frame`: 1 frame,
|
||||
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
|
||||
- `2_frames_4_space`: 2 consecutive frames with 4 frames of spacing (e.g `[t, t + 4 / fps]`),
|
||||
|
||||
**Data augmentations**
|
||||
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
|
||||
|
||||
|
||||
## Results
|
||||
|
||||
**`decoder`**
|
||||
| repo_id | decoder | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | <span style="color: #32CD32;">torchvision</span> | 0.166 | 0.0000119 |
|
||||
| lerobot/pusht | ffmpegio | 0.009 | 0.0001182 |
|
||||
| lerobot/pusht | torchaudio | 0.138 | 0.0000359 |
|
||||
| lerobot/umi_cup_in_the_wild | <span style="color: #32CD32;">torchvision</span> | 0.174 | 0.0000174 |
|
||||
| lerobot/umi_cup_in_the_wild | ffmpegio | 0.010 | 0.0000735 |
|
||||
| lerobot/umi_cup_in_the_wild | torchaudio | 0.154 | 0.0000340 |
|
||||
|
||||
### `1_frame`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.224 | 0.0000760 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.185 | 0.0000443 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.388 | 0.0000469 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.329 | 0.0000397 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.204 | 0.0000556 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.182 | 0.0000443 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.174 | 0.0000450 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.163 | 0.0000448 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.163 | 0.0000436 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.155 | 0.0000427 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.130 | 0.0000410 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.105 | 0.0000406 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.097 | 0.0000400 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.061 | 0.0000405 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.039 | 0.0000422 |
|
||||
| lerobot/pusht | None | 8.909 | 0.024 | 0.0000431 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.444 | 0.0000601 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.345 | 0.0000397 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.282 | 0.0000416 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.271 | 0.0000415 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.260 | 0.0000415 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.249 | 0.0000415 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.195 | 0.0000399 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.169 | 0.0000394 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.140 | 0.0000390 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.096 | 0.0000384 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.046 | 0.0000390 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.022 | 0.0000400 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.175 | 0.0000035 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.181 | 0.0000080 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.172 | 0.0000123 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.187 | 0.0000211 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.181 | 0.0000346 |
|
||||
| lerobot/pusht | None | 3.646 | 0.189 | 0.0000443 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.186 | 0.0000521 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.184 | 0.0000850 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.193 | 0.0001726 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.183 | 0.0002606 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.165 | 0.0000056 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.171 | 0.0000111 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.212 | 0.0000153 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.261 | 0.0000218 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.312 | 0.0000317 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.339 | 0.0000397 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.297 | 0.0000452 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.406 | 0.0000629 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.468 | 0.0001184 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.515 | 0.0001879 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.188 | 0.0000443 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.339 | 0.0000397 |
|
||||
|
||||
### `2_frames`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.314 | 0.0000799 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.303 | 0.0000496 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.642 | 0.0000503 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.529 | 0.0000436 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.308 | 0.0000599 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.279 | 0.0000496 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.259 | 0.0000498 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.243 | 0.0000501 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.235 | 0.0000492 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.230 | 0.0000481 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.194 | 0.0000468 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.152 | 0.0000460 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.151 | 0.0000455 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.095 | 0.0000454 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.062 | 0.0000472 |
|
||||
| lerobot/pusht | None | 8.909 | 0.037 | 0.0000479 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.638 | 0.0000625 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.537 | 0.0000436 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.493 | 0.0000437 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.458 | 0.0000446 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.438 | 0.0000445 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.424 | 0.0000444 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.345 | 0.0000435 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.313 | 0.0000417 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.264 | 0.0000421 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.185 | 0.0000414 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.090 | 0.0000420 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.042 | 0.0000424 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.302 | 0.0000097 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.287 | 0.0000142 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.283 | 0.0000184 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.305 | 0.0000268 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.285 | 0.0000402 |
|
||||
| lerobot/pusht | None | 3.646 | 0.285 | 0.0000496 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.293 | 0.0000572 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.293 | 0.0000893 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.319 | 0.0001762 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.304 | 0.0002626 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.235 | 0.0000112 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.261 | 0.0000166 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.333 | 0.0000207 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.406 | 0.0000267 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.489 | 0.0000361 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.537 | 0.0000436 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.578 | 0.0000487 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.453 | 0.0000655 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.767 | 0.0001192 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.816 | 0.0001881 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.283 | 0.0000496 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.543 | 0.0000436 |
|
||||
|
||||
### `2_frames_4_space`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.257 | 0.0000855 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.261 | 0.0000556 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 0.493 | 0.0000476 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.371 | 0.0000404 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.226 | 0.0000670 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.222 | 0.0000556 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.217 | 0.0000567 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.204 | 0.0000555 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.179 | 0.0000556 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.188 | 0.0000544 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.160 | 0.0000531 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.150 | 0.0000521 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.123 | 0.0000519 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.092 | 0.0000519 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.053 | 0.0000533 |
|
||||
| lerobot/pusht | None | 8.909 | 0.034 | 0.0000541 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.409 | 0.0000607 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.381 | 0.0000404 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.355 | 0.0000418 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.346 | 0.0000425 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.354 | 0.0000419 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.336 | 0.0000419 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.314 | 0.0000402 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.269 | 0.0000397 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.246 | 0.0000395 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.171 | 0.0000390 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.091 | 0.0000399 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.043 | 0.0000409 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.212 | 0.0000193 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.211 | 0.0000232 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.199 | 0.0000270 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.198 | 0.0000347 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.211 | 0.0000469 |
|
||||
| lerobot/pusht | None | 3.646 | 0.206 | 0.0000556 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.210 | 0.0000626 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.223 | 0.0000927 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.227 | 0.0001763 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.223 | 0.0002625 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.147 | 0.0000071 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.182 | 0.0000125 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.222 | 0.0000166 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.270 | 0.0000229 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.325 | 0.0000326 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.362 | 0.0000404 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.390 | 0.0000459 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 0.437 | 0.0000633 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 0.499 | 0.0001186 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 0.564 | 0.0001879 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.224 | 0.0000556 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.368 | 0.0000404 |
|
||||
|
||||
### `6_frames`
|
||||
|
||||
**`pix_fmt`**
|
||||
| repo_id | pix_fmt | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | yuv420p | 3.788 | 0.660 | 0.0000839 |
|
||||
| lerobot/pusht | yuv444p | 3.646 | 0.546 | 0.0000542 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv420p | 14.391 | 1.225 | 0.0000497 |
|
||||
| lerobot/umi_cup_in_the_wild | yuv444p | 14.932 | 0.908 | 0.0000428 |
|
||||
|
||||
**`g`**
|
||||
| repo_id | g | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 1 | 2.543 | 0.552 | 0.0000646 |
|
||||
| lerobot/pusht | 2 | 3.646 | 0.534 | 0.0000542 |
|
||||
| lerobot/pusht | 3 | 4.431 | 0.563 | 0.0000546 |
|
||||
| lerobot/pusht | 4 | 5.103 | 0.537 | 0.0000545 |
|
||||
| lerobot/pusht | 5 | 5.625 | 0.477 | 0.0000532 |
|
||||
| lerobot/pusht | 6 | 5.974 | 0.515 | 0.0000530 |
|
||||
| lerobot/pusht | 10 | 6.814 | 0.410 | 0.0000512 |
|
||||
| lerobot/pusht | 15 | 7.431 | 0.405 | 0.0000503 |
|
||||
| lerobot/pusht | 20 | 7.662 | 0.345 | 0.0000500 |
|
||||
| lerobot/pusht | 40 | 8.163 | 0.247 | 0.0000496 |
|
||||
| lerobot/pusht | 100 | 8.761 | 0.147 | 0.0000510 |
|
||||
| lerobot/pusht | None | 8.909 | 0.100 | 0.0000519 |
|
||||
| lerobot/umi_cup_in_the_wild | 1 | 14.411 | 0.997 | 0.0000620 |
|
||||
| lerobot/umi_cup_in_the_wild | 2 | 14.932 | 0.911 | 0.0000428 |
|
||||
| lerobot/umi_cup_in_the_wild | 3 | 20.174 | 0.869 | 0.0000433 |
|
||||
| lerobot/umi_cup_in_the_wild | 4 | 24.889 | 0.874 | 0.0000438 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 28.825 | 0.864 | 0.0000439 |
|
||||
| lerobot/umi_cup_in_the_wild | 6 | 31.635 | 0.834 | 0.0000440 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 39.418 | 0.781 | 0.0000421 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 44.577 | 0.679 | 0.0000411 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 47.907 | 0.652 | 0.0000410 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 52.554 | 0.465 | 0.0000404 |
|
||||
| lerobot/umi_cup_in_the_wild | 100 | 58.241 | 0.245 | 0.0000413 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 60.530 | 0.116 | 0.0000417 |
|
||||
|
||||
**`crf`**
|
||||
| repo_id | crf | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| lerobot/pusht | 0 | 1.699 | 0.534 | 0.0000163 |
|
||||
| lerobot/pusht | 5 | 1.409 | 0.524 | 0.0000205 |
|
||||
| lerobot/pusht | 10 | 1.842 | 0.510 | 0.0000245 |
|
||||
| lerobot/pusht | 15 | 2.322 | 0.512 | 0.0000324 |
|
||||
| lerobot/pusht | 20 | 3.050 | 0.508 | 0.0000452 |
|
||||
| lerobot/pusht | None | 3.646 | 0.518 | 0.0000542 |
|
||||
| lerobot/pusht | 25 | 3.969 | 0.534 | 0.0000616 |
|
||||
| lerobot/pusht | 30 | 5.687 | 0.530 | 0.0000927 |
|
||||
| lerobot/pusht | 40 | 10.818 | 0.552 | 0.0001777 |
|
||||
| lerobot/pusht | 50 | 18.185 | 0.564 | 0.0002644 |
|
||||
| lerobot/umi_cup_in_the_wild | 0 | 1.918 | 0.401 | 0.0000101 |
|
||||
| lerobot/umi_cup_in_the_wild | 5 | 3.207 | 0.499 | 0.0000156 |
|
||||
| lerobot/umi_cup_in_the_wild | 10 | 4.818 | 0.599 | 0.0000197 |
|
||||
| lerobot/umi_cup_in_the_wild | 15 | 7.329 | 0.704 | 0.0000258 |
|
||||
| lerobot/umi_cup_in_the_wild | 20 | 11.361 | 0.834 | 0.0000352 |
|
||||
| lerobot/umi_cup_in_the_wild | None | 14.932 | 0.925 | 0.0000428 |
|
||||
| lerobot/umi_cup_in_the_wild | 25 | 17.741 | 0.978 | 0.0000480 |
|
||||
| lerobot/umi_cup_in_the_wild | 30 | 27.983 | 1.088 | 0.0000648 |
|
||||
| lerobot/umi_cup_in_the_wild | 40 | 82.449 | 1.324 | 0.0001190 |
|
||||
| lerobot/umi_cup_in_the_wild | 50 | 186.145 | 1.436 | 0.0001880 |
|
||||
|
||||
**best**
|
||||
| repo_id | compression_factor | load_time_factor | avg_per_pixel_l2_error |
|
||||
| --- | --- | --- | --- |
|
||||
| lerobot/pusht | 3.646 | 0.546 | 0.0000542 |
|
||||
| lerobot/umi_cup_in_the_wild | 14.932 | 0.934 | 0.0000428 |
|
||||
372
lerobot/common/datasets/_video_benchmark/run_video_benchmark.py
Normal file
372
lerobot/common/datasets/_video_benchmark/run_video_benchmark.py
Normal file
@@ -0,0 +1,372 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import json
|
||||
import random
|
||||
import shutil
|
||||
import subprocess
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import numpy
|
||||
import PIL
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.video_utils import (
|
||||
decode_video_frames_torchvision,
|
||||
)
|
||||
|
||||
|
||||
def get_directory_size(directory):
|
||||
total_size = 0
|
||||
# Iterate over all files and subdirectories recursively
|
||||
for item in directory.rglob("*"):
|
||||
if item.is_file():
|
||||
# Add the file size to the total
|
||||
total_size += item.stat().st_size
|
||||
return total_size
|
||||
|
||||
|
||||
def run_video_benchmark(
|
||||
output_dir,
|
||||
cfg,
|
||||
timestamps_mode,
|
||||
seed=1337,
|
||||
):
|
||||
output_dir = Path(output_dir)
|
||||
if output_dir.exists():
|
||||
shutil.rmtree(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
repo_id = cfg["repo_id"]
|
||||
|
||||
# TODO(rcadene): rewrite with hardcoding of original images and episodes
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
|
||||
# Get fps
|
||||
fps = dataset.fps
|
||||
|
||||
# we only load first episode
|
||||
ep_num_images = dataset.episode_data_index["to"][0].item()
|
||||
|
||||
# Save/Load image directory for the first episode
|
||||
imgs_dir = Path(f"tmp/data/images/{repo_id}/observation.image_episode_000000")
|
||||
if not imgs_dir.exists():
|
||||
imgs_dir.mkdir(parents=True, exist_ok=True)
|
||||
hf_dataset = dataset.hf_dataset.with_format(None)
|
||||
imgs_dataset = hf_dataset.select_columns("observation.image")
|
||||
|
||||
for i, item in enumerate(imgs_dataset):
|
||||
img = item["observation.image"]
|
||||
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
|
||||
|
||||
if i >= ep_num_images - 1:
|
||||
break
|
||||
|
||||
sum_original_frames_size_bytes = get_directory_size(imgs_dir)
|
||||
|
||||
# Encode images into video
|
||||
video_path = output_dir / "episode_0.mp4"
|
||||
|
||||
g = cfg.get("g")
|
||||
crf = cfg.get("crf")
|
||||
pix_fmt = cfg["pix_fmt"]
|
||||
|
||||
cmd = f"ffmpeg -r {fps} "
|
||||
cmd += "-f image2 "
|
||||
cmd += "-loglevel error "
|
||||
cmd += f"-i {str(imgs_dir / 'frame_%06d.png')} "
|
||||
cmd += "-vcodec libx264 "
|
||||
if g is not None:
|
||||
cmd += f"-g {g} " # ensures at least 1 keyframe every 10 frames
|
||||
# cmd += "-keyint_min 10 " set a minimum of 10 frames between 2 key frames
|
||||
# cmd += "-sc_threshold 0 " disable scene change detection to lower the number of key frames
|
||||
if crf is not None:
|
||||
cmd += f"-crf {crf} "
|
||||
cmd += f"-pix_fmt {pix_fmt} "
|
||||
cmd += f"{str(video_path)}"
|
||||
subprocess.run(cmd.split(" "), check=True)
|
||||
|
||||
video_size_bytes = video_path.stat().st_size
|
||||
|
||||
# Set decoder
|
||||
|
||||
decoder = cfg["decoder"]
|
||||
decoder_kwgs = cfg["decoder_kwgs"]
|
||||
device = cfg["device"]
|
||||
|
||||
if decoder == "torchvision":
|
||||
decode_frames_fn = decode_video_frames_torchvision
|
||||
else:
|
||||
raise ValueError(decoder)
|
||||
|
||||
# Estimate average loading time
|
||||
|
||||
def load_original_frames(imgs_dir, timestamps):
|
||||
frames = []
|
||||
for ts in timestamps:
|
||||
idx = int(ts * fps)
|
||||
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
|
||||
frame = torch.from_numpy(numpy.array(frame))
|
||||
frame = frame.type(torch.float32) / 255
|
||||
frame = einops.rearrange(frame, "h w c -> c h w")
|
||||
frames.append(frame)
|
||||
return frames
|
||||
|
||||
list_avg_load_time = []
|
||||
list_avg_load_time_from_images = []
|
||||
per_pixel_l2_errors = []
|
||||
|
||||
random.seed(seed)
|
||||
|
||||
for t in range(50):
|
||||
# test loading 2 frames that are 4 frames appart, which might be a common setting
|
||||
ts = random.randint(fps, ep_num_images - fps) / fps
|
||||
|
||||
if timestamps_mode == "1_frame":
|
||||
timestamps = [ts]
|
||||
elif timestamps_mode == "2_frames":
|
||||
timestamps = [ts - 1 / fps, ts]
|
||||
elif timestamps_mode == "2_frames_4_space":
|
||||
timestamps = [ts - 4 / fps, ts]
|
||||
elif timestamps_mode == "6_frames":
|
||||
timestamps = [ts - i / fps for i in range(6)][::-1]
|
||||
else:
|
||||
raise ValueError(timestamps_mode)
|
||||
|
||||
num_frames = len(timestamps)
|
||||
|
||||
start_time_s = time.monotonic()
|
||||
frames = decode_frames_fn(
|
||||
video_path, timestamps=timestamps, tolerance_s=1e-4, device=device, **decoder_kwgs
|
||||
)
|
||||
avg_load_time = (time.monotonic() - start_time_s) / num_frames
|
||||
list_avg_load_time.append(avg_load_time)
|
||||
|
||||
start_time_s = time.monotonic()
|
||||
original_frames = load_original_frames(imgs_dir, timestamps)
|
||||
avg_load_time_from_images = (time.monotonic() - start_time_s) / num_frames
|
||||
list_avg_load_time_from_images.append(avg_load_time_from_images)
|
||||
|
||||
# Estimate average L2 error between original frames and decoded frames
|
||||
for i, ts in enumerate(timestamps):
|
||||
# are_close = torch.allclose(frames[i], original_frames[i], atol=0.02)
|
||||
num_pixels = original_frames[i].numel()
|
||||
per_pixel_l2_error = torch.norm(frames[i] - original_frames[i], p=2).item() / num_pixels
|
||||
|
||||
# save decoded frames
|
||||
if t == 0:
|
||||
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
|
||||
PIL.Image.fromarray(frame_hwc).save(output_dir / f"frame_{i:06d}.png")
|
||||
|
||||
# save original_frames
|
||||
idx = int(ts * fps)
|
||||
if t == 0:
|
||||
original_frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
|
||||
original_frame.save(output_dir / f"original_frame_{i:06d}.png")
|
||||
|
||||
per_pixel_l2_errors.append(per_pixel_l2_error)
|
||||
|
||||
avg_load_time = float(numpy.array(list_avg_load_time).mean())
|
||||
avg_load_time_from_images = float(numpy.array(list_avg_load_time_from_images).mean())
|
||||
avg_per_pixel_l2_error = float(numpy.array(per_pixel_l2_errors).mean())
|
||||
|
||||
# Save benchmark info
|
||||
|
||||
info = {
|
||||
"sum_original_frames_size_bytes": sum_original_frames_size_bytes,
|
||||
"video_size_bytes": video_size_bytes,
|
||||
"avg_load_time_from_images": avg_load_time_from_images,
|
||||
"avg_load_time": avg_load_time,
|
||||
"compression_factor": sum_original_frames_size_bytes / video_size_bytes,
|
||||
"load_time_factor": avg_load_time_from_images / avg_load_time,
|
||||
"avg_per_pixel_l2_error": avg_per_pixel_l2_error,
|
||||
}
|
||||
|
||||
with open(output_dir / "info.json", "w") as f:
|
||||
json.dump(info, f)
|
||||
|
||||
return info
|
||||
|
||||
|
||||
def display_markdown_table(headers, rows):
|
||||
for i, row in enumerate(rows):
|
||||
new_row = []
|
||||
for col in row:
|
||||
if col is None:
|
||||
new_col = "None"
|
||||
elif isinstance(col, float):
|
||||
new_col = f"{col:.3f}"
|
||||
if new_col == "0.000":
|
||||
new_col = f"{col:.7f}"
|
||||
elif isinstance(col, int):
|
||||
new_col = f"{col}"
|
||||
else:
|
||||
new_col = col
|
||||
new_row.append(new_col)
|
||||
rows[i] = new_row
|
||||
|
||||
header_line = "| " + " | ".join(headers) + " |"
|
||||
separator_line = "| " + " | ".join(["---" for _ in headers]) + " |"
|
||||
body_lines = ["| " + " | ".join(row) + " |" for row in rows]
|
||||
markdown_table = "\n".join([header_line, separator_line] + body_lines)
|
||||
print(markdown_table)
|
||||
print()
|
||||
|
||||
|
||||
def load_info(out_dir):
|
||||
with open(out_dir / "info.json") as f:
|
||||
info = json.load(f)
|
||||
return info
|
||||
|
||||
|
||||
def main():
|
||||
out_dir = Path("tmp/run_video_benchmark")
|
||||
dry_run = False
|
||||
repo_ids = ["lerobot/pusht", "lerobot/umi_cup_in_the_wild"]
|
||||
timestamps_modes = [
|
||||
"1_frame",
|
||||
"2_frames",
|
||||
"2_frames_4_space",
|
||||
"6_frames",
|
||||
]
|
||||
for timestamps_mode in timestamps_modes:
|
||||
bench_dir = out_dir / timestamps_mode
|
||||
|
||||
print(f"### `{timestamps_mode}`")
|
||||
print()
|
||||
|
||||
print("**`pix_fmt`**")
|
||||
headers = ["repo_id", "pix_fmt", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
for pix_fmt in ["yuv420p", "yuv444p"]:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": 2,
|
||||
"crf": None,
|
||||
"pix_fmt": pix_fmt,
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / f"torchvision_{pix_fmt}", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / f"torchvision_{pix_fmt}")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
pix_fmt,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
print("**`g`**")
|
||||
headers = ["repo_id", "g", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
for g in [1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None]:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": g,
|
||||
"pix_fmt": "yuv444p",
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / f"torchvision_g_{g}", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / f"torchvision_g_{g}")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
g,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
print("**`crf`**")
|
||||
headers = ["repo_id", "crf", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
for crf in [0, 5, 10, 15, 20, None, 25, 30, 40, 50]:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": 2,
|
||||
"crf": crf,
|
||||
"pix_fmt": "yuv444p",
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / f"torchvision_crf_{crf}", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / f"torchvision_crf_{crf}")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
crf,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
print("**best**")
|
||||
headers = ["repo_id", "compression_factor", "load_time_factor", "avg_per_pixel_l2_error"]
|
||||
rows = []
|
||||
for repo_id in repo_ids:
|
||||
cfg = {
|
||||
"repo_id": repo_id,
|
||||
# video encoding
|
||||
"g": 2,
|
||||
"crf": None,
|
||||
"pix_fmt": "yuv444p",
|
||||
# video decoding
|
||||
"device": "cpu",
|
||||
"decoder": "torchvision",
|
||||
"decoder_kwgs": {},
|
||||
}
|
||||
if not dry_run:
|
||||
run_video_benchmark(bench_dir / repo_id / "torchvision_best", cfg, timestamps_mode)
|
||||
info = load_info(bench_dir / repo_id / "torchvision_best")
|
||||
rows.append(
|
||||
[
|
||||
repo_id,
|
||||
info["compression_factor"],
|
||||
info["load_time_factor"],
|
||||
info["avg_per_pixel_l2_error"],
|
||||
]
|
||||
)
|
||||
display_markdown_table(headers, rows)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,159 +0,0 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from huggingface_hub import snapshot_download
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
|
||||
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
|
||||
from torchrl.envs.transforms.transforms import Compose
|
||||
|
||||
|
||||
class AbstractExperienceReplay(TensorDictReplayBuffer):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
self.dataset_id = dataset_id
|
||||
self.shuffle = shuffle
|
||||
self.root = root
|
||||
storage = self._download_or_load_dataset()
|
||||
|
||||
super().__init__(
|
||||
storage=storage,
|
||||
sampler=sampler,
|
||||
writer=ImmutableDatasetWriter() if writer is None else writer,
|
||||
collate_fn=_collate_id if collate_fn is None else collate_fn,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
batch_size=batch_size,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
@property
|
||||
def stats_patterns(self) -> dict:
|
||||
return {
|
||||
("observation", "state"): "b c -> 1 c",
|
||||
("observation", "image"): "b c h w -> 1 c 1 1",
|
||||
("action",): "b c -> 1 c",
|
||||
}
|
||||
|
||||
@property
|
||||
def image_keys(self) -> list:
|
||||
return [("observation", "image")]
|
||||
|
||||
@property
|
||||
def num_cameras(self) -> int:
|
||||
return len(self.image_keys)
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
return len(self)
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
return len(self._storage._storage["episode"].unique())
|
||||
|
||||
@property
|
||||
def transform(self):
|
||||
return self._transform
|
||||
|
||||
def set_transform(self, transform):
|
||||
if not isinstance(transform, Compose):
|
||||
# required since torchrl calls `len(self._transform)` downstream
|
||||
if isinstance(transform, list):
|
||||
self._transform = Compose(*transform)
|
||||
else:
|
||||
self._transform = Compose(transform)
|
||||
else:
|
||||
self._transform = transform
|
||||
|
||||
def compute_or_load_stats(self, num_batch=100, batch_size=32) -> TensorDict:
|
||||
stats_path = self.data_dir / "stats.pth"
|
||||
if stats_path.exists():
|
||||
stats = torch.load(stats_path)
|
||||
else:
|
||||
logging.info(f"compute_stats and save to {stats_path}")
|
||||
stats = self._compute_stats(num_batch, batch_size)
|
||||
torch.save(stats, stats_path)
|
||||
return stats
|
||||
|
||||
def _download_or_load_dataset(self) -> torch.StorageBase:
|
||||
if self.root is None:
|
||||
self.data_dir = snapshot_download(repo_id=f"cadene/{self.dataset_id}", repo_type="dataset")
|
||||
else:
|
||||
self.data_dir = self.root / self.dataset_id
|
||||
return TensorStorage(TensorDict.load_memmap(self.data_dir))
|
||||
|
||||
def _compute_stats(self, num_batch=100, batch_size=32):
|
||||
rb = TensorDictReplayBuffer(
|
||||
storage=self._storage,
|
||||
batch_size=batch_size,
|
||||
prefetch=True,
|
||||
)
|
||||
|
||||
mean, std, max, min = {}, {}, {}, {}
|
||||
|
||||
# compute mean, min, max
|
||||
for _ in tqdm.tqdm(range(num_batch)):
|
||||
batch = rb.sample()
|
||||
for key, pattern in self.stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
if key not in mean:
|
||||
# first batch initialize mean, min, max
|
||||
mean[key] = einops.reduce(batch[key], pattern, "mean")
|
||||
max[key] = einops.reduce(batch[key], pattern, "max")
|
||||
min[key] = einops.reduce(batch[key], pattern, "min")
|
||||
else:
|
||||
mean[key] += einops.reduce(batch[key], pattern, "mean")
|
||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
||||
batch = rb.sample()
|
||||
|
||||
for key in self.stats_patterns:
|
||||
mean[key] /= num_batch
|
||||
|
||||
# compute std, min, max
|
||||
for _ in tqdm.tqdm(range(num_batch)):
|
||||
batch = rb.sample()
|
||||
for key, pattern in self.stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
batch_mean = einops.reduce(batch[key], pattern, "mean")
|
||||
if key not in std:
|
||||
# first batch initialize std
|
||||
std[key] = (batch_mean - mean[key]) ** 2
|
||||
else:
|
||||
std[key] += (batch_mean - mean[key]) ** 2
|
||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
||||
|
||||
for key in self.stats_patterns:
|
||||
std[key] = torch.sqrt(std[key] / num_batch)
|
||||
|
||||
stats = TensorDict({}, batch_size=[])
|
||||
for key in self.stats_patterns:
|
||||
stats[(*key, "mean")] = mean[key]
|
||||
stats[(*key, "std")] = std[key]
|
||||
stats[(*key, "max")] = max[key]
|
||||
stats[(*key, "min")] = min[key]
|
||||
|
||||
if key[0] == "observation":
|
||||
# use same stats for the next observations
|
||||
stats[("next", *key)] = stats[key]
|
||||
return stats
|
||||
@@ -1,183 +0,0 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import einops
|
||||
import gdown
|
||||
import h5py
|
||||
import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
|
||||
DATASET_IDS = [
|
||||
"aloha_sim_insertion_human",
|
||||
"aloha_sim_insertion_scripted",
|
||||
"aloha_sim_transfer_cube_human",
|
||||
"aloha_sim_transfer_cube_scripted",
|
||||
]
|
||||
|
||||
FOLDER_URLS = {
|
||||
"aloha_sim_insertion_human": "https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF",
|
||||
"aloha_sim_insertion_scripted": "https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N",
|
||||
"aloha_sim_transfer_cube_human": "https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo",
|
||||
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj",
|
||||
}
|
||||
|
||||
EP48_URLS = {
|
||||
"aloha_sim_insertion_human": "https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link",
|
||||
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link",
|
||||
}
|
||||
|
||||
EP49_URLS = {
|
||||
"aloha_sim_insertion_human": "https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link",
|
||||
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link",
|
||||
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link",
|
||||
}
|
||||
|
||||
NUM_EPISODES = {
|
||||
"aloha_sim_insertion_human": 50,
|
||||
"aloha_sim_insertion_scripted": 50,
|
||||
"aloha_sim_transfer_cube_human": 50,
|
||||
"aloha_sim_transfer_cube_scripted": 50,
|
||||
}
|
||||
|
||||
EPISODE_LEN = {
|
||||
"aloha_sim_insertion_human": 500,
|
||||
"aloha_sim_insertion_scripted": 400,
|
||||
"aloha_sim_transfer_cube_human": 400,
|
||||
"aloha_sim_transfer_cube_scripted": 400,
|
||||
}
|
||||
|
||||
CAMERAS = {
|
||||
"aloha_sim_insertion_human": ["top"],
|
||||
"aloha_sim_insertion_scripted": ["top"],
|
||||
"aloha_sim_transfer_cube_human": ["top"],
|
||||
"aloha_sim_transfer_cube_scripted": ["top"],
|
||||
}
|
||||
|
||||
|
||||
def download(data_dir, dataset_id):
|
||||
assert dataset_id in DATASET_IDS
|
||||
assert dataset_id in FOLDER_URLS
|
||||
assert dataset_id in EP48_URLS
|
||||
assert dataset_id in EP49_URLS
|
||||
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
gdown.download_folder(FOLDER_URLS[dataset_id], output=str(data_dir))
|
||||
|
||||
# because of the 50 files limit per directory, two files episode 48 and 49 were missing
|
||||
gdown.download(EP48_URLS[dataset_id], output=str(data_dir / "episode_48.hdf5"), fuzzy=True)
|
||||
gdown.download(EP49_URLS[dataset_id], output=str(data_dir / "episode_49.hdf5"), fuzzy=True)
|
||||
|
||||
|
||||
class AlohaExperienceReplay(AbstractExperienceReplay):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
assert dataset_id in DATASET_IDS
|
||||
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
sampler=sampler,
|
||||
collate_fn=collate_fn,
|
||||
writer=writer,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
@property
|
||||
def stats_patterns(self) -> dict:
|
||||
d = {
|
||||
("observation", "state"): "b c -> 1 c",
|
||||
("action",): "b c -> 1 c",
|
||||
}
|
||||
for cam in CAMERAS[self.dataset_id]:
|
||||
d[("observation", "image", cam)] = "b c h w -> 1 c 1 1"
|
||||
return d
|
||||
|
||||
@property
|
||||
def image_keys(self) -> list:
|
||||
return [("observation", "image", cam) for cam in CAMERAS[self.dataset_id]]
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
raw_dir = self.root / f"{self.dataset_id}_raw"
|
||||
if not raw_dir.is_dir():
|
||||
download(raw_dir, self.dataset_id)
|
||||
|
||||
total_num_frames = 0
|
||||
logging.info("Compute total number of frames to initialize offline buffer")
|
||||
for ep_id in range(NUM_EPISODES[self.dataset_id]):
|
||||
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
|
||||
with h5py.File(ep_path, "r") as ep:
|
||||
total_num_frames += ep["/action"].shape[0] - 1
|
||||
logging.info(f"{total_num_frames=}")
|
||||
|
||||
logging.info("Initialize and feed offline buffer")
|
||||
idxtd = 0
|
||||
for ep_id in tqdm.tqdm(range(NUM_EPISODES[self.dataset_id])):
|
||||
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
|
||||
with h5py.File(ep_path, "r") as ep:
|
||||
ep_num_frames = ep["/action"].shape[0]
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done = torch.zeros(ep_num_frames, 1, dtype=torch.bool)
|
||||
done[-1] = True
|
||||
|
||||
state = torch.from_numpy(ep["/observations/qpos"][:])
|
||||
action = torch.from_numpy(ep["/action"][:])
|
||||
|
||||
ep_td = TensorDict(
|
||||
{
|
||||
("observation", "state"): state[:-1],
|
||||
"action": action[:-1],
|
||||
"episode": torch.tensor([ep_id] * (ep_num_frames - 1)),
|
||||
"frame_id": torch.arange(0, ep_num_frames - 1, 1),
|
||||
("next", "observation", "state"): state[1:],
|
||||
# TODO: compute reward and success
|
||||
# ("next", "reward"): reward[1:],
|
||||
("next", "done"): done[1:],
|
||||
# ("next", "success"): success[1:],
|
||||
},
|
||||
batch_size=ep_num_frames - 1,
|
||||
)
|
||||
|
||||
for cam in CAMERAS[self.dataset_id]:
|
||||
image = torch.from_numpy(ep[f"/observations/images/{cam}"][:])
|
||||
image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
|
||||
ep_td["observation", "image", cam] = image[:-1]
|
||||
ep_td["next", "observation", "image", cam] = image[1:]
|
||||
|
||||
if ep_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = ep_td[0].expand(total_num_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
|
||||
td_data[idxtd : idxtd + len(ep_td)] = ep_td
|
||||
idxtd = idxtd + len(ep_td)
|
||||
|
||||
return TensorStorage(td_data.lock_())
|
||||
@@ -1,131 +1,53 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
|
||||
from lerobot.common.envs.transforms import NormalizeTransform, Prod
|
||||
|
||||
# DATA_DIR specifies to location where datasets are loaded. By default, DATA_DIR is None and
|
||||
# we load from `$HOME/.cache/huggingface/hub/datasets`. For our unit tests, we set `DATA_DIR=tests/data`
|
||||
# to load a subset of our datasets for faster continuous integration.
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
|
||||
def make_offline_buffer(
|
||||
cfg, overwrite_sampler=None, normalize=True, overwrite_batch_size=None, overwrite_prefetch=None
|
||||
):
|
||||
if cfg.policy.balanced_sampling:
|
||||
assert cfg.online_steps > 0
|
||||
batch_size = None
|
||||
pin_memory = False
|
||||
prefetch = None
|
||||
else:
|
||||
assert cfg.online_steps == 0
|
||||
num_slices = cfg.policy.batch_size
|
||||
batch_size = cfg.policy.horizon * num_slices
|
||||
pin_memory = cfg.device == "cuda"
|
||||
prefetch = cfg.prefetch
|
||||
def make_dataset(cfg: DictConfig, split="train") -> LeRobotDataset:
|
||||
if cfg.env.name not in cfg.dataset_repo_id:
|
||||
logging.warning(
|
||||
f"There might be a mismatch between your training dataset ({cfg.dataset_repo_id=}) and your "
|
||||
f"environment ({cfg.env.name=})."
|
||||
)
|
||||
|
||||
if overwrite_batch_size is not None:
|
||||
batch_size = overwrite_batch_size
|
||||
delta_timestamps = cfg.training.get("delta_timestamps")
|
||||
if delta_timestamps is not None:
|
||||
for key in delta_timestamps:
|
||||
if isinstance(delta_timestamps[key], str):
|
||||
delta_timestamps[key] = eval(delta_timestamps[key])
|
||||
|
||||
if overwrite_prefetch is not None:
|
||||
prefetch = overwrite_prefetch
|
||||
# TODO(rcadene): add data augmentations
|
||||
|
||||
if overwrite_sampler is None:
|
||||
# TODO(rcadene): move batch_size outside
|
||||
num_traj_per_batch = cfg.policy.batch_size # // cfg.horizon
|
||||
# TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size.
|
||||
# We would need to add a transform to pad the tensordict to ensure batch_size == cfg.batch_size.
|
||||
|
||||
if cfg.offline_prioritized_sampler:
|
||||
logging.info("use prioritized sampler for offline dataset")
|
||||
sampler = PrioritizedSliceSampler(
|
||||
max_capacity=100_000,
|
||||
alpha=cfg.policy.per_alpha,
|
||||
beta=cfg.policy.per_beta,
|
||||
num_slices=num_traj_per_batch,
|
||||
strict_length=False,
|
||||
)
|
||||
else:
|
||||
logging.info("use simple sampler for offline dataset")
|
||||
sampler = SliceSampler(
|
||||
num_slices=num_traj_per_batch,
|
||||
strict_length=False,
|
||||
)
|
||||
else:
|
||||
sampler = overwrite_sampler
|
||||
|
||||
if cfg.env.name == "simxarm":
|
||||
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
|
||||
|
||||
clsfunc = SimxarmExperienceReplay
|
||||
dataset_id = f"xarm_{cfg.env.task}_medium"
|
||||
|
||||
elif cfg.env.name == "pusht":
|
||||
from lerobot.common.datasets.pusht import PushtExperienceReplay
|
||||
|
||||
clsfunc = PushtExperienceReplay
|
||||
dataset_id = "pusht"
|
||||
|
||||
elif cfg.env.name == "aloha":
|
||||
from lerobot.common.datasets.aloha import AlohaExperienceReplay
|
||||
|
||||
clsfunc = AlohaExperienceReplay
|
||||
dataset_id = f"aloha_{cfg.env.task}"
|
||||
else:
|
||||
raise ValueError(cfg.env.name)
|
||||
|
||||
offline_buffer = clsfunc(
|
||||
dataset_id=dataset_id,
|
||||
sampler=sampler,
|
||||
batch_size=batch_size,
|
||||
root=DATA_DIR,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch if isinstance(prefetch, int) else None,
|
||||
dataset = LeRobotDataset(
|
||||
cfg.dataset_repo_id,
|
||||
split=split,
|
||||
delta_timestamps=delta_timestamps,
|
||||
n_end_keyframes_dropped=eval(cfg.training.get("n_end_keyframes_dropped", "0")),
|
||||
)
|
||||
|
||||
if cfg.policy.name == "tdmpc":
|
||||
img_keys = []
|
||||
for key in offline_buffer.image_keys:
|
||||
img_keys.append(("next", *key))
|
||||
img_keys += offline_buffer.image_keys
|
||||
else:
|
||||
img_keys = offline_buffer.image_keys
|
||||
if cfg.get("override_dataset_stats"):
|
||||
for key, stats_dict in cfg.override_dataset_stats.items():
|
||||
for stats_type, listconfig in stats_dict.items():
|
||||
# example of stats_type: min, max, mean, std
|
||||
stats = OmegaConf.to_container(listconfig, resolve=True)
|
||||
dataset.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
|
||||
|
||||
transforms = [Prod(in_keys=img_keys, prod=1 / 255)]
|
||||
|
||||
if normalize:
|
||||
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
|
||||
stats = offline_buffer.compute_or_load_stats()
|
||||
|
||||
# we only normalize the state and action, since the images are usually normalized inside the model for now (except for tdmpc: see the following)
|
||||
in_keys = [("observation", "state"), ("action")]
|
||||
|
||||
if cfg.policy.name == "tdmpc":
|
||||
# TODO(rcadene): we add img_keys to the keys to normalize for tdmpc only, since diffusion and act policies normalize the image inside the model for now
|
||||
in_keys += img_keys
|
||||
# TODO(racdene): since we use next observations in tdmpc, we also add them to the normalization. We are wasting a bit of compute on this for now.
|
||||
in_keys += [("next", *key) for key in img_keys]
|
||||
in_keys.append(("next", "observation", "state"))
|
||||
|
||||
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
|
||||
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
|
||||
stats["observation", "state", "min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
|
||||
stats["observation", "state", "max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
|
||||
stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
|
||||
stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
|
||||
|
||||
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
|
||||
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
|
||||
transforms.append(NormalizeTransform(stats, in_keys, mode=normalization_mode))
|
||||
|
||||
offline_buffer.set_transform(transforms)
|
||||
|
||||
if not overwrite_sampler:
|
||||
index = torch.arange(0, offline_buffer.num_samples, 1)
|
||||
sampler.extend(index)
|
||||
|
||||
return offline_buffer
|
||||
return dataset
|
||||
|
||||
228
lerobot/common/datasets/lerobot_dataset.py
Normal file
228
lerobot/common/datasets/lerobot_dataset.py
Normal file
@@ -0,0 +1,228 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
load_episode_data_index,
|
||||
load_hf_dataset,
|
||||
load_info,
|
||||
load_previous_and_future_frames,
|
||||
load_stats,
|
||||
load_videos,
|
||||
reset_episode_index,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, load_from_videos
|
||||
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
CODEBASE_VERSION = "v1.4"
|
||||
|
||||
|
||||
class LeRobotDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
version: str | None = CODEBASE_VERSION,
|
||||
root: Path | None = DATA_DIR,
|
||||
split: str = "train",
|
||||
transform: callable = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
n_end_keyframes_dropped: int = 0,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
delta_timestamps: A dictionary mapping lists of relative times (Δt) to data keys. When a frame is
|
||||
sampled from the underlying dataset, we treat it as a "keyframe" and load multiple frames
|
||||
according to the list of Δt's. For example {"action": [-0.05, 0, 0.05]} indicates
|
||||
that we want to load the current keyframe's action, as well as one from 50 ms ago, and one
|
||||
50 ms into the future. The action key then contains a (3, action_dim) tensor (whereas without
|
||||
`delta_timestamps` there would just be a (action_dim,) tensor. When the Δt's demand that
|
||||
frames outside of an episode boundary are retrieved, a copy padding strategy is used. See
|
||||
`load_previous_and_future_frames` for more details.
|
||||
n_end_keyframes_dropped: Don't sample the last n items in each episode. This option is handy when
|
||||
used in combination with `delta_timestamps` when, for example, the Δt's demand multiple future
|
||||
frames, but we want to avoid introducing too much copy padding into the data distribution.
|
||||
For example if `delta_timestamps = {"action": [0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30]}`
|
||||
and we sample the last frame in the episode, we would end up padding with 6 frames worth of
|
||||
copies. Instead, we might want no padding (in which case we need n=6), or we might be okay
|
||||
with up to 2 frames of padding (in which case we need n=4).
|
||||
"""
|
||||
super().__init__()
|
||||
self.repo_id = repo_id
|
||||
self.version = version
|
||||
self.root = root
|
||||
self.split = split
|
||||
self.transform = transform
|
||||
self.delta_timestamps = delta_timestamps
|
||||
# load data from hub or locally when root is provided
|
||||
# TODO(rcadene, aliberts): implement faster transfer
|
||||
# https://huggingface.co/docs/huggingface_hub/en/guides/download#faster-downloads
|
||||
self.hf_dataset = load_hf_dataset(repo_id, version, root, split)
|
||||
if split == "train":
|
||||
self.episode_data_index = load_episode_data_index(repo_id, version, root)
|
||||
else:
|
||||
self.episode_data_index = calculate_episode_data_index(self.hf_dataset)
|
||||
self.hf_dataset = reset_episode_index(self.hf_dataset)
|
||||
self.stats = load_stats(repo_id, version, root)
|
||||
self.info = load_info(repo_id, version, root)
|
||||
if self.video:
|
||||
self.videos_dir = load_videos(repo_id, version, root)
|
||||
# If `n_end_keyframes_dropped == 0`, `self.index` contains exactly the indices of the hf_dataset. If
|
||||
# `n_end_keyframes_dropped > 0`, `self.index` contains a subset of the indices of the hf_dataset where
|
||||
# we drop those indices pertaining to the last n frames of each episode.
|
||||
self.index = []
|
||||
for from_ix, to_ix in zip(*self.episode_data_index.values(), strict=True):
|
||||
self.index.extend(list(range(from_ix, to_ix - n_end_keyframes_dropped)))
|
||||
|
||||
@property
|
||||
def fps(self) -> int:
|
||||
"""Frames per second used during data collection."""
|
||||
return self.info["fps"]
|
||||
|
||||
@property
|
||||
def video(self) -> bool:
|
||||
"""Returns True if this dataset loads video frames from mp4 files.
|
||||
Returns False if it only loads images from png files.
|
||||
"""
|
||||
return self.info.get("video", False)
|
||||
|
||||
@property
|
||||
def features(self) -> datasets.Features:
|
||||
return self.hf_dataset.features
|
||||
|
||||
@property
|
||||
def camera_keys(self) -> list[str]:
|
||||
"""Keys to access image and video stream from cameras."""
|
||||
keys = []
|
||||
for key, feats in self.hf_dataset.features.items():
|
||||
if isinstance(feats, (datasets.Image, VideoFrame)):
|
||||
keys.append(key)
|
||||
return keys
|
||||
|
||||
@property
|
||||
def video_frame_keys(self) -> list[str]:
|
||||
"""Keys to access video frames that requires to be decoded into images.
|
||||
|
||||
Note: It is empty if the dataset contains images only,
|
||||
or equal to `self.cameras` if the dataset contains videos only,
|
||||
or can even be a subset of `self.cameras` in a case of a mixed image/video dataset.
|
||||
"""
|
||||
video_frame_keys = []
|
||||
for key, feats in self.hf_dataset.features.items():
|
||||
if isinstance(feats, VideoFrame):
|
||||
video_frame_keys.append(key)
|
||||
return video_frame_keys
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
"""Number of possible samples in the dataset.
|
||||
|
||||
This is equivalent to the number of frames in the dataset minus n_end_keyframes_dropped.
|
||||
"""
|
||||
return len(self.index)
|
||||
|
||||
@property
|
||||
def num_episodes(self) -> int:
|
||||
"""Number of episodes."""
|
||||
return len(self.hf_dataset.unique("episode_index"))
|
||||
|
||||
@property
|
||||
def tolerance_s(self) -> float:
|
||||
"""Tolerance in seconds used to discard loaded frames when their timestamps
|
||||
are not close enough from the requested frames. It is only used when `delta_timestamps`
|
||||
is provided or when loading video frames from mp4 files.
|
||||
"""
|
||||
# 1e-4 to account for possible numerical error
|
||||
return 1 / self.fps - 1e-4
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
item = self.hf_dataset[self.index[idx]]
|
||||
|
||||
if self.delta_timestamps is not None:
|
||||
item = load_previous_and_future_frames(
|
||||
item,
|
||||
self.hf_dataset,
|
||||
self.episode_data_index,
|
||||
self.delta_timestamps,
|
||||
self.tolerance_s,
|
||||
)
|
||||
|
||||
if self.video:
|
||||
item = load_from_videos(
|
||||
item,
|
||||
self.video_frame_keys,
|
||||
self.videos_dir,
|
||||
self.tolerance_s,
|
||||
)
|
||||
|
||||
if self.transform is not None:
|
||||
item = self.transform(item)
|
||||
|
||||
return item
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}(\n"
|
||||
f" Repository ID: '{self.repo_id}',\n"
|
||||
f" Version: '{self.version}',\n"
|
||||
f" Split: '{self.split}',\n"
|
||||
f" Number of Samples: {self.num_samples},\n"
|
||||
f" Number of Episodes: {self.num_episodes},\n"
|
||||
f" Type: {'video (.mp4)' if self.video else 'image (.png)'},\n"
|
||||
f" Recorded Frames per Second: {self.fps},\n"
|
||||
f" Camera Keys: {self.camera_keys},\n"
|
||||
f" Video Frame Keys: {self.video_frame_keys if self.video else 'N/A'},\n"
|
||||
f" Transformations: {self.transform},\n"
|
||||
f")"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_preloaded(
|
||||
cls,
|
||||
repo_id: str,
|
||||
version: str | None = CODEBASE_VERSION,
|
||||
root: Path | None = None,
|
||||
split: str = "train",
|
||||
transform: callable = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
# additional preloaded attributes
|
||||
hf_dataset=None,
|
||||
episode_data_index=None,
|
||||
stats=None,
|
||||
info=None,
|
||||
videos_dir=None,
|
||||
):
|
||||
# create an empty object of type LeRobotDataset
|
||||
obj = cls.__new__(cls)
|
||||
obj.repo_id = repo_id
|
||||
obj.version = version
|
||||
obj.root = root
|
||||
obj.split = split
|
||||
obj.transform = transform
|
||||
obj.delta_timestamps = delta_timestamps
|
||||
obj.hf_dataset = hf_dataset
|
||||
obj.episode_data_index = episode_data_index
|
||||
obj.stats = stats
|
||||
obj.info = info
|
||||
obj.videos_dir = videos_dir
|
||||
return obj
|
||||
@@ -0,0 +1,85 @@
|
||||
https://drive.google.com/file/d/1_SOJkgfP5yZyVjMhTt3nwhvyUjcnlI51/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rmgN8UUzph1qwJnzG1d-uOafodn-gLvb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NYQ-XxsBVinB6dUoZmVWweT83367P3i2/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oAv_j74zxxCJieMG7r5Vl2BeHK1__3s3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wFUJQROsrTJt64YRuIeExhFjr2wnK5uu/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1KzL3Tt0Le7jVl58XVRUcmigmXjyiuhbK/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qy_YBladeHtianSSGtgAPSHtMin7msvf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rA_F0V_qL_nyuC_0aBKCisF4-0TIkF2Y/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hw-8qMpz9VgSt62XoASqNRuPECpCwJQP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1BpHOl9rKMzdvNGka6js7C0s40hH6vnDA/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PazhkhiDnJ-OUMyDVDFxEZNKQQqHiNWS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lZ665R6ATl57dypxH4dGJ2NSt6XYnbuz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1V9HzLaf-tlG15wUzT7KrTDCS_z1vi5NV/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1aKauWiXoKqbNwn_2xs4MrmLlaNYlVNmO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WVD5DFhriO1YmmOgiVHhacR6HWoTPxav/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_X43WgeBAsfkhH9EmpyPki8U9joMeAGC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t8x0GqWoNKWtnBsB7_D40Z34nL9ak4kf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15V_f26WaKOXjKnq2T3HRWAmtQUi4lbu2/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11VFIAsiSDsMOBANgrOcZBpKB9AFWnLy7/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1M0NS7vVaxJv3FHnuRYtdwTFYF7We4LxP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mR0OItTNqFnVLoczcyKYlm6drAy778lO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NbVFWDQAh-z4JJ4D-Zw6Lps9kdvpqh2j/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JQoZGBzl4W3QG26-n39tefcGN0fDRMbB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VBjHl-TvZpncopvasIP5G9gecbB2a5f6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VzSf6zaB21nahm7MsPwroXbJ84NIwq0b/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OtNnfMEydNtZOcivs4k6E_uJSpf8PkGy/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14nVvpvsrFr_03Pa_N7MKzwnRwibOUYM6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1M8li6duiO2r3lv_9HhF_XJn0oZUIEK5F/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Cpzea6fO14lxAaNfSBifqoa4ekhCiLD1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mbxRTm5vlbsY9UJ0jfjM6j9D7kPJjBpG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1RXD1i6IfWsHRlCxVmG04h2h5Ycm_WwZN/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QFqFSwDGOk1BkgGmqgCcc2BRWnJ6R3MA/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bFqWR8DQM0ZUxxtS2bl-RANQvukeFLzp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pR-rH3yNGoyPdD4hJ6-3lXQ-PstBx9du/view?usp=drive_link
|
||||
https://drive.google.com/file/d/107OAwLY-hva9HeQLIK7VCh-ytdDabVjr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Tpl08QOaSZ37GTO4awFWSdD8wBR9xdlT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MR164AOM-0S1T6RX8xKTV2IHyaCvpqAW/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_wknJfVnStIhJ82lU_QtcrwahsqYIsr8/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ZuEktWrbYkTx0l5pj3WiZ2CJrfbDOHNo/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15G_10hkkkq6yxvyI5NGZirlF-RzduR2F/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1DBKxg3ONqh7dhLuX6oh1Yyo2x383V1Hp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1B5iDBkTUr5vopDddV_fHud18SqAHhauS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1acwFV0eenRkki1QcjSKH5xqOtys-P3Pr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1S47BI83xyrh-FKXsvAQqer98Biu_p8XK/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JL6DmBZl3uyq9dyLfgSqtGF06e7E9JwM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16WvRS4Kjog8Pxgr0E3sGGnI01YwL9Uql/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12ttGqL33IPWg0-s1SD44rr22M6LiSQBr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OyZqqnldTU_DliRbr6x0C4a_iWPwIN7j/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oYk00IpLnR9fesLfD15Ebe7nVBffEbcS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1eyE2-MQduCEqCd-5_kl5zsoOEERAzpZD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ir1Ya-vO0d97pfvbePlUeuKTTRc0qIMU/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hOi-JnqlMt47gVnLZHMTqeojyYVErohl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NFFw5_PqigQ7xGqsL-MNq2B1r5yAscCf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1uftq1-Zlh8d2sNLWrlVcKYQUwZTD7o24/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-ax19dSLPacVgk000T-m3l4flPcg07pM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/126y-lgn86-ZmCz8hooF1THKJGGObw3OB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JiDniK0VmDIkk92AbBILb8J2Ba59PWML/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1kr8nPIRljiU0R4J9SMgj80o1FPQxzu9z/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bbThWRij1pKBh_kFgV8FwK0sXtTHBoLX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WenzDW6lxk1xkOFm-OiGFfc0ROskAuKU/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MiKRzuzUn1yN-k_6kPJJzIGy7dT-nnsD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17rRg2tcmB-gNhQ0KoZJQmNfyFeoij1jH/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11mokBpvrY3ld6sY5WztREtJ1jgqfQV70/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Il_6IOx9NDp1bX_KHizJfBwzTufTmn86/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1KswtJGsxJ7eeBDAmNA_aeLjOxcH6MIxa/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1gzMhi5uWu4C3Y6WbQ3L-08V96GxTZrRR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nRQFtaBxfUCYc2W90Qibh0kHCt6YQCfc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1vs-gyW-KheqHbUATwAhA2mmR9GOGw7f_/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MuxzGOA2fgLaHryq82KkQumtuRJGcUOC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IIwxZnGlqrXLUXqG6yMO0r7uhCvhpk9e/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1vE7XPyaFcXP4DtTY5Y9WKIt7zWgmX-Cr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1j-bIV09gr21RC3-x1N_pK4RPLV3fmWKz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t3nW1rD3S-EL0Oymb5U7ZAj5UMkydkln/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14hbfHCdMKtJZ41F9CQReMec2jeRFTOqR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1x-hUyOSne5BW0AzQ3W6_Pf4g5yXQWi9M/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1sw9JqRg6E-3P84I3ZhzTrJMu0vuiaMmP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LuqhQlL4MGZhB_6THmkovRxrlP26BbdC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15C5K6v_lkjnMSmUvVyqHQKwh2N166e7K/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ns_9eSsQeeoZ10nlbkLy8tu0GmJFSnkt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NpzWJeK6CqjxzjIMYe6aYdX8xGsQwD4o/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NMLezwufKJ9_8xTc9KQThSzVVD71B9Ui/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1aa71DCUqs6oXlIxX35jgsmsgm-NlDxPV/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1UJzkIZzAL0j-D5YQBnoq7mHvttASy12O/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nPgx36HIJFb7oI94VbRzWjpPP2GANxzG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NovAP-KVJjqcuvWy3d6G4ptGGAIDqcCx/view?usp=drive_link
|
||||
@@ -0,0 +1,55 @@
|
||||
https://drive.google.com/file/d/11M3Ye0r5agMaaicPbVGD0q2Hb3rGklbb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-tx7SvYYgSvXCvnf_EI2OVdwK-CkFY6S/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EWJunmOpMHaU1hE106wwpbkGYcjQXYAF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IDn95Z7FSiCckrSENtGV4u3RyFHNQSDY/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1CwzvWj1i7QOtqrZvsCZ6BdZaKNDfpN32/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1HvAvlhm77nAD3Td24QPSeq8lw-Rl_aOh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t-suKYOPhXH666RpAYNRp2QU_DOy3AeM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18xpKgWh7RWyjMN5PkLTOo-AxsAadAuRw/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oci5Eto-ztv-AQNz8EnwZveBIhxvk-xJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Y-t_4vxdE6NpHO0DLJR8f3mD0Q-Wj5-c/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lylRqbbbB8bgtpsBWMPACmHJreuKmllv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1yliSyMig_NXShWfQx6qyW7Ijf2Y5lFK6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1XXhwJsJbeb7KXAooGvJapnm9bjnGUmxS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_xs1f3hW2JArKyvfF7UWubWjyROGTLs6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WVEHpr6EqKCZbkHapQSTXJq4xE4SWFT-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1RqOHv9pEQGvW8NUA7ynffFmG999TL_Az/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1cu5AgD2gh-uA3PFJmzxxzNaF3qOSlYY1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1SsrXqiPclNrnYToPZ9Uq-k3y0C4qdHT1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-J7EXf0vjkLIfSqT8ICEsP6CTjzSLBop/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11O7ewUmoZXfyyKjy_6B5RW4DpjICxqBT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1iic44kZoCsjNsfAz2cMstZ9-WQvAhblF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1yLV1lVX-2WnWQldGlnQZ0x7QBuDiVkL3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Tybp9ru98TTbGn4eyROpUQwDFuALWXmk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/13E9OTMiipVJByDs5-J19oWwAz7l94LTN/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EeTpJQdMSliw4JzSMtJ6CyTvVdexjM4M/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1NHyNwoFqzeAu-1_PSpq5JfxaiD_xbpn9/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fJcS0phDp4xm_FyGaJ5wr9Pe4KqtHaxD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12AqrLUaewDPEcFRqPZeZFb_TQ0Lfi3At/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1x_hd4Qsq1oJS-aj2t3qM7WbbV7KZj05b/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14OUSUArmsB068hs6BuEIXQhI1Cyz8Sf0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16zlzh1T5zeUJQnFf382NXkFEKEnDub4O/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IbDltmN-NEFCNtr1TO4ILxEgQ94rtjWv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15gmlf8Gx9455pZ1AlqcCSwh3nDPxMzSr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qHpRL1oZfIMo_vxnm8qfwQ-7l0BZIVva/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1H1xskIgiFZivkYn23rMzH3xePGOh3VTC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1avls6Pv0kYiCMNVknbc1zQsgy64MUDMM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MmWVgCj5khc8KMIifmt3EzF1o-CtPyyn/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1U0kCc_xqW0WNppf4sbnK14euWKdPZtzB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16CaEyQscOuhLj23PEGDTL9DeyNkohkMn/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Iu8uM6UUJ0zW8tvN-9UiOe_4oSNzEutg/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1UImqiBaIxCR-1DNJaZhHqeHhaySOtVIr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VpU2V_leIoRIyv_lAvE7eLHBG8DxCTnp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_Q8J27OT3Xby7QY6yHvIJauFRWEMxkRm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bantmVo1L9Xz4tbiNw_a1UC2Z_HPO1wT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IRIXMJMCBDkBjbaHvAlEiBogSvZ1jK_3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mAHXKjiFbjwydypW2t5Lv8_H5x6nHegl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1SfyY796fLrBCMY39OcyuxZafqSCRZPZk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1X-44sZ8CcfzIskc0dvSx882o1yFhHaZB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1BOIWCCCk6DLD4Bmvc75ZbbLi9AQm-1ao/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1RuyDtRE1kk76sw-wP8vx5SgLoPF3PA_H/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1c4eoQiBbGuy3CTAQDUSkd84Ponh1roAQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/19PXB9z4Ljq6dsbf9TqcOrrP5SRbw2Tc_/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nn1VVZVoIXWdYDozR7XHXE4mPLQG80PQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MBdFGOKPV8GUhwoSsJ_Ky3qAMLM2Bv3K/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1of3k_M-7Nh3I1TndcWedxK4ca9dn8Sc5/view?usp=drive_link
|
||||
@@ -0,0 +1,20 @@
|
||||
https://drive.google.com/file/d/12ctkOAdkCNGN1JLbZb5ww3XTBn2LFpGI/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1G_Vd46_4fq6O64gHHjUbJX5Ld44ZZx0y/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1uKgUy73B3xBogQAOUhfZjO0X5qZGsi2c/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fu9cIrfI-fE2LhdGUxbx7-8Ci_PF8Ypm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ygk9ZPJzx8xw2A9JF3NHbJ44TqnvSTQR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18m5xPuccNsEB20WPshm3zhxmXc6k63ED/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1DiqqxC44rriviRQpqogcv0-EB-Y6nr9g/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qPdaoTVDizJXkfXLioWU7iJ8hqCXSyOQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Fj9kIA_mG7f67WFfACJEaZ7izcHG7vUm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WpYehZnI2P7dUdJPfkE-ij1rqCnjZEbB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_zwWkT4jPyzB38STWb6whlzsPzXmfA9r/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1U6-J4I_fPlSFFGfhZPxS5_YzKXwXIZYp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pRhxxcTfZp5tQo_EScvJUwfc3amiS6Vk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lWLntqra83RlYU_gN7Vostnfydf6gutd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1vIBKo0x-NYEHV1FvRpco1lQMpRdAWAIL/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pdrLV3JTQou_XH0Aap61Ssf60iVKm1jJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QTsLoQ7SwmKdQHjBGVDaR2uTwfFwtrOf/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Gytai8M_12J36GY6L_TulEcOC-035jwS/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14LJudNc629NT-i8xreXtzl27ce_DxOFJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1sBvPCODbzxGAI0S3lgN5cSG9Go3lRi00/view?usp=drive_link
|
||||
@@ -0,0 +1,18 @@
|
||||
https://drive.google.com/file/d/1MJn9GbC8p9lN4gC9KDMLEkTkP_gGpXj0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-4LXgjl7ZCOgp-8GCJmFRD8OeqN5Jf7-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ho06Ce0SPbqU3juaMxNUwAt3zCRLGC8W/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ivHoj7_7olBSxH-Y8kqXEW7ttITK-45j/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1qjY4hM_IvZ8cq2II_n9MeJbvyeuN4oBP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rKVhO_f92-7sw13T8hTVrza3B9oAVgoy/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pcLPHO8fBkc1-CRa88tyQtEueE4xiXNi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Vev_chCsIeEdvQ8poEYNsOJFGy_QU8kZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1l5G4zpRkxSLCQjvGPYSN4zfCvVRQuzMz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14vgthE1eoakXkr2-DRw50E6lAqYOiUuE/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17nPSmKKmgQ2B7zkzWrZYiLM3RBuFod82/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QcDsxplVvb_ID9BVrihl5FvlC-j7waXi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18pEejBpI-eEVaWAAjBCyC0vgbX3T1Esj/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1H8eH6_IRODtEFT6WoM77ltR5OoOrqXmI/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IWlpFRZhoxyG4nS13CWK4leZVk5wbNx4/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PbZA8_OCGmMLxNP9xbkLRSChniL4uGxl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1p9XAdmG2f_WeflNO4DIJ_tr1rK6M9B4B/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nS59Et1cNAvKo3Y4SeSGRuZD5TvBbCF3/view?usp=drive_link
|
||||
@@ -0,0 +1 @@
|
||||
https://drive.google.com/drive/folders/1S8eFg98IaGAIKVZ8QFWG1bx4mHa-O204
|
||||
@@ -0,0 +1,4 @@
|
||||
https://drive.google.com/drive/folders/1tC_g1AJ8lglBLY-fjsQrG6DMBa3Ucp-0
|
||||
https://drive.google.com/file/d/1fG_Yi2MJrFjiUVN3XoiWXLtTxHlwwaDv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WX32VWfzzX3Blmd06DRxLwFbMJfVe7P4/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18onsX3vXg3xkFwP5bVUCjdV4n9TRn0C9/view?usp=drive_link
|
||||
@@ -0,0 +1,3 @@
|
||||
https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF
|
||||
https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link
|
||||
@@ -0,0 +1,3 @@
|
||||
https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N
|
||||
https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link
|
||||
@@ -0,0 +1,3 @@
|
||||
https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo
|
||||
https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link
|
||||
@@ -0,0 +1,3 @@
|
||||
https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj
|
||||
https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/19qS_n7vKgDcPeTMnvDHQ5-n73xEbJz5D
|
||||
https://drive.google.com/file/d/1oC31By0A2bsBeHyUwBdQw1z4ng6yi9Za/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1m5rQ6UVH8Q9RQp_6c0CxkQ88-L-ScO7q
|
||||
https://drive.google.com/file/d/1wHz2qcmwcVG0C0CZ9MjQDQcmj4OY9_a3/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1seQGay470nGQ-knBI5TjsTr8iL9Qws5q
|
||||
https://drive.google.com/file/d/1T89hSX5U99wLGvGTE7yUBaQPOpyj6Sai/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1t3eDc5Rg0DveyRe8oTm6Dia_FYU5mXyf
|
||||
https://drive.google.com/file/d/1TXFaduTakvS0ZWJqKCX-HIvYglum_5CY/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1Z9X3DNzd6LS0FFjQemNUMoMA5yk5VQOh
|
||||
https://drive.google.com/file/d/1Wlyc0vTkjXuWB6zbaVOWhEfD7BmPgUV_/view?usp=drive_link
|
||||
@@ -0,0 +1,53 @@
|
||||
https://drive.google.com/drive/folders/1DYgB4ifX4uIid9m9jnC0Zdz8Nf7ZC0fc
|
||||
https://drive.google.com/file/d/1Eb-NRNk_FmVleCbU_Ng5Y4dfcjTKN7Rv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1dkhjEADakT-44l9jf-nK4x89kr4yG_qb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14hDhgcZkVqNExGb4tIXpSjMshhqZETch/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1zVMEHpHbuNyP5A_lYU7RPSLB-4V0yfZw/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JtgDjBvy7FnRpFzrx_foC3quorYQFAR-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EHdneB6F-PP0dQlX8qPaXbxmKoBy_YwO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17Z0jjVBy1OPKREPu77_n_rQzorDiapji/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1F4i23qPJ_qTf5jWjfLo4ARGJChznYWt3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1kZtXWM3uS0-rLblydBfJ0mMcVnMMXw9w/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mNODox87xFfY5Z_o5mcLsr8SHb39jDik/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ob44VdmEUA93FKDECiRb5Ogz2xQg5IWp/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fdQLdjj3Cwv33R1wZhfrLz9Del8mqgHb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Yu3L3ft21zP__XL8pCfhb788ZleuW1n5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ozBBWXVZ9hXDh9ooHUNroHdYm8UDqnhJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1o0TGqvfWw_Lunxb5ubKDS21Lr_WC0h75/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1jZnd5eP5L6BH5l98BPN6OnoQx3fu8e9n/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1S5sYbz8wcLYp0V67v13i4PRcBxodn4Hg/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rFeg_x6ftJYwPtBv34D3h2L2cpDLeR4G/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1GvS3lcm4o6nm_scUk0XxKeVFNmzjucDZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-9i0riphC7NhhDahcQfD1QoBXP5gF90A/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15p_IqGsMbKuvzMS872THAZr-3SBtb1Fr/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ToyYcBfJL8gbQn0q_59zPLsFmm7dmMJo/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1e_7PNH7CYafE4pAebP7ZdI7XFbmEcy_i/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JoabvGVsIQdug2xOhUIhetEIyDM91y_Y/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1kOMw1y0lmnVaCjwZICfzCsx6e0Z8MNGR/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16it_wd1JOevUQTK2_CvF_pBACTgpIPgM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IRcCj9HnJSfbyMgr5XEERGlEnWeZQwOc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Z2dIJfq_S3liGmPN9Rphvkmucnmw7tlb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1J3NoAjzndGx9yNyaBOJHdNny1epzUoBt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18nOvxV1k8FSmBrhT4TPo2sKKSZXougyx/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1CT8FxclafFMjSd7gCWVw3VSeryeiF04i/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16M9KVqQMFfSsXfypK0bocFft8Nz3j2Rt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18QPVkw6bj6HW8LTPrQLWrrUX4R6RcF42/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hQTVtA5hBTE_StXpJafTZJ3tgt2VQQ_t/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Dn-d5g69H6EgAWgsFdrcbJKtz7ySsCQ8/view?usp=drive_link
|
||||
https://drive.google.com/file/d/13hMr16483P7ALYv73yMRUN37fJdVQM62/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1848yN3XMN5zJMEgApt6KzrWgfRPfimtv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oAD9kSnS0fTgj-CjD4u9VdZ5X67IOIMa/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ilzIWLCCG5b_KgF5s0wdN2I5-lFNpwC1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rjsT2YBjnidxod1s9s-myAYz8boHr-WB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18Gg48HTub15bd8qzbhiCUufbVy0fbN5G/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WsSnQSqmMTVSRwrhT1Y-v782My2zcjLm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ea9ZCvoyc-xqiFXgeDcA_mOWsw7VUuoi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wv1v3-XhPgbNzp62BXbJTDzMPu2tlDUc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18-ikzt8LoZ83Gi3goKCELs4U4z8hrRoF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16Bjhp7JNCXkGuLvyNcZowAx3W-Y-15DV/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Gc-KRI-xwcp1fMR55ugbrLg_5y3SPde-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1oP72Q386Z4Sy5MMm-t5yNogIe5Van_9k/view?usp=drive_link
|
||||
https://drive.google.com/file/d/112T90eDUDVH-SyOV7UnZl5bscAH2hcfq/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1y-uKOesRRhjgDtFbG_j65f4SGg0v8XDg/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LOP05OagoI3km-ZKQBrS204A85UVk7Ok/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1QkHQKgasVzWsmdPvkXgGhWyQ84d93_Az/view?usp=drive_link
|
||||
@@ -0,0 +1 @@
|
||||
https://drive.google.com/drive/folders/1Ut2cv6o6Pkfgg46DgwVUM7Z5PkNG8eJ-
|
||||
@@ -0,0 +1 @@
|
||||
https://drive.google.com/drive/folders/1FqxPV0PgvgIu8XFjtvZSPSExuNcxVVAY
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1SKtG0ct9q0nVdYssJNMWSOjikcXliT58
|
||||
https://drive.google.com/file/d/1nchD21O30B3i3LDoqramo1zgW5YvpJIN/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1_4DHf2cma0xsChLQFghwigX6Ukti5-zQ
|
||||
https://drive.google.com/file/d/1_8vS4hDNDgUQY-SmekrNaa7dF67QJYU-/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1_4DHf2cma0xsChLQFghwigX6Ukti5-zQ
|
||||
https://drive.google.com/file/d/1_8vS4hDNDgUQY-SmekrNaa7dF67QJYU-/view?usp=drive_link
|
||||
@@ -0,0 +1,2 @@
|
||||
https://drive.google.com/drive/folders/1fAD7vkyTGTFB_nGXIKofCU1U05oE3MFv
|
||||
https://drive.google.com/file/d/1XzyQ2B6LLvcurIonOpEu4nij2qwNWshH/view?usp=drive_link
|
||||
@@ -0,0 +1,53 @@
|
||||
https://drive.google.com/drive/folders/13EQsVsnxT86K20QAoyE_YpsFbQ7fZQdu
|
||||
https://drive.google.com/file/d/1-W_JHghZG65FNTVhw1SXhtQrazdLL3Ue/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VwRJgdWUo-2nQaNM7Bs77-fsm8iwUxEo/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wFzGRo5iYA13WLi6IV1ry64RyahQBFio/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IKtQzQ-n-UTv64hYpReu2R4cqUvmNQqD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1GicVci9OiuuZZH79i5Mg7AtWod94MzwT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1JVnIoR7EIQp70T4eAf9RX65JcTrzsjQc/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1W2xr4h23ucjPrc-mBEeqnACsfaImpc0p/view?usp=drive_link
|
||||
https://drive.google.com/file/d/10xj_0V7A07o3uCa7v5omUrTC0YlPW8H3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1FOc3EMaCy8Mb0_a7PuXLAwKwvxkbKmwU/view?usp=drive_link
|
||||
https://drive.google.com/file/d/143PgDXBcf2GQ0Q07ZPMVMfBgZDd5sLJG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pE5Tyj0LlGbGWvUzuhixp86Ibu55Ez3I/view?usp=drive_link
|
||||
https://drive.google.com/file/d/141668b1VzX80ncrVJPzhkoAeIFB4MEK9/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bw12lo37p1ZvRvErHsll7cEYi2OxscvZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1zfnMFvbgBjl6SzYhksbaOzfbwLrCN6tb/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-GIszA6mUJMaNB-tdh9r9skc77SWA0VX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1fTB0zWFYU6zh4IIUFT2zX_OkwYqmElwY/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1gPIPNKGmrO9c7gKF7SP0SuUYbIBBq8z1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12JeJ-dQd5lYyn6PlDOGdE-ChVeiZ-Uv0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/100_20cgCqerU6qoh3TfTbwLy9mlDAFEG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/111oAGJ76ku_pYgbBoIdZAC1_XEQcPI__/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1UhC8L-354ZQ2gblPFGI35EMsVwfpuKa0/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1sIXQSgUR_xdrNtGrL6QGBnkLMKErsIp1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16Ax77bDSIXnsn4GFL8XYKKT1P6bPpfMd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pgRVYwwVIsWq_qsWqZpe1UBzZfF5Fa9D/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1jtimaZkWsY1P5gC2bbS64H_WCUU7HXN2/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1N6Bh02P-RiTEgtx1YH1Db_X3TGpP-X_r/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14Fy8EwJ8d9Vh97Yt1VOvUChSCrfIjBij/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1IRuv42dvIMPuKhcMZmuXaBjJ-lPFOmQd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/16XWzNY2D8ucVVn5geBgsVdhm3ppO4que/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1xsVOoQgthK_L_SDrmq_JvQgUpAvPEAY8/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1bZbw66DyEMvnJnzkdUUNbKjvNKg8KFYM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1CyTVkdrNGGpouCXr4CfhKbMzE6Ah3oo3/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hDRyeM-XEDpHXpptbT8LvNnlQUR3PWOh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1XhHWxbra8Iy5irQZ83IvxwaJqHq9x4s1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1haZcn6aM1o4JlmP9tJj3x2enrxiPaDSD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ypDyuUTbljaBZ34f-t7lj3O_0bRmyX2n/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ILEEZo_tA9_ChIAprr2mPaNVKZi5vXsO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1U7nVYFaGE8vVTfLCW33D74xOjDcqfgyJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rZ93_rmCov5SMDxPkfM3qthcRELZrQX6/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mYO1b_csddtyE3qT6cwLiw-m2w2_1Lxh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1xz7Q5x2jikY8wJQjMRQpRws6AnfWlHm5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OO8GaO-0FrSZRd1kxMYwBmubyiLOWnbl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1EXn4NVDmf-4_HCy34mYwT-vwK2CFI9ev/view?usp=drive_link
|
||||
https://drive.google.com/file/d/10hH70XhXRL9C5SnAG4toHtfHqfJUJo4H/view?usp=drive_link
|
||||
https://drive.google.com/file/d/18tiBcxea0guUai4lwsXQvt0q2LZ8ZnnJ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Q8R8qv37vk5PQ5kQ2ibx6BFLOySD0VpX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17aNriHzjhdibCyuUjQoMFZqjybJZtggG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LVjEYHSdeKm6CotU1QguIeNEPaIaFl_1/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ufAhE_EkgJ85slg2EW8aW_grOzE_Lmxd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1wtzLtXrkw9eXRGESTPIOlpl1tInu-b2m/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Mk5qvVtD_QHwGOUApRq76TUw2T5THu6f/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1y1WQ3hboWVJ68KEYQQ3OhreGuaUpSgwc/view?usp=drive_link
|
||||
@@ -0,0 +1,52 @@
|
||||
https://drive.google.com/drive/folders/1dxWh6YFZUDt6qXIoxgD9bla3CiFjZ11C
|
||||
https://drive.google.com/file/d/1hNBJN00SCAlOl0ZEgm7RRGbAGDjyBs0p/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17He0CVwXGeoMmXg4SHKo-osNn7YPKVL7/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1laNKUVID1x2CV6a2O2WQjwFewKu4lidL/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1pNf36xbZJGRArYLmNAvRj5y6CoqdC6kB/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_4E1-y3JXk5I0ebycLYM70YDPK9g52gZ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PHfzhGPdbolKyOpS3FnR2w7Q8zUlJXSk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/17ls2PPN-Pi3tEuK059cwV2_iDT8aGhOO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1LWsg6PmCT00Kv_N_slrmcwKmQPGoBT3k/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12LckrchoHTUVH7rxi8J7zD9dA19GXvoW/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VqrJKjAIkj5gtFXL69grdSeu9CyaqnSw/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1g5rQYDBZvW-kUtYPeyF3qmd53v6k7kXu/view?usp=drive_link
|
||||
https://drive.google.com/file/d/10kUgaSJ0TS7teaG83G3Rf_DG4XGrBt6A/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1je9XmneZQZvTma5adMJICUPDovW3ppei/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1v28r6bedwZGbUPVVTVImXhK-42XdtGfj/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1-TEEx9sGVvzMMaNXYfQMtY2JJ6cvl0dT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1YdBKdJFP9rJWBUX7qrOYL_gfUA8o6J9M/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1X9vffwQHNUSKLXr2RlYNtbWDIFCIDfdF/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11hqesqa5kvEe5FABUnZRcvmOhR373cYM/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1ltTTECjEcbQPgS3UPRgMzaE2x9n6H7dC/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Zxqfa29JdwT-bfMpivi6IG2vz34d21dD/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11LQlVxS5hz494dYUJ_PNRPx2NHIJbQns/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1i1JhNtnZpO_E8rAv8gxBP3ZTZRvcvsZi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11jOXAr2EULUO4Qkm748634lg4UUFho5U/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1rj67wur8DdB_Pipwx24bY43xu4X1eQ5e/view?usp=drive_link
|
||||
https://drive.google.com/file/d/15ZTm6lO6f_JQy_4SNfrOu3iPYn1Ro8mh/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1q4gBtqWPJtCwXEvknGgN0WHGp7Vfn1b9/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1t17keyre47AYqm8GgXiQ7EcvcUkeSiDQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1OYUPGxtZgOF86Ng_BEOTXm_XOYpuQPsO/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1cBjbGHi3dwWHtx6r9EQJi0JT_CE3LuHt/view?usp=drive_link
|
||||
https://drive.google.com/file/d/14qaMyF0mcbCB-fCYKNyo5_2NahSC6D5u/view?usp=drive_link
|
||||
https://drive.google.com/file/d/12FgX86eA7Y5co9ULBVK80XMsiKQSs-Ri/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1yvoHWidf-jdBVw6qCCXOFfkVwKj_2hPk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1a2SugsSDlC8UtUrFzp-_KAwyZckQOvdQ/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1l8pILBFSAosypWJMza2K09Vm7rug9axm/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hfPQ8dBCk97PnOhq6_MIISm3IEzcOxJG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PPAUwlJCFKpms8cqF_k1v2_fCgDBOc3S/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1lVKQZeqFfK3amEmLuFhYLUFQ2eyE8rOW/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1K9iPMLfDowcIFoyzpvgn88dQ6x6kVwNG/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1PNvMqG9tL7QxeLaYBGHiWYR6SYb5iIct/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1xkRtzbvIkUsylx9hrFLGQsJn0h1EYu-5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1nxMRrJlSayjDIfr5CmHO1NzAw3COhsLi/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Qs3WEyMGrmagiHIkkFEueWNnJhkUeR1s/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1D-G2_Q0SS3M8zyJbg_XzkF2ANPw1HTuX/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1mdmJsDGO-YtJAOF_yPKl6lq4PJOIbQhT/view?usp=drive_link
|
||||
https://drive.google.com/file/d/11m9bwfop_sPmnQr_8amB6EEsrbAeG_z5/view?usp=drive_link
|
||||
https://drive.google.com/file/d/19tyYt5FMn5kru0g9o2nMJhKPnsDqkIZv/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1XvTpUdsVTZ-vydvdYYmynbma--HfUGSl/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1MO3hFu68J6NohTzr9aB_fY02VA6QSOqj/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Lh-UjwAk__04YOTWINF_QGVU8SjetVaY/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1jkSOUwZV5GJ7rZlVeErjcu0DBQs8Np0d/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1VIN1eLI-93WrVQwCjsv6XQr353DqqBYA/view?usp=drive_link
|
||||
@@ -0,0 +1,8 @@
|
||||
https://drive.google.com/drive/folders/1EgKar7rWBmTIRmeJYZciSwjZx3uP2mHO
|
||||
https://drive.google.com/file/d/12eYWQO15atK2hBjXhynPJd9MKAj_42pz/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1Ul4oEeICJDjgfYTl4H1uaisTzVYIM6wd/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WSF-OG8lKSe2wVYCv5D1aJNipxpgddk-/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1_ppD5j5sFh26aWW0JmhLzJMeNB-lCArk/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1WUp846dgWXYhu4oJfhHxiU6YL_7N6s4W/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1HRZNAIoAQw_uYiPwnBvtBioQoqiqoXdA/view?usp=drive_link
|
||||
https://drive.google.com/file/d/1hedGq-QDMnIn8GlXXBC3GiEJ_Y-LTxyt/view?usp=drive_link
|
||||
@@ -1,3 +1,23 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Helper code for loading PushT dataset from Diffusion Policy (https://diffusion-policy.cs.columbia.edu/)
|
||||
|
||||
Copied from the original Diffusion Policy repository and used in our `download_and_upload_dataset.py` script.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
169
lerobot/common/datasets/push_dataset_to_hub/_download_raw.py
Normal file
169
lerobot/common/datasets/push_dataset_to_hub/_download_raw.py
Normal file
@@ -0,0 +1,169 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This file contains all obsolete download scripts. They are centralized here to not have to load
|
||||
useless dependencies when using datasets.
|
||||
"""
|
||||
|
||||
import io
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import tqdm
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
|
||||
def download_raw(raw_dir, dataset_id):
|
||||
if "aloha" in dataset_id or "image" in dataset_id:
|
||||
download_hub(raw_dir, dataset_id)
|
||||
elif "pusht" in dataset_id:
|
||||
download_pusht(raw_dir)
|
||||
elif "xarm" in dataset_id:
|
||||
download_xarm(raw_dir)
|
||||
elif "umi" in dataset_id:
|
||||
download_umi(raw_dir)
|
||||
else:
|
||||
raise ValueError(dataset_id)
|
||||
|
||||
|
||||
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
|
||||
import zipfile
|
||||
|
||||
import requests
|
||||
|
||||
print(f"downloading from {url}")
|
||||
response = requests.get(url, stream=True)
|
||||
if response.status_code == 200:
|
||||
total_size = int(response.headers.get("content-length", 0))
|
||||
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
|
||||
|
||||
zip_file = io.BytesIO()
|
||||
for chunk in response.iter_content(chunk_size=1024):
|
||||
if chunk:
|
||||
zip_file.write(chunk)
|
||||
progress_bar.update(len(chunk))
|
||||
|
||||
progress_bar.close()
|
||||
|
||||
zip_file.seek(0)
|
||||
|
||||
with zipfile.ZipFile(zip_file, "r") as zip_ref:
|
||||
zip_ref.extractall(destination_folder)
|
||||
|
||||
|
||||
def download_pusht(raw_dir: str):
|
||||
pusht_url = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
|
||||
|
||||
raw_dir = Path(raw_dir)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
download_and_extract_zip(pusht_url, raw_dir)
|
||||
# file is created inside a useful "pusht" directory, so we move it out and delete the dir
|
||||
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
|
||||
shutil.move(raw_dir / "pusht" / "pusht_cchi_v7_replay.zarr", zarr_path)
|
||||
shutil.rmtree(raw_dir / "pusht")
|
||||
|
||||
|
||||
def download_xarm(raw_dir: Path):
|
||||
"""Download all xarm datasets at once"""
|
||||
import zipfile
|
||||
|
||||
import gdown
|
||||
|
||||
raw_dir = Path(raw_dir)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
# from https://github.com/fyhMer/fowm/blob/main/scripts/download_datasets.py
|
||||
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
|
||||
zip_path = raw_dir / "data.zip"
|
||||
gdown.download(url, str(zip_path), quiet=False)
|
||||
print("Extracting...")
|
||||
with zipfile.ZipFile(str(zip_path), "r") as zip_f:
|
||||
for pkl_path in zip_f.namelist():
|
||||
if pkl_path.startswith("data/xarm") and pkl_path.endswith(".pkl"):
|
||||
zip_f.extract(member=pkl_path)
|
||||
# move to corresponding raw directory
|
||||
extract_dir = pkl_path.replace("/buffer.pkl", "")
|
||||
raw_pkl_path = raw_dir / "buffer.pkl"
|
||||
shutil.move(pkl_path, raw_pkl_path)
|
||||
shutil.rmtree(extract_dir)
|
||||
zip_path.unlink()
|
||||
|
||||
|
||||
def download_hub(raw_dir: Path, dataset_id: str):
|
||||
raw_dir = Path(raw_dir)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
logging.info(f"Start downloading from huggingface.co/cadene for {dataset_id}")
|
||||
snapshot_download(f"cadene/{dataset_id}_raw", repo_type="dataset", local_dir=raw_dir)
|
||||
logging.info(f"Finish downloading from huggingface.co/cadene for {dataset_id}")
|
||||
|
||||
|
||||
def download_umi(raw_dir: Path):
|
||||
url_cup_in_the_wild = "https://real.stanford.edu/umi/data/zarr_datasets/cup_in_the_wild.zarr.zip"
|
||||
zarr_path = raw_dir / "cup_in_the_wild.zarr"
|
||||
|
||||
raw_dir = Path(raw_dir)
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
download_and_extract_zip(url_cup_in_the_wild, zarr_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
data_dir = Path("data")
|
||||
dataset_ids = [
|
||||
"pusht_image",
|
||||
"xarm_lift_medium_image",
|
||||
"xarm_lift_medium_replay_image",
|
||||
"xarm_push_medium_image",
|
||||
"xarm_push_medium_replay_image",
|
||||
"aloha_sim_insertion_human_image",
|
||||
"aloha_sim_insertion_scripted_image",
|
||||
"aloha_sim_transfer_cube_human_image",
|
||||
"aloha_sim_transfer_cube_scripted_image",
|
||||
"pusht",
|
||||
"xarm_lift_medium",
|
||||
"xarm_lift_medium_replay",
|
||||
"xarm_push_medium",
|
||||
"xarm_push_medium_replay",
|
||||
"aloha_sim_insertion_human",
|
||||
"aloha_sim_insertion_scripted",
|
||||
"aloha_sim_transfer_cube_human",
|
||||
"aloha_sim_transfer_cube_scripted",
|
||||
"aloha_mobile_cabinet",
|
||||
"aloha_mobile_chair",
|
||||
"aloha_mobile_elevator",
|
||||
"aloha_mobile_shrimp",
|
||||
"aloha_mobile_wash_pan",
|
||||
"aloha_mobile_wipe_wine",
|
||||
"aloha_static_battery",
|
||||
"aloha_static_candy",
|
||||
"aloha_static_coffee",
|
||||
"aloha_static_coffee_new",
|
||||
"aloha_static_cups_open",
|
||||
"aloha_static_fork_pick_up",
|
||||
"aloha_static_pingpong_test",
|
||||
"aloha_static_pro_pencil",
|
||||
"aloha_static_screw_driver",
|
||||
"aloha_static_tape",
|
||||
"aloha_static_thread_velcro",
|
||||
"aloha_static_towel",
|
||||
"aloha_static_vinh_cup",
|
||||
"aloha_static_vinh_cup_left",
|
||||
"aloha_static_ziploc_slide",
|
||||
"umi_cup_in_the_wild",
|
||||
]
|
||||
for dataset_id in dataset_ids:
|
||||
raw_dir = data_dir / f"{dataset_id}_raw"
|
||||
download_raw(raw_dir, dataset_id)
|
||||
@@ -0,0 +1,326 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# imagecodecs/numcodecs.py
|
||||
|
||||
# Copyright (c) 2021-2022, Christoph Gohlke
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
#
|
||||
# 1. Redistributions of source code must retain the above copyright notice,
|
||||
# this list of conditions and the following disclaimer.
|
||||
#
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
#
|
||||
# 3. Neither the name of the copyright holder nor the names of its
|
||||
# contributors may be used to endorse or promote products derived from
|
||||
# this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
# POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
# Copied from: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/codecs/imagecodecs_numcodecs.py#L1
|
||||
"""Additional numcodecs implemented using imagecodecs."""
|
||||
|
||||
__version__ = "2022.9.26"
|
||||
|
||||
__all__ = ("register_codecs",)
|
||||
|
||||
import imagecodecs
|
||||
import numpy
|
||||
from numcodecs.abc import Codec
|
||||
from numcodecs.registry import get_codec, register_codec
|
||||
|
||||
# TODO (azouitine): Remove useless codecs
|
||||
|
||||
|
||||
def protective_squeeze(x: numpy.ndarray):
|
||||
"""
|
||||
Squeeze dim only if it's not the last dim.
|
||||
Image dim expected to be *, H, W, C
|
||||
"""
|
||||
img_shape = x.shape[-3:]
|
||||
if len(x.shape) > 3:
|
||||
n_imgs = numpy.prod(x.shape[:-3])
|
||||
if n_imgs > 1:
|
||||
img_shape = (-1,) + img_shape
|
||||
return x.reshape(img_shape)
|
||||
|
||||
|
||||
def get_default_image_compressor(**kwargs):
|
||||
if imagecodecs.JPEGXL:
|
||||
# has JPEGXL
|
||||
this_kwargs = {
|
||||
"effort": 3,
|
||||
"distance": 0.3,
|
||||
# bug in libjxl, invalid codestream for non-lossless
|
||||
# when decoding speed > 1
|
||||
"decodingspeed": 1,
|
||||
}
|
||||
this_kwargs.update(kwargs)
|
||||
return JpegXl(**this_kwargs)
|
||||
else:
|
||||
this_kwargs = {"level": 50}
|
||||
this_kwargs.update(kwargs)
|
||||
return Jpeg2k(**this_kwargs)
|
||||
|
||||
|
||||
class Jpeg2k(Codec):
|
||||
"""JPEG 2000 codec for numcodecs."""
|
||||
|
||||
codec_id = "imagecodecs_jpeg2k"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
level=None,
|
||||
codecformat=None,
|
||||
colorspace=None,
|
||||
tile=None,
|
||||
reversible=None,
|
||||
bitspersample=None,
|
||||
resolutions=None,
|
||||
numthreads=None,
|
||||
verbose=0,
|
||||
):
|
||||
self.level = level
|
||||
self.codecformat = codecformat
|
||||
self.colorspace = colorspace
|
||||
self.tile = None if tile is None else tuple(tile)
|
||||
self.reversible = reversible
|
||||
self.bitspersample = bitspersample
|
||||
self.resolutions = resolutions
|
||||
self.numthreads = numthreads
|
||||
self.verbose = verbose
|
||||
|
||||
def encode(self, buf):
|
||||
buf = protective_squeeze(numpy.asarray(buf))
|
||||
return imagecodecs.jpeg2k_encode(
|
||||
buf,
|
||||
level=self.level,
|
||||
codecformat=self.codecformat,
|
||||
colorspace=self.colorspace,
|
||||
tile=self.tile,
|
||||
reversible=self.reversible,
|
||||
bitspersample=self.bitspersample,
|
||||
resolutions=self.resolutions,
|
||||
numthreads=self.numthreads,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
|
||||
def decode(self, buf, out=None):
|
||||
return imagecodecs.jpeg2k_decode(buf, verbose=self.verbose, numthreads=self.numthreads, out=out)
|
||||
|
||||
|
||||
class JpegXl(Codec):
|
||||
"""JPEG XL codec for numcodecs."""
|
||||
|
||||
codec_id = "imagecodecs_jpegxl"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
# encode
|
||||
level=None,
|
||||
effort=None,
|
||||
distance=None,
|
||||
lossless=None,
|
||||
decodingspeed=None,
|
||||
photometric=None,
|
||||
planar=None,
|
||||
usecontainer=None,
|
||||
# decode
|
||||
index=None,
|
||||
keeporientation=None,
|
||||
# both
|
||||
numthreads=None,
|
||||
):
|
||||
"""
|
||||
Return JPEG XL image from numpy array.
|
||||
Float must be in nominal range 0..1.
|
||||
|
||||
Currently L, LA, RGB, RGBA images are supported in contig mode.
|
||||
Extra channels are only supported for grayscale images in planar mode.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
level : Default to None, i.e. not overwriting lossess and decodingspeed options.
|
||||
When < 0: Use lossless compression
|
||||
When in [0,1,2,3,4]: Sets the decoding speed tier for the provided options.
|
||||
Minimum is 0 (slowest to decode, best quality/density), and maximum
|
||||
is 4 (fastest to decode, at the cost of some quality/density).
|
||||
effort : Default to 3.
|
||||
Sets encoder effort/speed level without affecting decoding speed.
|
||||
Valid values are, from faster to slower speed: 1:lightning 2:thunder
|
||||
3:falcon 4:cheetah 5:hare 6:wombat 7:squirrel 8:kitten 9:tortoise.
|
||||
Speed: lightning, thunder, falcon, cheetah, hare, wombat, squirrel, kitten, tortoise
|
||||
control the encoder effort in ascending order.
|
||||
This also affects memory usage: using lower effort will typically reduce memory
|
||||
consumption during encoding.
|
||||
lightning and thunder are fast modes useful for lossless mode (modular).
|
||||
falcon disables all of the following tools.
|
||||
cheetah enables coefficient reordering, context clustering, and heuristics for selecting DCT sizes and quantization steps.
|
||||
hare enables Gaborish filtering, chroma from luma, and an initial estimate of quantization steps.
|
||||
wombat enables error diffusion quantization and full DCT size selection heuristics.
|
||||
squirrel (default) enables dots, patches, and spline detection, and full context clustering.
|
||||
kitten optimizes the adaptive quantization for a psychovisual metric.
|
||||
tortoise enables a more thorough adaptive quantization search.
|
||||
distance : Default to 1.0
|
||||
Sets the distance level for lossy compression: target max butteraugli distance,
|
||||
lower = higher quality. Range: 0 .. 15. 0.0 = mathematically lossless
|
||||
(however, use JxlEncoderSetFrameLossless instead to use true lossless,
|
||||
as setting distance to 0 alone is not the only requirement).
|
||||
1.0 = visually lossless. Recommended range: 0.5 .. 3.0.
|
||||
lossess : Default to False.
|
||||
Use lossess encoding.
|
||||
decodingspeed : Default to 0.
|
||||
Duplicate to level. [0,4]
|
||||
photometric : Return JxlColorSpace value.
|
||||
Default logic is quite complicated but works most of the time.
|
||||
Accepted value:
|
||||
int: [-1,3]
|
||||
str: ['RGB',
|
||||
'WHITEISZERO', 'MINISWHITE',
|
||||
'BLACKISZERO', 'MINISBLACK', 'GRAY',
|
||||
'XYB', 'KNOWN']
|
||||
planar : Enable multi-channel mode.
|
||||
Default to false.
|
||||
usecontainer :
|
||||
Forces the encoder to use the box-based container format (BMFF)
|
||||
even when not necessary.
|
||||
When using JxlEncoderUseBoxes, JxlEncoderStoreJPEGMetadata or
|
||||
JxlEncoderSetCodestreamLevel with level 10, the encoder will
|
||||
automatically also use the container format, it is not necessary
|
||||
to use JxlEncoderUseContainer for those use cases.
|
||||
By default this setting is disabled.
|
||||
index : Selectively decode frames for animation.
|
||||
Default to 0, decode all frames.
|
||||
When set to > 0, decode that frame index only.
|
||||
keeporientation :
|
||||
Enables or disables preserving of as-in-bitstream pixeldata orientation.
|
||||
Some images are encoded with an Orientation tag indicating that the
|
||||
decoder must perform a rotation and/or mirroring to the encoded image data.
|
||||
|
||||
If skip_reorientation is JXL_FALSE (the default): the decoder will apply
|
||||
the transformation from the orientation setting, hence rendering the image
|
||||
according to its specified intent. When producing a JxlBasicInfo, the decoder
|
||||
will always set the orientation field to JXL_ORIENT_IDENTITY (matching the
|
||||
returned pixel data) and also align xsize and ysize so that they correspond
|
||||
to the width and the height of the returned pixel data.
|
||||
|
||||
If skip_reorientation is JXL_TRUE: the decoder will skip applying the
|
||||
transformation from the orientation setting, returning the image in
|
||||
the as-in-bitstream pixeldata orientation. This may be faster to decode
|
||||
since the decoder doesnt have to apply the transformation, but can
|
||||
cause wrong display of the image if the orientation tag is not correctly
|
||||
taken into account by the user.
|
||||
|
||||
By default, this option is disabled, and the returned pixel data is
|
||||
re-oriented according to the images Orientation setting.
|
||||
threads : Default to 1.
|
||||
If <= 0, use all cores.
|
||||
If > 32, clipped to 32.
|
||||
"""
|
||||
|
||||
self.level = level
|
||||
self.effort = effort
|
||||
self.distance = distance
|
||||
self.lossless = bool(lossless)
|
||||
self.decodingspeed = decodingspeed
|
||||
self.photometric = photometric
|
||||
self.planar = planar
|
||||
self.usecontainer = usecontainer
|
||||
self.index = index
|
||||
self.keeporientation = keeporientation
|
||||
self.numthreads = numthreads
|
||||
|
||||
def encode(self, buf):
|
||||
# TODO: only squeeze all but last dim
|
||||
buf = protective_squeeze(numpy.asarray(buf))
|
||||
return imagecodecs.jpegxl_encode(
|
||||
buf,
|
||||
level=self.level,
|
||||
effort=self.effort,
|
||||
distance=self.distance,
|
||||
lossless=self.lossless,
|
||||
decodingspeed=self.decodingspeed,
|
||||
photometric=self.photometric,
|
||||
planar=self.planar,
|
||||
usecontainer=self.usecontainer,
|
||||
numthreads=self.numthreads,
|
||||
)
|
||||
|
||||
def decode(self, buf, out=None):
|
||||
return imagecodecs.jpegxl_decode(
|
||||
buf,
|
||||
index=self.index,
|
||||
keeporientation=self.keeporientation,
|
||||
numthreads=self.numthreads,
|
||||
out=out,
|
||||
)
|
||||
|
||||
|
||||
def _flat(out):
|
||||
"""Return numpy array as contiguous view of bytes if possible."""
|
||||
if out is None:
|
||||
return None
|
||||
view = memoryview(out)
|
||||
if view.readonly or not view.contiguous:
|
||||
return None
|
||||
return view.cast("B")
|
||||
|
||||
|
||||
def register_codecs(codecs=None, force=False, verbose=True):
|
||||
"""Register codecs in this module with numcodecs."""
|
||||
for name, cls in globals().items():
|
||||
if not hasattr(cls, "codec_id") or name == "Codec":
|
||||
continue
|
||||
if codecs is not None and cls.codec_id not in codecs:
|
||||
continue
|
||||
try:
|
||||
try: # noqa: SIM105
|
||||
get_codec({"id": cls.codec_id})
|
||||
except TypeError:
|
||||
# registered, but failed
|
||||
pass
|
||||
except ValueError:
|
||||
# not registered yet
|
||||
pass
|
||||
else:
|
||||
if not force:
|
||||
if verbose:
|
||||
log_warning(f"numcodec {cls.codec_id!r} already registered")
|
||||
continue
|
||||
if verbose:
|
||||
log_warning(f"replacing registered numcodec {cls.codec_id!r}")
|
||||
register_codec(cls)
|
||||
|
||||
|
||||
def log_warning(msg, *args, **kwargs):
|
||||
"""Log message with level WARNING."""
|
||||
import logging
|
||||
|
||||
logging.getLogger(__name__).warning(msg, *args, **kwargs)
|
||||
214
lerobot/common/datasets/push_dataset_to_hub/aloha_hdf5_format.py
Normal file
214
lerobot/common/datasets/push_dataset_to_hub/aloha_hdf5_format.py
Normal file
@@ -0,0 +1,214 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contains utilities to process raw data format of HDF5 files like in: https://github.com/tonyzhaozh/act
|
||||
"""
|
||||
|
||||
import gc
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def get_cameras(hdf5_data):
|
||||
# ignore depth channel, not currently handled
|
||||
# TODO(rcadene): add depth
|
||||
rgb_cameras = [key for key in hdf5_data["/observations/images"].keys() if "depth" not in key] # noqa: SIM118
|
||||
return rgb_cameras
|
||||
|
||||
|
||||
def check_format(raw_dir) -> bool:
|
||||
# only frames from simulation are uncompressed
|
||||
compressed_images = "sim" not in raw_dir.name
|
||||
|
||||
hdf5_paths = list(raw_dir.glob("episode_*.hdf5"))
|
||||
assert len(hdf5_paths) != 0
|
||||
for hdf5_path in hdf5_paths:
|
||||
with h5py.File(hdf5_path, "r") as data:
|
||||
assert "/action" in data
|
||||
assert "/observations/qpos" in data
|
||||
|
||||
assert data["/action"].ndim == 2
|
||||
assert data["/observations/qpos"].ndim == 2
|
||||
|
||||
num_frames = data["/action"].shape[0]
|
||||
assert num_frames == data["/observations/qpos"].shape[0]
|
||||
|
||||
for camera in get_cameras(data):
|
||||
assert num_frames == data[f"/observations/images/{camera}"].shape[0]
|
||||
|
||||
if compressed_images:
|
||||
assert data[f"/observations/images/{camera}"].ndim == 2
|
||||
else:
|
||||
assert data[f"/observations/images/{camera}"].ndim == 4
|
||||
b, h, w, c = data[f"/observations/images/{camera}"].shape
|
||||
assert c < h and c < w, f"Expect (h,w,c) image format but ({h=},{w=},{c=}) provided."
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
# only frames from simulation are uncompressed
|
||||
compressed_images = "sim" not in raw_dir.name
|
||||
|
||||
hdf5_files = list(raw_dir.glob("*.hdf5"))
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
id_from = 0
|
||||
for ep_idx, ep_path in tqdm.tqdm(enumerate(hdf5_files), total=len(hdf5_files)):
|
||||
with h5py.File(ep_path, "r") as ep:
|
||||
num_frames = ep["/action"].shape[0]
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
done[-1] = True
|
||||
|
||||
state = torch.from_numpy(ep["/observations/qpos"][:])
|
||||
action = torch.from_numpy(ep["/action"][:])
|
||||
if "/observations/qvel" in ep:
|
||||
velocity = torch.from_numpy(ep["/observations/qvel"][:])
|
||||
if "/observations/effort" in ep:
|
||||
effort = torch.from_numpy(ep["/observations/effort"][:])
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
for camera in get_cameras(ep):
|
||||
img_key = f"observation.images.{camera}"
|
||||
|
||||
if compressed_images:
|
||||
import cv2
|
||||
|
||||
# load one compressed image after the other in RAM and uncompress
|
||||
imgs_array = []
|
||||
for data in ep[f"/observations/images/{camera}"]:
|
||||
imgs_array.append(cv2.imdecode(data, 1))
|
||||
imgs_array = np.array(imgs_array)
|
||||
|
||||
else:
|
||||
# load all images in RAM
|
||||
imgs_array = ep[f"/observations/images/{camera}"][:]
|
||||
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
if "/observations/velocity" in ep:
|
||||
ep_dict["observation.velocity"] = velocity
|
||||
if "/observations/effort" in ep:
|
||||
ep_dict["observation.effort"] = effort
|
||||
ep_dict["action"] = action
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["next.done"] = done
|
||||
# TODO(rcadene): add reward and success by computing them in sim
|
||||
|
||||
assert isinstance(ep_idx, int)
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
|
||||
id_from += num_frames
|
||||
|
||||
gc.collect()
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
return data_dict, episode_data_index
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
|
||||
keys = [key for key in data_dict if "observation.images." in key]
|
||||
for key in keys:
|
||||
if video:
|
||||
features[key] = VideoFrame()
|
||||
else:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 50
|
||||
|
||||
data_dir, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
hf_dataset = to_hf_dataset(data_dir, video)
|
||||
|
||||
info = {
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
return hf_dataset, episode_data_index, info
|
||||
161
lerobot/common/datasets/push_dataset_to_hub/compute_stats.py
Normal file
161
lerobot/common/datasets/push_dataset_to_hub/compute_stats.py
Normal file
@@ -0,0 +1,161 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from copy import deepcopy
|
||||
from math import ceil
|
||||
|
||||
import datasets
|
||||
import einops
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Image
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.video_utils import VideoFrame
|
||||
|
||||
|
||||
def get_stats_einops_patterns(dataset: LeRobotDataset | datasets.Dataset, num_workers=0):
|
||||
"""These einops patterns will be used to aggregate batches and compute statistics.
|
||||
|
||||
Note: We assume the images are in channel first format
|
||||
"""
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=num_workers,
|
||||
batch_size=2,
|
||||
shuffle=False,
|
||||
)
|
||||
batch = next(iter(dataloader))
|
||||
|
||||
stats_patterns = {}
|
||||
for key, feats_type in dataset.features.items():
|
||||
# sanity check that tensors are not float64
|
||||
assert batch[key].dtype != torch.float64
|
||||
|
||||
if isinstance(feats_type, (VideoFrame, Image)):
|
||||
# sanity check that images are channel first
|
||||
_, c, h, w = batch[key].shape
|
||||
assert c < h and c < w, f"expect channel first images, but instead {batch[key].shape}"
|
||||
|
||||
# sanity check that images are float32 in range [0,1]
|
||||
assert batch[key].dtype == torch.float32, f"expect torch.float32, but instead {batch[key].dtype=}"
|
||||
assert batch[key].max() <= 1, f"expect pixels lower than 1, but instead {batch[key].max()=}"
|
||||
assert batch[key].min() >= 0, f"expect pixels greater than 1, but instead {batch[key].min()=}"
|
||||
|
||||
stats_patterns[key] = "b c h w -> c 1 1"
|
||||
elif batch[key].ndim == 2:
|
||||
stats_patterns[key] = "b c -> c "
|
||||
elif batch[key].ndim == 1:
|
||||
stats_patterns[key] = "b -> 1"
|
||||
else:
|
||||
raise ValueError(f"{key}, {feats_type}, {batch[key].shape}")
|
||||
|
||||
return stats_patterns
|
||||
|
||||
|
||||
def compute_stats(
|
||||
dataset: LeRobotDataset | datasets.Dataset, batch_size=32, num_workers=16, max_num_samples=None
|
||||
):
|
||||
if max_num_samples is None:
|
||||
max_num_samples = len(dataset)
|
||||
|
||||
# for more info on why we need to set the same number of workers, see `load_from_videos`
|
||||
stats_patterns = get_stats_einops_patterns(dataset, num_workers)
|
||||
|
||||
# mean and std will be computed incrementally while max and min will track the running value.
|
||||
mean, std, max, min = {}, {}, {}, {}
|
||||
for key in stats_patterns:
|
||||
mean[key] = torch.tensor(0.0).float()
|
||||
std[key] = torch.tensor(0.0).float()
|
||||
max[key] = torch.tensor(-float("inf")).float()
|
||||
min[key] = torch.tensor(float("inf")).float()
|
||||
|
||||
def create_seeded_dataloader(dataset, batch_size, seed):
|
||||
generator = torch.Generator()
|
||||
generator.manual_seed(seed)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=num_workers,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
drop_last=False,
|
||||
generator=generator,
|
||||
)
|
||||
return dataloader
|
||||
|
||||
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
|
||||
# surprises when rerunning the sampler.
|
||||
first_batch = None
|
||||
running_item_count = 0 # for online mean computation
|
||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
||||
for i, batch in enumerate(
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
|
||||
):
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
if first_batch is None:
|
||||
first_batch = deepcopy(batch)
|
||||
for key, pattern in stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
# Numerically stable update step for mean computation.
|
||||
batch_mean = einops.reduce(batch[key], pattern, "mean")
|
||||
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
|
||||
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
|
||||
# and x is the current batch mean. Some rearrangement is then required to avoid risking
|
||||
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
|
||||
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
|
||||
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
|
||||
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
|
||||
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
|
||||
|
||||
if i == ceil(max_num_samples / batch_size) - 1:
|
||||
break
|
||||
|
||||
first_batch_ = None
|
||||
running_item_count = 0 # for online std computation
|
||||
dataloader = create_seeded_dataloader(dataset, batch_size, seed=1337)
|
||||
for i, batch in enumerate(
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
|
||||
):
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
# Sanity check to make sure the batches are still in the same order as before.
|
||||
if first_batch_ is None:
|
||||
first_batch_ = deepcopy(batch)
|
||||
for key in stats_patterns:
|
||||
assert torch.equal(first_batch_[key], first_batch[key])
|
||||
for key, pattern in stats_patterns.items():
|
||||
batch[key] = batch[key].float()
|
||||
# Numerically stable update step for mean computation (where the mean is over squared
|
||||
# residuals).See notes in the mean computation loop above.
|
||||
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
|
||||
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
|
||||
|
||||
if i == ceil(max_num_samples / batch_size) - 1:
|
||||
break
|
||||
|
||||
for key in stats_patterns:
|
||||
std[key] = torch.sqrt(std[key])
|
||||
|
||||
stats = {}
|
||||
for key in stats_patterns:
|
||||
stats[key] = {
|
||||
"mean": mean[key],
|
||||
"std": std[key],
|
||||
"max": max[key],
|
||||
"min": min[key],
|
||||
}
|
||||
return stats
|
||||
229
lerobot/common/datasets/push_dataset_to_hub/pusht_zarr_format.py
Normal file
229
lerobot/common/datasets/push_dataset_to_hub/pusht_zarr_format.py
Normal file
@@ -0,0 +1,229 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process zarr files formatted like in: https://github.com/real-stanford/diffusion_policy"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
import zarr
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def check_format(raw_dir):
|
||||
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
|
||||
zarr_data = zarr.open(zarr_path, mode="r")
|
||||
|
||||
required_datasets = {
|
||||
"data/action",
|
||||
"data/img",
|
||||
"data/keypoint",
|
||||
"data/n_contacts",
|
||||
"data/state",
|
||||
"meta/episode_ends",
|
||||
}
|
||||
for dataset in required_datasets:
|
||||
assert dataset in zarr_data
|
||||
nb_frames = zarr_data["data/img"].shape[0]
|
||||
|
||||
required_datasets.remove("meta/episode_ends")
|
||||
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
try:
|
||||
import pymunk
|
||||
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import (
|
||||
ReplayBuffer as DiffusionPolicyReplayBuffer,
|
||||
)
|
||||
except ModuleNotFoundError as e:
|
||||
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
|
||||
raise e
|
||||
# as define in gmy-pusht env: https://github.com/huggingface/gym-pusht/blob/e0684ff988d223808c0a9dcfaba9dc4991791370/gym_pusht/envs/pusht.py#L174
|
||||
success_threshold = 0.95 # 95% coverage,
|
||||
|
||||
zarr_path = raw_dir / "pusht_cchi_v7_replay.zarr"
|
||||
zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path)
|
||||
|
||||
episode_ids = torch.from_numpy(zarr_data.get_episode_idxs())
|
||||
num_episodes = zarr_data.meta["episode_ends"].shape[0]
|
||||
assert len(
|
||||
{zarr_data[key].shape[0] for key in zarr_data.keys()} # noqa: SIM118
|
||||
), "Some data type dont have the same number of total frames."
|
||||
|
||||
# TODO(rcadene): verify that goal pose is expected to be fixed
|
||||
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
|
||||
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
|
||||
|
||||
imgs = torch.from_numpy(zarr_data["img"]) # b h w c
|
||||
states = torch.from_numpy(zarr_data["state"])
|
||||
actions = torch.from_numpy(zarr_data["action"])
|
||||
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
id_from = 0
|
||||
for ep_idx in tqdm.tqdm(range(num_episodes)):
|
||||
id_to = zarr_data.meta["episode_ends"][ep_idx]
|
||||
num_frames = id_to - id_from
|
||||
|
||||
# sanity check
|
||||
assert (episode_ids[id_from:id_to] == ep_idx).all()
|
||||
|
||||
# get image
|
||||
image = imgs[id_from:id_to]
|
||||
assert image.min() >= 0.0
|
||||
assert image.max() <= 255.0
|
||||
image = image.type(torch.uint8)
|
||||
|
||||
# get state
|
||||
state = states[id_from:id_to]
|
||||
agent_pos = state[:, :2]
|
||||
block_pos = state[:, 2:4]
|
||||
block_angle = state[:, 4]
|
||||
|
||||
# get reward, success, done
|
||||
reward = torch.zeros(num_frames)
|
||||
success = torch.zeros(num_frames, dtype=torch.bool)
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
for i in range(num_frames):
|
||||
space = pymunk.Space()
|
||||
space.gravity = 0, 0
|
||||
space.damping = 0
|
||||
|
||||
# Add walls.
|
||||
walls = [
|
||||
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
|
||||
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
|
||||
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
|
||||
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
|
||||
]
|
||||
space.add(*walls)
|
||||
|
||||
block_body = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||||
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
goal_area = goal_geom.area
|
||||
coverage = intersection_area / goal_area
|
||||
reward[i] = np.clip(coverage / success_threshold, 0, 1)
|
||||
success[i] = coverage > success_threshold
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done[-1] = True
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
imgs_array = [x.numpy() for x in image]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = agent_pos
|
||||
ep_dict["action"] = actions[id_from:id_to]
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
# ep_dict["next.observation.image"] = image[1:],
|
||||
# ep_dict["next.observation.state"] = agent_pos[1:],
|
||||
# TODO(rcadene)] = verify that reward and done are aligned with image and agent_pos
|
||||
ep_dict["next.reward"] = torch.cat([reward[1:], reward[[-1]]])
|
||||
ep_dict["next.done"] = torch.cat([done[1:], done[[-1]]])
|
||||
ep_dict["next.success"] = torch.cat([success[1:], success[[-1]]])
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
|
||||
id_from += num_frames
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
return data_dict, episode_data_index
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
features = {}
|
||||
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.reward"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["next.success"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 10
|
||||
|
||||
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
|
||||
info = {
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
return hf_dataset, episode_data_index, info
|
||||
222
lerobot/common/datasets/push_dataset_to_hub/umi_zarr_format.py
Normal file
222
lerobot/common/datasets/push_dataset_to_hub/umi_zarr_format.py
Normal file
@@ -0,0 +1,222 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process UMI (Universal Manipulation Interface) data stored in Zarr format like in: https://github.com/real-stanford/universal_manipulation_interface"""
|
||||
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
import zarr
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def check_format(raw_dir) -> bool:
|
||||
zarr_path = raw_dir / "cup_in_the_wild.zarr"
|
||||
zarr_data = zarr.open(zarr_path, mode="r")
|
||||
|
||||
required_datasets = {
|
||||
"data/robot0_demo_end_pose",
|
||||
"data/robot0_demo_start_pose",
|
||||
"data/robot0_eef_pos",
|
||||
"data/robot0_eef_rot_axis_angle",
|
||||
"data/robot0_gripper_width",
|
||||
"meta/episode_ends",
|
||||
"data/camera0_rgb",
|
||||
}
|
||||
for dataset in required_datasets:
|
||||
if dataset not in zarr_data:
|
||||
return False
|
||||
|
||||
# mandatory to access zarr_data
|
||||
register_codecs()
|
||||
nb_frames = zarr_data["data/camera0_rgb"].shape[0]
|
||||
|
||||
required_datasets.remove("meta/episode_ends")
|
||||
assert all(nb_frames == zarr_data[dataset].shape[0] for dataset in required_datasets)
|
||||
|
||||
|
||||
def get_episode_idxs(episode_ends: np.ndarray) -> np.ndarray:
|
||||
# Optimized and simplified version of this function: https://github.com/real-stanford/universal_manipulation_interface/blob/298776ce251f33b6b3185a98d6e7d1f9ad49168b/diffusion_policy/common/replay_buffer.py#L374
|
||||
from numba import jit
|
||||
|
||||
@jit(nopython=True)
|
||||
def _get_episode_idxs(episode_ends):
|
||||
result = np.zeros((episode_ends[-1],), dtype=np.int64)
|
||||
start_idx = 0
|
||||
for episode_number, end_idx in enumerate(episode_ends):
|
||||
result[start_idx:end_idx] = episode_number
|
||||
start_idx = end_idx
|
||||
return result
|
||||
|
||||
return _get_episode_idxs(episode_ends)
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
zarr_path = raw_dir / "cup_in_the_wild.zarr"
|
||||
zarr_data = zarr.open(zarr_path, mode="r")
|
||||
|
||||
# We process the image data separately because it is too large to fit in memory
|
||||
end_pose = torch.from_numpy(zarr_data["data/robot0_demo_end_pose"][:])
|
||||
start_pos = torch.from_numpy(zarr_data["data/robot0_demo_start_pose"][:])
|
||||
eff_pos = torch.from_numpy(zarr_data["data/robot0_eef_pos"][:])
|
||||
eff_rot_axis_angle = torch.from_numpy(zarr_data["data/robot0_eef_rot_axis_angle"][:])
|
||||
gripper_width = torch.from_numpy(zarr_data["data/robot0_gripper_width"][:])
|
||||
|
||||
states_pos = torch.cat([eff_pos, eff_rot_axis_angle], dim=1)
|
||||
states = torch.cat([states_pos, gripper_width], dim=1)
|
||||
|
||||
episode_ends = zarr_data["meta/episode_ends"][:]
|
||||
num_episodes = episode_ends.shape[0]
|
||||
|
||||
episode_ids = torch.from_numpy(get_episode_idxs(episode_ends))
|
||||
|
||||
# We convert it in torch tensor later because the jit function does not support torch tensors
|
||||
episode_ends = torch.from_numpy(episode_ends)
|
||||
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
id_from = 0
|
||||
for ep_idx in tqdm.tqdm(range(num_episodes)):
|
||||
id_to = episode_ends[ep_idx]
|
||||
num_frames = id_to - id_from
|
||||
|
||||
# sanity heck
|
||||
assert (episode_ids[id_from:id_to] == ep_idx).all()
|
||||
|
||||
# TODO(rcadene): save temporary images of the episode?
|
||||
|
||||
state = states[id_from:id_to]
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
# load 57MB of images in RAM (400x224x224x3 uint8)
|
||||
imgs_array = zarr_data["data/camera0_rgb"][id_from:id_to]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_data_index_from"] = torch.tensor([id_from] * num_frames)
|
||||
ep_dict["episode_data_index_to"] = torch.tensor([id_from + num_frames] * num_frames)
|
||||
ep_dict["end_pose"] = end_pose[id_from:id_to]
|
||||
ep_dict["start_pos"] = start_pos[id_from:id_to]
|
||||
ep_dict["gripper_width"] = gripper_width[id_from:id_to]
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
id_from += num_frames
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = id_from
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
|
||||
return data_dict, episode_data_index
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
features = {}
|
||||
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
features["episode_data_index_from"] = Value(dtype="int64", id=None)
|
||||
features["episode_data_index_to"] = Value(dtype="int64", id=None)
|
||||
# `start_pos` and `end_pos` respectively represent the positions of the end-effector
|
||||
# at the beginning and the end of the episode.
|
||||
# `gripper_width` indicates the distance between the grippers, and this value is included
|
||||
# in the state vector, which comprises the concatenation of the end-effector position
|
||||
# and gripper width.
|
||||
features["end_pose"] = Sequence(
|
||||
length=data_dict["end_pose"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["start_pos"] = Sequence(
|
||||
length=data_dict["start_pos"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["gripper_width"] = Sequence(
|
||||
length=data_dict["gripper_width"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
# For umi cup in the wild: https://arxiv.org/pdf/2402.10329#table.caption.16
|
||||
fps = 10
|
||||
|
||||
if not video:
|
||||
logging.warning(
|
||||
"Generating UMI dataset without `video=True` creates ~150GB on disk and requires ~80GB in RAM."
|
||||
)
|
||||
|
||||
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
|
||||
info = {
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
return hf_dataset, episode_data_index, info
|
||||
53
lerobot/common/datasets/push_dataset_to_hub/utils.py
Normal file
53
lerobot/common/datasets/push_dataset_to_hub/utils.py
Normal file
@@ -0,0 +1,53 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
|
||||
import numpy
|
||||
import PIL
|
||||
import torch
|
||||
|
||||
|
||||
def concatenate_episodes(ep_dicts):
|
||||
data_dict = {}
|
||||
|
||||
keys = ep_dicts[0].keys()
|
||||
for key in keys:
|
||||
if torch.is_tensor(ep_dicts[0][key][0]):
|
||||
data_dict[key] = torch.cat([ep_dict[key] for ep_dict in ep_dicts])
|
||||
else:
|
||||
if key not in data_dict:
|
||||
data_dict[key] = []
|
||||
for ep_dict in ep_dicts:
|
||||
for x in ep_dict[key]:
|
||||
data_dict[key].append(x)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def save_images_concurrently(imgs_array: numpy.array, out_dir: Path, max_workers: int = 4):
|
||||
out_dir = Path(out_dir)
|
||||
out_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def save_image(img_array, i, out_dir):
|
||||
img = PIL.Image.fromarray(img_array)
|
||||
img.save(str(out_dir / f"frame_{i:06d}.png"), quality=100)
|
||||
|
||||
num_images = len(imgs_array)
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
[executor.submit(save_image, imgs_array[i], i, out_dir) for i in range(num_images)]
|
||||
178
lerobot/common/datasets/push_dataset_to_hub/xarm_pkl_format.py
Normal file
178
lerobot/common/datasets/push_dataset_to_hub/xarm_pkl_format.py
Normal file
@@ -0,0 +1,178 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Process pickle files formatted like in: https://github.com/fyhMer/fowm"""
|
||||
|
||||
import pickle
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.utils import (
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
|
||||
def check_format(raw_dir):
|
||||
keys = {"actions", "rewards", "dones"}
|
||||
nested_keys = {"observations": {"rgb", "state"}, "next_observations": {"rgb", "state"}}
|
||||
|
||||
xarm_files = list(raw_dir.glob("*.pkl"))
|
||||
assert len(xarm_files) > 0
|
||||
|
||||
with open(xarm_files[0], "rb") as f:
|
||||
dataset_dict = pickle.load(f)
|
||||
|
||||
assert isinstance(dataset_dict, dict)
|
||||
assert all(k in dataset_dict for k in keys)
|
||||
|
||||
# Check for consistent lengths in nested keys
|
||||
expected_len = len(dataset_dict["actions"])
|
||||
assert all(len(dataset_dict[key]) == expected_len for key in keys if key in dataset_dict)
|
||||
|
||||
for key, subkeys in nested_keys.items():
|
||||
nested_dict = dataset_dict.get(key, {})
|
||||
assert all(len(nested_dict[subkey]) == expected_len for subkey in subkeys if subkey in nested_dict)
|
||||
|
||||
|
||||
def load_from_raw(raw_dir, out_dir, fps, video, debug):
|
||||
pkl_path = raw_dir / "buffer.pkl"
|
||||
|
||||
with open(pkl_path, "rb") as f:
|
||||
pkl_data = pickle.load(f)
|
||||
|
||||
ep_dicts = []
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
id_from = 0
|
||||
id_to = 0
|
||||
ep_idx = 0
|
||||
total_frames = pkl_data["actions"].shape[0]
|
||||
for i in tqdm.tqdm(range(total_frames)):
|
||||
id_to += 1
|
||||
|
||||
if not pkl_data["dones"][i]:
|
||||
continue
|
||||
|
||||
num_frames = id_to - id_from
|
||||
|
||||
image = torch.tensor(pkl_data["observations"]["rgb"][id_from:id_to])
|
||||
image = einops.rearrange(image, "b c h w -> b h w c")
|
||||
state = torch.tensor(pkl_data["observations"]["state"][id_from:id_to])
|
||||
action = torch.tensor(pkl_data["actions"][id_from:id_to])
|
||||
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
|
||||
# it is critical to have this frame for tdmpc to predict a "done observation/state"
|
||||
# next_image = torch.tensor(pkl_data["next_observations"]["rgb"][id_from:id_to])
|
||||
# next_state = torch.tensor(pkl_data["next_observations"]["state"][id_from:id_to])
|
||||
next_reward = torch.tensor(pkl_data["rewards"][id_from:id_to])
|
||||
next_done = torch.tensor(pkl_data["dones"][id_from:id_to])
|
||||
|
||||
ep_dict = {}
|
||||
|
||||
imgs_array = [x.numpy() for x in image]
|
||||
img_key = "observation.image"
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = out_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = out_dir / "videos" / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = state
|
||||
ep_dict["action"] = action
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames, dtype=torch.int64)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
# ep_dict["next.observation.image"] = next_image
|
||||
# ep_dict["next.observation.state"] = next_state
|
||||
ep_dict["next.reward"] = next_reward
|
||||
ep_dict["next.done"] = next_done
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
episode_data_index["from"].append(id_from)
|
||||
episode_data_index["to"].append(id_from + num_frames)
|
||||
|
||||
id_from = id_to
|
||||
ep_idx += 1
|
||||
|
||||
# process first episode only
|
||||
if debug:
|
||||
break
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
return data_dict, episode_data_index
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video):
|
||||
features = {}
|
||||
|
||||
if video:
|
||||
features["observation.image"] = VideoFrame()
|
||||
else:
|
||||
features["observation.image"] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.reward"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
# TODO(rcadene): add success
|
||||
# features["next.success"] = Value(dtype='bool', id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(raw_dir: Path, out_dir: Path, fps=None, video=True, debug=False):
|
||||
# sanity check
|
||||
check_format(raw_dir)
|
||||
|
||||
if fps is None:
|
||||
fps = 15
|
||||
|
||||
data_dict, episode_data_index = load_from_raw(raw_dir, out_dir, fps, video, debug)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
|
||||
info = {
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
return hf_dataset, episode_data_index, info
|
||||
@@ -1,219 +0,0 @@
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import pygame
|
||||
import pymunk
|
||||
import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import SliceSampler
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
from lerobot.common.datasets.utils import download_and_extract_zip
|
||||
from lerobot.common.envs.pusht.pusht_env import pymunk_to_shapely
|
||||
from lerobot.common.policies.diffusion.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
|
||||
|
||||
# as define in env
|
||||
SUCCESS_THRESHOLD = 0.95 # 95% coverage,
|
||||
|
||||
PUSHT_URL = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
|
||||
PUSHT_ZARR = Path("pusht/pusht_cchi_v7_replay.zarr")
|
||||
|
||||
|
||||
def get_goal_pose_body(pose):
|
||||
mass = 1
|
||||
inertia = pymunk.moment_for_box(mass, (50, 100))
|
||||
body = pymunk.Body(mass, inertia)
|
||||
# preserving the legacy assignment order for compatibility
|
||||
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
|
||||
body.position = pose[:2].tolist()
|
||||
body.angle = pose[2]
|
||||
return body
|
||||
|
||||
|
||||
def add_segment(space, a, b, radius):
|
||||
shape = pymunk.Segment(space.static_body, a, b, radius)
|
||||
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
|
||||
return shape
|
||||
|
||||
|
||||
def add_tee(
|
||||
space,
|
||||
position,
|
||||
angle,
|
||||
scale=30,
|
||||
color="LightSlateGray",
|
||||
mask=None,
|
||||
):
|
||||
if mask is None:
|
||||
mask = pymunk.ShapeFilter.ALL_MASKS()
|
||||
mass = 1
|
||||
length = 4
|
||||
vertices1 = [
|
||||
(-length * scale / 2, scale),
|
||||
(length * scale / 2, scale),
|
||||
(length * scale / 2, 0),
|
||||
(-length * scale / 2, 0),
|
||||
]
|
||||
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
|
||||
vertices2 = [
|
||||
(-scale / 2, scale),
|
||||
(-scale / 2, length * scale),
|
||||
(scale / 2, length * scale),
|
||||
(scale / 2, scale),
|
||||
]
|
||||
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
|
||||
body = pymunk.Body(mass, inertia1 + inertia2)
|
||||
shape1 = pymunk.Poly(body, vertices1)
|
||||
shape2 = pymunk.Poly(body, vertices2)
|
||||
shape1.color = pygame.Color(color)
|
||||
shape2.color = pygame.Color(color)
|
||||
shape1.filter = pymunk.ShapeFilter(mask=mask)
|
||||
shape2.filter = pymunk.ShapeFilter(mask=mask)
|
||||
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
|
||||
body.position = position
|
||||
body.angle = angle
|
||||
body.friction = 1
|
||||
space.add(body, shape1, shape2)
|
||||
return body
|
||||
|
||||
|
||||
class PushtExperienceReplay(AbstractExperienceReplay):
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
sampler=sampler,
|
||||
collate_fn=collate_fn,
|
||||
writer=writer,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
raw_dir = self.root / f"{self.dataset_id}_raw"
|
||||
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
|
||||
if not zarr_path.is_dir():
|
||||
raw_dir.mkdir(parents=True, exist_ok=True)
|
||||
download_and_extract_zip(PUSHT_URL, raw_dir)
|
||||
|
||||
# load
|
||||
dataset_dict = DiffusionPolicyReplayBuffer.copy_from_path(
|
||||
zarr_path
|
||||
) # , keys=['img', 'state', 'action'])
|
||||
|
||||
episode_ids = torch.from_numpy(dataset_dict.get_episode_idxs())
|
||||
num_episodes = dataset_dict.meta["episode_ends"].shape[0]
|
||||
total_frames = dataset_dict["action"].shape[0]
|
||||
# to create test artifact
|
||||
# num_episodes = 1
|
||||
# total_frames = 50
|
||||
assert len(
|
||||
{dataset_dict[key].shape[0] for key in dataset_dict.keys()} # noqa: SIM118
|
||||
), "Some data type dont have the same number of total frames."
|
||||
|
||||
# TODO: verify that goal pose is expected to be fixed
|
||||
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
|
||||
goal_body = get_goal_pose_body(goal_pos_angle)
|
||||
|
||||
imgs = torch.from_numpy(dataset_dict["img"])
|
||||
imgs = einops.rearrange(imgs, "b h w c -> b c h w")
|
||||
states = torch.from_numpy(dataset_dict["state"])
|
||||
actions = torch.from_numpy(dataset_dict["action"])
|
||||
|
||||
idx0 = 0
|
||||
idxtd = 0
|
||||
for episode_id in tqdm.tqdm(range(num_episodes)):
|
||||
idx1 = dataset_dict.meta["episode_ends"][episode_id]
|
||||
# to create test artifact
|
||||
# idx1 = 51
|
||||
|
||||
num_frames = idx1 - idx0
|
||||
|
||||
assert (episode_ids[idx0:idx1] == episode_id).all()
|
||||
|
||||
image = imgs[idx0:idx1]
|
||||
|
||||
state = states[idx0:idx1]
|
||||
agent_pos = state[:, :2]
|
||||
block_pos = state[:, 2:4]
|
||||
block_angle = state[:, 4]
|
||||
|
||||
reward = torch.zeros(num_frames, 1)
|
||||
success = torch.zeros(num_frames, 1, dtype=torch.bool)
|
||||
done = torch.zeros(num_frames, 1, dtype=torch.bool)
|
||||
for i in range(num_frames):
|
||||
space = pymunk.Space()
|
||||
space.gravity = 0, 0
|
||||
space.damping = 0
|
||||
|
||||
# Add walls.
|
||||
walls = [
|
||||
add_segment(space, (5, 506), (5, 5), 2),
|
||||
add_segment(space, (5, 5), (506, 5), 2),
|
||||
add_segment(space, (506, 5), (506, 506), 2),
|
||||
add_segment(space, (5, 506), (506, 506), 2),
|
||||
]
|
||||
space.add(*walls)
|
||||
|
||||
block_body = add_tee(space, block_pos[i].tolist(), block_angle[i].item())
|
||||
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
|
||||
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
|
||||
intersection_area = goal_geom.intersection(block_geom).area
|
||||
goal_area = goal_geom.area
|
||||
coverage = intersection_area / goal_area
|
||||
reward[i] = np.clip(coverage / SUCCESS_THRESHOLD, 0, 1)
|
||||
success[i] = coverage > SUCCESS_THRESHOLD
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done[-1] = True
|
||||
|
||||
ep_td = TensorDict(
|
||||
{
|
||||
("observation", "image"): image[:-1],
|
||||
("observation", "state"): agent_pos[:-1],
|
||||
"action": actions[idx0:idx1][:-1],
|
||||
"episode": episode_ids[idx0:idx1][:-1],
|
||||
"frame_id": torch.arange(0, num_frames - 1, 1),
|
||||
("next", "observation", "image"): image[1:],
|
||||
("next", "observation", "state"): agent_pos[1:],
|
||||
# TODO: verify that reward and done are aligned with image and agent_pos
|
||||
("next", "reward"): reward[1:],
|
||||
("next", "done"): done[1:],
|
||||
("next", "success"): success[1:],
|
||||
},
|
||||
batch_size=num_frames - 1,
|
||||
)
|
||||
|
||||
if episode_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = ep_td[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
|
||||
td_data[idxtd : idxtd + len(ep_td)] = ep_td
|
||||
|
||||
idx0 = idx1
|
||||
idxtd = idxtd + len(ep_td)
|
||||
|
||||
return TensorStorage(td_data.lock_())
|
||||
@@ -1,121 +0,0 @@
|
||||
import pickle
|
||||
import zipfile
|
||||
from pathlib import Path
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
import torchrl
|
||||
import tqdm
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.replay_buffers.samplers import (
|
||||
SliceSampler,
|
||||
)
|
||||
from torchrl.data.replay_buffers.storages import TensorStorage
|
||||
from torchrl.data.replay_buffers.writers import Writer
|
||||
|
||||
from lerobot.common.datasets.abstract import AbstractExperienceReplay
|
||||
|
||||
|
||||
def download():
|
||||
raise NotImplementedError()
|
||||
import gdown
|
||||
|
||||
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
|
||||
download_path = "data.zip"
|
||||
gdown.download(url, download_path, quiet=False)
|
||||
print("Extracting...")
|
||||
with zipfile.ZipFile(download_path, "r") as zip_f:
|
||||
for member in zip_f.namelist():
|
||||
if member.startswith("data/xarm") and member.endswith(".pkl"):
|
||||
print(member)
|
||||
zip_f.extract(member=member)
|
||||
Path(download_path).unlink()
|
||||
|
||||
|
||||
class SimxarmExperienceReplay(AbstractExperienceReplay):
|
||||
available_datasets = [
|
||||
"xarm_lift_medium",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset_id: str,
|
||||
batch_size: int = None,
|
||||
*,
|
||||
shuffle: bool = True,
|
||||
root: Path | None = None,
|
||||
pin_memory: bool = False,
|
||||
prefetch: int = None,
|
||||
sampler: SliceSampler = None,
|
||||
collate_fn: Callable = None,
|
||||
writer: Writer = None,
|
||||
transform: "torchrl.envs.Transform" = None,
|
||||
):
|
||||
super().__init__(
|
||||
dataset_id,
|
||||
batch_size,
|
||||
shuffle=shuffle,
|
||||
root=root,
|
||||
pin_memory=pin_memory,
|
||||
prefetch=prefetch,
|
||||
sampler=sampler,
|
||||
collate_fn=collate_fn,
|
||||
writer=writer,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
def _download_and_preproc_obsolete(self):
|
||||
assert self.root is not None
|
||||
# TODO(rcadene): finish download
|
||||
download()
|
||||
|
||||
dataset_path = self.root / f"{self.dataset_id}_raw" / "buffer.pkl"
|
||||
print(f"Using offline dataset '{dataset_path}'")
|
||||
with open(dataset_path, "rb") as f:
|
||||
dataset_dict = pickle.load(f)
|
||||
|
||||
total_frames = dataset_dict["actions"].shape[0]
|
||||
|
||||
idx0 = 0
|
||||
idx1 = 0
|
||||
episode_id = 0
|
||||
for i in tqdm.tqdm(range(total_frames)):
|
||||
idx1 += 1
|
||||
|
||||
if not dataset_dict["dones"][i]:
|
||||
continue
|
||||
|
||||
num_frames = idx1 - idx0
|
||||
|
||||
image = torch.tensor(dataset_dict["observations"]["rgb"][idx0:idx1])
|
||||
state = torch.tensor(dataset_dict["observations"]["state"][idx0:idx1])
|
||||
next_image = torch.tensor(dataset_dict["next_observations"]["rgb"][idx0:idx1])
|
||||
next_state = torch.tensor(dataset_dict["next_observations"]["state"][idx0:idx1])
|
||||
next_reward = torch.tensor(dataset_dict["rewards"][idx0:idx1])
|
||||
next_done = torch.tensor(dataset_dict["dones"][idx0:idx1])
|
||||
|
||||
episode = TensorDict(
|
||||
{
|
||||
("observation", "image"): image,
|
||||
("observation", "state"): state,
|
||||
"action": torch.tensor(dataset_dict["actions"][idx0:idx1]),
|
||||
"episode": torch.tensor([episode_id] * num_frames, dtype=torch.int),
|
||||
"frame_id": torch.arange(0, num_frames, 1),
|
||||
("next", "observation", "image"): next_image,
|
||||
("next", "observation", "state"): next_state,
|
||||
("next", "observation", "reward"): next_reward,
|
||||
("next", "observation", "done"): next_done,
|
||||
},
|
||||
batch_size=num_frames,
|
||||
)
|
||||
|
||||
if episode_id == 0:
|
||||
# hack to initialize tensordict data structure to store episodes
|
||||
td_data = episode[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
|
||||
|
||||
td_data[idx0:idx1] = episode
|
||||
|
||||
episode_id += 1
|
||||
idx0 = idx1
|
||||
|
||||
return TensorStorage(td_data.lock_())
|
||||
@@ -1,30 +1,354 @@
|
||||
import io
|
||||
import zipfile
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import json
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import requests
|
||||
import tqdm
|
||||
import datasets
|
||||
import torch
|
||||
from datasets import load_dataset, load_from_disk
|
||||
from huggingface_hub import hf_hub_download, snapshot_download
|
||||
from PIL import Image as PILImage
|
||||
from safetensors.torch import load_file
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
|
||||
print(f"downloading from {url}")
|
||||
response = requests.get(url, stream=True)
|
||||
if response.status_code == 200:
|
||||
total_size = int(response.headers.get("content-length", 0))
|
||||
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
|
||||
def flatten_dict(d, parent_key="", sep="/"):
|
||||
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
|
||||
|
||||
zip_file = io.BytesIO()
|
||||
for chunk in response.iter_content(chunk_size=1024):
|
||||
if chunk:
|
||||
zip_file.write(chunk)
|
||||
progress_bar.update(len(chunk))
|
||||
For example:
|
||||
```
|
||||
>>> dct = {"a": {"b": 1, "c": {"d": 2}}, "e": 3}`
|
||||
>>> print(flatten_dict(dct))
|
||||
{"a/b": 1, "a/c/d": 2, "e": 3}
|
||||
"""
|
||||
items = []
|
||||
for k, v in d.items():
|
||||
new_key = f"{parent_key}{sep}{k}" if parent_key else k
|
||||
if isinstance(v, dict):
|
||||
items.extend(flatten_dict(v, new_key, sep=sep).items())
|
||||
else:
|
||||
items.append((new_key, v))
|
||||
return dict(items)
|
||||
|
||||
progress_bar.close()
|
||||
|
||||
zip_file.seek(0)
|
||||
def unflatten_dict(d, sep="/"):
|
||||
outdict = {}
|
||||
for key, value in d.items():
|
||||
parts = key.split(sep)
|
||||
d = outdict
|
||||
for part in parts[:-1]:
|
||||
if part not in d:
|
||||
d[part] = {}
|
||||
d = d[part]
|
||||
d[parts[-1]] = value
|
||||
return outdict
|
||||
|
||||
with zipfile.ZipFile(zip_file, "r") as zip_ref:
|
||||
zip_ref.extractall(destination_folder)
|
||||
return True
|
||||
|
||||
def hf_transform_to_torch(items_dict):
|
||||
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
|
||||
to torch tensors. Importantly, images are converted from PIL, which corresponds to
|
||||
a channel last representation (h w c) of uint8 type, to a torch image representation
|
||||
with channel first (c h w) of float32 type in range [0,1].
|
||||
"""
|
||||
for key in items_dict:
|
||||
first_item = items_dict[key][0]
|
||||
if isinstance(first_item, PILImage.Image):
|
||||
to_tensor = transforms.ToTensor()
|
||||
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
|
||||
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
|
||||
# video frame will be processed downstream
|
||||
pass
|
||||
else:
|
||||
items_dict[key] = [torch.tensor(x) for x in items_dict[key]]
|
||||
return items_dict
|
||||
|
||||
|
||||
def load_hf_dataset(repo_id, version, root, split) -> datasets.Dataset:
|
||||
"""hf_dataset contains all the observations, states, actions, rewards, etc."""
|
||||
if root is not None:
|
||||
hf_dataset = load_from_disk(str(Path(root) / repo_id / "train"))
|
||||
# TODO(rcadene): clean this which enables getting a subset of dataset
|
||||
if split != "train":
|
||||
if "%" in split:
|
||||
raise NotImplementedError(f"We dont support splitting based on percentage for now ({split}).")
|
||||
match_from = re.search(r"train\[(\d+):\]", split)
|
||||
match_to = re.search(r"train\[:(\d+)\]", split)
|
||||
if match_from:
|
||||
from_frame_index = int(match_from.group(1))
|
||||
hf_dataset = hf_dataset.select(range(from_frame_index, len(hf_dataset)))
|
||||
elif match_to:
|
||||
to_frame_index = int(match_to.group(1))
|
||||
hf_dataset = hf_dataset.select(range(to_frame_index))
|
||||
else:
|
||||
raise ValueError(
|
||||
f'`split` ({split}) should either be "train", "train[INT:]", or "train[:INT]"'
|
||||
)
|
||||
else:
|
||||
return False
|
||||
hf_dataset = load_dataset(repo_id, revision=version, split=split)
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def load_episode_data_index(repo_id, version, root) -> dict[str, torch.Tensor]:
|
||||
"""episode_data_index contains the range of indices for each episode
|
||||
|
||||
Example:
|
||||
```python
|
||||
from_id = episode_data_index["from"][episode_id].item()
|
||||
to_id = episode_data_index["to"][episode_id].item()
|
||||
episode_frames = [dataset[i] for i in range(from_id, to_id)]
|
||||
```
|
||||
"""
|
||||
if root is not None:
|
||||
path = Path(root) / repo_id / "meta_data" / "episode_data_index.safetensors"
|
||||
else:
|
||||
path = hf_hub_download(
|
||||
repo_id, "meta_data/episode_data_index.safetensors", repo_type="dataset", revision=version
|
||||
)
|
||||
|
||||
return load_file(path)
|
||||
|
||||
|
||||
def load_stats(repo_id, version, root) -> dict[str, dict[str, torch.Tensor]]:
|
||||
"""stats contains the statistics per modality computed over the full dataset, such as max, min, mean, std
|
||||
|
||||
Example:
|
||||
```python
|
||||
normalized_action = (action - stats["action"]["mean"]) / stats["action"]["std"]
|
||||
```
|
||||
"""
|
||||
if root is not None:
|
||||
path = Path(root) / repo_id / "meta_data" / "stats.safetensors"
|
||||
else:
|
||||
path = hf_hub_download(repo_id, "meta_data/stats.safetensors", repo_type="dataset", revision=version)
|
||||
|
||||
stats = load_file(path)
|
||||
return unflatten_dict(stats)
|
||||
|
||||
|
||||
def load_info(repo_id, version, root) -> dict:
|
||||
"""info contains useful information regarding the dataset that are not stored elsewhere
|
||||
|
||||
Example:
|
||||
```python
|
||||
print("frame per second used to collect the video", info["fps"])
|
||||
```
|
||||
"""
|
||||
if root is not None:
|
||||
path = Path(root) / repo_id / "meta_data" / "info.json"
|
||||
else:
|
||||
path = hf_hub_download(repo_id, "meta_data/info.json", repo_type="dataset", revision=version)
|
||||
|
||||
with open(path) as f:
|
||||
info = json.load(f)
|
||||
return info
|
||||
|
||||
|
||||
def load_videos(repo_id, version, root) -> Path:
|
||||
if root is not None:
|
||||
path = Path(root) / repo_id / "videos"
|
||||
else:
|
||||
# TODO(rcadene): we download the whole repo here. see if we can avoid this
|
||||
repo_dir = snapshot_download(repo_id, repo_type="dataset", revision=version)
|
||||
path = Path(repo_dir) / "videos"
|
||||
|
||||
return path
|
||||
|
||||
|
||||
def load_previous_and_future_frames(
|
||||
item: dict[str, torch.Tensor],
|
||||
hf_dataset: datasets.Dataset,
|
||||
episode_data_index: dict[str, torch.Tensor],
|
||||
delta_timestamps: dict[str, list[float]],
|
||||
tolerance_s: float,
|
||||
) -> dict[torch.Tensor]:
|
||||
"""
|
||||
Given a current item in the dataset containing a timestamp (e.g. 0.6 seconds), and a list of time differences of
|
||||
some modalities (e.g. delta_timestamps={"observation.image": [-0.8, -0.2, 0, 0.2]}), this function computes for each
|
||||
given modality (e.g. "observation.image") a list of query timestamps (e.g. [-0.2, 0.4, 0.6, 0.8]) and loads the closest
|
||||
frames in the dataset.
|
||||
|
||||
Importantly, when no frame can be found around a query timestamp within a specified tolerance window, this function
|
||||
raises an AssertionError. When a timestamp is queried before the first available timestamp of the episode or after
|
||||
the last available timestamp, the violation of the tolerance doesnt raise an AssertionError, and the function
|
||||
populates a boolean array indicating which frames are outside of the episode range. For instance, this boolean array
|
||||
is useful during batched training to not supervise actions associated to timestamps coming after the end of the
|
||||
episode, or to pad the observations in a specific way. Note that by default the observation frames before the start
|
||||
of the episode are the same as the first frame of the episode.
|
||||
|
||||
Parameters:
|
||||
- item (dict): A dictionary containing all the data related to a frame. It is the result of `dataset[idx]`. Each key
|
||||
corresponds to a different modality (e.g., "timestamp", "observation.image", "action").
|
||||
- hf_dataset (datasets.Dataset): A dictionary containing the full dataset. Each key corresponds to a different
|
||||
modality (e.g., "timestamp", "observation.image", "action").
|
||||
- episode_data_index (dict): A dictionary containing two keys ("from" and "to") associated to dataset indices.
|
||||
They indicate the start index and end index of each episode in the dataset.
|
||||
- delta_timestamps (dict): A dictionary containing lists of delta timestamps for each possible modality to be
|
||||
retrieved. These deltas are added to the item timestamp to form the query timestamps.
|
||||
- tolerance_s (float, optional): The tolerance level (in seconds) used to determine if a data point is close enough to the query
|
||||
timestamp by asserting `tol > difference`. It is suggested to set `tol` to a smaller value than the
|
||||
smallest expected inter-frame period, but large enough to account for jitter.
|
||||
|
||||
Returns:
|
||||
- The same item with the queried frames for each modality specified in delta_timestamps, with an additional key for
|
||||
each modality (e.g. "observation.image_is_pad").
|
||||
|
||||
Raises:
|
||||
- AssertionError: If any of the frames unexpectedly violate the tolerance level. This could indicate synchronization
|
||||
issues with timestamps during data collection.
|
||||
"""
|
||||
# get indices of the frames associated to the episode, and their timestamps
|
||||
ep_id = item["episode_index"].item()
|
||||
ep_data_id_from = episode_data_index["from"][ep_id].item()
|
||||
ep_data_id_to = episode_data_index["to"][ep_id].item()
|
||||
ep_data_ids = torch.arange(ep_data_id_from, ep_data_id_to, 1)
|
||||
|
||||
# load timestamps
|
||||
ep_timestamps = hf_dataset.select_columns("timestamp")[ep_data_id_from:ep_data_id_to]["timestamp"]
|
||||
ep_timestamps = torch.stack(ep_timestamps)
|
||||
|
||||
# we make the assumption that the timestamps are sorted
|
||||
ep_first_ts = ep_timestamps[0]
|
||||
ep_last_ts = ep_timestamps[-1]
|
||||
current_ts = item["timestamp"].item()
|
||||
|
||||
for key in delta_timestamps:
|
||||
# get timestamps used as query to retrieve data of previous/future frames
|
||||
delta_ts = delta_timestamps[key]
|
||||
query_ts = current_ts + torch.tensor(delta_ts)
|
||||
|
||||
# compute distances between each query timestamp and all timestamps of all the frames belonging to the episode
|
||||
dist = torch.cdist(query_ts[:, None], ep_timestamps[:, None], p=1)
|
||||
min_, argmin_ = dist.min(1)
|
||||
|
||||
# TODO(rcadene): synchronize timestamps + interpolation if needed
|
||||
|
||||
is_pad = min_ > tolerance_s
|
||||
|
||||
# check violated query timestamps are all outside the episode range
|
||||
assert ((query_ts[is_pad] < ep_first_ts) | (ep_last_ts < query_ts[is_pad])).all(), (
|
||||
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {tolerance_s=}) inside episode range."
|
||||
"This might be due to synchronization issues with timestamps during data collection."
|
||||
)
|
||||
|
||||
# get dataset indices corresponding to frames to be loaded
|
||||
data_ids = ep_data_ids[argmin_]
|
||||
|
||||
# load frames modality
|
||||
item[key] = hf_dataset.select_columns(key)[data_ids][key]
|
||||
|
||||
if isinstance(item[key][0], dict) and "path" in item[key][0]:
|
||||
# video mode where frame are expressed as dict of path and timestamp
|
||||
item[key] = item[key]
|
||||
else:
|
||||
item[key] = torch.stack(item[key])
|
||||
|
||||
item[f"{key}_is_pad"] = is_pad
|
||||
|
||||
return item
|
||||
|
||||
|
||||
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
|
||||
|
||||
Parameters:
|
||||
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
|
||||
|
||||
Returns:
|
||||
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
|
||||
- "from": A tensor containing the starting index of each episode.
|
||||
- "to": A tensor containing the ending index of each episode.
|
||||
"""
|
||||
episode_data_index = {"from": [], "to": []}
|
||||
|
||||
current_episode = None
|
||||
"""
|
||||
The episode_index is a list of integers, each representing the episode index of the corresponding example.
|
||||
For instance, the following is a valid episode_index:
|
||||
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
|
||||
|
||||
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
|
||||
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
|
||||
{
|
||||
"from": [0, 3, 7],
|
||||
"to": [3, 7, 12]
|
||||
}
|
||||
"""
|
||||
if len(hf_dataset) == 0:
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([]),
|
||||
"to": torch.tensor([]),
|
||||
}
|
||||
return episode_data_index
|
||||
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
|
||||
if episode_idx != current_episode:
|
||||
# We encountered a new episode, so we append its starting location to the "from" list
|
||||
episode_data_index["from"].append(idx)
|
||||
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
|
||||
if current_episode is not None:
|
||||
episode_data_index["to"].append(idx)
|
||||
# Let's keep track of the current episode index
|
||||
current_episode = episode_idx
|
||||
else:
|
||||
# We are still in the same episode, so there is nothing for us to do here
|
||||
pass
|
||||
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
|
||||
episode_data_index["to"].append(idx + 1)
|
||||
|
||||
for k in ["from", "to"]:
|
||||
episode_data_index[k] = torch.tensor(episode_data_index[k])
|
||||
|
||||
return episode_data_index
|
||||
|
||||
|
||||
def reset_episode_index(hf_dataset: datasets.Dataset) -> datasets.Dataset:
|
||||
"""
|
||||
Reset the `episode_index` of the provided HuggingFace Dataset.
|
||||
|
||||
`episode_data_index` (and related functionality such as `load_previous_and_future_frames`) requires the
|
||||
`episode_index` to be sorted, continuous (1,1,1 and not 1,2,1) and start at 0.
|
||||
|
||||
This brings the `episode_index` to the required format.
|
||||
"""
|
||||
if len(hf_dataset) == 0:
|
||||
return hf_dataset
|
||||
unique_episode_idxs = torch.stack(hf_dataset["episode_index"]).unique().tolist()
|
||||
episode_idx_to_reset_idx_mapping = {
|
||||
ep_id: reset_ep_id for reset_ep_id, ep_id in enumerate(unique_episode_idxs)
|
||||
}
|
||||
|
||||
def modify_ep_idx_func(example):
|
||||
example["episode_index"] = episode_idx_to_reset_idx_mapping[example["episode_index"].item()]
|
||||
return example
|
||||
|
||||
hf_dataset = hf_dataset.map(modify_ep_idx_func)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def cycle(iterable):
|
||||
"""The equivalent of itertools.cycle, but safe for Pytorch dataloaders.
|
||||
|
||||
See https://github.com/pytorch/pytorch/issues/23900 for information on why itertools.cycle is not safe.
|
||||
"""
|
||||
iterator = iter(iterable)
|
||||
while True:
|
||||
try:
|
||||
yield next(iterator)
|
||||
except StopIteration:
|
||||
iterator = iter(iterable)
|
||||
|
||||
202
lerobot/common/datasets/video_utils.py
Normal file
202
lerobot/common/datasets/video_utils.py
Normal file
@@ -0,0 +1,202 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import subprocess
|
||||
import warnings
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, ClassVar
|
||||
|
||||
import pyarrow as pa
|
||||
import torch
|
||||
import torchvision
|
||||
from datasets.features.features import register_feature
|
||||
|
||||
|
||||
def load_from_videos(
|
||||
item: dict[str, torch.Tensor], video_frame_keys: list[str], videos_dir: Path, tolerance_s: float
|
||||
):
|
||||
"""Note: When using data workers (e.g. DataLoader with num_workers>0), do not call this function
|
||||
in the main process (e.g. by using a second Dataloader with num_workers=0). It will result in a Segmentation Fault.
|
||||
This probably happens because a memory reference to the video loader is created in the main process and a
|
||||
subprocess fails to access it.
|
||||
"""
|
||||
# since video path already contains "videos" (e.g. videos_dir="data/videos", path="videos/episode_0.mp4")
|
||||
data_dir = videos_dir.parent
|
||||
|
||||
for key in video_frame_keys:
|
||||
if isinstance(item[key], list):
|
||||
# load multiple frames at once (expected when delta_timestamps is not None)
|
||||
timestamps = [frame["timestamp"] for frame in item[key]]
|
||||
paths = [frame["path"] for frame in item[key]]
|
||||
if len(set(paths)) > 1:
|
||||
raise NotImplementedError("All video paths are expected to be the same for now.")
|
||||
video_path = data_dir / paths[0]
|
||||
|
||||
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
|
||||
item[key] = frames
|
||||
else:
|
||||
# load one frame
|
||||
timestamps = [item[key]["timestamp"]]
|
||||
video_path = data_dir / item[key]["path"]
|
||||
|
||||
frames = decode_video_frames_torchvision(video_path, timestamps, tolerance_s)
|
||||
item[key] = frames[0]
|
||||
|
||||
return item
|
||||
|
||||
|
||||
def decode_video_frames_torchvision(
|
||||
video_path: str,
|
||||
timestamps: list[float],
|
||||
tolerance_s: float,
|
||||
device: str = "cpu",
|
||||
log_loaded_timestamps: bool = False,
|
||||
):
|
||||
"""Loads frames associated to the requested timestamps of a video
|
||||
|
||||
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
|
||||
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
|
||||
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
|
||||
and all subsequent frames until reaching the requested frame. The number of key frames in a video
|
||||
can be adjusted during encoding to take into account decoding time and video size in bytes.
|
||||
"""
|
||||
video_path = str(video_path)
|
||||
|
||||
# set backend
|
||||
keyframes_only = False
|
||||
if device == "cpu":
|
||||
# explicitely use pyav
|
||||
torchvision.set_video_backend("pyav")
|
||||
keyframes_only = True # pyav doesnt support accuracte seek
|
||||
elif device == "cuda":
|
||||
# TODO(rcadene, aliberts): implement video decoding with GPU
|
||||
# torchvision.set_video_backend("cuda")
|
||||
# torchvision.set_video_backend("video_reader")
|
||||
# requires installing torchvision from source, see: https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
|
||||
# check possible bug: https://github.com/pytorch/vision/issues/7745
|
||||
raise NotImplementedError(
|
||||
"Video decoding on gpu with cuda is currently not supported. Use `device='cpu'`."
|
||||
)
|
||||
else:
|
||||
raise ValueError(device)
|
||||
|
||||
# set a video stream reader
|
||||
# TODO(rcadene): also load audio stream at the same time
|
||||
reader = torchvision.io.VideoReader(video_path, "video")
|
||||
|
||||
# set the first and last requested timestamps
|
||||
# Note: previous timestamps are usually loaded, since we need to access the previous key frame
|
||||
first_ts = timestamps[0]
|
||||
last_ts = timestamps[-1]
|
||||
|
||||
# access closest key frame of the first requested frame
|
||||
# Note: closest key frame timestamp is usally smaller than `first_ts` (e.g. key frame can be the first frame of the video)
|
||||
# for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
|
||||
reader.seek(first_ts, keyframes_only=keyframes_only)
|
||||
|
||||
# load all frames until last requested frame
|
||||
loaded_frames = []
|
||||
loaded_ts = []
|
||||
for frame in reader:
|
||||
current_ts = frame["pts"]
|
||||
if log_loaded_timestamps:
|
||||
logging.info(f"frame loaded at timestamp={current_ts:.4f}")
|
||||
loaded_frames.append(frame["data"])
|
||||
loaded_ts.append(current_ts)
|
||||
if current_ts >= last_ts:
|
||||
break
|
||||
|
||||
reader.container.close()
|
||||
reader = None
|
||||
|
||||
query_ts = torch.tensor(timestamps)
|
||||
loaded_ts = torch.tensor(loaded_ts)
|
||||
|
||||
# compute distances between each query timestamp and timestamps of all loaded frames
|
||||
dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
|
||||
min_, argmin_ = dist.min(1)
|
||||
|
||||
is_within_tol = min_ < tolerance_s
|
||||
assert is_within_tol.all(), (
|
||||
f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
|
||||
"It means that the closest frame that can be loaded from the video is too far away in time."
|
||||
"This might be due to synchronization issues with timestamps during data collection."
|
||||
"To be safe, we advise to ignore this item during training."
|
||||
)
|
||||
|
||||
# get closest frames to the query timestamps
|
||||
closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
|
||||
closest_ts = loaded_ts[argmin_]
|
||||
|
||||
if log_loaded_timestamps:
|
||||
logging.info(f"{closest_ts=}")
|
||||
|
||||
# convert to the pytorch format which is float32 in [0,1] range (and channel first)
|
||||
closest_frames = closest_frames.type(torch.float32) / 255
|
||||
|
||||
assert len(timestamps) == len(closest_frames)
|
||||
return closest_frames
|
||||
|
||||
|
||||
def encode_video_frames(imgs_dir: Path, video_path: Path, fps: int):
|
||||
"""More info on ffmpeg arguments tuning on `lerobot/common/datasets/_video_benchmark/README.md`"""
|
||||
video_path = Path(video_path)
|
||||
video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
ffmpeg_cmd = (
|
||||
f"ffmpeg -r {fps} "
|
||||
"-f image2 "
|
||||
"-loglevel error "
|
||||
f"-i {str(imgs_dir / 'frame_%06d.png')} "
|
||||
"-vcodec libx264 "
|
||||
"-g 2 "
|
||||
"-pix_fmt yuv444p "
|
||||
f"{str(video_path)}"
|
||||
)
|
||||
subprocess.run(ffmpeg_cmd.split(" "), check=True)
|
||||
|
||||
|
||||
@dataclass
|
||||
class VideoFrame:
|
||||
# TODO(rcadene, lhoestq): move to Hugging Face `datasets` repo
|
||||
"""
|
||||
Provides a type for a dataset containing video frames.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
data_dict = [{"image": {"path": "videos/episode_0.mp4", "timestamp": 0.3}}]
|
||||
features = {"image": VideoFrame()}
|
||||
Dataset.from_dict(data_dict, features=Features(features))
|
||||
```
|
||||
"""
|
||||
|
||||
pa_type: ClassVar[Any] = pa.struct({"path": pa.string(), "timestamp": pa.float32()})
|
||||
_type: str = field(default="VideoFrame", init=False, repr=False)
|
||||
|
||||
def __call__(self):
|
||||
return self.pa_type
|
||||
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
"'register_feature' is experimental and might be subject to breaking changes in the future.",
|
||||
category=UserWarning,
|
||||
)
|
||||
# to make VideoFrame available in HuggingFace `datasets`
|
||||
register_feature(VideoFrame, "VideoFrame")
|
||||
@@ -1,80 +0,0 @@
|
||||
import abc
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
from tensordict import TensorDict
|
||||
from torchrl.envs import EnvBase
|
||||
|
||||
|
||||
class AbstractEnv(EnvBase):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(device=device, batch_size=[])
|
||||
self.task = task
|
||||
self.frame_skip = frame_skip
|
||||
self.from_pixels = from_pixels
|
||||
self.pixels_only = pixels_only
|
||||
self.image_size = image_size
|
||||
self.num_prev_obs = num_prev_obs
|
||||
self.num_prev_action = num_prev_action
|
||||
self._rendering_hooks = []
|
||||
|
||||
if pixels_only:
|
||||
assert from_pixels
|
||||
if from_pixels:
|
||||
assert image_size
|
||||
|
||||
self._make_env()
|
||||
self._make_spec()
|
||||
self._current_seed = self.set_seed(seed)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
|
||||
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
|
||||
if self.num_prev_action > 0:
|
||||
raise NotImplementedError()
|
||||
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
|
||||
|
||||
def register_rendering_hook(self, func):
|
||||
self._rendering_hooks.append(func)
|
||||
|
||||
def call_rendering_hooks(self):
|
||||
for func in self._rendering_hooks:
|
||||
func(self)
|
||||
|
||||
def reset_rendering_hooks(self):
|
||||
self._rendering_hooks = []
|
||||
|
||||
@abc.abstractmethod
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _step(self, tensordict: TensorDict):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_env(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _make_spec(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
@abc.abstractmethod
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
raise NotImplementedError()
|
||||
@@ -1,59 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
|
||||
<equality>
|
||||
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
</equality>
|
||||
|
||||
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
|
||||
<body name="peg" pos="0.2 0.5 0.05">
|
||||
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
<body name="socket" pos="-0.2 0.5 0.05">
|
||||
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,48 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
|
||||
<equality>
|
||||
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
|
||||
</equality>
|
||||
|
||||
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
|
||||
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
|
||||
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
|
||||
</body>
|
||||
|
||||
<body name="box" pos="0.2 0.5 0.05">
|
||||
<joint name="red_box_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,53 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body name="peg" pos="0.2 0.5 0.05">
|
||||
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
<body name="socket" pos="-0.2 0.5 0.05">
|
||||
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,42 +0,0 @@
|
||||
<mujoco>
|
||||
<include file="scene.xml"/>
|
||||
<include file="vx300s_dependencies.xml"/>
|
||||
<worldbody>
|
||||
<include file="vx300s_left.xml" />
|
||||
<include file="vx300s_right.xml" />
|
||||
|
||||
<body name="box" pos="0.2 0.5 0.05">
|
||||
<joint name="red_box_joint" type="free" frictionloss="0.01" />
|
||||
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
|
||||
</body>
|
||||
|
||||
</worldbody>
|
||||
|
||||
<actuator>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
|
||||
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
|
||||
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
|
||||
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
|
||||
|
||||
</actuator>
|
||||
|
||||
<keyframe>
|
||||
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
|
||||
</keyframe>
|
||||
|
||||
|
||||
</mujoco>
|
||||
@@ -1,38 +0,0 @@
|
||||
<mujocoinclude>
|
||||
<!-- <option timestep='0.0025' iterations="50" tolerance="1e-10" solver="Newton" jacobian="dense" cone="elliptic"/>-->
|
||||
|
||||
<asset>
|
||||
<mesh file="tabletop.stl" name="tabletop" scale="0.001 0.001 0.001"/>
|
||||
</asset>
|
||||
|
||||
<visual>
|
||||
<map fogstart="1.5" fogend="5" force="0.1" znear="0.1"/>
|
||||
<quality shadowsize="4096" offsamples="4"/>
|
||||
<headlight ambient="0.4 0.4 0.4"/>
|
||||
</visual>
|
||||
|
||||
<worldbody>
|
||||
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='-1 -1 1'
|
||||
dir='1 1 -1'/>
|
||||
<light directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='1 -1 1' dir='-1 1 -1'/>
|
||||
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='0 1 1'
|
||||
dir='0 -1 -1'/>
|
||||
|
||||
<body name="table" pos="0 .6 0">
|
||||
<geom group="1" mesh="tabletop" pos="0 0 0" type="mesh" conaffinity="1" contype="1" name="table" rgba="0.2 0.2 0.2 1" />
|
||||
</body>
|
||||
<body name="midair" pos="0 .6 0.2">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="midair" rgba="1 0 0 0"/>
|
||||
</body>
|
||||
|
||||
<camera name="left_pillar" pos="-0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="right_pillar" pos="0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="top" pos="0 0.6 0.8" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="angle" pos="0 0 0.6" fovy="78" mode="targetbody" target="table"/>
|
||||
<camera name="front_close" pos="0 0.2 0.4" fovy="78" mode="targetbody" target="vx300s_left/camera_focus"/>
|
||||
|
||||
</worldbody>
|
||||
|
||||
|
||||
|
||||
</mujocoinclude>
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1,17 +0,0 @@
|
||||
<mujocoinclude>
|
||||
<compiler angle="radian" inertiafromgeom="auto" inertiagrouprange="4 5"/>
|
||||
<asset>
|
||||
<mesh name="vx300s_1_base" file="vx300s_1_base.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_2_shoulder" file="vx300s_2_shoulder.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_3_upper_arm" file="vx300s_3_upper_arm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_4_upper_forearm" file="vx300s_4_upper_forearm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_5_lower_forearm" file="vx300s_5_lower_forearm.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_6_wrist" file="vx300s_6_wrist.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_7_gripper" file="vx300s_7_gripper.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_8_gripper_prop" file="vx300s_8_gripper_prop.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_9_gripper_bar" file="vx300s_9_gripper_bar.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_10_gripper_finger_left" file="vx300s_10_custom_finger_left.stl" scale="0.001 0.001 0.001" />
|
||||
<mesh name="vx300s_10_gripper_finger_right" file="vx300s_10_custom_finger_right.stl" scale="0.001 0.001 0.001" />
|
||||
</asset>
|
||||
|
||||
</mujocoinclude>
|
||||
@@ -1,59 +0,0 @@
|
||||
|
||||
<mujocoinclude>
|
||||
<body name="vx300s_left" pos="-0.469 0.5 0">
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_left/1_base" contype="0" conaffinity="0"/>
|
||||
<body name="vx300s_left/shoulder_link" pos="0 0 0.079">
|
||||
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
|
||||
<joint name="vx300s_left/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
|
||||
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_left/2_shoulder" />
|
||||
<body name="vx300s_left/upper_arm_link" pos="0 0 0.04805">
|
||||
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
|
||||
<joint name="vx300s_left/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_left/3_upper_arm"/>
|
||||
<body name="vx300s_left/upper_forearm_link" pos="0.05955 0 0.3">
|
||||
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
|
||||
<joint name="vx300s_left/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
|
||||
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_left/4_upper_forearm" />
|
||||
<body name="vx300s_left/lower_forearm_link" pos="0.2 0 0">
|
||||
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
|
||||
<joint name="vx300s_left/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_left/5_lower_forearm"/>
|
||||
<body name="vx300s_left/wrist_link" pos="0.1 0 0">
|
||||
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
|
||||
<joint name="vx300s_left/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_left/6_wrist" />
|
||||
<body name="vx300s_left/gripper_link" pos="0.069744 0 0">
|
||||
<body name="vx300s_left/camera_focus" pos="0.15 0 0.01">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="left_cam_focus" rgba="0 0 1 0"/>
|
||||
</body>
|
||||
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_left_site1" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_left_site2" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_left_site3" rgba="0 0 1 0"/>
|
||||
<camera name="left_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_left/camera_focus"/>
|
||||
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
|
||||
<joint name="vx300s_left/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_left/7_gripper" />
|
||||
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_left/9_gripper_bar" />
|
||||
<body name="vx300s_left/gripper_prop_link" pos="0.0485 0 0">
|
||||
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
|
||||
<!-- <joint name="vx300s_left/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
|
||||
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_left/8_gripper_prop" />
|
||||
</body>
|
||||
<body name="vx300s_left/left_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
|
||||
<joint name="vx300s_left/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_left/10_left_gripper_finger"/>
|
||||
</body>
|
||||
<body name="vx300s_left/right_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
|
||||
<joint name="vx300s_left/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_left/10_right_gripper_finger"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
||||
@@ -1,59 +0,0 @@
|
||||
|
||||
<mujocoinclude>
|
||||
<body name="vx300s_right" pos="0.469 0.5 0" euler="0 0 3.1416">
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_right/1_base" contype="0" conaffinity="0"/>
|
||||
<body name="vx300s_right/shoulder_link" pos="0 0 0.079">
|
||||
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
|
||||
<joint name="vx300s_right/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
|
||||
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_right/2_shoulder" />
|
||||
<body name="vx300s_right/upper_arm_link" pos="0 0 0.04805">
|
||||
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
|
||||
<joint name="vx300s_right/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_right/3_upper_arm"/>
|
||||
<body name="vx300s_right/upper_forearm_link" pos="0.05955 0 0.3">
|
||||
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
|
||||
<joint name="vx300s_right/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
|
||||
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_right/4_upper_forearm" />
|
||||
<body name="vx300s_right/lower_forearm_link" pos="0.2 0 0">
|
||||
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
|
||||
<joint name="vx300s_right/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_right/5_lower_forearm"/>
|
||||
<body name="vx300s_right/wrist_link" pos="0.1 0 0">
|
||||
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
|
||||
<joint name="vx300s_right/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
|
||||
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_right/6_wrist" />
|
||||
<body name="vx300s_right/gripper_link" pos="0.069744 0 0">
|
||||
<body name="vx300s_right/camera_focus" pos="0.15 0 0.01">
|
||||
<site pos="0 0 0" size="0.01" type="sphere" name="right_cam_focus" rgba="0 0 1 0"/>
|
||||
</body>
|
||||
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_right_site1" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_right_site2" rgba="0 0 1 0"/>
|
||||
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_right_site3" rgba="0 0 1 0"/>
|
||||
<camera name="right_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_right/camera_focus"/>
|
||||
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
|
||||
<joint name="vx300s_right/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
|
||||
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_right/7_gripper" />
|
||||
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_right/9_gripper_bar" />
|
||||
<body name="vx300s_right/gripper_prop_link" pos="0.0485 0 0">
|
||||
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
|
||||
<!-- <joint name="vx300s_right/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
|
||||
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_right/8_gripper_prop" />
|
||||
</body>
|
||||
<body name="vx300s_right/left_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
|
||||
<joint name="vx300s_right/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_right/10_left_gripper_finger"/>
|
||||
</body>
|
||||
<body name="vx300s_right/right_finger_link" pos="0.0687 0 0">
|
||||
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
|
||||
<joint name="vx300s_right/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
|
||||
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_right/10_right_gripper_finger"/>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</body>
|
||||
</mujocoinclude>
|
||||
@@ -1,163 +0,0 @@
|
||||
from pathlib import Path
|
||||
|
||||
### Simulation envs fixed constants
|
||||
DT = 0.02 # 0.02 ms -> 1/0.2 = 50 hz
|
||||
FPS = 50
|
||||
|
||||
|
||||
JOINTS = [
|
||||
# absolute joint position
|
||||
"left_arm_waist",
|
||||
"left_arm_shoulder",
|
||||
"left_arm_elbow",
|
||||
"left_arm_forearm_roll",
|
||||
"left_arm_wrist_angle",
|
||||
"left_arm_wrist_rotate",
|
||||
# normalized gripper position 0: close, 1: open
|
||||
"left_arm_gripper",
|
||||
# absolute joint position
|
||||
"right_arm_waist",
|
||||
"right_arm_shoulder",
|
||||
"right_arm_elbow",
|
||||
"right_arm_forearm_roll",
|
||||
"right_arm_wrist_angle",
|
||||
"right_arm_wrist_rotate",
|
||||
# normalized gripper position 0: close, 1: open
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
ACTIONS = [
|
||||
# position and quaternion for end effector
|
||||
"left_arm_waist",
|
||||
"left_arm_shoulder",
|
||||
"left_arm_elbow",
|
||||
"left_arm_forearm_roll",
|
||||
"left_arm_wrist_angle",
|
||||
"left_arm_wrist_rotate",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"left_arm_gripper",
|
||||
"right_arm_waist",
|
||||
"right_arm_shoulder",
|
||||
"right_arm_elbow",
|
||||
"right_arm_forearm_roll",
|
||||
"right_arm_wrist_angle",
|
||||
"right_arm_wrist_rotate",
|
||||
# normalized gripper position (0: close, 1: open)
|
||||
"right_arm_gripper",
|
||||
]
|
||||
|
||||
|
||||
START_ARM_POSE = [
|
||||
0,
|
||||
-0.96,
|
||||
1.16,
|
||||
0,
|
||||
-0.3,
|
||||
0,
|
||||
0.02239,
|
||||
-0.02239,
|
||||
0,
|
||||
-0.96,
|
||||
1.16,
|
||||
0,
|
||||
-0.3,
|
||||
0,
|
||||
0.02239,
|
||||
-0.02239,
|
||||
]
|
||||
|
||||
ASSETS_DIR = Path(__file__).parent.resolve() / "assets" # note: absolute path
|
||||
|
||||
# Left finger position limits (qpos[7]), right_finger = -1 * left_finger
|
||||
MASTER_GRIPPER_POSITION_OPEN = 0.02417
|
||||
MASTER_GRIPPER_POSITION_CLOSE = 0.01244
|
||||
PUPPET_GRIPPER_POSITION_OPEN = 0.05800
|
||||
PUPPET_GRIPPER_POSITION_CLOSE = 0.01844
|
||||
|
||||
# Gripper joint limits (qpos[6])
|
||||
MASTER_GRIPPER_JOINT_OPEN = 0.3083
|
||||
MASTER_GRIPPER_JOINT_CLOSE = -0.6842
|
||||
PUPPET_GRIPPER_JOINT_OPEN = 1.4910
|
||||
PUPPET_GRIPPER_JOINT_CLOSE = -0.6213
|
||||
|
||||
MASTER_GRIPPER_JOINT_MID = (MASTER_GRIPPER_JOINT_OPEN + MASTER_GRIPPER_JOINT_CLOSE) / 2
|
||||
|
||||
############################ Helper functions ############################
|
||||
|
||||
|
||||
def normalize_master_gripper_position(x):
|
||||
return (x - MASTER_GRIPPER_POSITION_CLOSE) / (
|
||||
MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_position(x):
|
||||
return (x - PUPPET_GRIPPER_POSITION_CLOSE) / (
|
||||
PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def unnormalize_master_gripper_position(x):
|
||||
return x * (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE) + MASTER_GRIPPER_POSITION_CLOSE
|
||||
|
||||
|
||||
def unnormalize_puppet_gripper_position(x):
|
||||
return x * (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE) + PUPPET_GRIPPER_POSITION_CLOSE
|
||||
|
||||
|
||||
def convert_position_from_master_to_puppet(x):
|
||||
return unnormalize_puppet_gripper_position(normalize_master_gripper_position(x))
|
||||
|
||||
|
||||
def normalizer_master_gripper_joint(x):
|
||||
return (x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_joint(x):
|
||||
return (x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
|
||||
|
||||
def unnormalize_master_gripper_joint(x):
|
||||
return x * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE) + MASTER_GRIPPER_JOINT_CLOSE
|
||||
|
||||
|
||||
def unnormalize_puppet_gripper_joint(x):
|
||||
return x * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE) + PUPPET_GRIPPER_JOINT_CLOSE
|
||||
|
||||
|
||||
def convert_join_from_master_to_puppet(x):
|
||||
return unnormalize_puppet_gripper_joint(normalizer_master_gripper_joint(x))
|
||||
|
||||
|
||||
def normalize_master_gripper_velocity(x):
|
||||
return x / (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE)
|
||||
|
||||
|
||||
def normalize_puppet_gripper_velocity(x):
|
||||
return x / (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE)
|
||||
|
||||
|
||||
def convert_master_from_position_to_joint(x):
|
||||
return (
|
||||
normalize_master_gripper_position(x) * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
+ MASTER_GRIPPER_JOINT_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def convert_master_from_joint_to_position(x):
|
||||
return unnormalize_master_gripper_position(
|
||||
(x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
|
||||
)
|
||||
|
||||
|
||||
def convert_puppet_from_position_to_join(x):
|
||||
return (
|
||||
normalize_puppet_gripper_position(x) * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
+ PUPPET_GRIPPER_JOINT_CLOSE
|
||||
)
|
||||
|
||||
|
||||
def convert_puppet_from_joint_to_position(x):
|
||||
return unnormalize_puppet_gripper_position(
|
||||
(x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
|
||||
)
|
||||
@@ -1,311 +0,0 @@
|
||||
import importlib
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Optional
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
from dm_control import mujoco
|
||||
from dm_control.rl import control
|
||||
from tensordict import TensorDict
|
||||
from torchrl.data.tensor_specs import (
|
||||
BoundedTensorSpec,
|
||||
CompositeSpec,
|
||||
DiscreteTensorSpec,
|
||||
UnboundedContinuousTensorSpec,
|
||||
)
|
||||
|
||||
from lerobot.common.envs.abstract import AbstractEnv
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
ACTIONS,
|
||||
ASSETS_DIR,
|
||||
DT,
|
||||
JOINTS,
|
||||
)
|
||||
from lerobot.common.envs.aloha.tasks.sim import BOX_POSE, InsertionTask, TransferCubeTask
|
||||
from lerobot.common.envs.aloha.tasks.sim_end_effector import (
|
||||
InsertionEndEffectorTask,
|
||||
TransferCubeEndEffectorTask,
|
||||
)
|
||||
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
|
||||
from lerobot.common.utils import set_seed
|
||||
|
||||
_has_gym = importlib.util.find_spec("gym") is not None
|
||||
|
||||
|
||||
class AlohaEnv(AbstractEnv):
|
||||
def __init__(
|
||||
self,
|
||||
task,
|
||||
frame_skip: int = 1,
|
||||
from_pixels: bool = False,
|
||||
pixels_only: bool = False,
|
||||
image_size=None,
|
||||
seed=1337,
|
||||
device="cpu",
|
||||
num_prev_obs=1,
|
||||
num_prev_action=0,
|
||||
):
|
||||
super().__init__(
|
||||
task=task,
|
||||
frame_skip=frame_skip,
|
||||
from_pixels=from_pixels,
|
||||
pixels_only=pixels_only,
|
||||
image_size=image_size,
|
||||
seed=seed,
|
||||
device=device,
|
||||
num_prev_obs=num_prev_obs,
|
||||
num_prev_action=num_prev_action,
|
||||
)
|
||||
|
||||
def _make_env(self):
|
||||
if not _has_gym:
|
||||
raise ImportError("Cannot import gym.")
|
||||
|
||||
if not self.from_pixels:
|
||||
raise NotImplementedError()
|
||||
|
||||
self._env = self._make_env_task(self.task)
|
||||
|
||||
def render(self, mode="rgb_array", width=640, height=480):
|
||||
# TODO(rcadene): render and visualizer several cameras (e.g. angle, front_close)
|
||||
image = self._env.physics.render(height=height, width=width, camera_id="top")
|
||||
return image
|
||||
|
||||
def _make_env_task(self, task_name):
|
||||
# time limit is controlled by StepCounter in env factory
|
||||
time_limit = float("inf")
|
||||
|
||||
if "sim_transfer_cube" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeTask(random=False)
|
||||
elif "sim_insertion" in task_name:
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionTask(random=False)
|
||||
elif "sim_end_effector_transfer_cube" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = TransferCubeEndEffectorTask(random=False)
|
||||
elif "sim_end_effector_insertion" in task_name:
|
||||
raise NotImplementedError()
|
||||
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
|
||||
physics = mujoco.Physics.from_xml_path(str(xml_path))
|
||||
task = InsertionEndEffectorTask(random=False)
|
||||
else:
|
||||
raise NotImplementedError(task_name)
|
||||
|
||||
env = control.Environment(
|
||||
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
|
||||
)
|
||||
return env
|
||||
|
||||
def _format_raw_obs(self, raw_obs):
|
||||
if self.from_pixels:
|
||||
image = torch.from_numpy(raw_obs["images"]["top"].copy())
|
||||
image = einops.rearrange(image, "h w c -> c h w")
|
||||
assert image.dtype == torch.uint8
|
||||
obs = {"image": {"top": image}}
|
||||
|
||||
if not self.pixels_only:
|
||||
obs["state"] = torch.from_numpy(raw_obs["qpos"]).type(torch.float32)
|
||||
else:
|
||||
# TODO(rcadene):
|
||||
raise NotImplementedError()
|
||||
# obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
|
||||
|
||||
return obs
|
||||
|
||||
def _reset(self, tensordict: Optional[TensorDict] = None):
|
||||
td = tensordict
|
||||
if td is None or td.is_empty():
|
||||
# we need to handle seed iteration, since self._env.reset() rely an internal _seed.
|
||||
self._current_seed += 1
|
||||
self.set_seed(self._current_seed)
|
||||
|
||||
# TODO(rcadene): do not use global variable for this
|
||||
if "sim_transfer_cube" in self.task:
|
||||
BOX_POSE[0] = sample_box_pose() # used in sim reset
|
||||
elif "sim_insertion" in self.task:
|
||||
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
|
||||
|
||||
raw_obs = self._env.reset()
|
||||
# TODO(rcadene): add assert
|
||||
# assert self._current_seed == self._env._seed
|
||||
|
||||
obs = self._format_raw_obs(raw_obs.observation)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue = deque(
|
||||
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue = deque(
|
||||
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
|
||||
)
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"done": torch.tensor([False], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
self.call_rendering_hooks()
|
||||
return td
|
||||
|
||||
def _step(self, tensordict: TensorDict):
|
||||
td = tensordict
|
||||
action = td["action"].numpy()
|
||||
# step expects shape=(4,) so we pad if necessary
|
||||
# TODO(rcadene): add info["is_success"] and info["success"] ?
|
||||
sum_reward = 0
|
||||
|
||||
if action.ndim == 1:
|
||||
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
|
||||
else:
|
||||
if self.frame_skip > 1:
|
||||
raise NotImplementedError()
|
||||
|
||||
num_action_steps = action.shape[0]
|
||||
for i in range(num_action_steps):
|
||||
_, reward, discount, raw_obs = self._env.step(action[i])
|
||||
del discount # not used
|
||||
|
||||
# TOOD(rcadene): add an enum
|
||||
success = done = reward == 4
|
||||
sum_reward += reward
|
||||
obs = self._format_raw_obs(raw_obs)
|
||||
|
||||
if self.num_prev_obs > 0:
|
||||
stacked_obs = {}
|
||||
if "image" in obs:
|
||||
self._prev_obs_image_queue.append(obs["image"]["top"])
|
||||
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
|
||||
if "state" in obs:
|
||||
self._prev_obs_state_queue.append(obs["state"])
|
||||
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
|
||||
obs = stacked_obs
|
||||
|
||||
self.call_rendering_hooks()
|
||||
|
||||
td = TensorDict(
|
||||
{
|
||||
"observation": TensorDict(obs, batch_size=[]),
|
||||
"reward": torch.tensor([sum_reward], dtype=torch.float32),
|
||||
# succes and done are true when coverage > self.success_threshold in env
|
||||
"done": torch.tensor([done], dtype=torch.bool),
|
||||
"success": torch.tensor([success], dtype=torch.bool),
|
||||
},
|
||||
batch_size=[],
|
||||
)
|
||||
return td
|
||||
|
||||
def _make_spec(self):
|
||||
obs = {}
|
||||
from omegaconf import OmegaConf
|
||||
|
||||
if self.from_pixels:
|
||||
if isinstance(self.image_size, int):
|
||||
image_shape = (3, self.image_size, self.image_size)
|
||||
elif OmegaConf.is_list(self.image_size):
|
||||
assert len(self.image_size) == 3 # c h w
|
||||
assert self.image_size[0] == 3 # c is RGB
|
||||
image_shape = tuple(self.image_size)
|
||||
else:
|
||||
raise ValueError(self.image_size)
|
||||
if self.num_prev_obs > 0:
|
||||
image_shape = (self.num_prev_obs + 1, *image_shape)
|
||||
|
||||
obs["image"] = {
|
||||
"top": BoundedTensorSpec(
|
||||
low=0,
|
||||
high=255,
|
||||
shape=image_shape,
|
||||
dtype=torch.uint8,
|
||||
device=self.device,
|
||||
)
|
||||
}
|
||||
if not self.pixels_only:
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
else:
|
||||
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
|
||||
state_shape = (len(JOINTS),)
|
||||
if self.num_prev_obs > 0:
|
||||
state_shape = (self.num_prev_obs + 1, *state_shape)
|
||||
|
||||
obs["state"] = UnboundedContinuousTensorSpec(
|
||||
# TODO: add low and high bounds
|
||||
shape=state_shape,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
self.observation_spec = CompositeSpec({"observation": obs})
|
||||
|
||||
# TODO(rcadene): valid when controling end effector?
|
||||
# action_space = self._env.action_spec()
|
||||
# self.action_spec = BoundedTensorSpec(
|
||||
# low=action_space.minimum,
|
||||
# high=action_space.maximum,
|
||||
# shape=action_space.shape,
|
||||
# dtype=torch.float32,
|
||||
# device=self.device,
|
||||
# )
|
||||
|
||||
# TODO(rcaene): add bounds (where are they????)
|
||||
self.action_spec = BoundedTensorSpec(
|
||||
shape=(len(ACTIONS)),
|
||||
low=-1,
|
||||
high=1,
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.reward_spec = UnboundedContinuousTensorSpec(
|
||||
shape=(1,),
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
self.done_spec = CompositeSpec(
|
||||
{
|
||||
"done": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
"success": DiscreteTensorSpec(
|
||||
2,
|
||||
shape=(1,),
|
||||
dtype=torch.bool,
|
||||
device=self.device,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
def _set_seed(self, seed: Optional[int]):
|
||||
set_seed(seed)
|
||||
# TODO(rcadene): seed the env
|
||||
# self._env.seed(seed)
|
||||
logging.warning("Aloha env is not seeded")
|
||||
@@ -1,219 +0,0 @@
|
||||
import collections
|
||||
|
||||
import numpy as np
|
||||
from dm_control.suite import base
|
||||
|
||||
from lerobot.common.envs.aloha.constants import (
|
||||
START_ARM_POSE,
|
||||
normalize_puppet_gripper_position,
|
||||
normalize_puppet_gripper_velocity,
|
||||
unnormalize_puppet_gripper_position,
|
||||
)
|
||||
|
||||
BOX_POSE = [None] # to be changed from outside
|
||||
|
||||
"""
|
||||
Environment for simulated robot bi-manual manipulation, with joint position control
|
||||
Action space: [left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
|
||||
|
||||
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
|
||||
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
|
||||
right_arm_qpos (6), # absolute joint position
|
||||
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
|
||||
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
|
||||
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
|
||||
right_arm_qvel (6), # absolute joint velocity (rad)
|
||||
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
|
||||
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
|
||||
"""
|
||||
|
||||
|
||||
class BimanualViperXTask(base.Task):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
|
||||
def before_step(self, action, physics):
|
||||
left_arm_action = action[:6]
|
||||
right_arm_action = action[7 : 7 + 6]
|
||||
normalized_left_gripper_action = action[6]
|
||||
normalized_right_gripper_action = action[7 + 6]
|
||||
|
||||
left_gripper_action = unnormalize_puppet_gripper_position(normalized_left_gripper_action)
|
||||
right_gripper_action = unnormalize_puppet_gripper_position(normalized_right_gripper_action)
|
||||
|
||||
full_left_gripper_action = [left_gripper_action, -left_gripper_action]
|
||||
full_right_gripper_action = [right_gripper_action, -right_gripper_action]
|
||||
|
||||
env_action = np.concatenate(
|
||||
[left_arm_action, full_left_gripper_action, right_arm_action, full_right_gripper_action]
|
||||
)
|
||||
super().before_step(env_action, physics)
|
||||
return
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_qpos(physics):
|
||||
qpos_raw = physics.data.qpos.copy()
|
||||
left_qpos_raw = qpos_raw[:8]
|
||||
right_qpos_raw = qpos_raw[8:16]
|
||||
left_arm_qpos = left_qpos_raw[:6]
|
||||
right_arm_qpos = right_qpos_raw[:6]
|
||||
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
|
||||
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
|
||||
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
|
||||
|
||||
@staticmethod
|
||||
def get_qvel(physics):
|
||||
qvel_raw = physics.data.qvel.copy()
|
||||
left_qvel_raw = qvel_raw[:8]
|
||||
right_qvel_raw = qvel_raw[8:16]
|
||||
left_arm_qvel = left_qvel_raw[:6]
|
||||
right_arm_qvel = right_qvel_raw[:6]
|
||||
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
|
||||
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
|
||||
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
raise NotImplementedError
|
||||
|
||||
def get_observation(self, physics):
|
||||
obs = collections.OrderedDict()
|
||||
obs["qpos"] = self.get_qpos(physics)
|
||||
obs["qvel"] = self.get_qvel(physics)
|
||||
obs["env_state"] = self.get_env_state(physics)
|
||||
obs["images"] = {}
|
||||
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
|
||||
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
|
||||
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
|
||||
|
||||
return obs
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TransferCubeTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7:] = BOX_POSE[0]
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether left gripper is holding the box
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_table = ("red_box", "table") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_right_gripper:
|
||||
reward = 1
|
||||
if touch_right_gripper and not touch_table: # lifted
|
||||
reward = 2
|
||||
if touch_left_gripper: # attempted transfer
|
||||
reward = 3
|
||||
if touch_left_gripper and not touch_table: # successful transfer
|
||||
reward = 4
|
||||
return reward
|
||||
|
||||
|
||||
class InsertionTask(BimanualViperXTask):
|
||||
def __init__(self, random=None):
|
||||
super().__init__(random=random)
|
||||
self.max_reward = 4
|
||||
|
||||
def initialize_episode(self, physics):
|
||||
"""Sets the state of the environment at the start of each episode."""
|
||||
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
|
||||
# reset qpos, control and box position
|
||||
with physics.reset_context():
|
||||
physics.named.data.qpos[:16] = START_ARM_POSE
|
||||
np.copyto(physics.data.ctrl, START_ARM_POSE)
|
||||
assert BOX_POSE[0] is not None
|
||||
physics.named.data.qpos[-7 * 2 :] = BOX_POSE[0] # two objects
|
||||
# print(f"{BOX_POSE=}")
|
||||
super().initialize_episode(physics)
|
||||
|
||||
@staticmethod
|
||||
def get_env_state(physics):
|
||||
env_state = physics.data.qpos.copy()[16:]
|
||||
return env_state
|
||||
|
||||
def get_reward(self, physics):
|
||||
# return whether peg touches the pin
|
||||
all_contact_pairs = []
|
||||
for i_contact in range(physics.data.ncon):
|
||||
id_geom_1 = physics.data.contact[i_contact].geom1
|
||||
id_geom_2 = physics.data.contact[i_contact].geom2
|
||||
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
|
||||
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
|
||||
contact_pair = (name_geom_1, name_geom_2)
|
||||
all_contact_pairs.append(contact_pair)
|
||||
|
||||
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
|
||||
touch_left_gripper = (
|
||||
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
|
||||
)
|
||||
|
||||
peg_touch_table = ("red_peg", "table") in all_contact_pairs
|
||||
socket_touch_table = (
|
||||
("socket-1", "table") in all_contact_pairs
|
||||
or ("socket-2", "table") in all_contact_pairs
|
||||
or ("socket-3", "table") in all_contact_pairs
|
||||
or ("socket-4", "table") in all_contact_pairs
|
||||
)
|
||||
peg_touch_socket = (
|
||||
("red_peg", "socket-1") in all_contact_pairs
|
||||
or ("red_peg", "socket-2") in all_contact_pairs
|
||||
or ("red_peg", "socket-3") in all_contact_pairs
|
||||
or ("red_peg", "socket-4") in all_contact_pairs
|
||||
)
|
||||
pin_touched = ("red_peg", "pin") in all_contact_pairs
|
||||
|
||||
reward = 0
|
||||
if touch_left_gripper and touch_right_gripper: # touch both
|
||||
reward = 1
|
||||
if (
|
||||
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
|
||||
): # grasp both
|
||||
reward = 2
|
||||
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
|
||||
reward = 3
|
||||
if pin_touched: # successful insertion
|
||||
reward = 4
|
||||
return reward
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user