Compare commits

...

608 Commits

Author SHA1 Message Date
c28e774234 optimaze the speed of end pose control
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-13 20:17:31 +08:00
80b1a97e4c change opencv to realsense camera
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-12 17:56:21 +08:00
f4fec8f51c change pose control api
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-11 16:17:39 +08:00
f4f82c916f some bug still
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-11 15:20:14 +08:00
ecbe154709 no change
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-09 16:24:00 +08:00
d00c154db9 update state
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-09 16:23:09 +08:00
55f284b306 mix control fix bug
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-09 10:58:28 +08:00
cf8df17d3a add realman shadow src
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-07 11:29:43 +08:00
e079566597 xbox controller demo
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-07 11:22:05 +08:00
83d6419d70 手柄控制第一次提交 2025-06-05 21:56:52 +08:00
a0ec9e1cb1 single arm test
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
2025-06-05 15:50:26 +08:00
3eede4447d dual arm test 2025-06-05 15:50:18 +08:00
9c6a7d9701 new md 2025-06-05 15:50:11 +08:00
7b201773f3 single arm test 2025-06-05 15:49:57 +08:00
mshukor
bfd26eef5a Add SmolVLA (#1175)
Some checks failed
Secret Leaks / trufflehog (push) Has been cancelled
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: fracapuano <francesco.capuano@huggingface.co>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Dana Aubakirova <118912928+danaaubakirova@users.noreply.github.com>
Co-authored-by: Remi <remi.cadene@huggingface.co>
2025-06-03 17:11:50 +02:00
pre-commit-ci[bot]
1537d0ab90 [pre-commit.ci] pre-commit autoupdate (#1048)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
2025-06-02 19:30:39 +02:00
Adil Zouitine
2be7f3a3ff (hotfix): nightly CI by clipping pymunk version below 7.0.0 (#1182) 2025-06-02 13:18:02 +02:00
Adil Zouitine
0cf864870c [Fix] Unpin torch beyond 2.6.0 & torchcodec beyond 0.2.1 (#1127) 2025-05-28 16:54:20 +02:00
mshukor
1786916a16 Update README.md (#1163) 2025-05-27 11:50:43 +02:00
mshukor
0507ad4f68 Update README.md (#1160) 2025-05-27 11:45:07 +02:00
Ragnar
bed90e3a41 fix: typos and grammar (#1148) 2025-05-25 17:20:45 +02:00
Francesco Capuano
6163daaaa4 Fix: emptying action queue between resets (#1117) 2025-05-22 21:37:21 +02:00
Pepijn
8e2a394442 Add editable -e for feetech install command (#1133) 2025-05-20 18:51:21 +02:00
masato-ka
a445d9c9da bug fix for #1071 When --display_data=true, Failed running control_robot. (#1073) 2025-05-09 16:53:40 +02:00
CharlesCNorton
f24030d4d8 Update 12_use_so101.md (#1081)
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
2025-05-09 11:04:25 +02:00
Mishig
7598aeaad7 Update 10_use_so100.md; use diff syntax (#944)
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
2025-05-09 11:01:12 +02:00
Pepijn
4485cc0b5b docs: minor corrections and clean-up (#1089) 2025-05-09 11:00:25 +02:00
omahs
8cfab38824 Fix typos (#1070) 2025-05-05 10:35:32 +02:00
Pepijn
ee5525fea1 Docs: adapt text + fix video code (#1064) 2025-05-02 16:10:13 +02:00
Pepijn
a1daeaf0c4 feat(docs): Add new docs build process (#1046)
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
2025-05-02 12:47:23 +02:00
Caroline Pascal
6d723c45a9 feat(encoding): switching to PyAV for ffmpeg related tasks (#983) 2025-04-29 17:39:35 +02:00
Pepijn
674e784aa9 Add description motor order SO-101 leader (#1051) 2025-04-29 11:17:02 +02:00
Pepijn
42bf1e8b9d Update tutorial (#1021)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-28 09:00:32 +02:00
Adil Zouitine
a75d00970f fix(ci): Pin torchcodec (==0.2.1) to fix pipeline temporarly (#1030) 2025-04-24 12:16:02 +02:00
Adil Zouitine
4df18de636 fix(ci): Pin draccus (<0.10.0) and torch (<2.7) to fix pipeline (#1022)
Co-authored-by: imstevenpmwork <steven.palma@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-24 09:42:03 +02:00
Simon Alibert
8dc69c6126 Revert "[pre-commit.ci] pre-commit autoupdate" (#1025) 2025-04-24 09:26:47 +02:00
pre-commit-ci[bot]
7d481e6048 [pre-commit.ci] pre-commit autoupdate (#1011)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-04-23 21:53:09 +02:00
k1000dai
b43ece8934 Add pythno3-dev in Dockerfile to build and modify Readme.md , python-dev to python3-dev (#987)
Co-authored-by: makolon <smakolon385@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-17 16:17:07 +02:00
Alex Thiele
c10c5a0e64 Fix --width --height type parsing on opencv and intelrealsense scripts (#556)
Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-17 15:19:23 +02:00
Junshan Huang
a8db91c40e Fix Windows HTML visualization to make videos could be seen (#647)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-17 15:07:28 +02:00
HUANG TZU-CHUN
0f5f7ac780 Fix broken links in examples/4_train_policy_with_script.md (#697) 2025-04-17 14:59:43 +02:00
pre-commit-ci[bot]
768e36660d [pre-commit.ci] pre-commit autoupdate (#980)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-04-14 21:55:06 +02:00
Caroline Pascal
790d6740ba fix(installation): adding note on ffmpeg version during installation (#976)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-14 15:36:31 +02:00
Steven Palma
5322417c03 fix(examples): removes extra backtick (#948) 2025-04-09 17:44:32 +02:00
Steven Palma
4041f57943 feat(visualization): replace cv2 GUI with Rerun (and solves ffmpeg versioning issues) (#903) 2025-04-09 17:33:01 +02:00
Simon Alibert
2c86fea78a Switch typos pre-commit to mirror (#953) 2025-04-08 12:44:09 +02:00
pre-commit-ci[bot]
437fc29e12 [pre-commit.ci] pre-commit autoupdate (#871)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-04-08 06:58:46 +02:00
Junwu Zhang
aee86b4b18 typo fix: example_1 python script (#631)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-07 17:41:10 +02:00
mshukor
1c873df5c0 Support for PI0+FAST (#921)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Dana Aubakirova <118912928+danaaubakirova@users.noreply.github.com>
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-04 11:51:11 +02:00
Steven Palma
145fe4cd17 fix(deps): avoid torchcodec in macos x86_64 (#925) 2025-04-01 15:51:59 +02:00
Mariusz Dubielecki
e004247ed4 docs: add tip for Mac users regarding Terminal permissions for keyboard (#917)
Signed-off-by: cranberrysoft <dubielecki.mariusz@gmail.com>
2025-03-31 09:44:05 +02:00
Steven Palma
b568de35ad fix(datasets): cast imgs_dir as Path (#915) 2025-03-28 18:08:12 +01:00
Yongjin Cho
ae9c81ac39 fix(docs): correct spelling of 'ffmpeg' in installation instructions (#914) 2025-03-28 17:43:33 +01:00
Steven Palma
78fd1a1e04 chore(docs): update docs (#911) 2025-03-27 09:55:06 +01:00
Steven Palma
90533e6b9f fix(docs): hot-fix updating installation instructions after #883 (#907) 2025-03-26 13:21:40 +01:00
AlexC
2c22f7d76d Add offline mode in the configuration for wandb logging (#897)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-25 13:44:49 +01:00
Qizhi Chen
a774af2eab fix pi0 action padding name (#893)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-25 11:24:46 +01:00
Steven Palma
725b446ad6 fix(deps): constrain PyAV version to resolve OpenCV-python ffmpeg version conflict (#883)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-24 23:40:22 +01:00
Steven Palma
a6015a55f9 chore(scripts): remove deprecated script (#887) 2025-03-23 01:16:50 +01:00
Cole
f39652707c add docs details for resolving firmware update issues (#627)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-19 19:17:07 +01:00
Steven Palma
712d5dae4f fix(os): fix default codec for windows (#875) 2025-03-18 22:04:21 +01:00
Pepijn
952e892fe5 Use float32 instead of int (#877) 2025-03-18 16:36:37 +01:00
Pepijn
e8159997c7 User/pepijn/2025 03 17 act different image shapes (#870) 2025-03-18 11:09:05 +01:00
Steven Palma
1c15bab70f fix(codec): hot-fix for default codec in linux arm platforms (#868) 2025-03-17 13:23:11 +01:00
Guillaume LEGENDRE
9f0a8a49d0 Update test-docker-build.yml 2025-03-15 11:34:17 +01:00
Huan Liu
a3cd18eda9 added wandb.run_id to allow resuming without wandb log; updated log m… (#841)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-15 09:40:39 +01:00
Huan Liu
7dc9ffe4c9 Update 10_use_so100.md (#840) 2025-03-14 17:07:14 +01:00
Jade Choghari
0e98c6ee96 Add torchcodec cpu (#798)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-14 16:53:42 +01:00
Simon Alibert
974028bd28 Organize test folders (#856)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-13 14:05:55 +01:00
Simon Alibert
a36ed39487 Improve pre-commit config (#857) 2025-03-13 13:29:55 +01:00
Ermano Arruda
c37b1d45b6 parametrise tolerance_s in visualize_dataset scripts (#716) 2025-03-13 10:28:29 +01:00
pre-commit-ci[bot]
f994febca4 [pre-commit.ci] pre-commit autoupdate (#844)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-11 11:28:01 +01:00
Steven Palma
12f52632ed chore(docs): update instructions for change in device and use_amp (#843) 2025-03-10 21:03:33 +01:00
Steven Palma
8a64d8268b chore(deps): remove hydra dependency (#842) 2025-03-10 19:00:23 +01:00
Pepijn
84565c7c2e Fix camera rotation error (#839)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-10 17:02:19 +01:00
Ben Sprenger
05b54733da feat: add support for external plugin config dataclasses (#807)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-10 13:25:47 +01:00
Simon Alibert
513b008bcc fix: deactivate tdmpc backward compatibility test with use_mpc=True (#838) 2025-03-10 10:19:54 +01:00
Joe Clinton
32fffd4bbb Fix delay in teleoperation start time (#676)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-08 11:40:07 +01:00
Simon Alibert
03c7cf8a63 Remove pr_style_bot (#832) 2025-03-08 09:39:07 +01:00
Simon Alibert
074f0ac8fe Fix gpu nightly (#829) 2025-03-07 13:21:58 +01:00
Mathias Wulfman
25c63ccf63 🐛 Remove map_location=device that no longer exists when loading DiffusionPolicy from_pretained after commit 5e94738 (#830)
Co-authored-by: Mathias Wulfman <mathias.wulfman@wandercraft.eu>
2025-03-07 13:21:11 +01:00
Steven Palma
5e9473806c refactor(config): Move device & amp args to PreTrainedConfig (#812)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-03-06 17:59:28 +01:00
Harsimrat Sandhawalia
10706ed753 Support for discrete actions (#810) 2025-03-06 10:27:29 +01:00
Steven Palma
0b8205a8a0 chore(doc): add star history graph to the README.md (#815) 2025-03-06 09:44:21 +01:00
Simon Alibert
57ae509823 Revert "docs: update installation instructions to use uv instead of conda" (#827) 2025-03-06 09:43:27 +01:00
Steven Palma
5d24ce3160 chore(doc): add license header to all files (#818) 2025-03-05 17:56:51 +01:00
eDeveloperOZ
d694ea1d38 docs: update installation instructions to use uv instead of conda (#731)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 10:07:35 +01:00
Tim Qian
a00936686f Fix doc (#793)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 10:02:25 +01:00
yadunund
2feb5edc65 Fix printout in make_cameras_from_configs (#796)
Signed-off-by: Yadunund <yadunund@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 10:01:24 +01:00
Yachen Kang
b80e55ca44 change "actions_id_pad" to "actions_is_pad"(🐛 Bug) (#774)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-03-05 01:31:56 +01:00
Pepijn
e8ce388109 Add wired instructions for LeKiwi (#814)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-04 19:04:19 +01:00
Pepijn
a4c1da25de Add kiwi to readme (#803) 2025-03-04 18:43:27 +01:00
Pepijn
a003e7c081 change wheel setup in kinematics (#811)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-04 18:42:45 +01:00
Mishig
a27411022d [visualization] Ignore 2d or 3d data for now (#809) 2025-03-04 10:53:01 +01:00
Steven Palma
3827974b58 refactor(test): remove duplicated code in conftest.py (#804) 2025-03-04 10:49:44 +01:00
Pepijn
b299cfea8a Add step assembly tutorial (#800) 2025-03-04 09:57:37 +01:00
Steven Palma
bf6f89a5b5 fix(examples): Add Tensor type check (#799) 2025-03-03 17:01:04 +01:00
Simon Alibert
8861546ad8 [Security] Add Bandit (#795) 2025-03-01 19:19:26 +01:00
Simon Alibert
9c1a893ee3 [CI] Update Stylebot Permissions (#792) 2025-03-01 12:12:19 +01:00
Simon Alibert
e81c36cf74 Fix dataset version tags (#790) 2025-02-28 14:36:20 +01:00
Simon Alibert
ed83cbd4f2 Switch pyav -> av (#780) 2025-02-28 11:06:55 +01:00
Simon Alibert
2a33b9ad87 Revert "Fix pr_style_bot" (#787) 2025-02-27 16:49:18 +01:00
Quentin Gallouédec
6e85aa13ec Break style to test style bot (#785) 2025-02-27 16:46:06 +01:00
Simon Alibert
af05a1725c Fix pr_style_bot (#786) 2025-02-27 16:43:12 +01:00
Mishig
800c4a847f [Vizualisation] independent column names (#783) 2025-02-27 14:47:18 +01:00
Simon Alibert
bba8c4c0d4 Fix pr_style bot (#782) 2025-02-27 13:09:12 +01:00
Simon Alibert
68b369e321 Fix pr_style_bot (#781) 2025-02-27 12:13:36 +01:00
Mishig
8d60ac3ffc [vizualisation] Add pagination for many episodes (#776) 2025-02-26 19:23:37 +01:00
Simon Alibert
659ec4434d Fix nightly (#775) 2025-02-26 16:36:03 +01:00
Simon Alibert
da265ca920 Add pr style bot (#772) 2025-02-25 23:52:25 +01:00
Simon Alibert
a1809ad3de Add typos checks (#770) 2025-02-25 23:51:15 +01:00
Jannik Grothusen
8699a28be0 [QOL] Enable teleoperation during environment reset (#725) 2025-02-25 19:28:26 +01:00
Raul Garreta
65db5afe1c fixes in 7_get_started_with_real_robot.md (#677) 2025-02-25 19:03:29 +01:00
Youssef Bayouli
75d5fa4604 Optimizing Dockerfile (#751) 2025-02-25 18:42:35 +01:00
Yongjin Cho
e64fad2224 Fix the URL to setup hardware Aloha Stationary in the example document (#766) 2025-02-25 18:33:32 +01:00
Haskely
eecf32e77a feat: Add root directory option for dataset configuration (#765)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-02-25 17:27:36 +01:00
Simon Alibert
3354d919fc LeRobotDataset v2.1 (#711)
Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: Remi Cadene <re.cadene@gmail.com>
2025-02-25 15:27:29 +01:00
Pepijn
aca464ca72 Add mobile so100 (#724) 2025-02-25 09:06:50 +01:00
Simon Alibert
fe483b1d0d Remove poetry.lock (#737)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2025-02-17 12:03:16 +01:00
Simon Alibert
ddeade077e Conform pyproject to PEP 621 (#621) 2025-02-16 14:28:03 +01:00
Simon Alibert
c4c2ce04e7 Update pre-commits (#733) 2025-02-15 15:51:17 +01:00
Simon Alibert
2cb0bf5d41 Add zizmor pre-commit (#732) 2025-02-15 15:50:10 +01:00
Simon Alibert
b86a2c0b47 Fix wandb logging (#730) 2025-02-14 18:00:12 +01:00
Ilia Larchenko
c574eb4984 Fixed eval.py on MPS (#702) 2025-02-14 00:03:55 +01:00
Simon Alibert
1e49cc4d60 Prevent resuming from hub (#726) 2025-02-13 17:15:55 +01:00
Simon Alibert
e71095960f Fixes following #670 (#719) 2025-02-12 12:53:55 +01:00
Simon Alibert
90e099b39f Remove offline training, refactor train.py and logging/checkpointing (#670)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2025-02-11 10:36:06 +01:00
Simon Alibert
334deb985d Update CI trigger rules (#712) 2025-02-10 17:22:15 +01:00
Simon Alibert
8548a87bd4 Remove dataset tests artifacts (#701) 2025-02-09 14:24:01 +01:00
Remi
638d411cd3 Add Pi0 (#681)
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Pablo <pablo.montalvo.leroux@gmail.com>
2025-02-04 18:01:04 +01:00
Pepijn
dd974529cf User/pepijn/2025 01 31 improved tutorial so100 (#666) 2025-02-03 18:27:55 +01:00
Simon Alibert
43e079f73e Fix nightly tests docker images (#675) 2025-02-02 13:59:33 +01:00
Simon Alibert
6674e36824 Fix Docker cpu/gpu builds (#667) 2025-02-01 12:06:11 +01:00
Pepijn
ae9605f03c fix setting motor id with new dataclass config (#668) 2025-01-31 20:48:46 +01:00
Simon Alibert
3c0a209f9f Simplify configs (#550)
Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: HUANG TZU-CHUN <137322177+tc-huang@users.noreply.github.com>
2025-01-31 13:57:37 +01:00
Simon Alibert
1ee1acf8ad Comply with torchvision 0.21 custom transforms (#665) 2025-01-30 22:06:11 +01:00
Thomas Lips
c4d912a241 Check for "/" in feature names (#660) 2025-01-29 21:54:49 +01:00
Morgan Redfield
4323bdce22 updating config instructions for koch 1v1 motors (#658) 2025-01-28 13:20:33 +01:00
HUANG TZU-CHUN
5daa45436d Fix typos in lerobot/scripts/visualize_dataset.py (#656) 2025-01-28 13:07:10 +01:00
Simon Alibert
4def6d6ac2 Fix cluster image (#653) 2025-01-24 11:25:22 +01:00
Jochen Görtler
d8560b8d5f Bumprerun-sdk dependency to 0.21.0 (#618)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-01-20 09:50:11 +01:00
Pradeep Kadubandi
380b836eee Fix for the issue https://github.com/huggingface/lerobot/issues/638 (#639) 2025-01-15 10:50:38 +01:00
Philip Fung
eec6796cb8 fixes to SO-100 readme (#600)
Co-authored-by: Philip Fung <no@one>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-01-10 11:30:01 +01:00
Mishig
25a8597680 [viz] Fixes & updates to html visualizer (#617) 2025-01-09 11:39:54 +01:00
CharlesCNorton
b8b368310c typo fix: batch_convert_dataset_v1_to_v2.py (#615)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-01-09 09:57:45 +01:00
Ville Kuosmanen
5097cd900e fix(visualise): use correct language description for each episode id (#604)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-01-09 09:39:48 +01:00
CharlesCNorton
bc16e1b497 fix(docs): typos in benchmark readme.md (#614)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-01-09 09:35:27 +01:00
Simon Alibert
8f821ecad0 Fix Quality workflow (#622) 2025-01-08 13:35:11 +01:00
CharlesCNorton
4519016e67 Update README.md (#612) 2025-01-03 16:19:37 +01:00
Eugene Mironov
59e2757434 Fix broken create_lerobot_dataset_card (#590) 2024-12-23 15:05:59 +01:00
Mishig
73b64c3089 [vizualizer] for LeRobodDataset V2 (#576) 2024-12-20 16:26:23 +01:00
s1lent4gnt
66f8736598 fixing typo from 'teloperation' to 'teleoperation' (#566) 2024-12-11 05:57:52 -08:00
Simon Alibert
4c41f6fcc6 Fix example 6 (#572) 2024-12-11 10:32:18 +01:00
Claudio Coppola
44f9b21e74 LerobotDataset pushable to HF from any folder (#563) 2024-12-09 11:32:25 +01:00
berjaoui
03f49ceaf0 Update 7_get_started_with_real_robot.md (#559) 2024-12-09 00:17:49 +01:00
Michel Aractingi
8e7d6970ea Control simulated robot with real leader (#514)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-12-03 12:20:05 +01:00
Remi
286bca37cc Fix missing local_files_only in record/replay (#540)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-12-03 10:53:21 +01:00
Michel Aractingi
a2c181992a Refactor OpenX (#505) 2024-12-03 00:51:55 +01:00
Simon Alibert
32eb0cec8f Dataset v2.0 (#461)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-11-29 19:04:00 +01:00
KasparSLT
96c7052777 Rename deprecated argument (temporal_ensemble_momentum) (#490) 2024-11-25 21:05:13 +01:00
Jannik Grothusen
975c1c25c3 Add distinction between two unallowed cases in name check "eval_" (#489) 2024-11-22 19:19:57 +01:00
resolver101757
20f466768e bug causes error uploading to huggingface, unicode issue on windows. (#450) 2024-11-22 19:15:58 +01:00
Daniel Ritchie
8af693548e Add support for Windows (#494) 2024-11-22 19:14:25 +01:00
Ivelin Ivanov
963738d983 fix: broken images and a few minor typos in README (#499)
Signed-off-by: ivelin <ivelin117@gmail.com>
2024-11-05 15:30:59 +01:00
Arsen Ohanyan
e0df56de62 Fix config file (#495) 2024-10-31 16:41:49 +01:00
Hirokazu Ishida
538455a965 feat: enable to use multiple rgb encoders per camera in diffusion policy (#484)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-10-30 11:00:05 +01:00
Remi
172809a502 [Fix] Move back to manual calibration (#488) 2024-10-26 15:27:21 +02:00
Remi
55e4ff6742 Fix autocalib moss (#486) 2024-10-26 12:15:17 +02:00
Remi
07e8716315 Add FeetechMotorsBus, SO-100, Moss-v1 (#419)
Co-authored-by: jess-moss <jess.moss@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-25 11:23:55 +02:00
Arsen Ohanyan
114870d703 Fix link (#482)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-10-23 16:24:06 +02:00
Bastian Krohg
2efee45ef1 Update 9_use_aloha.md, missing comma (#479) 2024-10-23 16:13:26 +02:00
Boris Zimka
c351e1fff9 Fix gymnasium version as pre-1.0.0 (#471)
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-10-18 10:23:27 +02:00
Alexander Soare
cd0fc261c0 Make say(blocking=True) work for Linux (#460) 2024-10-17 15:22:21 +01:00
Remi
77478d50e5 Refactor record with add_frame (#468)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-16 20:51:35 +02:00
Remi
97b1feb0b3 Add policy/act_aloha_real.yaml + env/act_real.yaml (#429)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-10 17:12:45 +02:00
Eugene Mironov
c29e70e5a1 Fix issue with wrong using index instead of camera_index in opencv (#466) 2024-10-09 11:35:19 +02:00
Remi
d5b669634a Fix nightly by updating .cache in dockerignore (#464) 2024-10-07 11:35:35 +02:00
Simon Alibert
1a343c3591 Add support for Stretch (hello-robot) (#409)
Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: Remi Cadene <re.cadene@gmail.com>
2024-10-04 18:56:42 +02:00
Remi
26f97cfd17 Enable CI for robot devices with mocked versions (#398)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-10-03 17:05:23 +02:00
Simon Alibert
72f402d44b Fix dataset card (#453) 2024-09-25 16:56:05 +02:00
Alexander Soare
92573486a8 Don't use async envs by default (#448) 2024-09-20 15:22:52 +02:00
Simon Alibert
c712d68f6a Fix nightlies (#443) 2024-09-18 14:51:45 +02:00
Dana Aubakirova
f431a08efa small fix: assertion error message in envs/utils.py (#426)
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-09-12 18:03:34 +02:00
Remi
beaa427504 Fix slow camera fps with Aloha (#433) 2024-09-12 14:20:24 +02:00
Mishig
a88dd602d9 [Vizualization] Better error message (#430)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-12 10:46:48 +02:00
Mishig
6c0324f467 [Vizualization] Fix video layout (#431) 2024-09-12 10:06:29 +02:00
Alexander Soare
a60d27b132 Raise ValueError if horizon is incompatible with downsampling (#422) 2024-09-09 17:22:46 +01:00
Mishig
9c463661c1 [Vizualization] Better UI on small screens (like in smartphones) (#423) 2024-09-09 15:39:40 +02:00
Mishig
4255655618 [Vizualization] Show user error if videos codec is not supported (#424) 2024-09-09 15:38:41 +02:00
Joe Clinton
f17d9a2ba1 Bug: Fix VQ-Bet not working when n_action_pred_token=1 (#420)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-09-09 09:41:13 +01:00
Remi
9ff829a3a1 Add comments for Aloha (#417)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-06 21:07:52 +02:00
Mishig
d6516f0e03 [Visualization tool] Fix when dim state != dim action (#415) 2024-09-06 17:07:26 +02:00
Jack Vial
b0b8612eff fix(calibrate): fix calibrate arms option type. should be str not int (#418)
Co-authored-by: Remi <remi.cadene@huggingface.co>
2024-09-06 14:44:31 +02:00
Mishig
1072a055db [Visualization tool] Fix videos sync (#416) 2024-09-06 10:16:08 +02:00
Remi
9c9f5cac90 Add IntelRealSenseCamera (#410)
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
Co-authored-by: shantanuparab-tr <shantanu@trossenrobotics.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-05 23:59:41 +02:00
Simon Alibert
9d0c6fe419 Fix nightlies & untrack json files from git lfs (#414) 2024-09-05 15:07:43 +02:00
Simon Alibert
54ac25cfc9 Revert "hotfix"
This reverts commit 150a292795.
2024-09-05 12:54:53 +02:00
Remi Cadene
150a292795 hotfix 2024-09-04 22:03:33 +02:00
Remi
429a463aff Control aloha robot natively (#316)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-09-04 19:28:05 +02:00
Jack Vial
27ba2951d1 fix(tdmpc): Add missing save_freq to tdmpc policy config (#404)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-09-02 19:04:41 +01:00
Jack Vial
b2896d38f5 fix(act): n_vae_encoder_layers config parameter wasn't being used (#400) 2024-09-02 18:29:27 +01:00
Kenneth Gerald Hamilton
c0da806232 repair mailto link (#397) 2024-09-01 00:11:39 +02:00
Mishig
114e09f570 rm EpisodeSampler from viz (#389) 2024-08-30 10:53:55 +02:00
Simon Alibert
04a995e7d1 Fix safe_action (#395) 2024-08-30 10:36:05 +02:00
Michel Aractingi
4806336816 Add the possibility to visualize language instructions in visualize_dataset_html.py (#388)
Co-authored-by: Mishig <dmishig@gmail.com>
2024-08-28 11:50:31 +02:00
Remi
1ce418e4a1 Add koch bimanual (#385) 2024-08-28 00:53:31 +02:00
Michel Aractingi
eb4c505cff Support for converting OpenX datasets from RLDS format to LeRobotDataset (#354)
Signed-off-by: youliangtan <tan_you_liang@hotmail.com>
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: youliangtan <tan_you_liang@hotmail.com>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-08-27 09:07:00 +02:00
Mishig
aad59e6b6b Fix videos in visualize_dataset are not in sync (#382) 2024-08-26 17:38:48 +02:00
Alexander Soare
9ce98bb93c Add safety limits on relative action target (#373) 2024-08-26 14:30:18 +01:00
Alexander Soare
97086cdcdf Make gripper_open_degree a config param (#379) 2024-08-26 12:28:16 +01:00
Alexander Soare
9c7649f140 Make sure init_hydra_config does not require any keys (#376) 2024-08-23 12:27:08 +01:00
Zhuoheng Li
a2592a5563 Provide more information to the user (#358)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-08-23 11:00:35 +01:00
ellacroix
b5ad79a7d3 Fix typo in tutorial (#371) 2024-08-21 14:14:01 +02:00
Remi
996468bcce Update README.md 2024-08-20 16:45:57 +02:00
Remi
f98200297d Slightly improve tutorial and README (#370)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-08-20 16:41:39 +02:00
NielsRogge
86bbd16d43 Improve discoverability on the hub (#325)
Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-08-19 15:16:46 +02:00
Alexander Soare
0f6e0f6d74 Fix input dim (#365) 2024-08-19 11:42:32 +01:00
Remi
fc3e545e03 Update README.md 2024-08-19 11:14:10 +02:00
Simon Alibert
b98ea415c1 Add dataset cards (#363) 2024-08-16 10:08:44 +02:00
Remi
bbe9057225 Improve control robot ; Add process to configure motor indices (#326)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: jess-moss <jess.moss@dextrousrobotics.com>
Co-authored-by: Marina Barannikov <marina.barannikov@huggingface.co>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-08-15 18:11:33 +02:00
Alexander Soare
8c4643687c fix bug in example 2 (#361) 2024-08-15 13:59:47 +01:00
Julien Perez
fab037f78d feat for the GPU poors : Add GPU availability check in evaluate_pretr… (#359)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-08-13 16:03:05 +01:00
Simon Alibert
03d647269e Fix CI builds (#357) 2024-08-12 17:57:03 +02:00
Remi
2252b42337 Add visualize_dataset_html with http.server (#188) 2024-08-08 20:19:06 +03:00
Adrien
bc6384bb80 fix ci (#351)
Signed-off-by: Adrien <adrien@huggingface.co>
2024-08-05 16:12:26 +02:00
resolver101757
8df7e63d61 Update README for cross-platform installation compatibility (#347) 2024-07-30 00:48:41 +02:00
Halvard Bariller
7a3cb1ad34 Adjust the timestamps' description in Diffusion Policy (#343)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-07-26 12:47:03 +01:00
Alexander Soare
f8a6574698 Add online training with TD-MPC as proof of concept (#338) 2024-07-25 11:16:38 +01:00
Alexander Soare
abbb1d2367 Make sure policies don't mutate the batch (#323) 2024-07-22 20:38:33 +01:00
Simon Alibert
0b21210d72 Convert datasets to av1 encoding (#302) 2024-07-22 20:08:59 +02:00
Simon Alibert
461d5472d3 Fix visualize_image_transforms (#333) 2024-07-18 22:26:00 +02:00
Simon Alibert
c75ea789a8 Detect secrets in pre-commit (#332) 2024-07-18 19:39:15 +02:00
Simon Alibert
ee200e86cb Ensure no upper bound constraints on dependencies (#327) 2024-07-18 12:07:15 +02:00
Simon Alibert
8865e19c12 Fix datasets missing versions (#318) 2024-07-16 23:02:31 +02:00
Alexander Soare
5f5efe7cb9 Improve error message when attempting to overwrite a training output folder (#322) 2024-07-16 16:50:31 +01:00
Alexander Soare
c0101f0948 Fix ACT temporal ensembling (#319) 2024-07-16 10:27:21 +01:00
Remi
5e54e39795 Add real robot devices and scripts to control real robot (#288)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-07-15 17:43:10 +02:00
Remi
5ffcb48a9a Add available list of raw repo ids (#312) 2024-07-13 11:30:50 +02:00
Alexander Soare
471eab3d7e Make ACT compatible with "observation.environment_state" (#314) 2024-07-11 13:12:22 +01:00
Seungjae Lee
64425d5e00 Bug fix: fix error when setting select_target_actions_indices in vqbet (#310)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-07-10 17:56:11 +01:00
Simon Alibert
e410e5d711 Improve video benchmark (#282)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-07-09 20:20:25 +02:00
Alexander Soare
cc2f6e7404 Train diffusion pusht_keypoints (#307)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-07-09 12:35:50 +01:00
Alexander Soare
a4d77b99f0 Include observation.environment_state with keypoints in PushT dataset (#303)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-07-09 08:27:40 +01:00
Alexander Soare
7bd5ab16d1 Fix generation of dataset test artifact (#306) 2024-07-05 11:02:26 +01:00
Simon Alibert
74362ac453 Add VQ-BeT copyrights (#299) 2024-07-04 13:02:31 +02:00
Simon Alibert
964f9e86d6 Cleanup config defaults (#300) 2024-07-04 11:53:29 +02:00
Nur Muhammad "Mahi" Shafiullah
7a5fc76b9f Added new credits and citations (#301) 2024-07-03 20:57:47 +02:00
Alexander Soare
342f429f1c Add test to make sure policy dataclass configs match yaml configs (#292) 2024-06-26 09:09:40 +01:00
Seungjae Lee
7d1542cae1 Add VQ-BeT (#166) 2024-06-26 08:55:02 +01:00
Alexander Soare
9aa4cdb976 Checkpoint on final step of training even when it doesn't coincide with save_freq. (#284) 2024-06-20 08:27:01 +01:00
Simon Alibert
2abef3bef9 Enable video_reader backend (#220)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-19 17:15:25 +02:00
Thomas Wolf
48951662f2 Bug fix: missing attention mask in VAE encoder in ACT policy (#279)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-19 12:07:21 +01:00
Thomas Wolf
56199fb76f Update readme to detail the lerobot dataset format (#275)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-18 13:40:03 +01:00
Thomas Wolf
11f1cb5dc9 Bug fix: fix setting different learning rates between backbone and main model in ACT policy (#280) 2024-06-18 13:31:35 +01:00
Jihoon Oh
b72d574891 fix Unet global_cond_dim to use state dim, not action dim (#278) 2024-06-17 15:17:28 +01:00
Alexander Soare
15dd682714 Add multi-image support to diffusion policy (#218) 2024-06-17 08:11:20 +01:00
Marina Barannikov
e28fa2344c added visualization for min and max transforms (#271)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
2024-06-17 09:09:57 +02:00
Simon Alibert
a92d79fff2 Fix nightlies (#273) 2024-06-14 17:11:19 +01:00
Thomas Wolf
125bd93e29 Improve push_dataset_to_hub API + Add unit tests (#231)
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-13 15:18:02 +02:00
Marina Barannikov
c38f535c9f FIx make_dataset to match transforms config (#264)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-06-12 19:45:42 +02:00
Marina Barannikov
ff8f6aa6cd Add data augmentation in LeRobotDataset (#234)
Co-authored-by: Simon Alibert <alibert.sim@gmail.com>
Co-authored-by: Remi Cadene <re.cadene@gmail.com>
2024-06-11 19:20:55 +02:00
Ikko Eltociear Ashimine
1cf050d412 chore: update 4_train_policy_with_script.md (#257)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-06-11 08:24:39 +01:00
Wael Karkoub
54c9776bde Improves Type Annotations (#252) 2024-06-10 19:09:48 +01:00
Luc Georges
a06598678c feat(ci): add trufflehog secrets detection (#254) 2024-06-10 14:25:43 +02:00
Thomas Lips
055a6f60c6 add root argument to the dataset visualizer to visualize local datasets (#249) 2024-06-10 10:44:32 +02:00
Simon Alibert
e54d6ea1eb Make display_sys_info.py install-agnostic (#253) 2024-06-07 15:02:17 +02:00
Alexander Soare
1eb4bfe2e4 Fix videos_dir documentation (#247) 2024-06-05 08:25:20 +01:00
Alexander Soare
21f222fa1d Add out_dir option to eval (#244) 2024-06-04 21:01:53 +02:00
amandip7
33362dbd17 Adding parameter dataloading_s to console logs and wandb for tracking… (#243)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-06-04 17:02:05 +01:00
Ruijie
b0d954c6e1 Fix bug in normalize to avoid divide by zero (#239)
Co-authored-by: rj <rj@teleopstrio-razer.lan>
Co-authored-by: Remi <re.cadene@gmail.com>
2024-06-04 12:21:28 +02:00
Simon Alibert
bd3111f28b Fix visualize_dataset.py --help (#241) 2024-06-03 16:35:16 +02:00
Alexander Soare
cf15cba5fc Remove redundant slicing operation in Diffusion Policy (#240) 2024-06-03 13:04:24 +01:00
jganitzer
042e193995 Typo in examples\4_train_policy_with_script.md (#235) 2024-05-31 18:14:14 +01:00
Remi
d585c73f9f Add real-world support for ACT on Aloha/Aloha2 (#228)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-31 15:31:02 +02:00
Radek Osmulski
504d2aaf48 add EpisodeAwareSampler (#217)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-31 13:43:47 +01:00
Radek Osmulski
83f4f7f7e8 Add precision param to format_big_number (#232) 2024-05-31 10:19:01 +02:00
Alexander Soare
633115d861 Fix chaining in MultiLerobotDataset (#233) 2024-05-31 09:03:28 +01:00
Alexander Soare
57fb5fe8a6 Improve documentation on VAE encoder inputs (#215) 2024-05-30 19:16:44 +02:00
Alexander Soare
0b51a335bc Add a test for MultiLeRobotDataset making sure it produces all frames. (#230)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-30 17:46:25 +01:00
Alexander Soare
111cd58f8a Add MultiLerobotDataset for training with multiple LeRobotDatasets (#229) 2024-05-30 16:12:21 +01:00
Remi
265b0ec44d Refactor env to add key word arguments from config yaml (#223)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-05-30 13:45:22 +02:00
Remi
2c2e4e14ed Add aloha_dora_format.py (#201)
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
2024-05-30 11:26:39 +02:00
Simon Alibert
13310681b1 Enable cuda for end-to-end tests (#222) 2024-05-29 23:02:23 +02:00
Alexander Soare
3d625ae6d3 Handle crop_shape=None in Diffusion Policy (#219) 2024-05-28 18:27:33 +01:00
Alexander Soare
e3b9f1c19b Add resume training (#205)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-28 12:04:23 +01:00
Simon Alibert
7ec76ee235 Fix nightly builds (#216) 2024-05-28 10:43:34 +02:00
Radek Osmulski
3b86050ab0 throw an error if config.do_maks_loss and action_is_pad not provided in batch (#213)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-27 09:06:26 +01:00
Alexander Soare
6d39b73399 Adds a tutorial section on how to use arbitrary configuration files (#206) 2024-05-24 12:39:11 +01:00
Simon Alibert
aca424a481 Add dev docker image (#189)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-23 14:39:14 +02:00
Simon Alibert
35c1ce7a66 Fix install issues (#191) 2024-05-23 14:25:18 +02:00
Alexander Soare
e67da1d7a6 Add tutorials for using the training script and (#196)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-21 16:47:49 +01:00
Alexander Soare
b6c216b590 Add Automatic Mixed Precision option for training and evaluation. (#199) 2024-05-20 18:57:54 +01:00
Alexander Soare
2b270d085b Disable online training (#202)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-20 18:27:54 +01:00
Remi
c4da689171 Hot fix to compute validation loss example test (#200)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-20 18:30:11 +02:00
Radek Osmulski
9b62c25f6c Adds split_by_episodes to LeRobotDataset (#158) 2024-05-20 14:04:04 +02:00
Remi
01eae09ba6 Fix aloha real-world datasets (#175) 2024-05-20 13:48:09 +02:00
Alexander Soare
19dfb9144a Update the README to reflect WandB disabled by default (#198) 2024-05-20 09:02:24 +01:00
Alexander Soare
096149b118 Disable wandb by default (#195) 2024-05-17 18:01:39 +01:00
Alexander Soare
5ec0af62c6 Explain why n_encoder_layers=1 (#193) 2024-05-17 15:05:40 +01:00
Alexander Soare
625f0557ef Act temporal ensembling (#186) 2024-05-17 14:57:49 +01:00
Alexander Soare
4d7d41cdee Fix act action queue (#185) 2024-05-16 15:43:25 +01:00
Akshay Kashyap
c9069df9f1 Port SpatialSoftmax and remove Robomimic dependency (#182)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-16 15:34:10 +01:00
Alexander Soare
68c1b13406 Make policies compatible with other/multiple image keys (#149) 2024-05-16 13:51:53 +01:00
Simon Alibert
f52f4f2cd2 Add copyrights (#157) 2024-05-15 12:13:09 +02:00
Simon Alibert
89c6be84ca Limit datasets major update (#176)
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
Co-authored-by: Quentin Lhoest <lhoest.q@gmail.com>
2024-05-12 08:15:07 +02:00
AshisGhosh
fc5cf3d84a Fixes issue #152 - error with creating wandb artifact (#172)
Co-authored-by: Ashis Ghosh <ahsisghosh@live.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-05-12 08:13:12 +02:00
Simon Alibert
29a196c5dd Fix #173 - Require gym-pusht to be installed for test_examples_3_and_2 (#174) 2024-05-12 08:08:59 +02:00
Remi
ced3de4c94 Fix hanging in visualize_dataset.py when num_workers > 0 (#165) 2024-05-11 19:28:22 +03:00
Vincent Moens
7b47ab211b Remove torchrl acknowledgement (#177) 2024-05-11 14:45:51 +03:00
Alexander Soare
1249aee3ac Enable logging all the information returned by the forward methods of policies (#151) 2024-05-10 07:45:32 +01:00
Alexander Soare
b187942db4 Add context manager for seeding (#164) 2024-05-09 17:58:39 +01:00
Alexander Soare
473345fdf6 Fix stats override in ACT config (#161) 2024-05-09 15:16:47 +01:00
Alexander Soare
e89521dfa0 Enable tests for TD-MPC (#160) 2024-05-09 13:42:12 +01:00
Simon Alibert
7bb5b15f4c Remove dependencies upper bounds constraints (#145) 2024-05-08 17:23:10 +00:00
Simon Alibert
df914aa76c Update dev docker build (#148) 2024-05-08 17:21:58 +00:00
Ikko Eltociear Ashimine
0ea7a8b2a3 refactor: update configuration_tdmpc.py (#153)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-05-08 18:13:51 +01:00
Akshay Kashyap
460df2ccea Support for DDIMScheduler in Diffusion Policy (#146) 2024-05-08 18:05:16 +01:00
Alexander Soare
f5de57b385 Fix SpatialSoftmax input shape (#150) 2024-05-08 14:57:29 +01:00
Alexander Soare
47de07658c Override pretrained model config (#147) 2024-05-08 12:56:21 +01:00
Alexander Soare
26d9a070d8 Add policy and dataset tags to WandB logging (#144) 2024-05-07 09:09:21 +01:00
Simon Alibert
eb6bfe01b2 Relax version contraints & poetry lock (#139) 2024-05-06 17:38:29 +02:00
Alexander Soare
a8e245fb31 Remove loss masking from diffusion policy (#135) 2024-05-06 07:27:01 +01:00
Simon Alibert
f5e76393eb Release cleanup (#132)
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: Cadene <re.cadene@gmail.com>
2024-05-06 03:03:14 +02:00
Remi
6eaffbef1d Add 25 real world datasets (static + mobile aloha) (#133) 2024-05-05 19:13:11 +02:00
Alexander Soare
6e6feae09e Remove additional frame from eval render (#137) 2024-05-05 13:49:53 +02:00
Alexander Soare
f6fe162432 Rename Diffusion Policy model repository (#136) 2024-05-05 12:06:58 +01:00
Alexander Soare
f3bba0270d Remove EMA model from Diffusion Policy (#134) 2024-05-05 11:26:12 +01:00
Alexander Soare
d747195c57 Fix loops in eval.py (#128) 2024-05-04 15:21:10 +01:00
Simon Alibert
c77633c38c Add regression tests (#119)
- Add `tests/scripts/save_policy_to_safetensor.py` to generate test artifacts
- Add `test_backward_compatibility to test generated outputs from the policies against artifacts
2024-05-04 16:20:30 +02:00
Remi
19812ca470 Add dataset visualization with rerun.io (#131)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-05-04 16:07:14 +02:00
Simon Alibert
c015252e20 Remove batch length restrictions in select_action (#123) 2024-05-04 15:33:55 +02:00
Alexander Soare
bccee745c3 Refactor eval.py (#127) 2024-05-03 17:33:16 +01:00
Simon Alibert
b7b69fcc3d Publish environments (#120) 2024-05-03 16:25:45 +02:00
Remi
b2cda12f87 Add video decoding to LeRobotDataset (#92) 2024-05-03 00:50:19 +02:00
Alexander Soare
c1668924ab Fix missing policy.to(device) in policy factory (#126) 2024-05-01 17:26:58 +01:00
Alexander Soare
d1855a202a Refactor TD-MPC (#103)
Co-authored-by: Cadene <re.cadene@gmail.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-05-01 16:40:04 +01:00
Alexander Soare
a4891095e4 Use PytorchModelHubMixin to save models as safetensors (#125)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-05-01 16:17:18 +01:00
Alexander Soare
01d5490d44 Follow transformers single file naming conventions (#124) 2024-05-01 13:09:42 +01:00
Alexander Soare
986583dc5c Nest ACT model in ACT Policy (#122) 2024-04-30 17:17:40 +01:00
Alexander Soare
9d60dce6f3 Tidy up yaml configs (#121) 2024-04-30 16:08:59 +01:00
Remi
e4e739f4f8 Refactor push_dataset_to_hub (#118) 2024-04-30 14:25:41 +02:00
Simon Alibert
2765877f28 Speed up CI, add more checks (#115)
- Split pytest and end-to-end tests into separate jobs
- Add poetry check to ensure pyproject.toml and poetry.lock are in sync
- Add ruff format --diff to ensure style formatting is applied (fails if ruff would reformat anything)
2024-04-29 23:05:55 +02:00
Adil Zouitine
1ec5f77f7c Remove mask check key in XarmProcessor (#117) 2024-04-29 22:00:37 +02:00
Quentin Gallouédec
508bd92d03 Remove update method from the policy (#99)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-04-29 12:27:58 +02:00
Adil Zouitine
5b4fd8891d Update UmiProcessor default fps to 10 (#116) 2024-04-29 12:11:34 +02:00
Alexander Soare
ccffa9e406 Fix policy defaults (#113) 2024-04-29 08:26:59 +01:00
Simon Alibert
791506dfb8 Remove warnings (#111)
- Replace `use_pretrained_backbone` with `pretrained_backbone_weights`
- Bump diffusers' minimum version `0.26.3` -> `0.27.2`
- Add ignore flags in CI's pytest
- Change Box observation spaces in simulation environments
- Set `version_base="1.2"` in Hydra initializations
- Bump einops' minimum version `0.7.0` -> `0.8.0`
2024-04-29 00:31:33 +02:00
Adil Zouitine
55dc9f7f51 Refactor the download and publication of the datasets and convert it into CLI script (#95)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-04-29 00:08:17 +02:00
Adil Zouitine
81e490d46f Add UMI-gripper dataset (#83)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-04-28 18:41:07 +02:00
Simon Alibert
a4b6c5e3b1 Add torchaudio (#110) 2024-04-27 14:00:38 +02:00
Simon Alibert
bf2eebb090 Update readme & remove example 1 (#108)
Co-authored-by: Remi <re.cadene@gmail.com>
- Update instructions for installing the library
- Remove deprecated example 1 (as we are now only using `LeRobotDataset` since #91)
2024-04-27 09:48:02 +02:00
Simon Alibert
fe2b9af64f Add test-docker-build workflow (#109)
Adds a `test-docker-build.yml` workflow to ensure that docker images can correctly build when their Dockerfile has been modified on PRs.
2024-04-27 09:40:21 +02:00
Simon Alibert
fdf6a0c4e3 More CI cleanup, add style workflow (#107)
- Changes on the `test.yml` workflow:
  - Using poetry instead of pip. Contrary to what I wrote in #75, it is possible to use poetry (and have the benefits of shorter install times) without the need for having two separate versions of `pyproject.toml` and `poetry.lock`.
  - Reduce the trigger scope to only run when files in these directories are modified:
    - `lerobot/`
    - `tests/`
    - `examples/`
    - `.github/`
- Add `style.yml` workflow for doing a `ruff check` pass on the code
- More cleanup (removed deprecated workflow)
2024-04-27 09:37:56 +02:00
Alexander Soare
45f351c618 Make sure targets are normalized too (#106) 2024-04-26 11:18:39 +01:00
Simon Alibert
b980c5dd9e CI nightlies cpu/gpu & cleanup (#75) 2024-04-25 14:58:39 +02:00
Remi
659c69a1c0 Refactor datasets into LeRobotDataset (#91)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-04-25 12:23:12 +02:00
Remi
e760e4cd63 Move normalization to policy for act and diffusion (#90)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-04-25 11:47:38 +02:00
Remi
c1bcf857c5 Fix online training (#94) 2024-04-23 18:54:55 +02:00
Remi
1030ea0070 Loads episode_data_index and stats during dataset __init__ (#85)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-04-23 14:13:25 +02:00
Alexander Soare
e2168163cd Quality of life patches for eval.py (#86) 2024-04-19 12:33:47 +01:00
Simon Alibert
ac0ab27333 Hotfix test_examples.py (#87) 2024-04-19 12:36:04 +02:00
Alexander Soare
8d980940a2 Fix tolerance for delta_timestamps (#84)
Co-authored-by: Remi <re.cadene@gmail.com>
2024-04-18 18:48:22 +01:00
Simon Alibert
7ad1909641 Tests cleaning & simplification (#81) 2024-04-18 14:47:42 +02:00
Remi
0928afd37d Improve dataset examples (#82)
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-04-18 11:43:16 +02:00
Alexander Soare
d5c4b0c344 Merge pull request #80 from huggingface/alexander-soare/unify_policy_api
Unify policy API
2024-04-17 17:05:22 +01:00
Alexander Soare
dd9c6eed15 Add temporary patch in TD-MPC 2024-04-17 16:27:57 +01:00
Alexander Soare
2298ddf226 wip 2024-04-17 16:21:37 +01:00
Alexander Soare
63e5ec6483 revert some formatting changes 2024-04-17 11:40:49 +01:00
Alexander Soare
c50a13ab31 draft 2024-04-17 10:50:54 +01:00
Alexander Soare
18dd8f32cd Merge remote-tracking branch 'upstream/main' into unify_policy_api 2024-04-17 09:10:30 +01:00
Alexander Soare
6d78bca749 Merge pull request #77 from huggingface/alexander-soare/fix_save_stats
Fix issue with saving freshly computed stats
2024-04-17 09:09:18 +01:00
Alexander Soare
296bbfe1ad Merge branch 'fix_stats_saving' into unify_policy_api 2024-04-17 09:08:04 +01:00
Alexander Soare
c9454333d8 revision 2024-04-17 09:02:35 +01:00
Alexander Soare
1331d3b4e4 fix issue with saving freshly computed stats 2024-04-17 08:49:28 +01:00
Alexander Soare
bff4b673c9 Merge remote-tracking branch 'upstream/main' into unify_policy_api 2024-04-17 08:08:57 +01:00
Remi
3f1c322d56 Merge pull request #73 from huggingface/user/rcadene/2024_04_14_hf_datasets
Use Hugging Face datasets.Dataset
2024-04-16 21:54:37 +02:00
Simon Alibert
fbc31d906c Merge pull request #74 from huggingface/user/aliberts/2024_04_15_setup_contributions
Setup contributions
2024-04-16 19:51:13 +02:00
Simon Alibert
4057cc6c28 Apply suggestions from code review
Various fixes for #74

Co-authored-by: Remi <re.cadene@gmail.com>
2024-04-16 19:35:01 +02:00
Cadene
91badebdfc fix tests 2024-04-16 17:29:31 +00:00
Cadene
4327e43f19 fix merge thingy 2024-04-16 17:24:25 +00:00
Cadene
36d9e885ef Address comments 2024-04-16 17:20:54 +00:00
Cadene
b241ea46dd move download_and_upload_dataset.py to root_dir 2024-04-16 17:20:53 +00:00
Cadene
e09d25267e fix online training 2024-04-16 17:20:53 +00:00
Cadene
4a3eac4743 fix unit tests, stats was missing, visualize_dataset was broken 2024-04-16 17:20:53 +00:00
Cadene
69eeced9d9 add datasets to poetry/cpu 2024-04-16 17:20:52 +00:00
Cadene
0980fff6cc HF datasets works 2024-04-16 17:19:40 +00:00
Cadene
5edd9a89a0 Move stats_dataset init into else statement -> faster init 2024-04-16 17:19:39 +00:00
Cadene
c7a8218620 typo 2024-04-16 17:19:39 +00:00
Cadene
67d79732f9 Add download_and_upload_dataset.py in script, update all datasets, update online training 2024-04-16 17:19:39 +00:00
Cadene
c6aca7fe44 For Pusht: use hf datasets to train, rename load_data_with_delta_timestamps -> load_previous_and_future_frames 2024-04-16 17:19:06 +00:00
Alexander Soare
cb3978b5f3 backup wip 2024-04-16 18:12:39 +01:00
Remi
4ed55c3ba3 Merge pull request #76 from huggingface/user/aliberts/2024_04_16_refactor_pyproject
Refactor pyproject
2024-04-16 18:55:09 +02:00
Alexander Soare
0eb899de73 Merge remote-tracking branch 'upstream/main' into unify_policy_api 2024-04-16 17:30:41 +01:00
Alexander Soare
a8ddefcfd4 Merge pull request #71 from huggingface/user/alexander-soare/refactor_dp
Partial refactor of Diffusion Policy
2024-04-16 17:24:05 +01:00
Alexander Soare
a9496fde39 revision 1 2024-04-16 17:15:51 +01:00
Alexander Soare
8a322da422 backup wip 2024-04-16 16:35:04 +01:00
Alexander Soare
23be5e1e7b backup wip 2024-04-16 16:31:44 +01:00
Alexander Soare
43a614c173 Fix test_examples 2024-04-16 14:07:16 +01:00
Alexander Soare
9c2f10bd04 ready for review 2024-04-16 13:43:58 +01:00
Alexander Soare
03b08eb74e backup wip 2024-04-16 12:51:32 +01:00
Simon Alibert
38ef878eed Add COC badge 2024-04-16 13:37:20 +02:00
Simon Alibert
dee174f678 pre-commit autoupdate 2024-04-16 12:10:26 +02:00
Simon Alibert
70e8de95f7 Clean & update pyproject 2024-04-16 12:09:56 +02:00
Simon Alibert
376d75f8d3 Add env info 2024-04-16 10:35:43 +02:00
Simon Alibert
a621ec8d88 Add PR & issue templates 2024-04-16 10:34:29 +02:00
Simon Alibert
f9b48abe64 Add CONTRIBUTING 2024-04-16 10:33:58 +02:00
Simon Alibert
352010b718 Add COC 2024-04-16 10:32:09 +02:00
Alexander Soare
5608e659e6 backup wip 2024-04-15 19:06:44 +01:00
Alexander Soare
14f3ffb412 Merge remote-tracking branch 'upstream/main' into refactor_dp 2024-04-15 17:08:28 +01:00
Alexander Soare
e37f4e8c53 Merge pull request #72 from huggingface/alexander-soare/policy_config
Use policy configs instead of passing arguments directly to policy classes
2024-04-15 16:44:21 +01:00
Alexander Soare
30023535f9 revision 1 2024-04-15 10:56:43 +01:00
Alexander Soare
40d417ef60 Make sure to make remove all traces of omegaconf from policy config 2024-04-15 09:59:18 +01:00
Alexander Soare
9241b5e830 pass step as kwarg 2024-04-15 09:52:54 +01:00
Alexander Soare
2ccf89d78c try fix tests 2024-04-15 09:48:03 +01:00
Alexander Soare
ef4bd9e25c Use dataclass config for ACT 2024-04-15 09:39:23 +01:00
Alexander Soare
34f00753eb remove policy.py 2024-04-12 17:13:25 +01:00
Alexander Soare
55e484124a draft pr 2024-04-12 17:03:59 +01:00
Alexander Soare
6d0a45a97d ready for review 2024-04-12 11:36:52 +01:00
Alexander Soare
5666ec3ec7 backup wip 2024-04-11 18:33:54 +01:00
Alexander Soare
94cc22da9e Merge remote-tracking branch 'upstream/main' into refactor_dp 2024-04-11 17:52:10 +01:00
Alexander Soare
976a197f98 backup wip 2024-04-11 17:51:35 +01:00
Remi
5bd953e8e7 Merge pull request #64 from huggingface/user/rcadene/2024_03_31_remove_torchrl
Remove torchrl
2024-04-11 16:45:16 +02:00
Cadene
c1a618e567 fix pusht images type from float32 to uint8, update gym-pusht dependencies 2024-04-11 14:29:16 +00:00
Cadene
4216636084 fix 2024-04-11 14:01:23 +00:00
Cadene
8e5b4365ac fix 2024-04-11 13:57:22 +00:00
Cadene
84d2468da1 fix 2024-04-11 13:51:13 +00:00
Cadene
5be83fbff6 fix 2024-04-11 13:46:13 +00:00
Cadene
a605eec7e9 Use pusht as example so it's fast 2024-04-11 13:36:50 +00:00
Cadene
2f4af32d3f small fix 2024-04-11 13:21:06 +00:00
Cadene
36de77ac18 fix and clarify tests 2024-04-11 13:16:47 +00:00
Cadene
92701088a3 small fix 2024-04-11 13:04:27 +00:00
Cadene
657b27cc8f fix load_data_with_delta_timestamps and add tests 2024-04-11 13:00:09 +00:00
Remi
9229226522 Update lerobot/common/envs/utils.py 2024-04-11 10:35:17 +02:00
Simon Alibert
35069bb3e2 Update CI dep 2024-04-11 09:03:58 +02:00
Simon Alibert
0593d20348 Fix gym-xarm 2024-04-11 08:51:37 +02:00
Cadene
949f4d1a5b remove comment 2024-04-10 17:21:36 +00:00
Cadene
3914831585 remove __name__ outside script 2024-04-10 17:16:44 +00:00
Cadene
f8c5a2eb10 remove comment 2024-04-10 17:14:02 +00:00
Cadene
9874652c2f enable test_compute_stats
enable test_compute_stats
2024-04-10 17:12:54 +00:00
Remi
4c3d8b061e Update lerobot/scripts/eval.py
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2024-04-10 18:07:27 +02:00
Cadene
0f0113a7a6 print_cuda_memory_usage docstring 2024-04-10 16:03:39 +00:00
Cadene
daecc3b64c Remove sbatch*.sh 2024-04-10 15:58:10 +00:00
Cadene
e8622154f8 Replace import gym_pusht in pusht dataset by dynamic import 2024-04-10 15:56:18 +00:00
Cadene
8866b22db1 remove policy is None eval end-to-end tests 2024-04-10 15:09:04 +00:00
Cadene
2186429fa8 policy.batch_size=2 2024-04-10 15:00:54 +00:00
Cadene
693f620df0 drop_last=False 2024-04-10 14:59:54 +00:00
Cadene
79542ecd13 eval_episodes=1 env.episode_length=8 2024-04-10 14:44:04 +00:00
Cadene
48ec479660 fix end-to-end aloha 2024-04-10 14:26:30 +00:00
Cadene
a18bcb39a7 cfg.env.fps 2024-04-10 14:02:11 +00:00
Cadene
ec4bf115d0 fix example_1 test 2024-04-10 13:55:59 +00:00
Cadene
c08003278e test_examples are passing 2024-04-10 13:45:45 +00:00
Cadene
6082a7bc73 Enable test_available.py 2024-04-10 13:06:48 +00:00
Cadene
7c8eb7ff19 Merge remote-tracking branch 'origin/user/rcadene/2024_03_31_remove_torchrl' into user/rcadene/2024_03_31_remove_torchrl 2024-04-10 11:34:51 +00:00
Cadene
06573d7f67 online training works (loss goes down), remove repeat_action, eval_policy outputs episodes data, eval_policy uses max_episodes_rendered 2024-04-10 11:34:01 +00:00
Simon Alibert
91ff69d64c Update gym_xarm 2024-04-09 17:08:36 +02:00
Alexander Soare
07c28a21ea Merge pull request #68 from alexander-soare/refactor_act
Refactor act
2024-04-09 15:35:20 +01:00
Alexander Soare
575891e8ac Merge remote-tracking branch 'upstream/user/rcadene/2024_03_31_remove_torchrl' into refactor_act 2024-04-09 15:19:29 +01:00
Simon Alibert
7f4ff0b170 CI fix attempt 2024-04-09 11:58:59 +02:00
Simon Alibert
d44950e020 Add ssh key 2024-04-09 11:44:55 +02:00
Simon Alibert
dba0375089 Fix CI 2024-04-09 10:45:58 +02:00
Simon Alibert
d21543eb4f Add env.close() 2024-04-09 10:41:20 +02:00
Simon Alibert
dfaacbcf5a Split dev/test dependencies 2024-04-09 10:40:11 +02:00
Simon Alibert
2573e89e1d Remove direct dependencies 2024-04-09 10:38:08 +02:00
Simon Alibert
274f20b49d Update gym-pusht 2024-04-09 10:25:41 +02:00
Simon Alibert
d9019d9e7e disable env_checker in factory 2024-04-09 10:24:28 +02:00
Alexander Soare
e6c6c2367f Merge remote-tracking branch 'upstream/user/rcadene/2024_03_31_remove_torchrl' into refactor_act 2024-04-09 08:36:28 +01:00
Cadene
19e7661b8d Remove torchrl/tensordict from dependecies + update poetry cpu 2024-04-09 03:50:49 +00:00
Cadene
253e495df2 remove render(mode=visualization) 2024-04-09 03:46:05 +00:00
Cadene
6902e01db0 tests are passing for aloha/act policies, removes abstract policy 2024-04-09 03:28:56 +00:00
Cadene
73dfa3c8e3 tests for tdmpc and diffusion policy are passing 2024-04-09 02:50:32 +00:00
Alexander Soare
50e4c8050c Merge remote-tracking branch 'upstream/user/rcadene/2024_03_31_remove_torchrl' into refactor_act 2024-04-08 17:13:11 +01:00
Remi
1e09507bc1 Merge pull request #69 from huggingface/user/aliberts/2024_04_08_remove_envs
Remove envs
2024-04-08 16:55:20 +02:00
Cadene
1149894e1d rename handle -> task 2024-04-08 14:54:52 +00:00
Alexander Soare
9c96349926 Merge remote-tracking branch 'upstream/user/rcadene/2024_03_31_remove_torchrl' into refactor_act 2024-04-08 15:44:00 +01:00
Simon Alibert
6c792f0d3d Update README 2024-04-08 16:24:11 +02:00
Simon Alibert
3f6dfa4916 Add gym-aloha, rename simxarm -> xarm, refactor 2024-04-08 16:24:11 +02:00
Simon Alibert
5dff6d8339 remove aloha 2024-04-08 16:22:13 +02:00
Cadene
70aaf1c4cb test_datasets.py are passing! 2024-04-08 14:16:57 +00:00
Alexander Soare
91e0e4e175 rever change 2024-04-08 15:05:40 +01:00
Alexander Soare
0b4c42f4ff typos 2024-04-08 14:59:37 +01:00
Alexander Soare
62b18a7607 Add type hints 2024-04-08 14:51:45 +01:00
Alexander Soare
86365adf9f revision 2024-04-08 14:44:46 +01:00
Alexander Soare
0a721f3d94 empty commit 2024-04-08 13:21:38 +01:00
Alexander Soare
863f28ffd8 ready for review 2024-04-08 13:10:19 +01:00
Alexander Soare
1bab4a1dd5 Eval reproduction works with gym_aloha 2024-04-08 10:23:26 +01:00
Alexander Soare
e982c732f1 Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl 2024-04-08 09:25:45 +01:00
Cadene
e1ac5dc62f fix aloha pixels env test 2024-04-07 17:20:54 +00:00
Cadene
4371a5570d Remove latency, tdmpc policy passes tests (TODO: make it work with online RL) 2024-04-07 16:01:22 +00:00
Cadene
44656d2706 test_envs are passing 2024-04-05 23:27:12 +00:00
Alexander Soare
8d2463f45b backup wip 2024-04-05 18:46:30 +01:00
Alexander Soare
ecc7dd3b17 Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl 2024-04-05 18:35:13 +01:00
Cadene
5eff40b3d6 rename task, sim_transfer -> transfer 2024-04-05 17:18:37 +00:00
Cadene
a2d3588fca wrap dm_control aloha into gymnasium (TODO: properly seeding the env) 2024-04-05 17:17:31 +00:00
Cadene
29032fbcd3 wrap dm_control aloha into gymnasium (TODO: properly seeding the env) 2024-04-05 17:17:14 +00:00
Alexander Soare
ab2286025b Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl 2024-04-05 18:06:00 +01:00
Alexander Soare
1e71196fe3 backup wip 2024-04-05 17:38:29 +01:00
Cadene
26602269cd test_envs.py are passing, remove simxarm and pusht directories 2024-04-05 16:21:07 +00:00
Alexander Soare
9c28ac8aa4 re-add pre-commit check 2024-04-05 15:25:11 +01:00
Cadene
f56b1a0e16 WIP tdmpc 2024-04-05 13:40:31 +00:00
Simon Alibert
ab3cd3a7ba (WIP) Add gym-xarm 2024-04-05 15:35:20 +02:00
Alexander Soare
0b8d27ff2c Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl 2024-04-05 12:48:11 +01:00
Cadene
c17dffe944 policies/utils.py 2024-04-05 11:47:15 +00:00
Alexander Soare
8ba88ba250 Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl 2024-04-05 12:34:14 +01:00
Cadene
a420714ee4 fix: action_is_pad was missing in compute_loss 2024-04-05 11:33:39 +00:00
Alexander Soare
4863e54ce9 Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl 2024-04-05 12:00:31 +01:00
Cadene
ad3379a73a fix memory leak due to itertools.cycle 2024-04-05 10:59:32 +00:00
Alexander Soare
9d77f5773d Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl 2024-04-05 11:41:11 +01:00
Alexander Soare
edb125b351 backup wip 2024-04-05 11:03:28 +01:00
Cadene
5af00d0c1e fix train.py, stats, eval.py (training is running) 2024-04-05 09:31:39 +00:00
Alexander Soare
3a4dfa82fe backup wip 2024-04-04 18:34:41 +01:00
Cadene
c93ce35d8c WIP stats (TODO: run tests on stats + cmpute them) 2024-04-04 16:36:03 +00:00
Cadene
1cdfbc8b52 WIP
WIP

WIP train.py works, loss going down

WIP eval.py

Fix

WIP (eval running, TODO: verify results reproduced)

Eval works! (testing reproducibility)

WIP

pretrained model pusht reproduces same results as torchrl

pretrained model pusht reproduces same results as torchrl

Remove AbstractPolicy, Move all queues in select_action

WIP test_datasets passed (TODO: re-enable NormalizeTransform)
2024-04-04 15:31:03 +00:00
Alexander Soare
278336a39a backup wip 2024-04-03 19:23:22 +01:00
Alexander Soare
110ac5ffa1 backup wip 2024-04-03 14:21:07 +01:00
Alexander Soare
c7d70a8db9 Merge remote-tracking branch 'upstream/main' into refactor_act 2024-04-03 10:08:12 +01:00
Alexander Soare
920e0d118b Merge pull request #66 from alexander-soare/fix_stats_computation
fix stats computation
2024-04-03 10:03:47 +01:00
Alexander Soare
caf4ffcf65 add TODO 2024-04-03 09:56:46 +01:00
Alexander Soare
a6ec4fbf58 remove try-catch 2024-04-03 09:53:15 +01:00
Alexander Soare
c50a62dd6d clarifying math 2024-04-03 09:47:38 +01:00
Alexander Soare
e9eb262293 numerically sound mean computation 2024-04-03 09:44:20 +01:00
Alexander Soare
7242953197 revision 2024-04-02 19:19:13 +01:00
Alexander Soare
65ef8c30d0 backup wip 2024-04-02 19:13:49 +01:00
Alexander Soare
2b928eedd4 backup wip 2024-04-02 19:11:53 +01:00
Alexander Soare
c3234adc7d fix indentation 2024-04-02 16:59:19 +01:00
Alexander Soare
148df1c1d5 add comment on test 2024-04-02 16:57:25 +01:00
Alexander Soare
a6edb85da4 Remove random sampling 2024-04-02 16:52:38 +01:00
Alexander Soare
95293d459d fix stats computation 2024-04-02 16:40:33 +01:00
Alexander Soare
11cbf1bea1 Merge pull request #53 from alexander-soare/finish_examples
Add examples 2 and 3
2024-04-01 11:52:41 +01:00
Alexander Soare
f1148b8c2d Merge remote-tracking branch 'upstream/main' into finish_examples 2024-04-01 11:31:31 +01:00
Simon Alibert
2a98cc71ed Merge pull request #56 from huggingface/user/aliberts/2024_03_27_improve_ci
Add code coverage, more end-to-end tests
2024-03-28 10:57:44 +01:00
Simon Alibert
a7c9b78e56 Deactivate eval ACT on Aloha (policy is None) 2024-03-28 10:55:11 +01:00
Simon Alibert
404b8f8a75 Fix end-to-end ACT train on Aloha 2024-03-28 10:35:11 +01:00
Simon Alibert
17c2bbbeb8 remove todo 2024-03-28 10:35:11 +01:00
Simon Alibert
006e5feabf WIP add code coverage 2024-03-28 10:35:11 +01:00
Simon Alibert
b99ee8180a Add more end-to-end tests 2024-03-28 10:35:11 +01:00
Simon Alibert
6bddcb647e Add test_aloha env test 2024-03-28 10:35:11 +01:00
Simon Alibert
58df2066a9 Add pytest-cov 2024-03-28 10:35:11 +01:00
Simon Alibert
c89aa4f8ed Merge pull request #57 from huggingface/user/aliberts/2024_03_27_improve_readme
Improve readme
2024-03-28 10:26:48 +01:00
Simon Alibert
62aad7104b Pull merge 2024-03-28 10:03:25 +01:00
Simon Alibert
9d9148dad8 Fixes for #57 2024-03-28 10:01:33 +01:00
Simon Alibert
1b6cb2b1be Add space
Co-authored-by: Remi <re.cadene@gmail.com>
2024-03-27 20:51:52 +01:00
Simon Alibert
6f1a0aefab typo fix
Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
2024-03-27 20:50:23 +01:00
Alexander Soare
b7c9c33072 revision 2024-03-27 18:33:48 +00:00
Alexander Soare
120f0aef5c Merge remote-tracking branch 'upstream/main' into finish_examples 2024-03-27 17:52:36 +00:00
Simon Alibert
032200e32c Typo fix 2024-03-27 17:05:04 +01:00
Simon Alibert
de1e9187c8 Formatting 2024-03-27 16:56:21 +01:00
Simon Alibert
4f8f1926f9 Update pip install without requirements.txt 2024-03-27 16:49:27 +01:00
Simon Alibert
6710121a29 Revert "Add requirements.txt"
This reverts commit 18e7f4c3e6.
2024-03-27 16:47:49 +01:00
Simon Alibert
5f4b8ab899 Add more exhaustive install instructions 2024-03-27 16:35:32 +01:00
Simon Alibert
18e7f4c3e6 Add requirements.txt 2024-03-27 16:33:54 +01:00
Simon Alibert
643d64e2a8 Add cmake 2024-03-27 16:33:26 +01:00
Alexander Soare
c037722e23 Merge pull request #58 from alexander-soare/update_diffusion_model
Update diffusion model
2024-03-27 13:34:01 +00:00
Alexander Soare
6cd671040f fix revision 2024-03-27 13:22:14 +00:00
Alexander Soare
b6353964ba fix bug: use provided revision instead of hardcoded one 2024-03-27 13:08:47 +00:00
Alexander Soare
64c8851c40 Merge branch 'tidy_diffusion_config' into update_diffusion_model 2024-03-27 13:06:08 +00:00
Alexander Soare
dc745e3037 Remove unused part of diffusion policy config 2024-03-27 13:05:13 +00:00
Simon Alibert
6f0c2445ca Improve readme format 2024-03-27 13:26:54 +01:00
Simon Alibert
d1d2229407 WIP add badges 2024-03-27 13:26:45 +01:00
Alexander Soare
68d02c80cf Remove b/c workaround 2024-03-27 12:03:19 +00:00
Alexander Soare
011f2d27fe fix tests 2024-03-26 16:40:54 +00:00
Alexander Soare
be4441c7ff update README 2024-03-26 16:28:16 +00:00
Alexander Soare
1ed0110900 finish examples 2 and 3 2024-03-26 16:13:40 +00:00
Remi
cb6d1e0871 Merge pull request #49 from huggingface/user/rcadene/2024_03_25_readme
Improve README
2024-03-26 11:50:24 +01:00
Cadene
9ced0cf1fb unskip 2024-03-26 10:45:31 +00:00
Cadene
98534d1a63 skip 2024-03-26 10:42:53 +00:00
Cadene
edacc1d2a0 Add root in example 2024-03-26 10:40:06 +00:00
Cadene
5a46b8a2a9 fix tests 2024-03-26 10:24:46 +00:00
Cadene
4a8c5e238e issue with cat_and_write_video 2024-03-26 10:12:16 +00:00
Alexander Soare
1a1308d62f fix environment seeding
add fixes for reproducibility

only try to start env if it is closed

revision

fix normalization and data type

Improve README

Improve README

Tests are passing, Eval pretrained model works, Add gif

Update gif

Update gif

Update gif

Update gif

Update README

Update README

update minor

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Address suggestions

Update thumbnail + stats

Update thumbnail + stats

Update README.md

Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>

Add more comments

Add test_examples.py
2024-03-26 10:10:43 +00:00
Simon Alibert
203bcd7ca5 Merge pull request #47 from huggingface/user/aliberts/2024_03_22_fix_simxarm
Port simxarm, upgrade gym to gymnasium
2024-03-26 10:17:52 +01:00
Simon Alibert
98b9631aa6 Add n_obs_steps in default.yaml config 2024-03-26 10:08:00 +01:00
Simon Alibert
c5635b7d94 Minor fixes for #47 2024-03-25 18:50:47 +01:00
Simon Alibert
f00252552a fix ci 2024-03-25 17:38:08 +01:00
Simon Alibert
90f6af9736 Update ci 2024-03-25 17:33:47 +01:00
Simon Alibert
bcfdba109f Update pre-commit & run on all files 2024-03-25 17:29:35 +01:00
Simon Alibert
0fae5b206b Allow mujoco minor revision updates 2024-03-25 17:25:55 +01:00
Simon Alibert
7cdd6d2450 Renamed set_seed -> set_global_seed 2024-03-25 17:19:28 +01:00
Simon Alibert
058ac991eb Add simxarm back into tests 2024-03-25 16:35:46 +01:00
Simon Alibert
d3adaf1379 Add stat.pth for xarm_lift_medium 2024-03-25 15:55:45 +01:00
Simon Alibert
dc89166bee Upgrade gym to gymnasium 2024-03-25 15:12:21 +01:00
Simon Alibert
5ef813ff1e Remove deprecated code 2024-03-25 13:22:49 +01:00
Simon Alibert
a2ac83276b Update ci env 2024-03-25 13:02:50 +01:00
Simon Alibert
c0833f1c2d Remove simxarm download and preproc hack 2024-03-25 12:41:17 +01:00
Simon Alibert
de5c30405e fix wrong version 2024-03-25 12:35:06 +01:00
Simon Alibert
462e7469e8 Add xarm_lift_medium revision 1.0 to hub 2024-03-25 12:28:07 +01:00
Simon Alibert
298d391b26 Add simxarm license 2024-03-25 12:28:07 +01:00
Cadene
be6364f109 fix, it's training now! 2024-03-25 12:28:07 +01:00
Simon Alibert
127de1258d WIP 2024-03-25 12:28:07 +01:00
Cadene
b905111895 fix render issue 2024-03-25 12:28:07 +01:00
Simon Alibert
0c41675986 fix __init__ import Base 2024-03-25 12:28:07 +01:00
Simon Alibert
1c24bbda3f WIP Upgrading simxam from mujoco-py to mujoco python bindings 2024-03-25 12:28:07 +01:00
Alexander Soare
e41c420a96 Merge pull request #48 from alexander-soare/fix_visualization
Fix normalization of last frame and data type in visualization
2024-03-25 09:53:06 +00:00
Alexander Soare
4a48b77540 fix normalization and data type 2024-03-25 09:44:03 +00:00
Remi
f3cfc8b3b4 Merge pull request #46 from huggingface/user/rcadene/2024_03_23_update_stats_v1.2
Fix bug with stats.pth + Move from cadene to lerobot + Update datasets to v1.2
2024-03-24 17:53:32 +01:00
Cadene
d2ef43436c move from cadene to lerobot 2024-03-23 13:34:35 +00:00
Cadene
40f3783fca v1.2 2024-03-23 11:41:56 +00:00
Alexander Soare
e21ed6f510 Merge pull request #45 from alexander-soare/fix_environment_seeding
Reproduce original diffusion policy pusht image eval
2024-03-22 16:27:48 +00:00
Alexander Soare
bd40ffc53c revision 2024-03-22 15:43:45 +00:00
Alexander Soare
d43fa600a0 only try to start env if it is closed 2024-03-22 15:32:55 +00:00
Alexander Soare
e698d38a35 Merge remote-tracking branch 'upstream/main' into fix_environment_seeding 2024-03-22 15:11:15 +00:00
Alexander Soare
15ff3b3af8 add fixes for reproducibility 2024-03-22 15:06:57 +00:00
Remi
a80d9c0257 Merge pull request #44 from alexander-soare/run_model_from_hub
Run model from HuggingFace hub
2024-03-22 16:03:27 +01:00
Alexander Soare
b9047fbdd2 fix environment seeding 2024-03-22 13:25:23 +00:00
Alexander Soare
115927d0f6 make sure to pass stats.pth arg 2024-03-22 12:58:59 +00:00
Alexander Soare
529f42643d revision 2024-03-22 12:33:25 +00:00
Alexander Soare
1b279a1fc0 fix test 2024-03-22 10:58:27 +00:00
Alexander Soare
3f0f95f4c0 update readme 2024-03-22 10:34:22 +00:00
Alexander Soare
8720c568d0 Add ability to eval hub model 2024-03-22 10:26:55 +00:00
577 changed files with 61444 additions and 17817 deletions

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2015,
3058,
3061,
1071,
1071,
2035,
2152,
2029,
2499
],
"end_pos": [
-1008,
-1963,
-1966,
2141,
2143,
-971,
3043,
-1077,
3144
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-1024
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2035,
3024,
3019,
979,
981,
1982,
2166,
2124,
1968
],
"end_pos": [
-990,
-2017,
-2015,
2078,
2076,
-1030,
3117,
-1016,
2556
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2056,
2895,
2896,
1191,
1190,
2018,
2051,
2056,
2509
],
"end_pos": [
-1040,
-2004,
-2006,
2126,
2127,
-1010,
3050,
-1117,
3143
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -0,0 +1,68 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2068,
3034,
3030,
1038,
1041,
1991,
1948,
2090,
1985
],
"end_pos": [
-1025,
-2014,
-2015,
2058,
2060,
-955,
3091,
-940,
2576
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

160
.dockerignore Normal file
View File

@@ -0,0 +1,160 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Misc
.git
tmp
wandb
data
outputs
.vscode
rl
media
# Logging
logs
# HPC
nautilus/*.yaml
*.key
# Slurm
sbatch*.sh
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/artifacts
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/

19
.gitattributes vendored
View File

@@ -1 +1,20 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
*.memmap filter=lfs diff=lfs merge=lfs -text
*.stl filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.json !text !filter !merge !diff

68
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@@ -0,0 +1,68 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve LeRobot
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to submit a bug report! 🐛
If this is not a bug related to the LeRobot library directly, but instead a general question about your code or the library specifically please use our [discord](https://discord.gg/s3KuuzsPFb).
- type: textarea
id: system-info
attributes:
label: System Info
description: If needed, you can share your lerobot configuration with us by running `python -m lerobot.scripts.display_sys_info` and copy-pasting its outputs below
render: Shell
placeholder: lerobot version, OS, python version, numpy version, torch version, and lerobot's configuration
validations:
required: true
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "One of the scripts in the examples/ folder of LeRobot"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
If needed, provide a simple code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
Sharing error messages or stack traces could be useful as well!
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Try to avoid screenshots, as they are hard to read and don't allow copy-and-pasting.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

34
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@@ -0,0 +1,34 @@
## What this does
Explain what this PR does. Feel free to tag your PR with the appropriate label(s).
Examples:
| Title | Label |
|----------------------|-----------------|
| Fixes #[issue] | (🐛 Bug) |
| Adds new dataset | (🗃️ Dataset) |
| Optimizes something | (⚡️ Performance) |
## How it was tested
Explain/show how you tested your changes.
Examples:
- Added `test_something` in `tests/test_stuff.py`.
- Added `new_feature` and checked that training converges with policy X on dataset/environment Y.
- Optimized `some_function`, it now runs X times faster than previously.
## How to checkout & try? (for the reviewer)
Provide a simple way for the reviewer to try out your changes.
Examples:
```bash
pytest -sx tests/test_stuff.py::test_something
```
```bash
python lerobot/scripts/train.py --some.option=true
```
## SECTION TO REMOVE BEFORE SUBMITTING YOUR PR
**Note**: Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR. Try to avoid tagging more than 3 people.
**Note**: Before submitting this PR, please read the [contributor guideline](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md#submitting-a-pull-request-pr).

3308
.github/poetry/cpu/poetry.lock generated vendored

File diff suppressed because it is too large Load Diff

View File

@@ -1,108 +0,0 @@
[tool.poetry]
name = "lerobot"
version = "0.1.0"
description = "Le robot is learning"
authors = [
"Rémi Cadène <re.cadene@gmail.com>",
"Simon Alibert <alibert.sim@gmail.com>",
]
repository = "https://github.com/Cadene/lerobot"
readme = "README.md"
license = "MIT"
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Software Development :: Build Tools",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3.10",
]
packages = [{include = "lerobot"}]
[tool.poetry.dependencies]
python = "^3.10"
cython = "^3.0.8"
termcolor = "^2.4.0"
omegaconf = "^2.3.0"
dm-env = "^1.6"
pandas = "^2.2.1"
wandb = "^0.16.3"
moviepy = "^1.0.3"
imageio = {extras = ["pyav"], version = "^2.34.0"}
gdown = "^5.1.0"
hydra-core = "^1.3.2"
einops = "^0.7.0"
pygame = "^2.5.2"
pymunk = "^6.6.0"
zarr = "^2.17.0"
shapely = "^2.0.3"
scikit-image = "^0.22.0"
numba = "^0.59.0"
mpmath = "^1.3.0"
torch = {version = "^2.2.1", source = "torch-cpu"}
tensordict = {git = "https://github.com/pytorch/tensordict"}
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
mujoco = "^3.1.2"
mujoco-py = "^2.1.2.14"
gym = "^0.26.2"
opencv-python = "^4.9.0.80"
diffusers = "^0.26.3"
torchvision = {version = "^0.17.1", source = "torch-cpu"}
h5py = "^3.10.0"
dm = "^1.3"
dm-control = "^1.0.16"
robomimic = "0.2.0"
huggingface-hub = "^0.21.4"
[tool.poetry.group.dev.dependencies]
pre-commit = "^3.6.2"
debugpy = "^1.8.1"
pytest = "^8.1.0"
[[tool.poetry.source]]
name = "torch-cpu"
url = "https://download.pytorch.org/whl/cpu"
priority = "supplemental"
[tool.ruff]
line-length = 110
target-version = "py310"
exclude = [
".bzr",
".direnv",
".eggs",
".git",
".git-rewrite",
".hg",
".mypy_cache",
".nox",
".pants.d",
".pytype",
".ruff_cache",
".svn",
".tox",
".venv",
"__pypackages__",
"_build",
"buck-out",
"build",
"dist",
"node_modules",
"venv",
]
[tool.ruff.lint]
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
[tool.poetry-dynamic-versioning]
enable = true
[build-system]
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning>=1.0.0,<2.0.0"]
build-backend = "poetry_dynamic_versioning.backend"

View File

@@ -0,0 +1,135 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/build_docker_images.yml
name: Builds
on:
workflow_dispatch:
workflow_call:
schedule:
- cron: "0 1 * * *"
permissions: {}
env:
PYTHON_VERSION: "3.10"
jobs:
latest-cpu:
name: CPU
runs-on:
group: aws-general-8-plus
steps:
- name: Install Git LFS
run: |
sudo apt-get update
sudo apt-get install git-lfs
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push CPU
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
with:
context: .
file: ./docker/lerobot-cpu/Dockerfile
push: true
tags: huggingface/lerobot-cpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
latest-cuda:
name: GPU
runs-on:
group: aws-general-8-plus
steps:
- name: Install Git LFS
run: |
sudo apt-get update
sudo apt-get install git-lfs
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
with:
context: .
file: ./docker/lerobot-gpu/Dockerfile
push: true
tags: huggingface/lerobot-gpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
latest-cuda-dev:
name: GPU Dev
runs-on:
group: aws-general-8-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@74a5d142397b4f367a81961eba4e8cd7edddf772 # v3.4.0
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU dev
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
with:
context: .
file: ./docker/lerobot-gpu-dev/Dockerfile
push: true
tags: huggingface/lerobot-gpu:dev
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}

View File

@@ -0,0 +1,23 @@
name: Build documentation
on:
workflow_dispatch:
push:
paths:
- "docs/**"
branches:
- main
- doc-builder*
- v*-release
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: lerobot
additional_args: --not_python_module
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@@ -0,0 +1,19 @@
name: Build PR Documentation
on:
pull_request:
paths:
- "docs/**"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: lerobot
additional_args: --not_python_module

93
.github/workflows/nightly-tests.yml vendored Normal file
View File

@@ -0,0 +1,93 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/nightly.yml
name: Nightly
on:
workflow_dispatch:
schedule:
- cron: "0 2 * * *"
permissions: {}
# env:
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
jobs:
run_all_tests_cpu:
name: CPU
strategy:
fail-fast: false
runs-on:
group: aws-general-8-plus
container:
image: huggingface/lerobot-cpu:latest # zizmor: ignore[unpinned-images]
options: --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
defaults:
run:
shell: bash
working-directory: /lerobot
steps:
- name: Tests
run: pytest -v --cov=./lerobot --disable-warnings tests
- name: Tests end-to-end
run: make test-end-to-end
run_all_tests_single_gpu:
name: GPU
strategy:
fail-fast: false
runs-on:
group: aws-g6-4xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/lerobot-gpu:latest # zizmor: ignore[unpinned-images]
options: --gpus all --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
defaults:
run:
shell: bash
working-directory: /lerobot
steps:
- name: Nvidia-smi
run: nvidia-smi
- name: Test
run: pytest -v --cov=./lerobot --cov-report=xml --disable-warnings tests
# TODO(aliberts): Link with HF Codecov account
# - name: Upload coverage reports to Codecov with GitHub Action
# uses: codecov/codecov-action@v4
# with:
# files: ./coverage.xml
# verbose: true
- name: Tests end-to-end
env:
DEVICE: cuda
run: make test-end-to-end
# - name: Generate Report
# if: always()
# run: |
# pip install slack_sdk tabulate
# python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY

72
.github/workflows/quality.yml vendored Normal file
View File

@@ -0,0 +1,72 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Quality
on:
workflow_dispatch:
workflow_call:
pull_request:
push:
branches:
- main
permissions: {}
env:
PYTHON_VERSION: "3.10"
jobs:
style:
name: Style
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
persist-credentials: false
- name: Set up Python
uses: actions/setup-python@7f4fc3e22c37d6ff65e88745f38bd3157c663f7c # v4.9.1
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: Get Ruff Version from pre-commit-config.yaml
id: get-ruff-version
run: |
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
echo "ruff_version=${RUFF_VERSION}" >> $GITHUB_OUTPUT
- name: Install Ruff
env:
RUFF_VERSION: ${{ steps.get-ruff-version.outputs.ruff_version }}
run: python -m pip install "ruff==${RUFF_VERSION}"
- name: Ruff check
run: ruff check --output-format=github
- name: Ruff format
run: ruff format --diff
typos:
name: Typos
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
persist-credentials: false
- name: typos-action
uses: crate-ci/typos@db35ee91e80fbb447f33b0e5fbddb24d2a1a884f # v1.29.10

82
.github/workflows/test-docker-build.yml vendored Normal file
View File

@@ -0,0 +1,82 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/test-docker-build.yml
name: Test Dockerfiles
on:
pull_request:
paths:
# Run only when DockerFile files are modified
- "docker/**"
permissions: {}
env:
PYTHON_VERSION: "3.10"
jobs:
get_changed_files:
name: Detect modified Dockerfiles
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
persist-credentials: false
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@3f54ebb830831fc121d3263c1857cfbdc310cdb9 #v42
with:
files: docker/**
json: "true"
- name: Run step if only the files listed above change # zizmor: ignore[template-injection]
if: steps.changed-files.outputs.any_changed == 'true'
id: set-matrix
run: |
echo "matrix=${{ steps.changed-files.outputs.all_changed_files}}" >> $GITHUB_OUTPUT
build_modified_dockerfiles:
name: Build modified Docker images
needs: get_changed_files
runs-on:
group: aws-general-8-plus
if: needs.get_changed_files.outputs.matrix != ''
strategy:
fail-fast: false
matrix:
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@b5ca514318bd6ebac0fb2aedd5d36ec1b5c232a2 # v3.10.0
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
persist-credentials: false
- name: Build Docker image
uses: docker/build-push-action@ca052bb54ab0790a636c9b5f226502c73d547a25 # v5.4.0
with:
file: ${{ matrix.docker-file }}
context: .
push: False
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}

View File

@@ -1,144 +1,150 @@
name: Test
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Tests
on:
pull_request:
branches:
- main
types: [opened, synchronize, reopened, labeled]
paths:
- "lerobot/**"
- "tests/**"
- "examples/**"
- ".github/**"
- "pyproject.toml"
- ".pre-commit-config.yaml"
- "Makefile"
- ".cache/**"
push:
branches:
- main
paths:
- "lerobot/**"
- "tests/**"
- "examples/**"
- ".github/**"
- "pyproject.toml"
- ".pre-commit-config.yaml"
- "Makefile"
- ".cache/**"
permissions: {}
env:
UV_VERSION: "0.6.0"
jobs:
test:
if: |
${{ github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'CI') }} ||
${{ github.event_name == 'push' }}
pytest:
name: Pytest
runs-on: ubuntu-latest
env:
POETRY_VERSION: 1.8.1
DATA_DIR: tests/data
TMPDIR: ~/tmp
TEMP: ~/tmp
TMP: ~/tmp
PYOPENGL_PLATFORM: egl
MUJOCO_GL: egl
LEROBOT_TESTS_DEVICE: cpu
steps:
#----------------------------------------------
# check-out repo and set-up python
#----------------------------------------------
- name: Check out repository
uses: actions/checkout@v4
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
lfs: true
lfs: true # Ensure LFS files are pulled
persist-credentials: false
- name: Set up python
id: setup-python
uses: actions/setup-python@v5
with:
python-version: '3.10'
#----------------------------------------------
# install & configure poetry
#----------------------------------------------
- name: Load cached Poetry installation
id: restore-poetry-cache
uses: actions/cache/restore@v3
with:
path: ~/.local
key: poetry-${{ env.POETRY_VERSION }}
- name: Install Poetry
if: steps.restore-poetry-cache.outputs.cache-hit != 'true'
uses: snok/install-poetry@v1
with:
version: ${{ env.POETRY_VERSION }}
virtualenvs-create: true
installer-parallel: true
- name: Save cached Poetry installation
if: |
steps.restore-poetry-cache.outputs.cache-hit != 'true' &&
github.ref_name == 'main'
id: save-poetry-cache
uses: actions/cache/save@v3
with:
path: ~/.local
key: poetry-${{ env.POETRY_VERSION }}
- name: Configure Poetry
run: poetry config virtualenvs.in-project true
#----------------------------------------------
# install dependencies
#----------------------------------------------
# TODO(aliberts): move to gpu runners
- name: Select cpu dependencies # HACK
run: cp -t . .github/poetry/cpu/pyproject.toml .github/poetry/cpu/poetry.lock
- name: Load cached venv
id: restore-dependencies-cache
uses: actions/cache/restore@v3
with:
path: .venv
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
- name: Install dependencies
if: steps.restore-dependencies-cache.outputs.cache-hit != 'true'
- name: Install apt dependencies
# portaudio19-dev is needed to install pyaudio
run: |
mkdir ~/tmp
poetry install --no-interaction --no-root
sudo apt-get update && \
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Save cached venv
if: |
steps.restore-dependencies-cache.outputs.cache-hit != 'true' &&
github.ref_name == 'main'
id: save-dependencies-cache
uses: actions/cache/save@v3
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
with:
path: .venv
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
enable-cache: true
version: ${{ env.UV_VERSION }}
python-version: "3.10"
- name: Install libegl1-mesa-dev (to use MUJOCO_GL=egl)
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
- name: Install lerobot (all extras)
run: uv sync --all-extras
#----------------------------------------------
# install project
#----------------------------------------------
- name: Install project
run: poetry install --no-interaction
#----------------------------------------------
# run tests
#----------------------------------------------
- name: Run tests
- name: Test with pytest
run: |
source .venv/bin/activate
pytest tests
uv run pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
- name: Test train pusht end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/train.py \
hydra.job.name=pusht \
env=pusht \
wandb.enable=False \
offline_steps=2 \
online_steps=0 \
device=cpu \
save_model=true \
save_freq=1 \
hydra.run.dir=tests/outputs/
pytest-minimal:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
- name: Test eval pusht end-to-end
- name: Install apt dependencies
run: sudo apt-get update && sudo apt-get install -y ffmpeg
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
python-version: "3.10"
- name: Install lerobot
run: uv sync --extra "test"
- name: Test with pytest
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
hydra.job.name=pusht \
env=pusht \
wandb.enable=False \
eval_episodes=1 \
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/models/1.pt
uv run pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
end-to-end:
name: End-to-end
runs-on: ubuntu-latest
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
- name: Install apt dependencies
# portaudio19-dev is needed to install pyaudio
run: |
sudo apt-get update && \
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install uv and python
uses: astral-sh/setup-uv@d4b2f3b6ecc6e67c4457f6d3e41ec42d3d0fcb86 # v5.4.2
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
python-version: "3.10"
- name: Install lerobot (all extras)
run: |
uv venv
uv sync --all-extras
- name: venv
run: |
echo "PYTHON_PATH=${{ github.workspace }}/.venv/bin/python" >> $GITHUB_ENV
- name: Test end-to-end
run: |
make test-end-to-end \
&& rm -rf outputs

35
.github/workflows/trufflehog.yml vendored Normal file
View File

@@ -0,0 +1,35 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
on:
push:
name: Secret Leaks
permissions: {}
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
with:
fetch-depth: 0
persist-credentials: false
- name: Secret Scanning
uses: trufflesecurity/trufflehog@90694bf9af66e7536abc5824e7a87246dbf933cb # v3.88.35
with:
extra_args: --only-verified

View File

@@ -0,0 +1,16 @@
name: Upload PR Documentation
on: # zizmor: ignore[dangerous-triggers] We follow the same pattern as in Transformers
workflow_run:
workflows: [ "Build PR Documentation" ]
types:
- completed
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: lerobot
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

59
.gitignore vendored
View File

@@ -1,16 +1,39 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Logging
logs
tmp
wandb
# Data
data
outputs
# Apple
.DS_Store
# VS Code
.vscode
rl
# HPC
nautilus/*.yaml
*.key
# Slurm
sbatch*.sh
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -40,6 +63,10 @@ share/python-wheels/
*.egg
MANIFEST
# uv/poetry lock files
poetry.lock
uv.lock
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
@@ -51,13 +78,12 @@ pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/data
!tests/artifacts
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
@@ -65,6 +91,11 @@ coverage.xml
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo
*.pot
@@ -86,6 +117,7 @@ instance/
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
@@ -98,13 +130,6 @@ ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
@@ -115,6 +140,14 @@ celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
@@ -132,3 +165,9 @@ dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/

View File

@@ -1,9 +1,31 @@
exclude: ^(data/|tests/)
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
exclude: "tests/artifacts/.*\\.safetensors$"
default_language_version:
python: python3.10
repos:
##### Meta #####
- repo: meta
hooks:
- id: check-useless-excludes
- id: check-hooks-apply
##### Style / Misc. #####
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
rev: v5.0.0
hooks:
- id: check-added-large-files
- id: debug-statements
@@ -13,21 +35,40 @@ repos:
- id: check-toml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/adhtruong/mirrors-typos
rev: v1.32.0
hooks:
- id: typos
args: [--force-exclude]
- repo: https://github.com/asottile/pyupgrade
rev: v3.15.1
rev: v3.20.0
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.2
rev: v0.11.11
hooks:
- id: ruff
args: [--fix]
- id: ruff-format
- repo: https://github.com/python-poetry/poetry
rev: 1.8.0
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.26.0
hooks:
- id: poetry-check
- id: poetry-lock
args:
- "--check"
- "--no-update"
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.8.0
hooks:
- id: zizmor
- repo: https://github.com/PyCQA/bandit
rev: 1.8.3
hooks:
- id: bandit
args: ["-c", "pyproject.toml"]
additional_dependencies: ["bandit[toml]"]

133
CODE_OF_CONDUCT.md Normal file
View File

@@ -0,0 +1,133 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official email address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
[feedback@huggingface.co](mailto:feedback@huggingface.co).
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.1, available at
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
For answers to common questions about this code of conduct, see the FAQ at
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
[https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

308
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,308 @@
# How to contribute to 🤗 LeRobot?
Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to
the community.
It also helps us if you spread the word: reference the library from blog posts
on the awesome projects it made possible, shout out on Twitter when it has
helped you, or simply ⭐️ the repo to say "thank you".
Whichever way you choose to contribute, please be mindful to respect our
[code of conduct](https://github.com/huggingface/lerobot/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways!
Some of the ways you can contribute to 🤗 LeRobot:
* Fixing outstanding issues with the existing code.
* Implementing new models, datasets or simulation environments.
* Contributing to the examples or to the documentation.
* Submitting issues related to bugs or desired new features.
Following the guides below, feel free to open issues and PRs and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](mailto:remi.cadene@huggingface.co).
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/orgs/huggingface/projects/46)
## Submitting a new issue or feature request
Do your best to follow these guidelines when submitting an issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The 🤗 LeRobot library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues).
Did not find it? :( So we can act quickly on it, please follow these steps:
* Include your **OS type and version**, the versions of **Python** and **PyTorch**.
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s.
* The full traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
### Do you want a new feature?
A good feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *paragraph* describing the feature.
3. Provide a **code snippet** that demonstrates its future use.
4. In case this is related to a paper, please attach a link.
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
If your issue is well written we're already 80% of the way there by the time you
post it.
## Adding new policies, datasets or environments
Look at our implementations for [datasets](./lerobot/common/datasets/), [policies](./lerobot/common/policies/),
environments ([aloha](https://github.com/huggingface/gym-aloha),
[xarm](https://github.com/huggingface/gym-xarm),
[pusht](https://github.com/huggingface/gym-pusht))
and follow the same api design.
When implementing a new dataset loadable with LeRobotDataset follow these steps:
- Update `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
- Update `available_tasks_per_env` and `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
- Update `available_policies` and `available_policies_per_env`, in `lerobot/__init__.py`
- Set the required `name` class attribute.
- Update variables in `tests/test_available.py` by importing your new Policy class
## Submitting a pull request (PR)
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
🤗 LeRobot. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
1. Fork the [repository](https://github.com/huggingface/lerobot) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote. The following command
assumes you have your public SSH key uploaded to GitHub. See the following guide for more
[information](https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository).
```bash
git clone git@github.com:<your Github handle>/lerobot.git
cd lerobot
git remote add upstream https://github.com/huggingface/lerobot.git
```
3. Create a new branch to hold your development changes, and do this for every new PR you work on.
Start by synchronizing your `main` branch with the `upstream/main` branch (more details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
```bash
git checkout main
git fetch upstream
git rebase upstream/main
```
Once your `main` branch is synchronized, create a new branch from it:
```bash
git checkout -b a-descriptive-name-for-my-changes
```
🚨 **Do not** work on the `main` branch.
4. for development, we advise to use a tool like `poetry` or `uv` instead of just `pip` to easily track our dependencies.
Follow the instructions to [install poetry](https://python-poetry.org/docs/#installation) (use a version >=2.1.0) or to [install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) if you don't have one of them already.
Set up a development environment with conda or miniconda:
```bash
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
```
If you're using `uv`, it can manage python versions so you can instead do:
```bash
uv venv --python 3.10 && source .venv/bin/activate
```
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
using `poetry`
```bash
poetry sync --extras "dev test"
```
using `uv`
```bash
uv sync --extra dev --extra test
```
You can also install the project with all its dependencies (including environments):
using `poetry`
```bash
poetry sync --all-extras
```
using `uv`
```bash
uv sync --all-extras
```
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
Whichever command you chose to install the project (e.g. `poetry sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
The equivalent of `pip install some-package`, would just be:
using `poetry`
```bash
poetry add some-package
```
using `uv`
```bash
uv add some-package
```
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
using `poetry`
```bash
poetry lock
```
using `uv`
```bash
uv lock
```
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this (see
below an explanation regarding the environment variable):
```bash
pytest tests/<TEST_TO_RUN>.py
```
6. Follow our style.
`lerobot` relies on `ruff` to format its source code
consistently. Set up [`pre-commit`](https://pre-commit.com/) to run these checks
automatically as Git commit hooks.
Install `pre-commit` hooks:
```bash
pre-commit install
```
You can run these hooks whenever you need on staged files with:
```bash
pre-commit
```
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
```bash
git add modified_file.py
git commit
```
Note, if you already committed some changes that have a wrong formatting, you can use:
```bash
pre-commit run --all-files
```
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
git fetch upstream
git rebase upstream/main
```
Push the changes to your account using:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied (**and the checklist below is happy too**), go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Checklist
1. The title of your pull request should be a summary of its contribution;
2. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
3. To indicate a work in progress please prefix the title with `[WIP]`, or preferably mark
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
it from PRs ready to be merged;
4. Make sure existing tests pass;
<!-- 5. Add high-coverage tests. No quality testing = no merge.
See an example of a good PR here: https://github.com/huggingface/lerobot/pull/ -->
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the [tests folder](https://github.com/huggingface/lerobot/tree/main/tests).
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
On Mac:
```bash
brew install git-lfs
git lfs install
```
On Ubuntu:
```bash
sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/artifacts](tests/artifacts)
```bash
git lfs pull
```
We use `pytest` in order to run the tests. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
python -m pytest -sv ./tests
```
You can specify a smaller set of tests in order to test only the feature
you're working on.

25
LICENSE
View File

@@ -253,6 +253,31 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
## Some of lerobot's code is derived from simxarm, which is subject to the following copyright notice:
MIT License
Copyright (c) 2023 Nicklas Hansen & Yanjie Ze
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
## Some of lerobot's code is derived from ALOHA, which is subject to the following copyright notice:
MIT License

142
Makefile Normal file
View File

@@ -0,0 +1,142 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
.PHONY: tests
PYTHON_PATH := $(shell which python)
# If uv is installed and a virtual environment exists, use it
UV_CHECK := $(shell command -v uv)
ifneq ($(UV_CHECK),)
PYTHON_PATH := $(shell .venv/bin/python)
endif
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
DEVICE ?= cpu
build-cpu:
docker build -t lerobot:latest -f docker/lerobot-cpu/Dockerfile .
build-gpu:
docker build -t lerobot:latest -f docker/lerobot-gpu/Dockerfile .
test-end-to-end:
${MAKE} DEVICE=$(DEVICE) test-act-ete-train
${MAKE} DEVICE=$(DEVICE) test-act-ete-train-resume
${MAKE} DEVICE=$(DEVICE) test-act-ete-eval
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-train
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-eval
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-train
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-eval
test-act-ete-train:
python lerobot/scripts/train.py \
--policy.type=act \
--policy.dim_model=64 \
--policy.n_action_steps=20 \
--policy.chunk_size=20 \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
--dataset.image_transforms.enable=true \
--dataset.episodes="[0]" \
--batch_size=2 \
--steps=4 \
--eval_freq=2 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--save_freq=2 \
--save_checkpoint=true \
--log_freq=1 \
--wandb.enable=false \
--output_dir=tests/outputs/act/
test-act-ete-train-resume:
python lerobot/scripts/train.py \
--config_path=tests/outputs/act/checkpoints/000002/pretrained_model/train_config.json \
--resume=true
test-act-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/act/checkpoints/000004/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1
test-diffusion-ete-train:
python lerobot/scripts/train.py \
--policy.type=diffusion \
--policy.down_dims='[64,128,256]' \
--policy.diffusion_step_embed_dim=32 \
--policy.num_inference_steps=10 \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--dataset.repo_id=lerobot/pusht \
--dataset.image_transforms.enable=true \
--dataset.episodes="[0]" \
--batch_size=2 \
--steps=2 \
--eval_freq=2 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--save_checkpoint=true \
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--output_dir=tests/outputs/diffusion/
test-diffusion-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/diffusion/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
--policy.type=tdmpc \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.task=XarmLift-v0 \
--env.episode_length=5 \
--dataset.repo_id=lerobot/xarm_lift_medium \
--dataset.image_transforms.enable=true \
--dataset.episodes="[0]" \
--batch_size=2 \
--steps=2 \
--eval_freq=2 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--save_checkpoint=true \
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--output_dir=tests/outputs/tdmpc/
test-tdmpc-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.episode_length=5 \
--env.task=XarmLift-v0 \
--eval.n_episodes=1 \
--eval.batch_size=1

488
README.md
View File

@@ -1,89 +1,339 @@
# Le Robot
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="media/lerobot-logo-thumbnail.png">
<source media="(prefers-color-scheme: light)" srcset="media/lerobot-logo-thumbnail.png">
<img alt="LeRobot, Hugging Face Robotics Library" src="media/lerobot-logo-thumbnail.png" style="max-width: 100%;">
</picture>
<br/>
<br/>
</p>
#### State-of-the-art machine learning for real-world robotics
<div align="center">
Le Robot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
[![Tests](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml/badge.svg?branch=main)](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml?query=branch%3Amain)
[![Coverage](https://codecov.io/gh/huggingface/lerobot/branch/main/graph/badge.svg?token=TODO)](https://codecov.io/gh/huggingface/lerobot)
[![Python versions](https://img.shields.io/pypi/pyversions/lerobot)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/huggingface/lerobot/blob/main/LICENSE)
[![Status](https://img.shields.io/pypi/status/lerobot)](https://pypi.org/project/lerobot/)
[![Version](https://img.shields.io/pypi/v/lerobot)](https://pypi.org/project/lerobot/)
[![Examples](https://img.shields.io/badge/Examples-green.svg)](https://github.com/huggingface/lerobot/tree/main/examples)
[![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg)](https://github.com/huggingface/lerobot/blob/main/CODE_OF_CONDUCT.md)
[![Discord](https://dcbadge.vercel.app/api/server/C5P34WJ68S?style=flat)](https://discord.gg/s3KuuzsPFb)
Le Robot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
</div>
Le Robot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started. In the coming weeks, the plan is to add more and more supports for real-world robotics on the most affordable and capable robots out there.
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
Build Your Own SO-101 Robot!</a></p>
</h2>
Le Robot is built upon [TorchRL](https://github.com/pytorch/rl) which provides abstractions and utilities for Reinforcement Learning.
<div align="center">
<div style="display: flex; gap: 1rem; justify-content: center; align-items: center;" >
<img
src="media/so101/so101.webp?raw=true"
alt="SO-101 follower arm"
title="SO-101 follower arm"
style="width: 40%;"
/>
<img
src="media/so101/so101-leader.webp?raw=true"
alt="SO-101 leader arm"
title="SO-101 leader arm"
style="width: 40%;"
/>
</div>
## Acknowledgment
- Our ACT policy and ALOHA environment are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha/)
- Our Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
- Our TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
<p><strong>Meet the updated SO100, the SO-101 Just €114 per arm!</strong></p>
<p>Train it in minutes with a few simple moves on your laptop.</p>
<p>Then sit back and watch your creation act autonomously! 🤯</p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
See the full SO-101 tutorial here.</a></p>
<p>Want to take it to the next level? Make your SO-101 mobile by building LeKiwi!</p>
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
</div>
<br/>
<h3 align="center">
<p>LeRobot: State-of-the-art AI for real-world robotics</p>
</h3>
---
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier to entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulation environments to get started without assembling a robot. In the coming weeks, the plan is to add more and more support for real-world robotics on the most affordable and capable robots out there.
🤗 LeRobot hosts pretrained models and datasets on this Hugging Face community page: [huggingface.co/lerobot](https://huggingface.co/lerobot)
#### Examples of pretrained models on simulation environments
<table>
<tr>
<td><img src="media/gym/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
<td><img src="media/gym/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
<td><img src="media/gym/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
</tr>
<tr>
<td align="center">ACT policy on ALOHA env</td>
<td align="center">TDMPC policy on SimXArm env</td>
<td align="center">Diffusion policy on PushT env</td>
</tr>
</table>
### Acknowledgment
- Thanks to Tony Zhao, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
- Thanks to [Seungjae (Jay) Lee](https://sjlee.cc/), [Mahi Shafiullah](https://mahis.life/) and colleagues for open sourcing [VQ-BeT](https://sjlee.cc/vq-bet/) policy and helping us adapt the codebase to our repository. The policy is adapted from [VQ-BeT repo](https://github.com/jayLEE0301/vq_bet_official).
## Installation
Create a virtual environment with Python 3.10, e.g. using `conda`:
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git
cd lerobot
```
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/free/miniconda/index.html):
```bash
conda create -y -n lerobot python=3.10
conda activate lerobot
```
[Install `poetry`](https://python-poetry.org/docs/#installation) (if you don't have it already)
```
curl -sSL https://install.python-poetry.org | python -
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
Install dependencies
```
poetry install
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
pip install -e .
```
If you encounter a disk space error, try to change your tmp dir to a location where you have enough disk space, e.g.
```
mkdir ~/tmp
export TMPDIR='~/tmp'
> **NOTE:** If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run:
`sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
- [pusht](https://github.com/huggingface/gym-pusht)
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install -e ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
```bash
wandb login
```
## Usage
(note: you will also need to enable WandB in the configuration. See below.)
### Train
## Walkthrough
```
python lerobot/scripts/train.py \
hydra.job.name=pusht \
env=pusht
.
├── examples # contains demonstration examples, start here to learn about LeRobot
| └── advanced # contains even more examples for those who have mastered the basics
├── lerobot
| ├── configs # contains config classes with all options that you can override in the command line
| ├── common # contains classes and utilities
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
| | ├── envs # various sim environments: aloha, pusht, xarm
| | ├── policies # various policies: act, diffusion, tdmpc
| | ├── robot_devices # various real devices: dynamixel motors, opencv cameras, koch robots
| | └── utils # various utilities
| └── scripts # contains functions to execute via command line
| ├── eval.py # load policy and evaluate it on an environment
| ├── train.py # train a policy via imitation learning and/or reinforcement learning
| ├── control_robot.py # teleoperate a real robot, record data, run a policy
| ├── push_dataset_to_hub.py # convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub
| └── visualize_dataset.py # load a dataset and render its demonstrations
├── outputs # contains results of scripts execution: logs, videos, model checkpoints
└── tests # contains pytest utilities for continuous integration
```
### Visualize offline buffer
### Visualize datasets
```
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically downloads data from the Hugging Face hub.
You can also locally visualize episodes from a dataset on the hub by executing our script from the command line:
```bash
python lerobot/scripts/visualize_dataset.py \
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
env=pusht
--repo-id lerobot/pusht \
--episode-index 0
```
### Visualize online buffer / Eval
or from a dataset in a local folder with the `root` option and the `--local-files-only` (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--root ./my_local_data_dir \
--local-files-only 1 \
--episode-index 0
```
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
### The `LeRobotDataset` format
A dataset in `LeRobotDataset` format is very simple to use. It can be loaded from a repository on the Hugging Face hub or a local folder simply with e.g. `dataset = LeRobotDataset("lerobot/aloha_static_coffee")` and can be indexed into like any Hugging Face and PyTorch dataset. For instance `dataset[0]` will retrieve a single temporal frame from the dataset containing observation(s) and an action as PyTorch tensors ready to be fed to a model.
A specificity of `LeRobotDataset` is that, rather than retrieving a single frame by its index, we can retrieve several frames based on their temporal relationship with the indexed frame, by setting `delta_timestamps` to a list of relative times with respect to the indexed frame. For example, with `delta_timestamps = {"observation.image": [-1, -0.5, -0.2, 0]}` one can retrieve, for a given index, 4 frames: 3 "previous" frames 1 second, 0.5 seconds, and 0.2 seconds before the indexed frame, and the indexed frame itself (corresponding to the 0 entry). See example [1_load_lerobot_dataset.py](examples/1_load_lerobot_dataset.py) for more details on `delta_timestamps`.
Under the hood, the `LeRobotDataset` format makes use of several ways to serialize data which can be useful to understand if you plan to work more closely with this format. We tried to make a flexible yet simple dataset format that would cover most type of features and specificities present in reinforcement learning and robotics, in simulation and in real-world, with a focus on cameras and robot states but easily extended to other types of sensory inputs as long as they can be represented by a tensor.
Here are the important details and internal structure organization of a typical `LeRobotDataset` instantiated with `dataset = LeRobotDataset("lerobot/aloha_static_coffee")`. The exact features will change from dataset to dataset but not the main aspects:
```
dataset attributes:
├ hf_dataset: a Hugging Face dataset (backed by Arrow/parquet). Typical features example:
│ ├ observation.images.cam_high (VideoFrame):
│ │ VideoFrame = {'path': path to a mp4 video, 'timestamp' (float32): timestamp in the video}
│ ├ observation.state (list of float32): position of an arm joints (for instance)
│ ... (more observations)
│ ├ action (list of float32): goal position of an arm joints (for instance)
│ ├ episode_index (int64): index of the episode for this sample
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
│ ├ timestamp (float32): timestamp in the episode
│ ├ next.done (bool): indicates the end of an episode ; True for the last frame in each episode
│ └ index (int64): general index in the whole dataset
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
│ └ to: (1D int64 tensor): last frame index for each episode — shape (num episodes,)
├ stats: a dictionary of statistics (max, mean, min, std) for each feature in the dataset, for instance
│ ├ observation.images.cam_high: {'max': tensor with same number of dimensions (e.g. `(c, 1, 1)` for images, `(c,)` for states), etc.}
│ ...
├ info: a dictionary of metadata on the dataset
│ ├ codebase_version (str): this is to keep track of the codebase version the dataset was created with
│ ├ fps (float): frame per second the dataset is recorded/synchronized to
│ ├ video (bool): indicates if frames are encoded in mp4 video files to save space or stored as png files
│ └ encoding (dict): if video, this documents the main options that were used with ffmpeg to encode the videos
├ videos_dir (Path): where the mp4 videos or png images are stored/accessed
└ camera_keys (list of string): the keys to access camera features in the item returned by the dataset (e.g. `["observation.images.cam_high", ...]`)
```
A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
- hf_dataset stored using Hugging Face datasets library serialization to parquet
- videos are stored in mp4 format to save space
- metadata are stored in plain json/jsonl files
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
### Evaluate a pretrained policy
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
We also provide a more capable script to parallelize the evaluation over multiple environments during the same rollout. Here is an example with a pretrained model hosted on [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht):
```bash
python lerobot/scripts/eval.py \
hydra.run.dir=tmp/$(date +"%Y_%m_%d") \
env=pusht
--policy.path=lerobot/diffusion_pusht \
--env.type=pusht \
--eval.batch_size=10 \
--eval.n_episodes=10 \
--policy.use_amp=false \
--policy.device=cuda
```
Note: After training your own policy, you can re-evaluate the checkpoints with:
## TODO
```bash
python lerobot/scripts/eval.py --policy.path={OUTPUT_DIR}/checkpoints/last/pretrained_model
```
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/users/Cadene/projects/1)
See `python lerobot/scripts/eval.py --help` for more instructions.
Ask [Remi Cadene](re.cadene@gmail.com) for access if needed.
### Train your own policy
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding `--wandb.enable=true`.
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser. Please also check [here](./examples/4_train_policy_with_script.md#typical-logs-and-metrics) for the explanation of some commonly used metrics in logs.
![](media/wandb.png)
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. You may use `--eval.n_episodes=500` to evaluate on more episodes than the default. Or, after training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
#### Reproduce state-of-the-art (SOTA)
We provide some pretrained policies on our [hub page](https://huggingface.co/lerobot) that can achieve state-of-the-art performances.
You can reproduce their training by loading the config from their run. Simply running:
```bash
python lerobot/scripts/train.py --config_path=lerobot/diffusion_pusht
```
reproduces SOTA results for Diffusion Policy on the PushT task.
## Contribute
If you would like to contribute to 🤗 LeRobot, please check out our [contribution guide](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md).
<!-- ### Add a new dataset
To add a dataset to the hub, you need to login using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then point to your raw dataset folder (e.g. `data/aloha_static_pingpong_test_raw`), and push your dataset to the hub with:
```bash
python lerobot/scripts/push_dataset_to_hub.py \
--raw-dir data/aloha_static_pingpong_test_raw \
--out-dir data \
--repo-id lerobot/aloha_static_pingpong_test \
--raw-format aloha_hdf5
```
See `python lerobot/scripts/push_dataset_to_hub.py --help` for more instructions.
If your dataset format is not supported, implement your own in `lerobot/common/datasets/push_dataset_to_hub/${raw_format}_format.py` by copying examples like [pusht_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/pusht_zarr_format.py), [umi_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/umi_zarr_format.py), [aloha_hdf5](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/aloha_hdf5_format.py), or [xarm_pkl](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/xarm_pkl_format.py). -->
## Profile
### Add a pretrained policy
**Example**
Once you have trained a policy you may upload it to the Hugging Face hub using a hub id that looks like `${hf_user}/${repo_name}` (e.g. [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht)).
You first need to find the checkpoint folder located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). Within that there is a `pretrained_model` directory which should contain:
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
- `train_config.json`: A consolidated configuration containing all parameters used for training. The policy configuration should match `config.json` exactly. This is useful for anyone who wants to evaluate your policy or for reproducibility.
To upload these to the hub, run the following:
```bash
huggingface-cli upload ${hf_user}/${repo_name} path/to/pretrained_model
```
See [eval.py](https://github.com/huggingface/lerobot/blob/main/lerobot/scripts/eval.py) for an example of how other people may use your policy.
### Improve your code with profiling
An example of a code snippet to profile the evaluation of a policy:
```python
from torch.profiler import profile, record_function, ProfilerActivity
@@ -102,124 +352,62 @@ with profile(
with record_function("eval_policy"):
for i in range(num_episodes):
prof.step()
# insert code to profile, potentially whole body of eval_policy function
```
```bash
python lerobot/scripts/eval.py \
pretrained_model_path=/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt \
eval_episodes=7
## Citation
If you want, you can cite this work with:
```bibtex
@misc{cadene2024lerobot,
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Palma, Steven and Kooijmans, Pepijn and Aractingi, Michel and Shukor, Mustafa and Aubakirova, Dana and Russi, Martino and Capuano, Francesco and Pascale, Caroline and Choghari, Jade and Moss, Jess and Wolf, Thomas},
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
howpublished = "\url{https://github.com/huggingface/lerobot}",
year = {2024}
}
```
## Contribute
Additionally, if you are using any of the particular policy architecture, pretrained models, or datasets, it is recommended to cite the original authors of the work as they appear below:
**Style**
- [Diffusion Policy](https://diffusion-policy.cs.columbia.edu)
```bibtex
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
journal = {The International Journal of Robotics Research},
year = {2024},
}
```
# install if needed
pre-commit install
# apply style and linter checks before git commit
pre-commit run -a
- [ACT or ALOHA](https://tonyzhaozh.github.io/aloha)
```bibtex
@article{zhao2023learning,
title={Learning fine-grained bimanual manipulation with low-cost hardware},
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
journal={arXiv preprint arXiv:2304.13705},
year={2023}
}
```
**Adding dependencies (temporary)**
- [TDMPC](https://www.nicklashansen.com/td-mpc/)
Right now, for the CI to work, whenever a new dependency is added it needs to be also added to the cpu env, eg:
```
# Run in this directory, adds the package to the main env with cuda
poetry add some-package
# Adds the same package to the cpu env
cd .github/poetry/cpu && poetry add some-package
```bibtex
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
booktitle={ICML},
year={2022}
}
```
**Tests**
- [VQ-BeT](https://sjlee.cc/vq-bet/)
```bibtex
@article{lee2024behavior,
title={Behavior generation with latent actions},
author={Lee, Seungjae and Wang, Yibin and Etukuru, Haritheja and Kim, H Jin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal={arXiv preprint arXiv:2403.03181},
year={2024}
}
```
## Star History
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
On Mac:
```
brew install git-lfs
git lfs install
```
On Ubuntu:
```
sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/data](tests/data)
```
git lfs pull
```
When adding a new dataset, mock it with
```
python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir tests/data/$DATASET
```
Run tests
```
DATA_DIR="tests/data" pytest -sx tests
```
**Datasets**
To add a dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
```
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then you can upload it to the hub with:
```
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
--repo-type dataset \
--revision v1.0
```
You will need to set the corresponding version as a default argument in your dataset class:
```python
version: str | None = "v1.0",
```
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
For instance, for [cadene/pusht](https://huggingface.co/datasets/cadene/pusht), we used:
```
HF_USER=cadene
DATASET=pusht
```
If you want to improve an existing dataset, you can download it locally with:
```
mkdir -p data/$DATASET
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download ${HF_USER}/$DATASET \
--repo-type dataset \
--local-dir data/$DATASET \
--local-dir-use-symlinks=False \
--revision v1.0
```
Iterate on your code and dataset with:
```
DATA_DIR=data python train.py
```
Upload a new version (v2.0 or v1.1 if the changes are respectively more or less significant):
```
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
--repo-type dataset \
--revision v1.1 \
--delete "*"
```
Then you will need to set the corresponding version as a default argument in your dataset class:
```python
version: str | None = "v1.1",
```
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
Finally, you might want to mock the dataset if you need to update the unit tests as well:
```
python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir tests/data/$DATASET
```
[![Star History Chart](https://api.star-history.com/svg?repos=huggingface/lerobot&type=Timeline)](https://star-history.com/#huggingface/lerobot&Timeline)

271
benchmarks/video/README.md Normal file
View File

@@ -0,0 +1,271 @@
# Video benchmark
## Questions
What is the optimal trade-off between:
- maximizing loading time with random access,
- minimizing memory space on disk,
- maximizing success rate of policies,
- compatibility across devices/platforms for decoding videos (e.g. video players, web browsers).
How to encode videos?
- Which video codec (`-vcodec`) to use? h264, h265, AV1?
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
- How much compression (`-crf`)? No compression with `0`, intermediate compression with `25` or extreme with `50+`?
- Which frequency to chose for key frames (`-g`)? A key frame every `10` frames?
How to decode videos?
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
- What scenarios to use for the requesting timestamps during benchmark? (`timestamps_mode`)
## Variables
**Image content & size**
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an apartment, or in a factory, or outdoor, or with lots of moving objects in the scene, etc. Similarly, loading times might not vary linearly with the image size (resolution).
For these reasons, we run this benchmark on four representative datasets:
- `lerobot/pusht_image`: (96 x 96 pixels) simulation with simple geometric shapes, fixed camera.
- `aliberts/aloha_mobile_shrimp_image`: (480 x 640 pixels) real-world indoor, moving camera.
- `aliberts/paris_street`: (720 x 1280 pixels) real-world outdoor, moving camera.
- `aliberts/kitchen`: (1080 x 1920 pixels) real-world indoor, fixed camera.
Note: The datasets used for this benchmark need to be image datasets, not video datasets.
**Data augmentations**
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
### Encoding parameters
| parameter | values |
|-------------|--------------------------------------------------------------|
| **vcodec** | `libx264`, `libx265`, `libsvtav1` |
| **pix_fmt** | `yuv444p`, `yuv420p` |
| **g** | `1`, `2`, `3`, `4`, `5`, `6`, `10`, `15`, `20`, `40`, `None` |
| **crf** | `0`, `5`, `10`, `15`, `20`, `25`, `30`, `40`, `50`, `None` |
Note that `crf` value might be interpreted differently by various video codecs. In other words, the same value used with one codec doesn't necessarily translate into the same compression level with another codec. In fact, the default value (`None`) isn't the same amongst the different video codecs. Importantly, it is also the case for many other ffmpeg arguments like `g` which specifies the frequency of the key frames.
For a comprehensive list and documentation of these parameters, see the ffmpeg documentation depending on the video codec used:
- h264: https://trac.ffmpeg.org/wiki/Encode/H.264
- h265: https://trac.ffmpeg.org/wiki/Encode/H.265
- AV1: https://trac.ffmpeg.org/wiki/Encode/AV1
### Decoding parameters
**Decoder**
We tested two video decoding backends from torchvision:
- `pyav`
- `video_reader` (requires to build torchvision from source)
**Requested timestamps**
Given the way video decoding works, once a keyframe has been loaded, the decoding of subsequent frames is fast.
This of course is affected by the `-g` parameter during encoding, which specifies the frequency of the keyframes. Given our typical use cases in robotics policies which might request a few timestamps in different random places, we want to replicate these use cases with the following scenarios:
- `1_frame`: 1 frame,
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
- `6_frames`: 6 consecutive frames (e.g. `[t + i / fps for i in range(6)]`)
Note that this differs significantly from a typical use case like watching a movie, in which every frame is loaded sequentially from the beginning to the end and it's acceptable to have big values for `-g`.
Additionally, because some policies might request single timestamps that are a few frames apart, we also have the following scenario:
- `2_frames_4_space`: 2 frames with 4 consecutive frames of spacing in between (e.g `[t, t + 5 / fps]`),
However, due to how video decoding is implemented with `pyav`, we don't have access to an accurate seek so in practice this scenario is essentially the same as `6_frames` since all 6 frames between `t` and `t + 5 / fps` will be decoded.
## Metrics
**Data compression ratio (lower is better)**
`video_images_size_ratio` is the ratio of the memory space on disk taken by the encoded video over the memory space taken by the original images. For instance, `video_images_size_ratio=25%` means that the video takes 4 times less memory space on disk compared to the original images.
**Loading time ratio (lower is better)**
`video_images_load_time_ratio` is the ratio of the time it takes to decode frames from the video at a given timestamps over the time it takes to load the exact same original images. Lower is better. For instance, `video_images_load_time_ratio=200%` means that decoding from video is 2 times slower than loading the original images.
**Average Mean Square Error (lower is better)**
`avg_mse` is the average mean square error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
**Average Peak Signal to Noise Ratio (higher is better)**
`avg_psnr` measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. Higher PSNR indicates better quality.
**Average Structural Similarity Index Measure (higher is better)**
`avg_ssim` evaluates the perceived quality of images by comparing luminance, contrast, and structure. SSIM values range from -1 to 1, where 1 indicates perfect similarity.
One aspect that can't be measured here with those metrics is the compatibility of the encoding across platforms, in particular on web browser, for visualization purposes.
h264, h265 and AV1 are all commonly used codecs and should not pose an issue. However, the chroma subsampling (`pix_fmt`) format might affect compatibility:
- `yuv420p` is more widely supported across various platforms, including web browsers.
- `yuv444p` offers higher color fidelity but might not be supported as broadly.
<!-- **Loss of a pretrained policy (higher is better)** (not available)
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
**Success rate after retraining (higher is better)** (not available)
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best. -->
## How the benchmark works
The benchmark evaluates both encoding and decoding of video frames on the first episode of each dataset.
**Encoding:** for each `vcodec` and `pix_fmt` pair, we use a default value for `g` and `crf` upon which we change a single value (either `g` or `crf`) to one of the specified values (we don't test every combination of those as this would be computationally too heavy).
This gives a unique set of encoding parameters which is used to encode the episode.
**Decoding:** Then, for each of those unique encodings, we iterate through every combination of the decoding parameters `backend` and `timestamps_mode`. For each of them, we record the metrics of a number of samples (given by `--num-samples`). This is parallelized for efficiency and the number of processes can be controlled with `--num-workers`. Ideally, it's best to have a `--num-samples` that is divisible by `--num-workers`.
Intermediate results saved for each `vcodec` and `pix_fmt` combination in csv tables.
These are then all concatenated to a single table ready for analysis.
## Caveats
We tried to measure the most impactful parameters for both encoding and decoding. However, for computational reasons we can't test out every combination.
Additional encoding parameters exist that are not included in this benchmark. In particular:
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
- `-tune` which allows to optimize the encoding for certain aspects (e.g. film quality, fast decoding, etc.).
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.
Similarly on the decoding side, other decoders exist but are not implemented in our current benchmark. To name a few:
- `torchaudio`
- `ffmpegio`
- `decord`
- `nvc`
Note as well that since we are mostly interested in the performance at decoding time (also because encoding is done only once before uploading a dataset), we did not measure encoding times nor have any metrics regarding encoding.
However, besides the necessity to build ffmpeg from source, encoding did not pose any issue and it didn't take a significant amount of time during this benchmark.
## Install
Building ffmpeg from source is required to include libx265 and libaom/libsvtav1 (av1) video codecs ([compilation guide](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu)).
**Note:** While you still need to build torchvision with a conda-installed `ffmpeg<4.3` to use the `video_reader` decoder (as described in [#220](https://github.com/huggingface/lerobot/pull/220)), you also need another version which is custom-built with all the video codecs for encoding. For the script to then use that version, you can prepend the command above with `PATH="$HOME/bin:$PATH"`, which is where ffmpeg should be built.
## Adding a video decoder
Right now, we're only benchmarking the two video decoder available with torchvision: `pyav` and `video_reader`.
You can easily add a new decoder to benchmark by adding it to this function in the script:
```diff
def decode_video_frames(
video_path: str,
timestamps: list[float],
tolerance_s: float,
backend: str,
) -> torch.Tensor:
if backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(
video_path, timestamps, tolerance_s, backend
)
+ elif backend == ["your_decoder"]:
+ return your_decoder_function(
+ video_path, timestamps, tolerance_s, backend
+ )
else:
raise NotImplementedError(backend)
```
## Example
For a quick run, you can try these parameters:
```bash
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
--vcodec libx264 libx265 \
--pix-fmt yuv444p yuv420p \
--g 2 20 None \
--crf 10 40 None \
--timestamps-modes 1_frame 2_frames \
--backends pyav video_reader \
--num-samples 5 \
--num-workers 5 \
--save-frames 0
```
## Results
### Reproduce
We ran the benchmark with the following parameters:
```bash
# h264 and h265 encodings
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
aliberts/paris_street \
aliberts/kitchen \
--vcodec libx264 libx265 \
--pix-fmt yuv444p yuv420p \
--g 1 2 3 4 5 6 10 15 20 40 None \
--crf 0 5 10 15 20 25 30 40 50 None \
--timestamps-modes 1_frame 2_frames 6_frames \
--backends pyav video_reader \
--num-samples 50 \
--num-workers 5 \
--save-frames 1
# av1 encoding (only compatible with yuv420p and pyav decoder)
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
aliberts/paris_street \
aliberts/kitchen \
--vcodec libsvtav1 \
--pix-fmt yuv420p \
--g 1 2 3 4 5 6 10 15 20 40 None \
--crf 0 5 10 15 20 25 30 40 50 None \
--timestamps-modes 1_frame 2_frames 6_frames \
--backends pyav \
--num-samples 50 \
--num-workers 5 \
--save-frames 1
```
The full results are available [here](https://docs.google.com/spreadsheets/d/1OYJB43Qu8fC26k_OyoMFgGBBKfQRCi4BIuYitQnq3sw/edit?usp=sharing)
### Parameters selected for LeRobotDataset
Considering these results, we chose what we think is the best set of encoding parameter:
- vcodec: `libsvtav1`
- pix-fmt: `yuv420p`
- g: `2`
- crf: `30`
Since we're using av1 encoding, we're choosing the `pyav` decoder as `video_reader` does not support it (and `pyav` doesn't require a custom build of `torchvision`).
### Summary
These tables show the results for `g=2` and `crf=30`, using `timestamps-modes=6_frames` and `backend=pyav`
| video_images_size_ratio | vcodec | pix_fmt | | | |
|------------------------------------|------------|---------|-----------|-----------|-----------|
| | libx264 | | libx265 | | libsvtav1 |
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | **16.97%** | 17.58% | 18.57% | 18.86% | 22.06% |
| aliberts/aloha_mobile_shrimp_image | 2.14% | 2.11% | 1.38% | **1.37%** | 5.59% |
| aliberts/paris_street | 2.12% | 2.13% | **1.54%** | **1.54%** | 4.43% |
| aliberts/kitchen | 1.40% | 1.39% | **1.00%** | **1.00%** | 2.52% |
| video_images_load_time_ratio | vcodec | pix_fmt | | | |
|------------------------------------|---------|---------|----------|---------|-----------|
| | libx264 | | libx265 | | libsvtav1 |
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | 6.45 | 5.19 | **1.90** | 2.12 | 2.47 |
| aliberts/aloha_mobile_shrimp_image | 11.80 | 7.92 | 0.71 | 0.85 | **0.48** |
| aliberts/paris_street | 2.21 | 2.05 | 0.36 | 0.49 | **0.30** |
| aliberts/kitchen | 1.46 | 1.46 | 0.28 | 0.51 | **0.26** |
| | | vcodec | pix_fmt | | | |
|------------------------------------|----------|----------|--------------|----------|-----------|--------------|
| | | libx264 | | libx265 | | libsvtav1 |
| repo_id | metric | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | avg_mse | 2.90E-04 | **2.03E-04** | 3.13E-04 | 2.29E-04 | 2.19E-04 |
| | avg_psnr | 35.44 | 37.07 | 35.49 | **37.30** | 37.20 |
| | avg_ssim | 98.28% | **98.85%** | 98.31% | 98.84% | 98.72% |
| aliberts/aloha_mobile_shrimp_image | avg_mse | 2.76E-04 | 2.59E-04 | 3.17E-04 | 3.06E-04 | **1.30E-04** |
| | avg_psnr | 35.91 | 36.21 | 35.88 | 36.09 | **40.17** |
| | avg_ssim | 95.19% | 95.18% | 95.00% | 95.05% | **97.73%** |
| aliberts/paris_street | avg_mse | 6.89E-04 | 6.70E-04 | 4.03E-03 | 4.02E-03 | **3.09E-04** |
| | avg_psnr | 33.48 | 33.68 | 32.05 | 32.15 | **35.40** |
| | avg_ssim | 93.76% | 93.75% | 89.46% | 89.46% | **95.46%** |
| aliberts/kitchen | avg_mse | 2.50E-04 | 2.24E-04 | 4.28E-04 | 4.18E-04 | **1.53E-04** |
| | avg_psnr | 36.73 | 37.33 | 36.56 | 36.75 | **39.12** |
| | avg_ssim | 95.47% | 95.58% | 95.52% | 95.53% | **96.82%** |

View File

@@ -0,0 +1,102 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Capture video feed from a camera as raw images."""
import argparse
import datetime as dt
import os
import time
from pathlib import Path
import cv2
import rerun as rr
# see https://rerun.io/docs/howto/visualization/limit-ram
RERUN_MEMORY_LIMIT = os.getenv("LEROBOT_RERUN_MEMORY_LIMIT", "5%")
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int, duration: int):
rr.init("lerobot_capture_camera_feed")
rr.spawn(memory_limit=RERUN_MEMORY_LIMIT)
now = dt.datetime.now()
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
if not capture_dir.exists():
capture_dir.mkdir(parents=True, exist_ok=True)
# Opens the default webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Could not open video stream.")
return
cap.set(cv2.CAP_PROP_FPS, fps)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
frame_index = 0
start_time = time.time()
while time.time() - start_time < duration:
ret, frame = cap.read()
if not ret:
print("Error: Could not read frame.")
break
rr.log("video/stream", rr.Image(frame.numpy()), static=True)
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
frame_index += 1
# Release the capture
cap.release()
# TODO(Steven): Add a graceful shutdown via a close() method for the Viewer context, though not currently supported in the Rerun API.
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
type=Path,
default=Path("outputs/cam_capture/"),
help="Directory where the capture images are written. A subfolder named with the current date & time will be created inside it for each capture.",
)
parser.add_argument(
"--fps",
type=int,
default=30,
help="Frames Per Second of the capture.",
)
parser.add_argument(
"--width",
type=int,
default=1280,
help="Width of the captured images.",
)
parser.add_argument(
"--height",
type=int,
default=720,
help="Height of the captured images.",
)
parser.add_argument(
"--duration",
type=int,
default=20,
help="Duration in seconds for which the video stream should be captured.",
)
args = parser.parse_args()
display_and_save_video_stream(**vars(args))

View File

@@ -0,0 +1,490 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Assess the performance of video decoding in various configurations.
This script will benchmark different video encoding and decoding parameters.
See the provided README.md or run `python benchmark/video/run_video_benchmark.py --help` for usage info.
"""
import argparse
import datetime as dt
import random
import shutil
from collections import OrderedDict
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import einops
import numpy as np
import pandas as pd
import PIL
import torch
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
from tqdm import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import (
decode_video_frames_torchvision,
encode_video_frames,
)
from lerobot.common.utils.benchmark import TimeBenchmark
BASE_ENCODING = OrderedDict(
[
("vcodec", "libx264"),
("pix_fmt", "yuv444p"),
("g", 2),
("crf", None),
# TODO(aliberts): Add fastdecode
# ("fastdecode", 0),
]
)
# TODO(rcadene, aliberts): move to `utils.py` folder when we want to refactor
def parse_int_or_none(value) -> int | None:
if value.lower() == "none":
return None
try:
return int(value)
except ValueError as e:
raise argparse.ArgumentTypeError(f"Invalid int or None: {value}") from e
def check_datasets_formats(repo_ids: list) -> None:
for repo_id in repo_ids:
dataset = LeRobotDataset(repo_id)
if len(dataset.meta.video_keys) > 0:
raise ValueError(
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
)
def get_directory_size(directory: Path) -> int:
total_size = 0
for item in directory.rglob("*"):
if item.is_file():
total_size += item.stat().st_size
return total_size
def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> torch.Tensor:
frames = []
for ts in timestamps:
idx = int(ts * fps)
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
frame = torch.from_numpy(np.array(frame))
frame = frame.type(torch.float32) / 255
frame = einops.rearrange(frame, "h w c -> c h w")
frames.append(frame)
return torch.stack(frames)
def save_decoded_frames(
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int
) -> None:
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
return
save_dir.mkdir(parents=True, exist_ok=True)
for i, ts in enumerate(timestamps):
idx = int(ts * fps)
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
ep_num_images = dataset.episode_data_index["to"][0].item()
if imgs_dir.exists() and len(list(imgs_dir.glob("frame_*.png"))) == ep_num_images:
return
imgs_dir.mkdir(parents=True, exist_ok=True)
hf_dataset = dataset.hf_dataset.with_format(None)
# We only save images from the first camera
img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")]
imgs_dataset = hf_dataset.select_columns(img_keys[0])
for i, item in enumerate(
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
):
img = item[img_keys[0]]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
if i >= ep_num_images - 1:
break
def sample_timestamps(timestamps_mode: str, ep_num_images: int, fps: int) -> list[float]:
# Start at 5 to allow for 2_frames_4_space and 6_frames
idx = random.randint(5, ep_num_images - 1)
match timestamps_mode:
case "1_frame":
frame_indexes = [idx]
case "2_frames":
frame_indexes = [idx - 1, idx]
case "2_frames_4_space":
frame_indexes = [idx - 5, idx]
case "6_frames":
frame_indexes = [idx - i for i in range(6)][::-1]
case _:
raise ValueError(timestamps_mode)
return [idx / fps for idx in frame_indexes]
def decode_video_frames(
video_path: str,
timestamps: list[float],
tolerance_s: float,
backend: str,
) -> torch.Tensor:
if backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
else:
raise NotImplementedError(backend)
def benchmark_decoding(
imgs_dir: Path,
video_path: Path,
timestamps_mode: str,
backend: str,
ep_num_images: int,
fps: int,
num_samples: int = 50,
num_workers: int = 4,
save_frames: bool = False,
) -> dict:
def process_sample(sample: int):
time_benchmark = TimeBenchmark()
timestamps = sample_timestamps(timestamps_mode, ep_num_images, fps)
num_frames = len(timestamps)
result = {
"psnr_values": [],
"ssim_values": [],
"mse_values": [],
}
with time_benchmark:
frames = decode_video_frames(video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend)
result["load_time_video_ms"] = time_benchmark.result_ms / num_frames
with time_benchmark:
original_frames = load_original_frames(imgs_dir, timestamps, fps)
result["load_time_images_ms"] = time_benchmark.result_ms / num_frames
frames_np, original_frames_np = frames.numpy(), original_frames.numpy()
for i in range(num_frames):
result["mse_values"].append(mean_squared_error(original_frames_np[i], frames_np[i]))
result["psnr_values"].append(
peak_signal_noise_ratio(original_frames_np[i], frames_np[i], data_range=1.0)
)
result["ssim_values"].append(
structural_similarity(original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0)
)
if save_frames and sample == 0:
save_dir = video_path.with_suffix("") / f"{timestamps_mode}_{backend}"
save_decoded_frames(imgs_dir, save_dir, frames, timestamps, fps)
return result
load_times_video_ms = []
load_times_images_ms = []
mse_values = []
psnr_values = []
ssim_values = []
# A sample is a single set of decoded frames specified by timestamps_mode (e.g. a single frame, 2 frames, etc.).
# For each sample, we record metrics (loading time and quality metrics) which are then averaged over all samples.
# As these samples are independent, we run them in parallel threads to speed up the benchmark.
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(process_sample, i) for i in range(num_samples)]
for future in tqdm(as_completed(futures), total=num_samples, desc="samples", leave=False):
result = future.result()
load_times_video_ms.append(result["load_time_video_ms"])
load_times_images_ms.append(result["load_time_images_ms"])
psnr_values.extend(result["psnr_values"])
ssim_values.extend(result["ssim_values"])
mse_values.extend(result["mse_values"])
avg_load_time_video_ms = float(np.array(load_times_video_ms).mean())
avg_load_time_images_ms = float(np.array(load_times_images_ms).mean())
video_images_load_time_ratio = avg_load_time_video_ms / avg_load_time_images_ms
return {
"avg_load_time_video_ms": avg_load_time_video_ms,
"avg_load_time_images_ms": avg_load_time_images_ms,
"video_images_load_time_ratio": video_images_load_time_ratio,
"avg_mse": float(np.mean(mse_values)),
"avg_psnr": float(np.mean(psnr_values)),
"avg_ssim": float(np.mean(ssim_values)),
}
def benchmark_encoding_decoding(
dataset: LeRobotDataset,
video_path: Path,
imgs_dir: Path,
encoding_cfg: dict,
decoding_cfg: dict,
num_samples: int,
num_workers: int,
save_frames: bool,
overwrite: bool = False,
seed: int = 1337,
) -> list[dict]:
fps = dataset.fps
if overwrite or not video_path.is_file():
tqdm.write(f"encoding {video_path}")
encode_video_frames(
imgs_dir=imgs_dir,
video_path=video_path,
fps=fps,
vcodec=encoding_cfg["vcodec"],
pix_fmt=encoding_cfg["pix_fmt"],
g=encoding_cfg.get("g"),
crf=encoding_cfg.get("crf"),
# fast_decode=encoding_cfg.get("fastdecode"),
overwrite=True,
)
ep_num_images = dataset.episode_data_index["to"][0].item()
width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:])
num_pixels = width * height
video_size_bytes = video_path.stat().st_size
images_size_bytes = get_directory_size(imgs_dir)
video_images_size_ratio = video_size_bytes / images_size_bytes
random.seed(seed)
benchmark_table = []
for timestamps_mode in tqdm(
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
):
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
benchmark_row = benchmark_decoding(
imgs_dir,
video_path,
timestamps_mode,
backend,
ep_num_images,
fps,
num_samples,
num_workers,
save_frames,
)
benchmark_row.update(
**{
"repo_id": dataset.repo_id,
"resolution": f"{width} x {height}",
"num_pixels": num_pixels,
"video_size_bytes": video_size_bytes,
"images_size_bytes": images_size_bytes,
"video_images_size_ratio": video_images_size_ratio,
"timestamps_mode": timestamps_mode,
"backend": backend,
},
**encoding_cfg,
)
benchmark_table.append(benchmark_row)
return benchmark_table
def main(
output_dir: Path,
repo_ids: list[str],
vcodec: list[str],
pix_fmt: list[str],
g: list[int],
crf: list[int],
# fastdecode: list[int],
timestamps_modes: list[str],
backends: list[str],
num_samples: int,
num_workers: int,
save_frames: bool,
):
check_datasets_formats(repo_ids)
encoding_benchmarks = {
"g": g,
"crf": crf,
# "fastdecode": fastdecode,
}
decoding_benchmarks = {
"timestamps_modes": timestamps_modes,
"backends": backends,
}
headers = ["repo_id", "resolution", "num_pixels"]
headers += list(BASE_ENCODING.keys())
headers += [
"timestamps_mode",
"backend",
"video_size_bytes",
"images_size_bytes",
"video_images_size_ratio",
"avg_load_time_video_ms",
"avg_load_time_images_ms",
"video_images_load_time_ratio",
"avg_mse",
"avg_psnr",
"avg_ssim",
]
file_paths = []
for video_codec in tqdm(vcodec, desc="encodings (vcodec)"):
for pixel_format in tqdm(pix_fmt, desc="encodings (pix_fmt)", leave=False):
benchmark_table = []
for repo_id in tqdm(repo_ids, desc="encodings (datasets)", leave=False):
dataset = LeRobotDataset(repo_id)
imgs_dir = output_dir / "images" / dataset.repo_id.replace("/", "_")
# We only use the first episode
save_first_episode(imgs_dir, dataset)
for key, values in tqdm(encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False):
for value in tqdm(values, desc=f"encodings ({key})", leave=False):
encoding_cfg = BASE_ENCODING.copy()
encoding_cfg["vcodec"] = video_codec
encoding_cfg["pix_fmt"] = pixel_format
encoding_cfg[key] = value
args_path = Path("_".join(str(value) for value in encoding_cfg.values()))
video_path = output_dir / "videos" / args_path / f"{repo_id.replace('/', '_')}.mp4"
benchmark_table += benchmark_encoding_decoding(
dataset,
video_path,
imgs_dir,
encoding_cfg,
decoding_benchmarks,
num_samples,
num_workers,
save_frames,
)
# Save intermediate results
benchmark_df = pd.DataFrame(benchmark_table, columns=headers)
now = dt.datetime.now()
csv_path = (
output_dir
/ f"{now:%Y-%m-%d}_{now:%H-%M-%S}_{video_codec}_{pixel_format}_{num_samples}-samples.csv"
)
benchmark_df.to_csv(csv_path, header=True, index=False)
file_paths.append(csv_path)
del benchmark_df
# Concatenate all results
df_list = [pd.read_csv(csv_path) for csv_path in file_paths]
concatenated_df = pd.concat(df_list, ignore_index=True)
concatenated_path = output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv"
concatenated_df.to_csv(concatenated_path, header=True, index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
type=Path,
default=Path("outputs/video_benchmark"),
help="Directory where the video benchmark outputs are written.",
)
parser.add_argument(
"--repo-ids",
type=str,
nargs="*",
default=[
"lerobot/pusht_image",
"aliberts/aloha_mobile_shrimp_image",
"aliberts/paris_street",
"aliberts/kitchen",
],
help="Datasets repo-ids to test against. First episodes only are used. Must be images.",
)
parser.add_argument(
"--vcodec",
type=str,
nargs="*",
default=["libx264", "hevc", "libsvtav1"],
help="Video codecs to be tested",
)
parser.add_argument(
"--pix-fmt",
type=str,
nargs="*",
default=["yuv444p", "yuv420p"],
help="Pixel formats (chroma subsampling) to be tested",
)
parser.add_argument(
"--g",
type=parse_int_or_none,
nargs="*",
default=[1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None],
help="Group of pictures sizes to be tested.",
)
parser.add_argument(
"--crf",
type=parse_int_or_none,
nargs="*",
default=[0, 5, 10, 15, 20, 25, 30, 40, 50, None],
help="Constant rate factors to be tested.",
)
# parser.add_argument(
# "--fastdecode",
# type=int,
# nargs="*",
# default=[0, 1],
# help="Use the fastdecode tuning option. 0 disables it. "
# "For libx264 and libx265/hevc, only 1 is possible. "
# "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
# )
parser.add_argument(
"--timestamps-modes",
type=str,
nargs="*",
default=[
"1_frame",
"2_frames",
"2_frames_4_space",
"6_frames",
],
help="Timestamps scenarios to be tested.",
)
parser.add_argument(
"--backends",
type=str,
nargs="*",
default=["pyav", "video_reader"],
help="Torchvision decoding backend to be tested.",
)
parser.add_argument(
"--num-samples",
type=int,
default=50,
help="Number of samples for each encoding x decoding config.",
)
parser.add_argument(
"--num-workers",
type=int,
default=10,
help="Number of processes for parallelized sample processing.",
)
parser.add_argument(
"--save-frames",
type=int,
default=0,
help="Whether to save decoded frames or not. Enter a non-zero number for true.",
)
args = parser.parse_args()
main(**vars(args))

View File

@@ -0,0 +1,29 @@
# Configure image
ARG PYTHON_VERSION=3.10
FROM python:${PYTHON_VERSION}-slim
# Configure environment variables
ARG PYTHON_VERSION
ENV DEBIAN_FRONTEND=noninteractive
ENV MUJOCO_GL="egl"
ENV PATH="/opt/venv/bin:$PATH"
# Install dependencies and set up Python in a single layer
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake git \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher libgeos-dev \
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
&& python -m venv /opt/venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Clone repository and install LeRobot in a single layer
COPY . /lerobot
WORKDIR /lerobot
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
--extra-index-url https://download.pytorch.org/whl/cpu
# Execute in bash shell rather than python
CMD ["/bin/bash"]

View File

@@ -0,0 +1,68 @@
FROM nvidia/cuda:12.2.2-devel-ubuntu22.04
# Configure image
ARG PYTHON_VERSION=3.10
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim less util-linux tree \
htop atop nvtop \
sed gawk grep curl wget zip unzip \
tcpdump sysstat screen tmux \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
speech-dispatcher portaudio19-dev libgeos-dev \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv python${PYTHON_VERSION}-dev \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install ffmpeg build dependencies. See:
# https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
# TODO(aliberts): create image to build dependencies from source instead
RUN apt-get update && apt-get install -y --no-install-recommends \
autoconf automake yasm \
libass-dev \
libfreetype6-dev \
libgnutls28-dev \
libunistring-dev \
libmp3lame-dev \
libtool \
libvorbis-dev \
meson \
ninja-build \
pkg-config \
texinfo \
yasm \
zlib1g-dev \
nasm \
libx264-dev \
libx265-dev libnuma-dev \
libvpx-dev \
libfdk-aac-dev \
libopus-dev \
libsvtav1-dev libsvtav1enc-dev libsvtav1dec-dev \
libdav1d-dev
# Install gh cli tool
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
&& mkdir -p -m 755 /etc/apt/keyrings \
&& wget -qO- https://cli.github.com/packages/githubcli-archive-keyring.gpg | tee /etc/apt/keyrings/githubcli-archive-keyring.gpg > /dev/null \
&& chmod go+r /etc/apt/keyrings/githubcli-archive-keyring.gpg \
&& echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/packages stable main" | tee /etc/apt/sources.list.d/github-cli.list > /dev/null \
&& apt update \
&& apt install gh -y \
&& apt clean && rm -rf /var/lib/apt/lists/*
# Setup `python`
RUN ln -s /usr/bin/python3 /usr/bin/python
# Install poetry
RUN curl -sSL https://install.python-poetry.org | python -
ENV PATH="/root/.local/bin:$PATH"
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
RUN poetry config virtualenvs.create false
RUN poetry config virtualenvs.in-project true
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"

View File

@@ -0,0 +1,24 @@
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
# Configure environment variables
ARG PYTHON_VERSION=3.10
ENV DEBIAN_FRONTEND=noninteractive
ENV MUJOCO_GL="egl"
ENV PATH="/opt/venv/bin:$PATH"
# Install dependencies and set up Python in a single layer
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake git \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher libgeos-dev \
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
&& python -m venv /opt/venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Clone repository and install LeRobot in a single layer
COPY . /lerobot
WORKDIR /lerobot
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"

137
docs/README.md Normal file
View File

@@ -0,0 +1,137 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
pip install -e ".[docs]"
```
You will also need `nodejs`. Please refer to their [installation page](https://nodejs.org/en/download)
---
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look before committing for instance). You don't have to `git commit` the built documentation.
---
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
doc-builder build lerobot docs/source/ --build_dir ~/tmp/test-build
```
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview lerobot docs/source/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
## Adding a new element to the navigation bar
Accepted files are Markdown (.md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/lerobot/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
```
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved sections set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
### Adding a new tutorial
Adding a new tutorial or section is done in two steps:
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. If you have a doubt, feel free to ask in a Github Issue or PR.
### Writing source documentation
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None or any strings should usually be put in `code`.
#### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
```
# first line of code
# second line
# etc
```
````
#### Adding an image
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.

12
docs/source/_toctree.yml Normal file
View File

@@ -0,0 +1,12 @@
- sections:
- local: index
title: LeRobot
- local: installation
title: Installation
title: Get started
- sections:
- local: assemble_so101
title: Assemble SO-101
- local: getting_started_real_world_robot
title: Getting Started with Real-World Robots
title: "Tutorials"

View File

@@ -0,0 +1,348 @@
# Assemble SO-101
In the steps below we explain how to assemble our flagship robot, the SO-101.
## Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
To install LeRobot follow our [Installation Guide](./installation)
## Configure motors
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
### Find the USB ports associated to each arm
To find the port for each bus servo adapter, run this script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
##### Example outputs of script
<hfoptions id="example">
<hfoption id="Mac">
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
```bash
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
</hfoption>
<hfoption id="Linux">
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
Example output leader arm port: `/dev/ttyACM0`
```bash
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM0
Reconnect the usb cable.
```
Example output follower arm port: `/dev/ttyACM1`
```
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM1
Reconnect the usb cable.
```
</hfoption>
</hfoptions>
#### Update config file
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
```diff
@RobotConfig.register_subclass("so101")
@dataclass
class So101RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so101"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem58760431091",
+ port="{ADD YOUR LEADER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem585A0076891",
+ port="{ADD YOUR FOLLOWER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
Here is a video of the process:
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-find-motorbus.mp4" type="video/mp4" />
</video>
</div>
## Step-by-Step Assembly Instructions
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
| Leader-Arm Axis | Motor | Gear Ratio |
|-----------------|:-------:|:----------:|
| Base / Shoulder Yaw | 1 | 1 / 191 |
| Shoulder Pitch | 2 | 1 / 345 |
| Elbow | 3 | 1 / 191 |
| Wrist Roll | 4 | 1 / 147 |
| Wrist Pitch | 5 | 1 / 147 |
| Gripper | 6 | 1 / 147 |
### Set motor IDs
Plug your motor in one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage and make sure you give the right ID to the right motor according to the table above.
Here is a video of the process:
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-configure-motor.mp4" type="video/mp4" />
</video>
</div>
### Clean Parts
Remove all support material from the 3D-printed parts, the easiest way to do this is using a small screwdriver to get underneath the support material.
### Joint 1
- Place the first motor into the base.
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
- Install both motor horns, securing the top horn with a M3x6mm screw.
- Attach the shoulder part.
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
- Add the shoulder motor holder.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint1_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 2
- Slide the second motor in from the top.
- Fasten the second motor with 4 M2x6mm screws.
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
- Attach the upper arm with 4 M3x6mm screws on each side.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint2_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 3
- Insert motor 3 and fasten using 4 M2x6mm screws
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint3_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 4
- Slide over motor holder 4.
- Slide in motor 4.
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint4_v2.mp4" type="video/mp4" />
</video>
</div>
### Joint 5
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint5_v2.mp4" type="video/mp4" />
</video>
</div>
### Gripper / Handle
<hfoptions id="assembly">
<hfoption id="Follower">
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
- Attach the motor horns and again use a M3x6mm horn screw.
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Gripper_v2.mp4" type="video/mp4" />
</video>
</div>
</hfoption>
<hfoption id="Leader">
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
- Attach the handle to motor 5 using 1 M2x6mm screw.
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
- Attach the follower trigger with 4 M3x6mm screws.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Leader_v2.mp4" type="video/mp4" />
</video>
</div>
</hfoption>
</hfoptions>
##### Wiring
- Attach the motor controller on the back.
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
<div class="video-container">
<video controls width="600">
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Wiring_v2.mp4" type="video/mp4" />
</video>
</div>
## Calibrate
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
#### Manual calibration of follower arm
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
#### Manual calibration of leader arm
You will also need to move the leader arm to these positions sequentially:
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)

View File

@@ -0,0 +1,370 @@
# Getting Started with Real-World Robots
This tutorial will explain you how to train a neural network to autonomously control a real robot.
**You'll learn:**
1. How to record and visualize your dataset.
2. How to train a policy using your data and prepare it for evaluation.
3. How to evaluate your policy and visualize the results.
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
## Setup and Calibrate
If you haven't yet setup and calibrate the SO-101 follow these steps:
1. [Find ports and update config file](./assemble_so101#find-the-usb-ports-associated-to-each-arm)
2. [Calibrate](./assemble_so101#calibrate)
## Teleoperate
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=teleoperate
```
The teleoperate command will automatically:
1. Identify any missing calibrations and initiate the calibration procedure.
2. Connect the robot and start teleoperation.
## Setup Cameras
To connect a camera you have three options:
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
2. iPhone camera with MacOS
3. Phone camera on Linux
### Use OpenCVCamera
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
```bash
python lerobot/common/robot_devices/cameras/opencv.py \
--images-dir outputs/images_from_opencv_cameras
```
The output will look something like this if you have two cameras connected:
```
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
[...]
Camera found at index 0
Camera found at index 1
[...]
Connecting cameras
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
Saving images to outputs/images_from_opencv_cameras
Frame: 0000 Latency (ms): 39.52
[...]
Frame: 0046 Latency (ms): 40.07
Images have been saved to outputs/images_from_opencv_cameras
```
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
```
camera_00_frame_000000.png
[...]
camera_00_frame_000047.png
camera_01_frame_000000.png
[...]
camera_01_frame_000047.png
```
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
Now that you have the camera indexes, you should specify the camera's in the config.
### Use your phone
<hfoptions id="use phone">
<hfoption id="Mac">
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
- Sign in both devices with the same Apple ID.
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
Your iPhone should be detected automatically when running the camera setup script in the next section.
</hfoption>
<hfoption id="Linux">
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
```python
sudo apt install v4l2loopback-dkms v4l-utils
```
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
```python
flatpak install flathub com.obsproject.Studio
```
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
```python
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
```
5. *Start OBS Studio*. Launch with:
```python
flatpak run com.obsproject.Studio
```
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
```python
v4l2-ctl --list-devices
```
You should see an entry like:
```
VirtualCam (platform:v4l2loopback-000):
/dev/video1
```
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
```python
v4l2-ctl -d /dev/video1 --get-fmt-video
```
You should see an entry like:
```
>>> Format Video Capture:
>>> Width/Height : 640/480
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
```
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
If everything is set up correctly, you can proceed with the rest of the tutorial.
</hfoption>
</hfoptions>
## Teleoperate with cameras
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=teleoperate
--control.display_data=true
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
Add your token to the cli by running this command:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then store your Hugging Face repository name in a variable:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/so101_test \
--control.tags='["so101","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
```
| Field | Meaning |
|:---|:---|
| `2024-08-10 15:02:58` | Timestamp when `print` was called. |
| `ol_robot.py:219` | Source file and line number of the `print` call (`lerobot/scripts/control_robot.py` at line `219`). |
| `dt: 33.34 (30.0 Hz)` | Delta time (ms) between teleop steps (target: 30.0 Hz, `--fps 30`). Yellow if step is too slow. |
| `dtRlead: 5.06 (197.5 Hz)` | Delta time (ms) for reading present position from the **leader arm**. |
| `dtWfoll: 0.25 (3963.7 Hz)` | Delta time (ms) for writing goal position to the **follower arm** (asynchronous). |
| `dtRfoll: 6.22 (160.7 Hz)` | Delta time (ms) for reading present position from the **follower arm**. |
| `dtRlaptop: 32.57 (30.7 Hz)` | Delta time (ms) for capturing an image from the **laptop camera** (async thread). |
| `dtRphone: 33.84 (29.5 Hz)` | Delta time (ms) for capturing an image from the **phone camera** (async thread). |
#### Dataset upload
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
```bash
echo https://huggingface.co/datasets/${HF_USER}/so101_test
```
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
#### Record function
The `record` function provides a suite of tools for capturing and managing data during robot operation:
##### 1. Frame Capture and Video Encoding
- Frames from cameras are saved to disk during recording.
- At the end of each episode, frames are encoded into video files.
##### 2. Data Storage
- Data is stored using the `LeRobotDataset` format.
- By default, the dataset is pushed to your Hugging Face page.
- To disable uploading, use `--control.push_to_hub=false`.
##### 3. Checkpointing and Resuming
- Checkpoints are automatically created during recording.
- If an issue occurs, you can resume by re-running the same command with `--control.resume=true`.
- To start recording from scratch, **manually delete** the dataset directory.
##### 4. Recording Parameters
Set the flow of data recording using command-line arguments:
- `--control.warmup_time_s=10`
Number of seconds before starting data collection (default: **10 seconds**).
Allows devices to warm up and synchronize.
- `--control.episode_time_s=60`
Duration of each data recording episode (default: **60 seconds**).
- `--control.reset_time_s=60`
Duration for resetting the environment after each episode (default: **60 seconds**).
- `--control.num_episodes=50`
Total number of episodes to record (default: **50**).
##### 5. Keyboard Controls During Recording
Control the data recording flow using keyboard shortcuts:
- Press **Right Arrow (`→`)**: Early stop the current episode or reset time and move to the next.
- Press **Left Arrow (`←`)**: Cancel the current episode and re-record it.
- Press **Escape (`ESC`)**: Immediately stop the session, encode videos, and upload the dataset.
#### Tips for gathering data
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
In the following sections, youll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
Avoid adding too much variation too quickly, as it may hinder your results.
#### Troubleshooting:
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so101_test
```
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so101_test \
--local-files-only 1
```
This will launch a local web server that looks like this:
<div style="text-align:center;">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
</div>
## Replay an episode
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
You can replay the first episode on your robot with:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/so101_test \
--control.episode=0
```
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/so101_test \
--policy.type=act \
--output_dir=outputs/train/act_so101_test \
--job_name=act_so101_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain the command:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
--resume=true
```
#### Upload policy checkpoints
Once training is done, upload the latest checkpoint with:
```bash
huggingface-cli upload ${HF_USER}/act_so101_test \
outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
You can also upload intermediate checkpoints with:
```bash
CKPT=010000
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
```
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_so101_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).

19
docs/source/index.mdx Normal file
View File

@@ -0,0 +1,19 @@
<div class="flex justify-center">
<a target="_blank" href="https://huggingface.co/lerobot">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-logo-thumbnail.png" style="width: 100%"></img>
</a>
</div>
# LeRobot
**State-of-the-art machine learning for real-world robotics**
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started.
🤗 LeRobot hosts pretrained models and datasets on the LeRobot HuggingFace page.
Join the LeRobot community on [Discord](https://discord.gg/s3KuuzsPFb)

View File

@@ -0,0 +1,84 @@
# Installation
## Install LeRobot
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git
cd lerobot
```
Create a virtual environment with Python 3.10, using [`Miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install)
```bash
conda create -y -n lerobot python=3.10
```
Now restart the shell by running:
<hfoptions id="shell_restart">
<hfoption id="Windows">
```bash
source ~/.bashrc
```
</hfoption>
<hfoption id="Mac">
```bash
source ~/.bash_profile
```
</hfoption>
<hfoption id="zshell">
```bash
source ~/.zshrc
```
</hfoption>
</hfoptions>
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
```bash
conda activate lerobot
```
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
> [!TIP]
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
cd lerobot && pip install -e ".[feetech]"
```
## Troubleshooting
If you encounter build errors, you may need to install additional dependencies: `cmake`, `build-essential`, and `ffmpeg libs`.
To install these for linux run:
```bash
sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config
```
For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
## Sim
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
- [pusht](https://github.com/huggingface/gym-pusht)
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install -e ".[aloha, pusht]"
```
## W&B
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
```bash
wandb login
```

624
examples/10_use_so100.md Normal file
View File

@@ -0,0 +1,624 @@
# Using the [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot
## Table of Contents
- [A. Source the parts](#a-source-the-parts)
- [B. Install LeRobot](#b-install-lerobot)
- [C. Configure the Motors](#c-configure-the-motors)
- [D. Step-by-Step Assembly Instructions](#d-step-by-step-assembly-instructions)
- [E. Calibrate](#e-calibrate)
- [F. Teleoperate](#f-teleoperate)
- [G. Record a dataset](#g-record-a-dataset)
- [H. Visualize a dataset](#h-visualize-a-dataset)
- [I. Replay an episode](#i-replay-an-episode)
- [J. Train a policy](#j-train-a-policy)
- [K. Evaluate your policy](#k-evaluate-your-policy)
- [L. More Information](#l-more-information)
## A. Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## B. Install LeRobot
> [!TIP]
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
On your computer:
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
#### 2. Restart shell
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
#### 3. Create and activate a fresh conda environment for lerobot
<details>
<summary><strong>Video install instructions</strong></summary>
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
</details>
```bash
conda create -y -n lerobot python=3.10
```
Then activate your conda environment (do this each time you open a shell to use lerobot!):
```bash
conda activate lerobot
```
#### 4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
#### 6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
## C. Configure the motors
> [!NOTE]
> Throughout this tutorial you will find videos on how to do the steps, the full video tutorial can be found here: [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I).
### 1. Find the USB ports associated to each arm
Designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6 (F1...F6 and L1...L6).
#### a. Run the script to find port
<details>
<summary><strong>Video finding port</strong></summary>
<video src="https://github.com/user-attachments/assets/4a21a14d-2046-4805-93c4-ee97a30ba33f"></video>
<video src="https://github.com/user-attachments/assets/1cc3aecf-c16d-4ff9-aec7-8c175afbbce2"></video>
</details>
To find the port for each bus servo adapter, run the utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
#### b. Example outputs
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
#### c. Troubleshooting
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
#### d. Update config file
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`SO100RobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
```diff
@RobotConfig.register_subclass("so100")
@dataclass
class So100RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so100"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem58760431091",
+ port="{ADD YOUR LEADER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem585A0076891",
+ port="{ADD YOUR FOLLOWER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
### 2. Assembling the Base
Let's begin with assembling the follower arm base
#### a. Set IDs for all 12 motors
<details>
<summary><strong>Video configuring motor</strong></summary>
<video src="https://github.com/user-attachments/assets/ef9b3317-2e11-4858-b9d3-f0a02fb48ecf"></video>
<video src="https://github.com/user-attachments/assets/f36b5ed5-c803-4ebe-8947-b39278776a0d"></video>
</details>
Plug your first motor F1 and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate. Replace the text after --port to the corresponding follower control board port and run this command in cmd:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
> [!NOTE]
> These motors are currently limited. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
#### b. Remove the gears of the 6 leader motors
<details>
<summary><strong>Video removing gears</strong></summary>
<video src="https://github.com/user-attachments/assets/0c95b88c-5b85-413d-ba19-aee2f864f2a7"></video>
</details>
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
## D. Step-by-Step Assembly Instructions
**Step 1: Clean Parts**
- Remove all support material from the 3D-printed parts.
---
### Additional Guidance
<details>
<summary><strong>Video assembling arms</strong></summary>
<video src="https://github.com/user-attachments/assets/488a39de-0189-4461-9de3-05b015f90cca"></video>
</details>
**Note:**
This video provides visual guidance for assembling the arms, but it doesn't specify when or how to do the wiring. Inserting the cables beforehand is much easier than doing it afterward. The first arm may take a bit more than 1 hour to assemble, but once you get used to it, you can assemble the second arm in under 1 hour.
---
### First Motor
**Step 2: Insert Wires**
- Insert two wires into the first motor.
<img src="../media/tutorial/img1.jpg" style="height:300px;">
**Step 3: Install in Base**
- Place the first motor into the base.
<img src="../media/tutorial/img2.jpg" style="height:300px;">
**Step 4: Secure Motor**
- Fasten the motor with 4 screws. Two from the bottom and two from top.
**Step 5: Attach Motor Holder**
- Slide over the first motor holder and fasten it using two screws (one on each side).
<img src="../media/tutorial/img4.jpg" style="height:300px;">
**Step 6: Attach Motor Horns**
- Install both motor horns, securing the top horn with a screw. Try not to move the motor position when attaching the motor horn, especially for the leader arms, where we removed the gears.
<img src="../media/tutorial/img5.jpg" style="height:300px;">
<details>
<summary><strong>Video adding motor horn</strong></summary>
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
</details>
**Step 7: Attach Shoulder Part**
- Route one wire to the back of the robot and the other to the left or in photo towards you (see photo).
- Attach the shoulder part.
<img src="../media/tutorial/img6.jpg" style="height:300px;">
**Step 8: Secure Shoulder**
- Tighten the shoulder part with 4 screws on top and 4 on the bottom
*(access bottom holes by turning the shoulder).*
---
### Second Motor Assembly
**Step 9: Install Motor 2**
- Slide the second motor in from the top and link the wire from motor 1 to motor 2.
<img src="../media/tutorial/img8.jpg" style="height:300px;">
**Step 10: Attach Shoulder Holder**
- Add the shoulder motor holder.
- Ensure the wire from motor 1 to motor 2 goes behind the holder while the other wire is routed upward (see photo).
- This part can be tight to assemble, you can use a workbench like the image or a similar setup to push the part around the motor.
<div style="display: flex;">
<img src="../media/tutorial/img9.jpg" style="height:250px;">
<img src="../media/tutorial/img10.jpg" style="height:250px;">
<img src="../media/tutorial/img12.jpg" style="height:250px;">
</div>
**Step 11: Secure Motor 2**
- Fasten the second motor with 4 screws.
**Step 12: Attach Motor Horn**
- Attach both motor horns to motor 2, again use the horn screw.
**Step 13: Attach Base**
- Install the base attachment using 2 screws.
<img src="../media/tutorial/img11.jpg" style="height:300px;">
**Step 14: Attach Upper Arm**
- Attach the upper arm with 4 screws on each side.
<img src="../media/tutorial/img13.jpg" style="height:300px;">
---
### Third Motor Assembly
**Step 15: Install Motor 3**
- Route the motor cable from motor 2 through the cable holder to motor 3, then secure motor 3 with 4 screws.
**Step 16: Attach Motor Horn**
- Attach both motor horns to motor 3 and secure one again with a horn screw.
<img src="../media/tutorial/img14.jpg" style="height:300px;">
**Step 17: Attach Forearm**
- Connect the forearm to motor 3 using 4 screws on each side.
<img src="../media/tutorial/img15.jpg" style="height:300px;">
---
### Fourth Motor Assembly
**Step 18: Install Motor 4**
- Slide in motor 4, attach the cable from motor 3, and secure the cable in its holder with a screw.
<div style="display: flex;">
<img src="../media/tutorial/img16.jpg" style="height:300px;">
<img src="../media/tutorial/img19.jpg" style="height:300px;">
</div>
**Step 19: Attach Motor Holder 4**
- Install the fourth motor holder (a tight fit). Ensure one wire is routed upward and the wire from motor 3 is routed downward (see photo).
<img src="../media/tutorial/img17.jpg" style="height:300px;">
**Step 20: Secure Motor 4 & Attach Horn**
- Fasten motor 4 with 4 screws and attach its motor horns, use for one a horn screw.
<img src="../media/tutorial/img18.jpg" style="height:300px;">
---
### Wrist Assembly
**Step 21: Install Motor 5**
- Insert motor 5 into the wrist holder and secure it with 2 front screws.
<img src="../media/tutorial/img20.jpg" style="height:300px;">
**Step 22: Attach Wrist**
- Connect the wire from motor 4 to motor 5. And already insert the other wire for the gripper.
- Secure the wrist to motor 4 using 4 screws on both sides.
<img src="../media/tutorial/img22.jpg" style="height:300px;">
**Step 23: Attach Wrist Horn**
- Install only one motor horn on the wrist motor and secure it with a horn screw.
<img src="../media/tutorial/img23.jpg" style="height:300px;">
---
### Follower Configuration
**Step 24: Attach Gripper**
- Attach the gripper to motor 5.
<img src="../media/tutorial/img24.jpg" style="height:300px;">
**Step 25: Install Gripper Motor**
- Insert the gripper motor, connect the motor wire from motor 5 to motor 6, and secure it with 3 screws on each side.
<img src="../media/tutorial/img25.jpg" style="height:300px;">
**Step 26: Attach Gripper Horn & Claw**
- Attach the motor horns and again use a horn screw.
- Install the gripper claw and secure it with 4 screws on both sides.
<img src="../media/tutorial/img26.jpg" style="height:300px;">
**Step 27: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to Leader arm assembly.*
---
### Leader Configuration
For the leader configuration, perform **Steps 123**. Make sure that you removed the motor gears from the motors.
**Step 24: Attach Leader Holder**
- Mount the leader holder onto the wrist and secure it with a screw.
<img src="../media/tutorial/img29.jpg" style="height:300px;">
**Step 25: Attach Handle**
- Attach the handle to motor 5 using 4 screws.
<img src="../media/tutorial/img30.jpg" style="height:300px;">
**Step 26: Install Gripper Motor**
- Insert the gripper motor, secure it with 3 screws on each side, attach a motor horn using a horn screw, and connect the motor wire.
<img src="../media/tutorial/img31.jpg" style="height:300px;">
**Step 27: Attach Trigger**
- Attach the follower trigger with 4 screws.
<img src="../media/tutorial/img32.jpg" style="height:300px;">
**Step 28: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to calibration.*
## E. Calibrate
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
The calibration process is very important because it allows a neural network trained on one SO-100 robot to work on another.
#### Manual calibration of follower arm
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
#### Manual calibration of leader arm
You will also need to move the leader arm to these positions sequentially:
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-100 leader arm middle position" title="SO-100 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
## F. Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--robot.cameras='{}' \
--control.type=teleoperate
```
#### a. Teleop with displaying cameras
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=teleoperate
```
## G. Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/so100_test \
--control.tags='["so100","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
## H. Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so100_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so100_test \
--local-files-only 1
```
## I. Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/so100_test \
--control.episode=0
```
## J. Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/so100_test \
--policy.type=act \
--output_dir=outputs/train/act_so100_test \
--job_name=act_so100_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so100_test` policy:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_so100_test/checkpoints/last/pretrained_model/train_config.json \
--resume=true
```
## K. Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_so100_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_so100_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so100_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so100_test`).
## L. More Information
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
> [!TIP]
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).

597
examples/11_use_lekiwi.md Normal file
View File

@@ -0,0 +1,597 @@
# Using the [LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi) Robot with LeRobot
## Table of Contents
- [A. Source the parts](#a-source-the-parts)
- [B. Install software Pi](#b-install-software-on-pi)
- [C. Setup LeRobot laptop/pc](#c-install-lerobot-on-laptop)
- [D. Assemble the arms](#d-assembly)
- [E. Calibrate](#e-calibration)
- [F. Teleoperate](#f-teleoperate)
- [G. Record a dataset](#g-record-a-dataset)
- [H. Visualize a dataset](#h-visualize-a-dataset)
- [I. Replay an episode](#i-replay-an-episode)
- [J. Train a policy](#j-train-a-policy)
- [K. Evaluate your policy](#k-evaluate-your-policy)
> [!TIP]
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#mobile-so-100-arm`](https://discord.com/channels/1216765309076115607/1318390825528332371).
## A. Source the parts
Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts, and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
### Wired version
If you have the **wired** LeKiwi version you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
## B. Install software on Pi
Now we have to setup the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
### Install OS
For setting up the Raspberry Pi and its SD-card see: [Setup PI](https://www.raspberrypi.com/documentation/computers/getting-started.html). Here is explained how to download the [Imager](https://www.raspberrypi.com/software/) to install Raspberry Pi OS or Ubuntu.
### Setup SSH
After setting up your Pi, you should enable and setup [SSH](https://www.raspberrypi.com/news/coding-on-raspberry-pi-remotely-with-visual-studio-code/) (Secure Shell Protocol) so you can login into the Pi from your laptop without requiring a screen, keyboard and mouse in the Pi. A great tutorial on how to do this can be found [here](https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh). Logging into your Pi can be done in your Command Prompt (cmd) or if you use VSCode you can use [this](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh) extension.
### Install LeRobot
On your Raspberry Pi:
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
#### 2. Restart shell
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
#### 3. Create and activate a fresh conda environment for lerobot
<details>
<summary><strong>Video install instructions</strong></summary>
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
</details>
```bash
conda create -y -n lerobot python=3.10
```
Then activate your conda environment (do this each time you open a shell to use lerobot!):
```bash
conda activate lerobot
```
#### 4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
#### 6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
## C. Install LeRobot on laptop
If you already have install LeRobot on your laptop you can skip this step, otherwise please follow along as we do the same steps we did on the Pi.
> [!TIP]
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
On your computer:
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
#### 2. Restart shell
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
#### 3. Create and activate a fresh conda environment for lerobot
<details>
<summary><strong>Video install instructions</strong></summary>
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
</details>
```bash
conda create -y -n lerobot python=3.10
```
Then activate your conda environment (do this each time you open a shell to use lerobot!):
```bash
conda activate lerobot
```
#### 4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
#### 6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms and Mobile base :robot:.
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
# D. Assembly
First we will assemble the two SO100 arms. One to attach to the mobile base and one for teleoperation. Then we will assemble the mobile base.
## SO100 Arms
### Configure motors
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These need to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
<img src="../media/lekiwi/motor_ids.webp?raw=true" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
### Assemble arms
[Assemble arms instruction](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#d-assemble-the-arms)
## Mobile base (LeKiwi)
[Assemble LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi)
### Update config
Both config files on the LeKiwi LeRobot and on the laptop should be the same. First we should find the Ip address of the Raspberry Pi of the mobile manipulator. This is the same Ip address used in SSH. We also need the usb port of the control board of the leader arm on the laptop and the port of the control board on LeKiwi. We can find these ports with the following script.
#### a. Run the script to find port
<details>
<summary><strong>Video finding port</strong></summary>
<video src="https://github.com/user-attachments/assets/4a21a14d-2046-4805-93c4-ee97a30ba33f"></video>
<video src="https://github.com/user-attachments/assets/1cc3aecf-c16d-4ff9-aec7-8c175afbbce2"></video>
</details>
To find the port for each bus servo adapter, run the utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
#### b. Example outputs
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
#### c. Troubleshooting
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
#### d. Update config file
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
```python
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "172.17.133.91"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"mobile": OpenCVCameraConfig(camera_index="/dev/video0", fps=30, width=640, height=480),
"mobile2": OpenCVCameraConfig(camera_index="/dev/video2", fps=30, width=640, height=480),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/ttyACM0",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False
```
## Wired version
For the wired LeKiwi version your configured IP address should refer to your own laptop (127.0.0.1), because leader arm and LeKiwi are in this case connected to own laptop. Below and example configuration for this wired setup:
```python
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "127.0.0.1"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index=0, fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index=1, fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431061",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False
```
# E. Calibration
Now we have to calibrate the leader arm and the follower arm. The wheel motors don't have to be calibrated.
### Calibrate follower arm (on mobile base)
> [!IMPORTANT]
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/lekiwi/mobile_calib_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure the arm is connected to the Raspberry Pi and run this script (on the Raspberry Pi) to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
### Wired version
If you have the **wired** LeKiwi version please run all commands including this calibration command on your laptop.
### Calibrate leader arm
Then to calibrate the leader arm (which is attached to the laptop/pc). You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script (on your laptop/pc) to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
# F. Teleoperate
> [!TIP]
> If you're using a Mac, you might need to give Terminal permission to access your keyboard. Go to System Preferences > Security & Privacy > Input Monitoring and check the box for Terminal.
To teleoperate SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=remote_robot
```
Then on your laptop, also run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=teleoperate \
--control.fps=30
```
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`. For the `--control.type=remote_robot` you will also need to set `--control.viewer_ip` and `--control.viewer_port`
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
| ---------- | ------------------ | ---------------------- |
| Fast | 0.4 | 90 |
| Medium | 0.25 | 60 |
| Slow | 0.1 | 30 |
| Key | Action |
| --- | -------------- |
| W | Move forward |
| A | Move left |
| S | Move backward |
| D | Move right |
| Z | Turn left |
| X | Turn right |
| R | Increase speed |
| F | Decrease speed |
> [!TIP]
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py).
### Wired version
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.
## Troubleshoot communication
If you are having trouble connecting to the Mobile SO100, follow these steps to diagnose and resolve the issue.
### 1. Verify IP Address Configuration
Make sure that the correct ip for the Pi is set in the configuration file. To check the Raspberry Pi's IP address, run (on the Pi command line):
```bash
hostname -I
```
### 2. Check if Pi is reachable from laptop/pc
Try pinging the Raspberry Pi from your laptop:
```bach
ping <your_pi_ip_address>
```
If the ping fails:
- Ensure the Pi is powered on and connected to the same network.
- Check if SSH is enabled on the Pi.
### 3. Try SSH connection
If you can't SSH into the Pi, it might not be properly connected. Use:
```bash
ssh <your_pi_user_name>@<your_pi_ip_address>
```
If you get a connection error:
- Ensure SSH is enabled on the Pi by running:
```bash
sudo raspi-config
```
Then navigate to: **Interfacing Options -> SSH** and enable it.
### 4. Same config file
Make sure the configuration file on both your laptop/pc and the Raspberry Pi is the same.
# G. Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with LeKiwi.
To start the program on LeKiwi, SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=remote_robot
```
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
On your laptop then run this command to record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/lekiwi_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
### Wired version
If you have the **wired** LeKiwi version please run all commands including both these record dataset commands on your laptop.
# H. Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/lekiwi_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/lekiwi_test \
--local-files-only 1
```
# I. Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/lekiwi_test \
--control.episode=0
```
## J. Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/lekiwi_test \
--policy.type=act \
--output_dir=outputs/train/act_lekiwi_test \
--job_name=act_lekiwi_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/lekiwi_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_lekiwi_test/checkpoints`.
## K. Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=record \
--control.fps=30 \
--control.single_task="Drive to the red block and pick it up" \
--control.repo_id=${HF_USER}/eval_act_lekiwi_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_lekiwi_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_lekiwi_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_lekiwi_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_lekiwi_test`).

337
examples/11_use_moss.md Normal file
View File

@@ -0,0 +1,337 @@
This tutorial explains how to use [Moss v1](https://github.com/jess-moss/moss-robot-arms) with LeRobot.
## Source the parts
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials with link to source the parts, as well as the instructions to 3D print the parts and advice if it's your first time printing or if you don't own a 3D printer already.
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install ffmpeg in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
6. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install -e ".[feetech]"
```
## Configure the motors
Follow step 1 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the use of our scripts below.
**Find USB ports associated to your arms**
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
#### Update config file
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`MossRobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
```python
@RobotConfig.register_subclass("moss")
@dataclass
class MossRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/moss"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
**Configure your motors**
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Note: These motors are currently limited. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
**Remove the gears of the 6 leader motors**
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
**Add motor horn to the motors**
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). For Moss v1, you need to align the holes on the motor horn to the motor spline to be approximately 3, 6, 9 and 12 o'clock.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## Assemble the arms
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). The first arm should take a bit more than 1 hour to assemble, but once you get used to it, you can do it under 1 hour for the second arm.
## Calibrate
Next, you'll need to calibrate your Moss v1 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one Moss v1 robot to work on another.
**Manual calibration of follower arm**
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/moss/follower_zero.webp?raw=true" alt="Moss v1 follower arm zero position" title="Moss v1 follower arm zero position" style="width:100%;"> | <img src="../media/moss/follower_rotated.webp?raw=true" alt="Moss v1 follower arm rotated position" title="Moss v1 follower arm rotated position" style="width:100%;"> | <img src="../media/moss/follower_rest.webp?raw=true" alt="Moss v1 follower arm rest position" title="Moss v1 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/moss/leader_zero.webp?raw=true" alt="Moss v1 leader arm zero position" title="Moss v1 leader arm zero position" style="width:100%;"> | <img src="../media/moss/leader_rotated.webp?raw=true" alt="Moss v1 leader arm rotated position" title="Moss v1 leader arm rotated position" style="width:100%;"> | <img src="../media/moss/leader_rest.webp?raw=true" alt="Moss v1 leader arm rest position" title="Moss v1 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
## Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--robot.cameras='{}' \
--control.type=teleoperate
```
**Teleop with displaying cameras**
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=teleoperate
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with Moss v1.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/moss_test \
--control.tags='["moss","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/moss_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/moss_test \
--local-files-only 1
```
## Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/moss_test \
--control.episode=0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/moss_test \
--policy.type=act \
--output_dir=outputs/train/act_moss_test \
--job_name=act_moss_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_moss_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_moss_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_moss_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_moss_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_moss_test`).
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
If you have any question or need help, please reach out on Discord in the channel [`#moss-arm`](https://discord.com/channels/1216765309076115607/1275374638985252925).

711
examples/12_use_so101.md Normal file
View File

@@ -0,0 +1,711 @@
# Assemble and use SO-101
In the steps below we explain how to assemble and use our flagship robot, the SO-101 with LeRobot 🤗.
## Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
> [!TIP]
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git
cd lerobot
```
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
```bash
conda create -y -n lerobot python=3.10
```
Now restart the shell by running:
##### Windows:
```bash
`source ~/.bashrc`
```
##### Mac:
```bash
`source ~/.bash_profile`
```
##### zshell:
```bash
`source ~/.zshrc`
```
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
```bash
conda activate lerobot
```
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
> [!NOTE]
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
cd lerobot && pip install -e ".[feetech]"
```
> [!NOTE]
> If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run: `sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
## Configure motors
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
### Find the USB ports associated to each arm
To find the port for each bus servo adapter, run this script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
#### Example outputs of script
##### Mac:
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
```bash
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
##### Linux:
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
Example output leader arm port: `/dev/ttyACM0`
```bash
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM0
Reconnect the usb cable.
```
Example output follower arm port: `/dev/ttyACM1`
```
Finding all available ports for the MotorBus.
['/dev/ttyACM0', '/dev/ttyACM1']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/ttyACM1
Reconnect the usb cable.
```
#### Update config file
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
```diff
@RobotConfig.register_subclass("so101")
@dataclass
class So101RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so101"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem58760431091",
+ port="{ADD YOUR LEADER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
- port="/dev/tty.usbmodem585A0076891",
+ port="{ADD YOUR FOLLOWER PORT}",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
Here is a video of the process:
<video controls width="640" src="https://github.com/user-attachments/assets/fc45d756-31bb-4a61-b973-a87d633d08a7" type="video/mp4"></video>
### Set motor IDs
Now we need to set the motor ID for each motor. Plug your motor in only one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage.
Here is a video of the process:
<video controls width="640" src="https://github.com/user-attachments/assets/b31c115f-e706-4dcd-b7f1-4535da62416d" type="video/mp4"></video>
## Step-by-Step Assembly Instructions
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
| Leader-Arm Axis | Motor | Gear Ratio |
|-----------------|:-------:|:----------:|
| Base / Shoulder Yaw | 1 | 1 / 191 |
| Shoulder Pitch | 2 | 1 / 345 |
| Elbow | 3 | 1 / 191 |
| Wrist Roll | 4 | 1 / 147 |
| Wrist Pitch | 5 | 1 / 147 |
| Gripper | 6 | 1 / 147 |
### Clean Parts
Remove all support material from the 3D-printed parts.
### Joint 1
- Place the first motor into the base.
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
- Install both motor horns, securing the top horn with a M3x6mm screw.
- Attach the shoulder part.
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
- Add the shoulder motor holder.
<video controls width="640" src="https://github.com/user-attachments/assets/b0ee9dee-a2d0-445b-8489-02ebecb3d639" type="video/mp4"></video>
### Joint 2
- Slide the second motor in from the top.
- Fasten the second motor with 4 M2x6mm screws.
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
- Attach the upper arm with 4 M3x6mm screws on each side.
<video controls width="640" src="https://github.com/user-attachments/assets/32453dc2-5006-4140-9f56-f0d78eae5155" type="video/mp4"></video>
### Joint 3
- Insert motor 3 and fasten using 4 M2x6mm screws
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
<video controls width="640" src="https://github.com/user-attachments/assets/7384b9a7-a946-440c-b292-91391bcc4d6b" type="video/mp4"></video>
### Joint 4
- Slide over motor holder 4.
- Slide in motor 4.
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
<video controls width="640" src="https://github.com/user-attachments/assets/dca78ad0-7c36-4bdf-8162-c9ac42a1506f" type="video/mp4"></video>
### Joint 5
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
<video controls width="640" src="https://github.com/user-attachments/assets/55f5d245-976d-49ff-8b4a-59843c441b12" type="video/mp4"></video>
### Gripper / Handle
#### Follower:
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
- Attach the motor horns and again use a M3x6mm horn screw.
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
<video controls width="640" src="https://github.com/user-attachments/assets/6f766aa9-cfae-4388-89e7-0247f198c086" type="video/mp4"></video>
#### Leader:
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
- Attach the handle to motor 5 using 1 M2x6mm screw.
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
- Attach the follower trigger with 4 M3x6mm screws.
<video controls width="640" src="https://github.com/user-attachments/assets/1308c93d-2ef1-4560-8e93-a3812568a202" type="video/mp4"></video>
##### Wiring
- Attach the motor controller on the back.
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
<video controls width="640" src="https://github.com/user-attachments/assets/4c2cacfd-9276-4ee4-8bf2-ba2492667b78" type="video/mp4"></video>
## Calibrate
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
#### Manual calibration of follower arm
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
#### Manual calibration of leader arm
You will also need to move the leader arm to these positions sequentially:
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
## Control your robot
Congrats 🎉, your robot is all set to learn a task on its own. Next we will explain to you how to train a neural network to autonomously control a real robot.
**You'll learn to:**
1. How to record and visualize your dataset.
2. How to train a policy using your data and prepare it for evaluation.
3. How to evaluate your policy and visualize the results.
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
## Teleoperate
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--robot.cameras='{}' \
--control.type=teleoperate
```
The teleoperate command will automatically:
1. Identify any missing calibrations and initiate the calibration procedure.
2. Connect the robot and start teleoperation.
## Setup Cameras
To connect a camera you have three options:
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
2. iPhone camera with MacOS
3. Phone camera on Linux
### Use OpenCVCamera
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
```bash
python lerobot/common/robot_devices/cameras/opencv.py \
--images-dir outputs/images_from_opencv_cameras
```
The output will look something like this if you have two cameras connected:
```
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
[...]
Camera found at index 0
Camera found at index 1
[...]
Connecting cameras
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
Saving images to outputs/images_from_opencv_cameras
Frame: 0000 Latency (ms): 39.52
[...]
Frame: 0046 Latency (ms): 40.07
Images have been saved to outputs/images_from_opencv_cameras
```
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
```
camera_00_frame_000000.png
[...]
camera_00_frame_000047.png
camera_01_frame_000000.png
[...]
camera_01_frame_000047.png
```
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
Now that you have the camera indexes, you should change them in the config. You can also change the fps, width or height of the camera.
The camera config is defined per robot, can be found here [`RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py) and looks like this:
```python
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"wrist": OpenCVCameraConfig(
camera_index=0, <-- UPDATE HERE
fps=30,
width=640,
height=480,
),
"base": OpenCVCameraConfig(
camera_index=1, <-- UPDATE HERE
fps=30,
width=640,
height=480,
),
}
)
```
### Use your phone
#### Mac:
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
- Sign in both devices with the same Apple ID.
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
Your iPhone should be detected automatically when running the camera setup script in the next section.
#### Linux:
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
```python
sudo apt install v4l2loopback-dkms v4l-utils
```
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
```python
flatpak install flathub com.obsproject.Studio
```
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
```python
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
```
5. *Start OBS Studio*. Launch with:
```python
flatpak run com.obsproject.Studio
```
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
```python
v4l2-ctl --list-devices
```
You should see an entry like:
```
VirtualCam (platform:v4l2loopback-000):
/dev/video1
```
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
```python
v4l2-ctl -d /dev/video1 --get-fmt-video
```
You should see an entry like:
```
>>> Format Video Capture:
>>> Width/Height : 640/480
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
```
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
If everything is set up correctly, you can proceed with the rest of the tutorial.
### Add wrist camera
If you have an additional camera you can add a wrist camera to the SO101. There are already many premade wrist camera holders that you can find in the SO101 repo: [Wrist camera's](https://github.com/TheRobotStudio/SO-ARM100#wrist-cameras)
## Teleoperate with cameras
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=teleoperate \
--control.display_data=true
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
Add your token to the cli by running this command:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then store your Hugging Face repository name in a variable:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/so101_test \
--control.tags='["so101","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.display_data=true \
--control.push_to_hub=true
```
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
```
It contains:
- `2024-08-10 15:02:58` which is the date and time of the call to the print function,
- `ol_robot.py:219` which is the end of the file name and the line number where the print function is called (`lerobot/scripts/control_robot.py` line `219`).
- `dt:33.34 (30.0hz)` which is the "delta time" or the number of milliseconds spent between the previous call to `robot.teleop_step(record_data=True)` and the current one, associated with the frequency (33.34 ms equals 30.0 Hz) ; note that we use `--fps 30` so we expect 30.0 Hz ; when a step takes more time, the line appears in yellow.
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
#### Dataset upload
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
```bash
echo https://huggingface.co/datasets/${HF_USER}/so101_test
```
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
#### Record function
The `record` function provides a suite of tools for capturing and managing data during robot operation:
1. Set the flow of data recording using command line arguments:
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
- `--control.reset_time_s=60` defines the number of seconds for resetting the environment after each episode (60 seconds by default).
- `--control.num_episodes=50` defines the number of episodes to record (50 by default).
2. Control the flow during data recording using keyboard keys:
- Press right arrow `->` at any time during episode recording to early stop and go to resetting. Same during resetting, to early stop and to go to the next episode recording.
- Press left arrow `<-` at any time during episode recording or resetting to early stop, cancel the current episode, and re-record it.
- Press escape `ESC` at any time during episode recording to end the session early and go straight to video encoding and dataset uploading.
3. Checkpoints are done set during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
#### Tips for gathering data
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
In the following sections, youll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
Avoid adding too much variation too quickly, as it may hinder your results.
#### Troubleshooting:
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so101_test
```
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so101_test \
--local-files-only 1
```
This will launch a local web server that looks like this:
<div style="text-align:center;">
<img src="../media/tutorial/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
</div>
## Replay an episode
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
You can replay the first episode on your robot with:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/so101_test \
--control.episode=0
```
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/so101_test \
--policy.type=act \
--output_dir=outputs/train/act_so101_test \
--job_name=act_so101_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain the command:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
--resume=true
```
#### Upload policy checkpoints
Once training is done, upload the latest checkpoint with:
```bash
huggingface-cli upload ${HF_USER}/act_so101_test \
outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
You can also upload intermediate checkpoints with:
```bash
CKPT=010000
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
```
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so101 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_so101_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).

View File

@@ -0,0 +1,148 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script demonstrates the use of `LeRobotDataset` class for handling and processing robotic datasets from Hugging Face.
It illustrates how to load datasets, manipulate them, and apply transformations suitable for machine learning tasks in PyTorch.
Features included in this script:
- Viewing a dataset's metadata and exploring its properties.
- Loading an existing dataset from the hub or a subset of it.
- Accessing frames by episode number.
- Using advanced dataset features like timestamp-based frame selection.
- Demonstrating compatibility with PyTorch DataLoader for batch processing.
The script ends with examples of how to batch process data using PyTorch's DataLoader.
"""
from pprint import pprint
import torch
from huggingface_hub import HfApi
import lerobot
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
# We ported a number of existing datasets ourselves, use this to see the list:
print("List of available datasets:")
pprint(lerobot.available_datasets)
# You can also browse through the datasets created/ported by the community on the hub using the hub api:
hub_api = HfApi()
repo_ids = [info.id for info in hub_api.list_datasets(task_categories="robotics", tags=["LeRobot"])]
pprint(repo_ids)
# Or simply explore them in your web browser directly at:
# https://huggingface.co/datasets?other=LeRobot
# Let's take this one for this example
repo_id = "lerobot/aloha_mobile_cabinet"
# We can have a look and fetch its metadata to know more about it:
ds_meta = LeRobotDatasetMetadata(repo_id)
# By instantiating just this class, you can quickly access useful information about the content and the
# structure of the dataset without downloading the actual data yet (only metadata files — which are
# lightweight).
print(f"Total number of episodes: {ds_meta.total_episodes}")
print(f"Average number of frames per episode: {ds_meta.total_frames / ds_meta.total_episodes:.3f}")
print(f"Frames per second used during data collection: {ds_meta.fps}")
print(f"Robot type: {ds_meta.robot_type}")
print(f"keys to access images from cameras: {ds_meta.camera_keys=}\n")
print("Tasks:")
print(ds_meta.tasks)
print("Features:")
pprint(ds_meta.features)
# You can also get a short summary by simply printing the object:
print(ds_meta)
# You can then load the actual dataset from the hub.
# Either load any subset of episodes:
dataset = LeRobotDataset(repo_id, episodes=[0, 10, 11, 23])
# And see how many frames you have:
print(f"Selected episodes: {dataset.episodes}")
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")
# Or simply load the entire dataset:
dataset = LeRobotDataset(repo_id)
print(f"Number of episodes selected: {dataset.num_episodes}")
print(f"Number of frames selected: {dataset.num_frames}")
# The previous metadata class is contained in the 'meta' attribute of the dataset:
print(dataset.meta)
# LeRobotDataset actually wraps an underlying Hugging Face dataset
# (see https://huggingface.co/docs/datasets for more information).
print(dataset.hf_dataset)
# LeRobot datasets also subclasses PyTorch datasets so you can do everything you know and love from working
# with the latter, like iterating through the dataset.
# The __getitem__ iterates over the frames of the dataset. Since our datasets are also structured by
# episodes, you can access the frame indices of any episode using the episode_data_index. Here, we access
# frame indices associated to the first episode:
episode_index = 0
from_idx = dataset.episode_data_index["from"][episode_index].item()
to_idx = dataset.episode_data_index["to"][episode_index].item()
# Then we grab all the image frames from the first camera:
camera_key = dataset.meta.camera_keys[0]
frames = [dataset[idx][camera_key] for idx in range(from_idx, to_idx)]
# The objects returned by the dataset are all torch.Tensors
print(type(frames[0]))
print(frames[0].shape)
# Since we're using pytorch, the shape is in pytorch, channel-first convention (c, h, w).
# We can compare this shape with the information available for that feature
pprint(dataset.features[camera_key])
# In particular:
print(dataset.features[camera_key]["shape"])
# The shape is in (h, w, c) which is a more universal format.
# For many machine learning applications we need to load the history of past observations or trajectories of
# future actions. Our datasets can load previous and future frames for each key/modality, using timestamps
# differences with the current loaded frame. For instance:
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
camera_key: [-1, -0.5, -0.20, 0],
# loads 6 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
}
# Note that in any case, these delta_timestamps values need to be multiples of (1/fps) so that added to any
# timestamp, you still get a valid timestamp.
dataset = LeRobotDataset(repo_id, delta_timestamps=delta_timestamps)
print(f"\n{dataset[0][camera_key].shape=}") # (4, c, h, w)
print(f"{dataset[0]['observation.state'].shape=}") # (6, c)
print(f"{dataset[0]['action'].shape=}\n") # (64, c)
# Finally, our datasets are fully compatible with PyTorch dataloaders and samplers because they are just
# PyTorch datasets.
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
batch_size=32,
shuffle=True,
)
for batch in dataloader:
print(f"{batch[camera_key].shape=}") # (32, 4, c, h, w)
print(f"{batch['observation.state'].shape=}") # (32, 6, c)
print(f"{batch['action'].shape=}") # (32, 64, c)
break

View File

@@ -0,0 +1,139 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
It requires the installation of the 'gym_pusht' simulation environment. Install it by running:
```bash
pip install -e ".[pusht]"
```
"""
from pathlib import Path
import gym_pusht # noqa: F401
import gymnasium as gym
import imageio
import numpy
import torch
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
# Create a directory to store the video of the evaluation
output_directory = Path("outputs/eval/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
# Select your device
device = "cuda"
# Provide the [hugging face repo id](https://huggingface.co/lerobot/diffusion_pusht):
pretrained_policy_path = "lerobot/diffusion_pusht"
# OR a path to a local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
# Initialize evaluation environment to render two observation types:
# an image of the scene and state/position of the agent. The environment
# also automatically stops running after 300 interactions/steps.
env = gym.make(
"gym_pusht/PushT-v0",
obs_type="pixels_agent_pos",
max_episode_steps=300,
)
# We can verify that the shapes of the features expected by the policy match the ones from the observations
# produced by the environment
print(policy.config.input_features)
print(env.observation_space)
# Similarly, we can check that the actions produced by the policy will match the actions expected by the
# environment
print(policy.config.output_features)
print(env.action_space)
# Reset the policy and environments to prepare for rollout
policy.reset()
numpy_observation, info = env.reset(seed=42)
# Prepare to collect every rewards and all the frames of the episode,
# from initial state to final state.
rewards = []
frames = []
# Render frame of the initial state
frames.append(env.render())
step = 0
done = False
while not done:
# Prepare observation for the policy running in Pytorch
state = torch.from_numpy(numpy_observation["agent_pos"])
image = torch.from_numpy(numpy_observation["pixels"])
# Convert to float32 with image from channel first in [0,255]
# to channel last in [0,1]
state = state.to(torch.float32)
image = image.to(torch.float32) / 255
image = image.permute(2, 0, 1)
# Send data tensors from CPU to GPU
state = state.to(device, non_blocking=True)
image = image.to(device, non_blocking=True)
# Add extra (empty) batch dimension, required to forward the policy
state = state.unsqueeze(0)
image = image.unsqueeze(0)
# Create the policy input dictionary
observation = {
"observation.state": state,
"observation.image": image,
}
# Predict the next action with respect to the current observation
with torch.inference_mode():
action = policy.select_action(observation)
# Prepare the action for the environment
numpy_action = action.squeeze(0).to("cpu").numpy()
# Step through the environment and receive a new observation
numpy_observation, reward, terminated, truncated, info = env.step(numpy_action)
print(f"{step=} {reward=} {terminated=}")
# Keep track of all the rewards and frames
rewards.append(reward)
frames.append(env.render())
# The rollout is considered done when the success state is reached (i.e. terminated is True),
# or the maximum number of iterations is reached (i.e. truncated is True)
done = terminated | truncated | done
step += 1
if terminated:
print("Success!")
else:
print("Failure!")
# Get the speed of environment (i.e. its number of frames per second).
fps = env.metadata["render_fps"]
# Encode all frames into a mp4 video.
video_path = output_directory / "rollout.mp4"
imageio.mimsave(str(video_path), numpy.stack(frames), fps=fps)
print(f"Video of the evaluation is available in '{video_path}'.")

120
examples/3_train_policy.py Normal file
View File

@@ -0,0 +1,120 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This script demonstrates how to train Diffusion Policy on the PushT environment.
Once you have trained a model with this script, you can try to evaluate it on
examples/2_evaluate_pretrained_policy.py
"""
from pathlib import Path
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.utils import dataset_to_policy_features
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
from lerobot.configs.types import FeatureType
def main():
# Create a directory to store the training checkpoint.
output_directory = Path("outputs/train/example_pusht_diffusion")
output_directory.mkdir(parents=True, exist_ok=True)
# # Select your device
device = torch.device("cuda")
# Number of offline training steps (we'll only do offline training for this example.)
# Adjust as you prefer. 5000 steps are needed to get something worth evaluating.
training_steps = 5000
log_freq = 1
# When starting from scratch (i.e. not from a pretrained policy), we need to specify 2 things before
# creating the policy:
# - input/output shapes: to properly size the policy
# - dataset stats: for normalization and denormalization of input/outputs
dataset_metadata = LeRobotDatasetMetadata("lerobot/pusht")
features = dataset_to_policy_features(dataset_metadata.features)
output_features = {key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION}
input_features = {key: ft for key, ft in features.items() if key not in output_features}
# Policies are initialized with a configuration class, in this case `DiffusionConfig`. For this example,
# we'll just use the defaults and so no arguments other than input/output features need to be passed.
cfg = DiffusionConfig(input_features=input_features, output_features=output_features)
# We can now instantiate our policy with this config and the dataset stats.
policy = DiffusionPolicy(cfg, dataset_stats=dataset_metadata.stats)
policy.train()
policy.to(device)
# Another policy-dataset interaction is with the delta_timestamps. Each policy expects a given number frames
# which can differ for inputs, outputs and rewards (if there are some).
delta_timestamps = {
"observation.image": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
"observation.state": [i / dataset_metadata.fps for i in cfg.observation_delta_indices],
"action": [i / dataset_metadata.fps for i in cfg.action_delta_indices],
}
# In this case with the standard configuration for Diffusion Policy, it is equivalent to this:
delta_timestamps = {
# Load the previous image and state at -0.1 seconds before current frame,
# then load current image and state corresponding to 0.0 second.
"observation.image": [-0.1, 0.0],
"observation.state": [-0.1, 0.0],
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to supervise the policy.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
# We can then instantiate the dataset with these delta_timestamps configuration.
dataset = LeRobotDataset("lerobot/pusht", delta_timestamps=delta_timestamps)
# Then we create our optimizer and dataloader for offline training.
optimizer = torch.optim.Adam(policy.parameters(), lr=1e-4)
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=4,
batch_size=64,
shuffle=True,
pin_memory=device.type != "cpu",
drop_last=True,
)
# Run training loop.
step = 0
done = False
while not done:
for batch in dataloader:
batch = {k: (v.to(device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
loss, _ = policy.forward(batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
if step % log_freq == 0:
print(f"step: {step} loss: {loss.item():.3f}")
step += 1
if step >= training_steps:
done = True
break
# Save a policy checkpoint.
policy.save_pretrained(output_directory)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,274 @@
This tutorial will explain the training script, how to use it, and particularly how to configure everything needed for the training run.
> **Note:** The following assumes you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
## The training script
LeRobot offers a training script at [`lerobot/scripts/train.py`](../lerobot/scripts/train.py). At a high level it does the following:
- Initialize/load a configuration for the following steps using.
- Instantiates a dataset.
- (Optional) Instantiates a simulation environment corresponding to that dataset.
- Instantiates a policy.
- Runs a standard training loop with forward pass, backward pass, optimization step, and occasional logging, evaluation (of the policy on the environment), and checkpointing.
## Overview of the configuration system
In the training script, the main function `train` expects a `TrainPipelineConfig` object:
```python
# train.py
@parser.wrap()
def train(cfg: TrainPipelineConfig):
```
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated to this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
Let's have a look at a simplified example. Amongst other attributes, the training config has the following attributes:
```python
@dataclass
class TrainPipelineConfig:
dataset: DatasetConfig
env: envs.EnvConfig | None = None
policy: PreTrainedConfig | None = None
```
in which `DatasetConfig` for example is defined as such:
```python
@dataclass
class DatasetConfig:
repo_id: str
episodes: list[int] | None = None
video_backend: str = "pyav"
```
This creates a hierarchical relationship where, for example assuming we have a `cfg` instance of `TrainPipelineConfig`, we can access the `repo_id` value with `cfg.dataset.repo_id`.
From the command line, we can specify this value by using a very similar syntax `--dataset.repo_id=repo/id`.
By default, every field takes its default value specified in the dataclass. If a field doesn't have a default value, it needs to be specified either from the command line or from a config file which path is also given in the command line (more in this below). In the example above, the `dataset` field doesn't have a default value which means it must be specified.
## Specifying values from the CLI
Let's say that we want to train [Diffusion Policy](../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=lerobot/pusht \
--policy.type=diffusion \
--env.type=pusht
```
Let's break this down:
- To specify the dataset, we just need to specify its `repo_id` on the hub which is the only required argument in the `DatasetConfig`. The rest of the fields have default values and in this case we are fine with those so we can just add the option `--dataset.repo_id=lerobot/pusht`.
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../lerobot/common/policies)
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../lerobot/common/envs/configs.py)
Let's see another example. Let's say you've been training [ACT](../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
```bash
python lerobot/scripts/train.py \
--policy.type=act \
--dataset.repo_id=lerobot/aloha_sim_insertion_human \
--env.type=aloha \
--output_dir=outputs/train/act_aloha_insertion
```
> Notice we added `--output_dir` to explicitly tell where to write outputs from this run (checkpoints, training state, configs etc.). This is not mandatory and if you don't specify it, a default directory will be created from the current date and time, env.type and policy.type. This will typically look like `outputs/train/2025-01-24/16-10-05_aloha_act`.
We now want to train a different policy for aloha on another task. We'll change the dataset and use [lerobot/aloha_sim_transfer_cube_human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human) instead. Of course, we also need to change the task of the environment as well to match this other task.
Looking at the [`AlohaEnv`](../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
```bash
python lerobot/scripts/train.py \
--policy.type=act \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
--env.type=aloha \
--env.task=AlohaTransferCube-v0 \
--output_dir=outputs/train/act_aloha_transfer
```
## Loading from a config file
Now, let's assume that we want to reproduce the run just above. That run has produced a `train_config.json` file in its checkpoints, which serializes the `TrainPipelineConfig` instance it used:
```json
{
"dataset": {
"repo_id": "lerobot/aloha_sim_transfer_cube_human",
"episodes": null,
...
},
"env": {
"type": "aloha",
"task": "AlohaTransferCube-v0",
"fps": 50,
...
},
"policy": {
"type": "act",
"n_obs_steps": 1,
...
},
...
}
```
We can then simply load the config values from this file using:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/ \
--output_dir=outputs/train/act_aloha_transfer_2
```
`--config_path` is also a special argument which allows to initialize the config from a local config file. It can point to a directory that contains `train_config.json` or to the config file itself directly.
Similarly to Hydra, we can still override some parameters in the CLI if we want to, e.g.:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/ \
--output_dir=outputs/train/act_aloha_transfer_2
--policy.n_action_steps=80
```
> Note: While `--output_dir` is not required in general, in this case we need to specify it since it will otherwise take the value from the `train_config.json` (which is `outputs/train/act_aloha_transfer`). In order to prevent accidental deletion of previous run checkpoints, we raise an error if you're trying to write in an existing directory. This is not the case when resuming a run, which is what you'll learn next.
`--config_path` can also accept the repo_id of a repo on the hub that contains a `train_config.json` file, e.g. running:
```bash
python lerobot/scripts/train.py --config_path=lerobot/diffusion_pusht
```
will start a training run with the same configuration used for training [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht)
## Resume training
Being able to resume a training run is important in case it crashed or aborted for any reason. We'll demonstrate how to do that here.
Let's reuse the command from the previous run and add a few more options:
```bash
python lerobot/scripts/train.py \
--policy.type=act \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
--env.type=aloha \
--env.task=AlohaTransferCube-v0 \
--log_freq=25 \
--save_freq=100 \
--output_dir=outputs/train/run_resumption
```
Here we've taken care to set up the log frequency and checkpointing frequency to low numbers so we can showcase resumption. You should be able to see some logging and have a first checkpoint within 1 minute (depending on hardware). Wait for the first checkpoint to happen, you should see a line that looks like this in your terminal:
```
INFO 2025-01-24 16:10:56 ts/train.py:263 Checkpoint policy after step 100
```
Now let's simulate a crash by killing the process (hit `ctrl`+`c`). We can then simply resume this run from the last checkpoint available with:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/ \
--resume=true
```
You should see from the logging that your training picks up from where it left off.
Another reason for which you might want to resume a run is simply to extend training and add more training steps. The number of training steps is set by the option `--steps`, which is 100 000 by default.
You could double the number of steps of the previous run with:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/ \
--resume=true \
--steps=200000
```
## Outputs of a run
In the output directory, there will be a folder called `checkpoints` with the following structure:
```bash
outputs/train/run_resumption/checkpoints
├── 000100 # checkpoint_dir for training step 100
│ ├── pretrained_model/
│ │ ├── config.json # policy config
│ │ ├── model.safetensors # policy weights
│ │ └── train_config.json # train config
│ └── training_state/
│ ├── optimizer_param_groups.json # optimizer param groups
│ ├── optimizer_state.safetensors # optimizer state
│ ├── rng_state.safetensors # rng states
│ ├── scheduler_state.json # scheduler state
│ └── training_step.json # training step
├── 000200
└── last -> 000200 # symlink to the last available checkpoint
```
## Fine-tuning a pre-trained policy
In addition to the features currently in Draccus, we've added a special `.path` argument for the policy, which allows to load a policy as you would with `PreTrainedPolicy.from_pretrained()`. In that case, `path` can be a local directory that contains a checkpoint or a repo_id pointing to a pretrained policy on the hub.
For example, we could fine-tune a [policy pre-trained on the aloha transfer task](https://huggingface.co/lerobot/act_aloha_sim_transfer_cube_human) on the aloha insertion task. We can achieve this with:
```bash
python lerobot/scripts/train.py \
--policy.path=lerobot/act_aloha_sim_transfer_cube_human \
--dataset.repo_id=lerobot/aloha_sim_insertion_human \
--env.type=aloha \
--env.task=AlohaInsertion-v0
```
When doing so, keep in mind that the features of the fine-tuning dataset would have to match the input/output features of the pretrained policy.
## Typical logs and metrics
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you configured your run correctly. The final configuration will also be saved with the checkpoint.
After that, you will see training log like this one:
```
INFO 2024-08-14 13:35:12 ts/train.py:192 step:0 smpl:64 ep:1 epch:0.00 loss:1.112 grdn:15.387 lr:2.0e-07 updt_s:1.738 data_s:4.774
```
or evaluation log:
```
INFO 2024-08-14 13:38:45 ts/train.py:226 step:100 smpl:6K ep:52 epch:0.25 ∑rwrd:20.693 success:0.0% eval_s:120.266
```
These logs will also be saved in wandb if `wandb.enable` is set to `true`. Here are the meaning of some abbreviations:
- `smpl`: number of samples seen during training.
- `ep`: number of episodes seen during training. An episode contains multiple samples in a complete manipulation task.
- `epch`: number of time all unique samples are seen (epoch).
- `grdn`: gradient norm.
- `∑rwrd`: compute the sum of rewards in every evaluation episode and then take an average of them.
- `success`: average success rate of eval episodes. Reward and success are usually different except for the sparsing reward setting, where reward=1 only when the task is completed successfully.
- `eval_s`: time to evaluate the policy in the environment, in second.
- `updt_s`: time to update the network parameters, in second.
- `data_s`: time to load a batch of data, in second.
Some metrics are useful for initial performance profiling. For example, if you find the current GPU utilization is low via the `nvidia-smi` command and `data_s` sometimes is too high, you may need to modify batch size or number of dataloading workers to accelerate dataloading. We also recommend [pytorch profiler](https://github.com/huggingface/lerobot?tab=readme-ov-file#improve-your-code-with-profiling) for detailed performance probing.
## In short
We'll summarize here the main use cases to remember from this tutorial.
#### Train a policy from scratch CLI
```bash
python lerobot/scripts/train.py \
--policy.type=act \ # <- select 'act' policy
--env.type=pusht \ # <- select 'pusht' environment
--dataset.repo_id=lerobot/pusht # <- train on this dataset
```
#### Train a policy from scratch - config file + CLI
```bash
python lerobot/scripts/train.py \
--config_path=path/to/pretrained_model \ # <- can also be a repo_id
--policy.n_action_steps=80 # <- you may still override values
```
#### Resume/continue a training run
```bash
python lerobot/scripts/train.py \
--config_path=checkpoint/pretrained_model/ \
--resume=true \
--steps=200000 # <- you can change some training parameters
```
#### Fine-tuning
```bash
python lerobot/scripts/train.py \
--policy.path=lerobot/act_aloha_sim_transfer_cube_human \ # <- can also be a local path to a checkpoint
--dataset.repo_id=lerobot/aloha_sim_insertion_human \
--env.type=aloha \
--env.task=AlohaInsertion-v0
```
---
Now that you know the basics of how to train a policy, you might want to know how to apply this knowledge to actual robots, or how to record your own datasets and train policies on your specific task?
If that's the case, head over to the next tutorial [`7_get_started_with_real_robot.md`](./7_get_started_with_real_robot.md).
Or in the meantime, happy training! 🤗

View File

@@ -0,0 +1,998 @@
# Getting Started with Real-World Robots
This tutorial will guide you through the process of setting up and training a neural network to autonomously control a real robot.
**What You'll Learn:**
1. How to order and assemble your robot.
2. How to connect, configure, and calibrate your robot.
3. How to record and visualize your dataset.
4. How to train a policy using your data and prepare it for evaluation.
5. How to evaluate your policy and visualize the results.
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
This tutorial is specifically made for the affordable [Koch v1.1](https://github.com/jess-moss/koch-v1-1) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The Koch v1.1 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests. Thanks!
## 1. Order and Assemble your Koch v1.1
Follow the sourcing and assembling instructions provided on the [Koch v1.1 Github page](https://github.com/jess-moss/koch-v1-1). This will guide you through setting up both the follower and leader arms, as shown in the image below.
<div style="text-align:center;">
<img src="../media/tutorial/koch_v1_1_leader_follower.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="50%">
</div>
For a visual walkthrough of the assembly process, you can refer to [this video tutorial](https://youtu.be/8nQIg9BwwTk).
## 2. Configure motors, calibrate arms, teleoperate your Koch v1.1
First, install the additional dependencies required for robots built with dynamixel motors like Koch v1.1 by running one of the following commands (make sure gcc is installed).
Using `pip`:
```bash
pip install -e ".[dynamixel]"
```
Using `poetry`:
```bash
poetry sync --extras "dynamixel"
```
Using `uv`:
```bash
uv sync --extra "dynamixel"
```
You are now ready to plug the 5V power supply to the motor bus of the leader arm (the smaller one) since all its motors only require 5V.
Then plug the 12V power supply to the motor bus of the follower arm. It has two motors that need 12V, and the rest will be powered with 5V through the voltage convertor.
Finally, connect both arms to your computer via USB. Note that the USB doesn't provide any power, and both arms need to be plugged in with their associated power supply to be detected by your computer.
Now you are ready to configure your motors for the first time, as detailed in the sections below. In the upcoming sections, you'll learn about our classes and functions by running some python code in an interactive session, or by copy-pasting it in a python file.
If you have already configured your motors the first time, you can streamline the process by directly running the teleoperate script (which is detailed further in the tutorial):
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
--control.type=teleoperate
```
It will automatically:
1. Identify any missing calibrations and initiate the calibration procedure.
2. Connect the robot and start teleoperation.
### a. Control your motors with DynamixelMotorsBus
You can use the [`DynamixelMotorsBus`](../lerobot/common/robot_devices/motors/dynamixel.py) to communicate with the motors connected as a chain to the corresponding USB bus. This class leverages the Python [Dynamixel SDK](https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20) to facilitate reading from and writing to the motors.
**First Configuration of your motors**
You will need to unplug each motor in turn and run a command the identify the motor. The motor will save its own identification, so you only need to do this once. Start by unplugging all of the motors.
Do the Leader arm first, as all of its motors are of the same type. Plug in your first motor on your leader arm and run this script to set its ID to 1.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand dynamixel \
--model xl330-m288 \
--baudrate 1000000 \
--ID 1
```
Then unplug your first motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand dynamixel \
--model xl330-m288 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6.
The process for the follower arm is almost the same, but the follower arm has two types of motors. For the first two motors, make sure you set the model to `xl430-w250`. _Important: configuring follower motors requires plugging and unplugging power. Make sure you use the 5V power for the XL330s and the 12V power for the XL430s!_
After all of your motors are configured properly, you're ready to plug them all together in a daisy-chain as shown in the original video.
**Instantiate the DynamixelMotorsBus**
To begin, create two instances of the [`DynamixelMotorsBus`](../lerobot/common/robot_devices/motors/dynamixel.py), one for each arm, using their corresponding USB ports (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`).
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
Troubleshooting: On Linux, you might need to give access to the USB ports by running this command with your ports:
```bash
sudo chmod 666 /dev/tty.usbmodem575E0032081
sudo chmod 666 /dev/tty.usbmodem575E0031751
```
*Listing and Configuring Motors*
Next, you'll need to list the motors for each arm, including their name, index, and model. Initially, each motor is assigned the factory default index `1`. Since each motor requires a unique index to function correctly when connected in a chain on a common bus, you'll need to assign different indices. It's recommended to use an ascending index order, starting from `1` (e.g., `1, 2, 3, 4, 5, 6`). These indices will be saved in the persistent memory of each motor during the first connection.
To assign indices to the motors, run this code in an interactive Python session. Replace the `port` values with the ones you identified earlier:
```python
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
leader_config = DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl330-m077"),
"shoulder_lift": (2, "xl330-m077"),
"elbow_flex": (3, "xl330-m077"),
"wrist_flex": (4, "xl330-m077"),
"wrist_roll": (5, "xl330-m077"),
"gripper": (6, "xl330-m077"),
},
)
follower_config = DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
)
leader_arm = DynamixelMotorsBus(leader_config)
follower_arm = DynamixelMotorsBus(follower_config)
```
IMPORTANTLY: Now that you have your ports, update [`KochRobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
```python
@RobotConfig.register_subclass("koch")
@dataclass
class KochRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/koch"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0085511", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "xl330-m077"],
"shoulder_lift": [2, "xl330-m077"],
"elbow_flex": [3, "xl330-m077"],
"wrist_flex": [4, "xl330-m077"],
"wrist_roll": [5, "xl330-m077"],
"gripper": [6, "xl330-m077"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": DynamixelMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "xl430-w250"],
"shoulder_lift": [2, "xl430-w250"],
"elbow_flex": [3, "xl330-m288"],
"wrist_flex": [4, "xl330-m288"],
"wrist_roll": [5, "xl330-m288"],
"gripper": [6, "xl330-m288"],
},
),
}
)
```
**Connect and Configure your Motors**
Before you can start using your motors, you'll need to configure them to ensure proper communication. When you first connect the motors, the [`DynamixelMotorsBus`](../lerobot/common/robot_devices/motors/dynamixel.py) automatically detects any mismatch between the current motor indices (factory set to `1`) and the specified indices (e.g., `1, 2, 3, 4, 5, 6`). This triggers a configuration procedure that requires you to unplug the power cord and motors, then reconnect each motor sequentially, starting from the one closest to the bus.
For a visual guide, refer to the [video tutorial of the configuration procedure](https://youtu.be/U78QQ9wCdpY).
To connect and configure the leader arm, run the following code in the same Python interactive session as earlier in the tutorial:
```python
leader_arm.connect()
```
When you connect the leader arm for the first time, you might see an output similar to this:
```
Read failed due to communication error on port /dev/tty.usbmodem575E0032081 for group_key ID_shoulder_pan_shoulder_lift_elbow_flex_wrist_flex_wrist_roll_gripper: [TxRxResult] There is no status packet!
/!\ A configuration issue has been detected with your motors:
If this is the first time you are using these motors, press enter to configure your motors... but before verify that all the cables are connected the proper way. If you find an issue, before making a modification, kill the python process, unplug the power cord to not damage the motors, rewire correctly, then plug the power again and relaunch the script.
Motor indices detected: {9600: [1]}
1. Unplug the power cord
2. Plug/unplug minimal number of cables to only have the first 1 motor(s) (['shoulder_pan']) connected.
3. Re-plug the power cord
Press Enter to continue...
*Follow the procedure*
Setting expected motor indices: [1, 2, 3, 4, 5, 6]
```
Once the leader arm is configured, repeat the process for the follower arm by running:
```python
follower_arm.connect()
```
Congratulations! Both arms are now properly configured and connected. You won't need to go through the configuration procedure again in the future.
**Troubleshooting**:
If the configuration process fails, you may need to do the configuration process via the Dynamixel Wizard.
Known failure modes:
- Calling `arm.connect()` raises `OSError: No motor found, but one new motor expected. Verify power cord is plugged in and retry` on Ubuntu 22.
Steps:
1. Visit https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/#connect-dynamixel.
2. Follow the software installation instructions in section 3 of the web page.
3. Launch the software.
4. Configure the device scanning options in the menu under `Tools` > `Options` > `Scan`. Check only Protocol 2.0, select only the USB port identifier of interest, select all baudrates, set the ID range to `[0, 10]`. _While this step was not strictly necessary, it greatly speeds up scanning_.
5. For each motor in turn:
- Disconnect the power to the driver board.
- Connect **only** the motor of interest to the driver board, making sure to disconnect it from any other motors.
- Reconnect the power to the driver board.
- From the software menu select `Device` > `Scan` and let the scan run. A device should appear.
- If the device has an asterisk (*) near it, it means the firmware is indeed outdated. From the software menu, select `Tools` > `Firmware Update`. Follow the prompts.
- The main panel should have table with various parameters of the device (refer to the web page, section 5). Select the row with `ID`, and then set the desired ID on the bottom right panel by selecting and clicking `Save`.
- Just like you did with the ID, also set the `Baud Rate` to 1 Mbps.
6. Check everything has been done right:
- Rewire the arms in their final configuration and power both of them.
- Scan for devices. All 12 motors should appear.
- Select the motors one by one and move the arm. Check that the graphical indicator near the top right shows the movement.
** There is a common issue with the Dynamixel XL430-W250 motors where the motors become undiscoverable after upgrading their firmware from Mac and Windows Dynamixel Wizard2 applications. When this occurs, it is required to do a firmware recovery (Select `DYNAMIXEL Firmware Recovery` and follow the prompts). There are two known workarounds to conduct this firmware reset:
1) Install the Dynamixel Wizard on a linux machine and complete the firmware recovery
2) Use the Dynamixel U2D2 in order to perform the reset with Windows or Mac. This U2D2 can be purchased [here](https://www.robotis.us/u2d2/).
For either solution, open DYNAMIXEL Wizard 2.0 and select the appropriate port. You will likely be unable to see the motor in the GUI at this time. Select `Firmware Recovery`, carefully choose the correct model, and wait for the process to complete. Finally, re-scan to confirm the firmware recovery was successful.
**Read and Write with DynamixelMotorsBus**
To get familiar with how `DynamixelMotorsBus` communicates with the motors, you can start by reading data from them. Copy past this code in the same interactive python session:
```python
leader_pos = leader_arm.read("Present_Position")
follower_pos = follower_arm.read("Present_Position")
print(leader_pos)
print(follower_pos)
```
Expected output might look like:
```
array([2054, 523, 3071, 1831, 3049, 2441], dtype=int32)
array([2003, 1601, 56, 2152, 3101, 2283], dtype=int32)
```
Try moving the arms to various positions and observe how the values change.
Now let's try to enable torque in the follower arm by copy pasting this code:
```python
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
follower_arm.write("Torque_Enable", TorqueMode.ENABLED.value)
```
With torque enabled, the follower arm will be locked in its current position. Do not attempt to manually move the arm while torque is enabled, as this could damage the motors.
Now, to get more familiar with reading and writing, let's move the arm programmatically copy pasting the following example code:
```python
# Get the current position
position = follower_arm.read("Present_Position")
# Update first motor (shoulder_pan) position by +10 steps
position[0] += 10
follower_arm.write("Goal_Position", position)
# Update all motors position by -30 steps
position -= 30
follower_arm.write("Goal_Position", position)
# Update gripper by +30 steps
position[-1] += 30
follower_arm.write("Goal_Position", position[-1], "gripper")
```
When you're done playing, you can try to disable the torque, but make sure you hold your robot so that it doesn't fall:
```python
follower_arm.write("Torque_Enable", TorqueMode.DISABLED.value)
```
Finally, disconnect the arms:
```python
leader_arm.disconnect()
follower_arm.disconnect()
```
Alternatively, you can unplug the power cord, which will automatically disable torque and disconnect the motors.
*/!\ Warning*: These motors tend to overheat, especially under torque or if left plugged in for too long. Unplug after use.
### b. Teleoperate your Koch v1.1 with ManipulatorRobot
**Instantiate the ManipulatorRobot**
Before you can teleoperate your robot, you need to instantiate the [`ManipulatorRobot`](../lerobot/common/robot_devices/robots/manipulator.py) using the previously defined `leader_config` and `follower_config`.
For the Koch v1.1 robot, we only have one leader, so we refer to it as `"main"` and define it as `leader_arms={"main": leader_config}`. We do the same for the follower arm. For other robots (like the Aloha), which may have two pairs of leader and follower arms, you would define them like this: `leader_arms={"left": left_leader_config, "right": right_leader_config},`. Same thing for the follower arms.
Run the following code to instantiate your manipulator robot:
```python
from lerobot.common.robot_devices.robots.configs import KochRobotConfig
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
robot_config = KochRobotConfig(
leader_arms={"main": leader_config},
follower_arms={"main": follower_config},
cameras={}, # We don't use any camera for now
)
robot = ManipulatorRobot(robot_config)
```
The `KochRobotConfig` is used to set the associated settings and calibration process. For instance, we activate the torque of the gripper of the leader Koch v1.1 arm and position it at a 40 degree angle to use it as a trigger.
For the [Aloha bimanual robot](https://aloha-2.github.io), we would use `AlohaRobotConfig` to set different settings such as a secondary ID for shadow joints (shoulder, elbow). Specific to Aloha, LeRobot comes with default calibration files stored in `.cache/calibration/aloha_default`. Assuming the motors have been properly assembled, no manual calibration step is expected for Aloha.
**Calibrate and Connect the ManipulatorRobot**
Next, you'll need to calibrate your Koch robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one Koch robot to work on another.
When you connect your robot for the first time, the [`ManipulatorRobot`](../lerobot/common/robot_devices/robots/manipulator.py) will detect if the calibration file is missing and trigger the calibration procedure. During this process, you will be guided to move each arm to three different positions.
Here are the positions you'll move the follower arm to:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/koch/follower_zero.webp?raw=true" alt="Koch v1.1 follower arm zero position" title="Koch v1.1 follower arm zero position" style="width:100%;"> | <img src="../media/koch/follower_rotated.webp?raw=true" alt="Koch v1.1 follower arm rotated position" title="Koch v1.1 follower arm rotated position" style="width:100%;"> | <img src="../media/koch/follower_rest.webp?raw=true" alt="Koch v1.1 follower arm rest position" title="Koch v1.1 follower arm rest position" style="width:100%;"> |
And here are the corresponding positions for the leader arm:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/koch/leader_zero.webp?raw=true" alt="Koch v1.1 leader arm zero position" title="Koch v1.1 leader arm zero position" style="width:100%;"> | <img src="../media/koch/leader_rotated.webp?raw=true" alt="Koch v1.1 leader arm rotated position" title="Koch v1.1 leader arm rotated position" style="width:100%;"> | <img src="../media/koch/leader_rest.webp?raw=true" alt="Koch v1.1 leader arm rest position" title="Koch v1.1 leader arm rest position" style="width:100%;"> |
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask you to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
Importantly, once calibrated, all Koch robots will move to the same positions (e.g. zero and rotated position) when commanded.
Run the following code to calibrate and connect your robot:
```python
robot.connect()
```
The output will look like this:
```
Connecting main follower arm
Connecting main leader arm
Missing calibration file '.cache/calibration/koch/main_follower.json'
Running calibration of koch main follower...
Move arm to zero position
[...]
Move arm to rotated position
[...]
Move arm to rest position
[...]
Calibration is done! Saving calibration file '.cache/calibration/koch/main_follower.json'
Missing calibration file '.cache/calibration/koch/main_leader.json'
Running calibration of koch main leader...
Move arm to zero position
[...]
Move arm to rotated position
[...]
Move arm to rest position
[...]
Calibration is done! Saving calibration file '.cache/calibration/koch/main_leader.json'
```
*Verifying Calibration*
Once calibration is complete, you can check the positions of the leader and follower arms to ensure they match. If the calibration was successful, the positions should be very similar.
Run this code to get the positions in degrees:
```python
leader_pos = robot.leader_arms["main"].read("Present_Position")
follower_pos = robot.follower_arms["main"].read("Present_Position")
print(leader_pos)
print(follower_pos)
```
Example output:
```
array([-0.43945312, 133.94531, 179.82422, -18.984375, -1.9335938, 34.541016], dtype=float32)
array([-0.58723712, 131.72314, 174.98743, -16.872612, 0.786213, 35.271973], dtype=float32)
```
These values are in degrees, which makes them easier to interpret and debug. The zero position used during calibration should roughly correspond to 0 degrees for each motor, and the rotated position should roughly correspond to 90 degrees for each motor.
**Teleoperate your Koch v1.1**
You can easily teleoperate your robot by reading the positions from the leader arm and sending them as goal positions to the follower arm.
To teleoperate your robot for 30 seconds at a frequency of approximately 200Hz, run the following code:
```python
import tqdm
seconds = 30
frequency = 200
for _ in tqdm.tqdm(range(seconds*frequency)):
leader_pos = robot.leader_arms["main"].read("Present_Position")
robot.follower_arms["main"].write("Goal_Position", leader_pos)
```
*Using `teleop_step` for Teleoperation*
Alternatively, you can teleoperate the robot using the `teleop_step` method from [`ManipulatorRobot`](../lerobot/common/robot_devices/robots/manipulator.py).
Run this code to teleoperate:
```python
for _ in tqdm.tqdm(range(seconds*frequency)):
robot.teleop_step()
```
*Recording data during Teleoperation*
Teleoperation is particularly useful for recording data. You can use the `teleop_step(record_data=True)` to returns both the follower arm's position as `"observation.state"` and the leader arm's position as `"action"`. This function also converts the numpy arrays into PyTorch tensors. If you're working with a robot that has two leader and two follower arms (like the Aloha), the positions are concatenated.
Run the following code to see how slowly moving the leader arm affects the observation and action:
```python
leader_pos = robot.leader_arms["main"].read("Present_Position")
follower_pos = robot.follower_arms["main"].read("Present_Position")
observation, action = robot.teleop_step(record_data=True)
print(follower_pos)
print(observation)
print(leader_pos)
print(action)
```
Expected output:
```
array([7.8223, 131.1328, 165.5859, -23.4668, -0.9668, 32.4316], dtype=float32)
{'observation.state': tensor([7.8223, 131.1328, 165.5859, -23.4668, -0.9668, 32.4316])}
array([3.4277, 134.1211, 179.8242, -18.5449, -1.5820, 34.7168], dtype=float32)
{'action': tensor([3.4277, 134.1211, 179.8242, -18.5449, -1.5820, 34.7168])}
```
*Asynchronous Frame Recording*
Additionally, `teleop_step` can asynchronously record frames from multiple cameras and include them in the observation dictionary as `"observation.images.CAMERA_NAME"`. This feature will be covered in more detail in the next section.
*Disconnecting the Robot*
When you're finished, make sure to disconnect your robot by running:
```python
robot.disconnect()
```
Alternatively, you can unplug the power cord, which will also disable torque.
*/!\ Warning*: These motors tend to overheat, especially under torque or if left plugged in for too long. Unplug after use.
### c. Add your cameras with OpenCVCamera
**(Optional) Use your phone as camera on Linux**
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
```python
sudo apt install v4l2loopback-dkms v4l-utils
```
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
```python
flatpak install flathub com.obsproject.Studio
```
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
```python
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
```
5. *Start OBS Studio*. Launch with:
```python
flatpak run com.obsproject.Studio
```
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
```python
v4l2-ctl --list-devices
```
You should see an entry like:
```
VirtualCam (platform:v4l2loopback-000):
/dev/video1
```
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
```python
v4l2-ctl -d /dev/video1 --get-fmt-video
```
You should see an entry like:
```
>>> Format Video Capture:
>>> Width/Height : 640/480
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
```
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
If everything is set up correctly, you can proceed with the rest of the tutorial.
**(Optional) Use your iPhone as a camera on MacOS**
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
- Sign in both devices with the same Apple ID.
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
Your iPhone should be detected automatically when running the camera setup script in the next section.
**Instantiate an OpenCVCamera**
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
```bash
python lerobot/common/robot_devices/cameras/opencv.py \
--images-dir outputs/images_from_opencv_cameras
```
The output will look something like this if you have two cameras connected:
```
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
[...]
Camera found at index 0
Camera found at index 1
[...]
Connecting cameras
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
Saving images to outputs/images_from_opencv_cameras
Frame: 0000 Latency (ms): 39.52
[...]
Frame: 0046 Latency (ms): 40.07
Images have been saved to outputs/images_from_opencv_cameras
```
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
```
camera_00_frame_000000.png
[...]
camera_00_frame_000047.png
camera_01_frame_000000.png
[...]
camera_01_frame_000047.png
```
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
Finally, run this code to instantiate and connect your camera:
```python
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
config = OpenCVCameraConfig(camera_index=0)
camera = OpenCVCamera(config)
camera.connect()
color_image = camera.read()
print(color_image.shape)
print(color_image.dtype)
```
Expected output for a laptop camera on MacBookPro:
```
(1080, 1920, 3)
uint8
```
Or like this if you followed our tutorial to set a virtual camera:
```
(480, 640, 3)
uint8
```
With certain camera, you can also specify additional parameters like frame rate, resolution, and color mode during instantiation. For instance:
```python
config = OpenCVCameraConfig(camera_index=0, fps=30, width=640, height=480)
```
If the provided arguments are not compatible with the camera, an exception will be raised.
*Disconnecting the camera*
When you're done using the camera, disconnect it by running:
```python
camera.disconnect()
```
**Instantiate your robot with cameras**
Additionally, you can set up your robot to work with your cameras.
Modify the following Python code with the appropriate camera names and configurations:
```python
robot = ManipulatorRobot(
KochRobotConfig(
leader_arms={"main": leader_arm},
follower_arms={"main": follower_arm},
calibration_dir=".cache/calibration/koch",
cameras={
"laptop": OpenCVCameraConfig(0, fps=30, width=640, height=480),
"phone": OpenCVCameraConfig(1, fps=30, width=640, height=480),
},
)
)
robot.connect()
```
As a result, `teleop_step(record_data=True` will return a frame for each camera following the pytorch "channel first" convention but we keep images in `uint8` with pixels in range [0,255] to easily save them.
Modify this code with the names of your cameras and run it:
```python
observation, action = robot.teleop_step(record_data=True)
print(observation["observation.images.laptop"].shape)
print(observation["observation.images.phone"].shape)
print(observation["observation.images.laptop"].min().item())
print(observation["observation.images.laptop"].max().item())
```
The output should look like this:
```
torch.Size([3, 480, 640])
torch.Size([3, 480, 640])
0
255
```
### d. Use `control_robot.py` and our `teleoperate` function
Instead of manually running the python code in a terminal window, you can use [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) to instantiate your robot by providing the robot configurations via command line and control your robot with various modes as explained next.
Try running this code to teleoperate your robot (if you dont have a camera, keep reading):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
--control.type=teleoperate
```
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 11:15:03 ol_robot.py:209 dt: 5.12 (195.1hz) dtRlead: 4.93 (203.0hz) dtWfoll: 0.19 (5239.0hz)
```
It contains
- `2024-08-10 11:15:03` which is the date and time of the call to the print function.
- `ol_robot.py:209` which is the end of the file name and the line number where the print function is called (`lerobot/scripts/control_robot.py` line `209`).
- `dt: 5.12 (195.1hz)` which is the "delta time" or the number of milliseconds spent between the previous call to `robot.teleop_step()` and the current one, associated with the frequency (5.12 ms equals 195.1 Hz) ; note that you can control the maximum frequency by adding fps as argument such as `--fps 30`.
- `dtRlead: 4.93 (203.0hz)` which is the number of milliseconds it took to read the position of the leader arm using `leader_arm.read("Present_Position")`.
- `dtWfoll: 0.22 (4446.9hz)` which is the number of milliseconds it took to set a new goal position for the follower arm using `follower_arm.write("Goal_position", leader_pos)` ; note that writing is done asynchronously so it takes less time than reading.
Importantly: If you don't have any camera, you can remove them dynamically with this [draccus](https://github.com/dlwh/draccus) syntax `--robot.cameras='{}'`:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
--robot.cameras='{}' \
--control.type=teleoperate
```
We advise to create a new yaml file when the command becomes too long.
## 3. Record your Dataset and Visualize it
Using what you've learned previously, you can now easily record a dataset of states and actions for one episode. You can use `busy_wait` to control the speed of teleoperation and record at a fixed `fps` (frame per seconds).
Try this code to record 30 seconds at 60 fps:
```python
import time
from lerobot.scripts.control_robot import busy_wait
record_time_s = 30
fps = 60
states = []
actions = []
for _ in range(record_time_s * fps):
start_time = time.perf_counter()
observation, action = robot.teleop_step(record_data=True)
states.append(observation["observation.state"])
actions.append(action["action"])
dt_s = time.perf_counter() - start_time
busy_wait(1 / fps - dt_s)
# Note that observation and action are available in RAM, but
# you could potentially store them on disk with pickle/hdf5 or
# our optimized format `LeRobotDataset`. More on this next.
```
Importantly, many utilities are still missing. For instance, if you have cameras, you will need to save the images on disk to not go out of RAM, and to do so in threads to not slow down communication with your robot. Also, you will need to store your data in a format optimized for training and web sharing like [`LeRobotDataset`](../lerobot/common/datasets/lerobot_dataset.py). More on this in the next section.
### a. Use the `record` function
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) to achieve efficient data recording. It encompasses many recording utilities:
1. Frames from cameras are saved on disk in threads, and encoded into videos at the end of each episode recording.
2. Video streams from cameras are displayed in window so that you can verify them.
3. Data is stored with [`LeRobotDataset`](../lerobot/common/datasets/lerobot_dataset.py) format which is pushed to your Hugging Face page (unless `--control.push_to_hub=false` is provided).
4. Checkpoints are done during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
5. Set the flow of data recording using command line arguments:
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
- `--control.reset_time_s=60` defines the number of seconds for resetting the environment after each episode (60 seconds by default).
- `--control.num_episodes=50` defines the number of episodes to record (50 by default).
6. Control the flow during data recording using keyboard keys:
- Press right arrow `->` at any time during episode recording to early stop and go to resetting. Same during resetting, to early stop and to go to the next episode recording.
- Press left arrow `<-` at any time during episode recording or resetting to early stop, cancel the current episode, and re-record it.
- Press escape `ESC` at any time during episode recording to end the session early and go straight to video encoding and dataset uploading.
7. Similarly to `teleoperate`, you can also use the command line to override anything.
Before trying `record`, if you want to push your dataset to the hub, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Also, store your Hugging Face repository name in a variable (e.g. `cadene` or `lerobot`). For instance, run this to use your Hugging Face user name as repository:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
If you don't want to push to hub, use `--control.push_to_hub=false`.
Now run this to record 2 episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
--control.type=record \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.fps=30 \
--control.repo_id=${HF_USER}/koch_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
This will write your dataset locally to `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/koch_test`) and push it on the hub at `https://huggingface.co/datasets/{HF_USER}/{repo-id}`. Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
You can look for other LeRobot datasets on the hub by searching for `LeRobot` tags: https://huggingface.co/datasets?other=LeRobot
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
```
It contains:
- `2024-08-10 15:02:58` which is the date and time of the call to the print function,
- `ol_robot.py:219` which is the end of the file name and the line number where the print function is called (`lerobot/scripts/control_robot.py` line `219`).
- `dt:33.34 (30.0hz)` which is the "delta time" or the number of milliseconds spent between the previous call to `robot.teleop_step(record_data=True)` and the current one, associated with the frequency (33.34 ms equals 30.0 Hz) ; note that we use `--fps 30` so we expect 30.0 Hz ; when a step takes more time, the line appears in yellow.
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
Troubleshooting:
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/koch_test) that you can obtain by running:
```bash
echo https://huggingface.co/datasets/${HF_USER}/koch_test
```
### b. Advice for recording dataset
Once you're comfortable with data recording, it's time to create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings.
In the following sections, youll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
Avoid adding too much variation too quickly, as it may hinder your results.
In the coming months, we plan to release a foundational model for robotics. We anticipate that fine-tuning this model will enhance generalization, reducing the need for strict consistency during data collection.
### c. Visualize all episodes
You can visualize your dataset by running:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/koch_test
```
Note: You might need to add `--local-files-only 1` if your dataset was not uploaded to hugging face hub.
This will launch a local web server that looks like this:
<div style="text-align:center;">
<img src="../media/tutorial/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%">
</div>
### d. Replay episode on your robot with the `replay` function
A useful feature of [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
To replay the first episode of the dataset you just recorded, run the following command:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/koch_test \
--control.episode=0
```
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
## 4. Train a policy on your data
### a. Use the `train` script
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/koch_test \
--policy.type=act \
--output_dir=outputs/train/act_koch_test \
--job_name=act_koch_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/koch_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
For more information on the `train` script see the previous tutorial: [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md)
### b. (Optional) Upload policy checkpoints to the hub
Once training is done, upload the latest checkpoint with:
```bash
huggingface-cli upload ${HF_USER}/act_koch_test \
outputs/train/act_koch_test/checkpoints/last/pretrained_model
```
You can also upload intermediate checkpoints with:
```bash
CKPT=010000
huggingface-cli upload ${HF_USER}/act_koch_test_${CKPT} \
outputs/train/act_koch_test/checkpoints/${CKPT}/pretrained_model
```
## 5. Evaluate your policy
Now that you have a policy checkpoint, you can easily control your robot with it using methods from [`ManipulatorRobot`](../lerobot/common/robot_devices/robots/manipulator.py) and the policy.
Try this code for running inference for 60 seconds at 30 fps:
```python
from lerobot.common.policies.act.modeling_act import ACTPolicy
inference_time_s = 60
fps = 30
device = "cuda" # TODO: On Mac, use "mps" or "cpu"
ckpt_path = "outputs/train/act_koch_test/checkpoints/last/pretrained_model"
policy = ACTPolicy.from_pretrained(ckpt_path)
policy.to(device)
for _ in range(inference_time_s * fps):
start_time = time.perf_counter()
# Read the follower state and access the frames from the cameras
observation = robot.capture_observation()
# Convert to pytorch format: channel first and float32 in [0,1]
# with batch dimension
for name in observation:
if "image" in name:
observation[name] = observation[name].type(torch.float32) / 255
observation[name] = observation[name].permute(2, 0, 1).contiguous()
observation[name] = observation[name].unsqueeze(0)
observation[name] = observation[name].to(device)
# Compute the next action with the policy
# based on the current observation
action = policy.select_action(observation)
# Remove batch dimension
action = action.squeeze(0)
# Move to cpu, if not already the case
action = action.to("cpu")
# Order the robot to move
robot.send_action(action)
dt_s = time.perf_counter() - start_time
busy_wait(1 / fps - dt_s)
```
### a. Use our `record` function
Ideally, when controlling your robot with your neural network, you would want to record evaluation episodes and to be able to visualize them later on, or even train on them like in Reinforcement Learning. This pretty much corresponds to recording a new dataset but with a neural network providing the actions instead of teleoperation.
To this end, you can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
--control.type=record \
--control.fps=30 \
--control.repo_id=${HF_USER}/eval_act_koch_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_koch_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_koch_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_koch_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_koch_test`).
### b. Visualize evaluation afterwards
You can then visualize your evaluation dataset by running the same command as before but with the new inference dataset as argument:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id ${HF_USER}/eval_act_koch_test
```
## 6. Next step
Join our [Discord](https://discord.com/invite/s3KuuzsPFb) to collaborate on data collection and help us train a fully open-source foundational models for robotics!

161
examples/8_use_stretch.md Normal file
View File

@@ -0,0 +1,161 @@
This tutorial explains how to use [Stretch 3](https://hello-robot.com/stretch-3-product) with LeRobot.
## Setup
Familiarize yourself with Stretch by following its [tutorials](https://docs.hello-robot.com/0.3/getting_started/hello_robot/) (recommended).
To use LeRobot on Stretch, 3 options are available:
- [tethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup)
- [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup)
- ssh directly into Stretch (you will first need to install and configure openssh-server on stretch using one of the two above setups)
## Install LeRobot
On Stretch's CLI, follow these steps:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Comment out these lines in `~/.profile` (this can mess up paths used by conda and ~/.local/bin should already be in your PATH)
```
# set PATH so it includes user's private bin if it exists
if [ -d "$HOME/.local/bin" ] ; then
PATH="$HOME/.local/bin:$PATH"
fi
```
3. Restart shell or `source ~/.bashrc`
4. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
5. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
6. When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
7. Install LeRobot with stretch dependencies:
```bash
cd ~/lerobot && pip install -e ".[stretch]"
```
> **Note:** If you get this message, you can ignore it: `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.`
8. Run a [system check](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#system-check) to make sure your robot is ready:
```bash
stretch_system_check.py
```
> **Note:** You may need to free the "robot process" after booting Stretch by running `stretch_free_robot_process.py`. For more info this Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#turning-off-gamepad-teleoperation).
You should get something like this:
```bash
For use with S T R E T C H (R) from Hello Robot Inc.
---------------------------------------------------------------------
Model = Stretch 3
Tool = DexWrist 3 w/ Gripper
Serial Number = stretch-se3-3054
---- Checking Hardware ----
[Pass] Comms are ready
[Pass] Actuators are ready
[Warn] Sensors not ready (IMU AZ = -10.19 out of range -10.1 to -9.5)
[Pass] Battery voltage is 13.6 V
---- Checking Software ----
[Pass] Ubuntu 22.04 is ready
[Pass] All APT pkgs are setup correctly
[Pass] Firmware is up-to-date
[Pass] Python pkgs are up-to-date
[Pass] ROS2 Humble is ready
```
## Teleoperate, record a dataset and run a policy
**Calibrate (Optional)**
Before operating Stretch, you need to [home](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#homing) it first. Be mindful about giving Stretch some space as this procedure will move the robot's arm and gripper. Now run this command:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=stretch \
--control.type=calibrate
```
This is equivalent to running `stretch_robot_home.py`
> **Note:** If you run any of the LeRobot scripts below and Stretch is not properly homed, it will automatically home/calibrate first.
**Teleoperate**
Before trying teleoperation, you need to activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
Now try out teleoperation (see above documentation to learn about the gamepad controls):
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=stretch \
--control.type=teleoperate
```
This is essentially the same as running `stretch_gamepad_teleop.py`
**Record a dataset**
Once you're familiar with the gamepad controls and after a bit of practice, you can try to record your first dataset with Stretch.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record one episode:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=stretch \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/stretch_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
> **Note:** If you're using ssh to connect to Stretch and run this script, you won't be able to visualize its cameras feed (though they will still be recording). To see the cameras stream, use [tethered](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup) or [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup).
**Replay an episode**
Now try to replay this episode (make sure the robot's initial position is the same):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=stretch \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/stretch_test \
--control.episode=0
```
Follow [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) to train a policy on your data and run inference on your robot. You will need to adapt the code for Stretch.
> TODO(rcadene, aliberts): Add already setup environment and policy yaml configuration files
If you need help, please reach out on Discord in the channel `#stretch3-mobile-arm`.

182
examples/9_use_aloha.md Normal file
View File

@@ -0,0 +1,182 @@
This tutorial explains how to use [Aloha and Aloha 2 stationary](https://www.trossenrobotics.com/aloha-stationary) with LeRobot.
## Setup
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/2.0/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
6. Install LeRobot with dependencies for the Aloha motors (dynamixel) and cameras (intelrealsense):
```bash
cd ~/lerobot && pip install -e ".[dynamixel, intelrealsense]"
```
## Teleoperate
**/!\ FOR SAFETY, READ THIS /!\**
Teleoperation consists in manually operating the leader arms to move the follower arms. Importantly:
1. Make sure your leader arms are in the same position as the follower arms, so that the follower arms don't move too fast to match the leader arms,
2. Our code assumes that your robot has been assembled following Trossen Robotics instructions. This allows us to skip calibration, as we use the pre-defined calibration files in `.cache/calibration/aloha_default`. If you replace a motor, make sure you follow the exact instructions from Trossen Robotics.
By running the following code, you can start your first **SAFE** teleoperation:
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=aloha \
--robot.max_relative_target=5 \
--control.type=teleoperate
```
By adding `--robot.max_relative_target=5`, we override the default value for `max_relative_target` defined in [`AlohaRobotConfig`](lerobot/common/robot_devices/robots/configs.py). It is expected to be `5` to limit the magnitude of the movement for more safety, but the teleoperation won't be smooth. When you feel confident, you can disable this limit by adding `--robot.max_relative_target=null` to the command line:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=aloha \
--robot.max_relative_target=null \
--control.type=teleoperate
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with Aloha.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=aloha \
--robot.max_relative_target=null \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/aloha_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/aloha_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/aloha_test
```
## Replay an episode
**/!\ FOR SAFETY, READ THIS /!\**
Replay consists in automatically replaying the sequence of actions (i.e. goal positions for your motors) recorded in a given dataset episode. Make sure the current initial position of your robot is similar to the one in your episode, so that your follower arms don't move too fast to go to the first goal positions. For safety, you might want to add `--robot.max_relative_target=5` to your command line as explained above.
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=aloha \
--robot.max_relative_target=null \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/aloha_test \
--control.episode=0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/aloha_test \
--policy.type=act \
--output_dir=outputs/train/act_aloha_test \
--job_name=act_aloha_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/aloha_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
For more information on the `train` script see the previous tutorial: [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md)
Training should take several hours. You will find checkpoints in `outputs/train/act_aloha_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=aloha \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_aloha_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_aloha_test/checkpoints/last/pretrained_model \
--control.num_image_writer_processes=1
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_aloha_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_aloha_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_aloha_test`).
3. We use `--control.num_image_writer_processes=1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constant 30 fps during inference. Feel free to explore different values for `--control.num_image_writer_processes`.
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explanation.
If you have any question or need help, please reach out on Discord in the channel `#aloha-arm`.

View File

@@ -0,0 +1,67 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script demonstrates how to use torchvision's image transformation with LeRobotDataset for data
augmentation purposes. The transformations are passed to the dataset as an argument upon creation, and
transforms are applied to the observation images before they are returned in the dataset's __getitem__.
"""
from pathlib import Path
from torchvision.transforms import ToPILImage, v2
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
dataset_repo_id = "lerobot/aloha_static_screw_driver"
# Create a LeRobotDataset with no transformations
dataset = LeRobotDataset(dataset_repo_id, episodes=[0])
# This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)`
# Get the index of the first observation in the first episode
first_idx = dataset.episode_data_index["from"][0].item()
# Get the frame corresponding to the first camera
frame = dataset[first_idx][dataset.meta.camera_keys[0]]
# Define the transformations
transforms = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 1.5)),
v2.ColorJitter(contrast=(0.5, 1.5)),
v2.ColorJitter(hue=(-0.1, 0.1)),
v2.RandomAdjustSharpness(sharpness_factor=2, p=1),
]
)
# Create another LeRobotDataset with the defined transformations
transformed_dataset = LeRobotDataset(dataset_repo_id, episodes=[0], image_transforms=transforms)
# Get a frame from the transformed dataset
transformed_frame = transformed_dataset[first_idx][transformed_dataset.meta.camera_keys[0]]
# Create a directory to store output images
output_dir = Path("outputs/image_transforms")
output_dir.mkdir(parents=True, exist_ok=True)
# Save the original frame
to_pil = ToPILImage()
to_pil(frame).save(output_dir / "original_frame.png", quality=100)
print(f"Original frame saved to {output_dir / 'original_frame.png'}.")
# Save the transformed frame
to_pil(transformed_frame).save(output_dir / "transformed_frame.png", quality=100)
print(f"Transformed frame saved to {output_dir / 'transformed_frame.png'}.")

View File

@@ -0,0 +1,104 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This script demonstrates how to slice a dataset and calculate the loss on a subset of the data.
This technique can be useful for debugging and testing purposes, as well as identifying whether a policy
is learning effectively.
Furthermore, relying on validation loss to evaluate performance is generally not considered a good practice,
especially in the context of imitation learning. The most reliable approach is to evaluate the policy directly
on the target environment, whether that be in simulation or the real world.
"""
import math
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
def main():
device = torch.device("cuda")
# Download the diffusion policy for pusht environment
pretrained_policy_path = "lerobot/diffusion_pusht"
# OR uncomment the following to evaluate a policy from the local outputs/train folder.
# pretrained_policy_path = Path("outputs/train/example_pusht_diffusion")
policy = DiffusionPolicy.from_pretrained(pretrained_policy_path)
policy.eval()
policy.to(device)
# Set up the dataset.
delta_timestamps = {
# Load the previous image and state at -0.1 seconds before current frame,
# then load current image and state corresponding to 0.0 second.
"observation.image": [-0.1, 0.0],
"observation.state": [-0.1, 0.0],
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to calculate the loss.
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
# Load the last 10% of episodes of the dataset as a validation set.
# - Load dataset metadata
dataset_metadata = LeRobotDatasetMetadata("lerobot/pusht")
# - Calculate train and val episodes
total_episodes = dataset_metadata.total_episodes
episodes = list(range(dataset_metadata.total_episodes))
num_train_episodes = math.floor(total_episodes * 90 / 100)
train_episodes = episodes[:num_train_episodes]
val_episodes = episodes[num_train_episodes:]
print(f"Number of episodes in full dataset: {total_episodes}")
print(f"Number of episodes in training dataset (90% subset): {len(train_episodes)}")
print(f"Number of episodes in validation dataset (10% subset): {len(val_episodes)}")
# - Load train and val datasets
train_dataset = LeRobotDataset(
"lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps
)
val_dataset = LeRobotDataset("lerobot/pusht", episodes=val_episodes, delta_timestamps=delta_timestamps)
print(f"Number of frames in training dataset (90% subset): {len(train_dataset)}")
print(f"Number of frames in validation dataset (10% subset): {len(val_dataset)}")
# Create dataloader for evaluation.
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
num_workers=4,
batch_size=64,
shuffle=False,
pin_memory=device != torch.device("cpu"),
drop_last=False,
)
# Run validation loop.
loss_cumsum = 0
n_examples_evaluated = 0
for batch in val_dataloader:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
loss, _ = policy.forward(batch)
loss_cumsum += loss.item()
n_examples_evaluated += batch["index"].shape[0]
# Calculate the average loss over the validation set.
average_loss = loss_cumsum / n_examples_evaluated
print(f"Average loss on validation set: {average_loss:.4f}")
if __name__ == "__main__":
main()

View File

@@ -1 +1,213 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains lists of available environments, dataset and policies to reflect the current state of LeRobot library.
We do not want to import all the dependencies, but instead we keep it lightweight to ensure fast access to these variables.
Example:
```python
import lerobot
print(lerobot.available_envs)
print(lerobot.available_tasks_per_env)
print(lerobot.available_datasets)
print(lerobot.available_datasets_per_env)
print(lerobot.available_real_world_datasets)
print(lerobot.available_policies)
print(lerobot.available_policies_per_env)
print(lerobot.available_robots)
print(lerobot.available_cameras)
print(lerobot.available_motors)
```
When implementing a new dataset loadable with LeRobotDataset follow these steps:
- Update `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
- Update `available_tasks_per_env` and `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
- Update `available_policies` and `available_policies_per_env`, in `lerobot/__init__.py`
- Set the required `name` class attribute.
- Update variables in `tests/test_available.py` by importing your new Policy class
"""
import itertools
from lerobot.__version__ import __version__ # noqa: F401
# TODO(rcadene): Improve policies and envs. As of now, an item in `available_policies`
# refers to a yaml file AND a modeling name. Same for `available_envs` which refers to
# a yaml file AND a environment name. The difference should be more obvious.
available_tasks_per_env = {
"aloha": [
"AlohaInsertion-v0",
"AlohaTransferCube-v0",
],
"pusht": ["PushT-v0"],
"xarm": ["XarmLift-v0"],
}
available_envs = list(available_tasks_per_env.keys())
available_datasets_per_env = {
"aloha": [
"lerobot/aloha_sim_insertion_human",
"lerobot/aloha_sim_insertion_scripted",
"lerobot/aloha_sim_transfer_cube_human",
"lerobot/aloha_sim_transfer_cube_scripted",
"lerobot/aloha_sim_insertion_human_image",
"lerobot/aloha_sim_insertion_scripted_image",
"lerobot/aloha_sim_transfer_cube_human_image",
"lerobot/aloha_sim_transfer_cube_scripted_image",
],
# TODO(alexander-soare): Add "lerobot/pusht_keypoints". Right now we can't because this is too tightly
# coupled with tests.
"pusht": ["lerobot/pusht", "lerobot/pusht_image"],
"xarm": [
"lerobot/xarm_lift_medium",
"lerobot/xarm_lift_medium_replay",
"lerobot/xarm_push_medium",
"lerobot/xarm_push_medium_replay",
"lerobot/xarm_lift_medium_image",
"lerobot/xarm_lift_medium_replay_image",
"lerobot/xarm_push_medium_image",
"lerobot/xarm_push_medium_replay_image",
],
}
available_real_world_datasets = [
"lerobot/aloha_mobile_cabinet",
"lerobot/aloha_mobile_chair",
"lerobot/aloha_mobile_elevator",
"lerobot/aloha_mobile_shrimp",
"lerobot/aloha_mobile_wash_pan",
"lerobot/aloha_mobile_wipe_wine",
"lerobot/aloha_static_battery",
"lerobot/aloha_static_candy",
"lerobot/aloha_static_coffee",
"lerobot/aloha_static_coffee_new",
"lerobot/aloha_static_cups_open",
"lerobot/aloha_static_fork_pick_up",
"lerobot/aloha_static_pingpong_test",
"lerobot/aloha_static_pro_pencil",
"lerobot/aloha_static_screw_driver",
"lerobot/aloha_static_tape",
"lerobot/aloha_static_thread_velcro",
"lerobot/aloha_static_towel",
"lerobot/aloha_static_vinh_cup",
"lerobot/aloha_static_vinh_cup_left",
"lerobot/aloha_static_ziploc_slide",
"lerobot/umi_cup_in_the_wild",
"lerobot/unitreeh1_fold_clothes",
"lerobot/unitreeh1_rearrange_objects",
"lerobot/unitreeh1_two_robot_greeting",
"lerobot/unitreeh1_warehouse",
"lerobot/nyu_rot_dataset",
"lerobot/utokyo_saytap",
"lerobot/imperialcollege_sawyer_wrist_cam",
"lerobot/utokyo_xarm_bimanual",
"lerobot/tokyo_u_lsmo",
"lerobot/utokyo_pr2_opening_fridge",
"lerobot/cmu_franka_exploration_dataset",
"lerobot/cmu_stretch",
"lerobot/asu_table_top",
"lerobot/utokyo_pr2_tabletop_manipulation",
"lerobot/utokyo_xarm_pick_and_place",
"lerobot/ucsd_kitchen_dataset",
"lerobot/austin_buds_dataset",
"lerobot/dlr_sara_grid_clamp",
"lerobot/conq_hose_manipulation",
"lerobot/columbia_cairlab_pusht_real",
"lerobot/dlr_sara_pour",
"lerobot/dlr_edan_shared_control",
"lerobot/ucsd_pick_and_place_dataset",
"lerobot/berkeley_cable_routing",
"lerobot/nyu_franka_play_dataset",
"lerobot/austin_sirius_dataset",
"lerobot/cmu_play_fusion",
"lerobot/berkeley_gnm_sac_son",
"lerobot/nyu_door_opening_surprising_effectiveness",
"lerobot/berkeley_fanuc_manipulation",
"lerobot/jaco_play",
"lerobot/viola",
"lerobot/kaist_nonprehensile",
"lerobot/berkeley_mvp",
"lerobot/uiuc_d3field",
"lerobot/berkeley_gnm_recon",
"lerobot/austin_sailor_dataset",
"lerobot/utaustin_mutex",
"lerobot/roboturk",
"lerobot/stanford_hydra_dataset",
"lerobot/berkeley_autolab_ur5",
"lerobot/stanford_robocook",
"lerobot/toto",
"lerobot/fmb",
"lerobot/droid_100",
"lerobot/berkeley_rpt",
"lerobot/stanford_kuka_multimodal_dataset",
"lerobot/iamlab_cmu_pickup_insert",
"lerobot/taco_play",
"lerobot/berkeley_gnm_cory_hall",
"lerobot/usc_cloth_sim",
]
available_datasets = sorted(
set(itertools.chain(*available_datasets_per_env.values(), available_real_world_datasets))
)
# lists all available policies from `lerobot/common/policies`
available_policies = ["act", "diffusion", "tdmpc", "vqbet"]
# lists all available robots from `lerobot/common/robot_devices/robots`
available_robots = [
"koch",
"koch_bimanual",
"aloha",
"so100",
"so101",
"moss",
]
# lists all available cameras from `lerobot/common/robot_devices/cameras`
available_cameras = [
"opencv",
"intelrealsense",
]
# lists all available motors from `lerobot/common/robot_devices/motors`
available_motors = [
"dynamixel",
"feetech",
]
# keys and values refer to yaml files
available_policies_per_env = {
"aloha": ["act"],
"pusht": ["diffusion", "vqbet"],
"xarm": ["tdmpc"],
"koch_real": ["act_koch_real"],
"aloha_real": ["act_aloha_real"],
}
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
env_dataset_pairs = [
(env, dataset) for env, datasets in available_datasets_per_env.items() for dataset in datasets
]
env_dataset_policy_triplets = [
(env, dataset, policy)
for env, datasets in available_datasets_per_env.items()
for dataset in datasets
for policy in available_policies_per_env[env]
]

View File

@@ -1,4 +1,19 @@
""" To enable `lerobot.__version__` """
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""To enable `lerobot.__version__`"""
from importlib.metadata import PackageNotFoundError, version

View File

@@ -0,0 +1,45 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# keys
import os
from pathlib import Path
from huggingface_hub.constants import HF_HOME
OBS_ENV = "observation.environment_state"
OBS_ROBOT = "observation.state"
OBS_IMAGE = "observation.image"
OBS_IMAGES = "observation.images"
ACTION = "action"
# files & directories
CHECKPOINTS_DIR = "checkpoints"
LAST_CHECKPOINT_LINK = "last"
PRETRAINED_MODEL_DIR = "pretrained_model"
TRAINING_STATE_DIR = "training_state"
RNG_STATE = "rng_state.safetensors"
TRAINING_STEP = "training_step.json"
OPTIMIZER_STATE = "optimizer_state.safetensors"
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
SCHEDULER_STATE = "scheduler_state.json"
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
if "LEROBOT_HOME" in os.environ:
raise ValueError(
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
)

View File

@@ -1,171 +0,0 @@
import logging
from pathlib import Path
from typing import Callable
import einops
import torch
import torchrl
import tqdm
from huggingface_hub import snapshot_download
from tensordict import TensorDict
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import SliceSampler
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
from torchrl.envs.transforms.transforms import Compose
class AbstractExperienceReplay(TensorDictReplayBuffer):
def __init__(
self,
dataset_id: str,
version: str | None = None,
batch_size: int = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
self.dataset_id = dataset_id
self.version = version
self.shuffle = shuffle
self.root = root
if self.root is not None and self.version is not None:
logging.warning(
f"The version of the dataset ({self.version}) is not enforced when root is provided ({self.root})."
)
storage = self._download_or_load_dataset()
super().__init__(
storage=storage,
sampler=sampler,
writer=ImmutableDatasetWriter() if writer is None else writer,
collate_fn=_collate_id if collate_fn is None else collate_fn,
pin_memory=pin_memory,
prefetch=prefetch,
batch_size=batch_size,
transform=transform,
)
@property
def stats_patterns(self) -> dict:
return {
("observation", "state"): "b c -> c",
("observation", "image"): "b c h w -> c 1 1",
("action",): "b c -> c",
}
@property
def image_keys(self) -> list:
return [("observation", "image")]
@property
def num_cameras(self) -> int:
return len(self.image_keys)
@property
def num_samples(self) -> int:
return len(self)
@property
def num_episodes(self) -> int:
return len(self._storage._storage["episode"].unique())
@property
def transform(self):
return self._transform
def set_transform(self, transform):
if not isinstance(transform, Compose):
# required since torchrl calls `len(self._transform)` downstream
if isinstance(transform, list):
self._transform = Compose(*transform)
else:
self._transform = Compose(transform)
else:
self._transform = transform
def compute_or_load_stats(self, num_batch=100, batch_size=32) -> TensorDict:
stats_path = self.data_dir / "stats.pth"
if stats_path.exists():
stats = torch.load(stats_path)
else:
logging.info(f"compute_stats and save to {stats_path}")
stats = self._compute_stats(num_batch, batch_size)
torch.save(stats, stats_path)
return stats
def _download_or_load_dataset(self) -> torch.StorageBase:
if self.root is None:
self.data_dir = Path(
snapshot_download(
repo_id=f"cadene/{self.dataset_id}", repo_type="dataset", revision=self.version
)
)
else:
self.data_dir = self.root / self.dataset_id
return TensorStorage(TensorDict.load_memmap(self.data_dir / "replay_buffer"))
def _compute_stats(self, num_batch=100, batch_size=32):
rb = TensorDictReplayBuffer(
storage=self._storage,
batch_size=batch_size,
prefetch=True,
)
mean, std, max, min = {}, {}, {}, {}
# compute mean, min, max
for _ in tqdm.tqdm(range(num_batch)):
batch = rb.sample()
for key, pattern in self.stats_patterns.items():
batch[key] = batch[key].float()
if key not in mean:
# first batch initialize mean, min, max
mean[key] = einops.reduce(batch[key], pattern, "mean")
max[key] = einops.reduce(batch[key], pattern, "max")
min[key] = einops.reduce(batch[key], pattern, "min")
else:
mean[key] += einops.reduce(batch[key], pattern, "mean")
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
batch = rb.sample()
for key in self.stats_patterns:
mean[key] /= num_batch
# compute std, min, max
for _ in tqdm.tqdm(range(num_batch)):
batch = rb.sample()
for key, pattern in self.stats_patterns.items():
batch[key] = batch[key].float()
batch_mean = einops.reduce(batch[key], pattern, "mean")
if key not in std:
# first batch initialize std
std[key] = (batch_mean - mean[key]) ** 2
else:
std[key] += (batch_mean - mean[key]) ** 2
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
for key in self.stats_patterns:
std[key] = torch.sqrt(std[key] / num_batch)
stats = TensorDict({}, batch_size=[])
for key in self.stats_patterns:
stats[(*key, "mean")] = mean[key]
stats[(*key, "std")] = std[key]
stats[(*key, "max")] = max[key]
stats[(*key, "min")] = min[key]
if key[0] == "observation":
# use same stats for the next observations
stats[("next", *key)] = stats[key]
return stats

View File

@@ -1,185 +0,0 @@
import logging
from pathlib import Path
from typing import Callable
import einops
import gdown
import h5py
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import SliceSampler
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractExperienceReplay
DATASET_IDS = [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
FOLDER_URLS = {
"aloha_sim_insertion_human": "https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF",
"aloha_sim_insertion_scripted": "https://drive.google.com/drive/folders/1TsojQQSXtHEoGnqgJ3gmpPQR2DPLtS2N",
"aloha_sim_transfer_cube_human": "https://drive.google.com/drive/folders/1sc-E4QYW7A0o23m1u2VWNGVq5smAsfCo",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/drive/folders/1aRyoOhQwxhyt1J8XgEig4s6kzaw__LXj",
}
EP48_URLS = {
"aloha_sim_insertion_human": "https://drive.google.com/file/d/18Cudl6nikDtgRolea7je8iF_gGKzynOP/view?usp=drive_link",
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/1wfMSZ24oOh5KR_0aaP3Cnu_c4ZCveduB/view?usp=drive_link",
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/18smMymtr8tIxaNUQ61gW6dG50pt3MvGq/view?usp=drive_link",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1pnGIOd-E4-rhz2P3VxpknMKRZCoKt6eI/view?usp=drive_link",
}
EP49_URLS = {
"aloha_sim_insertion_human": "https://drive.google.com/file/d/1C1kZYyROzs-PrLc0SkDgUgMi4-L3lauE/view?usp=drive_link",
"aloha_sim_insertion_scripted": "https://drive.google.com/file/d/17EuCUWS6uCCr6yyNzpXdcdE-_TTNCKtf/view?usp=drive_link",
"aloha_sim_transfer_cube_human": "https://drive.google.com/file/d/1Nk7l53d9sJoGDBKAOnNrExX5nLacATc6/view?usp=drive_link",
"aloha_sim_transfer_cube_scripted": "https://drive.google.com/file/d/1GKReZHrXU73NMiC5zKCq_UtqPVtYq8eo/view?usp=drive_link",
}
NUM_EPISODES = {
"aloha_sim_insertion_human": 50,
"aloha_sim_insertion_scripted": 50,
"aloha_sim_transfer_cube_human": 50,
"aloha_sim_transfer_cube_scripted": 50,
}
EPISODE_LEN = {
"aloha_sim_insertion_human": 500,
"aloha_sim_insertion_scripted": 400,
"aloha_sim_transfer_cube_human": 400,
"aloha_sim_transfer_cube_scripted": 400,
}
CAMERAS = {
"aloha_sim_insertion_human": ["top"],
"aloha_sim_insertion_scripted": ["top"],
"aloha_sim_transfer_cube_human": ["top"],
"aloha_sim_transfer_cube_scripted": ["top"],
}
def download(data_dir, dataset_id):
assert dataset_id in DATASET_IDS
assert dataset_id in FOLDER_URLS
assert dataset_id in EP48_URLS
assert dataset_id in EP49_URLS
data_dir.mkdir(parents=True, exist_ok=True)
gdown.download_folder(FOLDER_URLS[dataset_id], output=str(data_dir))
# because of the 50 files limit per directory, two files episode 48 and 49 were missing
gdown.download(EP48_URLS[dataset_id], output=str(data_dir / "episode_48.hdf5"), fuzzy=True)
gdown.download(EP49_URLS[dataset_id], output=str(data_dir / "episode_49.hdf5"), fuzzy=True)
class AlohaExperienceReplay(AbstractExperienceReplay):
def __init__(
self,
dataset_id: str,
version: str | None = "v1.1",
batch_size: int = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
assert dataset_id in DATASET_IDS
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
@property
def stats_patterns(self) -> dict:
d = {
("observation", "state"): "b c -> c",
("action",): "b c -> c",
}
for cam in CAMERAS[self.dataset_id]:
d[("observation", "image", cam)] = "b c h w -> c 1 1"
return d
@property
def image_keys(self) -> list:
return [("observation", "image", cam) for cam in CAMERAS[self.dataset_id]]
def _download_and_preproc_obsolete(self):
assert self.root is not None
raw_dir = self.root / f"{self.dataset_id}_raw"
if not raw_dir.is_dir():
download(raw_dir, self.dataset_id)
total_num_frames = 0
logging.info("Compute total number of frames to initialize offline buffer")
for ep_id in range(NUM_EPISODES[self.dataset_id]):
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
with h5py.File(ep_path, "r") as ep:
total_num_frames += ep["/action"].shape[0] - 1
logging.info(f"{total_num_frames=}")
logging.info("Initialize and feed offline buffer")
idxtd = 0
for ep_id in tqdm.tqdm(range(NUM_EPISODES[self.dataset_id])):
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
with h5py.File(ep_path, "r") as ep:
ep_num_frames = ep["/action"].shape[0]
# last step of demonstration is considered done
done = torch.zeros(ep_num_frames, 1, dtype=torch.bool)
done[-1] = True
state = torch.from_numpy(ep["/observations/qpos"][:])
action = torch.from_numpy(ep["/action"][:])
ep_td = TensorDict(
{
("observation", "state"): state[:-1],
"action": action[:-1],
"episode": torch.tensor([ep_id] * (ep_num_frames - 1)),
"frame_id": torch.arange(0, ep_num_frames - 1, 1),
("next", "observation", "state"): state[1:],
# TODO: compute reward and success
# ("next", "reward"): reward[1:],
("next", "done"): done[1:],
# ("next", "success"): success[1:],
},
batch_size=ep_num_frames - 1,
)
for cam in CAMERAS[self.dataset_id]:
image = torch.from_numpy(ep[f"/observations/images/{cam}"][:])
image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
ep_td["observation", "image", cam] = image[:-1]
ep_td["next", "observation", "image", cam] = image[1:]
if ep_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = ep_td[0].expand(total_num_frames).memmap_like(self.root / f"{self.dataset_id}")
td_data[idxtd : idxtd + len(ep_td)] = ep_td
idxtd = idxtd + len(ep_td)
return TensorStorage(td_data.lock_())

View File

@@ -0,0 +1,68 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import packaging.version
V2_MESSAGE = """
The dataset you requested ({repo_id}) is in {version} format.
We introduced a new format since v2.0 which is not backward compatible with v1.x.
Please, use our conversion script. Modify the following command with your own task description:
```
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\
--repo-id {repo_id} \\
--single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\
```
A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.", "Insert the
peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.", "Open the top
cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped
target.", "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the
sweatshirt.", ...
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
"""
V21_MESSAGE = """
The dataset you requested ({repo_id}) is in {version} format.
While current version of LeRobot is backward-compatible with it, the version of your dataset still uses global
stats instead of per-episode stats. Update your dataset stats to the new format using this command:
```
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py --repo-id={repo_id}
```
If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb)
or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose).
"""
FUTURE_MESSAGE = """
The dataset you requested ({repo_id}) is only available in {version} format.
As we cannot ensure forward compatibility with it, please update your current version of lerobot.
"""
class CompatibilityError(Exception): ...
class BackwardCompatibilityError(CompatibilityError):
def __init__(self, repo_id: str, version: packaging.version.Version):
message = V2_MESSAGE.format(repo_id=repo_id, version=version)
super().__init__(message)
class ForwardCompatibilityError(CompatibilityError):
def __init__(self, repo_id: str, version: packaging.version.Version):
message = FUTURE_MESSAGE.format(repo_id=repo_id, version=version)
super().__init__(message)

View File

@@ -0,0 +1,27 @@
---
# For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/datasets-cards
{{ card_data }}
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
{{ dataset_description | default("", true) }}
- **Homepage:** {{ url | default("[More Information Needed]", true)}}
- **Paper:** {{ paper | default("[More Information Needed]", true)}}
- **License:** {{ license | default("[More Information Needed]", true)}}
## Dataset Structure
{{ dataset_structure | default("[More Information Needed]", true)}}
## Citation
**BibTeX:**
```bibtex
{{ citation_bibtex | default("[More Information Needed]", true)}}
```

View File

@@ -0,0 +1,176 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from lerobot.common.datasets.utils import load_image_as_numpy
def estimate_num_samples(
dataset_len: int, min_num_samples: int = 100, max_num_samples: int = 10_000, power: float = 0.75
) -> int:
"""Heuristic to estimate the number of samples based on dataset size.
The power controls the sample growth relative to dataset size.
Lower the power for less number of samples.
For default arguments, we have:
- from 1 to ~500, num_samples=100
- at 1000, num_samples=177
- at 2000, num_samples=299
- at 5000, num_samples=594
- at 10000, num_samples=1000
- at 20000, num_samples=1681
"""
if dataset_len < min_num_samples:
min_num_samples = dataset_len
return max(min_num_samples, min(int(dataset_len**power), max_num_samples))
def sample_indices(data_len: int) -> list[int]:
num_samples = estimate_num_samples(data_len)
return np.round(np.linspace(0, data_len - 1, num_samples)).astype(int).tolist()
def auto_downsample_height_width(img: np.ndarray, target_size: int = 150, max_size_threshold: int = 300):
_, height, width = img.shape
if max(width, height) < max_size_threshold:
# no downsampling needed
return img
downsample_factor = int(width / target_size) if width > height else int(height / target_size)
return img[:, ::downsample_factor, ::downsample_factor]
def sample_images(image_paths: list[str]) -> np.ndarray:
sampled_indices = sample_indices(len(image_paths))
images = None
for i, idx in enumerate(sampled_indices):
path = image_paths[idx]
# we load as uint8 to reduce memory usage
img = load_image_as_numpy(path, dtype=np.uint8, channel_first=True)
img = auto_downsample_height_width(img)
if images is None:
images = np.empty((len(sampled_indices), *img.shape), dtype=np.uint8)
images[i] = img
return images
def get_feature_stats(array: np.ndarray, axis: tuple, keepdims: bool) -> dict[str, np.ndarray]:
return {
"min": np.min(array, axis=axis, keepdims=keepdims),
"max": np.max(array, axis=axis, keepdims=keepdims),
"mean": np.mean(array, axis=axis, keepdims=keepdims),
"std": np.std(array, axis=axis, keepdims=keepdims),
"count": np.array([len(array)]),
}
def compute_episode_stats(episode_data: dict[str, list[str] | np.ndarray], features: dict) -> dict:
ep_stats = {}
for key, data in episode_data.items():
if features[key]["dtype"] == "string":
continue # HACK: we should receive np.arrays of strings
elif features[key]["dtype"] in ["image", "video"]:
ep_ft_array = sample_images(data) # data is a list of image paths
axes_to_reduce = (0, 2, 3) # keep channel dim
keepdims = True
else:
ep_ft_array = data # data is already a np.ndarray
axes_to_reduce = 0 # compute stats over the first axis
keepdims = data.ndim == 1 # keep as np.array
ep_stats[key] = get_feature_stats(ep_ft_array, axis=axes_to_reduce, keepdims=keepdims)
# finally, we normalize and remove batch dim for images
if features[key]["dtype"] in ["image", "video"]:
ep_stats[key] = {
k: v if k == "count" else np.squeeze(v / 255.0, axis=0) for k, v in ep_stats[key].items()
}
return ep_stats
def _assert_type_and_shape(stats_list: list[dict[str, dict]]):
for i in range(len(stats_list)):
for fkey in stats_list[i]:
for k, v in stats_list[i][fkey].items():
if not isinstance(v, np.ndarray):
raise ValueError(
f"Stats must be composed of numpy array, but key '{k}' of feature '{fkey}' is of type '{type(v)}' instead."
)
if v.ndim == 0:
raise ValueError("Number of dimensions must be at least 1, and is 0 instead.")
if k == "count" and v.shape != (1,):
raise ValueError(f"Shape of 'count' must be (1), but is {v.shape} instead.")
if "image" in fkey and k != "count" and v.shape != (3, 1, 1):
raise ValueError(f"Shape of '{k}' must be (3,1,1), but is {v.shape} instead.")
def aggregate_feature_stats(stats_ft_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
"""Aggregates stats for a single feature."""
means = np.stack([s["mean"] for s in stats_ft_list])
variances = np.stack([s["std"] ** 2 for s in stats_ft_list])
counts = np.stack([s["count"] for s in stats_ft_list])
total_count = counts.sum(axis=0)
# Prepare weighted mean by matching number of dimensions
while counts.ndim < means.ndim:
counts = np.expand_dims(counts, axis=-1)
# Compute the weighted mean
weighted_means = means * counts
total_mean = weighted_means.sum(axis=0) / total_count
# Compute the variance using the parallel algorithm
delta_means = means - total_mean
weighted_variances = (variances + delta_means**2) * counts
total_variance = weighted_variances.sum(axis=0) / total_count
return {
"min": np.min(np.stack([s["min"] for s in stats_ft_list]), axis=0),
"max": np.max(np.stack([s["max"] for s in stats_ft_list]), axis=0),
"mean": total_mean,
"std": np.sqrt(total_variance),
"count": total_count,
}
def aggregate_stats(stats_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
"""Aggregate stats from multiple compute_stats outputs into a single set of stats.
The final stats will have the union of all data keys from each of the stats dicts.
For instance:
- new_min = min(min_dataset_0, min_dataset_1, ...)
- new_max = max(max_dataset_0, max_dataset_1, ...)
- new_mean = (mean of all data, weighted by counts)
- new_std = (std of all data)
"""
_assert_type_and_shape(stats_list)
data_keys = {key for stats in stats_list for key in stats}
aggregated_stats = {key: {} for key in data_keys}
for key in data_keys:
stats_with_key = [stats[key] for stats in stats_list if key in stats]
aggregated_stats[key] = aggregate_feature_stats(stats_with_key)
return aggregated_stats

View File

@@ -1,131 +1,118 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from pathlib import Path
from pprint import pformat
import torch
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
from lerobot.common.envs.transforms import NormalizeTransform, Prod
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
LeRobotDatasetMetadata,
MultiLeRobotDataset,
)
from lerobot.common.datasets.transforms import ImageTransforms
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.train import TrainPipelineConfig
# DATA_DIR specifies to location where datasets are loaded. By default, DATA_DIR is None and
# we load from `$HOME/.cache/huggingface/hub/datasets`. For our unit tests, we set `DATA_DIR=tests/data`
# to load a subset of our datasets for faster continuous integration.
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
IMAGENET_STATS = {
"mean": [[[0.485]], [[0.456]], [[0.406]]], # (c,1,1)
"std": [[[0.229]], [[0.224]], [[0.225]]], # (c,1,1)
}
def make_offline_buffer(
cfg, overwrite_sampler=None, normalize=True, overwrite_batch_size=None, overwrite_prefetch=None
):
if cfg.policy.balanced_sampling:
assert cfg.online_steps > 0
batch_size = None
pin_memory = False
prefetch = None
else:
assert cfg.online_steps == 0
num_slices = cfg.policy.batch_size
batch_size = cfg.policy.horizon * num_slices
pin_memory = cfg.device == "cuda"
prefetch = cfg.prefetch
def resolve_delta_timestamps(
cfg: PreTrainedConfig, ds_meta: LeRobotDatasetMetadata
) -> dict[str, list] | None:
"""Resolves delta_timestamps by reading from the 'delta_indices' properties of the PreTrainedConfig.
if overwrite_batch_size is not None:
batch_size = overwrite_batch_size
Args:
cfg (PreTrainedConfig): The PreTrainedConfig to read delta_indices from.
ds_meta (LeRobotDatasetMetadata): The dataset from which features and fps are used to build
delta_timestamps against.
if overwrite_prefetch is not None:
prefetch = overwrite_prefetch
Returns:
dict[str, list] | None: A dictionary of delta_timestamps, e.g.:
{
"observation.state": [-0.04, -0.02, 0]
"observation.action": [-0.02, 0, 0.02]
}
returns `None` if the resulting dict is empty.
"""
delta_timestamps = {}
for key in ds_meta.features:
if key == "next.reward" and cfg.reward_delta_indices is not None:
delta_timestamps[key] = [i / ds_meta.fps for i in cfg.reward_delta_indices]
if key == "action" and cfg.action_delta_indices is not None:
delta_timestamps[key] = [i / ds_meta.fps for i in cfg.action_delta_indices]
if key.startswith("observation.") and cfg.observation_delta_indices is not None:
delta_timestamps[key] = [i / ds_meta.fps for i in cfg.observation_delta_indices]
if overwrite_sampler is None:
# TODO(rcadene): move batch_size outside
num_traj_per_batch = cfg.policy.batch_size # // cfg.horizon
# TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size.
# We would need to add a transform to pad the tensordict to ensure batch_size == cfg.batch_size.
if len(delta_timestamps) == 0:
delta_timestamps = None
if cfg.offline_prioritized_sampler:
logging.info("use prioritized sampler for offline dataset")
sampler = PrioritizedSliceSampler(
max_capacity=100_000,
alpha=cfg.policy.per_alpha,
beta=cfg.policy.per_beta,
num_slices=num_traj_per_batch,
strict_length=False,
)
else:
logging.info("use simple sampler for offline dataset")
sampler = SliceSampler(
num_slices=num_traj_per_batch,
strict_length=False,
)
else:
sampler = overwrite_sampler
return delta_timestamps
if cfg.env.name == "simxarm":
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
clsfunc = SimxarmExperienceReplay
dataset_id = f"xarm_{cfg.env.task}_medium"
def make_dataset(cfg: TrainPipelineConfig) -> LeRobotDataset | MultiLeRobotDataset:
"""Handles the logic of setting up delta timestamps and image transforms before creating a dataset.
elif cfg.env.name == "pusht":
from lerobot.common.datasets.pusht import PushtExperienceReplay
Args:
cfg (TrainPipelineConfig): A TrainPipelineConfig config which contains a DatasetConfig and a PreTrainedConfig.
clsfunc = PushtExperienceReplay
dataset_id = "pusht"
Raises:
NotImplementedError: The MultiLeRobotDataset is currently deactivated.
elif cfg.env.name == "aloha":
from lerobot.common.datasets.aloha import AlohaExperienceReplay
clsfunc = AlohaExperienceReplay
dataset_id = f"aloha_{cfg.env.task}"
else:
raise ValueError(cfg.env.name)
offline_buffer = clsfunc(
dataset_id=dataset_id,
sampler=sampler,
batch_size=batch_size,
root=DATA_DIR,
pin_memory=pin_memory,
prefetch=prefetch if isinstance(prefetch, int) else None,
Returns:
LeRobotDataset | MultiLeRobotDataset
"""
image_transforms = (
ImageTransforms(cfg.dataset.image_transforms) if cfg.dataset.image_transforms.enable else None
)
if cfg.policy.name == "tdmpc":
img_keys = []
for key in offline_buffer.image_keys:
img_keys.append(("next", *key))
img_keys += offline_buffer.image_keys
if isinstance(cfg.dataset.repo_id, str):
ds_meta = LeRobotDatasetMetadata(
cfg.dataset.repo_id, root=cfg.dataset.root, revision=cfg.dataset.revision
)
delta_timestamps = resolve_delta_timestamps(cfg.policy, ds_meta)
dataset = LeRobotDataset(
cfg.dataset.repo_id,
root=cfg.dataset.root,
episodes=cfg.dataset.episodes,
delta_timestamps=delta_timestamps,
image_transforms=image_transforms,
revision=cfg.dataset.revision,
video_backend=cfg.dataset.video_backend,
)
else:
img_keys = offline_buffer.image_keys
raise NotImplementedError("The MultiLeRobotDataset isn't supported for now.")
dataset = MultiLeRobotDataset(
cfg.dataset.repo_id,
# TODO(aliberts): add proper support for multi dataset
# delta_timestamps=delta_timestamps,
image_transforms=image_transforms,
video_backend=cfg.dataset.video_backend,
)
logging.info(
"Multiple datasets were provided. Applied the following index mapping to the provided datasets: "
f"{pformat(dataset.repo_id_to_index, indent=2)}"
)
transforms = [Prod(in_keys=img_keys, prod=1 / 255)]
if cfg.dataset.use_imagenet_stats:
for key in dataset.meta.camera_keys:
for stats_type, stats in IMAGENET_STATS.items():
dataset.meta.stats[key][stats_type] = torch.tensor(stats, dtype=torch.float32)
if normalize:
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
stats = offline_buffer.compute_or_load_stats()
# we only normalize the state and action, since the images are usually normalized inside the model for now (except for tdmpc: see the following)
in_keys = [("observation", "state"), ("action")]
if cfg.policy.name == "tdmpc":
# TODO(rcadene): we add img_keys to the keys to normalize for tdmpc only, since diffusion and act policies normalize the image inside the model for now
in_keys += img_keys
# TODO(racdene): since we use next observations in tdmpc, we also add them to the normalization. We are wasting a bit of compute on this for now.
in_keys += [("next", *key) for key in img_keys]
in_keys.append(("next", "observation", "state"))
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
stats["observation", "state", "min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
stats["observation", "state", "max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
transforms.append(NormalizeTransform(stats, in_keys, mode=normalization_mode))
offline_buffer.set_transform(transforms)
if not overwrite_sampler:
index = torch.arange(0, offline_buffer.num_samples, 1)
sampler.extend(index)
return offline_buffer
return dataset

View File

@@ -0,0 +1,178 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import multiprocessing
import queue
import threading
from pathlib import Path
import numpy as np
import PIL.Image
import torch
def safe_stop_image_writer(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
dataset = kwargs.get("dataset")
image_writer = getattr(dataset, "image_writer", None) if dataset else None
if image_writer is not None:
print("Waiting for image writer to terminate...")
image_writer.stop()
raise e
return wrapper
def image_array_to_pil_image(image_array: np.ndarray, range_check: bool = True) -> PIL.Image.Image:
# TODO(aliberts): handle 1 channel and 4 for depth images
if image_array.ndim != 3:
raise ValueError(f"The array has {image_array.ndim} dimensions, but 3 is expected for an image.")
if image_array.shape[0] == 3:
# Transpose from pytorch convention (C, H, W) to (H, W, C)
image_array = image_array.transpose(1, 2, 0)
elif image_array.shape[-1] != 3:
raise NotImplementedError(
f"The image has {image_array.shape[-1]} channels, but 3 is required for now."
)
if image_array.dtype != np.uint8:
if range_check:
max_ = image_array.max().item()
min_ = image_array.min().item()
if max_ > 1.0 or min_ < 0.0:
raise ValueError(
"The image data type is float, which requires values in the range [0.0, 1.0]. "
f"However, the provided range is [{min_}, {max_}]. Please adjust the range or "
"provide a uint8 image with values in the range [0, 255]."
)
image_array = (image_array * 255).astype(np.uint8)
return PIL.Image.fromarray(image_array)
def write_image(image: np.ndarray | PIL.Image.Image, fpath: Path):
try:
if isinstance(image, np.ndarray):
img = image_array_to_pil_image(image)
elif isinstance(image, PIL.Image.Image):
img = image
else:
raise TypeError(f"Unsupported image type: {type(image)}")
img.save(fpath)
except Exception as e:
print(f"Error writing image {fpath}: {e}")
def worker_thread_loop(queue: queue.Queue):
while True:
item = queue.get()
if item is None:
queue.task_done()
break
image_array, fpath = item
write_image(image_array, fpath)
queue.task_done()
def worker_process(queue: queue.Queue, num_threads: int):
threads = []
for _ in range(num_threads):
t = threading.Thread(target=worker_thread_loop, args=(queue,))
t.daemon = True
t.start()
threads.append(t)
for t in threads:
t.join()
class AsyncImageWriter:
"""
This class abstract away the initialisation of processes or/and threads to
save images on disk asynchronously, which is critical to control a robot and record data
at a high frame rate.
When `num_processes=0`, it creates a threads pool of size `num_threads`.
When `num_processes>0`, it creates processes pool of size `num_processes`, where each subprocess starts
their own threads pool of size `num_threads`.
The optimal number of processes and threads depends on your computer capabilities.
We advise to use 4 threads per camera with 0 processes. If the fps is not stable, try to increase or lower
the number of threads. If it is still not stable, try to use 1 subprocess, or more.
"""
def __init__(self, num_processes: int = 0, num_threads: int = 1):
self.num_processes = num_processes
self.num_threads = num_threads
self.queue = None
self.threads = []
self.processes = []
self._stopped = False
if num_threads <= 0 and num_processes <= 0:
raise ValueError("Number of threads and processes must be greater than zero.")
if self.num_processes == 0:
# Use threading
self.queue = queue.Queue()
for _ in range(self.num_threads):
t = threading.Thread(target=worker_thread_loop, args=(self.queue,))
t.daemon = True
t.start()
self.threads.append(t)
else:
# Use multiprocessing
self.queue = multiprocessing.JoinableQueue()
for _ in range(self.num_processes):
p = multiprocessing.Process(target=worker_process, args=(self.queue, self.num_threads))
p.daemon = True
p.start()
self.processes.append(p)
def save_image(self, image: torch.Tensor | np.ndarray | PIL.Image.Image, fpath: Path):
if isinstance(image, torch.Tensor):
# Convert tensor to numpy array to minimize main process time
image = image.cpu().numpy()
self.queue.put((image, fpath))
def wait_until_done(self):
self.queue.join()
def stop(self):
if self._stopped:
return
if self.num_processes == 0:
for _ in self.threads:
self.queue.put(None)
for t in self.threads:
t.join()
else:
num_nones = self.num_processes * self.num_threads
for _ in range(num_nones):
self.queue.put(None)
for p in self.processes:
p.join()
if p.is_alive():
p.terminate()
self.queue.close()
self.queue.join_thread()
self._stopped = True

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,384 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""An online buffer for the online training loop in train.py
Note to maintainers: This duplicates some logic from LeRobotDataset and EpisodeAwareSampler. We should
consider converging to one approach. Here we have opted to use numpy.memmap to back the data buffer. It's much
faster than using HuggingFace Datasets as there's no conversion to an intermediate non-python object. Also it
supports in-place slicing and mutation which is very handy for a dynamic buffer.
"""
import os
from pathlib import Path
from typing import Any
import numpy as np
import torch
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
def _make_memmap_safe(**kwargs) -> np.memmap:
"""Make a numpy memmap with checks on available disk space first.
Expected kwargs are: "filename", "dtype" (must by np.dtype), "mode" and "shape"
For information on dtypes:
https://numpy.org/doc/stable/reference/arrays.dtypes.html#arrays-dtypes-constructing
"""
if kwargs["mode"].startswith("w"):
required_space = kwargs["dtype"].itemsize * np.prod(kwargs["shape"]) # bytes
stats = os.statvfs(Path(kwargs["filename"]).parent)
available_space = stats.f_bavail * stats.f_frsize # bytes
if required_space >= available_space * 0.8:
raise RuntimeError(
f"You're about to take up {required_space} of {available_space} bytes available."
)
return np.memmap(**kwargs)
class OnlineBuffer(torch.utils.data.Dataset):
"""FIFO data buffer for the online training loop in train.py.
Follows the protocol of LeRobotDataset as much as is required to have it be used by the online training
loop in the same way that a LeRobotDataset would be used.
The underlying data structure will have data inserted in a circular fashion. Always insert after the
last index, and when you reach the end, wrap around to the start.
The data is stored in a numpy memmap.
"""
NEXT_INDEX_KEY = "_next_index"
OCCUPANCY_MASK_KEY = "_occupancy_mask"
INDEX_KEY = "index"
FRAME_INDEX_KEY = "frame_index"
EPISODE_INDEX_KEY = "episode_index"
TIMESTAMP_KEY = "timestamp"
IS_PAD_POSTFIX = "_is_pad"
def __init__(
self,
write_dir: str | Path,
data_spec: dict[str, Any] | None,
buffer_capacity: int | None,
fps: float | None = None,
delta_timestamps: dict[str, list[float]] | dict[str, np.ndarray] | None = None,
):
"""
The online buffer can be provided from scratch or you can load an existing online buffer by passing
a `write_dir` associated with an existing buffer.
Args:
write_dir: Where to keep the numpy memmap files. One memmap file will be stored for each data key.
Note that if the files already exist, they are opened in read-write mode (used for training
resumption.)
data_spec: A mapping from data key to data specification, like {data_key: {"shape": tuple[int],
"dtype": np.dtype}}. This should include all the data that you wish to record into the buffer,
but note that "index", "frame_index" and "episode_index" are already accounted for by this
class, so you don't need to include them.
buffer_capacity: How many frames should be stored in the buffer as a maximum. Be aware of your
system's available disk space when choosing this.
fps: Same as the fps concept in LeRobot dataset. Here it needs to be provided for the
delta_timestamps logic. You can pass None if you are not using delta_timestamps.
delta_timestamps: Same as the delta_timestamps concept in LeRobotDataset. This is internally
converted to dict[str, np.ndarray] for optimization purposes.
"""
self.set_delta_timestamps(delta_timestamps)
self._fps = fps
# Tolerance in seconds used to discard loaded frames when their timestamps are not close enough from
# the requested frames. It is only used when `delta_timestamps` is provided.
# minus 1e-4 to account for possible numerical error
self.tolerance_s = 1 / self.fps - 1e-4 if fps is not None else None
self._buffer_capacity = buffer_capacity
data_spec = self._make_data_spec(data_spec, buffer_capacity)
Path(write_dir).mkdir(parents=True, exist_ok=True)
self._data = {}
for k, v in data_spec.items():
self._data[k] = _make_memmap_safe(
filename=Path(write_dir) / k,
dtype=v["dtype"] if v is not None else None,
mode="r+" if (Path(write_dir) / k).exists() else "w+",
shape=tuple(v["shape"]) if v is not None else None,
)
@property
def delta_timestamps(self) -> dict[str, np.ndarray] | None:
return self._delta_timestamps
def set_delta_timestamps(self, value: dict[str, list[float]] | None):
"""Set delta_timestamps converting the values to numpy arrays.
The conversion is for an optimization in the __getitem__. The loop is much slower if the arrays
need to be converted into numpy arrays.
"""
if value is not None:
self._delta_timestamps = {k: np.array(v) for k, v in value.items()}
else:
self._delta_timestamps = None
def _make_data_spec(self, data_spec: dict[str, Any], buffer_capacity: int) -> dict[str, dict[str, Any]]:
"""Makes the data spec for np.memmap."""
if any(k.startswith("_") for k in data_spec):
raise ValueError(
"data_spec keys should not start with '_'. This prefix is reserved for internal logic."
)
preset_keys = {
OnlineBuffer.INDEX_KEY,
OnlineBuffer.FRAME_INDEX_KEY,
OnlineBuffer.EPISODE_INDEX_KEY,
OnlineBuffer.TIMESTAMP_KEY,
}
if len(intersection := set(data_spec).intersection(preset_keys)) > 0:
raise ValueError(
f"data_spec should not contain any of {preset_keys} as these are handled internally. "
f"The provided data_spec has {intersection}."
)
complete_data_spec = {
# _next_index will be a pointer to the next index that we should start filling from when we add
# more data.
OnlineBuffer.NEXT_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": ()},
# Since the memmap is initialized with all-zeros, this keeps track of which indices are occupied
# with real data rather than the dummy initialization.
OnlineBuffer.OCCUPANCY_MASK_KEY: {"dtype": np.dtype("?"), "shape": (buffer_capacity,)},
OnlineBuffer.INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.FRAME_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.EPISODE_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.TIMESTAMP_KEY: {"dtype": np.dtype("float64"), "shape": (buffer_capacity,)},
}
for k, v in data_spec.items():
complete_data_spec[k] = {"dtype": v["dtype"], "shape": (buffer_capacity, *v["shape"])}
return complete_data_spec
def add_data(self, data: dict[str, np.ndarray]):
"""Add new data to the buffer, which could potentially mean shifting old data out.
The new data should contain all the frames (in order) of any number of episodes. The indices should
start from 0 (note to the developer: this can easily be generalized). See the `rollout` and
`eval_policy` functions in `eval.py` for more information on how the data is constructed.
Shift the incoming data index and episode_index to continue on from the last frame. Note that this
will be done in place!
"""
if len(missing_keys := (set(self.data_keys).difference(set(data)))) > 0:
raise ValueError(f"Missing data keys: {missing_keys}")
new_data_length = len(data[self.data_keys[0]])
if not all(len(data[k]) == new_data_length for k in self.data_keys):
raise ValueError("All data items should have the same length")
next_index = self._data[OnlineBuffer.NEXT_INDEX_KEY]
# Sanity check to make sure that the new data indices start from 0.
assert data[OnlineBuffer.EPISODE_INDEX_KEY][0].item() == 0
assert data[OnlineBuffer.INDEX_KEY][0].item() == 0
# Shift the incoming indices if necessary.
if self.num_frames > 0:
last_episode_index = self._data[OnlineBuffer.EPISODE_INDEX_KEY][next_index - 1]
last_data_index = self._data[OnlineBuffer.INDEX_KEY][next_index - 1]
data[OnlineBuffer.EPISODE_INDEX_KEY] += last_episode_index + 1
data[OnlineBuffer.INDEX_KEY] += last_data_index + 1
# Insert the new data starting from next_index. It may be necessary to wrap around to the start.
n_surplus = max(0, new_data_length - (self._buffer_capacity - next_index))
for k in self.data_keys:
if n_surplus == 0:
slc = slice(next_index, next_index + new_data_length)
self._data[k][slc] = data[k]
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY][slc] = True
else:
self._data[k][next_index:] = data[k][:-n_surplus]
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY][next_index:] = True
self._data[k][:n_surplus] = data[k][-n_surplus:]
if n_surplus == 0:
self._data[OnlineBuffer.NEXT_INDEX_KEY] = next_index + new_data_length
else:
self._data[OnlineBuffer.NEXT_INDEX_KEY] = n_surplus
@property
def data_keys(self) -> list[str]:
keys = set(self._data)
keys.remove(OnlineBuffer.OCCUPANCY_MASK_KEY)
keys.remove(OnlineBuffer.NEXT_INDEX_KEY)
return sorted(keys)
@property
def fps(self) -> float | None:
return self._fps
@property
def num_episodes(self) -> int:
return len(
np.unique(self._data[OnlineBuffer.EPISODE_INDEX_KEY][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
)
@property
def num_frames(self) -> int:
return np.count_nonzero(self._data[OnlineBuffer.OCCUPANCY_MASK_KEY])
def __len__(self):
return self.num_frames
def _item_to_tensors(self, item: dict) -> dict:
item_ = {}
for k, v in item.items():
if isinstance(v, torch.Tensor):
item_[k] = v
elif isinstance(v, np.ndarray):
item_[k] = torch.from_numpy(v)
else:
item_[k] = torch.tensor(v)
return item_
def __getitem__(self, idx: int) -> dict[str, torch.Tensor]:
if idx >= len(self) or idx < -len(self):
raise IndexError
item = {k: v[idx] for k, v in self._data.items() if not k.startswith("_")}
if self.delta_timestamps is None:
return self._item_to_tensors(item)
episode_index = item[OnlineBuffer.EPISODE_INDEX_KEY]
current_ts = item[OnlineBuffer.TIMESTAMP_KEY]
episode_data_indices = np.where(
np.bitwise_and(
self._data[OnlineBuffer.EPISODE_INDEX_KEY] == episode_index,
self._data[OnlineBuffer.OCCUPANCY_MASK_KEY],
)
)[0]
episode_timestamps = self._data[OnlineBuffer.TIMESTAMP_KEY][episode_data_indices]
for data_key in self.delta_timestamps:
# Note: The logic in this loop is copied from `load_previous_and_future_frames`.
# Get timestamps used as query to retrieve data of previous/future frames.
query_ts = current_ts + self.delta_timestamps[data_key]
# Compute distances between each query timestamp and all timestamps of all the frames belonging to
# the episode.
dist = np.abs(query_ts[:, None] - episode_timestamps[None, :])
argmin_ = np.argmin(dist, axis=1)
min_ = dist[np.arange(dist.shape[0]), argmin_]
is_pad = min_ > self.tolerance_s
# Check violated query timestamps are all outside the episode range.
assert (
(query_ts[is_pad] < episode_timestamps[0]) | (episode_timestamps[-1] < query_ts[is_pad])
).all(), (
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {self.tolerance_s=}"
") inside the episode range."
)
# Load frames for this data key.
item[data_key] = self._data[data_key][episode_data_indices[argmin_]]
item[f"{data_key}{OnlineBuffer.IS_PAD_POSTFIX}"] = is_pad
return self._item_to_tensors(item)
def get_data_by_key(self, key: str) -> torch.Tensor:
"""Returns all data for a given data key as a Tensor."""
return torch.from_numpy(self._data[key][self._data[OnlineBuffer.OCCUPANCY_MASK_KEY]])
def compute_sampler_weights(
offline_dataset: LeRobotDataset,
offline_drop_n_last_frames: int = 0,
online_dataset: OnlineBuffer | None = None,
online_sampling_ratio: float | None = None,
online_drop_n_last_frames: int = 0,
) -> torch.Tensor:
"""Compute the sampling weights for the online training dataloader in train.py.
Args:
offline_dataset: The LeRobotDataset used for offline pre-training.
online_drop_n_last_frames: Number of frames to drop from the end of each offline dataset episode.
online_dataset: The OnlineBuffer used in online training.
online_sampling_ratio: The proportion of data that should be sampled from the online dataset. If an
online dataset is provided, this value must also be provided.
online_drop_n_first_frames: See `offline_drop_n_last_frames`. This is the same, but for the online
dataset.
Returns:
Tensor of weights for [offline_dataset; online_dataset], normalized to 1.
Notes to maintainers:
- This duplicates some logic from EpisodeAwareSampler. We should consider converging to one approach.
- When used with `torch.utils.data.WeightedRandomSampler`, it could completely replace
`EpisodeAwareSampler` as the online dataset related arguments are optional. The only missing feature
is the ability to turn shuffling off.
- Options `drop_first_n_frames` and `episode_indices_to_use` can be added easily. They were not
included here to avoid adding complexity.
"""
if len(offline_dataset) == 0 and (online_dataset is None or len(online_dataset) == 0):
raise ValueError("At least one of `offline_dataset` or `online_dataset` should be contain data.")
if (online_dataset is None) ^ (online_sampling_ratio is None):
raise ValueError(
"`online_dataset` and `online_sampling_ratio` must be provided together or not at all."
)
offline_sampling_ratio = 0 if online_sampling_ratio is None else 1 - online_sampling_ratio
weights = []
if len(offline_dataset) > 0:
offline_data_mask_indices = []
for start_index, end_index in zip(
offline_dataset.episode_data_index["from"],
offline_dataset.episode_data_index["to"],
strict=True,
):
offline_data_mask_indices.extend(
range(start_index.item(), end_index.item() - offline_drop_n_last_frames)
)
offline_data_mask = torch.zeros(len(offline_dataset), dtype=torch.bool)
offline_data_mask[torch.tensor(offline_data_mask_indices)] = True
weights.append(
torch.full(
size=(len(offline_dataset),),
fill_value=offline_sampling_ratio / offline_data_mask.sum(),
)
* offline_data_mask
)
if online_dataset is not None and len(online_dataset) > 0:
online_data_mask_indices = []
episode_indices = online_dataset.get_data_by_key("episode_index")
for episode_idx in torch.unique(episode_indices):
where_episode = torch.where(episode_indices == episode_idx)
start_index = where_episode[0][0]
end_index = where_episode[0][-1] + 1
online_data_mask_indices.extend(
range(start_index.item(), end_index.item() - online_drop_n_last_frames)
)
online_data_mask = torch.zeros(len(online_dataset), dtype=torch.bool)
online_data_mask[torch.tensor(online_data_mask_indices)] = True
weights.append(
torch.full(
size=(len(online_dataset),),
fill_value=online_sampling_ratio / online_data_mask.sum(),
)
* online_data_mask
)
weights = torch.cat(weights)
if weights.sum() == 0:
weights += 1 / len(weights)
else:
weights /= weights.sum()
return weights

View File

@@ -0,0 +1,131 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Dict
import datasets
import numpy
import PIL
import torch
from lerobot.common.datasets.video_utils import encode_video_frames
def concatenate_episodes(ep_dicts):
data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
if torch.is_tensor(ep_dicts[0][key][0]):
data_dict[key] = torch.cat([ep_dict[key] for ep_dict in ep_dicts])
else:
if key not in data_dict:
data_dict[key] = []
for ep_dict in ep_dicts:
for x in ep_dict[key]:
data_dict[key].append(x)
total_frames = data_dict["frame_index"].shape[0]
data_dict["index"] = torch.arange(0, total_frames, 1)
return data_dict
def save_images_concurrently(imgs_array: numpy.array, out_dir: Path, max_workers: int = 4):
out_dir = Path(out_dir)
out_dir.mkdir(parents=True, exist_ok=True)
def save_image(img_array, i, out_dir):
img = PIL.Image.fromarray(img_array)
img.save(str(out_dir / f"frame_{i:06d}.png"), quality=100)
num_images = len(imgs_array)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
[executor.submit(save_image, imgs_array[i], i, out_dir) for i in range(num_images)]
def get_default_encoding() -> dict:
"""Returns the default ffmpeg encoding parameters used by `encode_video_frames`."""
signature = inspect.signature(encode_video_frames)
return {
k: v.default
for k, v in signature.parameters.items()
if v.default is not inspect.Parameter.empty and k in ["vcodec", "pix_fmt", "g", "crf"]
}
def check_repo_id(repo_id: str) -> None:
if len(repo_id.split("/")) != 2:
raise ValueError(
f"""`repo_id` is expected to contain a community or user id `/` the name of the dataset
(e.g. 'lerobot/pusht'), but contains '{repo_id}'."""
)
# TODO(aliberts): remove
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index

View File

@@ -1,221 +0,0 @@
from pathlib import Path
from typing import Callable
import einops
import numpy as np
import pygame
import pymunk
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import SliceSampler
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractExperienceReplay
from lerobot.common.datasets.utils import download_and_extract_zip
from lerobot.common.envs.pusht.pusht_env import pymunk_to_shapely
from lerobot.common.policies.diffusion.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
# as define in env
SUCCESS_THRESHOLD = 0.95 # 95% coverage,
PUSHT_URL = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
PUSHT_ZARR = Path("pusht/pusht_cchi_v7_replay.zarr")
def get_goal_pose_body(pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
def add_segment(space, a, b, radius):
shape = pymunk.Segment(space.static_body, a, b, radius)
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
return shape
def add_tee(
space,
position,
angle,
scale=30,
color="LightSlateGray",
mask=None,
):
if mask is None:
mask = pymunk.ShapeFilter.ALL_MASKS()
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
body.position = position
body.angle = angle
body.friction = 1
space.add(body, shape1, shape2)
return body
class PushtExperienceReplay(AbstractExperienceReplay):
def __init__(
self,
dataset_id: str,
version: str | None = "v1.1",
batch_size: int = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
def _download_and_preproc_obsolete(self):
assert self.root is not None
raw_dir = self.root / f"{self.dataset_id}_raw"
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
if not zarr_path.is_dir():
raw_dir.mkdir(parents=True, exist_ok=True)
download_and_extract_zip(PUSHT_URL, raw_dir)
# load
dataset_dict = DiffusionPolicyReplayBuffer.copy_from_path(
zarr_path
) # , keys=['img', 'state', 'action'])
episode_ids = torch.from_numpy(dataset_dict.get_episode_idxs())
num_episodes = dataset_dict.meta["episode_ends"].shape[0]
total_frames = dataset_dict["action"].shape[0]
# to create test artifact
# num_episodes = 1
# total_frames = 50
assert len(
{dataset_dict[key].shape[0] for key in dataset_dict.keys()} # noqa: SIM118
), "Some data type dont have the same number of total frames."
# TODO: verify that goal pose is expected to be fixed
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
goal_body = get_goal_pose_body(goal_pos_angle)
imgs = torch.from_numpy(dataset_dict["img"])
imgs = einops.rearrange(imgs, "b h w c -> b c h w")
states = torch.from_numpy(dataset_dict["state"])
actions = torch.from_numpy(dataset_dict["action"])
idx0 = 0
idxtd = 0
for episode_id in tqdm.tqdm(range(num_episodes)):
idx1 = dataset_dict.meta["episode_ends"][episode_id]
# to create test artifact
# idx1 = 51
num_frames = idx1 - idx0
assert (episode_ids[idx0:idx1] == episode_id).all()
image = imgs[idx0:idx1]
state = states[idx0:idx1]
agent_pos = state[:, :2]
block_pos = state[:, 2:4]
block_angle = state[:, 4]
reward = torch.zeros(num_frames, 1)
success = torch.zeros(num_frames, 1, dtype=torch.bool)
done = torch.zeros(num_frames, 1, dtype=torch.bool)
for i in range(num_frames):
space = pymunk.Space()
space.gravity = 0, 0
space.damping = 0
# Add walls.
walls = [
add_segment(space, (5, 506), (5, 5), 2),
add_segment(space, (5, 5), (506, 5), 2),
add_segment(space, (506, 5), (506, 506), 2),
add_segment(space, (5, 506), (506, 506), 2),
]
space.add(*walls)
block_body = add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward[i] = np.clip(coverage / SUCCESS_THRESHOLD, 0, 1)
success[i] = coverage > SUCCESS_THRESHOLD
# last step of demonstration is considered done
done[-1] = True
ep_td = TensorDict(
{
("observation", "image"): image[:-1],
("observation", "state"): agent_pos[:-1],
"action": actions[idx0:idx1][:-1],
"episode": episode_ids[idx0:idx1][:-1],
"frame_id": torch.arange(0, num_frames - 1, 1),
("next", "observation", "image"): image[1:],
("next", "observation", "state"): agent_pos[1:],
# TODO: verify that reward and done are aligned with image and agent_pos
("next", "reward"): reward[1:],
("next", "done"): done[1:],
("next", "success"): success[1:],
},
batch_size=num_frames - 1,
)
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = ep_td[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
td_data[idxtd : idxtd + len(ep_td)] = ep_td
idx0 = idx1
idxtd = idxtd + len(ep_td)
return TensorStorage(td_data.lock_())

View File

@@ -0,0 +1,61 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Iterator, Union
import torch
class EpisodeAwareSampler:
def __init__(
self,
episode_data_index: dict,
episode_indices_to_use: Union[list, None] = None,
drop_n_first_frames: int = 0,
drop_n_last_frames: int = 0,
shuffle: bool = False,
):
"""Sampler that optionally incorporates episode boundary information.
Args:
episode_data_index: Dictionary with keys 'from' and 'to' containing the start and end indices of each episode.
episode_indices_to_use: List of episode indices to use. If None, all episodes are used.
Assumes that episodes are indexed from 0 to N-1.
drop_n_first_frames: Number of frames to drop from the start of each episode.
drop_n_last_frames: Number of frames to drop from the end of each episode.
shuffle: Whether to shuffle the indices.
"""
indices = []
for episode_idx, (start_index, end_index) in enumerate(
zip(episode_data_index["from"], episode_data_index["to"], strict=True)
):
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
indices.extend(
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
)
self.indices = indices
self.shuffle = shuffle
def __iter__(self) -> Iterator[int]:
if self.shuffle:
for i in torch.randperm(len(self.indices)):
yield self.indices[i]
else:
for i in self.indices:
yield i
def __len__(self) -> int:
return len(self.indices)

View File

@@ -1,123 +0,0 @@
import pickle
import zipfile
from pathlib import Path
from typing import Callable
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import (
SliceSampler,
)
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractExperienceReplay
def download():
raise NotImplementedError()
import gdown
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
download_path = "data.zip"
gdown.download(url, download_path, quiet=False)
print("Extracting...")
with zipfile.ZipFile(download_path, "r") as zip_f:
for member in zip_f.namelist():
if member.startswith("data/xarm") and member.endswith(".pkl"):
print(member)
zip_f.extract(member=member)
Path(download_path).unlink()
class SimxarmExperienceReplay(AbstractExperienceReplay):
available_datasets = [
"xarm_lift_medium",
]
def __init__(
self,
dataset_id: str,
version: str | None = None,
batch_size: int = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
def _download_and_preproc_obsolete(self):
assert self.root is not None
# TODO(rcadene): finish download
download()
dataset_path = self.root / f"{self.dataset_id}_raw" / "buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
total_frames = dataset_dict["actions"].shape[0]
idx0 = 0
idx1 = 0
episode_id = 0
for i in tqdm.tqdm(range(total_frames)):
idx1 += 1
if not dataset_dict["dones"][i]:
continue
num_frames = idx1 - idx0
image = torch.tensor(dataset_dict["observations"]["rgb"][idx0:idx1])
state = torch.tensor(dataset_dict["observations"]["state"][idx0:idx1])
next_image = torch.tensor(dataset_dict["next_observations"]["rgb"][idx0:idx1])
next_state = torch.tensor(dataset_dict["next_observations"]["state"][idx0:idx1])
next_reward = torch.tensor(dataset_dict["rewards"][idx0:idx1])
next_done = torch.tensor(dataset_dict["dones"][idx0:idx1])
episode = TensorDict(
{
("observation", "image"): image,
("observation", "state"): state,
"action": torch.tensor(dataset_dict["actions"][idx0:idx1]),
"episode": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_id": torch.arange(0, num_frames, 1),
("next", "observation", "image"): next_image,
("next", "observation", "state"): next_state,
("next", "observation", "reward"): next_reward,
("next", "observation", "done"): next_done,
},
batch_size=num_frames,
)
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = episode[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
td_data[idx0:idx1] = episode
episode_id += 1
idx0 = idx1
return TensorStorage(td_data.lock_())

View File

@@ -0,0 +1,249 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from dataclasses import dataclass, field
from typing import Any, Callable, Sequence
import torch
from torchvision.transforms import v2
from torchvision.transforms.v2 import Transform
from torchvision.transforms.v2 import functional as F # noqa: N812
class RandomSubsetApply(Transform):
"""Apply a random subset of N transformations from a list of transformations.
Args:
transforms: list of transformations.
p: represents the multinomial probabilities (with no replacement) used for sampling the transform.
If the sum of the weights is not 1, they will be normalized. If ``None`` (default), all transforms
have the same probability.
n_subset: number of transformations to apply. If ``None``, all transforms are applied.
Must be in [1, len(transforms)].
random_order: apply transformations in a random order.
"""
def __init__(
self,
transforms: Sequence[Callable],
p: list[float] | None = None,
n_subset: int | None = None,
random_order: bool = False,
) -> None:
super().__init__()
if not isinstance(transforms, Sequence):
raise TypeError("Argument transforms should be a sequence of callables")
if p is None:
p = [1] * len(transforms)
elif len(p) != len(transforms):
raise ValueError(
f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
)
if n_subset is None:
n_subset = len(transforms)
elif not isinstance(n_subset, int):
raise TypeError("n_subset should be an int or None")
elif not (1 <= n_subset <= len(transforms)):
raise ValueError(f"n_subset should be in the interval [1, {len(transforms)}]")
self.transforms = transforms
total = sum(p)
self.p = [prob / total for prob in p]
self.n_subset = n_subset
self.random_order = random_order
self.selected_transforms = None
def forward(self, *inputs: Any) -> Any:
needs_unpacking = len(inputs) > 1
selected_indices = torch.multinomial(torch.tensor(self.p), self.n_subset)
if not self.random_order:
selected_indices = selected_indices.sort().values
self.selected_transforms = [self.transforms[i] for i in selected_indices]
for transform in self.selected_transforms:
outputs = transform(*inputs)
inputs = outputs if needs_unpacking else (outputs,)
return outputs
def extra_repr(self) -> str:
return (
f"transforms={self.transforms}, "
f"p={self.p}, "
f"n_subset={self.n_subset}, "
f"random_order={self.random_order}"
)
class SharpnessJitter(Transform):
"""Randomly change the sharpness of an image or video.
Similar to a v2.RandomAdjustSharpness with p=1 and a sharpness_factor sampled randomly.
While v2.RandomAdjustSharpness applies — with a given probability — a fixed sharpness_factor to an image,
SharpnessJitter applies a random sharpness_factor each time. This is to have a more diverse set of
augmentations as a result.
A sharpness_factor of 0 gives a blurred image, 1 gives the original image while 2 increases the sharpness
by a factor of 2.
If the input is a :class:`torch.Tensor`,
it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
Args:
sharpness: How much to jitter sharpness. sharpness_factor is chosen uniformly from
[max(0, 1 - sharpness), 1 + sharpness] or the given
[min, max]. Should be non negative numbers.
"""
def __init__(self, sharpness: float | Sequence[float]) -> None:
super().__init__()
self.sharpness = self._check_input(sharpness)
def _check_input(self, sharpness):
if isinstance(sharpness, (int, float)):
if sharpness < 0:
raise ValueError("If sharpness is a single number, it must be non negative.")
sharpness = [1.0 - sharpness, 1.0 + sharpness]
sharpness[0] = max(sharpness[0], 0.0)
elif isinstance(sharpness, collections.abc.Sequence) and len(sharpness) == 2:
sharpness = [float(v) for v in sharpness]
else:
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
if not 0.0 <= sharpness[0] <= sharpness[1]:
raise ValueError(f"sharpness values should be between (0., inf), but got {sharpness}.")
return float(sharpness[0]), float(sharpness[1])
def make_params(self, flat_inputs: list[Any]) -> dict[str, Any]:
sharpness_factor = torch.empty(1).uniform_(self.sharpness[0], self.sharpness[1]).item()
return {"sharpness_factor": sharpness_factor}
def transform(self, inpt: Any, params: dict[str, Any]) -> Any:
sharpness_factor = params["sharpness_factor"]
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
@dataclass
class ImageTransformConfig:
"""
For each transform, the following parameters are available:
weight: This represents the multinomial probability (with no replacement)
used for sampling the transform. If the sum of the weights is not 1,
they will be normalized.
type: The name of the class used. This is either a class available under torchvision.transforms.v2 or a
custom transform defined here.
kwargs: Lower & upper bound respectively used for sampling the transform's parameter
(following uniform distribution) when it's applied.
"""
weight: float = 1.0
type: str = "Identity"
kwargs: dict[str, Any] = field(default_factory=dict)
@dataclass
class ImageTransformsConfig:
"""
These transforms are all using standard torchvision.transforms.v2
You can find out how these transformations affect images here:
https://pytorch.org/vision/0.18/auto_examples/transforms/plot_transforms_illustrations.html
We use a custom RandomSubsetApply container to sample them.
"""
# Set this flag to `true` to enable transforms during training
enable: bool = False
# This is the maximum number of transforms (sampled from these below) that will be applied to each frame.
# It's an integer in the interval [1, number_of_available_transforms].
max_num_transforms: int = 3
# By default, transforms are applied in Torchvision's suggested order (shown below).
# Set this to True to apply them in a random order.
random_order: bool = False
tfs: dict[str, ImageTransformConfig] = field(
default_factory=lambda: {
"brightness": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"brightness": (0.8, 1.2)},
),
"contrast": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"contrast": (0.8, 1.2)},
),
"saturation": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"saturation": (0.5, 1.5)},
),
"hue": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"hue": (-0.05, 0.05)},
),
"sharpness": ImageTransformConfig(
weight=1.0,
type="SharpnessJitter",
kwargs={"sharpness": (0.5, 1.5)},
),
}
)
def make_transform_from_config(cfg: ImageTransformConfig):
if cfg.type == "Identity":
return v2.Identity(**cfg.kwargs)
elif cfg.type == "ColorJitter":
return v2.ColorJitter(**cfg.kwargs)
elif cfg.type == "SharpnessJitter":
return SharpnessJitter(**cfg.kwargs)
else:
raise ValueError(f"Transform '{cfg.type}' is not valid.")
class ImageTransforms(Transform):
"""A class to compose image transforms based on configuration."""
def __init__(self, cfg: ImageTransformsConfig) -> None:
super().__init__()
self._cfg = cfg
self.weights = []
self.transforms = {}
for tf_name, tf_cfg in cfg.tfs.items():
if tf_cfg.weight <= 0.0:
continue
self.transforms[tf_name] = make_transform_from_config(tf_cfg)
self.weights.append(tf_cfg.weight)
n_subset = min(len(self.transforms), cfg.max_num_transforms)
if n_subset == 0 or not cfg.enable:
self.tf = v2.Identity()
else:
self.tf = RandomSubsetApply(
transforms=list(self.transforms.values()),
p=self.weights,
n_subset=n_subset,
random_order=cfg.random_order,
)
def forward(self, *inputs: Any) -> Any:
return self.tf(*inputs)

View File

@@ -1,30 +1,813 @@
import io
import zipfile
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import importlib.resources
import json
import logging
from collections.abc import Iterator
from itertools import accumulate
from pathlib import Path
from pprint import pformat
from types import SimpleNamespace
from typing import Any
import requests
import tqdm
import datasets
import jsonlines
import numpy as np
import packaging.version
import torch
from datasets.table import embed_table_storage
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
from huggingface_hub.errors import RevisionNotFoundError
from PIL import Image as PILImage
from torchvision import transforms
from lerobot.common.datasets.backward_compatibility import (
V21_MESSAGE,
BackwardCompatibilityError,
ForwardCompatibilityError,
)
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
INFO_PATH = "meta/info.json"
EPISODES_PATH = "meta/episodes.jsonl"
STATS_PATH = "meta/stats.json"
EPISODES_STATS_PATH = "meta/episodes_stats.jsonl"
TASKS_PATH = "meta/tasks.jsonl"
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet"
DEFAULT_IMAGE_PATH = "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png"
DATASET_CARD_TEMPLATE = """
---
# Metadata will go there
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## {}
"""
DEFAULT_FEATURES = {
"timestamp": {"dtype": "float32", "shape": (1,), "names": None},
"frame_index": {"dtype": "int64", "shape": (1,), "names": None},
"episode_index": {"dtype": "int64", "shape": (1,), "names": None},
"index": {"dtype": "int64", "shape": (1,), "names": None},
"task_index": {"dtype": "int64", "shape": (1,), "names": None},
}
def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
print(f"downloading from {url}")
response = requests.get(url, stream=True)
if response.status_code == 200:
total_size = int(response.headers.get("content-length", 0))
progress_bar = tqdm.tqdm(total=total_size, unit="B", unit_scale=True)
def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict:
"""Flatten a nested dictionary structure by collapsing nested keys into one key with a separator.
zip_file = io.BytesIO()
for chunk in response.iter_content(chunk_size=1024):
if chunk:
zip_file.write(chunk)
progress_bar.update(len(chunk))
For example:
```
>>> dct = {"a": {"b": 1, "c": {"d": 2}}, "e": 3}`
>>> print(flatten_dict(dct))
{"a/b": 1, "a/c/d": 2, "e": 3}
"""
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
progress_bar.close()
zip_file.seek(0)
def unflatten_dict(d: dict, sep: str = "/") -> dict:
outdict = {}
for key, value in d.items():
parts = key.split(sep)
d = outdict
for part in parts[:-1]:
if part not in d:
d[part] = {}
d = d[part]
d[parts[-1]] = value
return outdict
with zipfile.ZipFile(zip_file, "r") as zip_ref:
zip_ref.extractall(destination_folder)
def get_nested_item(obj: DictLike, flattened_key: str, sep: str = "/") -> Any:
split_keys = flattened_key.split(sep)
getter = obj[split_keys[0]]
if len(split_keys) == 1:
return getter
for key in split_keys[1:]:
getter = getter[key]
return getter
def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict:
serialized_dict = {}
for key, value in flatten_dict(stats).items():
if isinstance(value, (torch.Tensor, np.ndarray)):
serialized_dict[key] = value.tolist()
elif isinstance(value, np.generic):
serialized_dict[key] = value.item()
elif isinstance(value, (int, float)):
serialized_dict[key] = value
else:
raise NotImplementedError(f"The value '{value}' of type '{type(value)}' is not supported.")
return unflatten_dict(serialized_dict)
def embed_images(dataset: datasets.Dataset) -> datasets.Dataset:
# Embed image bytes into the table before saving to parquet
format = dataset.format
dataset = dataset.with_format("arrow")
dataset = dataset.map(embed_table_storage, batched=False)
dataset = dataset.with_format(**format)
return dataset
def load_json(fpath: Path) -> Any:
with open(fpath) as f:
return json.load(f)
def write_json(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with open(fpath, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
def load_jsonlines(fpath: Path) -> list[Any]:
with jsonlines.open(fpath, "r") as reader:
return list(reader)
def write_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "w") as writer:
writer.write_all(data)
def append_jsonlines(data: dict, fpath: Path) -> None:
fpath.parent.mkdir(exist_ok=True, parents=True)
with jsonlines.open(fpath, "a") as writer:
writer.write(data)
def write_info(info: dict, local_dir: Path):
write_json(info, local_dir / INFO_PATH)
def load_info(local_dir: Path) -> dict:
info = load_json(local_dir / INFO_PATH)
for ft in info["features"].values():
ft["shape"] = tuple(ft["shape"])
return info
def write_stats(stats: dict, local_dir: Path):
serialized_stats = serialize_dict(stats)
write_json(serialized_stats, local_dir / STATS_PATH)
def cast_stats_to_numpy(stats) -> dict[str, dict[str, np.ndarray]]:
stats = {key: np.array(value) for key, value in flatten_dict(stats).items()}
return unflatten_dict(stats)
def load_stats(local_dir: Path) -> dict[str, dict[str, np.ndarray]]:
if not (local_dir / STATS_PATH).exists():
return None
stats = load_json(local_dir / STATS_PATH)
return cast_stats_to_numpy(stats)
def write_task(task_index: int, task: dict, local_dir: Path):
task_dict = {
"task_index": task_index,
"task": task,
}
append_jsonlines(task_dict, local_dir / TASKS_PATH)
def load_tasks(local_dir: Path) -> tuple[dict, dict]:
tasks = load_jsonlines(local_dir / TASKS_PATH)
tasks = {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])}
task_to_task_index = {task: task_index for task_index, task in tasks.items()}
return tasks, task_to_task_index
def write_episode(episode: dict, local_dir: Path):
append_jsonlines(episode, local_dir / EPISODES_PATH)
def load_episodes(local_dir: Path) -> dict:
episodes = load_jsonlines(local_dir / EPISODES_PATH)
return {item["episode_index"]: item for item in sorted(episodes, key=lambda x: x["episode_index"])}
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
# is a dictionary of stats and not an integer.
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
def load_episodes_stats(local_dir: Path) -> dict:
episodes_stats = load_jsonlines(local_dir / EPISODES_STATS_PATH)
return {
item["episode_index"]: cast_stats_to_numpy(item["stats"])
for item in sorted(episodes_stats, key=lambda x: x["episode_index"])
}
def backward_compatible_episodes_stats(
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
) -> dict[str, dict[str, np.ndarray]]:
return dict.fromkeys(episodes, stats)
def load_image_as_numpy(
fpath: str | Path, dtype: np.dtype = np.float32, channel_first: bool = True
) -> np.ndarray:
img = PILImage.open(fpath).convert("RGB")
img_array = np.array(img, dtype=dtype)
if channel_first: # (H, W, C) -> (C, H, W)
img_array = np.transpose(img_array, (2, 0, 1))
if np.issubdtype(dtype, np.floating):
img_array /= 255.0
return img_array
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
a channel last representation (h w c) of uint8 type, to a torch image representation
with channel first (c h w) of float32 type in range [0,1].
"""
for key in items_dict:
first_item = items_dict[key][0]
if isinstance(first_item, PILImage.Image):
to_tensor = transforms.ToTensor()
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
elif first_item is None:
pass
else:
items_dict[key] = [x if isinstance(x, str) else torch.tensor(x) for x in items_dict[key]]
return items_dict
def is_valid_version(version: str) -> bool:
try:
packaging.version.parse(version)
return True
else:
except packaging.version.InvalidVersion:
return False
def check_version_compatibility(
repo_id: str,
version_to_check: str | packaging.version.Version,
current_version: str | packaging.version.Version,
enforce_breaking_major: bool = True,
) -> None:
v_check = (
packaging.version.parse(version_to_check)
if not isinstance(version_to_check, packaging.version.Version)
else version_to_check
)
v_current = (
packaging.version.parse(current_version)
if not isinstance(current_version, packaging.version.Version)
else current_version
)
if v_check.major < v_current.major and enforce_breaking_major:
raise BackwardCompatibilityError(repo_id, v_check)
elif v_check.minor < v_current.minor:
logging.warning(V21_MESSAGE.format(repo_id=repo_id, version=v_check))
def get_repo_versions(repo_id: str) -> list[packaging.version.Version]:
"""Returns available valid versions (branches and tags) on given repo."""
api = HfApi()
repo_refs = api.list_repo_refs(repo_id, repo_type="dataset")
repo_refs = [b.name for b in repo_refs.branches + repo_refs.tags]
repo_versions = []
for ref in repo_refs:
with contextlib.suppress(packaging.version.InvalidVersion):
repo_versions.append(packaging.version.parse(ref))
return repo_versions
def get_safe_version(repo_id: str, version: str | packaging.version.Version) -> str:
"""
Returns the version if available on repo or the latest compatible one.
Otherwise, will throw a `CompatibilityError`.
"""
target_version = (
packaging.version.parse(version) if not isinstance(version, packaging.version.Version) else version
)
hub_versions = get_repo_versions(repo_id)
if not hub_versions:
raise RevisionNotFoundError(
f"""Your dataset must be tagged with a codebase version.
Assuming _version_ is the codebase_version value in the info.json, you can run this:
```python
from huggingface_hub import HfApi
hub_api = HfApi()
hub_api.create_tag("{repo_id}", tag="_version_", repo_type="dataset")
```
"""
)
if target_version in hub_versions:
return f"v{target_version}"
compatibles = [
v for v in hub_versions if v.major == target_version.major and v.minor <= target_version.minor
]
if compatibles:
return_version = max(compatibles)
if return_version < target_version:
logging.warning(f"Revision {version} for {repo_id} not found, using version v{return_version}")
return f"v{return_version}"
lower_major = [v for v in hub_versions if v.major < target_version.major]
if lower_major:
raise BackwardCompatibilityError(repo_id, max(lower_major))
upper_versions = [v for v in hub_versions if v > target_version]
assert len(upper_versions) > 0
raise ForwardCompatibilityError(repo_id, min(upper_versions))
def get_hf_features_from_features(features: dict) -> datasets.Features:
hf_features = {}
for key, ft in features.items():
if ft["dtype"] == "video":
continue
elif ft["dtype"] == "image":
hf_features[key] = datasets.Image()
elif ft["shape"] == (1,):
hf_features[key] = datasets.Value(dtype=ft["dtype"])
elif len(ft["shape"]) == 1:
hf_features[key] = datasets.Sequence(
length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"])
)
elif len(ft["shape"]) == 2:
hf_features[key] = datasets.Array2D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 3:
hf_features[key] = datasets.Array3D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 4:
hf_features[key] = datasets.Array4D(shape=ft["shape"], dtype=ft["dtype"])
elif len(ft["shape"]) == 5:
hf_features[key] = datasets.Array5D(shape=ft["shape"], dtype=ft["dtype"])
else:
raise ValueError(f"Corresponding feature is not valid: {ft}")
return datasets.Features(hf_features)
def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict:
camera_ft = {}
if robot.cameras:
camera_ft = {
key: {"dtype": "video" if use_videos else "image", **ft}
for key, ft in robot.camera_features.items()
}
return {**robot.motor_features, **camera_ft, **DEFAULT_FEATURES}
def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFeature]:
# TODO(aliberts): Implement "type" in dataset features and simplify this
policy_features = {}
for key, ft in features.items():
shape = ft["shape"]
if ft["dtype"] in ["image", "video"]:
type = FeatureType.VISUAL
if len(shape) != 3:
raise ValueError(f"Number of dimensions of {key} != 3 (shape={shape})")
names = ft["names"]
# Backward compatibility for "channel" which is an error introduced in LeRobotDataset v2.0 for ported datasets.
if names[2] in ["channel", "channels"]: # (h, w, c) -> (c, h, w)
shape = (shape[2], shape[0], shape[1])
elif key == "observation.environment_state":
type = FeatureType.ENV
elif key.startswith("observation"):
type = FeatureType.STATE
elif key == "action":
type = FeatureType.ACTION
else:
continue
policy_features[key] = PolicyFeature(
type=type,
shape=shape,
)
return policy_features
def create_empty_dataset_info(
codebase_version: str,
fps: int,
robot_type: str,
features: dict,
use_videos: bool,
) -> dict:
return {
"codebase_version": codebase_version,
"robot_type": robot_type,
"total_episodes": 0,
"total_frames": 0,
"total_tasks": 0,
"total_videos": 0,
"total_chunks": 0,
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": fps,
"splits": {},
"data_path": DEFAULT_PARQUET_PATH,
"video_path": DEFAULT_VIDEO_PATH if use_videos else None,
"features": features,
}
def get_episode_data_index(
episode_dicts: dict[dict], episodes: list[int] | None = None
) -> dict[str, torch.Tensor]:
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in episode_dicts.items()}
if episodes is not None:
episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes}
cumulative_lengths = list(accumulate(episode_lengths.values()))
return {
"from": torch.LongTensor([0] + cumulative_lengths[:-1]),
"to": torch.LongTensor(cumulative_lengths),
}
def check_timestamps_sync(
timestamps: np.ndarray,
episode_indices: np.ndarray,
episode_data_index: dict[str, np.ndarray],
fps: int,
tolerance_s: float,
raise_value_error: bool = True,
) -> bool:
"""
This check is to make sure that each timestamp is separated from the next by (1/fps) +/- tolerance
to account for possible numerical error.
Args:
timestamps (np.ndarray): Array of timestamps in seconds.
episode_indices (np.ndarray): Array indicating the episode index for each timestamp.
episode_data_index (dict[str, np.ndarray]): A dictionary that includes 'to',
which identifies indices for the end of each episode.
fps (int): Frames per second. Used to check the expected difference between consecutive timestamps.
tolerance_s (float): Allowed deviation from the expected (1/fps) difference.
raise_value_error (bool): Whether to raise a ValueError if the check fails.
Returns:
bool: True if all checked timestamp differences lie within tolerance, False otherwise.
Raises:
ValueError: If the check fails and `raise_value_error` is True.
"""
if timestamps.shape != episode_indices.shape:
raise ValueError(
"timestamps and episode_indices should have the same shape. "
f"Found {timestamps.shape=} and {episode_indices.shape=}."
)
# Consecutive differences
diffs = np.diff(timestamps)
within_tolerance = np.abs(diffs - (1.0 / fps)) <= tolerance_s
# Mask to ignore differences at the boundaries between episodes
mask = np.ones(len(diffs), dtype=bool)
ignored_diffs = episode_data_index["to"][:-1] - 1 # indices at the end of each episode
mask[ignored_diffs] = False
filtered_within_tolerance = within_tolerance[mask]
# Check if all remaining diffs are within tolerance
if not np.all(filtered_within_tolerance):
# Track original indices before masking
original_indices = np.arange(len(diffs))
filtered_indices = original_indices[mask]
outside_tolerance_filtered_indices = np.nonzero(~filtered_within_tolerance)[0]
outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices]
outside_tolerances = []
for idx in outside_tolerance_indices:
entry = {
"timestamps": [timestamps[idx], timestamps[idx + 1]],
"diff": diffs[idx],
"episode_index": episode_indices[idx].item()
if hasattr(episode_indices[idx], "item")
else episode_indices[idx],
}
outside_tolerances.append(entry)
if raise_value_error:
raise ValueError(
f"""One or several timestamps unexpectedly violate the tolerance inside episode range.
This might be due to synchronization issues during data collection.
\n{pformat(outside_tolerances)}"""
)
return False
return True
def check_delta_timestamps(
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
) -> bool:
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be
actual timestamps from the dataset.
"""
outside_tolerance = {}
for key, delta_ts in delta_timestamps.items():
within_tolerance = [abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts]
if not all(within_tolerance):
outside_tolerance[key] = [
ts for ts, is_within in zip(delta_ts, within_tolerance, strict=True) if not is_within
]
if len(outside_tolerance) > 0:
if raise_value_error:
raise ValueError(
f"""
The following delta_timestamps are found outside of tolerance range.
Please make sure they are multiples of 1/{fps} +/- tolerance and adjust
their values accordingly.
\n{pformat(outside_tolerance)}
"""
)
return False
return True
def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dict[str, list[int]]:
delta_indices = {}
for key, delta_ts in delta_timestamps.items():
delta_indices[key] = [round(d * fps) for d in delta_ts]
return delta_indices
def cycle(iterable):
"""The equivalent of itertools.cycle, but safe for Pytorch dataloaders.
See https://github.com/pytorch/pytorch/issues/23900 for information on why itertools.cycle is not safe.
"""
iterator = iter(iterable)
while True:
try:
yield next(iterator)
except StopIteration:
iterator = iter(iterable)
def create_branch(repo_id, *, branch: str, repo_type: str | None = None) -> None:
"""Create a branch on a existing Hugging Face repo. Delete the branch if it already
exists before creating it.
"""
api = HfApi()
branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches
refs = [branch.ref for branch in branches]
ref = f"refs/heads/{branch}"
if ref in refs:
api.delete_branch(repo_id, repo_type=repo_type, branch=branch)
api.create_branch(repo_id, repo_type=repo_type, branch=branch)
def create_lerobot_dataset_card(
tags: list | None = None,
dataset_info: dict | None = None,
**kwargs,
) -> DatasetCard:
"""
Keyword arguments will be used to replace values in ./lerobot/common/datasets/card_template.md.
Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses.
"""
card_tags = ["LeRobot"]
if tags:
card_tags += tags
if dataset_info:
dataset_structure = "[meta/info.json](meta/info.json):\n"
dataset_structure += f"```json\n{json.dumps(dataset_info, indent=4)}\n```\n"
kwargs = {**kwargs, "dataset_structure": dataset_structure}
card_data = DatasetCardData(
license=kwargs.get("license"),
tags=card_tags,
task_categories=["robotics"],
configs=[
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
],
)
card_template = (importlib.resources.files("lerobot.common.datasets") / "card_template.md").read_text()
return DatasetCard.from_template(
card_data=card_data,
template_str=card_template,
**kwargs,
)
class IterableNamespace(SimpleNamespace):
"""
A namespace object that supports both dictionary-like iteration and dot notation access.
Automatically converts nested dictionaries into IterableNamespaces.
This class extends SimpleNamespace to provide:
- Dictionary-style iteration over keys
- Access to items via both dot notation (obj.key) and brackets (obj["key"])
- Dictionary-like methods: items(), keys(), values()
- Recursive conversion of nested dictionaries
Args:
dictionary: Optional dictionary to initialize the namespace
**kwargs: Additional keyword arguments passed to SimpleNamespace
Examples:
>>> data = {"name": "Alice", "details": {"age": 25}}
>>> ns = IterableNamespace(data)
>>> ns.name
'Alice'
>>> ns.details.age
25
>>> list(ns.keys())
['name', 'details']
>>> for key, value in ns.items():
... print(f"{key}: {value}")
name: Alice
details: IterableNamespace(age=25)
"""
def __init__(self, dictionary: dict[str, Any] = None, **kwargs):
super().__init__(**kwargs)
if dictionary is not None:
for key, value in dictionary.items():
if isinstance(value, dict):
setattr(self, key, IterableNamespace(value))
else:
setattr(self, key, value)
def __iter__(self) -> Iterator[str]:
return iter(vars(self))
def __getitem__(self, key: str) -> Any:
return vars(self)[key]
def items(self):
return vars(self).items()
def values(self):
return vars(self).values()
def keys(self):
return vars(self).keys()
def validate_frame(frame: dict, features: dict):
optional_features = {"timestamp"}
expected_features = (set(features) - set(DEFAULT_FEATURES.keys())) | {"task"}
actual_features = set(frame.keys())
error_message = validate_features_presence(actual_features, expected_features, optional_features)
if "task" in frame:
error_message += validate_feature_string("task", frame["task"])
common_features = actual_features & (expected_features | optional_features)
for name in common_features - {"task"}:
error_message += validate_feature_dtype_and_shape(name, features[name], frame[name])
if error_message:
raise ValueError(error_message)
def validate_features_presence(
actual_features: set[str], expected_features: set[str], optional_features: set[str]
):
error_message = ""
missing_features = expected_features - actual_features
extra_features = actual_features - (expected_features | optional_features)
if missing_features or extra_features:
error_message += "Feature mismatch in `frame` dictionary:\n"
if missing_features:
error_message += f"Missing features: {missing_features}\n"
if extra_features:
error_message += f"Extra features: {extra_features}\n"
return error_message
def validate_feature_dtype_and_shape(name: str, feature: dict, value: np.ndarray | PILImage.Image | str):
expected_dtype = feature["dtype"]
expected_shape = feature["shape"]
if is_valid_numpy_dtype_string(expected_dtype):
return validate_feature_numpy_array(name, expected_dtype, expected_shape, value)
elif expected_dtype in ["image", "video"]:
return validate_feature_image_or_video(name, expected_shape, value)
elif expected_dtype == "string":
return validate_feature_string(name, value)
else:
raise NotImplementedError(f"The feature dtype '{expected_dtype}' is not implemented yet.")
def validate_feature_numpy_array(
name: str, expected_dtype: str, expected_shape: list[int], value: np.ndarray
):
error_message = ""
if isinstance(value, np.ndarray):
actual_dtype = value.dtype
actual_shape = value.shape
if actual_dtype != np.dtype(expected_dtype):
error_message += f"The feature '{name}' of dtype '{actual_dtype}' is not of the expected dtype '{expected_dtype}'.\n"
if actual_shape != expected_shape:
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{expected_shape}'.\n"
else:
error_message += f"The feature '{name}' is not a 'np.ndarray'. Expected type is '{expected_dtype}', but type '{type(value)}' provided instead.\n"
return error_message
def validate_feature_image_or_video(name: str, expected_shape: list[str], value: np.ndarray | PILImage.Image):
# Note: The check of pixels range ([0,1] for float and [0,255] for uint8) is done by the image writer threads.
error_message = ""
if isinstance(value, np.ndarray):
actual_shape = value.shape
c, h, w = expected_shape
if len(actual_shape) != 3 or (actual_shape != (c, h, w) and actual_shape != (h, w, c)):
error_message += f"The feature '{name}' of shape '{actual_shape}' does not have the expected shape '{(c, h, w)}' or '{(h, w, c)}'.\n"
elif isinstance(value, PILImage.Image):
pass
else:
error_message += f"The feature '{name}' is expected to be of type 'PIL.Image' or 'np.ndarray' channel first or channel last, but type '{type(value)}' provided instead.\n"
return error_message
def validate_feature_string(name: str, value: str):
if not isinstance(value, str):
return f"The feature '{name}' is expected to be of type 'str', but type '{type(value)}' provided instead.\n"
return ""
def validate_episode_buffer(episode_buffer: dict, total_episodes: int, features: dict):
if "size" not in episode_buffer:
raise ValueError("size key not found in episode_buffer")
if "task" not in episode_buffer:
raise ValueError("task key not found in episode_buffer")
if episode_buffer["episode_index"] != total_episodes:
# TODO(aliberts): Add option to use existing episode_index
raise NotImplementedError(
"You might have manually provided the episode_buffer with an episode_index that doesn't "
"match the total number of episodes already in the dataset. This is not supported for now."
)
if episode_buffer["size"] == 0:
raise ValueError("You must add one or several frames with `add_frame` before calling `add_episode`.")
buffer_keys = set(episode_buffer.keys()) - {"task", "size"}
if not buffer_keys == set(features):
raise ValueError(
f"Features from `episode_buffer` don't match the ones in `features`."
f"In episode_buffer not in features: {buffer_keys - set(features)}"
f"In features not in episode_buffer: {set(features) - buffer_keys}"
)

View File

@@ -0,0 +1,884 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is for internal use to convert all datasets under the 'lerobot' hub user account to v2.
Note: Since the original Aloha datasets don't use shadow motors, you need to comment those out in
lerobot/configs/robot/aloha.yaml before running this script.
"""
import traceback
from pathlib import Path
from textwrap import dedent
from lerobot import available_datasets
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
LOCAL_DIR = Path("data/")
# spellchecker:off
ALOHA_MOBILE_INFO = {
"robot_config": AlohaRobotConfig(),
"license": "mit",
"url": "https://mobile-aloha.github.io/",
"paper": "https://arxiv.org/abs/2401.02117",
"citation_bibtex": dedent(r"""
@inproceedings{fu2024mobile,
author = {Fu, Zipeng and Zhao, Tony Z. and Finn, Chelsea},
title = {Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation},
booktitle = {arXiv},
year = {2024},
}""").lstrip(),
}
ALOHA_STATIC_INFO = {
"robot_config": AlohaRobotConfig(),
"license": "mit",
"url": "https://tonyzhaozh.github.io/aloha/",
"paper": "https://arxiv.org/abs/2304.13705",
"citation_bibtex": dedent(r"""
@article{Zhao2023LearningFB,
title={Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware},
author={Tony Zhao and Vikash Kumar and Sergey Levine and Chelsea Finn},
journal={RSS},
year={2023},
volume={abs/2304.13705},
url={https://arxiv.org/abs/2304.13705}
}""").lstrip(),
}
PUSHT_INFO = {
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"citation_bibtex": dedent(r"""
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
journal = {The International Journal of Robotics Research},
year = {2024},
}""").lstrip(),
}
XARM_INFO = {
"license": "mit",
"url": "https://www.nicklashansen.com/td-mpc/",
"paper": "https://arxiv.org/abs/2203.04955",
"citation_bibtex": dedent(r"""
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
booktitle={ICML},
year={2022}
}
"""),
}
UNITREEH_INFO = {
"license": "apache-2.0",
}
DATASETS = {
"aloha_mobile_cabinet": {
"single_task": "Open the top cabinet, store the pot inside it then close the cabinet.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_chair": {
"single_task": "Push the chairs in front of the desk to place them against it.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_elevator": {
"single_task": "Take the elevator to the 1st floor.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_shrimp": {
"single_task": "Sauté the raw shrimp on both sides, then serve it in the bowl.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_wash_pan": {
"single_task": "Pick up the pan, rinse it in the sink and then place it in the drying rack.",
**ALOHA_MOBILE_INFO,
},
"aloha_mobile_wipe_wine": {
"single_task": "Pick up the wet cloth on the faucet and use it to clean the spilled wine on the table and underneath the glass.",
**ALOHA_MOBILE_INFO,
},
"aloha_static_battery": {
"single_task": "Place the battery into the slot of the remote controller.",
**ALOHA_STATIC_INFO,
},
"aloha_static_candy": {"single_task": "Pick up the candy and unwrap it.", **ALOHA_STATIC_INFO},
"aloha_static_coffee": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray, then push the 'Hot Water' and 'Travel Mug' buttons.",
**ALOHA_STATIC_INFO,
},
"aloha_static_coffee_new": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray.",
**ALOHA_STATIC_INFO,
},
"aloha_static_cups_open": {
"single_task": "Pick up the plastic cup and open its lid.",
**ALOHA_STATIC_INFO,
},
"aloha_static_fork_pick_up": {
"single_task": "Pick up the fork and place it on the plate.",
**ALOHA_STATIC_INFO,
},
"aloha_static_pingpong_test": {
"single_task": "Transfer one of the two balls in the right glass into the left glass, then transfer it back to the right glass.",
**ALOHA_STATIC_INFO,
},
"aloha_static_pro_pencil": {
"single_task": "Pick up the pencil with the right arm, hand it over to the left arm then place it back onto the table.",
**ALOHA_STATIC_INFO,
},
"aloha_static_screw_driver": {
"single_task": "Pick up the screwdriver with the right arm, hand it over to the left arm then place it into the cup.",
**ALOHA_STATIC_INFO,
},
"aloha_static_tape": {
"single_task": "Cut a small piece of tape from the tape dispenser then place it on the cardboard box's edge.",
**ALOHA_STATIC_INFO,
},
"aloha_static_thread_velcro": {
"single_task": "Pick up the velcro cable tie with the left arm, then insert the end of the velcro tie into the other end's loop with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_towel": {
"single_task": "Pick up a piece of paper towel and place it on the spilled liquid.",
**ALOHA_STATIC_INFO,
},
"aloha_static_vinh_cup": {
"single_task": "Pick up the plastic cup with the right arm, then pop its lid open with the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_vinh_cup_left": {
"single_task": "Pick up the plastic cup with the left arm, then pop its lid open with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_ziploc_slide": {"single_task": "Slide open the ziploc bag.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_human": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_human_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_scripted": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_scripted_image": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_human": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_transfer_cube_human_image": {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"pusht": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"pusht_image": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"unitreeh1_fold_clothes": {"single_task": "Fold the sweatshirt.", **UNITREEH_INFO},
"unitreeh1_rearrange_objects": {"single_task": "Put the object into the bin.", **UNITREEH_INFO},
"unitreeh1_two_robot_greeting": {
"single_task": "Greet the other robot with a high five.",
**UNITREEH_INFO,
},
"unitreeh1_warehouse": {
"single_task": "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.",
**UNITREEH_INFO,
},
"xarm_lift_medium": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_push_medium": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"umi_cup_in_the_wild": {
"single_task": "Put the cup on the plate.",
"license": "apache-2.0",
},
"asu_table_top": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://link.springer.com/article/10.1007/s10514-023-10129-1",
"citation_bibtex": dedent(r"""
@inproceedings{zhou2023modularity,
title={Modularity through Attention: Efficient Training and Transfer of Language-Conditioned Policies for Robot Manipulation},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Stepputtis, Simon and Amor, Heni},
booktitle={Conference on Robot Learning},
pages={1684--1695},
year={2023},
organization={PMLR}
}
@article{zhou2023learning,
title={Learning modular language-conditioned robot policies through attention},
author={Zhou, Yifan and Sonawani, Shubham and Phielipp, Mariano and Ben Amor, Heni and Stepputtis, Simon},
journal={Autonomous Robots},
pages={1--21},
year={2023},
publisher={Springer}
}""").lstrip(),
},
"austin_buds_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/BUDS-website/",
"paper": "https://arxiv.org/abs/2109.13841",
"citation_bibtex": dedent(r"""
@article{zhu2022bottom,
title={Bottom-Up Skill Discovery From Unsegmented Demonstrations for Long-Horizon Robot Manipulation},
author={Zhu, Yifeng and Stone, Peter and Zhu, Yuke},
journal={IEEE Robotics and Automation Letters},
volume={7},
number={2},
pages={4126--4133},
year={2022},
publisher={IEEE}
}""").lstrip(),
},
"austin_sailor_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sailor/",
"paper": "https://arxiv.org/abs/2210.11435",
"citation_bibtex": dedent(r"""
@inproceedings{nasiriany2022sailor,
title={Learning and Retrieval from Prior Data for Skill-based Imitation Learning},
author={Soroush Nasiriany and Tian Gao and Ajay Mandlekar and Yuke Zhu},
booktitle={Conference on Robot Learning (CoRL)},
year={2022}
}""").lstrip(),
},
"austin_sirius_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/sirius/",
"paper": "https://arxiv.org/abs/2211.08416",
"citation_bibtex": dedent(r"""
@inproceedings{liu2022robot,
title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},
booktitle = {Robotics: Science and Systems (RSS)},
year = {2023}
}""").lstrip(),
},
"berkeley_autolab_ur5": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://sites.google.com/view/berkeley-ur5/home",
"citation_bibtex": dedent(r"""
@misc{BerkeleyUR5Website,
title = {Berkeley {UR5} Demonstration Dataset},
author = {Lawrence Yunliang Chen and Simeon Adebola and Ken Goldberg},
howpublished = {https://sites.google.com/view/berkeley-ur5/home},
}""").lstrip(),
},
"berkeley_cable_routing": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://sites.google.com/view/cablerouting/home",
"paper": "https://arxiv.org/abs/2307.08927",
"citation_bibtex": dedent(r"""
@article{luo2023multistage,
author = {Jianlan Luo and Charles Xu and Xinyang Geng and Gilbert Feng and Kuan Fang and Liam Tan and Stefan Schaal and Sergey Levine},
title = {Multi-Stage Cable Routing through Hierarchical Imitation Learning},
journal = {arXiv pre-print},
year = {2023},
url = {https://arxiv.org/abs/2307.08927},
}""").lstrip(),
},
"berkeley_fanuc_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/berkeley.edu/fanuc-manipulation",
"citation_bibtex": dedent(r"""
@article{fanuc_manipulation2023,
title={Fanuc Manipulation: A Dataset for Learning-based Manipulation with FANUC Mate 200iD Robot},
author={Zhu, Xinghao and Tian, Ran and Xu, Chenfeng and Ding, Mingyu and Zhan, Wei and Tomizuka, Masayoshi},
year={2023},
}""").lstrip(),
},
"berkeley_gnm_cory_hall": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/1709.10489",
"citation_bibtex": dedent(r"""
@inproceedings{kahn2018self,
title={Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation},
author={Kahn, Gregory and Villaflor, Adam and Ding, Bosen and Abbeel, Pieter and Levine, Sergey},
booktitle={2018 IEEE international conference on robotics and automation (ICRA)},
pages={5129--5136},
year={2018},
organization={IEEE}
}""").lstrip(),
},
"berkeley_gnm_recon": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/recon-robot",
"paper": "https://arxiv.org/abs/2104.05859",
"citation_bibtex": dedent(r"""
@inproceedings{shah2021rapid,
title={Rapid Exploration for Open-World Navigation with Latent Goal Models},
author={Dhruv Shah and Benjamin Eysenbach and Nicholas Rhinehart and Sergey Levine},
booktitle={5th Annual Conference on Robot Learning },
year={2021},
url={https://openreview.net/forum?id=d_SWJhyKfVw}
}""").lstrip(),
},
"berkeley_gnm_sac_son": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/SACSoN-review",
"paper": "https://arxiv.org/abs/2306.01874",
"citation_bibtex": dedent(r"""
@article{hirose2023sacson,
title={SACSoN: Scalable Autonomous Data Collection for Social Navigation},
author={Hirose, Noriaki and Shah, Dhruv and Sridhar, Ajay and Levine, Sergey},
journal={arXiv preprint arXiv:2306.01874},
year={2023}
}""").lstrip(),
},
"berkeley_mvp": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2203.06173",
"citation_bibtex": dedent(r"""
@InProceedings{Radosavovic2022,
title = {Real-World Robot Learning with Masked Visual Pre-training},
author = {Ilija Radosavovic and Tete Xiao and Stephen James and Pieter Abbeel and Jitendra Malik and Trevor Darrell},
booktitle = {CoRL},
year = {2022}
}""").lstrip(),
},
"berkeley_rpt": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://arxiv.org/abs/2306.10007",
"citation_bibtex": dedent(r"""
@article{Radosavovic2023,
title={Robot Learning with Sensorimotor Pre-training},
author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},
year={2023},
journal={arXiv:2306.10007}
}""").lstrip(),
},
"cmu_franka_exploration_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://human-world-model.github.io/",
"paper": "https://arxiv.org/abs/2308.10901",
"citation_bibtex": dedent(r"""
@inproceedings{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={RSS},
year={2023}
}""").lstrip(),
},
"cmu_play_fusion": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-fusion.github.io/",
"paper": "https://arxiv.org/abs/2312.04549",
"citation_bibtex": dedent(r"""
@inproceedings{chen2023playfusion,
title={PlayFusion: Skill Acquisition via Diffusion from Language-Annotated Play},
author={Chen, Lili and Bahl, Shikhar and Pathak, Deepak},
booktitle={CoRL},
year={2023}
}""").lstrip(),
},
"cmu_stretch": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robo-affordances.github.io/",
"paper": "https://arxiv.org/abs/2304.08488",
"citation_bibtex": dedent(r"""
@inproceedings{bahl2023affordances,
title={Affordances from Human Videos as a Versatile Representation for Robotics},
author={Bahl, Shikhar and Mendonca, Russell and Chen, Lili and Jain, Unnat and Pathak, Deepak},
booktitle={CVPR},
year={2023}
}
@article{mendonca2023structured,
title={Structured World Models from Human Videos},
author={Mendonca, Russell and Bahl, Shikhar and Pathak, Deepak},
journal={CoRL},
year={2023}
}""").lstrip(),
},
"columbia_cairlab_pusht_real": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://diffusion-policy.cs.columbia.edu/",
"paper": "https://arxiv.org/abs/2303.04137v5",
"citation_bibtex": dedent(r"""
@inproceedings{chi2023diffusionpolicy,
title={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
author={Chi, Cheng and Feng, Siyuan and Du, Yilun and Xu, Zhenjia and Cousineau, Eric and Burchfiel, Benjamin and Song, Shuran},
booktitle={Proceedings of Robotics: Science and Systems (RSS)},
year={2023}
}""").lstrip(),
},
"conq_hose_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/conq-hose-manipulation-dataset/home",
"citation_bibtex": dedent(r"""
@misc{ConqHoseManipData,
author={Peter Mitrano and Dmitry Berenson},
title={Conq Hose Manipulation Dataset, v1.15.0},
year={2024},
howpublished={https://sites.google.com/view/conq-hose-manipulation-dataset}
}""").lstrip(),
},
"dlr_edan_shared_control": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://ieeexplore.ieee.org/document/9341156",
"citation_bibtex": dedent(r"""
@inproceedings{vogel_edan_2020,
title = {EDAN - an EMG-Controlled Daily Assistant to Help People with Physical Disabilities},
language = {en},
booktitle = {2020 {IEEE}/{RSJ} {International} {Conference} on {Intelligent} {Robots} and {Systems} ({IROS})},
author = {Vogel, Jörn and Hagengruber, Annette and Iskandar, Maged and Quere, Gabriel and Leipscher, Ulrike and Bustamante, Samuel and Dietrich, Alexander and Hoeppner, Hannes and Leidner, Daniel and Albu-Schäffer, Alin},
year = {2020}
}
@inproceedings{quere_shared_2020,
address = {Paris, France},
title = {Shared {Control} {Templates} for {Assistive} {Robotics}},
language = {en},
booktitle = {2020 {IEEE} {International} {Conference} on {Robotics} and {Automation} ({ICRA})},
author = {Quere, Gabriel and Hagengruber, Annette and Iskandar, Maged and Bustamante, Samuel and Leidner, Daniel and Stulp, Freek and Vogel, Joern},
year = {2020},
pages = {7},
}""").lstrip(),
},
"dlr_sara_grid_clamp": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://www.researchsquare.com/article/rs-3289569/v1",
"citation_bibtex": dedent(r"""
@article{padalkar2023guided,
title={A guided reinforcement learning approach using shared control templates for learning manipulation skills in the real world},
author={Padalkar, Abhishek and Quere, Gabriel and Raffin, Antonin and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
journal={Research square preprint rs-3289569/v1},
year={2023}
}""").lstrip(),
},
"dlr_sara_pour": {
"tasks_col": "language_instruction",
"license": "mit",
"paper": "https://elib.dlr.de/193739/1/padalkar2023rlsct.pdf",
"citation_bibtex": dedent(r"""
@inproceedings{padalkar2023guiding,
title={Guiding Reinforcement Learning with Shared Control Templates},
author={Padalkar, Abhishek and Quere, Gabriel and Steinmetz, Franz and Raffin, Antonin and Nieuwenhuisen, Matthias and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
booktitle={40th IEEE International Conference on Robotics and Automation, ICRA 2023},
year={2023},
organization={IEEE}
}""").lstrip(),
},
"droid_100": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://droid-dataset.github.io/",
"paper": "https://arxiv.org/abs/2403.12945",
"citation_bibtex": dedent(r"""
@article{khazatsky2024droid,
title = {DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset},
author = {Alexander Khazatsky and Karl Pertsch and Suraj Nair and Ashwin Balakrishna and Sudeep Dasari and Siddharth Karamcheti and Soroush Nasiriany and Mohan Kumar Srirama and Lawrence Yunliang Chen and Kirsty Ellis and Peter David Fagan and Joey Hejna and Masha Itkina and Marion Lepert and Yecheng Jason Ma and Patrick Tree Miller and Jimmy Wu and Suneel Belkhale and Shivin Dass and Huy Ha and Arhan Jain and Abraham Lee and Youngwoon Lee and Marius Memmel and Sungjae Park and Ilija Radosavovic and Kaiyuan Wang and Albert Zhan and Kevin Black and Cheng Chi and Kyle Beltran Hatch and Shan Lin and Jingpei Lu and Jean Mercat and Abdul Rehman and Pannag R Sanketi and Archit Sharma and Cody Simpson and Quan Vuong and Homer Rich Walke and Blake Wulfe and Ted Xiao and Jonathan Heewon Yang and Arefeh Yavary and Tony Z. Zhao and Christopher Agia and Rohan Baijal and Mateo Guaman Castro and Daphne Chen and Qiuyu Chen and Trinity Chung and Jaimyn Drake and Ethan Paul Foster and Jensen Gao and David Antonio Herrera and Minho Heo and Kyle Hsu and Jiaheng Hu and Donovon Jackson and Charlotte Le and Yunshuang Li and Kevin Lin and Roy Lin and Zehan Ma and Abhiram Maddukuri and Suvir Mirchandani and Daniel Morton and Tony Nguyen and Abigail O'Neill and Rosario Scalise and Derick Seale and Victor Son and Stephen Tian and Emi Tran and Andrew E. Wang and Yilin Wu and Annie Xie and Jingyun Yang and Patrick Yin and Yunchu Zhang and Osbert Bastani and Glen Berseth and Jeannette Bohg and Ken Goldberg and Abhinav Gupta and Abhishek Gupta and Dinesh Jayaraman and Joseph J Lim and Jitendra Malik and Roberto Martín-Martín and Subramanian Ramamoorthy and Dorsa Sadigh and Shuran Song and Jiajun Wu and Michael C. Yip and Yuke Zhu and Thomas Kollar and Sergey Levine and Chelsea Finn},
year = {2024},
}""").lstrip(),
},
"fmb": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://functional-manipulation-benchmark.github.io/",
"paper": "https://arxiv.org/abs/2401.08553",
"citation_bibtex": dedent(r"""
@article{luo2024fmb,
title={FMB: a Functional Manipulation Benchmark for Generalizable Robotic Learning},
author={Luo, Jianlan and Xu, Charles and Liu, Fangchen and Tan, Liam and Lin, Zipeng and Wu, Jeffrey and Abbeel, Pieter and Levine, Sergey},
journal={arXiv preprint arXiv:2401.08553},
year={2024}
}""").lstrip(),
},
"iamlab_cmu_pickup_insert": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://openreview.net/forum?id=WuBv9-IGDUA",
"paper": "https://arxiv.org/abs/2401.14502",
"citation_bibtex": dedent(r"""
@inproceedings{saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=WuBv9-IGDUA}
}""").lstrip(),
},
"imperialcollege_sawyer_wrist_cam": {
"tasks_col": "language_instruction",
"license": "mit",
},
"jaco_play": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://github.com/clvrai/clvr_jaco_play_dataset",
"citation_bibtex": dedent(r"""
@software{dass2023jacoplay,
author = {Dass, Shivin and Yapeter, Jullian and Zhang, Jesse and Zhang, Jiahui
and Pertsch, Karl and Nikolaidis, Stefanos and Lim, Joseph J.},
title = {CLVR Jaco Play Dataset},
url = {https://github.com/clvrai/clvr_jaco_play_dataset},
version = {1.0.0},
year = {2023}
}""").lstrip(),
},
"kaist_nonprehensile": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://github.com/JaeHyung-Kim/rlds_dataset_builder",
"citation_bibtex": dedent(r"""
@article{kimpre,
title={Pre-and post-contact policy decomposition for non-prehensile manipulation with zero-shot sim-to-real transfer},
author={Kim, Minchan and Han, Junhyek and Kim, Jaehyung and Kim, Beomjoon},
booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2023},
organization={IEEE}
}""").lstrip(),
},
"nyu_door_opening_surprising_effectiveness": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://jyopari.github.io/VINN/",
"paper": "https://arxiv.org/abs/2112.01511",
"citation_bibtex": dedent(r"""
@misc{pari2021surprising,
title={The Surprising Effectiveness of Representation Learning for Visual Imitation},
author={Jyothish Pari and Nur Muhammad Shafiullah and Sridhar Pandian Arunachalam and Lerrel Pinto},
year={2021},
eprint={2112.01511},
archivePrefix={arXiv},
primaryClass={cs.RO}
}""").lstrip(),
},
"nyu_franka_play_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://play-to-policy.github.io/",
"paper": "https://arxiv.org/abs/2210.10047",
"citation_bibtex": dedent(r"""
@article{cui2022play,
title = {From Play to Policy: Conditional Behavior Generation from Uncurated Robot Data},
author = {Cui, Zichen Jeff and Wang, Yibin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal = {arXiv preprint arXiv:2210.10047},
year = {2022}
}""").lstrip(),
},
"nyu_rot_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://rot-robot.github.io/",
"paper": "https://arxiv.org/abs/2206.15469",
"citation_bibtex": dedent(r"""
@inproceedings{haldar2023watch,
title={Watch and match: Supercharging imitation with regularized optimal transport},
author={Haldar, Siddhant and Mathur, Vaibhav and Yarats, Denis and Pinto, Lerrel},
booktitle={Conference on Robot Learning},
pages={32--43},
year={2023},
organization={PMLR}
}""").lstrip(),
},
"roboturk": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://roboturk.stanford.edu/dataset_real.html",
"paper": "PAPER",
"citation_bibtex": dedent(r"""
@inproceedings{mandlekar2019scaling,
title={Scaling robot supervision to hundreds of hours with roboturk: Robotic manipulation dataset through human reasoning and dexterity},
author={Mandlekar, Ajay and Booher, Jonathan and Spero, Max and Tung, Albert and Gupta, Anchit and Zhu, Yuke and Garg, Animesh and Savarese, Silvio and Fei-Fei, Li},
booktitle={2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={1048--1055},
year={2019},
organization={IEEE}
}""").lstrip(),
},
"stanford_hydra_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/hydra-il-2023",
"paper": "https://arxiv.org/abs/2306.17237",
"citation_bibtex": dedent(r"""
@article{belkhale2023hydra,
title={HYDRA: Hybrid Robot Actions for Imitation Learning},
author={Belkhale, Suneel and Cui, Yuchen and Sadigh, Dorsa},
journal={arxiv},
year={2023}
}""").lstrip(),
},
"stanford_kuka_multimodal_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://sites.google.com/view/visionandtouch",
"paper": "https://arxiv.org/abs/1810.10191",
"citation_bibtex": dedent(r"""
@inproceedings{lee2019icra,
title={Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks},
author={Lee, Michelle A and Zhu, Yuke and Srinivasan, Krishnan and Shah, Parth and Savarese, Silvio and Fei-Fei, Li and Garg, Animesh and Bohg, Jeannette},
booktitle={2019 IEEE International Conference on Robotics and Automation (ICRA)},
year={2019},
url={https://arxiv.org/abs/1810.10191}
}""").lstrip(),
},
"stanford_robocook": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://hshi74.github.io/robocook/",
"paper": "https://arxiv.org/abs/2306.14447",
"citation_bibtex": dedent(r"""
@article{shi2023robocook,
title={RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with Diverse Tools},
author={Shi, Haochen and Xu, Huazhe and Clarke, Samuel and Li, Yunzhu and Wu, Jiajun},
journal={arXiv preprint arXiv:2306.14447},
year={2023}
}""").lstrip(),
},
"taco_play": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"url": "https://www.kaggle.com/datasets/oiermees/taco-robot",
"paper": "https://arxiv.org/abs/2209.08959, https://arxiv.org/abs/2210.01911",
"citation_bibtex": dedent(r"""
@inproceedings{rosete2022tacorl,
author = {Erick Rosete-Beas and Oier Mees and Gabriel Kalweit and Joschka Boedecker and Wolfram Burgard},
title = {Latent Plans for Task Agnostic Offline Reinforcement Learning},
journal = {Proceedings of the 6th Conference on Robot Learning (CoRL)},
year = {2022}
}
@inproceedings{mees23hulc2,
title={Grounding Language with Visual Affordances over Unstructured Data},
author={Oier Mees and Jessica Borja-Diaz and Wolfram Burgard},
booktitle = {Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)},
year={2023},
address = {London, UK}
}""").lstrip(),
},
"tokyo_u_lsmo": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "URL",
"paper": "https://arxiv.org/abs/2107.05842",
"citation_bibtex": dedent(r"""
@Article{Osa22,
author = {Takayuki Osa},
journal = {The International Journal of Robotics Research},
title = {Motion Planning by Learning the Solution Manifold in Trajectory Optimization},
year = {2022},
number = {3},
pages = {291--311},
volume = {41},
}""").lstrip(),
},
"toto": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://toto-benchmark.org/",
"paper": "https://arxiv.org/abs/2306.00942",
"citation_bibtex": dedent(r"""
@inproceedings{zhou2023train,
author={Zhou, Gaoyue and Dean, Victoria and Srirama, Mohan Kumar and Rajeswaran, Aravind and Pari, Jyothish and Hatch, Kyle and Jain, Aryan and Yu, Tianhe and Abbeel, Pieter and Pinto, Lerrel and Finn, Chelsea and Gupta, Abhinav},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
title={Train Offline, Test Online: A Real Robot Learning Benchmark},
year={2023},
}""").lstrip(),
},
"ucsd_kitchen_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@ARTICLE{ucsd_kitchens,
author = {Ge Yan, Kris Wu, and Xiaolong Wang},
title = {{ucsd kitchens Dataset}},
year = {2023},
month = {August}
}""").lstrip(),
},
"ucsd_pick_and_place_dataset": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://owmcorl.github.io/#",
"paper": "https://arxiv.org/abs/2310.16029",
"citation_bibtex": dedent(r"""
@preprint{Feng2023Finetuning,
title={Finetuning Offline World Models in the Real World},
author={Yunhai Feng, Nicklas Hansen, Ziyan Xiong, Chandramouli Rajagopalan, Xiaolong Wang},
year={2023}
}""").lstrip(),
},
"uiuc_d3field": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://robopil.github.io/d3fields/",
"paper": "https://arxiv.org/abs/2309.16118",
"citation_bibtex": dedent(r"""
@article{wang2023d3field,
title={D^3Field: Dynamic 3D Descriptor Fields for Generalizable Robotic Manipulation},
author={Wang, Yixuan and Li, Zhuoran and Zhang, Mingtong and Driggs-Campbell, Katherine and Wu, Jiajun and Fei-Fei, Li and Li, Yunzhu},
journal={arXiv preprint arXiv:},
year={2023},
}""").lstrip(),
},
"usc_cloth_sim": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://uscresl.github.io/dmfd/",
"paper": "https://arxiv.org/abs/2207.10148",
"citation_bibtex": dedent(r"""
@article{salhotra2022dmfd,
author={Salhotra, Gautam and Liu, I-Chun Arthur and Dominguez-Kuhne, Marcus and Sukhatme, Gaurav S.},
journal={IEEE Robotics and Automation Letters},
title={Learning Deformable Object Manipulation From Expert Demonstrations},
year={2022},
volume={7},
number={4},
pages={8775-8782},
doi={10.1109/LRA.2022.3187843}
}""").lstrip(),
},
"utaustin_mutex": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/MUTEX/",
"paper": "https://arxiv.org/abs/2309.14320",
"citation_bibtex": dedent(r"""
@inproceedings{shah2023mutex,
title={{MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=PwqiqaaEzJ}
}""").lstrip(),
},
"utokyo_pr2_opening_fridge": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}""").lstrip(),
},
"utokyo_pr2_tabletop_manipulation": {
"tasks_col": "language_instruction",
"license": "mit",
"citation_bibtex": dedent(r"""
@misc{oh2023pr2utokyodatasets,
author={Jihoon Oh and Naoaki Kanazawa and Kento Kawaharazuka},
title={X-Embodiment U-Tokyo PR2 Datasets},
year={2023},
url={https://github.com/ojh6404/rlds_dataset_builder},
}""").lstrip(),
},
"utokyo_saytap": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://saytap.github.io/",
"paper": "https://arxiv.org/abs/2306.07580",
"citation_bibtex": dedent(r"""
@article{saytap2023,
author = {Yujin Tang and Wenhao Yu and Jie Tan and Heiga Zen and Aleksandra Faust and
Tatsuya Harada},
title = {SayTap: Language to Quadrupedal Locomotion},
eprint = {arXiv:2306.07580},
url = {https://saytap.github.io},
note = {https://saytap.github.io},
year = {2023}
}""").lstrip(),
},
"utokyo_xarm_bimanual": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"citation_bibtex": dedent(r"""
@misc{matsushima2023weblab,
title={Weblab xArm Dataset},
author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
year={2023},
}""").lstrip(),
},
"utokyo_xarm_pick_and_place": {
"tasks_col": "language_instruction",
"license": "cc-by-4.0",
"citation_bibtex": dedent(r"""
@misc{matsushima2023weblab,
title={Weblab xArm Dataset},
author={Tatsuya Matsushima and Hiroki Furuta and Yusuke Iwasawa and Yutaka Matsuo},
year={2023},
}""").lstrip(),
},
"viola": {
"tasks_col": "language_instruction",
"license": "mit",
"url": "https://ut-austin-rpl.github.io/VIOLA/",
"paper": "https://arxiv.org/abs/2210.11339",
"citation_bibtex": dedent(r"""
@article{zhu2022viola,
title={VIOLA: Imitation Learning for Vision-Based Manipulation with Object Proposal Priors},
author={Zhu, Yifeng and Joshi, Abhishek and Stone, Peter and Zhu, Yuke},
journal={6th Annual Conference on Robot Learning (CoRL)},
year={2022}
}""").lstrip(),
},
}
# spellchecker:on
def batch_convert():
status = {}
logfile = LOCAL_DIR / "conversion_log.txt"
assert set(DATASETS) == {id_.split("/")[1] for id_ in available_datasets}
for num, (name, kwargs) in enumerate(DATASETS.items()):
repo_id = f"lerobot/{name}"
print(f"\nConverting {repo_id} ({num}/{len(DATASETS)})")
print("---------------------------------------------------------")
try:
convert_dataset(repo_id, LOCAL_DIR, **kwargs)
status = f"{repo_id}: success."
with open(logfile, "a") as file:
file.write(status + "\n")
except Exception:
status = f"{repo_id}: failed\n {traceback.format_exc()}"
with open(logfile, "a") as file:
file.write(status + "\n")
continue
if __name__ == "__main__":
batch_convert()

View File

@@ -0,0 +1,664 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 1.6 to
2.0. You will be required to provide the 'tasks', which is a short but accurate description in plain English
for each of the task performed in the dataset. This will allow to easily train models with task-conditioning.
We support 3 different scenarios for these tasks (see instructions below):
1. Single task dataset: all episodes of your dataset have the same single task.
2. Single task episodes: the episodes of your dataset each contain a single task but they can differ from
one episode to the next.
3. Multi task episodes: episodes of your dataset may each contain several different tasks.
Can you can also provide a robot config .yaml file (not mandatory) to this script via the option
'--robot-config' so that it writes information about the robot (robot type, motors names) this dataset was
recorded with. For now, only Aloha/Koch type robots are supported with this option.
# 1. Single task dataset
If your dataset contains a single task, you can simply provide it directly via the CLI with the
'--single-task' option.
Examples:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/aloha_sim_insertion_human_image \
--single-task "Insert the peg into the socket." \
--robot-config lerobot/configs/robot/aloha.yaml \
--local-dir data
```
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id aliberts/koch_tutorial \
--single-task "Pick the Lego block and drop it in the box on the right." \
--robot-config lerobot/configs/robot/koch.yaml \
--local-dir data
```
# 2. Single task episodes
If your dataset is a multi-task dataset, you have two options to provide the tasks to this script:
- If your dataset already contains a language instruction column in its parquet file, you can simply provide
this column's name with the '--tasks-col' arg.
Example:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/stanford_kuka_multimodal_dataset \
--tasks-col "language_instruction" \
--local-dir data
```
- If your dataset doesn't contain a language instruction, you should provide the path to a .json file with the
'--tasks-path' arg. This file should have the following structure where keys correspond to each
episode_index in the dataset, and values are the language instruction for that episode.
Example:
```json
{
"0": "Do something",
"1": "Do something else",
"2": "Do something",
"3": "Go there",
...
}
```
# 3. Multi task episodes
If you have multiple tasks per episodes, your dataset should contain a language instruction column in its
parquet file, and you must provide this column's name with the '--tasks-col' arg.
Example:
```bash
python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \
--repo-id lerobot/stanford_kuka_multimodal_dataset \
--tasks-col "language_instruction" \
--local-dir data
```
"""
import argparse
import contextlib
import filecmp
import json
import logging
import math
import shutil
import subprocess
import tempfile
from pathlib import Path
import datasets
import pyarrow.compute as pc
import pyarrow.parquet as pq
import torch
from datasets import Dataset
from huggingface_hub import HfApi
from huggingface_hub.errors import EntryNotFoundError, HfHubHTTPError
from safetensors.torch import load_file
from lerobot.common.datasets.utils import (
DEFAULT_CHUNK_SIZE,
DEFAULT_PARQUET_PATH,
DEFAULT_VIDEO_PATH,
EPISODES_PATH,
INFO_PATH,
STATS_PATH,
TASKS_PATH,
create_branch,
create_lerobot_dataset_card,
flatten_dict,
get_safe_version,
load_json,
unflatten_dict,
write_json,
write_jsonlines,
)
from lerobot.common.datasets.video_utils import (
VideoFrame, # noqa: F401
get_image_pixel_channels,
get_video_info,
)
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.robot_devices.robots.utils import make_robot_config
V16 = "v1.6"
V20 = "v2.0"
GITATTRIBUTES_REF = "aliberts/gitattributes_reference"
V1_VIDEO_FILE = "{video_key}_episode_{episode_index:06d}.mp4"
V1_INFO_PATH = "meta_data/info.json"
V1_STATS_PATH = "meta_data/stats.safetensors"
def parse_robot_config(robot_cfg: RobotConfig) -> tuple[str, dict]:
if robot_cfg.type in ["aloha", "koch"]:
state_names = [
f"{arm}_{motor}" if len(robot_cfg.follower_arms) > 1 else motor
for arm in robot_cfg.follower_arms
for motor in robot_cfg.follower_arms[arm].motors
]
action_names = [
# f"{arm}_{motor}" for arm in ["left", "right"] for motor in robot_cfg["leader_arms"][arm]["motors"]
f"{arm}_{motor}" if len(robot_cfg.leader_arms) > 1 else motor
for arm in robot_cfg.leader_arms
for motor in robot_cfg.leader_arms[arm].motors
]
# elif robot_cfg["robot_type"] == "stretch3": TODO
else:
raise NotImplementedError(
"Please provide robot_config={'robot_type': ..., 'names': ...} directly to convert_dataset()."
)
return {
"robot_type": robot_cfg.type,
"names": {
"observation.state": state_names,
"observation.effort": state_names,
"action": action_names,
},
}
def convert_stats_to_json(v1_dir: Path, v2_dir: Path) -> None:
safetensor_path = v1_dir / V1_STATS_PATH
stats = load_file(safetensor_path)
serialized_stats = {key: value.tolist() for key, value in stats.items()}
serialized_stats = unflatten_dict(serialized_stats)
json_path = v2_dir / STATS_PATH
json_path.parent.mkdir(exist_ok=True, parents=True)
with open(json_path, "w") as f:
json.dump(serialized_stats, f, indent=4)
# Sanity check
with open(json_path) as f:
stats_json = json.load(f)
stats_json = flatten_dict(stats_json)
stats_json = {key: torch.tensor(value) for key, value in stats_json.items()}
for key in stats:
torch.testing.assert_close(stats_json[key], stats[key])
def get_features_from_hf_dataset(
dataset: Dataset, robot_config: RobotConfig | None = None
) -> dict[str, list]:
robot_config = parse_robot_config(robot_config)
features = {}
for key, ft in dataset.features.items():
if isinstance(ft, datasets.Value):
dtype = ft.dtype
shape = (1,)
names = None
if isinstance(ft, datasets.Sequence):
assert isinstance(ft.feature, datasets.Value)
dtype = ft.feature.dtype
shape = (ft.length,)
motor_names = (
robot_config["names"][key] if robot_config else [f"motor_{i}" for i in range(ft.length)]
)
assert len(motor_names) == shape[0]
names = {"motors": motor_names}
elif isinstance(ft, datasets.Image):
dtype = "image"
image = dataset[0][key] # Assuming first row
channels = get_image_pixel_channels(image)
shape = (image.height, image.width, channels)
names = ["height", "width", "channels"]
elif ft._type == "VideoFrame":
dtype = "video"
shape = None # Add shape later
names = ["height", "width", "channels"]
features[key] = {
"dtype": dtype,
"shape": shape,
"names": names,
}
return features
def add_task_index_by_episodes(dataset: Dataset, tasks_by_episodes: dict) -> tuple[Dataset, list[str]]:
df = dataset.to_pandas()
tasks = list(set(tasks_by_episodes.values()))
tasks_to_task_index = {task: task_idx for task_idx, task in enumerate(tasks)}
episodes_to_task_index = {ep_idx: tasks_to_task_index[task] for ep_idx, task in tasks_by_episodes.items()}
df["task_index"] = df["episode_index"].map(episodes_to_task_index).astype(int)
features = dataset.features
features["task_index"] = datasets.Value(dtype="int64")
dataset = Dataset.from_pandas(df, features=features, split="train")
return dataset, tasks
def add_task_index_from_tasks_col(
dataset: Dataset, tasks_col: str
) -> tuple[Dataset, dict[str, list[str]], list[str]]:
df = dataset.to_pandas()
# HACK: This is to clean some of the instructions in our version of Open X datasets
prefix_to_clean = "tf.Tensor(b'"
suffix_to_clean = "', shape=(), dtype=string)"
df[tasks_col] = df[tasks_col].str.removeprefix(prefix_to_clean).str.removesuffix(suffix_to_clean)
# Create task_index col
tasks_by_episode = df.groupby("episode_index")[tasks_col].unique().apply(lambda x: x.tolist()).to_dict()
tasks = df[tasks_col].unique().tolist()
tasks_to_task_index = {task: idx for idx, task in enumerate(tasks)}
df["task_index"] = df[tasks_col].map(tasks_to_task_index).astype(int)
# Build the dataset back from df
features = dataset.features
features["task_index"] = datasets.Value(dtype="int64")
dataset = Dataset.from_pandas(df, features=features, split="train")
dataset = dataset.remove_columns(tasks_col)
return dataset, tasks, tasks_by_episode
def split_parquet_by_episodes(
dataset: Dataset,
total_episodes: int,
total_chunks: int,
output_dir: Path,
) -> list:
table = dataset.data.table
episode_lengths = []
for ep_chunk in range(total_chunks):
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
chunk_dir = "/".join(DEFAULT_PARQUET_PATH.split("/")[:-1]).format(episode_chunk=ep_chunk)
(output_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
for ep_idx in range(ep_chunk_start, ep_chunk_end):
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
episode_lengths.insert(ep_idx, len(ep_table))
output_file = output_dir / DEFAULT_PARQUET_PATH.format(
episode_chunk=ep_chunk, episode_index=ep_idx
)
pq.write_table(ep_table, output_file)
return episode_lengths
def move_videos(
repo_id: str,
video_keys: list[str],
total_episodes: int,
total_chunks: int,
work_dir: Path,
clean_gittatributes: Path,
branch: str = "main",
) -> None:
"""
HACK: Since HfApi() doesn't provide a way to move files directly in a repo, this function will run git
commands to fetch git lfs video files references to move them into subdirectories without having to
actually download them.
"""
_lfs_clone(repo_id, work_dir, branch)
videos_moved = False
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*.mp4")]
if len(video_files) == 0:
video_files = [str(f.relative_to(work_dir)) for f in work_dir.glob("videos*/*/*/*.mp4")]
videos_moved = True # Videos have already been moved
assert len(video_files) == total_episodes * len(video_keys)
lfs_untracked_videos = _get_lfs_untracked_videos(work_dir, video_files)
current_gittatributes = work_dir / ".gitattributes"
if not filecmp.cmp(current_gittatributes, clean_gittatributes, shallow=False):
fix_gitattributes(work_dir, current_gittatributes, clean_gittatributes)
if lfs_untracked_videos:
fix_lfs_video_files_tracking(work_dir, video_files)
if videos_moved:
return
video_dirs = sorted(work_dir.glob("videos*/"))
for ep_chunk in range(total_chunks):
ep_chunk_start = DEFAULT_CHUNK_SIZE * ep_chunk
ep_chunk_end = min(DEFAULT_CHUNK_SIZE * (ep_chunk + 1), total_episodes)
for vid_key in video_keys:
chunk_dir = "/".join(DEFAULT_VIDEO_PATH.split("/")[:-1]).format(
episode_chunk=ep_chunk, video_key=vid_key
)
(work_dir / chunk_dir).mkdir(parents=True, exist_ok=True)
for ep_idx in range(ep_chunk_start, ep_chunk_end):
target_path = DEFAULT_VIDEO_PATH.format(
episode_chunk=ep_chunk, video_key=vid_key, episode_index=ep_idx
)
video_file = V1_VIDEO_FILE.format(video_key=vid_key, episode_index=ep_idx)
if len(video_dirs) == 1:
video_path = video_dirs[0] / video_file
else:
for dir in video_dirs:
if (dir / video_file).is_file():
video_path = dir / video_file
break
video_path.rename(work_dir / target_path)
commit_message = "Move video files into chunk subdirectories"
subprocess.run(["git", "add", "."], cwd=work_dir, check=True)
subprocess.run(["git", "commit", "-m", commit_message], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]) -> None:
"""
HACK: This function fixes the tracking by git lfs which was not properly set on some repos. In that case,
there's no other option than to download the actual files and reupload them with lfs tracking.
"""
for i in range(0, len(lfs_untracked_videos), 100):
files = lfs_untracked_videos[i : i + 100]
try:
subprocess.run(["git", "rm", "--cached", *files], cwd=work_dir, capture_output=True, check=True)
except subprocess.CalledProcessError as e:
print("git rm --cached ERROR:")
print(e.stderr)
subprocess.run(["git", "add", *files], cwd=work_dir, check=True)
commit_message = "Track video files with git lfs"
subprocess.run(["git", "commit", "-m", commit_message], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def fix_gitattributes(work_dir: Path, current_gittatributes: Path, clean_gittatributes: Path) -> None:
shutil.copyfile(clean_gittatributes, current_gittatributes)
subprocess.run(["git", "add", ".gitattributes"], cwd=work_dir, check=True)
subprocess.run(["git", "commit", "-m", "Fix .gitattributes"], cwd=work_dir, check=True)
subprocess.run(["git", "push"], cwd=work_dir, check=True)
def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
subprocess.run(["git", "lfs", "install"], cwd=work_dir, check=True)
repo_url = f"https://huggingface.co/datasets/{repo_id}"
env = {"GIT_LFS_SKIP_SMUDGE": "1"} # Prevent downloading LFS files
subprocess.run(
["git", "clone", "--branch", branch, "--single-branch", "--depth", "1", repo_url, str(work_dir)],
check=True,
env=env,
)
def _get_lfs_untracked_videos(work_dir: Path, video_files: list[str]) -> list[str]:
lfs_tracked_files = subprocess.run(
["git", "lfs", "ls-files", "-n"], cwd=work_dir, capture_output=True, text=True, check=True
)
lfs_tracked_files = set(lfs_tracked_files.stdout.splitlines())
return [f for f in video_files if f not in lfs_tracked_files]
def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str], branch: str) -> dict:
# Assumes first episode
video_files = [
DEFAULT_VIDEO_PATH.format(episode_chunk=0, video_key=vid_key, episode_index=0)
for vid_key in video_keys
]
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", local_dir=local_dir, revision=branch, allow_patterns=video_files
)
videos_info_dict = {}
for vid_key, vid_path in zip(video_keys, video_files, strict=True):
videos_info_dict[vid_key] = get_video_info(local_dir / vid_path)
return videos_info_dict
def convert_dataset(
repo_id: str,
local_dir: Path,
single_task: str | None = None,
tasks_path: Path | None = None,
tasks_col: Path | None = None,
robot_config: RobotConfig | None = None,
test_branch: str | None = None,
**card_kwargs,
):
v1 = get_safe_version(repo_id, V16)
v1x_dir = local_dir / V16 / repo_id
v20_dir = local_dir / V20 / repo_id
v1x_dir.mkdir(parents=True, exist_ok=True)
v20_dir.mkdir(parents=True, exist_ok=True)
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id, repo_type="dataset", revision=v1, local_dir=v1x_dir, ignore_patterns="videos*/"
)
branch = "main"
if test_branch:
branch = test_branch
create_branch(repo_id=repo_id, branch=test_branch, repo_type="dataset")
metadata_v1 = load_json(v1x_dir / V1_INFO_PATH)
dataset = datasets.load_dataset("parquet", data_dir=v1x_dir / "data", split="train")
features = get_features_from_hf_dataset(dataset, robot_config)
video_keys = [key for key, ft in features.items() if ft["dtype"] == "video"]
if single_task and "language_instruction" in dataset.column_names:
logging.warning(
"'single_task' provided but 'language_instruction' tasks_col found. Using 'language_instruction'.",
)
single_task = None
tasks_col = "language_instruction"
# Episodes & chunks
episode_indices = sorted(dataset.unique("episode_index"))
total_episodes = len(episode_indices)
assert episode_indices == list(range(total_episodes))
total_videos = total_episodes * len(video_keys)
total_chunks = total_episodes // DEFAULT_CHUNK_SIZE
if total_episodes % DEFAULT_CHUNK_SIZE != 0:
total_chunks += 1
# Tasks
if single_task:
tasks_by_episodes = dict.fromkeys(episode_indices, single_task)
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_path:
tasks_by_episodes = load_json(tasks_path)
tasks_by_episodes = {int(ep_idx): task for ep_idx, task in tasks_by_episodes.items()}
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_col:
dataset, tasks, tasks_by_episodes = add_task_index_from_tasks_col(dataset, tasks_col)
else:
raise ValueError
assert set(tasks) == {task for ep_tasks in tasks_by_episodes.values() for task in ep_tasks}
tasks = [{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)]
write_jsonlines(tasks, v20_dir / TASKS_PATH)
features["task_index"] = {
"dtype": "int64",
"shape": (1,),
"names": None,
}
# Videos
if video_keys:
assert metadata_v1.get("video", False)
dataset = dataset.remove_columns(video_keys)
clean_gitattr = Path(
hub_api.hf_hub_download(
repo_id=GITATTRIBUTES_REF, repo_type="dataset", local_dir=local_dir, filename=".gitattributes"
)
).absolute()
with tempfile.TemporaryDirectory() as tmp_video_dir:
move_videos(
repo_id, video_keys, total_episodes, total_chunks, Path(tmp_video_dir), clean_gitattr, branch
)
videos_info = get_videos_info(repo_id, v1x_dir, video_keys=video_keys, branch=branch)
for key in video_keys:
features[key]["shape"] = (
videos_info[key].pop("video.height"),
videos_info[key].pop("video.width"),
videos_info[key].pop("video.channels"),
)
features[key]["video_info"] = videos_info[key]
assert math.isclose(videos_info[key]["video.fps"], metadata_v1["fps"], rel_tol=1e-3)
if "encoding" in metadata_v1:
assert videos_info[key]["video.pix_fmt"] == metadata_v1["encoding"]["pix_fmt"]
else:
assert metadata_v1.get("video", 0) == 0
videos_info = None
# Split data into 1 parquet file by episode
episode_lengths = split_parquet_by_episodes(dataset, total_episodes, total_chunks, v20_dir)
if robot_config is not None:
robot_type = robot_config.type
repo_tags = [robot_type]
else:
robot_type = "unknown"
repo_tags = None
# Episodes
episodes = [
{"episode_index": ep_idx, "tasks": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
for ep_idx in episode_indices
]
write_jsonlines(episodes, v20_dir / EPISODES_PATH)
# Assemble metadata v2.0
metadata_v2_0 = {
"codebase_version": V20,
"robot_type": robot_type,
"total_episodes": total_episodes,
"total_frames": len(dataset),
"total_tasks": len(tasks),
"total_videos": total_videos,
"total_chunks": total_chunks,
"chunks_size": DEFAULT_CHUNK_SIZE,
"fps": metadata_v1["fps"],
"splits": {"train": f"0:{total_episodes}"},
"data_path": DEFAULT_PARQUET_PATH,
"video_path": DEFAULT_VIDEO_PATH if video_keys else None,
"features": features,
}
write_json(metadata_v2_0, v20_dir / INFO_PATH)
convert_stats_to_json(v1x_dir, v20_dir)
card = create_lerobot_dataset_card(tags=repo_tags, dataset_info=metadata_v2_0, **card_kwargs)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta_data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta", repo_type="dataset", revision=branch)
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="data",
folder_path=v20_dir / "data",
repo_type="dataset",
revision=branch,
)
hub_api.upload_folder(
repo_id=repo_id,
path_in_repo="meta",
folder_path=v20_dir / "meta",
repo_type="dataset",
revision=branch,
)
card.push_to_hub(repo_id=repo_id, repo_type="dataset", revision=branch)
if not test_branch:
create_branch(repo_id=repo_id, branch=V20, repo_type="dataset")
def main():
parser = argparse.ArgumentParser()
task_args = parser.add_mutually_exclusive_group(required=True)
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset (e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
)
task_args.add_argument(
"--single-task",
type=str,
help="A short but accurate description of the single task performed in the dataset.",
)
task_args.add_argument(
"--tasks-col",
type=str,
help="The name of the column containing language instructions",
)
task_args.add_argument(
"--tasks-path",
type=Path,
help="The path to a .json file containing one language instruction for each episode_index",
)
parser.add_argument(
"--robot",
type=str,
default=None,
help="Robot config used for the dataset during conversion (e.g. 'koch', 'aloha', 'so100', etc.)",
)
parser.add_argument(
"--local-dir",
type=Path,
default=None,
help="Local directory to store the dataset during conversion. Defaults to /tmp/lerobot_dataset_v2",
)
parser.add_argument(
"--license",
type=str,
default="apache-2.0",
help="Repo license. Must be one of https://huggingface.co/docs/hub/repositories-licenses. Defaults to mit.",
)
parser.add_argument(
"--test-branch",
type=str,
default=None,
help="Repo branch to test your conversion first (e.g. 'v2.0.test')",
)
args = parser.parse_args()
if not args.local_dir:
args.local_dir = Path("/tmp/lerobot_dataset_v2")
if args.robot is not None:
robot_config = make_robot_config(args.robot)
del args.robot
convert_dataset(**vars(args), robot_config=robot_config)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,87 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import traceback
from pathlib import Path
from datasets import get_dataset_config_info
from huggingface_hub import HfApi
from lerobot import available_datasets
from lerobot.common.datasets.lerobot_dataset import LeRobotDatasetMetadata
from lerobot.common.datasets.utils import INFO_PATH, write_info
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V20, SuppressWarnings
LOCAL_DIR = Path("data/")
hub_api = HfApi()
def fix_dataset(repo_id: str) -> str:
if not hub_api.revision_exists(repo_id, V20, repo_type="dataset"):
return f"{repo_id}: skipped (not in {V20})."
dataset_info = get_dataset_config_info(repo_id, "default")
with SuppressWarnings():
lerobot_metadata = LeRobotDatasetMetadata(repo_id, revision=V20, force_cache_sync=True)
meta_features = {key for key, ft in lerobot_metadata.features.items() if ft["dtype"] != "video"}
parquet_features = set(dataset_info.features)
diff_parquet_meta = parquet_features - meta_features
diff_meta_parquet = meta_features - parquet_features
if diff_parquet_meta:
raise ValueError(f"In parquet not in info.json: {parquet_features - meta_features}")
if not diff_meta_parquet:
return f"{repo_id}: skipped (no diff)"
if diff_meta_parquet:
logging.warning(f"In info.json not in parquet: {meta_features - parquet_features}")
assert diff_meta_parquet == {"language_instruction"}
lerobot_metadata.features.pop("language_instruction")
write_info(lerobot_metadata.info, lerobot_metadata.root)
commit_info = hub_api.upload_file(
path_or_fileobj=lerobot_metadata.root / INFO_PATH,
path_in_repo=INFO_PATH,
repo_id=repo_id,
repo_type="dataset",
revision=V20,
commit_message="Remove 'language_instruction'",
create_pr=True,
)
return f"{repo_id}: success - PR: {commit_info.pr_url}"
def batch_fix():
status = {}
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
logfile = LOCAL_DIR / "fix_features_v20.txt"
for num, repo_id in enumerate(available_datasets):
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
print("---------------------------------------------------------")
try:
status = fix_dataset(repo_id)
except Exception:
status = f"{repo_id}: failed\n {traceback.format_exc()}"
logging.info(status)
with open(logfile, "a") as file:
file.write(status + "\n")
if __name__ == "__main__":
batch_fix()

View File

@@ -0,0 +1,54 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is for internal use to convert all datasets under the 'lerobot' hub user account to v2.1.
"""
import traceback
from pathlib import Path
from huggingface_hub import HfApi
from lerobot import available_datasets
from lerobot.common.datasets.v21.convert_dataset_v20_to_v21 import V21, convert_dataset
LOCAL_DIR = Path("data/")
def batch_convert():
status = {}
LOCAL_DIR.mkdir(parents=True, exist_ok=True)
logfile = LOCAL_DIR / "conversion_log_v21.txt"
hub_api = HfApi()
for num, repo_id in enumerate(available_datasets):
print(f"\nConverting {repo_id} ({num}/{len(available_datasets)})")
print("---------------------------------------------------------")
try:
if hub_api.revision_exists(repo_id, V21, repo_type="dataset"):
status = f"{repo_id}: success (already in {V21})."
else:
convert_dataset(repo_id)
status = f"{repo_id}: success."
except Exception:
status = f"{repo_id}: failed\n {traceback.format_exc()}"
with open(logfile, "a") as file:
file.write(status + "\n")
if __name__ == "__main__":
batch_convert()

View File

@@ -0,0 +1,114 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script will help you convert any LeRobot dataset already pushed to the hub from codebase version 2.0 to
2.1. It will:
- Generate per-episodes stats and writes them in `episodes_stats.jsonl`
- Check consistency between these new stats and the old ones.
- Remove the deprecated `stats.json`.
- Update codebase_version in `info.json`.
- Push this new version to the hub on the 'main' branch and tags it with "v2.1".
Usage:
```bash
python lerobot/common/datasets/v21/convert_dataset_v20_to_v21.py \
--repo-id=aliberts/koch_tutorial
```
"""
import argparse
import logging
from huggingface_hub import HfApi
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats
V20 = "v2.0"
V21 = "v2.1"
class SuppressWarnings:
def __enter__(self):
self.previous_level = logging.getLogger().getEffectiveLevel()
logging.getLogger().setLevel(logging.ERROR)
def __exit__(self, exc_type, exc_val, exc_tb):
logging.getLogger().setLevel(self.previous_level)
def convert_dataset(
repo_id: str,
branch: str | None = None,
num_workers: int = 4,
):
with SuppressWarnings():
dataset = LeRobotDataset(repo_id, revision=V20, force_cache_sync=True)
if (dataset.root / EPISODES_STATS_PATH).is_file():
(dataset.root / EPISODES_STATS_PATH).unlink()
convert_stats(dataset, num_workers=num_workers)
ref_stats = load_stats(dataset.root)
check_aggregate_stats(dataset, ref_stats)
dataset.meta.info["codebase_version"] = CODEBASE_VERSION
write_info(dataset.meta.info, dataset.root)
dataset.push_to_hub(branch=branch, tag_version=False, allow_patterns="meta/")
# delete old stats.json file
if (dataset.root / STATS_PATH).is_file:
(dataset.root / STATS_PATH).unlink()
hub_api = HfApi()
if hub_api.file_exists(
repo_id=dataset.repo_id, filename=STATS_PATH, revision=branch, repo_type="dataset"
):
hub_api.delete_file(
path_in_repo=STATS_PATH, repo_id=dataset.repo_id, revision=branch, repo_type="dataset"
)
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--repo-id",
type=str,
required=True,
help="Repository identifier on Hugging Face: a community or a user name `/` the name of the dataset "
"(e.g. `lerobot/pusht`, `cadene/aloha_sim_insertion_human`).",
)
parser.add_argument(
"--branch",
type=str,
default=None,
help="Repo branch to push your dataset. Defaults to the main branch.",
)
parser.add_argument(
"--num-workers",
type=int,
default=4,
help="Number of workers for parallelizing stats compute. Defaults to 4.",
)
args = parser.parse_args()
convert_dataset(**vars(args))

View File

@@ -0,0 +1,99 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
from tqdm import tqdm
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import write_episode_stats
def sample_episode_video_frames(dataset: LeRobotDataset, episode_index: int, ft_key: str) -> np.ndarray:
ep_len = dataset.meta.episodes[episode_index]["length"]
sampled_indices = sample_indices(ep_len)
query_timestamps = dataset._get_query_timestamps(0.0, {ft_key: sampled_indices})
video_frames = dataset._query_videos(query_timestamps, episode_index)
return video_frames[ft_key].numpy()
def convert_episode_stats(dataset: LeRobotDataset, ep_idx: int):
ep_start_idx = dataset.episode_data_index["from"][ep_idx]
ep_end_idx = dataset.episode_data_index["to"][ep_idx]
ep_data = dataset.hf_dataset.select(range(ep_start_idx, ep_end_idx))
ep_stats = {}
for key, ft in dataset.features.items():
if ft["dtype"] == "video":
# We sample only for videos
ep_ft_data = sample_episode_video_frames(dataset, ep_idx, key)
else:
ep_ft_data = np.array(ep_data[key])
axes_to_reduce = (0, 2, 3) if ft["dtype"] in ["image", "video"] else 0
keepdims = True if ft["dtype"] in ["image", "video"] else ep_ft_data.ndim == 1
ep_stats[key] = get_feature_stats(ep_ft_data, axis=axes_to_reduce, keepdims=keepdims)
if ft["dtype"] in ["image", "video"]: # remove batch dim
ep_stats[key] = {
k: v if k == "count" else np.squeeze(v, axis=0) for k, v in ep_stats[key].items()
}
dataset.meta.episodes_stats[ep_idx] = ep_stats
def convert_stats(dataset: LeRobotDataset, num_workers: int = 0):
assert dataset.episodes is None
print("Computing episodes stats")
total_episodes = dataset.meta.total_episodes
if num_workers > 0:
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = {
executor.submit(convert_episode_stats, dataset, ep_idx): ep_idx
for ep_idx in range(total_episodes)
}
for future in tqdm(as_completed(futures), total=total_episodes):
future.result()
else:
for ep_idx in tqdm(range(total_episodes)):
convert_episode_stats(dataset, ep_idx)
for ep_idx in tqdm(range(total_episodes)):
write_episode_stats(ep_idx, dataset.meta.episodes_stats[ep_idx], dataset.root)
def check_aggregate_stats(
dataset: LeRobotDataset,
reference_stats: dict[str, dict[str, np.ndarray]],
video_rtol_atol: tuple[float] = (1e-2, 1e-2),
default_rtol_atol: tuple[float] = (5e-6, 6e-5),
):
"""Verifies that the aggregated stats from episodes_stats are close to reference stats."""
agg_stats = aggregate_stats(list(dataset.meta.episodes_stats.values()))
for key, ft in dataset.features.items():
# These values might need some fine-tuning
if ft["dtype"] == "video":
# to account for image sub-sampling
rtol, atol = video_rtol_atol
else:
rtol, atol = default_rtol_atol
for stat, val in agg_stats[key].items():
if key in reference_stats and stat in reference_stats[key]:
err_msg = f"feature='{key}' stats='{stat}'"
np.testing.assert_allclose(
val, reference_stats[key][stat], rtol=rtol, atol=atol, err_msg=err_msg
)

View File

@@ -0,0 +1,453 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import importlib
import logging
import warnings
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, ClassVar
import av
import pyarrow as pa
import torch
import torchvision
from datasets.features.features import register_feature
from PIL import Image
def get_safe_default_codec():
if importlib.util.find_spec("torchcodec"):
return "torchcodec"
else:
logging.warning(
"'torchcodec' is not available in your platform, falling back to 'pyav' as a default decoder"
)
return "pyav"
def decode_video_frames(
video_path: Path | str,
timestamps: list[float],
tolerance_s: float,
backend: str | None = None,
) -> torch.Tensor:
"""
Decodes video frames using the specified backend.
Args:
video_path (Path): Path to the video file.
timestamps (list[float]): List of timestamps to extract frames.
tolerance_s (float): Allowed deviation in seconds for frame retrieval.
backend (str, optional): Backend to use for decoding. Defaults to "torchcodec" when available in the platform; otherwise, defaults to "pyav"..
Returns:
torch.Tensor: Decoded frames.
Currently supports torchcodec on cpu and pyav.
"""
if backend is None:
backend = get_safe_default_codec()
if backend == "torchcodec":
return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s)
elif backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
else:
raise ValueError(f"Unsupported video backend: {backend}")
def decode_video_frames_torchvision(
video_path: Path | str,
timestamps: list[float],
tolerance_s: float,
backend: str = "pyav",
log_loaded_timestamps: bool = False,
) -> torch.Tensor:
"""Loads frames associated to the requested timestamps of a video
The backend can be either "pyav" (default) or "video_reader".
"video_reader" requires installing torchvision from source, see:
https://github.com/pytorch/vision/blob/main/torchvision/csrc/io/decoder/gpu/README.rst
(note that you need to compile against ffmpeg<4.3)
While both use cpu, "video_reader" is supposedly faster than "pyav" but requires additional setup.
For more info on video decoding, see `benchmark/video/README.md`
See torchvision doc for more info on these two backends:
https://pytorch.org/vision/0.18/index.html?highlight=backend#torchvision.set_video_backend
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
and all subsequent frames until reaching the requested frame. The number of key frames in a video
can be adjusted during encoding to take into account decoding time and video size in bytes.
"""
video_path = str(video_path)
# set backend
keyframes_only = False
torchvision.set_video_backend(backend)
if backend == "pyav":
keyframes_only = True # pyav doesn't support accurate seek
# set a video stream reader
# TODO(rcadene): also load audio stream at the same time
reader = torchvision.io.VideoReader(video_path, "video")
# set the first and last requested timestamps
# Note: previous timestamps are usually loaded, since we need to access the previous key frame
first_ts = min(timestamps)
last_ts = max(timestamps)
# access closest key frame of the first requested frame
# Note: closest key frame timestamp is usually smaller than `first_ts` (e.g. key frame can be the first frame of the video)
# for details on what `seek` is doing see: https://pyav.basswood-io.com/docs/stable/api/container.html?highlight=inputcontainer#av.container.InputContainer.seek
reader.seek(first_ts, keyframes_only=keyframes_only)
# load all frames until last requested frame
loaded_frames = []
loaded_ts = []
for frame in reader:
current_ts = frame["pts"]
if log_loaded_timestamps:
logging.info(f"frame loaded at timestamp={current_ts:.4f}")
loaded_frames.append(frame["data"])
loaded_ts.append(current_ts)
if current_ts >= last_ts:
break
if backend == "pyav":
reader.container.close()
reader = None
query_ts = torch.tensor(timestamps)
loaded_ts = torch.tensor(loaded_ts)
# compute distances between each query timestamp and timestamps of all loaded frames
dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
min_, argmin_ = dist.min(1)
is_within_tol = min_ < tolerance_s
assert is_within_tol.all(), (
f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
"It means that the closest frame that can be loaded from the video is too far away in time."
"This might be due to synchronization issues with timestamps during data collection."
"To be safe, we advise to ignore this item during training."
f"\nqueried timestamps: {query_ts}"
f"\nloaded timestamps: {loaded_ts}"
f"\nvideo: {video_path}"
f"\nbackend: {backend}"
)
# get closest frames to the query timestamps
closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
closest_ts = loaded_ts[argmin_]
if log_loaded_timestamps:
logging.info(f"{closest_ts=}")
# convert to the pytorch format which is float32 in [0,1] range (and channel first)
closest_frames = closest_frames.type(torch.float32) / 255
assert len(timestamps) == len(closest_frames)
return closest_frames
def decode_video_frames_torchcodec(
video_path: Path | str,
timestamps: list[float],
tolerance_s: float,
device: str = "cpu",
log_loaded_timestamps: bool = False,
) -> torch.Tensor:
"""Loads frames associated with the requested timestamps of a video using torchcodec.
Note: Setting device="cuda" outside the main process, e.g. in data loader workers, will lead to CUDA initialization errors.
Note: Video benefits from inter-frame compression. Instead of storing every frame individually,
the encoder stores a reference frame (or a key frame) and subsequent frames as differences relative to
that key frame. As a consequence, to access a requested frame, we need to load the preceding key frame,
and all subsequent frames until reaching the requested frame. The number of key frames in a video
can be adjusted during encoding to take into account decoding time and video size in bytes.
"""
if importlib.util.find_spec("torchcodec"):
from torchcodec.decoders import VideoDecoder
else:
raise ImportError("torchcodec is required but not available.")
# initialize video decoder
decoder = VideoDecoder(video_path, device=device, seek_mode="approximate")
loaded_frames = []
loaded_ts = []
# get metadata for frame information
metadata = decoder.metadata
average_fps = metadata.average_fps
# convert timestamps to frame indices
frame_indices = [round(ts * average_fps) for ts in timestamps]
# retrieve frames based on indices
frames_batch = decoder.get_frames_at(indices=frame_indices)
for frame, pts in zip(frames_batch.data, frames_batch.pts_seconds, strict=False):
loaded_frames.append(frame)
loaded_ts.append(pts.item())
if log_loaded_timestamps:
logging.info(f"Frame loaded at timestamp={pts:.4f}")
query_ts = torch.tensor(timestamps)
loaded_ts = torch.tensor(loaded_ts)
# compute distances between each query timestamp and loaded timestamps
dist = torch.cdist(query_ts[:, None], loaded_ts[:, None], p=1)
min_, argmin_ = dist.min(1)
is_within_tol = min_ < tolerance_s
assert is_within_tol.all(), (
f"One or several query timestamps unexpectedly violate the tolerance ({min_[~is_within_tol]} > {tolerance_s=})."
"It means that the closest frame that can be loaded from the video is too far away in time."
"This might be due to synchronization issues with timestamps during data collection."
"To be safe, we advise to ignore this item during training."
f"\nqueried timestamps: {query_ts}"
f"\nloaded timestamps: {loaded_ts}"
f"\nvideo: {video_path}"
)
# get closest frames to the query timestamps
closest_frames = torch.stack([loaded_frames[idx] for idx in argmin_])
closest_ts = loaded_ts[argmin_]
if log_loaded_timestamps:
logging.info(f"{closest_ts=}")
# convert to float32 in [0,1] range (channel first)
closest_frames = closest_frames.type(torch.float32) / 255
assert len(timestamps) == len(closest_frames)
return closest_frames
def encode_video_frames(
imgs_dir: Path | str,
video_path: Path | str,
fps: int,
vcodec: str = "libsvtav1",
pix_fmt: str = "yuv420p",
g: int | None = 2,
crf: int | None = 30,
fast_decode: int = 0,
log_level: int | None = av.logging.ERROR,
overwrite: bool = False,
) -> None:
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
# Check encoder availability
if vcodec not in ["h264", "hevc", "libsvtav1"]:
raise ValueError(f"Unsupported video codec: {vcodec}. Supported codecs are: h264, hevc, libsvtav1.")
video_path = Path(video_path)
imgs_dir = Path(imgs_dir)
video_path.parent.mkdir(parents=True, exist_ok=overwrite)
# Encoders/pixel formats incompatibility check
if (vcodec == "libsvtav1" or vcodec == "hevc") and pix_fmt == "yuv444p":
logging.warning(
f"Incompatible pixel format 'yuv444p' for codec {vcodec}, auto-selecting format 'yuv420p'"
)
pix_fmt = "yuv420p"
# Get input frames
template = "frame_" + ("[0-9]" * 6) + ".png"
input_list = sorted(
glob.glob(str(imgs_dir / template)), key=lambda x: int(x.split("_")[-1].split(".")[0])
)
# Define video output frame size (assuming all input frames are the same size)
if len(input_list) == 0:
raise FileNotFoundError(f"No images found in {imgs_dir}.")
dummy_image = Image.open(input_list[0])
width, height = dummy_image.size
# Define video codec options
video_options = {}
if g is not None:
video_options["g"] = str(g)
if crf is not None:
video_options["crf"] = str(crf)
if fast_decode:
key = "svtav1-params" if vcodec == "libsvtav1" else "tune"
value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode"
video_options[key] = value
# Set logging level
if log_level is not None:
# "While less efficient, it is generally preferable to modify logging with Pythons logging"
logging.getLogger("libav").setLevel(log_level)
# Create and open output file (overwrite by default)
with av.open(str(video_path), "w") as output:
output_stream = output.add_stream(vcodec, fps, options=video_options)
output_stream.pix_fmt = pix_fmt
output_stream.width = width
output_stream.height = height
# Loop through input frames and encode them
for input_data in input_list:
input_image = Image.open(input_data).convert("RGB")
input_frame = av.VideoFrame.from_image(input_image)
packet = output_stream.encode(input_frame)
if packet:
output.mux(packet)
# Flush the encoder
packet = output_stream.encode()
if packet:
output.mux(packet)
# Reset logging level
if log_level is not None:
av.logging.restore_default_callback()
if not video_path.exists():
raise OSError(f"Video encoding did not work. File not found: {video_path}.")
@dataclass
class VideoFrame:
# TODO(rcadene, lhoestq): move to Hugging Face `datasets` repo
"""
Provides a type for a dataset containing video frames.
Example:
```python
data_dict = [{"image": {"path": "videos/episode_0.mp4", "timestamp": 0.3}}]
features = {"image": VideoFrame()}
Dataset.from_dict(data_dict, features=Features(features))
```
"""
pa_type: ClassVar[Any] = pa.struct({"path": pa.string(), "timestamp": pa.float32()})
_type: str = field(default="VideoFrame", init=False, repr=False)
def __call__(self):
return self.pa_type
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
"'register_feature' is experimental and might be subject to breaking changes in the future.",
category=UserWarning,
)
# to make VideoFrame available in HuggingFace `datasets`
register_feature(VideoFrame, "VideoFrame")
def get_audio_info(video_path: Path | str) -> dict:
# Set logging level
logging.getLogger("libav").setLevel(av.logging.ERROR)
# Getting audio stream information
audio_info = {}
with av.open(str(video_path), "r") as audio_file:
try:
audio_stream = audio_file.streams.audio[0]
except IndexError:
# Reset logging level
av.logging.restore_default_callback()
return {"has_audio": False}
audio_info["audio.channels"] = audio_stream.channels
audio_info["audio.codec"] = audio_stream.codec.canonical_name
# In an ideal loseless case : bit depth x sample rate x channels = bit rate.
# In an actual compressed case, the bit rate is set according to the compression level : the lower the bit rate, the more compression is applied.
audio_info["audio.bit_rate"] = audio_stream.bit_rate
audio_info["audio.sample_rate"] = audio_stream.sample_rate # Number of samples per second
# In an ideal loseless case : fixed number of bits per sample.
# In an actual compressed case : variable number of bits per sample (often reduced to match a given depth rate).
audio_info["audio.bit_depth"] = audio_stream.format.bits
audio_info["audio.channel_layout"] = audio_stream.layout.name
audio_info["has_audio"] = True
# Reset logging level
av.logging.restore_default_callback()
return audio_info
def get_video_info(video_path: Path | str) -> dict:
# Set logging level
logging.getLogger("libav").setLevel(av.logging.ERROR)
# Getting video stream information
video_info = {}
with av.open(str(video_path), "r") as video_file:
try:
video_stream = video_file.streams.video[0]
except IndexError:
# Reset logging level
av.logging.restore_default_callback()
return {}
video_info["video.height"] = video_stream.height
video_info["video.width"] = video_stream.width
video_info["video.codec"] = video_stream.codec.canonical_name
video_info["video.pix_fmt"] = video_stream.pix_fmt
video_info["video.is_depth_map"] = False
# Calculate fps from r_frame_rate
video_info["video.fps"] = int(video_stream.base_rate)
pixel_channels = get_video_pixel_channels(video_stream.pix_fmt)
video_info["video.channels"] = pixel_channels
# Reset logging level
av.logging.restore_default_callback()
# Adding audio stream information
video_info.update(**get_audio_info(video_path))
return video_info
def get_video_pixel_channels(pix_fmt: str) -> int:
if "gray" in pix_fmt or "depth" in pix_fmt or "monochrome" in pix_fmt:
return 1
elif "rgba" in pix_fmt or "yuva" in pix_fmt:
return 4
elif "rgb" in pix_fmt or "yuv" in pix_fmt:
return 3
else:
raise ValueError("Unknown format")
def get_image_pixel_channels(image: Image):
if image.mode == "L":
return 1 # Grayscale
elif image.mode == "LA":
return 2 # Grayscale + Alpha
elif image.mode == "RGB":
return 3 # RGB
elif image.mode == "RGBA":
return 4 # RGBA
else:
raise ValueError("Unknown format")

View File

@@ -0,0 +1,15 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .configs import AlohaEnv, EnvConfig, PushtEnv, XarmEnv # noqa: F401

View File

@@ -1,62 +0,0 @@
from collections import deque
from typing import Optional
from tensordict import TensorDict
from torchrl.envs import EnvBase
class AbstractEnv(EnvBase):
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(device=device, batch_size=[])
self.task = task
self.frame_skip = frame_skip
self.from_pixels = from_pixels
self.pixels_only = pixels_only
self.image_size = image_size
self.num_prev_obs = num_prev_obs
self.num_prev_action = num_prev_action
if pixels_only:
assert from_pixels
if from_pixels:
assert image_size
self._make_env()
self._make_spec()
self._current_seed = self.set_seed(seed)
if self.num_prev_obs > 0:
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
if self.num_prev_action > 0:
raise NotImplementedError()
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
def render(self, mode="rgb_array", width=640, height=480):
raise NotImplementedError("Abstract method")
def _reset(self, tensordict: Optional[TensorDict] = None):
raise NotImplementedError("Abstract method")
def _step(self, tensordict: TensorDict):
raise NotImplementedError("Abstract method")
def _make_env(self):
raise NotImplementedError("Abstract method")
def _make_spec(self):
raise NotImplementedError("Abstract method")
def _set_seed(self, seed: Optional[int]):
raise NotImplementedError("Abstract method")

View File

@@ -1,59 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<equality>
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
</equality>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
</body>
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
</body>
<body name="peg" pos="0.2 0.5 0.05">
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
</body>
<body name="socket" pos="-0.2 0.5 0.05">
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -1,48 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<equality>
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
</equality>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
</body>
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
</body>
<body name="box" pos="0.2 0.5 0.05">
<joint name="red_box_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -1,53 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body name="peg" pos="0.2 0.5 0.05">
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
</body>
<body name="socket" pos="-0.2 0.5 0.05">
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -1,42 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body name="box" pos="0.2 0.5 0.05">
<joint name="red_box_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -1,38 +0,0 @@
<mujocoinclude>
<!-- <option timestep='0.0025' iterations="50" tolerance="1e-10" solver="Newton" jacobian="dense" cone="elliptic"/>-->
<asset>
<mesh file="tabletop.stl" name="tabletop" scale="0.001 0.001 0.001"/>
</asset>
<visual>
<map fogstart="1.5" fogend="5" force="0.1" znear="0.1"/>
<quality shadowsize="4096" offsamples="4"/>
<headlight ambient="0.4 0.4 0.4"/>
</visual>
<worldbody>
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='-1 -1 1'
dir='1 1 -1'/>
<light directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='1 -1 1' dir='-1 1 -1'/>
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='0 1 1'
dir='0 -1 -1'/>
<body name="table" pos="0 .6 0">
<geom group="1" mesh="tabletop" pos="0 0 0" type="mesh" conaffinity="1" contype="1" name="table" rgba="0.2 0.2 0.2 1" />
</body>
<body name="midair" pos="0 .6 0.2">
<site pos="0 0 0" size="0.01" type="sphere" name="midair" rgba="1 0 0 0"/>
</body>
<camera name="left_pillar" pos="-0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="right_pillar" pos="0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="top" pos="0 0.6 0.8" fovy="78" mode="targetbody" target="table"/>
<camera name="angle" pos="0 0 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="front_close" pos="0 0.2 0.4" fovy="78" mode="targetbody" target="vx300s_left/camera_focus"/>
</worldbody>
</mujocoinclude>

View File

@@ -1,17 +0,0 @@
<mujocoinclude>
<compiler angle="radian" inertiafromgeom="auto" inertiagrouprange="4 5"/>
<asset>
<mesh name="vx300s_1_base" file="vx300s_1_base.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_2_shoulder" file="vx300s_2_shoulder.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_3_upper_arm" file="vx300s_3_upper_arm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_4_upper_forearm" file="vx300s_4_upper_forearm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_5_lower_forearm" file="vx300s_5_lower_forearm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_6_wrist" file="vx300s_6_wrist.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_7_gripper" file="vx300s_7_gripper.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_8_gripper_prop" file="vx300s_8_gripper_prop.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_9_gripper_bar" file="vx300s_9_gripper_bar.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_10_gripper_finger_left" file="vx300s_10_custom_finger_left.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_10_gripper_finger_right" file="vx300s_10_custom_finger_right.stl" scale="0.001 0.001 0.001" />
</asset>
</mujocoinclude>

View File

@@ -1,59 +0,0 @@
<mujocoinclude>
<body name="vx300s_left" pos="-0.469 0.5 0">
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_left/1_base" contype="0" conaffinity="0"/>
<body name="vx300s_left/shoulder_link" pos="0 0 0.079">
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
<joint name="vx300s_left/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_left/2_shoulder" />
<body name="vx300s_left/upper_arm_link" pos="0 0 0.04805">
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
<joint name="vx300s_left/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_left/3_upper_arm"/>
<body name="vx300s_left/upper_forearm_link" pos="0.05955 0 0.3">
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
<joint name="vx300s_left/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_left/4_upper_forearm" />
<body name="vx300s_left/lower_forearm_link" pos="0.2 0 0">
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
<joint name="vx300s_left/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_left/5_lower_forearm"/>
<body name="vx300s_left/wrist_link" pos="0.1 0 0">
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
<joint name="vx300s_left/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_left/6_wrist" />
<body name="vx300s_left/gripper_link" pos="0.069744 0 0">
<body name="vx300s_left/camera_focus" pos="0.15 0 0.01">
<site pos="0 0 0" size="0.01" type="sphere" name="left_cam_focus" rgba="0 0 1 0"/>
</body>
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_left_site1" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_left_site2" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_left_site3" rgba="0 0 1 0"/>
<camera name="left_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_left/camera_focus"/>
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
<joint name="vx300s_left/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_left/7_gripper" />
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_left/9_gripper_bar" />
<body name="vx300s_left/gripper_prop_link" pos="0.0485 0 0">
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
<!-- <joint name="vx300s_left/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_left/8_gripper_prop" />
</body>
<body name="vx300s_left/left_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
<joint name="vx300s_left/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_left/10_left_gripper_finger"/>
</body>
<body name="vx300s_left/right_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
<joint name="vx300s_left/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_left/10_right_gripper_finger"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujocoinclude>

View File

@@ -1,59 +0,0 @@
<mujocoinclude>
<body name="vx300s_right" pos="0.469 0.5 0" euler="0 0 3.1416">
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_right/1_base" contype="0" conaffinity="0"/>
<body name="vx300s_right/shoulder_link" pos="0 0 0.079">
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
<joint name="vx300s_right/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_right/2_shoulder" />
<body name="vx300s_right/upper_arm_link" pos="0 0 0.04805">
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
<joint name="vx300s_right/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_right/3_upper_arm"/>
<body name="vx300s_right/upper_forearm_link" pos="0.05955 0 0.3">
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
<joint name="vx300s_right/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_right/4_upper_forearm" />
<body name="vx300s_right/lower_forearm_link" pos="0.2 0 0">
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
<joint name="vx300s_right/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_right/5_lower_forearm"/>
<body name="vx300s_right/wrist_link" pos="0.1 0 0">
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
<joint name="vx300s_right/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_right/6_wrist" />
<body name="vx300s_right/gripper_link" pos="0.069744 0 0">
<body name="vx300s_right/camera_focus" pos="0.15 0 0.01">
<site pos="0 0 0" size="0.01" type="sphere" name="right_cam_focus" rgba="0 0 1 0"/>
</body>
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_right_site1" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_right_site2" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_right_site3" rgba="0 0 1 0"/>
<camera name="right_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_right/camera_focus"/>
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
<joint name="vx300s_right/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_right/7_gripper" />
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_right/9_gripper_bar" />
<body name="vx300s_right/gripper_prop_link" pos="0.0485 0 0">
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
<!-- <joint name="vx300s_right/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_right/8_gripper_prop" />
</body>
<body name="vx300s_right/left_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
<joint name="vx300s_right/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_right/10_left_gripper_finger"/>
</body>
<body name="vx300s_right/right_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
<joint name="vx300s_right/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_right/10_right_gripper_finger"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujocoinclude>

Some files were not shown because too many files have changed in this diff Show More