fcaa0ea5f9b4ba3fee3360589a6b7a1ac12d6ff9
56 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
a4bed41132 |
Improve docs pi (#2110)
* Improve docs and add numpy to pi install requirments * fix formatting * update command * remvoe numpy dep |
||
|
|
abde7be3b3 |
Add OpenPi, Pi0 and Pi0.5 (#1910)
* initial commit * change device in test * do detailed import * adhere to python 3.11 syntax * fix autodocstring * additionally * do same in other files * add model. prefix to all keys in state dict * use dummy stats * add pi05 * also shorten action_steps * fix test * all test pass! and fix tokenizer max length between 05 and 0 * remove test * fix transformer dependency * fix test * split pi0 and pi05 policy in seperate files * fix test * fix push to hub test * add some comments, license and readme * remove warning in config * add pi05 to factory * remove check * rename action_horizon to chunk_size * clean up padding of state and action (more in line with lerobot pi0) * add openpi image transforms for training and add more flexibility to _preprocess_images similar to lerobot pi0 * fix key match from pytorch state dict (similar keys to openpi implementation now) * also for pi05 * update to python 3.11 * revert to openpi transformer replace python 3.11 * fix(modeling pi0): nit warning message * use safeauto_docstring * fix: remove unused param * fix from pretrained * add preprocess tests * also compile forward method * Do not add model prefix to normalization * use same name for action and state dim as lerobot pi0 and remove fixed image keys * load from pretrained_path * temp: hardcode base model * fix override self.pretrained_path = None overwrite * rename to loss * remove additional image augmentations, lerobot dataset already does this * Add docs * put tests in test folder * Add test to instatiate all base models * go back to python 3.10 * update docs * adapt docs pi05 * change docs: finetune base model options * minor docs fixes and dependencies * remove todo * cast float64 to float32 for mps * skip if no transformers * fix tests * add new models to modelcard * add back init * fix circular input * feat: only run pi test on GPU * remove require_nightly_gpu * replace decorator test_pi0_openpi * rename action_dim, state_dim to max_action_dim, max_state_dim * fix doc and constants * cleanup tests * fix from pretrained * fix tests * add comment pi0 pi05 tests, add image features to pi0 pi05 hub tests * fix, state is included in language not in flow head * Move test to specific folder * and paligemma task with newline * remove add_special_tokens, not needed * feedback pr * Remove previous pi0 and rename pi0_openpi and pi05_openpi * Add Quantile stats to LeRobotDataset (#1985) * - Add RunningQuantileStats class for efficient histogram-based quantile computation - Integrate quantile parameters (compute_quantiles, quantiles) into LeRobotDataset - Support quantile computation during episode collection and aggregation - Add comprehensive function-based test suite (24 tests) for quantile functionality - Maintain full backward compatibility with existing stats computation - Enable configurable quantiles (default: [0.01, 0.99]) for robust normalization * style fixes, make quantiles computation by default to new datasets * fix tests * - Added DEFAULT_QUANTILES=[0.01, 0.10, 0.50, 0.90, 0.99] to be computed for each features instead of being chosen by the user - Fortified tests. * - add helper functions to reshape stats - add missing test for quantiles * - Add QUANTILE normalization mode to normalize the data with the 1st and 99th percentiles. - Add QUANTILE10 normalization mode to normalize the data with the 10th and 90th percentiles. * style fixes * Added missing lisence * Simplify compute_stats * - added script `augment_dataset_quantile_stats.py` so that we can add quantile stats to existing v3 datasets that dont have quatniles - modified quantile computation instead of using the edge for the value, interpolate the values in the bin * rename pi0/pi05 files * Remove open pi patch and use custom transformer branch for now * renaming * fix * Revert "fix" This reverts commit 1ea65730ac2cbca6e5869df734fbd4392561b3c6. * fix naming * feet(pi0/pi0.5): add pipeline (#2009) * feat(processor): convert openpi model with processor * TODO: Make test works * fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests - Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`. - Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`. - Enhanced task handling in tests to ensure proper formatting and batch size consistency. - Cleaned up commented-out test code for clarity. * refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy - Updated imports and references throughout the codebase to reflect the new naming convention. - Introduced a new processor file for PI0 to handle pre-processing and post-processing steps. - Adjusted tests to utilize the renamed classes, ensuring consistency and functionality. - Enhanced clarity and maintainability by removing outdated naming conventions. * refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration - Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions. - Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`. - Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter. - Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability. - Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility. * feat(processor): convert openpi model with processor * TODO: Make test works * fix(modeling_pi0openpi): update attention mask value and time scaling; improve task handling in tests - Changed the attention mask value from `self.config.attention_mask_value` to a fixed value of `-2.3819763e38`. - Updated time scaling in the `sample_noise` method to use a constant factor of `0.999` and an offset of `0.001`. - Enhanced task handling in tests to ensure proper formatting and batch size consistency. - Cleaned up commented-out test code for clarity. * refactor(pi0): rename PI0OpenPIConfig and PI0OpenPIPolicy to PI0Config and PI0Policy - Updated imports and references throughout the codebase to reflect the new naming convention. - Introduced a new processor file for PI0 to handle pre-processing and post-processing steps. - Adjusted tests to utilize the renamed classes, ensuring consistency and functionality. - Enhanced clarity and maintainability by removing outdated naming conventions. * refactor(pi05): rename PI0OpenPIPolicy to PI0Policy and update configuration - Renamed `PI0OpenPIPolicy` to `PI0Policy` for consistency with naming conventions. - Updated the `PI05OpenPIConfig` to include a new `tokenizer_max_length` attribute and changed the normalization mode for state from `MEAN_STD` to `QUANTILES`. - Simplified model initialization in `PI05OpenPIPolicy` by removing unused `dataset_stats` parameter. - Added a new processor class for `Pi05PrepareStateTokenizerProcessorStep` with `@dataclass` for improved readability. - Introduced a test script to compare the integration of the PI0OpenPI policy with the original implementation, ensuring local testing compatibility. * refactor(pi05): update imports and rename configuration classes - Changed imports to reflect the new naming convention for PI05 configuration and policy classes. - Renamed `PI05OpenPIConfig` to `PI05Config` and `PI05OpenPIPolicy` to `PI05Policy` for consistency. - Introduced a new processor file for PI05, implementing pre-processing and post-processing steps. - Updated tests to utilize the renamed classes, ensuring functionality and consistency across the codebase. * update(pi05): increase tokenizer_max_length for improved processing - Changed the `tokenizer_max_length` from 48 to 200 to enhance the model's capability in handling longer sequences. - This adjustment aims to improve the overall performance and flexibility of the PI05 configuration. * add default for state (max_state_dim) * correct naming * fix import * cleanup code * remove unused test * us quantiles for action * move to device * remove discrete state assert * fix pi05 test * move pi05 to device * use base models in comparison tests * small renames for tests * change number of tokens pi05 test * fix openpi tokenization in test * fix hub test * fix test * assert lerobot vs openpi tests --------- Co-authored-by: Pepijn <pepijn@huggingface.co> * add headers * add back previously removed imports * update if statement load processor with dataset stats * remove to avoid circular import * inject dataset stats for pretrained models * check normalization before applying * add link to quantile augument script * fix(policies): transformers import for ci in PI0 & PI05 (#2039) * fix(policies): transformers import for ci in PI0 * fix(policies): transformers import for ci in PI05 * test(processor): fix expected raise when normalization types are missing (#2040) * switch normalization order pipeline for pi05 * Fix/quantiles script (#2064) * refactor augment stats with quantiles script add parallelization for faster processing shift the quantile normalization between -1 1 * fix replay buffer tests * fix comment * overwrite the pipeline normalization features with the policy features * remove double normalization overwrite * cleanup from pretrained * remove typo * also set norm_map * fix(augment_quantiles) images incorrectly divided by 255 * clamp quantiles * link to lerobot base models * rename tests * encorperate PR feedback * update docstring for RunningQuantileStats * update doc links * Revert "clamp quantiles" This reverts commit 172207471c8f2cb62958e9a9e6a0535ba3ff67d4. * fix self.paligemma * fix tests related to quantiles that were scaled to [0,1], the new range is [-1, 1] * fix libero doc and use different transformer branch * use fix branch instead of feat * update results libero * add new line * fix formatting * precommit * update results libero * update libero doc * update title * final changes * add quantiles to test * run pre commit --------- Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Steven Palma <steven.palma@huggingface.co> |
||
|
|
f59eb54f5c | chore: remove unused code (#2062) | ||
|
|
5b647e3bcb |
docs(fix): libero example command (#2060)
Signed-off-by: Jade Choghari <chogharijade@gmail.com> |
||
|
|
a87d4c9a74 |
(docs): small change in dataset name (#2032)
* small change Signed-off-by: Jade Choghari <chogharijade@gmail.com> * update Signed-off-by: Jade Choghari <chogharijade@gmail.com> --------- Signed-off-by: Jade Choghari <chogharijade@gmail.com> |
||
|
|
853cc70194 | chore(utils): remove unused utils legacy functions + rename init_rerun (#2031) | ||
|
|
163df97c0c | fix(docs): update outdated links (#2026) | ||
|
|
1cba47da20 |
chore(async): move async related code to its directory at top level (#2003)
* chore(async): move async related code to its directory at top level * chore(style): apply pre-commit to renamed headers * test(async): fix async imports * docs(async): update async headers doc |
||
|
|
a4178f385b |
feat(script): add entry point for find joints limits (#2010)
Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> |
||
|
|
c9787bd98a |
feat(script): add entry point for image transform viz (#2007)
* feat(Scripts): add entry point for img transform viz * chore(style): pre-commit style |
||
|
|
3068ce3569 | docs(rl): fix path (#2004) | ||
|
|
d6a32e9742 |
chore(rl): move rl related code to its directory at top level (#2002)
* chore(rl): move rl related code to its directory at top level * chore(style): apply pre-commit to renamed headers * test(rl): fix rl imports * docs(rl): update rl headers doc |
||
|
|
2538472781 | feat(sim): Add Libero Env (#1984) | ||
|
|
d65668ff3c |
Add docs for LeRobot Image transforms (#1972)
* Remove unused scripts, add docs for image transforms and add example * fix(examples): move train_policy.py under examples, remove outdated readme parts * remove script thats copied to train folder * remove outdated links to examples and example tests |
||
|
|
5d1837d87e | fix (docs): image link for phone (#1977) | ||
|
|
78b866116f |
feat(processors): use pipelines across the codebase (#1452)
* Refactor observation preprocessing to use a modular pipeline system - Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations. - Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline. - Added tests for the new processing components and ensured they match the original functionality. - Removed hardcoded logic in favor of a more flexible, composable architecture. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor observation processing and improve modularity - Updated `ObservationProcessor` to enhance the modular design for processing observations. - Cleaned up imports and improved code readability by removing unnecessary lines and comments. - Ensured backward compatibility while integrating new processing components. - Added tests to validate the functionality of the updated processing architecture. * Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability. * Refactor processing architecture to use RobotProcessor - Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity. - Introduced ProcessorStepRegistry for better management of processing steps. - Updated relevant documentation and tests to reflect the new processing structure. - Enhanced the save/load functionality to support the new processor design. - Added a model card template for RobotProcessor to facilitate sharing and documentation. * Add RobotProcessor tutorial to documentation - Introduced a new tutorial on using RobotProcessor for preprocessing robot data. - Added a section in the table of contents for easy navigation to the new tutorial. - The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Transition from tuple to dictionary format for EnvTransition - Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability. - Replaced instances of TransitionIndex with TransitionKey for accessing transition components. - Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase. * refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling - Introduced constants for observation keys to enhance readability. - Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly. - Updated the environment state and agent position assignments to use the new constants, improving maintainability. * feat(pipeline): Add hook unregistration functionality and enhance documentation - Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management. - Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks. - Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks. * refactor(pipeline): Clarify hook behavior and improve documentation - Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability. - Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions. - Enhanced documentation to clearly outline the purpose of hooks and their execution semantics. - Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method. * feat(pipeline): Add __repr__ method to RobotProcessor for improved readability - Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed. - Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values. - Ensured that the representation handles long lists of steps with truncation for better readability. * chore(pipeline): Move _CFG_NAME along other class member * refactor(pipeline): Utilize get_safe_torch_device for device assignment - Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling. - This change enhances code readability and maintains consistency in device management across the RobotProcessor class. * refactor(pipeline): Enhance state filename generation and profiling method - Updated state filename generation to use the registry name when available, improving clarity in saved files. - Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling. - Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results. * chore(doc): address pip install commant lerobot that not exist yet * feat(pipeline): Enhance configuration filename handling and state file naming - Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default. - Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved. - Added automatic detection for configuration files when loading from a directory, with error handling for multiple files. - Updated tests to validate new features, including custom filenames and automatic config detection. * refactor(pipeline): Improve state file naming conventions for clarity and uniqueness - Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory. - Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts. - Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files. * docs(pipeline): Add clarification for repo name sanitization process * Feat/pipeline add feature contract (#1637) * Add feature contract to pipelinestep and pipeline * Add tests * Add processor tests * PR feedback * encorperate pr feedback * type in doc * oops * docs(pipeline): Clarify transition handling and hook behavior - Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats. - Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change. - Enhanced test assertions to verify the structure of results and the correctness of processing steps. * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * refactor(pipeline): Remove model card generation and streamline processor methods - Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template. - Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters. - Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability. * refactor(observation): Streamline observation preprocessing and remove unused processor methods - Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting. - Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow. - Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script. * refactor(pipeline): Rename parameters for clarity and enhance save/load functionality - Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path. - Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names. - Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability. * refactor(pipeline): minor improvements (#1684) * chore(pipeline): remove unused features + device torch + envtransition keys * refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor * refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code * test(pipeline): fix broken test after refactors * docs(pipeline): update docstrings VanillaObservationProcessor * chore(pipeline): move None check to base pipeline classes * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * refactor(normalization): Remove unused state dict transformation methods and streamline imports - Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process. - Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging. - Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation. - Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality. * refactor(normalization): Clean up imports in normalize_processor.py * feat(batch_processor): Add feature_contract method to ToBatchProcessor - Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor. - This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs. * fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feature(pipeline): port tokenizer pipeline for VLA (#1645) * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feture(policies): add device processor (#1659) * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * feat(policies): Add new line processors and update module exports * feat(processor): Enhance batch and device processors to handle index and task_index fields - Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors. - Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged. - Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation. * refactor(processors): Standardize processor naming conventions - Updated processor names across various files to use a consistent "robot_preprocessor" and "robot_postprocessor" format. - Modified the make_processor functions in factory, act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet to reflect the new naming scheme. - Enhanced the pipeline configuration to align with the updated processor names, improving clarity and maintainability. * refactor(factory): Update processor configuration and type hints - Changed return type of get_policy_class to type[PreTrainedPolicy] for improved type safety. - Enhanced make_processor function to utilize dataset_stats in processor creation for better flexibility. - Updated ProcessorConfigKwargs to include dataset_stats, allowing for more comprehensive processor configurations. - Streamlined processor initialization by removing unnecessary kwargs and ensuring clarity in processor type handling. * refactor(factory, pi0fast): Update processor function names and parameters - Renamed make_pi0_processor to make_pi0fast_processor for clarity and consistency. - Updated parameter names in the factory's make_processor function to use pretrained_model_name_or_path instead of source, enhancing readability and alignment with naming conventions. * fix(train.py) push postprocessor with preprocessor - Add preprocesser policy overrides for device and rename_map - Add rename_map to DatasetRecordConfig (record.py) * refactor(device_processor): Update device handling and improve type hints - Changed device attribute type from torch.device to str for better clarity. - Introduced a private _device attribute to store the actual torch.device instance. - Updated tests to conditionally check for CUDA availability, ensuring compatibility across different environments. - Refactored device-related assertions in tests to use a consistent approach for device type verification. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * test(tokenizer_processor): Add require_package decorator for transformers - Introduced @require_package("transformers") decorator in multiple test functions to ensure the transformers package is available before running tests. - This change enhances test reliability by preventing failures due to missing dependencies. * refactor(migrate_policy_normalization): Enhance preprocessor and postprocessor structure - Introduced RenameProcessor in the preprocessor to handle renaming features. - Combined input and output features in a single NormalizerProcessor for improved efficiency. - Updated RobotProcessor initialization to clarify step naming for preprocessor and postprocessor. - Added DeviceProcessor to both preprocessor and postprocessor for better device management. * Integrate pipeline and add phone teleop (#1681) * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * fix(ci): temporary fix on dataset deps version * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * refactor(train): Update memory pinning logic for mps compatibility * feat: initial commit phone teleop * ugly delta control * use quaternion * Refactor observation preprocessing to use a modular pipeline system - Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations. - Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline. - Added tests for the new processing components and ensured they match the original functionality. - Removed hardcoded logic in favor of a more flexible, composable architecture. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor observation processing and improve modularity - Updated `ObservationProcessor` to enhance the modular design for processing observations. - Cleaned up imports and improved code readability by removing unnecessary lines and comments. - Ensured backward compatibility while integrating new processing components. - Added tests to validate the functionality of the updated processing architecture. * Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability. * Refactor processing architecture to use RobotProcessor - Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity. - Introduced ProcessorStepRegistry for better management of processing steps. - Updated relevant documentation and tests to reflect the new processing structure. - Enhanced the save/load functionality to support the new processor design. - Added a model card template for RobotProcessor to facilitate sharing and documentation. * Add RobotProcessor tutorial to documentation - Introduced a new tutorial on using RobotProcessor for preprocessing robot data. - Added a section in the table of contents for easy navigation to the new tutorial. - The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Transition from tuple to dictionary format for EnvTransition - Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability. - Replaced instances of TransitionIndex with TransitionKey for accessing transition components. - Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase. * refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling - Introduced constants for observation keys to enhance readability. - Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly. - Updated the environment state and agent position assignments to use the new constants, improving maintainability. * feat(pipeline): Add hook unregistration functionality and enhance documentation - Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management. - Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks. - Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks. * refactor(pipeline): Clarify hook behavior and improve documentation - Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability. - Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions. - Enhanced documentation to clearly outline the purpose of hooks and their execution semantics. - Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method. * feat(pipeline): Add __repr__ method to RobotProcessor for improved readability - Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed. - Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values. - Ensured that the representation handles long lists of steps with truncation for better readability. * chore(pipeline): Move _CFG_NAME along other class member * refactor(pipeline): Utilize get_safe_torch_device for device assignment - Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling. - This change enhances code readability and maintains consistency in device management across the RobotProcessor class. * refactor(pipeline): Enhance state filename generation and profiling method - Updated state filename generation to use the registry name when available, improving clarity in saved files. - Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling. - Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results. * chore(doc): address pip install commant lerobot that not exist yet * feat(pipeline): Enhance configuration filename handling and state file naming - Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default. - Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved. - Added automatic detection for configuration files when loading from a directory, with error handling for multiple files. - Updated tests to validate new features, including custom filenames and automatic config detection. * refactor(pipeline): Improve state file naming conventions for clarity and uniqueness - Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory. - Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts. - Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files. * docs(pipeline): Add clarification for repo name sanitization process * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * Add debug + calib * cleanup * Add pipeline * fix int * Add record example * nit * Add feature contract to pipelinestep and pipeline * Add tests * Add processor tests * PR feedback * encorperate pr feedback * type in doc * oops * cleaned up steps and integrated pipeline with feature_contract * refactor steps and robot to pipeline * cleanup pipeline * cleanup code further * make it run * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * refactor(normalization): Remove unused state dict transformation methods and streamline imports - Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process. - Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging. - Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation. - Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality. * refactor(normalization): Clean up imports in normalize_processor.py * feat(batch_processor): Add feature_contract method to ToBatchProcessor - Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor. - This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs. * fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * Do some todos and cleanup * change feature_contract to dataset_features * use one method for conversion pipeline output to add_frame dict and use base processors where possible * Add back in and use record_loop * update todo * rename to_dataset_frame * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * fix reference frame * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * update data visualization * update teleop example * fix record bugs * Add replay * Not code * feature(pipeline): port tokenizer pipeline for VLA (#1645) * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feture(policies): add device processor (#1659) * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * feat(policies): Add new line processors and update module exports * feat(processor): Enhance batch and device processors to handle index and task_index fields - Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors. - Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged. - Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation. * Add eval script * fix `q_curr` in InverseKinematicsEEToJoints to the IK solution * feat(processors): Introduce processors for various policy types - Added `make_processor` function to create processor instances for different policy types, including `tdmpc`, `diffusion`, `act`, `vqbet`, `pi0`, `pi0fast`, `sac`, and `reward_classifier`. - Implemented corresponding processor files for each policy type, encapsulating normalization and unnormalization steps. - Updated existing policies to remove direct normalization dependencies, enhancing modularity and clarity. - Enhanced test coverage to validate the integration of new processors with existing policy configurations. * refactor(learner): Remove normalization from cached image features retrieval - Simplified the retrieval of observation features by removing the normalization step from the `get_cached_image_features` method calls. - This change enhances clarity and aligns with the recent updates to policy processors. * refactor(policies): Remove unnormalization step from action predictions - Eliminated the unnormalization of actions in both `TDMPCPolicy` and `VQBeTPolicy` classes to streamline action prediction. - This change improves code clarity and aligns with recent updates to policy processors. * feat(train): Integrate preprocessor into training pipeline * refactor(train): Update preprocessor initialization to include dataset statistics * refactor(policies): Enhance processor creation and add NaN detection hook * feat(record): Integrate RobotProcessor into recording loop and update policy handling - Added support for RobotProcessor in the record_loop function to enhance data processing capabilities. - Updated the logic to reset both policy and processor when provided, ensuring proper state management. - Modified action prediction to utilize the processor, improving the overall functionality of the recording process. - Adjusted the save_checkpoint function to include preprocessor state saving, enhancing checkpointing capabilities. * feat(migration): Add script for migrating policy models with normalization layers * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(migrate): Enhance migration script to create preprocessor and postprocessor for policy models - Updated the migration script to generate both a preprocessor and a postprocessor, improving the handling of normalization for training and inference. - Added functionality to convert features to PolicyFeature objects, ensuring compatibility with the new processor architecture. - Refined the extraction and removal of normalization statistics and layers, streamlining the migration process. - Improved error handling for missing mandatory configuration fields during model instantiation. * feat(migrate): Add model card generation and saving to migration script - Implemented functionality to generate and save a model card for the migrated model, including metadata such as dataset repository ID, license, and tags. - Enhanced the script to push the model card to the hub if requested, improving model documentation and accessibility. - Refactored the saving process to ensure the model card is saved locally and uploaded correctly when pushing to the hub. * feat(processor): Introduce ToBatchProcessor for handling observation batching - Added ToBatchProcessor to ensure observations have proper batch dimensions for model processing. - Implemented functionality to add batch dimensions to state and image observations as needed. - Created comprehensive unit tests to validate the processor's behavior with various tensor dimensions and types. - Ensured compatibility with existing transition keys and maintained the integrity of non-observation data. * feat(processors): Add ToBatchProcessor to multiple policy processors - Integrated ToBatchProcessor into various policy processors to handle observation batching. - Updated make functions for act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet processors to include the new batching functionality. - Ensured consistency across all processor implementations for improved data handling. * refactor(factory): Remove unused imports and NaN detection hook from processor creation * feat(batch_processor): Enhance ToBatchProcessor to handle action batching - Updated ToBatchProcessor to add batch dimensions to actions in addition to observations. - Implemented separate methods for processing observations and actions, improving code readability. - Added comprehensive unit tests to validate action batching functionality across various tensor dimensions and types. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(factory): Enhance make_processor to support preprocessor and postprocessor configuration - Introduced ProcessorConfigKwargs TypedDict for better type safety in processor configuration. - Updated make_processor to accept preprocessor and postprocessor configuration filenames, improving flexibility in processor instantiation. - Refactored the loading of pretrained processors to utilize the new configuration options. * refactor(factory): Clean up imports in factory.py - Removed unused import of IdentityProcessor to streamline the code. * feat(migrate): Extend load_model_from_hub to include train configuration - Updated load_model_from_hub to return the train configuration alongside the model state_dict and config. - Modified main function to handle the additional train configuration when loading models from both the hub and local paths. - Adjusted dataset_repo_id extraction to utilize the train configuration for improved accuracy. * refactor(record): Rename processor parameters and update processing logic - Renamed `processor` to `preprocessor` and added `postprocessor` parameter for clarity. - Updated the `record_loop` and `predict_action` functions to utilize the new preprocessor and postprocessor, enhancing the processing flow. - Ensured compatibility with existing functionality while improving code readability. * feat(batch_processor): Add task field processing to ToBatchProcessor - Enhanced ToBatchProcessor to wrap string tasks in a list, adding batch dimensions for compatibility with model inference. - Implemented a new method for processing complementary data, ensuring that task values are correctly handled as either strings or lists of strings. - Added comprehensive unit tests to validate task processing, including edge cases and in-place mutation of complementary data. * feat(normalization): Implement IDENTITY mode for normalization and unnormalization - Enhanced NormalizerProcessor and UnnormalizerProcessor to support IDENTITY mode, allowing features to bypass normalization when specified. - Updated processing logic to check normalization modes and handle missing statistics gracefully. - Added comprehensive unit tests to validate IDENTITY mode functionality for both observations and actions, ensuring correct behavior across various scenarios. - Improved error handling for unsupported normalization modes. * fix(rebase): remove residual normalization layer: * refactor(diffusion): remove normalization layer from input processing * refactor(normalization): Remove unused state dict transformation methods and streamline imports - Eliminated the _transform_state_dict_keys and _load_as_safetensor methods from PI0Policy, simplifying the model loading process. - Cleaned up imports in modeling_pi0.py by removing log_model_loading_keys and init_logging. - Updated TDMPCPolicy and VQBeTPolicy to handle action removal from batches during offline evaluation. - Introduced hotswap_stats function in normalize_processor.py to update normalization statistics dynamically, with corresponding tests to ensure functionality. * refactor(normalization): Clean up imports in normalize_processor.py * feat(batch_processor): Add feature_contract method to ToBatchProcessor - Introduced feature_contract method that returns features without modification, maintaining the no-op behavior of the processor. - This addition enhances the flexibility of the ToBatchProcessor for future feature processing needs. * fix(dependencies): Update transformers dependency constraint to allow only versions up to 4.52.0 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feature(pipeline): port tokenizer pipeline for VLA (#1645) * feat(tokenizer): Introduce TokenizerProcessor for text tokenization - Added TokenizerProcessor class to handle tokenization of task strings using Hugging Face's AutoTokenizer. - Supports both string and list inputs, with customizable parameters for task key, output key, and tokenization settings. - Implemented comprehensive unit tests to validate functionality, including handling of various input scenarios and integration with RobotProcessor. - Updated types.py to include LANGUAGE feature type and modified __init__.py to register the new processor. * feat(language): Enhance language processing in TokenizerProcessor - Added OBS_LANGUAGE constant to define the observation language key. - Updated TokenizerProcessor to store tokenized task data in the observation dictionary, ensuring compatibility with the new language feature. - Introduced Pi0NewLineProcessor to append newlines to tasks for proper tokenization. - Modified tests to validate the integration of language tokens and attention masks in the observation structure. * feat(tokenizer): Add padding configuration to TokenizerProcessor - Introduced `padding_side` parameter to the TokenizerProcessor for customizable padding direction. - Updated the `make_pi0_processor` function to include the new padding configuration. - Enhanced unit tests to validate the functionality of the `padding_side` parameter in various scenarios. * feat(processor): Add state management methods to Pi0NewLineProcessor * feat(normalization): Track normalization and unnormalization info in complementary data - Updated NormalizerProcessor and UnnormalizerProcessor to accept additional parameters for tracking normalization modes. - Enhanced the __call__ methods to store normalization and unnormalization information in the complementary data of transitions. - Added unit tests to verify the correct tracking of normalization info, including scenarios with missing stats and selective normalization keys. * feat(factory): Add preprocessor and postprocessor overrides to ProcessorConfigKwargs - Updated ProcessorConfigKwargs to include optional overrides for preprocessor and postprocessor configurations. - Enhanced the make_processor function to utilize the new overrides, allowing for more flexible processor initialization. * feat(processors): Integrate RenameProcessor into various processor configurations - Added RenameProcessor to the input steps of multiple processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Consolidated normalization features from input and output into a single NormalizerProcessor for improved efficiency. - Updated the input steps to ensure compatibility with the new RenameProcessor integration. * feat(smolvla): Refactor language processing and introduce new line processor (#1658) - Removed the prepare_language method and directly accessed language tokens and masks from the batch using the OBS_LANGUAGE constant. - Added SmolVLANewLineProcessor to ensure tasks end with a newline, enhancing tokenization compatibility. - Updated the make_smolvla_processor function to include the new line processor and tokenizer processor for improved input handling. * feture(policies): add device processor (#1659) * feat(processors): Integrate DeviceProcessor into multiple processor configurations - Added DeviceProcessor to the input and output steps of various processor functions, including make_act_processor, make_diffusion_processor, make_pi0_processor, make_pi0fast_processor, make_sac_processor, make_tdmpc_processor, make_vqbet_processor, and make_smolvla_processor. - Enhanced the DeviceProcessor class with state management methods and ensured compatibility with existing processor pipelines. - Introduced unit tests for DeviceProcessor to validate functionality across different scenarios, including CPU and CUDA operations. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * feat(processor): Enhance DeviceProcessor with float dtype conversion - Added support for optional float dtype conversion in DeviceProcessor, allowing tensors to be converted to specified floating-point types while preserving non-float types. - Implemented validation for float dtype input and updated the processor's configuration methods to include float dtype. - Refactored tensor processing logic to streamline device movement and dtype conversion. - Introduced comprehensive unit tests to validate the new float dtype functionality across various scenarios. * feat(policies): Add new line processors and update module exports * feat(processor): Enhance batch and device processors to handle index and task_index fields - Added logic to ToBatchProcessor for unsqueezing 0D tensors for index and task_index fields, ensuring they are processed as 1D tensors. - Updated DeviceProcessor to process index and task_index fields in complementary data, preserving their tensor types and ensuring non-tensor fields remain unchanged. - Enhanced unit tests to validate the correct handling of index and task_index fields across various scenarios, including device compatibility and dtype preservation. * refactor(processors): Standardize processor naming conventions - Updated processor names across various files to use a consistent "robot_preprocessor" and "robot_postprocessor" format. - Modified the make_processor functions in factory, act, diffusion, pi0, pi0fast, sac, smolvla, tdmpc, and vqbet to reflect the new naming scheme. - Enhanced the pipeline configuration to align with the updated processor names, improving clarity and maintainability. * refactor(factory): Update processor configuration and type hints - Changed return type of get_policy_class to type[PreTrainedPolicy] for improved type safety. - Enhanced make_processor function to utilize dataset_stats in processor creation for better flexibility. - Updated ProcessorConfigKwargs to include dataset_stats, allowing for more comprehensive processor configurations. - Streamlined processor initialization by removing unnecessary kwargs and ensuring clarity in processor type handling. * Fix eval and android gripper * add some tests * refactor(factory, pi0fast): Update processor function names and parameters - Renamed make_pi0_processor to make_pi0fast_processor for clarity and consistency. - Updated parameter names in the factory's make_processor function to use pretrained_model_name_or_path instead of source, enhancing readability and alignment with naming conventions. * fix(train.py) push postprocessor with preprocessor - Add preprocesser policy overrides for device and rename_map - Add rename_map to DatasetRecordConfig (record.py) * Cleanup pr * fix more git diff pr issues * add path as type in save_pretrained * small nit * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * rename test file * fix: make dataset_features/feature_contract is optional * fix tests * Encorperate pr feedback * clean up record.py * add ascii art, fix normal record * remove merge issues * fix merge * remove features * Add feedback PR * fix last 4 tests * remove features check * rename to transform_features * add transform_features * fix lekiwi eval and update eval api example --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Signed-off-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> * refactor(TokenizerProcessor): improve dependency handling and observation management - Updated TokenizerProcessor to conditionally import AutoTokenizer based on the availability of the transformers library, enhancing flexibility. - Modified tokenizer attribute type to Any to accommodate scenarios where transformers may not be installed. - Improved observation handling by using a more concise approach to manage the transition dictionary, ensuring compatibility with existing data structures. - Added error handling for missing transformers library, providing clear guidance for users on installation requirements. * feat(dependencies): Add scipy as a required dependency - Included `scipy>=1.15.2` in the project dependencies to enhance functionality and support for scientific computing tasks. * feat(policies): convert save_policy_to_safetensors with pipeline * refactor(normalization): remove Normalize and Unnormalize classes - Deleted the Normalize and Unnormalize classes from the normalization module to streamline the codebase. - Updated tests to ensure compatibility with the removal of these classes, focusing on the new NormalizerProcessor and UnnormalizerProcessor implementations. - Enhanced the handling of normalization statistics and improved overall code clarity. * refactor(factory): streamline processor loading by removing unused comments - Removed commented-out code related to loading pretrained processors in the make_processor function. - This change enhances code clarity and maintains focus on the current implementation. * feat(DeviceProcessor): Enhance tensor processing with device detection and float dtype conversion - Improved the _process_tensor method to preserve GPU placement for tensors already on a GPU, facilitating multi-GPU training scenarios. - Introduced a new _detect_device method in TokenizerProcessor to ensure tokenized tensors match the device of existing tensors in transitions. - Added comprehensive unit tests to validate the functionality of device detection and float dtype conversion across various scenarios. * feat(tests): Add comprehensive tests for various policy processors - Introduced new test files for ACT, Classifier, Diffusion, PI0, SAC, SmolVLA, TDMPC, and VQBeT policy processors. - Each test file includes unit tests to validate functionality, including handling of batch sizes, device management, and data type conversions. - Enhanced test coverage to ensure robustness and reliability of processor implementations across different scenarios. * refactor(train): Remove unnecessary tensor device handling in training loop * Refactor`gym_manipulator.py` using the universal pipeline (#1650) * Migrate gym_manipulator to use the pipeline Added get_teleop_events function to capture relevant events from teleop devices unrelated to actions * Added the capability to record a dataset * Added the replay functionality with the pipeline * Refactored `actor.py` to use the pipeline * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * RL works at this commit - fixed actor.py and bugs in gym_manipulator * change folder structure to reduce the size of gym_manip * Refactored hilserl config * Remove dataset and mode from HilSerlEnvConfig to a GymManipulatorConfig to reduce verbose of configs during training * format docs * removed get_teleop_events from abc * Refactor environment configuration and processing pipeline for GymHIL support. Removed device attribute from HILSerlRobotEnvConfig, added DummyTeleopDevice for simulation, and updated processor creation to accommodate GymHIL environments. * Improved typing for HILRobotEnv config and GymManipulator config * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Migrated `gym_manipulator` to use a more modular structure similar to phone teleop * Refactor gripper handling and transition processing in HIL and robot kinematic processors - Updated gripper position handling to use a consistent key format across processors - Improved the EEReferenceAndDelta class to handle reference joint positions. - Added support for discrete gripper actions in the GripperVelocityToJoint processor. - Refactored the gym manipulator to improve modularity and clarity in processing steps. * Added delta_action_processor mapping wrapper * Added missing file delta_action_processor and improved imports in `gym_manipulator` * nit * Added missing file joint_observation_processor * Enhance processing architecture with new teleoperation processors - Introduced `AddTeleopActionAsComplimentaryData` and `AddTeleopEventsAsInfo` for integrating teleoperator actions and events into transitions. - Added `Torch2NumpyActionProcessor` and `Numpy2TorchActionProcessor` for seamless conversion between PyTorch tensors and NumPy arrays. - Updated `__init__.py` to include new processors in module exports, improving modularity and clarity in the processing pipeline. - GymHIL is now fully supported with HIL using the pipeline * Refactor configuration structure for gym_hil integration - Renamed sections for better readability, such as changing "Gym Wrappers Configuration" to "Processor Configuration." - Enhanced documentation with clear examples for dataset collection and policy evaluation configurations. * Enhance reset configuration and teleoperation event handling - Added `terminate_on_success` parameter to `ResetConfig` and `InterventionActionProcessor` for controlling episode termination behavior upon success detection. - Updated documentation to clarify the impact of `terminate_on_success` on data collection for reward classifier training. - Refactored teleoperation event handling to use `TeleopEvents` constants for improved readability and maintainability across various modules. * fix(keyboard teleop), delta action keys * Added transform features and feature contract * Added transform features for image crop * Enum for TeleopEvents * Update tranform_features delta action proc --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Remove HILEnvConfig references * chore(processor): Add default names for preprocessor and postprocessor in constants - Introduced `PREPROCESSOR_DEFAULT_NAME` and `POSTPROCESSOR_DEFAULT_NAME` constants for consistent naming across various processor implementations. - Updated processor creation in multiple policy files to utilize these constants, enhancing code readability and maintainability. - Modified the training script to load and save the preprocessor and postprocessor using the new constants. * feat(processor): multiple improvements to the pipeline porting (#1749) * [Port codebase pipeline] General fixes for RL and scripts (#1748) * Refactor dataset configuration in documentation and codebase - Updated dataset configuration keys from `dataset_root` to `root` and `num_episodes` to `num_episodes_to_record` for consistency. - Adjusted replay episode handling by renaming `episode` to `replay_episode`. - Enhanced documentation - added specific processor to transform from policy actions to delta actions * Added Robot action to tensor processor Added new processor script for dealing with gym specific action processing * removed RobotAction2Tensor processor; imrpoved choosing observations in actor * nit in delta action * added missing reset functions to kinematics * Adapt teleoperate and replay to pipeline similar to record * refactor(processors): move to inheritance (#1750) * fix(teleoperator): improvements phone implementation (#1752) * fix(teleoperator): protect shared state in phone implementation * refactor(teleop): separate classes in phone * fix: solve breaking changes (#1753) * refactor(policies): multiple improvements (#1754) * refactor(processor): simpler logic in device processor (#1755) * refactor(processor): euclidean distance in delta action processor (#1757) * refactor(processor): improvements to joint observations processor migration (#1758) * refactor(processor): improvements to tokenizer migration (#1759) * refactor(processor): improvements to tokenizer migration * fix(tests): tokenizer tests regression from #1750 * fix(processors): fix float comparison and config in hil processors (#1760) * chore(teleop): remove unnecessary callbacks in KeyboardEndEffectorTeleop (#1761) * refactor(processor): improvements normalize pipeline migration (#1756) * refactor(processor): several improvements normalize processor step * refactor(processor): more improvements normalize processor * refactor(processor): more changes to normalizer * refactor(processor): take a different approach to DRY * refactor(processor): final design * chore(record): revert comment and continue deleted (#1764) * refactor(examples): pipeline phone examples (#1769) * refactor(examples): phone teleop + teleop script * refactor(examples): phone replay + replay * chore(examples): rename phone example files & folders * feat(processor): fix improvements to the pipeline porting (#1796) * refactor(processor): enhance tensor device handling in normalization process (#1795) * refactor(tests): remove unsupported device detection test for complementary data (#1797) * chore(tests): update ToBatchProcessor test (#1798) * refactor(tests): remove in-place mutation tests for actions and complementary data in batch processor * test(tests): add tests for action and task processing in batch processor * add names for android and ios phone (#1799) * use _tensor_stats in normalize processor (#1800) * fix(normalize_processor): correct device reference for tensor epsilon handling (#1801) * add point 5 add missing feature contracts (#1806) * Fix PR comments 1452 (#1807) * use key to determine image * Address rest of PR comments * use PolicyFeatures in transform_features --------- Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> --------- Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> * refactor(constants, processor): standardize action and observation keys across multiple files (#1808) - Added new constants for truncated and done states in constants.py. - Updated references to action and observation keys in pipeline_features.py, converters.py, hil_processor.py, tokenizer_processor.py, and robot_kinematic_processor.py to use the new constants for improved readability and maintainability. * refactor(processor): improve processor pipeline typing with generic type (#1810) * refactor(processor): introduce generic type for to_output - Always return `TOutput` - Remove `_prepare_transition`, so `__call__` now always returns `TOutput` - Update tests accordingly - This refactor paves the way for adding settings for `to_transition` and `to_output` in `make_processor` and the post-processor * refactor(processor): consolidate ProcessorKwargs usage across policies - Removed the ProcessorTypes module and integrated ProcessorKwargs directly into the processor pipeline. - Updated multiple policy files to utilize the new ProcessorKwargs structure for preprocessor and postprocessor arguments. - Simplified the handling of processor kwargs by initializing them to empty dictionaries when not provided. * refactor(converters): implement unified tensor conversion function (#1830) - Introduced `to_tensor` function using `singledispatch` to handle various input types, including scalars, arrays, and dictionaries, converting them to PyTorch tensors. - Replaced previous tensor conversion logic in `gym_action_processor`, `normalize_processor`, and `test_converters` with the new `to_tensor` function for improved readability and maintainability. - Updated tests to cover new functionality and ensure correct tensor conversion behavior. * Revert "refactor(converters): implement unified tensor conversion function (#…" (#1840) This reverts commit a837685bf870919fc07ada287a71711cebabb1ea. * refactor(converters): implement unified tensor conversion function (#1841) - Introduced `to_tensor` function using `singledispatch` to handle various input types, including scalars, arrays, and dictionaries, converting them to PyTorch tensors. - Replaced previous tensor conversion logic in `gym_action_processor`, `normalize_processor`, and `test_converters` with the new `to_tensor` function for improved readability and maintainability. - Updated tests to cover new functionality and ensure correct tensor conversion behavior. Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> * refactor(converters): gather converters and refactor the logic (#1833) * refactor(converters): move batch transition functions to converters module - Moved `_default_batch_to_transition` and `_default_transition_to_batch` functions from `pipeline.py` to `converters.py` for better organization and separation of concerns. - Updated references in `RobotProcessor` to use the new location of these functions. - Added tests to ensure correct functionality of the transition functions, including handling of index and task_index fields. - Removed redundant tests from `pipeline.py` to streamline the test suite. * refactor(processor): reorganize EnvTransition and TransitionKey definitions - Moved `EnvTransition` and `TransitionKey` classes from `pipeline.py` to a new `core.py` module for better structure and maintainability. - Updated import statements across relevant modules to reflect the new location of these definitions, ensuring consistent access throughout the codebase. * refactor(converters): rename and update dataset frame conversion functions - Replaced `to_dataset_frame` with `transition_to_dataset_frame` for clarity and consistency in naming. - Updated references in `record.py`, `pipeline.py`, and tests to use the new function name. - Introduced `merge_transitions` to streamline the merging of transitions, enhancing readability and maintainability. - Adjusted related tests to ensure correct functionality with the new naming conventions. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(processor): solve conflict artefacts * refactor(converters): remove unused identity function and update type hints for merge_transitions * refactor(processor): remove unused identity import and clean up gym_manipulator.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co> * refactor(processors): add transform_features method to various processors (#1843) * refactor(processors): update transition handling in RewardClassifierProcessor and InverseKinematicsEEToJoints (#1844) * refactor(processors): unify import statements by consolidating pipeline imports into the main processor module (#1845) * refactor(processors): add extended api for specialized pipelines (#1848) * refactor(processors): enhance transform_features method across multiple processors (#1849) * refactor(processors): enhance transform_features method across multiple processors - Updated the transform_features method in various processors to utilize a copy of the features dictionary, ensuring immutability of the original features. - Added handling for new feature keys and removed obsolete ones in the MapTensorToDeltaActionDict, JointVelocityProcessor, and others. - Improved readability and maintainability by following consistent patterns in feature transformation. * refactor(processors): standardize action and observation keys in delta_action_processor and joint_observations_processor - Updated action and observation keys to use constants for improved readability and maintainability. - Refactored the transform_features method in multiple processors to ensure consistent handling of feature keys. - Enhanced error handling by raising exceptions for missing required components in action and observation processing. - Removed obsolete code and improved overall structure for better clarity. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(processors): remove unused import in joint_observations_processor * refactor(processors): simplify transform_features method in delta_action_processor * refactor(processors): streamline transform_features method in ImageCropResizeProcessor * refactor(processors): improve error handling and streamline transform_features method in phone_processor - Raised a ValueError for missing position and rotation in action to enhance error handling. * refactor(processors): enhance error handling in JointVelocityProcessor - Added a ValueError raise for missing current joint positions in the observation method to improve error handling and ensure the integrity of the transform_features method. * refactor(processors): simplify transform_features method in robot kinematic processors * refactor(processors): standardize action keys in phone_processor * fix(processor): RKP feature obs -> act --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co> * chore(processor): rename RobotProcessor -> DataProcessorPipeline (#1850) * chore(processor): rename specialized processor -> XYZProcessorStep (#1852) * chore(processor): rename converters function names (#1853) * chore(processor): rename to_transition_teleop_action -> action_to_transition * chore(processor): rename to_transition_robot_observation -> observation_to_transition * chore(processor): rename to_output_robot_action -> transition_to_robot_action * chore(processor): add Step suffix to all processors (#1854) * refactor(processor): rename MapDeltaActionToRobotAction and MapTensorToDeltaActionDict for consistency * refactor(processor): rename DeviceProcessor to DeviceProcessorStep for consistency across modules * refactor(processor): rename Torch2NumpyActionProcessor to Torch2NumpyActionProcessorStep for consistency * refactor(processor): rename Numpy2TorchActionProcessor to Numpy2TorchActionProcessorStep for consistency * refactor(processor): rename AddTeleopActionAsComplimentaryData to AddTeleopActionAsComplimentaryDataStep for consistency * refactor(processor): rename ImageCropResizeProcessor and AddTeleopEventsAsInfo for consistency * refactor(processor): rename TimeLimitProcessor to TimeLimitProcessorStep for consistency * refactor(processor): rename GripperPenaltyProcessor to GripperPenaltyProcessorStep for consistency * refactor(processor): rename InterventionActionProcessor to InterventionActionProcessorStep for consistency * refactor(processor): rename RewardClassifierProcessor to RewardClassifierProcessorStep for consistency * refactor(processor): rename JointVelocityProcessor to JointVelocityProcessorStep for consistency * refactor(processor): rename MotorCurrentProcessor to MotorCurrentProcessorStep for consistency * refactor(processor): rename NormalizerProcessor and UnnormalizerProcessor to NormalizerProcessorStep and UnnormalizerProcessorStep for consistency * refactor(processor): rename VanillaObservationProcessor to VanillaObservationProcessorStep for consistency * refactor(processor): rename RenameProcessor to RenameProcessorStep for consistency * refactor(processor): rename TokenizerProcessor to TokenizerProcessorStep for consistency * refactor(processor): rename ToBatchProcessor to AddBatchDimensionProcessorStep for consistency * refactor(processor): update config file name in test for RenameProcessorStep consistency * refactor(processor): rename internal tokenizer variable for clarity (#1855) - Changed the internal tokenizer variable name from `_tokenizer` to `input_tokenizer` for improved readability and consistency. - Updated references throughout the class to reflect the new variable name. * chore(processor): rename merge_features -> combine_feature_dicts (#1856) * refactor(processor): rename internal device variable for clarity (#1857) - Changed the internal device variable from `_device` to `tensor_device` for improved readability and consistency. - Updated references throughout the class to reflect the new variable name. * chore(processor): rename teleop_phone variable names (#1858) * chore(processor): add type alias RobotProcessorPipeline and PolicyProcessorPipeline (#1859) * feat(processor): introduce PolicyProcessorPipeline and RobotProcessorPipeline as type aliases for DataProcessorPipeline - Added PolicyProcessorPipeline and RobotProcessorPipeline type aliases to enhance clarity and maintainability in the processor module. - Updated the __all__ list to include the new pipelines for better module export consistency. * refactor(processor): replace DataProcessorPipeline with PolicyProcessorPipeline across multiple modules - Updated all instances of DataProcessorPipeline to PolicyProcessorPipeline in various processor files for consistency and clarity. - Adjusted function signatures to reflect the new pipeline type, enhancing maintainability and readability. * refactor(processor): update hotswap_stats function to use PolicyProcessorPipeline - Changed the parameter name from robot_processor to policy_processor for clarity. - Ensured consistency with recent updates to the processor module by reflecting the new pipeline type in the function signature. * refactor(processor): replace DataProcessorPipeline with PolicyProcessorPipeline in migrate_policy_normalization.py - Updated the preprocessor and postprocessor to use PolicyProcessorPipeline for consistency with recent changes in the processor module. - Enhanced clarity and maintainability by aligning with the new pipeline structure. * refactor(processor): update hotswap_stats to use PolicyProcessorPipeline - Changed the parameter type in hotswap_stats from DataProcessorPipeline to PolicyProcessorPipeline for consistency with recent updates. - Enhanced clarity by updating the function documentation to reflect the new pipeline type. * refactor(processor): replace DataProcessorPipeline with RobotProcessorPipeline across multiple files - Updated instances of DataProcessorPipeline to RobotProcessorPipeline in evaluate.py, record.py, replay.py, teleoperate.py, and other relevant files for consistency and clarity. - Adjusted function signatures and variable types to reflect the new pipeline structure, enhancing maintainability and readability. * refactor(processor): enforce config_filename requirement for HF Hub loading (#1860) - Updated the DataProcessorPipeline to require a specific config_filename when loading from Hugging Face Hub, enhancing clarity and preventing errors. - Simplified local path checks and improved error handling for invalid paths. - Adjusted tests to reflect the new requirement and ensure proper error handling for various loading scenarios. * feat(record): add transition features to dataset and handle scalar vs array formatting in converters (#1861) - Introduced new transition features (`next.reward`, `next.done`, `next.truncated`) in the dataset during recording. - Updated the `transition_to_dataset_frame` function to handle scalar values correctly, ensuring compatibility with expected array formats for reward, done, and truncated features. * refactor(pipeline): enforce ProcessorStep inheritance for pipeline steps (#1862) - Updated the DataProcessorPipeline to require that all steps inherit from ProcessorStep, enhancing type safety and clarity. - Adjusted tests to utilize a MockTokenizerProcessorStep that adheres to the ProcessorStep interface, ensuring consistent behavior across tests. - Refactored various mock step classes in tests to inherit from ProcessorStep for improved consistency and maintainability. * refactor(dependencies): remove scipy dependency and introduce custom rotation utilities (#1863) - Removed the scipy dependency from the project to streamline requirements. - Added a new `rotation.py` module containing a custom `Rotation` class that replicates essential functionalities of `scipy.spatial.transform.Rotation`, allowing for rotation vector, matrix, and quaternion conversions without external dependencies. - Updated the `robot_kinematic_processor.py` to utilize the new custom rotation utilities. * feat(teleoperation): introduce HasTeleopEvents protocol and enhance teleop event handling (#1866) - Added the HasTeleopEvents protocol to define a standard for teleoperators that provide control events. - Implemented a runtime check to ensure teleoperators implement the get_teleop_events() method. - Updated AddTeleopEventsAsInfoStep to utilize the new protocol, enhancing compatibility with custom teleoperators. - Improved documentation for clarity on teleoperation event extraction and compatibility with built-in teleoperators. * fix(deps): use in-house rotation utils over scipy throughout the codebase * refactor(constants): rename preprocessor and postprocessor constants for clarity (#1868) - Updated constant names from PREPROCESSOR_DEFAULT_NAME and POSTPROCESSOR_DEFAULT_NAME to POLICY_PREPROCESSOR_DEFAULT_NAME and POLICY_POSTPROCESSOR_DEFAULT_NAME for better context. - Adjusted references across multiple files to use the new constant names, ensuring consistency in the codebase. * refactor(tests): update processor test assertions to reflect new preprocessor and postprocessor names (#1869) - Changed assertions in multiple processor test files to verify the updated names from "robot_preprocessor" and "robot_postprocessor" to "policy_preprocessor" and "policy_postprocessor" for consistency with recent refactoring. * refactor(utils): simplify log_rerun_data function (#1864) * refactor(logging): enhance log_rerun_data to handle observation and action separately - Updated the `log_rerun_data` function to accept and log observation and action data more clearly, improving readability and maintainability. - Refactored the `record_loop` and `teleop_loop` functions to extract and pass observation and action data to `log_rerun_data`, ensuring consistent logging format. * refactor(tests): update test_log_rerun_data to align with log_rerun_data changes - Modified test cases in `test_visualization_utils.py` to extract and pass observation and action data separately to `log_rerun_data`, improving clarity and consistency with recent function updates. - Ensured that the tests reflect the new structure of `log_rerun_data` for better maintainability. * refactor(processors): simplify calls to log_rerun + replace lambda functions with identity_transition --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> * fix(processor): recover type inference for use of processors (#1873) * refactor(processors): Improve Normalization Processor Performance and Device/Dtype Adaptability (#1880) * refactor(processors): reorder processor steps for consistency across implementations - Updated the order of processor steps in multiple files to ensure consistency, placing AddBatchDimensionProcessorStep and DeviceProcessorStep before NormalizerProcessorStep. - Adjusted related test assertions to reflect the new order of steps in the preprocessor, enhancing clarity and maintainability. * refactor(normalization): remove dtype specification in tensor conversion for adaptation logic - Updated tensor conversion in the _NormalizationMixin class to remove explicit dtype specification, allowing for automatic adaptation of tensor types. - Adjusted related tests to ensure proper functionality with the new tensor conversion logic, verifying that normalizers adapt correctly to input types. * chore(docs): update doctrines pipeline files (#1872) * docs(processor): update docstrings batch_processor * docs(processor): update docstrings device_processor * docs(processor): update docstrings tokenizer_processor * update docstrings processor_act * update docstrings for pipeline_features * update docstrings for utils * update docstring for processor_diffusion * update docstrings factory * add docstrings to pi0 processor * add docstring to pi0fast processor * add docstring classifier processor * add docstring to sac processor * add docstring smolvla processor * add docstring to tdmpc processor * add docstring to vqbet processor * add docstrings to converters * add docstrings for delta_action_processor * add docstring to gym action processor * update hil processor * add docstring to joint obs processor * add docstring to migrate_normalize_processor * update docstrings normalize processor * update docstring normalize processor * update docstrings observation processor * update docstrings rename_processor * add docstrings robot_kinematic_processor * cleanup rl comments * add docstring to train.py * add docstring to teleoperate.py * add docstrings to phone_processor.py * add docstrings to teleop_phone.py * add docstrings to control_utils.py * add docstrings to visualization_utils.py --------- Co-authored-by: Pepijn <pepijn@huggingface.co> * refactor(eval): integrate preprocessor and postprocessor into rollout and eval_policy functions (#1900) * refactor(eval): integrate preprocessor and postprocessor into rollout and eval_policy functions - Updated the `rollout` and `eval_policy` functions to accept preprocessor and postprocessor parameters, enhancing the flexibility of the evaluation pipeline. - Adjusted the implementation to apply preprocessing and postprocessing steps during policy evaluation, improving the overall data handling and processing flow. * refactor(eval): remove redundant observation device conversion in rollout function - Eliminated unnecessary device conversion for the observation dictionary within the `rollout` function, streamlining the code and enhancing readability. - This change simplifies the observation handling process, aligning with the preference for clearer solutions. * debug * refactor(utils): enhance task handling in add_envs_task function - Improved the `add_envs_task` function to validate the output of `task_description` and `task` calls, ensuring they return lists of strings. - Removed the use of `else` statement for environments without language instructions, simplifying the logic and enhancing readability. - Streamlined the observation dictionary handling by ensuring consistent data types for task attributes. * refactor(converters): rename _from_tensor to from_tensor_to_numpy for clarity (#1902) - Updated the function name from _from_tensor to from_tensor_to_numpy to better reflect its purpose of converting PyTorch tensors to numpy arrays or scalars. - Adjusted all references to the renamed function throughout the codebase to maintain consistency. - Enhanced the _NormalizationMixin class to reconstruct the stats dictionary from tensor stats using the new function, ensuring compatibility after loading state dicts. - Added tests to verify the correct reconstruction of stats and functionality of methods dependent on self.stats after loading. * refactor(pipeline): feature contract now categorizes between OBS or Action (#1867) * refactor(processor): signature of transform_features * refactor(processor): remove prefixes + processor respect new transform_features signature + update test accordingly * refactor(processor): rename now is only for visual * refactor(processor): update normalize processor * refactor(processor): update vanilla processor features * refactor(processor): feature contract now uses its own enum * chore(processor): rename renameprocessor * chore(processor): minor changes * refactor(processor): add create & change aggregate * refactor(processor): update aggregate * refactor(processor): simplify to functions, fix features contracts and rename function * test(processor): remove to converter tests as now they are very simple * chore(docs): recover docs joint observations processor * fix(processor): update RKP * fix(tests): recv diff test_pipeline * chore(tests): add docs to test * chore(processor): leave obs language constant untouched * fix(processor): correct new shape of feature in crop image processor * refactor(eval): specify type parameters for preprocessor and postprocessor in eval_policy function (#1904) * chore(processor): remove action prefixes (#1905) * test(processor): all processors use now the same create_transition (#1906) * test(processor): all processors use now the same create_transition * test(processor): use identity instead of lambda for transition in pipelines * fix(processor): specialized processors respect contract by raising if none (#1909) * fix(processor): specialized processor now raise * test(processor): fix tests for now raise specialized processors * test(processor): use identity in newly introduced pipeline * refactor(processor): clarify action types, distinguish PolicyAction, RobotAction, and EnvAction (#1908) * refactor(processor): split action from policy, robots and environment - Updated function names to robot_action_to_transition and robot_transition_to_action across multiple files to better reflect their purpose in processing robot actions. - Adjusted references in the RobotProcessorPipeline and related components to ensure compatibility with the new naming convention. - Enhanced type annotations for action parameters to improve code readability and maintainability. * refactor(converters): rename robot_transition_to_action to transition_to_robot_action - Updated function names across multiple files to improve clarity and consistency in processing robot actions. - Adjusted references in RobotProcessorPipeline and related components to align with the new naming convention. - Simplified action handling in the AddBatchDimensionProcessorStep by removing unnecessary checks for action presence. * refactor(converters): update references to transition_to_robot_action - Renamed all instances of robot_transition_to_action to transition_to_robot_action across multiple files for consistency and clarity in the processing of robot actions. - Adjusted the RobotProcessorPipeline configurations to reflect the new naming convention, enhancing code readability. * refactor(processor): update Torch2NumpyActionProcessorStep to extend ActionProcessorStep - Changed the base class of Torch2NumpyActionProcessorStep from PolicyActionProcessorStep to ActionProcessorStep, aligning it with the current architecture of action processing. - This modification enhances the clarity of the class's role in the processing pipeline. * fix(processor): main action processor can take also EnvAction --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> * refactor(processor): phone processor is now an RobotActionProcessorStep * fix(processor): use subprocessors in AddBatchDimensionProcessorStep only if we have the ingredients * fix(robots): remove action prefix hard-coded in teleop keyboard and gamepad * feat(processor): enhance type safety with generic DataProcessorPipeline for policy and robot pipelines (#1915) * refactor(processor): enhance type annotations for processors in record, replay, teleoperate, and control utils - Updated type annotations for preprocessor and postprocessor parameters in record_loop and predict_action functions to specify the expected dictionary types. - Adjusted robot_action_processor type in ReplayConfig and TeleoperateConfig to improve clarity and maintainability. - Ensured consistency in type definitions across multiple files, enhancing overall code readability. * refactor(processor): enhance type annotations for RobotProcessorPipeline in various files - Updated type annotations for RobotProcessorPipeline instances in evaluate.py, record.py, replay.py, teleoperate.py, and other related files to specify input and output types more clearly. - Introduced new type conversions for PolicyAction and EnvTransition to improve type safety and maintainability across the processing pipelines. - Ensured consistency in type definitions, enhancing overall code readability and reducing potential runtime errors. * refactor(processor): update transition handling in processors to use transition_to_batch - Replaced direct transition handling with transition_to_batch in various processor tests and implementations to ensure consistent batching of input data. - Updated assertions in tests to reflect changes in data structure, enhancing clarity and maintainability. - Improved overall code readability by standardizing the way transitions are processed across different processor types. * refactor(tests): standardize transition key usage in processor tests - Updated assertions in processor test files to utilize the TransitionKey for action references, enhancing consistency across tests. - Replaced direct string references with TransitionKey constants for improved readability and maintainability. - Ensured that all relevant tests reflect these changes, contributing to a more uniform approach in handling transitions. * refactor(processor): unify action imports and enhance type clarity across multiple files - Updated imports in various files to include RobotAction and PolicyAction directly from the processor module, improving clarity and consistency. - Removed redundant imports from core, streamlining the codebase and enhancing maintainability. - Adjusted type annotations and references in the RobotProcessorPipeline and related components to align with the new import structure, ensuring better type safety and readability. * refactor(processor): migrate policy normalization to use factory functions - Updated the migration script to utilize `make_pre_post_processors` and `make_policy_config` from `lerobot.policies.factory`, enhancing consistency with the current codebase. - Improved normalization statistics extraction and processor pipeline creation, ensuring compatibility with the new `PolicyProcessorPipeline` architecture. - Cleaned up configuration handling by removing unnecessary fields and adding normalization mapping directly to the config. - Enhanced type safety and readability by refining feature type and normalization mode handling. * debug(scripts): simplify record with processors (#1918) Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> * refactor(processor): update migration script for policy normalization and hub integration - Modified the migration script to include a branch argument for pushing to the hub, enhancing flexibility in version control. - Improved error handling by ensuring the policy type is extracted from the configuration, promoting robustness. - Streamlined the process of saving and pushing model components to the hub, allowing for a single commit with optional PR creation. - Updated the commit message and description for better clarity on the migration changes and benefits, ensuring users are informed of the new architecture and usage. * fixes for processors used in phone teleop * fixes for rotation matrix * add empty obs and act in create_initial_features * use observation instead of obs * docs(processor): update docstrings pipeline (#1920) * chore(docs): Processor doc (#1685) * chore(docs): initialize doc * Added script for the second part of the processor doc * precommit style nit * improved part 2 of processor guide * Add comprehensive documentation for processors in robotics - Introduced a detailed guide on processors, covering their role in transforming raw robot data into model-ready inputs and vice versa. - Explained core concepts such as EnvTransition, ProcessorStep, and RobotProcessor, along with their functionalities. - Included examples of common processor steps like normalization, device management, batch processing, and text tokenization. - Provided insights on building complete pipelines, integrating processors into training loops, and saving/loading configurations. - Emphasized best practices and advanced features for effective usage of processors in robotics applications. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * feat(docs): Enhance introduction to processors with additional converter functions - Updated the introduction to processors documentation to include default batch-to-transition and transition-to-batch converters. - Added detailed descriptions and examples for new specialized converter functions: `to_transition_teleop_action`, `to_transition_robot_observation`, `to_output_robot_action`, and `to_dataset_frame`. - Improved clarity on how these converters facilitate integration with existing robotics applications. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Improved doc implement_your_own_pipeline - Use normalization processor as default example - Add section on transform features - Add section on overrides. * Add phone docs and use pipeline for robots/teleop docs * Fix typo in documentation for adapters in robots/teleop section * Enhance documentation for processors with detailed explanations and examples - Updated the introduction to processors, clarifying the role of `EnvTransition` and `ProcessorStep`. - Introduced `DataProcessorPipeline` as a generic orchestrator for chaining processor steps. - Added comprehensive descriptions of new converter functions and their applications. - Improved clarity on type safety and the differences between `RobotProcessorPipeline` and `PolicyProcessorPipeline`. - Included examples for various processing scenarios, emphasizing best practices for data handling in robotics. * Enhance documentation for processor migration and debugging - Added detailed sections on the migration of models to the new `PolicyProcessorPipeline` system, including breaking changes and migration scripts. - Introduced a comprehensive guide for debugging processor pipelines, covering common issues, step-by-step inspection, and runtime monitoring techniques. - Updated examples to reflect new usage patterns and best practices for processor implementation and error handling. - Clarified the role of various processor steps and their configurations in the context of robotics applications. --------- Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Pepijn <pepijn@huggingface.co> * docs: Add new section for debugging processor pipelines - Introduced a new documentation entry for debugging processor pipelines, enhancing the existing guide on processors. - This addition aims to provide users with insights and best practices for troubleshooting and optimizing their processor workflows. * fix(processor): phone examples (#1921) * fix(processor): phone examples * chore(processor): simplify gripper in phone example kinematic chain --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> * refactor(processors): several additions (#1926) * chore(processor): remove merge_transitions functions (#1925) * refactor(processors): move processors out of configs (#1927) * chore(processor): streamline combine_features_dict (#1928) * chore(policies): use new constants (#1929) * fix(deps): right version transformers (#1930) * fix(tests): add none + disable async tests for now (#1931) * refactor(processor): transform_features loop + EAFP (#1932) * fix(processors): make sure nested dict are also shallow copied (#1939) * refactor(processor): replace ModelHubMixin with HubMixin and enhance save_pretrained method (#1937) - Updated DataProcessorPipeline to use HubMixin instead of ModelHubMixin for improved functionality. - Refactored save_pretrained method to handle saving * refactor(docs): streamline monitoring hooks and enhance performance reporting - Removed the log_shapes and measure_performance hooks, simplifying the monitoring process to focus on NaN checks. - Updated performance reporting to include maximum processing times alongside average times for better insights. - Clarified documentation regarding the processing pipeline and feature transformations. * fix teleop, record and eval (#1940) * fix cmd record, eval * chore(processor): update input output of main 3 processors for better semantics (#1942) * chore(processor): update input output of main 3 processors for better semantics * refactor(processor): replace Any with RobotObservation for improved type safety in processors * fix(processors): no PolicyObservation * chore(processor): update with RobotObservation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * test(processor): fix batch expectation * feat(example): Add SO100 EE pipeline control (teleop+record) (#1943) * feat(examples): add ee so100 processors teleop & record * refactor(processor): improve FK processor for better use compatability * docs(processor): enhance tutorial on implementing custom processors - Updated the tutorial to use `NormalizerProcessorStep` as the primary example, clarifying its role in normalizing observations and actions. - Improved explanations of the need for custom processors, emphasizing data compatibility and processing requirements. - Added code snippets demonstrating the normalization process and the configuration of processor pipelines. - Enhanced the introduction to processors, detailing their function as translators between raw robot data and model inputs. - Included examples of real-world processor configurations for both training and inference scenarios. * docs(debug): enhance debugging guide for processor pipelines - Streamlined the introduction to clarify the challenges of debugging complex processor pipelines. - Expanded the section on hooks, detailing their purpose and implementation for runtime monitoring. - Introduced step-by-step debugging techniques, emphasizing the use of the `step_through()` method for inspecting intermediate states. - Added examples of feature validation to ensure data structure contracts are met. - Consolidated best practices for debugging, highlighting the synergy between hooks, step-through debugging, and feature validation. * chore(processors): tokenizers raises and remove tensor conversion (#1949) * chore(processor): remove unused transition_features dict * feat(ee): add so100_to_so100_EE replay and evaluate examples * chore(examples): homogenize style across example files (#1955) * chore(examples): homogenize style across example files * chore(examples): homogenize style across example files eval + replay * chore(examples): homogenize headers * test(async): fix feature manipulation (#1957) * test(async): fix feature manipulation * chore(processor): remove unused functions * fix(processor): Preserve stats overrides in normalizer load_state_dict and fix training resumption (#1958) * feat(processor): enhance normalization handling and state management - Added support for additional normalization modes including IDENTITY. - Introduced a new function `clean_state_dict` to remove specific substrings from state dict keys. - Implemented preservation of explicitly provided normalization statistics during state loading. - Updated training script to conditionally provide dataset statistics based on resume state. - Expanded tests to verify the correct behavior of stats override preservation and loading. * fix(train): remove redundant comment regarding state loading - Removed a comment that noted the preprocessor and postprocessor state is already loaded when resuming training, as it was deemed unnecessary for clarity. * test(processor): update tests to handle missing or invalid task keys - Modified tests to assert that the processor raises appropriate exceptions when the task key is missing or has an invalid value in the complementary data. - Ensured that the tests cover cases for None, integer, and mixed list task values, improving robustness against invalid inputs. * fix(processor): enforce signatures * chore(processor): update comments in record.py * test(processor): fix isinstance and cuda test * modify phone docs * fix(processor): reorder output steps to ensure correct processing sequence (#1961) - Moved DeviceProcessorStep to the end of the output steps in multiple processor files to maintain the intended processing order. - Updated corresponding tests to reflect the change in step order. * fix(processors): assumptions for robot_action_processor & teleop_action_processor (#1964) * fix(processors): new assumptions pipeline * fix(processors): ee jj phone teleop replay record working * chore(processors): update comments and default vars * chore(processor): remove unnecessary copy * chore(processor): added todo assumption gripper * fix(processors): eval using detected device * finish phone docs * fix correct image link * feat(processor): implement migration detection and error handling for processor configurations (#1968) * feat(processor): implement migration detection and error handling for processor configurations - Added ProcessorMigrationError to handle migration requirements for old model formats. - Enhanced DataProcessorPipeline.from_pretrained to include robust migration detection logic. - Implemented methods for resolving configuration sources, validating loaded configs, and checking for valid processor configurations. - Introduced comprehensive tests for migration detection and configuration validation to ensure correct behavior. * refactor(processor): simplify loading logic and enhance migration detection - Refactored DataProcessorPipeline to implement a simplified three-way loading strategy for configuration files. - Introduced explicit config_filename parameter to avoid ambiguity during loading. - Updated ProcessorMigrationError to provide clearer error messages for migration requirements. - Enhanced tests to cover new loading logic and ensure proper migration detection. - Removed deprecated methods related to config source resolution. * fix(processor) RL (#1953) * fix(gym_manipulator) general fixes to make it compitable * fix for dataset v3.0 * fix for gym_manipulator * add map policy action to robot action wrappers in a seperate scripts * added unittest for policy to robot bridge * fixes for gripper penalty * fix style * fix gamepad controller * fixes for sim teleop * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * modify numpy2torch to a regular processor as a quick fix * missing imports?! * - Removed the use of `AddRobotObservationAsComplimentaryData` from `gym_manipulator` and thus the codebase - Added get_raw_joint_positions functions to RobotEnv - Pass raw_joint_positions as input to the action_pipeline in `gym_manipulator` - Add `InverseKinematicsRLStep` to be tailored towards the need of RL which requires the use of the IK solution as the main reference point of the control loop - Added the option `use_ik_solution` in `EEReferenceDelta` step to rely on the ik solution rather than the joint values * -Updated links to all the config files to place them in the new repo with configs compatible with the pipeline --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> * fix(tests): update test cases for loading pipelines with specific config filenames - Modified test cases to include explicit configuration filenames when loading pipelines in `test_policy_robot_bridge.py`. - Ensured that the tests reflect the correct loading behavior for both robot-to-policy and policy-to-robot transitions. * fix(examples): train mps processor (#1970) * fix(examples): train mps processor * fix(processor): add MPS compatibility for float64 tensors - Implemented a workaround to convert float64 tensors to float32 when using the MPS device, as MPS does not support float64. - Added unit tests to verify the automatic conversion of float64 tensors to float32 and ensure compatibility with various tensor types on the MPS device. --------- Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Signed-off-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Steven Palma <steven.palma@huggingface.co> Co-authored-by: Pepijn <pepijn@huggingface.co> |
||
|
|
55e752f0c2 |
docs(dataset): add dataset v3 documentation (#1956)
* add v3 doc * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * update changes * iterate on review * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * add changes * create dataset section * Update docs/source/lerobot-dataset-v3.mdx Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> * Update docs/source/lerobot-dataset-v3.mdx Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> * Update docs/source/lerobot-dataset-v3.mdx Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> --------- Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> |
||
|
|
f55c6e89f0 |
Dataset v3 (#1412)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Remi Cadene <re.cadene@gmail.com> Co-authored-by: Tavish <tavish9.chen@gmail.com> Co-authored-by: fracapuano <francesco.capuano@huggingface.co> Co-authored-by: CarolinePascal <caroline8.pascal@gmail.com> |
||
|
|
6a3d57031a |
2 add reachy 2 to updated lerobot (#1767)
* Start adding Reachy 2 (no camera) * Fix joint shape * Remove print * Modify observation_features * Fix observation state * Try adding a fake Reachy teleoperator * Saving test scripts * Add reachy2camera to cameras * Add teleop_left camera to observation * Create test_reachy2_camera.py * Update utils.py * Add all rgb cameras * Future depth work * Try adding mobile_base velocity * Update tests * Update data_acquisition_server.py * Update with use_external_commands * Replay * Usable with or without mobile base * No need for new isntance * Use same ip for cameras * Remove useless imports * Add resume * Divide joints in multiple dicts * Divide joinits into several dicts in teleoperator * Fix forgotten method call * Create test_robot_client.py * Open gripper on start * Add arguments for cameras * Modify get_frame() requested size * Call generate_joints_dict on _init_ * black + isort * Add reachy2 in imports * Add reachy2 dependencies * Add documentation * Update reachy2.mdx * Update reachy2.mdx * Clean files and add types * Fix type in send_action * Remove print * Delete test files * Clean code * Update cameras * Disconnect from camera * Run pre-commit hooks * Update pyproject.toml * Create test_reachy2.py * Fix generate_joints * Update test_reachy2.py * Update send_action test * Update reachy2_cameras depth + CameraManager * Update reachy2_camera tests * Remove useless import and args * Rename reachy2_teleoperator * Create test_reachy2_teleoperator.py * Fix remainging fake_teleoperator * Remove useless elements * Mock cameras in test_reachy2 * Delete commented lines * Add use_present_position to teleoperator * Add cameras tests * Add check no part + test * Use disable_torque_on_disconnect * Use odometry for vel with present_position * Update documentation * Fix vel value type * Use ensure_safe_goal_position * Import joints dict from classes * Update reachy2.mdx * Update reachy2.mdx * Update minimal version * Update minimal version * fix(tests) fixes for reachy2 tests; removing reachy2 references from the script * Add reachy2_sdk fake as plugins --------- Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> |
||
|
|
61b0eeae4b |
Add feetech firmware update docs (#1793)
* Add feetech firmware update docs * add bonus * formatting * adapt text * feedback pr |
||
|
|
ce3b9f627e |
chore(docs): prioritize use of entry points in docs + fix nightly badge (#1692)
* chore(docs): fix typo in nightly badge * chore(docs): prioritize the use of entrypoints for consistency |
||
|
|
6daa579ce1 | docs: update installation instructions (#1686) | ||
|
|
e0096feb6a |
fix(docs): Update links in il_robots.mdx and il_sim.mdx to use absolute URLs (#1313)
* Update links to use absolute URLs. * Update dataset upload example link to use HF_USER variable and match the correct syntax. |
||
|
|
2f8d98b05e |
Update readme (#1570)
* Cleanup badges * Remove comment * Remove profiling section * Move acknowledgment * Move citations * Fix badge display * Move build your robot section * Fix nightly badge * Revert be13b3f * Update README.md Co-authored-by: HUANG TZU-CHUN <tzu.chun.huang.tw@gmail.com> Signed-off-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> * chore(docs): optimize readme for PyPI rendering * chore(docs): move policy readme to docs folder + symlink in policy dirs * fix(docs): max width og lerobot logo + url in citation block --------- Signed-off-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: HUANG TZU-CHUN <tzu.chun.huang.tw@gmail.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co> |
||
|
|
1baaa77a86 |
feat(ci): release workflow publish to pypi test + lock files (#1643)
* chore(ci): add some release stuff * chore(ci): add requirements-macos * chore(ci): added lockfiles for future reference * feat(ci): add draft & prerelease option to release workflow tag |
||
|
|
945e1ff266 |
fix colab typo (#1629)
Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> |
||
|
|
664e069c3f | docs/style: updating docs and deprecated links (#1584) | ||
|
|
dacd1d7f5c |
Fixing all broken links in integrate_hardware document (#1445)
Signed-off-by: arulloomba1 <145633197+arulloomba1@users.noreply.github.com> |
||
|
|
e88b30e6cc |
fix(ci): multiple fixes (#1549)
* fix(ci): tag of image when pushing to main * fix(docs): remove symlink in docs folder * chore(docs): move .mdx files to docs/ folder * chore(docs): create symlink to docs files * chore(ci): de-couple fast and full test pipeline * fix(ci): skip GPU Tests for community PRs |
||
|
|
378e1f0338 |
Update pre-commit-config.yaml + pyproject.toml + ceil rerun & transformer dependencies version (#1520)
* chore: update .gitignore * chore: update pre-commit * chore(deps): update pyproject * fix(ci): multiple fixes * chore: pre-commit apply * chore: address review comments * Update pyproject.toml Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com> Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> * chore(deps): add todo --------- Signed-off-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Ben Zhang <5977478+ben-z@users.noreply.github.com> |
||
|
|
d2645cb19f |
fix(docs): Record-Upload failed? Don't panic! (#1478)
* fix: add instruction to manually upload dataset Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> * fix: repo type is explicited --------- Signed-off-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> |
||
|
|
abe51eeba3 |
Update async docs with blogpost (#1479)
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> |
||
|
|
30c161006d |
Add Async Inference (#1196)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> |
||
|
|
039de254ea |
Add Hope Jr (#935)
* Fix imports * Add feetech write tests * Nit * Add autoclosing fixture * Assert ping stub called * Add CalibrationMode * Add Motor in dxl robots * Simplify split_int_bytes * Rename read/write -> sync_read/write, refactor, add write * Rename tests * Refactor dxl tests by functionality * Add dxl write test * Refactor _is_comm_success * Refactor feetech tests by functionality * Add feetech write test * Simplify _is_comm_success & _is_error * Move mock_serial patch to dedicated file * Remove test skips & fix docstrings * Nit * Add dxl operating modes * Add is_connected in robots and teleops * Update Koch * Add feetech operating modes * Caps dxl OperatingMode * Update ensure_safe_goal_position * Update so100 * Privatize methods & renames * Fix dict * Add _configure_motors & move ping methods * Return models (str) with pings * Implement feetech broadcast ping * Add raw_values option * Rename idx -> id_ * Improve errors * Fix feetech ping tests * Ensure motors exist at connection time * Update tests * Add test_motors_bus * Move DriveMode & TorqueMode * Update Koch imports * Update so100 imports * Fix visualize_motors_bus * Fix imports * Add calibration * Rename idx -> id_ * Rename idx -> id_ * (WIP) _async_read * Add new calibration method for robot refactor (#896) Co-authored-by: Simon Alibert <simon.alibert@huggingface.co> * Remove deprecated scripts * Rename CalibrationMode -> MotorNormMode * Fix calibration functions * Remove todo * Add scan_port utility * Add calibration utilities * Move encoding functions to encoding_utils * Add test_encoding_utils * Rename test * Add more calibration utilities * Format baudrate tables * Implement SO-100 leader calibration * Implement SO-100 follower calibration * Implement Koch calibration * Add test_scan_port (TODO) * Fix calibration * Hack feetech firmware bug * Update tests * Update Koch & SO-100 * Improve format * Rename SO-100 classes * Rename Koch classes * Add calibration tests * Remove old calibration tests * Revert feetech hack and monkeypatch instead * Simplify motors mocks * Add is_calibrated test * Update viperx & widowx * Rename viperx & widowx * Remove old calibration * feat(teleop): thread-safe keyboard teleop implementation (#869) Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> * Add support for feetech scs series + various fixes * Update dynamixel with motors bus & tables changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * (WIP) Add Hope Jr * Rename arm -> hand * (WIP) Add homonculus arm & glove * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add Feetech protocol version * Implement read * Use constants from sdks * (nit) move write * Fix broadcast ping type hint * Add protocol 1 broadcast ping * Refactor & add _serialize_data * Add feetech sm8512bl * Make feetech broadcast ping faster in protocol 1 * Cleanup * Add support for feetech protocol 1 to _split_into_byte_chunks * Fix unormalize * Remove test_motors_bus fixtures * Add more segmented tests (base motor bus & feetech), add feetech protocol 1 support * Add more segmented tests (dynamixel) * Refactor tests * Add handshake, fix feetech _read_firmware_version * Fix tests * Motors config & disconnect fixes * Add torque_disabled context * Update branch & fix pre-commit errors * Fix hand & glove readings * Update feetech tables * Move read/write_calibration implementations * Add setup_motor * Fix calibration msg display * Fix setup_motor & add it to robots * Fix _find_single_motor * Remove deprecated configure_motor * Remove deprecated dynamixel_calibration * Remove names * Remove deprecated import * refactor/lekiwi robot (#863) Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Simon Alibert <simon.alibert@huggingface.co> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> * fix(teleoperators): use property is_connected (#1075) * Remove deprecated manipulator * Update robot features & naming * Update teleop features & naming * Add make_teleoperator_from_config * Rename find_port * Fix config parsing * Remove app script * Add setup_motors * Add teleoperate * Add record * Add replay * Fix test_datasets * Add mock robot & teleop * Add new test_control_robot * Add test_record_and_resume * Remove deprecated scripts & tests * Add calibrate * Add docstrings * Fix tests (no-extras install) * Add SO101 * Remove pynput from optional deps * Rename example 7 * Remove unecessary id * Add MotorsBus docstrings * Rename arm -> bus * Remove Moss arm * Fix setup_motors & calibrate configs * Fix test_calibrate * Add copyrights * Update hand & arm * Update homonculus hand & arm * Fix dxl _find_single_motor * Update glove * Add setup_motors for lekiwi * Fix glove calibration * Complete docstring * Add check for same min and max during calibration * Move MockMotorsBus * Add so100_follower tests * (WIP) add calibration gui * Fix test * Add setup_motors * Update calibration gui * Remove old .cache folder * Replace deprecated abc.abstractproperty * Fix feetech protocol 1 configure * Cleanup gui & add copyrights * Anatomically precise joint names * (WIP) Add glove to hand joints translation * Move make_robot_config * Add drive_mode & norm_mode in glove calibration * Fix joints translation * Fix normalization drive_mode * nit * Fix glove to hand conversion * Adapt feetech calibration * Remove pygame prompt * Implement arm calibration (hacks) * Better MotorsBus error messages * Update feetech read_calibration * Fix feetech test_is_calibrated * Cleanup glove * (WIP) Update arm * Add changes from #1117 * refactor(cameras): cameras implementations + tests improvements (#1108) Co-authored-by: Simon Alibert <simon.alibert@huggingface.co> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Fix arm joints order * Add timeout/event logic * Fix arm & glove * Fix predict_action from record * fix(cameras): update docstring + handle sn when starts with 0 + update timeouts to more reasonable value (#1154) * fix(scripts): parser instead of draccus in record + add __get_path_fields__() to RecordConfig (#1155) * Left/Right sides + other fixes * Arm fixes and add config * More hacks * Add control scripts * Fix merge errors * push changes to calibration, teleop and docs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Move readme to docs * update readme Signed-off-by: Martino Russi <77496684+nepyope@users.noreply.github.com> * Add files via upload Signed-off-by: Martino Russi <77496684+nepyope@users.noreply.github.com> * Update image sources * Symlink doc * Compress image * Move image * Update docs link * fix docs * simplify teleop scripts * fix variable names * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Address code review * add EMA to glove * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * integrate teleoperation for hand * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update docs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * import hopejr/homunculus in teleoperate * update docs for teleoperate, record, replay, train and inference * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * chore(hopejr): address comments * chore(hopejr): address coments 2 * chore(docs): update teleoperation instructions for the hand/glove * fix(hopejr): calibration int + update docs --------- Signed-off-by: Martino Russi <77496684+nepyope@users.noreply.github.com> Signed-off-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: nepyope <nopyeps@gmail.com> Co-authored-by: Martino Russi <77496684+nepyope@users.noreply.github.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co> |
||
|
|
596e9050bd |
Refactor kinematics and switch to using placo (#1322)
Co-authored-by: Caroline Pascal <caroline8.pascal@gmail.com> Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: leo-berte <leonardo.bertelli96@gmail.com> |
||
|
|
d4ee470b00 |
Package folder structure (#1417)
* Move files * Replace imports & paths * Update relative paths * Update doc symlinks * Update instructions paths * Fix imports * Update grpc files * Update more instructions * Downgrade grpc-tools * Update manifest * Update more paths * Update config paths * Update CI paths * Update bandit exclusions * Remove walkthrough section |
||
|
|
69901b9b6a | fix(recording): re-recording episode doesn't increase count of recording episodes (#1395) | ||
|
|
2f9ba4e2cc |
Add api examples IL docs (#1391)
* feat: add api examples for record, replay, eval for il * fix: Add typings utils.py * fix: Add inference to text eval * fix: Add placeholders dataset and policy repo_ids * fix: Improve text * fix: Add type to 3rd ;) * chore(docs): update API examples for replay, eval and record --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> |
||
|
|
0b2285d1ec |
Feat: Improve hub integration (#1382)
* feat(policies): Initial setup to push policies to hub with tags and model card * feat: add dataset that is used to train * Add model template summary * fix: Update link model_card template * fix: remove print * fix: change import name * fix: add model summary in template * fix: minor text * fix: comments Lucain * fix: feedback steven * fix: restructure push to hub * fix: remove unneeded changes * fix: import * fix: import 2 * Add MANIFEST.in * fix: feedback pr * Fix tests * tests: Add smolvla end-to-end test * Fix: smolvla test * fix test name * fix policy tests * Add push to hub false policy tests * Do push to hub cleaner * fix(ci): add push_to_hub false in tests --------- Co-authored-by: Steven Palma <steven.palma@huggingface.co> |
||
|
|
2b71789e15 | docs: fix imitation learning robots docs command (#1308) | ||
|
|
1688fa3a88 | (chore): incorrect resume parameter in recording documentation (#1301) | ||
|
|
8d7969e7cb | fix(record): no teleop arg in reset environment (#1294) | ||
|
|
35e67585bf | Fixes on robot integration tutorial (#1290) | ||
|
|
438334d58e |
Add sim tutorial, fix lekiwi motor config, add notebook links (#1275)
Co-authored-by: AdilZouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com> Co-authored-by: Michel Aractingi <michel.aractingi@gmail.com> Co-authored-by: Eugene Mironov <helper2424@gmail.com> Co-authored-by: imstevenpmwork <steven.palma@huggingface.co> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org> |
||
|
|
69e8946480 | fix(docs): update send_feedback docstrings | ||
|
|
96fa48b5ec | Robot integration tutorial (#1285) | ||
|
|
58afa2fbb0 |
fix(docs): SmolVLA fine-tuning getting started (#1201)
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: danaaubakirova <d.aubakirova@alumni.edu.kz> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Francesco Capuano <francesco_capuano@aol.com> Co-authored-by: Steven Palma <steven.palma@huggingface.co> |
||
|
|
d8079587a2 |
Port HIL SERL (#644)
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co> Co-authored-by: Eugene Mironov <helper2424@gmail.com> Co-authored-by: s1lent4gnt <kmeftah.khalil@gmail.com> Co-authored-by: Ke Wang <superwk1017@gmail.com> Co-authored-by: Yoel Chornton <yoel.chornton@gmail.com> Co-authored-by: imstevenpmwork <steven.palma@huggingface.co> Co-authored-by: Simon Alibert <simon.alibert@huggingface.co> |
||
|
|
f976935ba1 | fix(record): no teleop needed when running with policy (#1284) | ||
|
|
2de93a8000 | fix(docs): update realsense documentation (#1268) |