forked from tangger/lerobot
Compare commits
290 Commits
2025_04_11
...
test/robot
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9adbd245e5 | ||
|
|
859a369b29 | ||
|
|
cca647307b | ||
|
|
dae5f7c74d | ||
|
|
d6d8f29b5c | ||
|
|
27bb7c4d71 | ||
|
|
2d86812b97 | ||
|
|
57c2181ed2 | ||
|
|
81c49cecd0 | ||
|
|
4675b3cd02 | ||
|
|
dbce247ec1 | ||
|
|
904bc618ee | ||
|
|
ddd8fd325b | ||
|
|
7f34e1af9c | ||
|
|
3416036e34 | ||
|
|
2af8edcf74 | ||
|
|
b089c6db3a | ||
|
|
15b5d28f45 | ||
|
|
35c4b01752 | ||
|
|
6348f0f418 | ||
|
|
720a6374ba | ||
|
|
3297c7e802 | ||
|
|
0b5b438f50 | ||
|
|
8a6412b0db | ||
|
|
b0592d9bc8 | ||
|
|
363fe64ff9 | ||
|
|
bbcb12e919 | ||
|
|
3e87b09d34 | ||
|
|
81de27dc9a | ||
|
|
eb94a5f03f | ||
|
|
742708942c | ||
|
|
5a2f9b6589 | ||
|
|
06f0c579b7 | ||
|
|
7890767d34 | ||
|
|
d322cb0220 | ||
|
|
f011173ff6 | ||
|
|
20129cd4c2 | ||
|
|
307823bc8d | ||
|
|
a445d9c9da | ||
|
|
f24030d4d8 | ||
|
|
7598aeaad7 | ||
|
|
4485cc0b5b | ||
|
|
64303781c2 | ||
|
|
dd3e305164 | ||
|
|
cb9cac6a1b | ||
|
|
95f9b45418 | ||
|
|
f9db727647 | ||
|
|
230c7fdfab | ||
|
|
320f7e8450 | ||
|
|
08fbbb318f | ||
|
|
8b98399206 | ||
|
|
237b14a6ec | ||
|
|
2e705ff554 | ||
|
|
d72a3f9c32 | ||
|
|
73ac4f38b2 | ||
|
|
a0e69dd708 | ||
|
|
b207babd9e | ||
|
|
293870d0f6 | ||
|
|
87a8cb6d89 | ||
|
|
69dc3f5c9c | ||
|
|
e4d4754600 | ||
|
|
8cfab38824 | ||
|
|
ee5525fea1 | ||
|
|
a1daeaf0c4 | ||
|
|
2e528a8b12 | ||
|
|
6d723c45a9 | ||
|
|
674e784aa9 | ||
|
|
42bf1e8b9d | ||
|
|
a75d00970f | ||
|
|
4df18de636 | ||
|
|
8dc69c6126 | ||
|
|
7d481e6048 | ||
|
|
b7a9b0689a | ||
|
|
b6b9635be6 | ||
|
|
21b1026872 | ||
|
|
8c3eab32b0 | ||
|
|
29633865c7 | ||
|
|
702749b7d3 | ||
|
|
b43ece8934 | ||
|
|
c10c5a0e64 | ||
|
|
a8db91c40e | ||
|
|
0f5f7ac780 | ||
|
|
bf1c737858 | ||
|
|
d07c7347f8 | ||
|
|
57e5e4cc07 | ||
|
|
2743c29a96 | ||
|
|
2bb73ac431 | ||
|
|
9afc4b771c | ||
|
|
f71e224023 | ||
|
|
768e36660d | ||
|
|
889de7c415 | ||
|
|
790d6740ba | ||
|
|
3539251b18 | ||
|
|
1f210bc8a3 | ||
|
|
d70bc4bde9 | ||
|
|
bdbca09cb2 | ||
|
|
e0b292ab51 | ||
|
|
f960f4d8d4 | ||
|
|
9e57ec7837 | ||
|
|
0a7f51f0da | ||
|
|
4ca92a28e9 | ||
|
|
0464dc91b3 | ||
|
|
d32daebf75 | ||
|
|
27cb0c40bd | ||
|
|
12abc9ca86 | ||
|
|
4005065223 | ||
|
|
443fed216c | ||
|
|
42a87e7211 | ||
|
|
034171a89a | ||
|
|
782dff1163 | ||
|
|
8924ccbbab | ||
|
|
792c3d961d | ||
|
|
e998dddcfa | ||
|
|
99c0938b42 | ||
|
|
716029b1e3 | ||
|
|
3848a8f9aa | ||
|
|
f7672e14c7 | ||
|
|
e393af2d88 | ||
|
|
0dcb2caba8 | ||
|
|
4679725957 | ||
|
|
57319062aa | ||
|
|
078f59bfd1 | ||
|
|
36fcea2002 | ||
|
|
2971bdfed5 | ||
|
|
28cd3a6f3a | ||
|
|
c0570b3003 | ||
|
|
eeb8490016 | ||
|
|
854b78975a | ||
|
|
e55d2ffe50 | ||
|
|
1ebd81552c | ||
|
|
65569ba90e | ||
|
|
79293800f1 | ||
|
|
bc765f9e95 | ||
|
|
201311503f | ||
|
|
8cc0232e73 | ||
|
|
6bfcc18e73 | ||
|
|
e096754d14 | ||
|
|
02803f545d | ||
|
|
8503e8e166 | ||
|
|
d6007c6e7d | ||
|
|
50963fcf13 | ||
|
|
051a52a4ce | ||
|
|
2292b514aa | ||
|
|
1f1a01a798 | ||
|
|
faa476f0d2 | ||
|
|
5130b69ece | ||
|
|
aed85241b7 | ||
|
|
21c3ac42ee | ||
|
|
2d3a5fb2be | ||
|
|
a631e4c11c | ||
|
|
222d6f104e | ||
|
|
7a3b424cd3 | ||
|
|
af295fadb5 | ||
|
|
9644e2b086 | ||
|
|
6ccf083127 | ||
|
|
bb774e7acd | ||
|
|
dcbbeab80b | ||
|
|
b71ac34214 | ||
|
|
c237d1379e | ||
|
|
cf963eb1b0 | ||
|
|
4293b6a4fb | ||
|
|
7a75bb9f61 | ||
|
|
0c1d4cb323 | ||
|
|
c6212d585d | ||
|
|
7c8ab8e2d6 | ||
|
|
1de75c46c0 | ||
|
|
4ad109cff8 | ||
|
|
8994252019 | ||
|
|
9832daf08d | ||
|
|
39d8f45810 | ||
|
|
30fcd3d417 | ||
|
|
039b437ef0 | ||
|
|
7582a0a2b0 | ||
|
|
25388d0947 | ||
|
|
7152bc8aa7 | ||
|
|
5b46dc0b6a | ||
|
|
4273f1f384 | ||
|
|
97194bf7f3 | ||
|
|
0ac026b521 | ||
|
|
ff7cfdaf40 | ||
|
|
57c97762e1 | ||
|
|
a38bb15e79 | ||
|
|
3ceaee999d | ||
|
|
d485dc1313 | ||
|
|
329d103453 | ||
|
|
9f46a3d8f9 | ||
|
|
c9ca9e4316 | ||
|
|
5a57e6f4a7 | ||
|
|
a2f5c34625 | ||
|
|
1f1e1bcfe8 | ||
|
|
e047074825 | ||
|
|
c2e761437d | ||
|
|
fedac994c3 | ||
|
|
7d558d058e | ||
|
|
1d3e1cbdbd | ||
|
|
0ccc957d5c | ||
|
|
a4d487bc1d | ||
|
|
8ca03a7255 | ||
|
|
f2ed2bfb2f | ||
|
|
40675ec76c | ||
|
|
9e34c1d731 | ||
|
|
857f335be9 | ||
|
|
fc4a95f187 | ||
|
|
4fe1880887 | ||
|
|
6fa859fa19 | ||
|
|
2abfa5838d | ||
|
|
3d119c0ccb | ||
|
|
a32081757d | ||
|
|
56c04ffc53 | ||
|
|
715d4557af | ||
|
|
6541982dff | ||
|
|
43bc9404bb | ||
|
|
375499c323 | ||
|
|
17a4447cef | ||
|
|
287dc13d96 | ||
|
|
02a1cf6a4e | ||
|
|
34cd1e47bf | ||
|
|
74d56834af | ||
|
|
dd80dbb4cd | ||
|
|
bc020ee0a4 | ||
|
|
a15767aff1 | ||
|
|
9af0a9bf37 | ||
|
|
e2c8bc6948 | ||
|
|
2c68c6ca40 | ||
|
|
dd1f33e5ed | ||
|
|
2c1bb766ff | ||
|
|
c1c71fb994 | ||
|
|
2d56f35071 | ||
|
|
64ce2669ca | ||
|
|
f527adf7a9 | ||
|
|
6a77189f50 | ||
|
|
e4a6d035f9 | ||
|
|
794f6e00fc | ||
|
|
97494c6a39 | ||
|
|
9358d334c7 | ||
|
|
c85a9253e7 | ||
|
|
8d659a6aa9 | ||
|
|
f6a2396484 | ||
|
|
7a7af82e35 | ||
|
|
7f23972f3f | ||
|
|
3362b665e6 | ||
|
|
eeeccdba53 | ||
|
|
bd5b181dfd | ||
|
|
858678786a | ||
|
|
0f972661e1 | ||
|
|
2e9b144c56 | ||
|
|
fa8ba9e4e2 | ||
|
|
2037cc0219 | ||
|
|
5006da72ff | ||
|
|
ad0bacbfe4 | ||
|
|
e33ca2c980 | ||
|
|
f0505e81cc | ||
|
|
1f7ddc1d76 | ||
|
|
ce63cfdb25 | ||
|
|
d6f1359e69 | ||
|
|
2357d4aceb | ||
|
|
d6ccdc222c | ||
|
|
9bd0788131 | ||
|
|
1ae62c28f7 | ||
|
|
baf6e66c3d | ||
|
|
a065bd61ae | ||
|
|
5dc3c74e64 | ||
|
|
4214b01703 | ||
|
|
b974e5541f | ||
|
|
fd64dc84ae | ||
|
|
06988b2135 | ||
|
|
7ed7570b17 | ||
|
|
e2d13ba7e4 | ||
|
|
f6c1049474 | ||
|
|
2b24feb604 | ||
|
|
a13e49073c | ||
|
|
2c7e0f17b6 | ||
|
|
418866007e | ||
|
|
5ab418dbeb | ||
|
|
95f61ee9d4 | ||
|
|
ac89c8d226 | ||
|
|
d75d904e43 | ||
|
|
ea4d8d990c | ||
|
|
c93cbb8311 | ||
|
|
c0137e89b9 | ||
|
|
3111ba78ad | ||
|
|
3d3a176940 | ||
|
|
212c6095a2 | ||
|
|
48469ec674 | ||
|
|
c7dfd32b43 | ||
|
|
731fb6ebaf | ||
|
|
13e124302f | ||
|
|
59bdd29106 | ||
|
|
124829104b | ||
|
|
21cd2940a9 |
3
.gitattributes
vendored
3
.gitattributes
vendored
@@ -11,10 +11,11 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
*.memmap filter=lfs diff=lfs merge=lfs -text
|
||||
*.stl filter=lfs diff=lfs merge=lfs -text
|
||||
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
||||
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
||||
*.arrow filter=lfs diff=lfs merge=lfs -text
|
||||
*.json !text !filter !merge !diff
|
||||
tests/artifacts/cameras/*.png filter=lfs diff=lfs merge=lfs -text
|
||||
tests/artifacts/cameras/*.bag filter=lfs diff=lfs merge=lfs -text
|
||||
|
||||
23
.github/workflows/build_documentation.yml
vendored
Normal file
23
.github/workflows/build_documentation.yml
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
name: Build documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
paths:
|
||||
- "docs/**"
|
||||
branches:
|
||||
- main
|
||||
- doc-builder*
|
||||
- v*-release
|
||||
|
||||
|
||||
jobs:
|
||||
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
|
||||
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: lerobot
|
||||
additional_args: --not_python_module
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
19
.github/workflows/build_pr_documentation.yml
vendored
Normal file
19
.github/workflows/build_pr_documentation.yml
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
name: Build PR Documentation
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "docs/**"
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: lerobot
|
||||
additional_args: --not_python_module
|
||||
16
.github/workflows/upload_pr_documentation.yml
vendored
Normal file
16
.github/workflows/upload_pr_documentation.yml
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
name: Upload PR Documentation
|
||||
|
||||
on: # zizmor: ignore[dangerous-triggers] We follow the same pattern as in Transformers
|
||||
workflow_run:
|
||||
workflows: [ "Build PR Documentation" ]
|
||||
types:
|
||||
- completed
|
||||
|
||||
jobs:
|
||||
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
|
||||
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
|
||||
with:
|
||||
package_name: lerobot
|
||||
secrets:
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -11,7 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
.dev
|
||||
# Logging
|
||||
logs
|
||||
tmp
|
||||
|
||||
@@ -48,7 +48,7 @@ repos:
|
||||
- id: pyupgrade
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.4
|
||||
rev: v0.11.5
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
@@ -57,7 +57,7 @@ repos:
|
||||
|
||||
##### Security #####
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.24.2
|
||||
rev: v8.24.3
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
||||
|
||||
44
README.md
44
README.md
@@ -23,21 +23,35 @@
|
||||
</div>
|
||||
|
||||
<h2 align="center">
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
|
||||
Build Your Own SO-100 Robot!</a></p>
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
|
||||
Build Your Own SO-101 Robot!</a></p>
|
||||
</h2>
|
||||
|
||||
<div align="center">
|
||||
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
|
||||
<div style="display: flex; gap: 1rem; justify-content: center; align-items: center;" >
|
||||
<img
|
||||
src="media/so101/so101.webp?raw=true"
|
||||
alt="SO-101 follower arm"
|
||||
title="SO-101 follower arm"
|
||||
style="width: 40%;"
|
||||
/>
|
||||
<img
|
||||
src="media/so101/so101-leader.webp?raw=true"
|
||||
alt="SO-101 leader arm"
|
||||
title="SO-101 leader arm"
|
||||
style="width: 40%;"
|
||||
/>
|
||||
</div>
|
||||
|
||||
<p><strong>Meet the SO-100 – Just $110 per arm!</strong></p>
|
||||
|
||||
<p><strong>Meet the updated SO100, the SO-101 – Just €114 per arm!</strong></p>
|
||||
<p>Train it in minutes with a few simple moves on your laptop.</p>
|
||||
<p>Then sit back and watch your creation act autonomously! 🤯</p>
|
||||
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
|
||||
Get the full SO-100 tutorial here.</a></p>
|
||||
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
|
||||
See the full SO-101 tutorial here.</a></p>
|
||||
|
||||
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
|
||||
<p>Want to take it to the next level? Make your SO-101 mobile by building LeKiwi!</p>
|
||||
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
|
||||
|
||||
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
|
||||
@@ -51,7 +65,6 @@
|
||||
|
||||
---
|
||||
|
||||
|
||||
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier to entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
|
||||
|
||||
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
|
||||
@@ -103,13 +116,20 @@ When using `miniconda`, install `ffmpeg` in your environment:
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
|
||||
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
|
||||
> ```bash
|
||||
> conda install ffmpeg=7.1.1 -c conda-forge
|
||||
> ```
|
||||
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
> **NOTE:** If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run:
|
||||
`sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
`sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
|
||||
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
||||
- [aloha](https://github.com/huggingface/gym-aloha)
|
||||
@@ -201,7 +221,7 @@ dataset attributes:
|
||||
│ ├ episode_index (int64): index of the episode for this sample
|
||||
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
|
||||
│ ├ timestamp (float32): timestamp in the episode
|
||||
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
|
||||
│ ├ next.done (bool): indicates the end of an episode ; True for the last frame in each episode
|
||||
│ └ index (int64): general index in the whole dataset
|
||||
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
|
||||
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
|
||||
@@ -250,7 +270,7 @@ See `python lerobot/scripts/eval.py --help` for more instructions.
|
||||
|
||||
### Train your own policy
|
||||
|
||||
Check out [example 3](./examples/3_train_policy.py) that illustrate how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
|
||||
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
|
||||
|
||||
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding `--wandb.enable=true`.
|
||||
|
||||
@@ -301,7 +321,7 @@ Once you have trained a policy you may upload it to the Hugging Face hub using a
|
||||
You first need to find the checkpoint folder located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). Within that there is a `pretrained_model` directory which should contain:
|
||||
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
|
||||
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
|
||||
- `train_config.json`: A consolidated configuration containing all parameter userd for training. The policy configuration should match `config.json` exactly. Thisis useful for anyone who wants to evaluate your policy or for reproducibility.
|
||||
- `train_config.json`: A consolidated configuration containing all parameters used for training. The policy configuration should match `config.json` exactly. This is useful for anyone who wants to evaluate your policy or for reproducibility.
|
||||
|
||||
To upload these to the hub, run the following:
|
||||
```bash
|
||||
|
||||
@@ -416,7 +416,7 @@ if __name__ == "__main__":
|
||||
"--vcodec",
|
||||
type=str,
|
||||
nargs="*",
|
||||
default=["libx264", "libx265", "libsvtav1"],
|
||||
default=["libx264", "hevc", "libsvtav1"],
|
||||
help="Video codecs to be tested",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -446,7 +446,7 @@ if __name__ == "__main__":
|
||||
# nargs="*",
|
||||
# default=[0, 1],
|
||||
# help="Use the fastdecode tuning option. 0 disables it. "
|
||||
# "For libx264 and libx265, only 1 is possible. "
|
||||
# "For libx264 and libx265/hevc, only 1 is possible. "
|
||||
# "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
|
||||
# )
|
||||
parser.add_argument(
|
||||
|
||||
@@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
tcpdump sysstat screen tmux \
|
||||
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
|
||||
speech-dispatcher portaudio19-dev libgeos-dev \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
|
||||
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv python${PYTHON_VERSION}-dev \
|
||||
&& apt-get clean && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install ffmpeg build dependencies. See:
|
||||
|
||||
137
docs/README.md
Normal file
137
docs/README.md
Normal file
@@ -0,0 +1,137 @@
|
||||
<!---
|
||||
Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
# Generating the documentation
|
||||
|
||||
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
|
||||
you can install them with the following command, at the root of the code repository:
|
||||
|
||||
```bash
|
||||
pip install -e ".[docs]"
|
||||
```
|
||||
|
||||
You will also need `nodejs`. Please refer to their [installation page](https://nodejs.org/en/download)
|
||||
|
||||
---
|
||||
**NOTE**
|
||||
|
||||
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
|
||||
check how they look before committing for instance). You don't have to `git commit` the built documentation.
|
||||
|
||||
---
|
||||
|
||||
## Building the documentation
|
||||
|
||||
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
|
||||
typing the following command:
|
||||
|
||||
```bash
|
||||
doc-builder build lerobot docs/source/ --build_dir ~/tmp/test-build
|
||||
```
|
||||
|
||||
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
|
||||
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
|
||||
Markdown editor.
|
||||
|
||||
## Previewing the documentation
|
||||
|
||||
To preview the docs, first install the `watchdog` module with:
|
||||
|
||||
```bash
|
||||
pip install watchdog
|
||||
```
|
||||
|
||||
Then run the following command:
|
||||
|
||||
```bash
|
||||
doc-builder preview lerobot docs/source/
|
||||
```
|
||||
|
||||
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
|
||||
|
||||
---
|
||||
**NOTE**
|
||||
|
||||
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
|
||||
|
||||
---
|
||||
|
||||
## Adding a new element to the navigation bar
|
||||
|
||||
Accepted files are Markdown (.md).
|
||||
|
||||
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
|
||||
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/lerobot/blob/main/docs/source/_toctree.yml) file.
|
||||
|
||||
## Renaming section headers and moving sections
|
||||
|
||||
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
|
||||
|
||||
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
|
||||
|
||||
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
|
||||
|
||||
```
|
||||
Sections that were moved:
|
||||
|
||||
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
|
||||
```
|
||||
and of course, if you moved it to another file, then:
|
||||
|
||||
```
|
||||
Sections that were moved:
|
||||
|
||||
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
|
||||
```
|
||||
|
||||
Use the relative style to link to the new file so that the versioned docs continue to work.
|
||||
|
||||
For an example of a rich moved sections set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
|
||||
|
||||
### Adding a new tutorial
|
||||
|
||||
Adding a new tutorial or section is done in two steps:
|
||||
|
||||
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
|
||||
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
|
||||
|
||||
Make sure to put your new file under the proper section. If you have a doubt, feel free to ask in a Github Issue or PR.
|
||||
|
||||
### Writing source documentation
|
||||
|
||||
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
|
||||
and objects like True, None or any strings should usually be put in `code`.
|
||||
|
||||
#### Writing a multi-line code block
|
||||
|
||||
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
|
||||
|
||||
|
||||
````
|
||||
```
|
||||
# first line of code
|
||||
# second line
|
||||
# etc
|
||||
```
|
||||
````
|
||||
|
||||
#### Adding an image
|
||||
|
||||
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
|
||||
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
|
||||
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
|
||||
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
|
||||
to this dataset.
|
||||
12
docs/source/_toctree.yml
Normal file
12
docs/source/_toctree.yml
Normal file
@@ -0,0 +1,12 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: LeRobot
|
||||
- local: installation
|
||||
title: Installation
|
||||
title: Get started
|
||||
- sections:
|
||||
- local: assemble_so101
|
||||
title: Assemble SO-101
|
||||
- local: getting_started_real_world_robot
|
||||
title: Getting Started with Real-World Robots
|
||||
title: "Tutorials"
|
||||
348
docs/source/assemble_so101.mdx
Normal file
348
docs/source/assemble_so101.mdx
Normal file
@@ -0,0 +1,348 @@
|
||||
# Assemble SO-101
|
||||
|
||||
In the steps below we explain how to assemble our flagship robot, the SO-101.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
To install LeRobot follow our [Installation Guide](./installation)
|
||||
|
||||
## Configure motors
|
||||
|
||||
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
|
||||
|
||||
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
|
||||
|
||||
### Find the USB ports associated to each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
##### Example outputs of script
|
||||
|
||||
<hfoptions id="example">
|
||||
<hfoption id="Mac">
|
||||
|
||||
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
Example output leader arm port: `/dev/ttyACM0`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM0
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/ttyACM1`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM1
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
#### Update config file
|
||||
|
||||
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
|
||||
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
|
||||
```diff
|
||||
@RobotConfig.register_subclass("so101")
|
||||
@dataclass
|
||||
class So101RobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/so101"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem58760431091",
|
||||
+ port="{ADD YOUR LEADER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem585A0076891",
|
||||
+ port="{ADD YOUR FOLLOWER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
Here is a video of the process:
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-find-motorbus.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
## Step-by-Step Assembly Instructions
|
||||
|
||||
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
|
||||
|
||||
| Leader-Arm Axis | Motor | Gear Ratio |
|
||||
|-----------------|:-------:|:----------:|
|
||||
| Base / Shoulder Yaw | 1 | 1 / 191 |
|
||||
| Shoulder Pitch | 2 | 1 / 345 |
|
||||
| Elbow | 3 | 1 / 191 |
|
||||
| Wrist Roll | 4 | 1 / 147 |
|
||||
| Wrist Pitch | 5 | 1 / 147 |
|
||||
| Gripper | 6 | 1 / 147 |
|
||||
|
||||
### Set motor IDs
|
||||
|
||||
Plug your motor in one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Then unplug your motor and plug the second motor and set its ID to 2.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage and make sure you give the right ID to the right motor according to the table above.
|
||||
|
||||
Here is a video of the process:
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-configure-motor.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts, the easiest way to do this is using a small screwdriver to get underneath the support material.
|
||||
|
||||
### Joint 1
|
||||
|
||||
- Place the first motor into the base.
|
||||
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
|
||||
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
|
||||
- Install both motor horns, securing the top horn with a M3x6mm screw.
|
||||
- Attach the shoulder part.
|
||||
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
|
||||
- Add the shoulder motor holder.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint1_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 2
|
||||
|
||||
- Slide the second motor in from the top.
|
||||
- Fasten the second motor with 4 M2x6mm screws.
|
||||
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
|
||||
- Attach the upper arm with 4 M3x6mm screws on each side.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint2_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 3
|
||||
|
||||
- Insert motor 3 and fasten using 4 M2x6mm screws
|
||||
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
|
||||
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint3_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 4
|
||||
|
||||
- Slide over motor holder 4.
|
||||
- Slide in motor 4.
|
||||
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint4_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Joint 5
|
||||
|
||||
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
|
||||
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
|
||||
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Joint5_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
### Gripper / Handle
|
||||
|
||||
<hfoptions id="assembly">
|
||||
<hfoption id="Follower">
|
||||
|
||||
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
|
||||
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
|
||||
- Attach the motor horns and again use a M3x6mm horn screw.
|
||||
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Gripper_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Leader">
|
||||
|
||||
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
|
||||
- Attach the handle to motor 5 using 1 M2x6mm screw.
|
||||
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
|
||||
- Attach the follower trigger with 4 M3x6mm screws.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Leader_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
##### Wiring
|
||||
|
||||
- Attach the motor controller on the back.
|
||||
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
|
||||
|
||||
<div class="video-container">
|
||||
<video controls width="600">
|
||||
<source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/Wiring_v2.mp4" type="video/mp4" />
|
||||
</video>
|
||||
</div>
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
|
||||
|
||||
#### Manual calibration of follower arm
|
||||
|
||||
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### Manual calibration of leader arm
|
||||
You will also need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Start training it by following this tutorial: [Getting started with real-world robots](./getting_started_real_world_robot)
|
||||
370
docs/source/getting_started_real_world_robot.mdx
Normal file
370
docs/source/getting_started_real_world_robot.mdx
Normal file
@@ -0,0 +1,370 @@
|
||||
# Getting Started with Real-World Robots
|
||||
|
||||
This tutorial will explain you how to train a neural network to autonomously control a real robot.
|
||||
|
||||
**You'll learn:**
|
||||
1. How to record and visualize your dataset.
|
||||
2. How to train a policy using your data and prepare it for evaluation.
|
||||
3. How to evaluate your policy and visualize the results.
|
||||
|
||||
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
|
||||
|
||||
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
|
||||
|
||||
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
|
||||
|
||||
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
|
||||
|
||||
## Setup and Calibrate
|
||||
|
||||
If you haven't yet setup and calibrate the SO-101 follow these steps:
|
||||
1. [Find ports and update config file](./assemble_so101#find-the-usb-ports-associated-to-each-arm)
|
||||
2. [Calibrate](./assemble_so101#calibrate)
|
||||
|
||||
## Teleoperate
|
||||
|
||||
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
The teleoperate command will automatically:
|
||||
1. Identify any missing calibrations and initiate the calibration procedure.
|
||||
2. Connect the robot and start teleoperation.
|
||||
|
||||
## Setup Cameras
|
||||
|
||||
To connect a camera you have three options:
|
||||
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
|
||||
2. iPhone camera with MacOS
|
||||
3. Phone camera on Linux
|
||||
|
||||
### Use OpenCVCamera
|
||||
|
||||
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
|
||||
|
||||
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/opencv.py \
|
||||
--images-dir outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
The output will look something like this if you have two cameras connected:
|
||||
```
|
||||
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
|
||||
[...]
|
||||
Camera found at index 0
|
||||
Camera found at index 1
|
||||
[...]
|
||||
Connecting cameras
|
||||
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
Saving images to outputs/images_from_opencv_cameras
|
||||
Frame: 0000 Latency (ms): 39.52
|
||||
[...]
|
||||
Frame: 0046 Latency (ms): 40.07
|
||||
Images have been saved to outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
|
||||
```
|
||||
camera_00_frame_000000.png
|
||||
[...]
|
||||
camera_00_frame_000047.png
|
||||
camera_01_frame_000000.png
|
||||
[...]
|
||||
camera_01_frame_000047.png
|
||||
```
|
||||
|
||||
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
|
||||
|
||||
Now that you have the camera indexes, you should specify the camera's in the config.
|
||||
|
||||
### Use your phone
|
||||
<hfoptions id="use phone">
|
||||
<hfoption id="Mac">
|
||||
|
||||
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
|
||||
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
|
||||
- Sign in both devices with the same Apple ID.
|
||||
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
|
||||
|
||||
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
|
||||
|
||||
Your iPhone should be detected automatically when running the camera setup script in the next section.
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Linux">
|
||||
|
||||
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
|
||||
|
||||
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
|
||||
```python
|
||||
sudo apt install v4l2loopback-dkms v4l-utils
|
||||
```
|
||||
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
|
||||
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio
|
||||
```
|
||||
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
|
||||
```
|
||||
5. *Start OBS Studio*. Launch with:
|
||||
```python
|
||||
flatpak run com.obsproject.Studio
|
||||
```
|
||||
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
|
||||
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
|
||||
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
|
||||
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
|
||||
```python
|
||||
v4l2-ctl --list-devices
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
VirtualCam (platform:v4l2loopback-000):
|
||||
/dev/video1
|
||||
```
|
||||
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
|
||||
```python
|
||||
v4l2-ctl -d /dev/video1 --get-fmt-video
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
>>> Format Video Capture:
|
||||
>>> Width/Height : 640/480
|
||||
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
|
||||
```
|
||||
|
||||
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
|
||||
|
||||
If everything is set up correctly, you can proceed with the rest of the tutorial.
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Teleoperate with cameras
|
||||
|
||||
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=teleoperate
|
||||
--control.display_data=true
|
||||
```
|
||||
|
||||
## Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
|
||||
|
||||
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
|
||||
|
||||
Add your token to the cli by running this command:
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Then store your Hugging Face repository name in a variable:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.tags='["so101","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
You will see a lot of lines appearing like this one:
|
||||
```
|
||||
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
|
||||
```
|
||||
|
||||
| Field | Meaning |
|
||||
|:---|:---|
|
||||
| `2024-08-10 15:02:58` | Timestamp when `print` was called. |
|
||||
| `ol_robot.py:219` | Source file and line number of the `print` call (`lerobot/scripts/control_robot.py` at line `219`). |
|
||||
| `dt: 33.34 (30.0 Hz)` | Delta time (ms) between teleop steps (target: 30.0 Hz, `--fps 30`). Yellow if step is too slow. |
|
||||
| `dtRlead: 5.06 (197.5 Hz)` | Delta time (ms) for reading present position from the **leader arm**. |
|
||||
| `dtWfoll: 0.25 (3963.7 Hz)` | Delta time (ms) for writing goal position to the **follower arm** (asynchronous). |
|
||||
| `dtRfoll: 6.22 (160.7 Hz)` | Delta time (ms) for reading present position from the **follower arm**. |
|
||||
| `dtRlaptop: 32.57 (30.7 Hz)` | Delta time (ms) for capturing an image from the **laptop camera** (async thread). |
|
||||
| `dtRphone: 33.84 (29.5 Hz)` | Delta time (ms) for capturing an image from the **phone camera** (async thread). |
|
||||
|
||||
|
||||
#### Dataset upload
|
||||
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
```bash
|
||||
echo https://huggingface.co/datasets/${HF_USER}/so101_test
|
||||
```
|
||||
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
|
||||
|
||||
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
|
||||
|
||||
#### Record function
|
||||
|
||||
The `record` function provides a suite of tools for capturing and managing data during robot operation:
|
||||
|
||||
##### 1. Frame Capture and Video Encoding
|
||||
- Frames from cameras are saved to disk during recording.
|
||||
- At the end of each episode, frames are encoded into video files.
|
||||
|
||||
##### 2. Data Storage
|
||||
- Data is stored using the `LeRobotDataset` format.
|
||||
- By default, the dataset is pushed to your Hugging Face page.
|
||||
- To disable uploading, use `--control.push_to_hub=false`.
|
||||
|
||||
##### 3. Checkpointing and Resuming
|
||||
- Checkpoints are automatically created during recording.
|
||||
- If an issue occurs, you can resume by re-running the same command with `--control.resume=true`.
|
||||
- To start recording from scratch, **manually delete** the dataset directory.
|
||||
|
||||
##### 4. Recording Parameters
|
||||
Set the flow of data recording using command-line arguments:
|
||||
- `--control.warmup_time_s=10`
|
||||
Number of seconds before starting data collection (default: **10 seconds**).
|
||||
Allows devices to warm up and synchronize.
|
||||
- `--control.episode_time_s=60`
|
||||
Duration of each data recording episode (default: **60 seconds**).
|
||||
- `--control.reset_time_s=60`
|
||||
Duration for resetting the environment after each episode (default: **60 seconds**).
|
||||
- `--control.num_episodes=50`
|
||||
Total number of episodes to record (default: **50**).
|
||||
|
||||
##### 5. Keyboard Controls During Recording
|
||||
Control the data recording flow using keyboard shortcuts:
|
||||
- Press **Right Arrow (`→`)**: Early stop the current episode or reset time and move to the next.
|
||||
- Press **Left Arrow (`←`)**: Cancel the current episode and re-record it.
|
||||
- Press **Escape (`ESC`)**: Immediately stop the session, encode videos, and upload the dataset.
|
||||
|
||||
#### Tips for gathering data
|
||||
|
||||
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
|
||||
|
||||
In the following sections, you’ll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
|
||||
|
||||
Avoid adding too much variation too quickly, as it may hinder your results.
|
||||
|
||||
|
||||
#### Troubleshooting:
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
|
||||
## Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/so101_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/so101_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
This will launch a local web server that looks like this:
|
||||
<div style="text-align:center;">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
|
||||
</div>
|
||||
|
||||
## Replay an episode
|
||||
|
||||
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
|
||||
|
||||
You can replay the first episode on your robot with:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
|
||||
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/so101_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_so101_test \
|
||||
--job_name=act_so101_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain the command:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
|
||||
|
||||
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true
|
||||
```
|
||||
|
||||
#### Upload policy checkpoints
|
||||
|
||||
Once training is done, upload the latest checkpoint with:
|
||||
```bash
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test \
|
||||
outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
You can also upload intermediate checkpoints with:
|
||||
```bash
|
||||
CKPT=010000
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
|
||||
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
|
||||
```
|
||||
|
||||
## Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_so101_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).
|
||||
19
docs/source/index.mdx
Normal file
19
docs/source/index.mdx
Normal file
@@ -0,0 +1,19 @@
|
||||
<div class="flex justify-center">
|
||||
<a target="_blank" href="https://huggingface.co/lerobot">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-logo-thumbnail.png" style="width: 100%"></img>
|
||||
</a>
|
||||
</div>
|
||||
|
||||
# LeRobot
|
||||
|
||||
**State-of-the-art machine learning for real-world robotics**
|
||||
|
||||
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
|
||||
|
||||
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
|
||||
|
||||
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started.
|
||||
|
||||
🤗 LeRobot hosts pretrained models and datasets on the LeRobot HuggingFace page.
|
||||
|
||||
Join the LeRobot community on [Discord](https://discord.gg/s3KuuzsPFb)
|
||||
84
docs/source/installation.mdx
Normal file
84
docs/source/installation.mdx
Normal file
@@ -0,0 +1,84 @@
|
||||
# Installation
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
Download our source code:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git
|
||||
cd lerobot
|
||||
```
|
||||
|
||||
Create a virtual environment with Python 3.10, using [`Miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install)
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10
|
||||
```
|
||||
|
||||
Now restart the shell by running:
|
||||
<hfoptions id="shell_restart">
|
||||
<hfoption id="Windows">
|
||||
|
||||
```bash
|
||||
source ~/.bashrc
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="Mac">
|
||||
|
||||
```bash
|
||||
source ~/.bash_profile
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="zshell">
|
||||
|
||||
```bash
|
||||
source ~/.zshrc
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
|
||||
```bash
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
|
||||
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
|
||||
> ```bash
|
||||
> conda install ffmpeg=7.1.1 -c conda-forge
|
||||
> ```
|
||||
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
cd lerobot && pip install ".[feetech]"
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
If you encounter build errors, you may need to install additional dependencies: `cmake`, `build-essential`, and `ffmpeg libs`.
|
||||
To install these for linux run:
|
||||
```bash
|
||||
sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config
|
||||
```
|
||||
For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
|
||||
## Sim
|
||||
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
|
||||
- [aloha](https://github.com/huggingface/gym-aloha)
|
||||
- [xarm](https://github.com/huggingface/gym-xarm)
|
||||
- [pusht](https://github.com/huggingface/gym-pusht)
|
||||
|
||||
For instance, to install 🤗 LeRobot with aloha and pusht, use:
|
||||
```bash
|
||||
pip install -e ".[aloha, pusht]"
|
||||
```
|
||||
|
||||
## W&B
|
||||
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
|
||||
```bash
|
||||
wandb login
|
||||
```
|
||||
@@ -1,337 +0,0 @@
|
||||
This tutorial explains how to use [Moss v1](https://github.com/jess-moss/moss-robot-arms) with LeRobot.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials with link to source the parts, as well as the instructions to 3D print the parts and advice if it's your first time printing or if you don't own a 3D printer already.
|
||||
|
||||
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
On your computer:
|
||||
|
||||
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
|
||||
```bash
|
||||
mkdir -p ~/miniconda3
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
~/miniconda3/bin/conda init bash
|
||||
```
|
||||
|
||||
2. Restart shell or `source ~/.bashrc`
|
||||
|
||||
3. Create and activate a fresh conda environment for lerobot
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10 && conda activate lerobot
|
||||
```
|
||||
|
||||
4. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
5. Install ffmpeg in your environment:
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
6. Install LeRobot with dependencies for the feetech motors:
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[feetech]"
|
||||
```
|
||||
|
||||
## Configure the motors
|
||||
|
||||
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the use of our scripts below.
|
||||
|
||||
**Find USB ports associated to your arms**
|
||||
To find the correct ports for each arm, run the utility script twice:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
|
||||
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
#### Update config file
|
||||
|
||||
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`MossRobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
|
||||
```python
|
||||
@RobotConfig.register_subclass("moss")
|
||||
@dataclass
|
||||
class MossRobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/moss"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem58760431091", <-- UPDATE HERE
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891", <-- UPDATE HERE
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
**Configure your motors**
|
||||
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
|
||||
|
||||
Then unplug your motor and plug the second motor and set its ID to 2.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
|
||||
|
||||
**Remove the gears of the 6 leader motors**
|
||||
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
|
||||
|
||||
**Add motor horn to the motors**
|
||||
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). For Moss v1, you need to align the holes on the motor horn to the motor spline to be approximately 3, 6, 9 and 12 o'clock.
|
||||
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
|
||||
|
||||
## Assemble the arms
|
||||
|
||||
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your Moss v1 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one Moss v1 robot to work on another.
|
||||
|
||||
**Manual calibration of follower arm**
|
||||
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||
|
||||
You will need to move the follower arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| <img src="../media/moss/follower_zero.webp?raw=true" alt="Moss v1 follower arm zero position" title="Moss v1 follower arm zero position" style="width:100%;"> | <img src="../media/moss/follower_rotated.webp?raw=true" alt="Moss v1 follower arm rotated position" title="Moss v1 follower arm rotated position" style="width:100%;"> | <img src="../media/moss/follower_rest.webp?raw=true" alt="Moss v1 follower arm rest position" title="Moss v1 follower arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=moss \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
**Manual calibration of leader arm**
|
||||
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| <img src="../media/moss/leader_zero.webp?raw=true" alt="Moss v1 leader arm zero position" title="Moss v1 leader arm zero position" style="width:100%;"> | <img src="../media/moss/leader_rotated.webp?raw=true" alt="Moss v1 leader arm rotated position" title="Moss v1 leader arm rotated position" style="width:100%;"> | <img src="../media/moss/leader_rest.webp?raw=true" alt="Moss v1 leader arm rest position" title="Moss v1 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=moss \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
|
||||
## Teleoperate
|
||||
|
||||
**Simple teleop**
|
||||
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=moss \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
|
||||
**Teleop with displaying cameras**
|
||||
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
|
||||
|
||||
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=moss \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
## Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with Moss v1.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=moss \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/moss_test \
|
||||
--control.tags='["moss","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
Note: You can resume recording by adding `--control.resume=true`.
|
||||
|
||||
## Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/moss_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/moss_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
## Replay an episode
|
||||
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=moss \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/moss_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/moss_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_moss_test \
|
||||
--job_name=act_moss_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.
|
||||
|
||||
## Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=moss \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_moss_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_moss_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_moss_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_moss_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_moss_test`).
|
||||
|
||||
## More
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
||||
|
||||
If you have any question or need help, please reach out on Discord in the channel [`#moss-arm`](https://discord.com/channels/1216765309076115607/1275374638985252925).
|
||||
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
|
||||
This script demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
|
||||
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
|
||||
|
||||
It requires the installation of the 'gym_pusht' simulation environment. Install it by running:
|
||||
@@ -119,7 +119,7 @@ while not done:
|
||||
rewards.append(reward)
|
||||
frames.append(env.render())
|
||||
|
||||
# The rollout is considered done when the success state is reach (i.e. terminated is True),
|
||||
# The rollout is considered done when the success state is reached (i.e. terminated is True),
|
||||
# or the maximum number of iterations is reached (i.e. truncated is True)
|
||||
done = terminated | truncated | done
|
||||
step += 1
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
|
||||
"""This script demonstrates how to train Diffusion Policy on the PushT environment.
|
||||
|
||||
Once you have trained a model with this script, you can try to evaluate it on
|
||||
examples/2_evaluate_pretrained_policy.py
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
This tutorial will explain the training script, how to use it, and particularly how to configure everything needed for the training run.
|
||||
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
|
||||
> **Note:** The following assumes you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
|
||||
|
||||
|
||||
## The training script
|
||||
|
||||
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
|
||||
LeRobot offers a training script at [`lerobot/scripts/train.py`](../lerobot/scripts/train.py). At a high level it does the following:
|
||||
|
||||
- Initialize/load a configuration for the following steps using.
|
||||
- Instantiates a dataset.
|
||||
@@ -21,9 +21,9 @@ In the training script, the main function `train` expects a `TrainPipelineConfig
|
||||
def train(cfg: TrainPipelineConfig):
|
||||
```
|
||||
|
||||
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
|
||||
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
|
||||
|
||||
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated for this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
|
||||
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated to this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
|
||||
|
||||
Let's have a look at a simplified example. Amongst other attributes, the training config has the following attributes:
|
||||
```python
|
||||
@@ -43,14 +43,14 @@ class DatasetConfig:
|
||||
```
|
||||
|
||||
This creates a hierarchical relationship where, for example assuming we have a `cfg` instance of `TrainPipelineConfig`, we can access the `repo_id` value with `cfg.dataset.repo_id`.
|
||||
From the command line, we can specify this value with using a very similar syntax `--dataset.repo_id=repo/id`.
|
||||
From the command line, we can specify this value by using a very similar syntax `--dataset.repo_id=repo/id`.
|
||||
|
||||
By default, every field takes its default value specified in the dataclass. If a field doesn't have a default value, it needs to be specified either from the command line or from a config file – which path is also given in the command line (more in this below). In the example above, the `dataset` field doesn't have a default value which means it must be specified.
|
||||
|
||||
|
||||
## Specifying values from the CLI
|
||||
|
||||
Let's say that we want to train [Diffusion Policy](../../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
|
||||
Let's say that we want to train [Diffusion Policy](../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=lerobot/pusht \
|
||||
@@ -60,10 +60,10 @@ python lerobot/scripts/train.py \
|
||||
|
||||
Let's break this down:
|
||||
- To specify the dataset, we just need to specify its `repo_id` on the hub which is the only required argument in the `DatasetConfig`. The rest of the fields have default values and in this case we are fine with those so we can just add the option `--dataset.repo_id=lerobot/pusht`.
|
||||
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../../lerobot/common/policies)
|
||||
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../../lerobot/common/envs/configs.py)
|
||||
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../lerobot/common/policies)
|
||||
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../lerobot/common/envs/configs.py)
|
||||
|
||||
Let's see another example. Let's say you've been training [ACT](../../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
|
||||
Let's see another example. Let's say you've been training [ACT](../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--policy.type=act \
|
||||
@@ -74,7 +74,7 @@ python lerobot/scripts/train.py \
|
||||
> Notice we added `--output_dir` to explicitly tell where to write outputs from this run (checkpoints, training state, configs etc.). This is not mandatory and if you don't specify it, a default directory will be created from the current date and time, env.type and policy.type. This will typically look like `outputs/train/2025-01-24/16-10-05_aloha_act`.
|
||||
|
||||
We now want to train a different policy for aloha on another task. We'll change the dataset and use [lerobot/aloha_sim_transfer_cube_human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human) instead. Of course, we also need to change the task of the environment as well to match this other task.
|
||||
Looking at the [`AlohaEnv`](../../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
|
||||
Looking at the [`AlohaEnv`](../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--policy.type=act \
|
||||
@@ -135,7 +135,7 @@ will start a training run with the same configuration used for training [lerobot
|
||||
|
||||
## Resume training
|
||||
|
||||
Being able to resume a training run is important in case it crashed or aborted for any reason. We'll demonstrate how to that here.
|
||||
Being able to resume a training run is important in case it crashed or aborted for any reason. We'll demonstrate how to do that here.
|
||||
|
||||
Let's reuse the command from the previous run and add a few more options:
|
||||
```bash
|
||||
|
||||
@@ -83,7 +83,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand dynamixel \
|
||||
--model xl330-m288 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
--id 1
|
||||
```
|
||||
|
||||
Then unplug your first motor and plug the second motor and set its ID to 2.
|
||||
@@ -93,7 +93,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand dynamixel \
|
||||
--model xl330-m288 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
--id 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6.
|
||||
@@ -377,7 +377,7 @@ robot = ManipulatorRobot(robot_config)
|
||||
|
||||
The `KochRobotConfig` is used to set the associated settings and calibration process. For instance, we activate the torque of the gripper of the leader Koch v1.1 arm and position it at a 40 degree angle to use it as a trigger.
|
||||
|
||||
For the [Aloha bimanual robot](https://aloha-2.github.io), we would use `AlohaRobotConfig` to set different settings such as a secondary ID for shadow joints (shoulder, elbow). Specific to Aloha, LeRobot comes with default calibration files stored in in `.cache/calibration/aloha_default`. Assuming the motors have been properly assembled, no manual calibration step is expected for Aloha.
|
||||
For the [Aloha bimanual robot](https://aloha-2.github.io), we would use `AlohaRobotConfig` to set different settings such as a secondary ID for shadow joints (shoulder, elbow). Specific to Aloha, LeRobot comes with default calibration files stored in `.cache/calibration/aloha_default`. Assuming the motors have been properly assembled, no manual calibration step is expected for Aloha.
|
||||
|
||||
**Calibrate and Connect the ManipulatorRobot**
|
||||
|
||||
@@ -399,7 +399,7 @@ And here are the corresponding positions for the leader arm:
|
||||
|
||||
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
|
||||
|
||||
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
|
||||
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask you to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
|
||||
|
||||
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
|
||||
|
||||
@@ -622,7 +622,7 @@ camera_01_frame_000047.png
|
||||
|
||||
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
|
||||
|
||||
Finally, run this code to instantiate and connectyour camera:
|
||||
Finally, run this code to instantiate and connect your camera:
|
||||
```python
|
||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
@@ -830,11 +830,6 @@ It contains:
|
||||
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
|
||||
|
||||
Troubleshooting:
|
||||
- On Linux, if you encounter any issue during video encoding with `ffmpeg: unknown encoder libsvtav1`, you can:
|
||||
- install with conda-forge by running `conda install -c conda-forge ffmpeg` (it should be compiled with `libsvtav1`),
|
||||
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform (check the version installed with `ffmpeg -encoders | grep libsvtav1`). If it isn't `ffmpeg 7.X` or lacks `libsvtav1` support, you can explicitly install `ffmpeg 7.X` using: `conda install ffmpeg=7.1.1 -c conda-forge`
|
||||
- or, install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1),
|
||||
- and, make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
|
||||
At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/koch_test) that you can obtain by running:
|
||||
@@ -66,7 +66,7 @@ def main():
|
||||
print(f"Number of episodes in full dataset: {total_episodes}")
|
||||
print(f"Number of episodes in training dataset (90% subset): {len(train_episodes)}")
|
||||
print(f"Number of episodes in validation dataset (10% subset): {len(val_episodes)}")
|
||||
# - Load train an val datasets
|
||||
# - Load train and val datasets
|
||||
train_dataset = LeRobotDataset(
|
||||
"lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps
|
||||
)
|
||||
|
||||
98
examples/robots/lekiwi_client_app.py
Executable file
98
examples/robots/lekiwi_client_app.py
Executable file
@@ -0,0 +1,98 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.robots.lekiwi.config_lekiwi import LeKiwiClientConfig
|
||||
from lerobot.common.robots.lekiwi.lekiwi_client import OBS_STATE, LeKiwiClient
|
||||
from lerobot.common.teleoperators.keyboard import KeyboardTeleop, KeyboardTeleopConfig
|
||||
from lerobot.common.teleoperators.so100 import SO100Leader, SO100LeaderConfig
|
||||
|
||||
NB_CYCLES_CLIENT_CONNECTION = 250
|
||||
|
||||
|
||||
def main():
|
||||
logging.info("Configuring Teleop Devices")
|
||||
leader_arm_config = SO100LeaderConfig(port="/dev/tty.usbmodem58760434171")
|
||||
leader_arm = SO100Leader(leader_arm_config)
|
||||
|
||||
keyboard_config = KeyboardTeleopConfig()
|
||||
keyboard = KeyboardTeleop(keyboard_config)
|
||||
|
||||
logging.info("Configuring LeKiwi Client")
|
||||
robot_config = LeKiwiClientConfig(remote_ip="192.0.2.42", id="lekiwi")
|
||||
robot = LeKiwiClient(robot_config)
|
||||
|
||||
logging.info("Creating LeRobot Dataset")
|
||||
|
||||
# The observations that we get are expected to be in body frame (x,y,theta)
|
||||
obs_dict = {f"{OBS_STATE}." + key: value for key, value in robot.state_feature.items()}
|
||||
# The actions that we send are expected to be in wheel frame (motor encoders)
|
||||
act_dict = {"action." + key: value for key, value in robot.action_feature.items()}
|
||||
|
||||
features_dict = {
|
||||
**act_dict,
|
||||
**obs_dict,
|
||||
**robot.camera_features,
|
||||
}
|
||||
dataset = LeRobotDataset.create(
|
||||
repo_id="user/lekiwi" + str(int(time.time())),
|
||||
fps=10,
|
||||
features=features_dict,
|
||||
)
|
||||
|
||||
logging.info("Connecting Teleop Devices")
|
||||
leader_arm.connect()
|
||||
keyboard.connect()
|
||||
|
||||
logging.info("Connecting remote LeKiwi")
|
||||
robot.connect()
|
||||
|
||||
if not robot.is_connected or not leader_arm.is_connected or not keyboard.is_connected:
|
||||
logging.error("Failed to connect to all devices")
|
||||
return
|
||||
|
||||
logging.info("Starting LeKiwi teleoperation")
|
||||
i = 0
|
||||
while i < NB_CYCLES_CLIENT_CONNECTION:
|
||||
arm_action = leader_arm.get_action()
|
||||
base_action = keyboard.get_action()
|
||||
action = {**arm_action, **base_action} if len(base_action) > 0 else arm_action
|
||||
|
||||
action_sent = robot.send_action(action)
|
||||
observation = robot.get_observation()
|
||||
|
||||
frame = {**action_sent, **observation}
|
||||
frame.update({"task": "Dummy Example Task Dataset"})
|
||||
|
||||
logging.info("Saved a frame into the dataset")
|
||||
dataset.add_frame(frame)
|
||||
i += 1
|
||||
|
||||
logging.info("Disconnecting Teleop Devices and LeKiwi Client")
|
||||
robot.disconnect()
|
||||
leader_arm.disconnect()
|
||||
keyboard.disconnect()
|
||||
|
||||
logging.info("Uploading dataset to the hub")
|
||||
dataset.save_episode()
|
||||
dataset.push_to_hub()
|
||||
|
||||
logging.info("Finished LeKiwi cleanly")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -181,7 +181,7 @@ available_robots = [
|
||||
"koch_bimanual",
|
||||
"aloha",
|
||||
"so100",
|
||||
"moss",
|
||||
"so101",
|
||||
]
|
||||
|
||||
# lists all available cameras from `lerobot/common/robot_devices/cameras`
|
||||
|
||||
79
lerobot/calibrate.py
Normal file
79
lerobot/calibrate.py
Normal file
@@ -0,0 +1,79 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Helper to recalibrate your device (robot or teleoperator).
|
||||
|
||||
Example:
|
||||
|
||||
```shell
|
||||
python -m lerobot.calibrate \
|
||||
--teleop.type=so100_leader \
|
||||
--teleop.port=/dev/tty.usbmodem58760431551 \
|
||||
--teleop.id=blue
|
||||
```
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import asdict, dataclass
|
||||
from pprint import pformat
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.robots import ( # noqa: F401
|
||||
Robot,
|
||||
RobotConfig,
|
||||
koch_follower,
|
||||
make_robot_from_config,
|
||||
so100_follower,
|
||||
)
|
||||
from lerobot.common.teleoperators import ( # noqa: F401
|
||||
Teleoperator,
|
||||
TeleoperatorConfig,
|
||||
make_teleoperator_from_config,
|
||||
)
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
from .common.teleoperators import koch_leader, so100_leader # noqa: F401
|
||||
|
||||
|
||||
@dataclass
|
||||
class CalibrateConfig:
|
||||
teleop: TeleoperatorConfig | None = None
|
||||
robot: RobotConfig | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
if bool(self.teleop) == bool(self.robot):
|
||||
raise ValueError("Choose either a teleop or a robot.")
|
||||
|
||||
self.device = self.robot if self.robot else self.teleop
|
||||
|
||||
|
||||
@draccus.wrap()
|
||||
def calibrate(cfg: CalibrateConfig):
|
||||
init_logging()
|
||||
logging.info(pformat(asdict(cfg)))
|
||||
|
||||
if isinstance(cfg.device, RobotConfig):
|
||||
device = make_robot_from_config(cfg.device)
|
||||
elif isinstance(cfg.device, TeleoperatorConfig):
|
||||
device = make_teleoperator_from_config(cfg.device)
|
||||
|
||||
device.connect(calibrate=False)
|
||||
device.calibrate()
|
||||
device.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
calibrate()
|
||||
17
lerobot/common/cameras/__init__.py
Normal file
17
lerobot/common/cameras/__init__.py
Normal file
@@ -0,0 +1,17 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig
|
||||
from .utils import make_cameras_from_configs
|
||||
49
lerobot/common/cameras/camera.py
Normal file
49
lerobot/common/cameras/camera.py
Normal file
@@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .configs import CameraConfig, ColorMode
|
||||
|
||||
|
||||
class Camera(abc.ABC):
|
||||
def __init__(self, config: CameraConfig):
|
||||
self.fps: int | None = config.fps
|
||||
self.width: int | None = config.width
|
||||
self.height: int | None = config.height
|
||||
|
||||
@property
|
||||
@abc.abstractmethod
|
||||
def is_connected(self) -> bool:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def connect(self, do_warmup_read: bool = True) -> None:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def read(self, color_mode: ColorMode | None = None) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def async_read(self, timeout_ms: float = 2000) -> np.ndarray:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def disconnect(self) -> None:
|
||||
pass
|
||||
44
lerobot/common/cameras/configs.py
Normal file
44
lerobot/common/cameras/configs.py
Normal file
@@ -0,0 +1,44 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
class ColorMode(Enum):
|
||||
RGB = "rgb"
|
||||
BGR = "bgr"
|
||||
|
||||
|
||||
class Cv2Rotation(Enum):
|
||||
NO_ROTATION = 0
|
||||
ROTATE_90 = 90
|
||||
ROTATE_180 = 180
|
||||
ROTATE_270 = -90
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
16
lerobot/common/cameras/intel/__init__.py
Normal file
16
lerobot/common/cameras/intel/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .camera_realsense import RealSenseCamera
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
672
lerobot/common/cameras/intel/camera_realsense.py
Normal file
672
lerobot/common/cameras/intel/camera_realsense.py
Normal file
@@ -0,0 +1,672 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Provides the RealSenseCamera class for capturing frames from Intel RealSense cameras.
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import logging
|
||||
import math
|
||||
import queue
|
||||
import time
|
||||
from threading import Event, Thread
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pyrealsense2 as rs
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from ..configs import ColorMode
|
||||
from ..utils import get_cv2_rotation
|
||||
from .configuration_realsense import RealSenseCameraConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RealSenseCamera(Camera):
|
||||
"""
|
||||
Manages interactions with Intel RealSense cameras for frame and depth recording.
|
||||
|
||||
This class provides an interface similar to `OpenCVCamera` but tailored for
|
||||
RealSense devices, leveraging the `pyrealsense2` library. It uses the camera's
|
||||
unique serial number for identification, offering more stability than device
|
||||
indices, especially on Linux. It also supports capturing depth maps alongside
|
||||
color frames.
|
||||
|
||||
Use the provided utility script to find available camera indices and default profiles:
|
||||
```bash
|
||||
python -m lerobot.find_cameras
|
||||
```
|
||||
|
||||
A `RealSenseCamera` instance requires a configuration object specifying the
|
||||
camera's serial number or a unique device name. If using the name, ensure only
|
||||
one camera with that name is connected.
|
||||
|
||||
The camera's default settings (FPS, resolution, color mode) from the stream
|
||||
profile are used unless overridden in the configuration.
|
||||
|
||||
Args:
|
||||
config (RealSenseCameraConfig): Configuration object containing settings like
|
||||
serial number or name, desired FPS, width, height, color mode, rotation,
|
||||
and whether to capture depth.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from lerobot.common.cameras.intel.camera_realsense import RealSenseCamera
|
||||
from lerobot.common.cameras.intel.configuration_realsense import RealSenseCameraConfig
|
||||
from lerobot.common.cameras.configs import ColorMode
|
||||
|
||||
# Basic usage with serial number
|
||||
config = RealSenseCameraConfig(serial_number="1234567890") # Replace with actual SN
|
||||
camera = RealSenseCamera(config)
|
||||
try:
|
||||
camera.connect()
|
||||
print(f"Connected to {camera}")
|
||||
color_image = camera.read() # Synchronous read (color only)
|
||||
print(f"Read frame shape: {color_image.shape}")
|
||||
async_image = camera.async_read() # Asynchronous read
|
||||
print(f"Async read frame shape: {async_image.shape}")
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
finally:
|
||||
camera.disconnect()
|
||||
print(f"Disconnected from {camera}")
|
||||
|
||||
# Example with depth capture and custom settings
|
||||
custom_config = RealSenseCameraConfig(
|
||||
serial_number="1234567890", # Replace with actual SN
|
||||
fps=30,
|
||||
width=1280,
|
||||
height=720,
|
||||
color_mode=ColorMode.BGR, # Request BGR output
|
||||
rotation=0,
|
||||
use_depth=True
|
||||
)
|
||||
depth_camera = RealSenseCamera(custom_config)
|
||||
try:
|
||||
depth_camera.connect()
|
||||
color_image, depth_map = depth_camera.read() # Returns tuple
|
||||
print(f"Color shape: {color_image.shape}, Depth shape: {depth_map.shape}")
|
||||
finally:
|
||||
depth_camera.disconnect()
|
||||
|
||||
# Example using a unique camera name
|
||||
name_config = RealSenseCameraConfig(name="Intel RealSense D435") # If unique
|
||||
name_camera = RealSenseCamera(name_config)
|
||||
# ... connect, read, disconnect ...
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: RealSenseCameraConfig):
|
||||
"""
|
||||
Initializes the RealSenseCamera instance.
|
||||
|
||||
Args:
|
||||
config: The configuration settings for the camera.
|
||||
"""
|
||||
|
||||
super().__init__(config)
|
||||
|
||||
self.config = config
|
||||
|
||||
if config.name is not None: # NOTE(Steven): Do we want to continue supporting this?
|
||||
self.serial_number = self._find_serial_number_from_name(config.name)
|
||||
elif config.serial_number is not None:
|
||||
self.serial_number = str(config.serial_number)
|
||||
else:
|
||||
raise ValueError("RealSenseCameraConfig must provide either 'serial_number' or 'name'.")
|
||||
|
||||
self.fps: int | None = config.fps
|
||||
self.channels: int = config.channels
|
||||
self.color_mode: ColorMode = config.color_mode
|
||||
self.use_depth: bool = config.use_depth
|
||||
|
||||
self.rs_pipeline: rs.pipeline | None = None
|
||||
self.rs_profile: rs.pipeline_profile | None = None
|
||||
|
||||
self.thread: Thread | None = None
|
||||
self.stop_event: Event | None = None
|
||||
self.frame_queue: queue.Queue = queue.Queue(maxsize=1)
|
||||
|
||||
self.logs: dict = {} # For timestamping or other metadata
|
||||
|
||||
self.rotation: int | None = get_cv2_rotation(config.rotation)
|
||||
|
||||
if self.height and self.width:
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.prerotated_width, self.prerotated_height = self.height, self.width
|
||||
else:
|
||||
self.prerotated_width, self.prerotated_height = self.width, self.height
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""Returns a string representation of the camera instance."""
|
||||
return f"{self.__class__.__name__}({self.serial_number})"
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
"""Checks if the camera pipeline is started and streams are active."""
|
||||
return self.rs_pipeline is not None and self.rs_profile is not None
|
||||
|
||||
@staticmethod
|
||||
def find_cameras(raise_when_empty: bool = True) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Detects available Intel RealSense cameras connected to the system.
|
||||
|
||||
Args:
|
||||
raise_when_empty (bool): If True, raises an OSError if no cameras are found.
|
||||
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries,
|
||||
where each dictionary contains 'type', 'id' (serial number), 'name',
|
||||
firmware version, USB type, and other available specs, and the default profile properties (width, height, fps, format).
|
||||
|
||||
Raises:
|
||||
OSError: If `raise_when_empty` is True and no cameras are detected,
|
||||
or if pyrealsense2 is not installed.
|
||||
ImportError: If pyrealsense2 is not installed.
|
||||
"""
|
||||
found_cameras_info = []
|
||||
context = rs.context()
|
||||
devices = context.query_devices()
|
||||
|
||||
if not devices:
|
||||
logger.warning("No RealSense devices detected.")
|
||||
if raise_when_empty:
|
||||
raise OSError(
|
||||
"No RealSense devices detected. Ensure cameras are connected, "
|
||||
"library (`pyrealsense2`) is installed, and firmware is up-to-date."
|
||||
)
|
||||
|
||||
for device in devices:
|
||||
camera_info = {
|
||||
"name": device.get_info(rs.camera_info.name),
|
||||
"type": "RealSense",
|
||||
"id": device.get_info(rs.camera_info.serial_number),
|
||||
"firmware_version": device.get_info(rs.camera_info.firmware_version),
|
||||
"usb_type_descriptor": device.get_info(rs.camera_info.usb_type_descriptor),
|
||||
"physical_port": device.get_info(rs.camera_info.physical_port),
|
||||
"product_id": device.get_info(rs.camera_info.product_id),
|
||||
"product_line": device.get_info(rs.camera_info.product_line),
|
||||
}
|
||||
|
||||
# Get stream profiles for each sensor
|
||||
sensors = device.query_sensors()
|
||||
for sensor in sensors:
|
||||
profiles = sensor.get_stream_profiles()
|
||||
|
||||
for profile in profiles:
|
||||
if profile.is_video_stream_profile() and profile.is_default():
|
||||
vprofile = profile.as_video_stream_profile()
|
||||
stream_info = {
|
||||
"stream_type": vprofile.stream_name(),
|
||||
"format": vprofile.format().name,
|
||||
"width": vprofile.width(),
|
||||
"height": vprofile.height(),
|
||||
"fps": vprofile.fps(),
|
||||
}
|
||||
camera_info["default_stream_profile"] = stream_info
|
||||
|
||||
found_cameras_info.append(camera_info)
|
||||
logger.debug(f"Found RealSense camera: {camera_info}")
|
||||
|
||||
logger.info(f"Detected RealSense cameras: {[cam['id'] for cam in found_cameras_info]}")
|
||||
return found_cameras_info
|
||||
|
||||
def _find_serial_number_from_name(self, name: str) -> str:
|
||||
"""Finds the serial number for a given unique camera name."""
|
||||
camera_infos = self.find_cameras(raise_when_empty=True)
|
||||
found_devices = [cam for cam in camera_infos if str(cam["name"]) == name]
|
||||
|
||||
if not found_devices:
|
||||
available_names = [cam["name"] for cam in camera_infos]
|
||||
raise ValueError(
|
||||
f"No RealSense camera found with name '{name}'. Available camera names: {available_names}"
|
||||
)
|
||||
|
||||
if len(found_devices) > 1:
|
||||
serial_numbers = [dev["serial_number"] for dev in found_devices]
|
||||
raise ValueError(
|
||||
f"Multiple RealSense cameras found with name '{name}'. "
|
||||
f"Please use a unique serial number instead. Found SNs: {serial_numbers}"
|
||||
)
|
||||
|
||||
serial_number = str(found_devices[0]["serial_number"])
|
||||
logger.info(f"Found serial number '{serial_number}' for camera name '{name}'.")
|
||||
return serial_number
|
||||
|
||||
def _configure_realsense_settings(self) -> rs.config:
|
||||
"""Creates and configures the RealSense pipeline configuration object."""
|
||||
rs_config = rs.config()
|
||||
rs.config.enable_device(rs_config, self.serial_number)
|
||||
|
||||
if self.width and self.height and self.fps:
|
||||
logger.debug(
|
||||
f"Requesting Color Stream: {self.prerotated_width}x{self.prerotated_height} @ {self.fps} FPS, Format: {rs.format.rgb8}"
|
||||
)
|
||||
rs_config.enable_stream(
|
||||
rs.stream.color, self.prerotated_width, self.prerotated_height, rs.format.rgb8, self.fps
|
||||
)
|
||||
if self.use_depth:
|
||||
logger.debug(
|
||||
f"Requesting Depth Stream: {self.prerotated_width}x{self.prerotated_height} @ {self.fps} FPS, Format: {rs.format.z16}"
|
||||
)
|
||||
rs_config.enable_stream(
|
||||
rs.stream.depth, self.prerotated_width, self.prerotated_height, rs.format.z16, self.fps
|
||||
)
|
||||
else:
|
||||
logger.debug(f"Requesting Color Stream: Default settings, Format: {rs.stream.color}")
|
||||
rs_config.enable_stream(rs.stream.color)
|
||||
if self.use_depth:
|
||||
logger.debug(f"Requesting Depth Stream: Default settings, Format: {rs.stream.depth}")
|
||||
rs_config.enable_stream(rs.stream.depth)
|
||||
|
||||
return rs_config
|
||||
|
||||
def _validate_capture_settings(self) -> None:
|
||||
"""
|
||||
Validates if the actual stream settings match the requested configuration.
|
||||
|
||||
This method compares the requested FPS, width, and height against the
|
||||
actual settings obtained from the active RealSense profile after the
|
||||
pipeline has started.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the actual camera settings significantly deviate
|
||||
from the requested ones.
|
||||
DeviceNotConnectedError: If the camera is not connected when attempting
|
||||
to validate settings.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"Cannot validate settings for {self} as it is not connected.")
|
||||
|
||||
self._validate_fps(self.rs_profile.get_stream(rs.stream.color).as_video_stream_profile())
|
||||
self._validate_width_and_height(self.rs_profile.get_stream(rs.stream.color).as_video_stream_profile())
|
||||
|
||||
if self.use_depth:
|
||||
self._validate_fps(self.rs_profile.get_stream(rs.stream.depth).as_video_stream_profile())
|
||||
self._validate_width_and_height(
|
||||
self.rs_profile.get_stream(rs.stream.depth).as_video_stream_profile()
|
||||
)
|
||||
|
||||
def connect(self, do_warmup_read: bool = True):
|
||||
"""
|
||||
Connects to the RealSense camera specified in the configuration.
|
||||
|
||||
Initializes the RealSense pipeline, configures the required streams (color
|
||||
and optionally depth), starts the pipeline, and validates the actual stream settings.
|
||||
|
||||
Raises:
|
||||
DeviceAlreadyConnectedError: If the camera is already connected.
|
||||
ValueError: If the configuration is invalid (e.g., missing serial/name, name not unique).
|
||||
ConnectionError: If the camera is found but fails to start the pipeline.
|
||||
RuntimeError: If the pipeline starts but fails to apply requested settings.
|
||||
OSError: If no RealSense devices are detected at all.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} is already connected.")
|
||||
|
||||
logger.debug(f"Attempting to connect to camera {self.serial_number}...")
|
||||
self.rs_pipeline = rs.pipeline()
|
||||
rs_config = self._configure_realsense_settings()
|
||||
|
||||
try:
|
||||
self.rs_profile = self.rs_pipeline.start(rs_config)
|
||||
logger.debug(f"Successfully started pipeline for camera {self.serial_number}.")
|
||||
except RuntimeError as e:
|
||||
self.rs_profile = None
|
||||
self.rs_pipeline = None
|
||||
raise ConnectionError(
|
||||
f"Failed to open RealSense camera {self.serial_number}. Error: {e}. "
|
||||
f"Run 'python -m find_cameras list-cameras' for details."
|
||||
) from e
|
||||
|
||||
logger.debug(f"Validating stream configuration for {self.serial_number}...")
|
||||
self._validate_capture_settings()
|
||||
|
||||
if do_warmup_read:
|
||||
logger.debug(f"Reading a warm-up frame for {self.serial_number}...")
|
||||
self.read() # NOTE(Steven): For now we just read one frame, we could also loop for X frames/secs
|
||||
|
||||
logger.info(f"Camera {self.serial_number} connected and configured successfully.")
|
||||
|
||||
def _validate_fps(self, stream) -> None:
|
||||
"""Validates and sets the internal FPS based on actual stream FPS."""
|
||||
actual_fps = stream.fps()
|
||||
|
||||
if self.fps is None:
|
||||
self.fps = actual_fps
|
||||
logger.info(f"FPS not specified, using camera default: {self.fps} FPS.")
|
||||
return
|
||||
|
||||
# Use math.isclose for robust float comparison
|
||||
if not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
logger.warning(
|
||||
f"Requested FPS {self.fps} for {self}, but camera reported {actual_fps}. "
|
||||
"This might be due to camera limitations."
|
||||
)
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested FPS {self.fps} for {self}. Actual value reported: {actual_fps}."
|
||||
)
|
||||
logger.debug(f"FPS set to {actual_fps} for {self}.")
|
||||
|
||||
def _validate_width_and_height(self, stream) -> None:
|
||||
"""Validates and sets the internal capture width and height based on actual stream width."""
|
||||
actual_width = int(round(stream.width()))
|
||||
actual_height = int(round(stream.height()))
|
||||
|
||||
if self.width is None or self.height is None:
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.width, self.height = actual_height, actual_width
|
||||
self.prerotated_width, self.prerotated_height = actual_width, actual_height
|
||||
else:
|
||||
self.width, self.height = actual_width, actual_height
|
||||
self.prerotated_width, self.prerotated_height = actual_width, actual_height
|
||||
logger.info(f"Capture width set to camera default: {self.width}.")
|
||||
logger.info(f"Capture height set to camera default: {self.height}.")
|
||||
return
|
||||
|
||||
if self.prerotated_width != actual_width:
|
||||
logger.warning(
|
||||
f"Requested capture width {self.prerotated_width} for {self}, but camera reported {actual_width}."
|
||||
)
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture width {self.prerotated_width} for {self}. Actual value: {actual_width}."
|
||||
)
|
||||
logger.debug(f"Capture width set to {actual_width} for {self}.")
|
||||
|
||||
if self.prerotated_height != actual_height:
|
||||
logger.warning(
|
||||
f"Requested capture height {self.prerotated_height} for {self}, but camera reported {actual_height}."
|
||||
)
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture height {self.prerotated_height} for {self}. Actual value: {actual_height}."
|
||||
)
|
||||
logger.debug(f"Capture height set to {actual_height} for {self}.")
|
||||
|
||||
def read_depth(self, timeout_ms: int = 5000) -> np.ndarray:
|
||||
"""
|
||||
Reads a single frame (depth) synchronously from the camera.
|
||||
|
||||
This is a blocking call. It waits for a coherent set of frames (depth)
|
||||
from the camera hardware via the RealSense pipeline.
|
||||
|
||||
Args:
|
||||
timeout_ms (int): Maximum time in milliseconds to wait for a frame. Defaults to 5000ms.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The depth map as a NumPy array (height, width)
|
||||
of type `np.uint16` (raw depth values in millimeters) and rotation.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
RuntimeError: If reading frames from the pipeline fails or frames are invalid.
|
||||
"""
|
||||
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
if not self.use_depth:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture depth frame from {self}. '.read_depth()'. Depth stream is not enabled."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, frame = self.rs_pipeline.try_wait_for_frames(
|
||||
timeout_ms=timeout_ms
|
||||
) # NOTE(Steven): This read has a timeout
|
||||
|
||||
if not ret or frame is None:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture frame from {self}. '.read_depth()' returned status={ret} and frame is None."
|
||||
)
|
||||
|
||||
depth_frame = frame.get_depth_frame()
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
depth_map_processed = self._postprocess_image(depth_map)
|
||||
|
||||
read_duration_ms = (time.perf_counter() - start_time) * 1e3
|
||||
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
|
||||
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
return depth_map_processed
|
||||
|
||||
def read(self, color_mode: ColorMode | None = None, timeout_ms: int = 5000) -> np.ndarray:
|
||||
"""
|
||||
Reads a single frame (color) synchronously from the camera.
|
||||
|
||||
This is a blocking call. It waits for a coherent set of frames (color)
|
||||
from the camera hardware via the RealSense pipeline.
|
||||
|
||||
Args:
|
||||
timeout_ms (int): Maximum time in milliseconds to wait for a frame. Defaults to 5000ms.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The captured color frame as a NumPy array
|
||||
(height, width, channels), processed according to `color_mode` and rotation.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
RuntimeError: If reading frames from the pipeline fails or frames are invalid.
|
||||
ValueError: If an invalid `color_mode` is requested.
|
||||
"""
|
||||
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, frame = self.rs_pipeline.try_wait_for_frames(
|
||||
timeout_ms=timeout_ms
|
||||
) # NOTE(Steven): This read has a timeout while opencv doesn't
|
||||
|
||||
if not ret or frame is None:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture frame from {self}. '.read()' returned status={ret} and frame is None."
|
||||
)
|
||||
|
||||
color_frame = frame.get_color_frame()
|
||||
color_image_raw = np.asanyarray(color_frame.get_data())
|
||||
|
||||
color_image_processed = self._postprocess_image(color_image_raw, color_mode)
|
||||
|
||||
read_duration_ms = (time.perf_counter() - start_time) * 1e3
|
||||
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
|
||||
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
return color_image_processed
|
||||
|
||||
def _postprocess_image(self, image: np.ndarray, color_mode: ColorMode | None = None) -> np.ndarray:
|
||||
"""
|
||||
Applies color conversion, dimension validation, and rotation to a raw color frame.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The raw image frame (expected RGB format from RealSense).
|
||||
color_mode (Optional[ColorMode]): The target color mode (RGB or BGR). If None,
|
||||
uses the instance's default `self.color_mode`.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The processed image frame according to `self.color_mode` and `self.rotation`.
|
||||
|
||||
Raises:
|
||||
ValueError: If the requested `color_mode` is invalid.
|
||||
RuntimeError: If the raw frame dimensions do not match the configured
|
||||
`width` and `height`.
|
||||
"""
|
||||
|
||||
if color_mode and color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"Invalid requested color mode '{color_mode}'. Expected {ColorMode.RGB} or {ColorMode.BGR}."
|
||||
)
|
||||
|
||||
h, w, c = image.shape
|
||||
|
||||
if h != self.prerotated_height or w != self.prerotated_width:
|
||||
raise RuntimeError(
|
||||
f"Captured frame dimensions ({h}x{w}) do not match configured capture dimensions ({self.prerotated_height}x{self.prerotated_width}) for {self}."
|
||||
)
|
||||
if c != self.channels:
|
||||
logger.warning(
|
||||
f"Captured frame channels ({c}) do not match configured channels ({self.channels}) for {self}."
|
||||
)
|
||||
|
||||
processed_image = image
|
||||
if self.color_mode == ColorMode.BGR:
|
||||
processed_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
logger.debug(f"Converted frame from RGB to BGR for {self}.")
|
||||
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
processed_image = cv2.rotate(processed_image, self.rotation)
|
||||
logger.debug(f"Rotated frame by {self.config.rotation} degrees for {self}.")
|
||||
|
||||
return processed_image
|
||||
|
||||
def _read_loop(self):
|
||||
"""
|
||||
Internal loop run by the background thread for asynchronous reading.
|
||||
|
||||
Continuously reads frames (color and optional depth) using `read()`
|
||||
and places the latest result (single image or tuple) into the `frame_queue`.
|
||||
It overwrites any previous frame in the queue.
|
||||
"""
|
||||
logger.debug(f"Starting read loop thread for {self}.")
|
||||
while not self.stop_event.is_set():
|
||||
try:
|
||||
frame_data = self.read(timeout_ms=500)
|
||||
|
||||
with contextlib.suppress(queue.Empty):
|
||||
_ = self.frame_queue.get_nowait()
|
||||
self.frame_queue.put(frame_data)
|
||||
logger.debug(f"Frame data placed in queue for {self}.")
|
||||
|
||||
except DeviceNotConnectedError:
|
||||
logger.error(f"Read loop for {self} stopped: Camera disconnected.")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.warning(f"Error reading frame in background thread for {self}: {e}")
|
||||
|
||||
logger.debug(f"Stopping read loop thread for {self}.")
|
||||
|
||||
def _ensure_read_thread_running(self):
|
||||
"""Starts or restarts the background read thread if it's not running."""
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
self.thread.join(timeout=0.1)
|
||||
if self.stop_event is not None:
|
||||
self.stop_event.set()
|
||||
|
||||
self.stop_event = Event()
|
||||
self.thread = Thread(
|
||||
target=self._read_loop, args=(), name=f"RealSenseReadLoop-{self}-{self.serial_number}"
|
||||
)
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
logger.debug(f"Read thread started for {self}.")
|
||||
|
||||
# NOTE(Steven): Missing implementation for depth for now
|
||||
def async_read(self, timeout_ms: float = 2000) -> np.ndarray:
|
||||
"""
|
||||
Reads the latest available frame data (color or color+depth) asynchronously.
|
||||
|
||||
This method retrieves the most recent frame captured by the background
|
||||
read thread. It does not block waiting for the camera hardware directly,
|
||||
only waits for a frame to appear in the internal queue up to the specified
|
||||
timeout.
|
||||
|
||||
Args:
|
||||
timeout_ms (float): Maximum time in milliseconds to wait for a frame
|
||||
to become available in the queue. Defaults to 2000ms (2 seconds).
|
||||
|
||||
Returns:
|
||||
np.ndarray:
|
||||
The latest captured frame data (color image), processed according to configuration.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
TimeoutError: If no frame data becomes available within the specified timeout.
|
||||
RuntimeError: If the background thread died unexpectedly or another queue error occurs.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
if self.thread is None or not self.thread.is_alive():
|
||||
self._ensure_read_thread_running()
|
||||
|
||||
try:
|
||||
return self.frame_queue.get(timeout=timeout_ms / 1000.0)
|
||||
except queue.Empty as e:
|
||||
thread_alive = self.thread is not None and self.thread.is_alive()
|
||||
logger.error(
|
||||
f"Timeout waiting for frame from {self} queue after {timeout_ms}ms. "
|
||||
f"(Read thread alive: {thread_alive})"
|
||||
)
|
||||
raise TimeoutError(
|
||||
f"Timed out waiting for frame from camera {self.serial_number} after {timeout_ms} ms. "
|
||||
f"Read thread alive: {thread_alive}."
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.exception(f"Unexpected error getting frame data from queue for {self}: {e}")
|
||||
raise RuntimeError(
|
||||
f"Error getting frame data from queue for camera {self.serial_number}: {e}"
|
||||
) from e
|
||||
|
||||
def _shutdown_read_thread(self):
|
||||
"""Signals the background read thread to stop and waits for it to join."""
|
||||
if self.stop_event is not None:
|
||||
logger.debug(f"Signaling stop event for read thread of {self}.")
|
||||
self.stop_event.set()
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
logger.debug(f"Waiting for read thread of {self} to join...")
|
||||
self.thread.join(timeout=2.0)
|
||||
if self.thread.is_alive():
|
||||
logger.warning(f"Read thread for {self} did not terminate gracefully after 2 seconds.")
|
||||
else:
|
||||
logger.debug(f"Read thread for {self} joined successfully.")
|
||||
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
|
||||
def disconnect(self):
|
||||
"""
|
||||
Disconnects from the camera, stops the pipeline, and cleans up resources.
|
||||
|
||||
Stops the background read thread (if running) and stops the RealSense pipeline.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is already disconnected (pipeline not running).
|
||||
"""
|
||||
|
||||
if not self.is_connected and self.thread is None:
|
||||
raise DeviceNotConnectedError(
|
||||
f"Attempted to disconnect {self}, but it appears already disconnected."
|
||||
)
|
||||
|
||||
logger.debug(f"Disconnecting from camera {self.serial_number}...")
|
||||
|
||||
if self.thread is not None:
|
||||
self._shutdown_read_thread()
|
||||
|
||||
if self.rs_pipeline is not None:
|
||||
logger.debug(f"Stopping RealSense pipeline object for {self}.")
|
||||
self.rs_pipeline.stop()
|
||||
self.rs_pipeline = None
|
||||
self.rs_profile = None
|
||||
|
||||
logger.info(f"Camera {self.serial_number} disconnected successfully.")
|
||||
87
lerobot/common/cameras/intel/configuration_realsense.py
Normal file
87
lerobot/common/cameras/intel/configuration_realsense.py
Normal file
@@ -0,0 +1,87 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
from ..configs import CameraConfig, ColorMode, Cv2Rotation
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("intelrealsense")
|
||||
@dataclass
|
||||
class RealSenseCameraConfig(CameraConfig):
|
||||
"""Configuration class for Intel RealSense cameras.
|
||||
|
||||
This class provides specialized configuration options for Intel RealSense cameras,
|
||||
including support for depth sensing and device identification via serial number or name.
|
||||
|
||||
Example configurations for Intel RealSense D405:
|
||||
```python
|
||||
# Basic configurations
|
||||
RealSenseCameraConfig(128422271347, 30, 1280, 720) # 1280x720 @ 30FPS
|
||||
RealSenseCameraConfig(128422271347, 60, 640, 480) # 640x480 @ 60FPS
|
||||
|
||||
# Advanced configurations
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True) # With depth sensing
|
||||
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=Cv2Rotation.ROTATE_90) # With 90° rotation
|
||||
```
|
||||
|
||||
Attributes:
|
||||
fps: Requested frames per second for the color stream.
|
||||
width: Requested frame width in pixels for the color stream.
|
||||
height: Requested frame height in pixels for the color stream.
|
||||
name: Optional human-readable name to identify the camera.
|
||||
serial_number: Optional unique serial number to identify the camera.
|
||||
Either name or serial_number must be provided.
|
||||
color_mode: Color mode for image output (RGB or BGR). Defaults to RGB.
|
||||
channels: Number of color channels (currently only 3 is supported).
|
||||
use_depth: Whether to enable depth stream. Defaults to False.
|
||||
rotation: Image rotation setting (0°, 90°, 180°, or 270°). Defaults to no rotation.
|
||||
|
||||
Note:
|
||||
- Either name or serial_number must be specified, but not both.
|
||||
- Depth stream configuration (if enabled) will use the same FPS as the color stream.
|
||||
- The actual resolution and FPS may be adjusted by the camera to the nearest supported mode.
|
||||
- Only 3-channel color output (RGB/BGR) is currently supported.
|
||||
"""
|
||||
|
||||
name: str | None = None
|
||||
serial_number: int | None = None
|
||||
color_mode: ColorMode = ColorMode.RGB
|
||||
channels: int | None = 3
|
||||
use_depth: bool = False
|
||||
rotation: Cv2Rotation = Cv2Rotation.NO_ROTATION # NOTE(Steven): Check if draccus can parse to an enum
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be {ColorMode.RGB.value} or {ColorMode.BGR.value}, but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
if self.rotation not in (
|
||||
Cv2Rotation.NO_ROTATION,
|
||||
Cv2Rotation.ROTATE_90,
|
||||
Cv2Rotation.ROTATE_180,
|
||||
Cv2Rotation.ROTATE_270,
|
||||
):
|
||||
raise ValueError(
|
||||
f"`rotation` is expected to be in {(Cv2Rotation.NO_ROTATION, Cv2Rotation.ROTATE_90, Cv2Rotation.ROTATE_180, Cv2Rotation.ROTATE_270)}, but {self.rotation} is provided."
|
||||
)
|
||||
|
||||
if self.channels != 3:
|
||||
raise NotImplementedError(f"Unsupported number of channels: {self.channels}")
|
||||
|
||||
if bool(self.name) and bool(self.serial_number):
|
||||
raise ValueError(
|
||||
f"One of them must be set: name or serial_number, but {self.name=} and {self.serial_number=} provided."
|
||||
)
|
||||
16
lerobot/common/cameras/opencv/__init__.py
Normal file
16
lerobot/common/cameras/opencv/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .camera_opencv import OpenCVCamera
|
||||
from .configuration_opencv import OpenCVCameraConfig
|
||||
555
lerobot/common/cameras/opencv/camera_opencv.py
Normal file
555
lerobot/common/cameras/opencv/camera_opencv.py
Normal file
@@ -0,0 +1,555 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
Provides the OpenCVCamera class for capturing frames from cameras using OpenCV.
|
||||
"""
|
||||
|
||||
import contextlib
|
||||
import logging
|
||||
import math
|
||||
import platform
|
||||
import queue
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Event, Thread
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
from ..camera import Camera
|
||||
from ..utils import IndexOrPath, get_cv2_backend, get_cv2_rotation
|
||||
from .configuration_opencv import ColorMode, OpenCVCameraConfig
|
||||
|
||||
# NOTE(Steven): The maximum opencv device index depends on your operating system. For instance,
|
||||
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
|
||||
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
|
||||
# When you change the USB port or reboot the computer, the operating system might
|
||||
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OpenCVCamera(Camera):
|
||||
"""
|
||||
Manages camera interactions using OpenCV for efficient frame recording.
|
||||
|
||||
This class provides a high-level interface to connect to, configure, and read
|
||||
frames from cameras compatible with OpenCV's VideoCapture. It supports both
|
||||
synchronous and asynchronous frame reading.
|
||||
|
||||
An OpenCVCamera instance requires a camera index (e.g., 0) or a device path
|
||||
(e.g., '/dev/video0' on Linux). Camera indices can be unstable across reboots
|
||||
or port changes, especially on Linux. Use the provided utility script to find
|
||||
available camera indices or paths:
|
||||
```bash
|
||||
python -m lerobot.find_cameras
|
||||
```
|
||||
|
||||
The camera's default settings (FPS, resolution, color mode) are used unless
|
||||
overridden in the configuration.
|
||||
|
||||
Args:
|
||||
config (OpenCVCameraConfig): Configuration object containing settings like
|
||||
camera index/path, desired FPS, width, height, color mode, and rotation.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from lerobot.common.cameras.opencv import OpenCVCamera
|
||||
from lerobot.common.cameras.configuration_opencv import OpenCVCameraConfig, ColorMode
|
||||
|
||||
# Basic usage with camera index 0
|
||||
config = OpenCVCameraConfig(index_or_path=0)
|
||||
camera = OpenCVCamera(config)
|
||||
try:
|
||||
camera.connect()
|
||||
print(f"Connected to {camera}")
|
||||
color_image = camera.read() # Synchronous read
|
||||
print(f"Read frame shape: {color_image.shape}")
|
||||
async_image = camera.async_read() # Asynchronous read
|
||||
print(f"Async read frame shape: {async_image.shape}")
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
finally:
|
||||
camera.disconnect()
|
||||
print(f"Disconnected from {camera}")
|
||||
|
||||
# Example with custom settings
|
||||
custom_config = OpenCVCameraConfig(
|
||||
index_or_path='/dev/video0', # Or use an index
|
||||
fps=30,
|
||||
width=1280,
|
||||
height=720,
|
||||
color_mode=ColorMode.RGB,
|
||||
rotation=90
|
||||
)
|
||||
custom_camera = OpenCVCamera(custom_config)
|
||||
# ... connect, read, disconnect ...
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: OpenCVCameraConfig):
|
||||
"""
|
||||
Initializes the OpenCVCamera instance.
|
||||
|
||||
Args:
|
||||
config: The configuration settings for the camera.
|
||||
"""
|
||||
super().__init__(config)
|
||||
|
||||
self.config = config
|
||||
self.index_or_path: IndexOrPath = config.index_or_path
|
||||
|
||||
self.fps: int | None = config.fps
|
||||
self.channels: int = config.channels
|
||||
self.color_mode: ColorMode = config.color_mode
|
||||
|
||||
self.videocapture_camera: cv2.VideoCapture | None = None
|
||||
|
||||
self.thread: Thread | None = None
|
||||
self.stop_event: Event | None = None
|
||||
self.frame_queue: queue.Queue = queue.Queue(maxsize=1)
|
||||
|
||||
self.logs: dict = {} # NOTE(Steven): Might be removed in the future
|
||||
|
||||
self.rotation: int | None = get_cv2_rotation(config.rotation)
|
||||
self.backend: int = get_cv2_backend() # NOTE(Steven): If we specify backend the opencv open fails
|
||||
|
||||
if self.height and self.width:
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.prerotated_width, self.prerotated_height = self.height, self.width
|
||||
else:
|
||||
self.prerotated_width, self.prerotated_height = self.width, self.height
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""Returns a string representation of the camera instance."""
|
||||
return f"{self.__class__.__name__}({self.index_or_path})"
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
"""Checks if the camera is currently connected and opened."""
|
||||
return isinstance(self.videocapture_camera, cv2.VideoCapture) and self.videocapture_camera.isOpened()
|
||||
|
||||
def _configure_capture_settings(self) -> None:
|
||||
"""
|
||||
Applies the specified FPS, width, and height settings to the connected camera.
|
||||
|
||||
This method attempts to set the camera properties via OpenCV. It checks if
|
||||
the camera successfully applied the settings and raises an error if not.
|
||||
|
||||
Args:
|
||||
fps: The desired frames per second. If None, the setting is skipped.
|
||||
width: The desired capture width. If None, the setting is skipped.
|
||||
height: The desired capture height. If None, the setting is skipped.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If the camera fails to set any of the specified properties
|
||||
to the requested value.
|
||||
DeviceNotConnectedError: If the camera is not connected when attempting
|
||||
to configure settings.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"Cannot configure settings for {self} as it is not connected.")
|
||||
|
||||
self._validate_fps()
|
||||
self._validate_width_and_height()
|
||||
|
||||
def connect(self, do_warmup_read: bool = True):
|
||||
"""
|
||||
Connects to the OpenCV camera specified in the configuration.
|
||||
|
||||
Initializes the OpenCV VideoCapture object, sets desired camera properties
|
||||
(FPS, width, height), and performs initial checks.
|
||||
|
||||
Raises:
|
||||
DeviceAlreadyConnectedError: If the camera is already connected.
|
||||
ValueError: If the specified camera index/path is not found or accessible.
|
||||
ConnectionError: If the camera is found but fails to open.
|
||||
RuntimeError: If the camera opens but fails to apply requested FPS/resolution settings.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} is already connected.")
|
||||
|
||||
# Use 1 thread for OpenCV operations to avoid potential conflicts or
|
||||
# blocking in multi-threaded applications, especially during data collection.
|
||||
cv2.setNumThreads(1)
|
||||
|
||||
logger.debug(f"Attempting to connect to camera {self.index_or_path} using backend {self.backend}...")
|
||||
self.videocapture_camera = cv2.VideoCapture(self.index_or_path)
|
||||
|
||||
if not self.videocapture_camera.isOpened():
|
||||
self.videocapture_camera.release()
|
||||
self.videocapture_camera = None
|
||||
raise ConnectionError(
|
||||
f"Failed to open OpenCV camera {self.index_or_path}."
|
||||
f"Run 'python -m find_cameras list-cameras' for details."
|
||||
)
|
||||
|
||||
logger.debug(f"Successfully opened camera {self.index_or_path}. Applying configuration...")
|
||||
self._configure_capture_settings()
|
||||
|
||||
if do_warmup_read:
|
||||
logger.debug(f"Reading a warm-up frame for {self.index_or_path}...")
|
||||
self.read() # NOTE(Steven): For now we just read one frame, we could also loop for X frames/secs
|
||||
|
||||
logger.debug(f"Camera {self.index_or_path} connected and configured successfully.")
|
||||
|
||||
def _validate_fps(self) -> None:
|
||||
"""Validates and sets the camera's frames per second (FPS)."""
|
||||
|
||||
if self.fps is None:
|
||||
self.fps = self.videocapture_camera.get(cv2.CAP_PROP_FPS)
|
||||
logger.info(f"FPS set to camera default: {self.fps}.")
|
||||
return
|
||||
|
||||
success = self.videocapture_camera.set(cv2.CAP_PROP_FPS, float(self.fps))
|
||||
actual_fps = self.videocapture_camera.get(cv2.CAP_PROP_FPS)
|
||||
# Use math.isclose for robust float comparison
|
||||
if not success or not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
logger.warning(
|
||||
f"Requested FPS {self.fps} for {self}, but camera reported {actual_fps} (set success: {success}). "
|
||||
"This might be due to camera limitations."
|
||||
)
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested FPS {self.fps} for {self}. Actual value reported: {actual_fps}."
|
||||
)
|
||||
logger.debug(f"FPS set to {actual_fps} for {self}.")
|
||||
|
||||
def _validate_width_and_height(self) -> None:
|
||||
"""Validates and sets the camera's frame capture width and height."""
|
||||
|
||||
default_width = int(round(self.videocapture_camera.get(cv2.CAP_PROP_FRAME_WIDTH)))
|
||||
default_height = int(round(self.videocapture_camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
||||
|
||||
if self.width is None or self.height is None:
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
self.width, self.height = default_height, default_width
|
||||
self.prerotated_width, self.prerotated_height = default_width, default_height
|
||||
else:
|
||||
self.width, self.height = default_width, default_height
|
||||
self.prerotated_width, self.prerotated_height = default_width, default_height
|
||||
logger.info(f"Capture width set to camera default: {self.width}.")
|
||||
logger.info(f"Capture height set to camera default: {self.height}.")
|
||||
return
|
||||
|
||||
success = self.videocapture_camera.set(cv2.CAP_PROP_FRAME_WIDTH, float(self.prerotated_width))
|
||||
actual_width = int(round(self.videocapture_camera.get(cv2.CAP_PROP_FRAME_WIDTH)))
|
||||
if not success or self.prerotated_width != actual_width:
|
||||
logger.warning(
|
||||
f"Requested capture width {self.prerotated_width} for {self}, but camera reported {actual_width} (set success: {success})."
|
||||
)
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture width {self.prerotated_width} for {self}. Actual value: {actual_width}."
|
||||
)
|
||||
logger.debug(f"Capture width set to {actual_width} for {self}.")
|
||||
|
||||
success = self.videocapture_camera.set(cv2.CAP_PROP_FRAME_HEIGHT, float(self.prerotated_height))
|
||||
actual_height = int(round(self.videocapture_camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
||||
if not success or self.prerotated_height != actual_height:
|
||||
logger.warning(
|
||||
f"Requested capture height {self.prerotated_height} for {self}, but camera reported {actual_height} (set success: {success})."
|
||||
)
|
||||
raise RuntimeError(
|
||||
f"Failed to set requested capture height {self.prerotated_height} for {self}. Actual value: {actual_height}."
|
||||
)
|
||||
logger.debug(f"Capture height set to {actual_height} for {self}.")
|
||||
|
||||
@staticmethod
|
||||
def find_cameras(
|
||||
max_index_search_range=MAX_OPENCV_INDEX, raise_when_empty: bool = True
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Detects available OpenCV cameras connected to the system.
|
||||
|
||||
On Linux, it scans '/dev/video*' paths. On other systems (like macOS, Windows),
|
||||
it checks indices from 0 up to `max_index_search_range`.
|
||||
|
||||
Args:
|
||||
max_index_search_range (int): The maximum index to check on non-Linux systems.
|
||||
raise_when_empty (bool): If True, raises an OSError if no cameras are found.
|
||||
|
||||
Returns:
|
||||
List[Dict[str, Any]]: A list of dictionaries,
|
||||
where each dictionary contains 'type', 'id' (port index or path),
|
||||
and the default profile properties (width, height, fps, format).
|
||||
"""
|
||||
found_cameras_info = []
|
||||
|
||||
if platform.system() == "Linux":
|
||||
logger.info("Linux detected. Scanning '/dev/video*' device paths...")
|
||||
possible_paths = sorted(Path("/dev").glob("video*"), key=lambda p: p.name)
|
||||
targets_to_scan = [str(p) for p in possible_paths]
|
||||
logger.debug(f"Found potential paths: {targets_to_scan}")
|
||||
else:
|
||||
logger.info(
|
||||
f"{platform.system()} system detected. Scanning indices from 0 to {max_index_search_range}..."
|
||||
)
|
||||
targets_to_scan = list(range(max_index_search_range))
|
||||
|
||||
for target in targets_to_scan:
|
||||
camera = cv2.VideoCapture(target)
|
||||
if camera.isOpened():
|
||||
default_width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
default_height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||
default_fps = camera.get(cv2.CAP_PROP_FPS)
|
||||
default_format = camera.get(cv2.CAP_PROP_FORMAT)
|
||||
camera_info = {
|
||||
"name": f"OpenCV Camera @ {target}",
|
||||
"type": "OpenCV",
|
||||
"id": target,
|
||||
"backend_api": camera.getBackendName(),
|
||||
"default_stream_profile": {
|
||||
"format": default_format,
|
||||
"width": default_width,
|
||||
"height": default_height,
|
||||
"fps": default_fps,
|
||||
},
|
||||
}
|
||||
|
||||
found_cameras_info.append(camera_info)
|
||||
logger.debug(f"Found OpenCV camera:: {camera_info}")
|
||||
camera.release()
|
||||
|
||||
if not found_cameras_info:
|
||||
logger.warning("No OpenCV devices detected.")
|
||||
if raise_when_empty:
|
||||
raise OSError("No OpenCV devices detected. Ensure cameras are connected.")
|
||||
|
||||
logger.info(f"Detected OpenCV cameras: {[cam['id'] for cam in found_cameras_info]}")
|
||||
return found_cameras_info
|
||||
|
||||
def read(self, color_mode: ColorMode | None = None) -> np.ndarray:
|
||||
"""
|
||||
Reads a single frame synchronously from the camera.
|
||||
|
||||
This is a blocking call. It waits for the next available frame from the
|
||||
camera hardware via OpenCV.
|
||||
|
||||
Args:
|
||||
color_mode (Optional[ColorMode]): If specified, overrides the default
|
||||
color mode (`self.color_mode`) for this read operation (e.g.,
|
||||
request RGB even if default is BGR).
|
||||
|
||||
Returns:
|
||||
np.ndarray: The captured frame as a NumPy array in the format
|
||||
(height, width, channels), using the specified or default
|
||||
color mode and applying any configured rotation.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
RuntimeError: If reading the frame from the camera fails or if the
|
||||
received frame dimensions don't match expectations before rotation.
|
||||
ValueError: If an invalid `color_mode` is requested.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# NOTE(Steven): Are we okay with this blocking an undefined amount of time?
|
||||
ret, frame = self.videocapture_camera.read()
|
||||
|
||||
if not ret or frame is None:
|
||||
raise RuntimeError(
|
||||
f"Failed to capture frame from {self}. '.read()' returned status={ret} and frame is None."
|
||||
)
|
||||
|
||||
# Post-process the frame (color conversion, dimension check, rotation)
|
||||
processed_frame = self._postprocess_image(frame, color_mode)
|
||||
|
||||
read_duration_ms = (time.perf_counter() - start_time) * 1e3
|
||||
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
|
||||
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
return processed_frame
|
||||
|
||||
def _postprocess_image(self, image: np.ndarray, color_mode: ColorMode | None = None) -> np.ndarray:
|
||||
"""
|
||||
Applies color conversion, dimension validation, and rotation to a raw frame.
|
||||
|
||||
Args:
|
||||
image (np.ndarray): The raw image frame (expected BGR format from OpenCV).
|
||||
color_mode (Optional[ColorMode]): The target color mode (RGB or BGR). If None,
|
||||
uses the instance's default `self.color_mode`.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The processed image frame.
|
||||
|
||||
Raises:
|
||||
ValueError: If the requested `color_mode` is invalid.
|
||||
RuntimeError: If the raw frame dimensions do not match the configured
|
||||
`width` and `height`.
|
||||
"""
|
||||
requested_color_mode = self.color_mode if color_mode is None else color_mode
|
||||
|
||||
if requested_color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"Invalid requested color mode '{requested_color_mode}'. Expected {ColorMode.RGB} or {ColorMode.BGR}."
|
||||
)
|
||||
|
||||
h, w, c = image.shape
|
||||
|
||||
if h != self.prerotated_height or w != self.prerotated_width:
|
||||
raise RuntimeError(
|
||||
f"Captured frame dimensions ({h}x{w}) do not match configured capture dimensions ({self.prerotated_height}x{self.prerotated_width}) for {self}."
|
||||
)
|
||||
if c != self.channels:
|
||||
logger.warning(
|
||||
f"Captured frame channels ({c}) do not match configured channels ({self.channels}) for {self}."
|
||||
)
|
||||
|
||||
processed_image = image
|
||||
if requested_color_mode == ColorMode.RGB:
|
||||
processed_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
logger.debug(f"Converted frame from BGR to RGB for {self}.")
|
||||
|
||||
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
|
||||
processed_image = cv2.rotate(processed_image, self.rotation)
|
||||
logger.debug(f"Rotated frame by {self.config.rotation} degrees for {self}.")
|
||||
|
||||
return processed_image
|
||||
|
||||
def _read_loop(self):
|
||||
"""
|
||||
Internal loop run by the background thread for asynchronous reading.
|
||||
|
||||
Continuously reads frames from the camera using the synchronous `read()`
|
||||
method and places the latest frame into the `frame_queue`. It overwrites
|
||||
any previous frame in the queue.
|
||||
"""
|
||||
logger.debug(f"Starting read loop thread for {self}.")
|
||||
while not self.stop_event.is_set():
|
||||
try:
|
||||
color_image = self.read()
|
||||
|
||||
with contextlib.suppress(queue.Empty):
|
||||
_ = self.frame_queue.get_nowait()
|
||||
self.frame_queue.put(color_image)
|
||||
logger.debug(f"Frame placed in queue for {self}.")
|
||||
|
||||
except DeviceNotConnectedError:
|
||||
logger.error(f"Read loop for {self} stopped: Camera disconnected.")
|
||||
break
|
||||
except Exception as e:
|
||||
logger.warning(f"Error reading frame in background thread for {self}: {e}")
|
||||
|
||||
logger.debug(f"Stopping read loop thread for {self}.")
|
||||
|
||||
def _ensure_read_thread_running(self):
|
||||
"""Starts or restarts the background read thread if it's not running."""
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
self.thread.join(timeout=0.1)
|
||||
if self.stop_event is not None:
|
||||
self.stop_event.set()
|
||||
|
||||
self.stop_event = Event()
|
||||
self.thread = Thread(
|
||||
target=self._read_loop, args=(), name=f"OpenCVCameraReadLoop-{self}-{self.index_or_path}"
|
||||
)
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
logger.debug(f"Read thread started for {self}.")
|
||||
|
||||
def async_read(self, timeout_ms: float = 2000) -> np.ndarray:
|
||||
"""
|
||||
Reads the latest available frame asynchronously.
|
||||
|
||||
This method retrieves the most recent frame captured by the background
|
||||
read thread. It does not block waiting for the camera hardware directly,
|
||||
only waits for a frame to appear in the internal queue up to the specified
|
||||
timeout.
|
||||
|
||||
Args:
|
||||
timeout_ms (float): Maximum time in milliseconds to wait for a frame
|
||||
to become available in the queue. Defaults to 2000ms (2 seconds).
|
||||
|
||||
Returns:
|
||||
np.ndarray: The latest captured frame as a NumPy array in the format
|
||||
(height, width, channels), processed according to configuration.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is not connected.
|
||||
TimeoutError: If no frame becomes available within the specified timeout.
|
||||
RuntimeError: If an unexpected error occurs while retrieving from the queue.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
if self.thread is None or not self.thread.is_alive():
|
||||
self._ensure_read_thread_running()
|
||||
|
||||
try:
|
||||
return self.frame_queue.get(timeout=timeout_ms / 1000.0)
|
||||
except queue.Empty as e:
|
||||
thread_alive = self.thread is not None and self.thread.is_alive()
|
||||
logger.error(
|
||||
f"Timeout waiting for frame from {self} queue after {timeout_ms}ms. "
|
||||
f"(Read thread alive: {thread_alive})"
|
||||
)
|
||||
raise TimeoutError(
|
||||
f"Timed out waiting for frame from camera {self.index_or_path} after {timeout_ms} ms. "
|
||||
f"Read thread alive: {thread_alive}."
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.exception(f"Unexpected error getting frame from queue for {self}: {e}")
|
||||
raise RuntimeError(f"Error getting frame from queue for camera {self.index_or_path}: {e}") from e
|
||||
|
||||
def _shutdown_read_thread(self):
|
||||
"""Signals the background read thread to stop and waits for it to join."""
|
||||
if self.stop_event is not None:
|
||||
logger.debug(f"Signaling stop event for read thread of {self}.")
|
||||
self.stop_event.set()
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
logger.debug(f"Waiting for read thread of {self} to join...")
|
||||
self.thread.join(timeout=2.0)
|
||||
if self.thread.is_alive():
|
||||
logger.warning(f"Read thread for {self} did not terminate gracefully after 2 seconds.")
|
||||
else:
|
||||
logger.debug(f"Read thread for {self} joined successfully.")
|
||||
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
|
||||
def disconnect(self):
|
||||
"""
|
||||
Disconnects from the camera and cleans up resources.
|
||||
|
||||
Stops the background read thread (if running) and releases the OpenCV
|
||||
VideoCapture object.
|
||||
|
||||
Raises:
|
||||
DeviceNotConnectedError: If the camera is already disconnected.
|
||||
"""
|
||||
if not self.is_connected and self.thread is None:
|
||||
raise DeviceNotConnectedError(
|
||||
f"Attempted to disconnect {self}, but it appears already disconnected."
|
||||
)
|
||||
|
||||
logger.debug(f"Disconnecting from camera {self.index_or_path}...")
|
||||
|
||||
if self.thread is not None:
|
||||
self._shutdown_read_thread()
|
||||
|
||||
if self.videocapture_camera is not None:
|
||||
logger.debug(f"Releasing OpenCV VideoCapture object for {self}.")
|
||||
self.videocapture_camera.release()
|
||||
self.videocapture_camera = None
|
||||
|
||||
logger.info(f"Camera {self.index_or_path} disconnected successfully.")
|
||||
76
lerobot/common/cameras/opencv/configuration_opencv.py
Normal file
76
lerobot/common/cameras/opencv/configuration_opencv.py
Normal file
@@ -0,0 +1,76 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
from ..configs import CameraConfig, ColorMode, Cv2Rotation
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("opencv")
|
||||
@dataclass
|
||||
class OpenCVCameraConfig(CameraConfig):
|
||||
"""Configuration class for OpenCV-based camera devices or video files.
|
||||
|
||||
This class provides configuration options for cameras accessed through OpenCV,
|
||||
supporting both physical camera devices and video files. It includes settings
|
||||
for resolution, frame rate, color mode, and image rotation.
|
||||
|
||||
Example configurations:
|
||||
```python
|
||||
# Basic configurations
|
||||
OpenCVCameraConfig(0, 30, 1280, 720) # 1280x720 @ 30FPS
|
||||
OpenCVCameraConfig(/dev/video4, 60, 640, 480) # 640x480 @ 60FPS
|
||||
|
||||
# Advanced configurations
|
||||
OpenCVCameraConfig(128422271347, 30, 640, 480, rotation=Cv2Rotation.ROTATE_90) # With 90° rotation
|
||||
```
|
||||
|
||||
Attributes:
|
||||
index_or_path: Either an integer representing the camera device index,
|
||||
or a Path object pointing to a video file.
|
||||
fps: Requested frames per second for the color stream.
|
||||
width: Requested frame width in pixels for the color stream.
|
||||
height: Requested frame height in pixels for the color stream.
|
||||
color_mode: Color mode for image output (RGB or BGR). Defaults to RGB.
|
||||
channels: Number of color channels (currently only 3 is supported).
|
||||
rotation: Image rotation setting (0°, 90°, 180°, or 270°). Defaults to no rotation.
|
||||
|
||||
Note:
|
||||
- Only 3-channel color output (RGB/BGR) is currently supported.
|
||||
"""
|
||||
|
||||
index_or_path: int | Path
|
||||
color_mode: ColorMode = ColorMode.RGB
|
||||
channels: int = 3 # NOTE(Steven): Why is this a config?
|
||||
rotation: Cv2Rotation = Cv2Rotation.NO_ROTATION
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in (ColorMode.RGB, ColorMode.BGR):
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be {ColorMode.RGB.value} or {ColorMode.BGR.value}, but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
if self.rotation not in (
|
||||
Cv2Rotation.NO_ROTATION,
|
||||
Cv2Rotation.ROTATE_90,
|
||||
Cv2Rotation.ROTATE_180,
|
||||
Cv2Rotation.ROTATE_270,
|
||||
):
|
||||
raise ValueError(
|
||||
f"`rotation` is expected to be in {(Cv2Rotation.NO_ROTATION, Cv2Rotation.ROTATE_90, Cv2Rotation.ROTATE_180, Cv2Rotation.ROTATE_270)}, but {self.rotation} is provided."
|
||||
)
|
||||
|
||||
if self.channels != 3:
|
||||
raise NotImplementedError(f"Unsupported number of channels: {self.channels}")
|
||||
73
lerobot/common/cameras/utils.py
Normal file
73
lerobot/common/cameras/utils.py
Normal file
@@ -0,0 +1,73 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import platform
|
||||
from pathlib import Path
|
||||
from typing import TypeAlias
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from .camera import Camera
|
||||
from .configs import CameraConfig, Cv2Rotation
|
||||
|
||||
IndexOrPath: TypeAlias = int | Path
|
||||
|
||||
|
||||
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
|
||||
cameras = {}
|
||||
|
||||
for key, cfg in camera_configs.items():
|
||||
if cfg.type == "opencv":
|
||||
from .opencv import OpenCVCamera
|
||||
|
||||
cameras[key] = OpenCVCamera(cfg)
|
||||
|
||||
elif cfg.type == "intelrealsense":
|
||||
from .intel.camera_realsense import RealSenseCamera
|
||||
|
||||
cameras[key] = RealSenseCamera(cfg)
|
||||
else:
|
||||
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def get_cv2_rotation(rotation: Cv2Rotation) -> int:
|
||||
import cv2
|
||||
|
||||
return {
|
||||
Cv2Rotation.ROTATE_270: cv2.ROTATE_90_COUNTERCLOCKWISE,
|
||||
Cv2Rotation.ROTATE_90: cv2.ROTATE_90_CLOCKWISE,
|
||||
Cv2Rotation.ROTATE_180: cv2.ROTATE_180,
|
||||
}.get(rotation)
|
||||
|
||||
|
||||
def get_cv2_backend() -> int:
|
||||
import cv2
|
||||
|
||||
return {
|
||||
"Linux": cv2.CAP_DSHOW,
|
||||
"Windows": cv2.CAP_AVFOUNDATION,
|
||||
"Darwin": cv2.CAP_ANY,
|
||||
}.get(platform.system(), cv2.CAP_V4L2)
|
||||
|
||||
|
||||
def save_image(img_array: np.ndarray, camera_index: int, frame_index: int, images_dir: Path):
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
@@ -17,12 +17,15 @@ from pathlib import Path
|
||||
|
||||
from huggingface_hub.constants import HF_HOME
|
||||
|
||||
OBS_ENV = "observation.environment_state"
|
||||
OBS_ROBOT = "observation.state"
|
||||
OBS_ENV_STATE = "observation.environment_state"
|
||||
OBS_STATE = "observation.state"
|
||||
OBS_IMAGE = "observation.image"
|
||||
OBS_IMAGES = "observation.images"
|
||||
ACTION = "action"
|
||||
|
||||
ROBOTS = "robots"
|
||||
TELEOPERATORS = "teleoperators"
|
||||
|
||||
# files & directories
|
||||
CHECKPOINTS_DIR = "checkpoints"
|
||||
LAST_CHECKPOINT_LINK = "last"
|
||||
@@ -34,12 +37,16 @@ OPTIMIZER_STATE = "optimizer_state.safetensors"
|
||||
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
|
||||
SCHEDULER_STATE = "scheduler_state.json"
|
||||
|
||||
# cache dir
|
||||
default_cache_path = Path(HF_HOME) / "lerobot"
|
||||
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
|
||||
|
||||
if "LEROBOT_HOME" in os.environ:
|
||||
raise ValueError(
|
||||
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
|
||||
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
|
||||
)
|
||||
|
||||
# cache dir
|
||||
default_cache_path = Path(HF_HOME) / "lerobot"
|
||||
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
|
||||
|
||||
# calibration dir
|
||||
default_calibration_path = HF_LEROBOT_HOME / "calibration"
|
||||
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()
|
||||
|
||||
@@ -49,7 +49,7 @@ def resolve_delta_timestamps(
|
||||
"observation.state": [-0.04, -0.02, 0]
|
||||
"observation.action": [-0.02, 0, 0.02]
|
||||
}
|
||||
returns `None` if the the resulting dict is empty.
|
||||
returns `None` if the resulting dict is empty.
|
||||
"""
|
||||
delta_timestamps = {}
|
||||
for key in ds_meta.features:
|
||||
|
||||
@@ -48,7 +48,6 @@ from lerobot.common.datasets.utils import (
|
||||
embed_images,
|
||||
get_delta_indices,
|
||||
get_episode_data_index,
|
||||
get_features_from_robot,
|
||||
get_hf_features_from_features,
|
||||
get_safe_version,
|
||||
hf_transform_to_torch,
|
||||
@@ -72,7 +71,6 @@ from lerobot.common.datasets.video_utils import (
|
||||
get_safe_default_codec,
|
||||
get_video_info,
|
||||
)
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
|
||||
CODEBASE_VERSION = "v2.1"
|
||||
|
||||
@@ -304,10 +302,9 @@ class LeRobotDatasetMetadata:
|
||||
cls,
|
||||
repo_id: str,
|
||||
fps: int,
|
||||
root: str | Path | None = None,
|
||||
robot: Robot | None = None,
|
||||
features: dict,
|
||||
robot_type: str | None = None,
|
||||
features: dict | None = None,
|
||||
root: str | Path | None = None,
|
||||
use_videos: bool = True,
|
||||
) -> "LeRobotDatasetMetadata":
|
||||
"""Creates metadata for a LeRobotDataset."""
|
||||
@@ -317,33 +314,27 @@ class LeRobotDatasetMetadata:
|
||||
|
||||
obj.root.mkdir(parents=True, exist_ok=False)
|
||||
|
||||
if robot is not None:
|
||||
features = get_features_from_robot(robot, use_videos)
|
||||
robot_type = robot.robot_type
|
||||
if not all(cam.fps == fps for cam in robot.cameras.values()):
|
||||
logging.warning(
|
||||
f"Some cameras in your {robot.robot_type} robot don't have an fps matching the fps of your dataset."
|
||||
"In this case, frames from lower fps cameras will be repeated to fill in the blanks."
|
||||
)
|
||||
elif features is None:
|
||||
raise ValueError(
|
||||
"Dataset features must either come from a Robot or explicitly passed upon creation."
|
||||
)
|
||||
else:
|
||||
# TODO(aliberts, rcadene): implement sanity check for features
|
||||
features = {**features, **DEFAULT_FEATURES}
|
||||
# if robot is not None:
|
||||
# features = get_features_from_robot(robot, use_videos)
|
||||
# robot_type = robot.robot_type
|
||||
# if not all(cam.fps == fps for cam in robot.cameras.values()):
|
||||
# logging.warning(
|
||||
# f"Some cameras in your {robot.robot_type} robot don't have an fps matching the fps of your dataset."
|
||||
# "In this case, frames from lower fps cameras will be repeated to fill in the blanks."
|
||||
# )
|
||||
|
||||
# check if none of the features contains a "/" in their names,
|
||||
# as this would break the dict flattening in the stats computation, which uses '/' as separator
|
||||
for key in features:
|
||||
if "/" in key:
|
||||
raise ValueError(f"Feature names should not contain '/'. Found '/' in feature '{key}'.")
|
||||
# TODO(aliberts, rcadene): implement sanity check for features
|
||||
features = {**features, **DEFAULT_FEATURES}
|
||||
|
||||
features = {**features, **DEFAULT_FEATURES}
|
||||
# check if none of the features contains a "/" in their names,
|
||||
# as this would break the dict flattening in the stats computation, which uses '/' as separator
|
||||
for key in features:
|
||||
if "/" in key:
|
||||
raise ValueError(f"Feature names should not contain '/'. Found '/' in feature '{key}'.")
|
||||
|
||||
obj.tasks, obj.task_to_task_index = {}, {}
|
||||
obj.episodes_stats, obj.stats, obj.episodes = {}, {}, {}
|
||||
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
|
||||
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, features, use_videos, robot_type)
|
||||
if len(obj.video_keys) > 0 and not use_videos:
|
||||
raise ValueError()
|
||||
write_json(obj.info, obj.root / INFO_PATH)
|
||||
@@ -785,7 +776,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
else:
|
||||
self.image_writer.save_image(image=image, fpath=fpath)
|
||||
|
||||
def add_frame(self, frame: dict) -> None:
|
||||
def add_frame(self, frame: dict, task: str, timestamp: float | None = None) -> None:
|
||||
"""
|
||||
This function only adds the frame to the episode_buffer. Apart from images — which are written in a
|
||||
temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
|
||||
@@ -803,17 +794,14 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
|
||||
# Automatically add frame_index and timestamp to episode buffer
|
||||
frame_index = self.episode_buffer["size"]
|
||||
timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
|
||||
if timestamp is None:
|
||||
timestamp = frame_index / self.fps
|
||||
self.episode_buffer["frame_index"].append(frame_index)
|
||||
self.episode_buffer["timestamp"].append(timestamp)
|
||||
self.episode_buffer["task"].append(task)
|
||||
|
||||
# Add frame features to episode_buffer
|
||||
for key in frame:
|
||||
if key == "task":
|
||||
# Note: we associate the task in natural language to its task index during `save_episode`
|
||||
self.episode_buffer["task"].append(frame["task"])
|
||||
continue
|
||||
|
||||
if key not in self.features:
|
||||
raise ValueError(
|
||||
f"An element of the frame is not in the features. '{key}' not in '{self.features.keys()}'."
|
||||
@@ -989,10 +977,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
cls,
|
||||
repo_id: str,
|
||||
fps: int,
|
||||
features: dict,
|
||||
root: str | Path | None = None,
|
||||
robot: Robot | None = None,
|
||||
robot_type: str | None = None,
|
||||
features: dict | None = None,
|
||||
use_videos: bool = True,
|
||||
tolerance_s: float = 1e-4,
|
||||
image_writer_processes: int = 0,
|
||||
@@ -1004,10 +991,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
||||
obj.meta = LeRobotDatasetMetadata.create(
|
||||
repo_id=repo_id,
|
||||
fps=fps,
|
||||
root=root,
|
||||
robot=robot,
|
||||
robot_type=robot_type,
|
||||
features=features,
|
||||
root=root,
|
||||
use_videos=use_videos,
|
||||
)
|
||||
obj.repo_id = obj.meta.repo_id
|
||||
|
||||
@@ -128,7 +128,7 @@ class SharpnessJitter(Transform):
|
||||
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
|
||||
|
||||
if not 0.0 <= sharpness[0] <= sharpness[1]:
|
||||
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
|
||||
raise ValueError(f"sharpness values should be between (0., inf), but got {sharpness}.")
|
||||
|
||||
return float(sharpness[0]), float(sharpness[1])
|
||||
|
||||
|
||||
@@ -40,7 +40,7 @@ from lerobot.common.datasets.backward_compatibility import (
|
||||
BackwardCompatibilityError,
|
||||
ForwardCompatibilityError,
|
||||
)
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
from lerobot.common.robots import Robot
|
||||
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
|
||||
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
|
||||
|
||||
@@ -387,6 +387,52 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
|
||||
return datasets.Features(hf_features)
|
||||
|
||||
|
||||
def _validate_feature_names(features: dict[str, dict]) -> None:
|
||||
invalid_features = {name: ft for name, ft in features.items() if "/" in name}
|
||||
if invalid_features:
|
||||
raise ValueError(f"Feature names should not contain '/'. Found '/' in '{invalid_features}'.")
|
||||
|
||||
|
||||
def hw_to_dataset_features(
|
||||
hw_features: dict[str, type | tuple], prefix: str, use_video: bool = True
|
||||
) -> dict[str, dict]:
|
||||
features = {}
|
||||
joint_fts = {key: ftype for key, ftype in hw_features.items() if ftype is float}
|
||||
cam_fts = {key: shape for key, shape in hw_features.items() if isinstance(shape, tuple)}
|
||||
|
||||
if joint_fts:
|
||||
features[f"{prefix}.joints"] = {
|
||||
"dtype": "float32",
|
||||
"shape": (len(joint_fts),),
|
||||
"names": list(joint_fts),
|
||||
}
|
||||
|
||||
for key, shape in cam_fts.items():
|
||||
features[f"{prefix}.cameras.{key}"] = {
|
||||
"dtype": "video" if use_video else "image",
|
||||
"shape": shape,
|
||||
"names": ["height", "width", "channels"],
|
||||
}
|
||||
|
||||
_validate_feature_names(features)
|
||||
return features
|
||||
|
||||
|
||||
def build_dataset_frame(
|
||||
ds_features: dict[str, dict], values: dict[str, Any], prefix: str
|
||||
) -> dict[str, np.ndarray]:
|
||||
frame = {}
|
||||
for key, ft in ds_features.items():
|
||||
if key in DEFAULT_FEATURES or not key.startswith(prefix):
|
||||
continue
|
||||
elif ft["dtype"] == "float32" and len(ft["shape"]) == 1:
|
||||
frame[key] = np.array([values[name] for name in ft["names"]], dtype=np.float32)
|
||||
elif ft["dtype"] in ["image", "video"]:
|
||||
frame[key] = values[key.removeprefix(f"{prefix}.cameras.")]
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict:
|
||||
camera_ft = {}
|
||||
if robot.cameras:
|
||||
@@ -431,9 +477,9 @@ def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFea
|
||||
def create_empty_dataset_info(
|
||||
codebase_version: str,
|
||||
fps: int,
|
||||
robot_type: str,
|
||||
features: dict,
|
||||
use_videos: bool,
|
||||
robot_type: str | None = None,
|
||||
) -> dict:
|
||||
return {
|
||||
"codebase_version": codebase_version,
|
||||
@@ -699,16 +745,12 @@ class IterableNamespace(SimpleNamespace):
|
||||
|
||||
|
||||
def validate_frame(frame: dict, features: dict):
|
||||
optional_features = {"timestamp"}
|
||||
expected_features = (set(features) - set(DEFAULT_FEATURES.keys())) | {"task"}
|
||||
actual_features = set(frame.keys())
|
||||
expected_features = set(features) - set(DEFAULT_FEATURES)
|
||||
actual_features = set(frame)
|
||||
|
||||
error_message = validate_features_presence(actual_features, expected_features, optional_features)
|
||||
error_message = validate_features_presence(actual_features, expected_features)
|
||||
|
||||
if "task" in frame:
|
||||
error_message += validate_feature_string("task", frame["task"])
|
||||
|
||||
common_features = actual_features & (expected_features | optional_features)
|
||||
common_features = actual_features & expected_features
|
||||
for name in common_features - {"task"}:
|
||||
error_message += validate_feature_dtype_and_shape(name, features[name], frame[name])
|
||||
|
||||
@@ -716,12 +758,10 @@ def validate_frame(frame: dict, features: dict):
|
||||
raise ValueError(error_message)
|
||||
|
||||
|
||||
def validate_features_presence(
|
||||
actual_features: set[str], expected_features: set[str], optional_features: set[str]
|
||||
):
|
||||
def validate_features_presence(actual_features: set[str], expected_features: set[str]):
|
||||
error_message = ""
|
||||
missing_features = expected_features - actual_features
|
||||
extra_features = actual_features - (expected_features | optional_features)
|
||||
extra_features = actual_features - expected_features
|
||||
|
||||
if missing_features or extra_features:
|
||||
error_message += "Feature mismatch in `frame` dictionary:\n"
|
||||
|
||||
@@ -27,7 +27,7 @@ from textwrap import dedent
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
|
||||
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
|
||||
from lerobot.common.robots.aloha.configuration_aloha import AlohaRobotConfig
|
||||
|
||||
LOCAL_DIR = Path("data/")
|
||||
|
||||
|
||||
@@ -141,8 +141,8 @@ from lerobot.common.datasets.video_utils import (
|
||||
get_image_pixel_channels,
|
||||
get_video_info,
|
||||
)
|
||||
from lerobot.common.robot_devices.robots.configs import RobotConfig
|
||||
from lerobot.common.robot_devices.robots.utils import make_robot_config
|
||||
from lerobot.common.robots import RobotConfig
|
||||
from lerobot.common.robots.utils import make_robot_config
|
||||
|
||||
V16 = "v1.6"
|
||||
V20 = "v2.0"
|
||||
|
||||
@@ -13,16 +13,15 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import glob
|
||||
import importlib
|
||||
import json
|
||||
import logging
|
||||
import subprocess
|
||||
import warnings
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass, field
|
||||
from pathlib import Path
|
||||
from typing import Any, ClassVar
|
||||
|
||||
import av
|
||||
import pyarrow as pa
|
||||
import torch
|
||||
import torchvision
|
||||
@@ -252,51 +251,83 @@ def encode_video_frames(
|
||||
g: int | None = 2,
|
||||
crf: int | None = 30,
|
||||
fast_decode: int = 0,
|
||||
log_level: str | None = "error",
|
||||
log_level: int | None = av.logging.ERROR,
|
||||
overwrite: bool = False,
|
||||
) -> None:
|
||||
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
|
||||
# Check encoder availability
|
||||
if vcodec not in ["h264", "hevc", "libsvtav1"]:
|
||||
raise ValueError(f"Unsupported video codec: {vcodec}. Supported codecs are: h264, hevc, libsvtav1.")
|
||||
|
||||
video_path = Path(video_path)
|
||||
imgs_dir = Path(imgs_dir)
|
||||
video_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
ffmpeg_args = OrderedDict(
|
||||
[
|
||||
("-f", "image2"),
|
||||
("-r", str(fps)),
|
||||
("-i", str(imgs_dir / "frame_%06d.png")),
|
||||
("-vcodec", vcodec),
|
||||
("-pix_fmt", pix_fmt),
|
||||
]
|
||||
video_path.parent.mkdir(parents=True, exist_ok=overwrite)
|
||||
|
||||
# Encoders/pixel formats incompatibility check
|
||||
if (vcodec == "libsvtav1" or vcodec == "hevc") and pix_fmt == "yuv444p":
|
||||
logging.warning(
|
||||
f"Incompatible pixel format 'yuv444p' for codec {vcodec}, auto-selecting format 'yuv420p'"
|
||||
)
|
||||
pix_fmt = "yuv420p"
|
||||
|
||||
# Get input frames
|
||||
template = "frame_" + ("[0-9]" * 6) + ".png"
|
||||
input_list = sorted(
|
||||
glob.glob(str(imgs_dir / template)), key=lambda x: int(x.split("_")[-1].split(".")[0])
|
||||
)
|
||||
|
||||
# Define video output frame size (assuming all input frames are the same size)
|
||||
if len(input_list) == 0:
|
||||
raise FileNotFoundError(f"No images found in {imgs_dir}.")
|
||||
dummy_image = Image.open(input_list[0])
|
||||
width, height = dummy_image.size
|
||||
|
||||
# Define video codec options
|
||||
video_options = {}
|
||||
|
||||
if g is not None:
|
||||
ffmpeg_args["-g"] = str(g)
|
||||
video_options["g"] = str(g)
|
||||
|
||||
if crf is not None:
|
||||
ffmpeg_args["-crf"] = str(crf)
|
||||
video_options["crf"] = str(crf)
|
||||
|
||||
if fast_decode:
|
||||
key = "-svtav1-params" if vcodec == "libsvtav1" else "-tune"
|
||||
key = "svtav1-params" if vcodec == "libsvtav1" else "tune"
|
||||
value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode"
|
||||
ffmpeg_args[key] = value
|
||||
video_options[key] = value
|
||||
|
||||
# Set logging level
|
||||
if log_level is not None:
|
||||
ffmpeg_args["-loglevel"] = str(log_level)
|
||||
# "While less efficient, it is generally preferable to modify logging with Python’s logging"
|
||||
logging.getLogger("libav").setLevel(log_level)
|
||||
|
||||
ffmpeg_args = [item for pair in ffmpeg_args.items() for item in pair]
|
||||
if overwrite:
|
||||
ffmpeg_args.append("-y")
|
||||
# Create and open output file (overwrite by default)
|
||||
with av.open(str(video_path), "w") as output:
|
||||
output_stream = output.add_stream(vcodec, fps, options=video_options)
|
||||
output_stream.pix_fmt = pix_fmt
|
||||
output_stream.width = width
|
||||
output_stream.height = height
|
||||
|
||||
ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)]
|
||||
# redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal
|
||||
subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL)
|
||||
# Loop through input frames and encode them
|
||||
for input_data in input_list:
|
||||
input_image = Image.open(input_data).convert("RGB")
|
||||
input_frame = av.VideoFrame.from_image(input_image)
|
||||
packet = output_stream.encode(input_frame)
|
||||
if packet:
|
||||
output.mux(packet)
|
||||
|
||||
# Flush the encoder
|
||||
packet = output_stream.encode()
|
||||
if packet:
|
||||
output.mux(packet)
|
||||
|
||||
# Reset logging level
|
||||
if log_level is not None:
|
||||
av.logging.restore_default_callback()
|
||||
|
||||
if not video_path.exists():
|
||||
raise OSError(
|
||||
f"Video encoding did not work. File not found: {video_path}. "
|
||||
f"Try running the command manually to debug: `{''.join(ffmpeg_cmd)}`"
|
||||
)
|
||||
raise OSError(f"Video encoding did not work. File not found: {video_path}.")
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -332,78 +363,68 @@ with warnings.catch_warnings():
|
||||
|
||||
|
||||
def get_audio_info(video_path: Path | str) -> dict:
|
||||
ffprobe_audio_cmd = [
|
||||
"ffprobe",
|
||||
"-v",
|
||||
"error",
|
||||
"-select_streams",
|
||||
"a:0",
|
||||
"-show_entries",
|
||||
"stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration",
|
||||
"-of",
|
||||
"json",
|
||||
str(video_path),
|
||||
]
|
||||
result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
|
||||
# Set logging level
|
||||
logging.getLogger("libav").setLevel(av.logging.ERROR)
|
||||
|
||||
info = json.loads(result.stdout)
|
||||
audio_stream_info = info["streams"][0] if info.get("streams") else None
|
||||
if audio_stream_info is None:
|
||||
return {"has_audio": False}
|
||||
# Getting audio stream information
|
||||
audio_info = {}
|
||||
with av.open(str(video_path), "r") as audio_file:
|
||||
try:
|
||||
audio_stream = audio_file.streams.audio[0]
|
||||
except IndexError:
|
||||
# Reset logging level
|
||||
av.logging.restore_default_callback()
|
||||
return {"has_audio": False}
|
||||
|
||||
# Return the information, defaulting to None if no audio stream is present
|
||||
return {
|
||||
"has_audio": True,
|
||||
"audio.channels": audio_stream_info.get("channels", None),
|
||||
"audio.codec": audio_stream_info.get("codec_name", None),
|
||||
"audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
|
||||
"audio.sample_rate": int(audio_stream_info["sample_rate"])
|
||||
if audio_stream_info.get("sample_rate")
|
||||
else None,
|
||||
"audio.bit_depth": audio_stream_info.get("bit_depth", None),
|
||||
"audio.channel_layout": audio_stream_info.get("channel_layout", None),
|
||||
}
|
||||
audio_info["audio.channels"] = audio_stream.channels
|
||||
audio_info["audio.codec"] = audio_stream.codec.canonical_name
|
||||
# In an ideal loseless case : bit depth x sample rate x channels = bit rate.
|
||||
# In an actual compressed case, the bit rate is set according to the compression level : the lower the bit rate, the more compression is applied.
|
||||
audio_info["audio.bit_rate"] = audio_stream.bit_rate
|
||||
audio_info["audio.sample_rate"] = audio_stream.sample_rate # Number of samples per second
|
||||
# In an ideal loseless case : fixed number of bits per sample.
|
||||
# In an actual compressed case : variable number of bits per sample (often reduced to match a given depth rate).
|
||||
audio_info["audio.bit_depth"] = audio_stream.format.bits
|
||||
audio_info["audio.channel_layout"] = audio_stream.layout.name
|
||||
audio_info["has_audio"] = True
|
||||
|
||||
# Reset logging level
|
||||
av.logging.restore_default_callback()
|
||||
|
||||
return audio_info
|
||||
|
||||
|
||||
def get_video_info(video_path: Path | str) -> dict:
|
||||
ffprobe_video_cmd = [
|
||||
"ffprobe",
|
||||
"-v",
|
||||
"error",
|
||||
"-select_streams",
|
||||
"v:0",
|
||||
"-show_entries",
|
||||
"stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt",
|
||||
"-of",
|
||||
"json",
|
||||
str(video_path),
|
||||
]
|
||||
result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
||||
if result.returncode != 0:
|
||||
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
|
||||
# Set logging level
|
||||
logging.getLogger("libav").setLevel(av.logging.ERROR)
|
||||
|
||||
info = json.loads(result.stdout)
|
||||
video_stream_info = info["streams"][0]
|
||||
# Getting video stream information
|
||||
video_info = {}
|
||||
with av.open(str(video_path), "r") as video_file:
|
||||
try:
|
||||
video_stream = video_file.streams.video[0]
|
||||
except IndexError:
|
||||
# Reset logging level
|
||||
av.logging.restore_default_callback()
|
||||
return {}
|
||||
|
||||
# Calculate fps from r_frame_rate
|
||||
r_frame_rate = video_stream_info["r_frame_rate"]
|
||||
num, denom = map(int, r_frame_rate.split("/"))
|
||||
fps = num / denom
|
||||
video_info["video.height"] = video_stream.height
|
||||
video_info["video.width"] = video_stream.width
|
||||
video_info["video.codec"] = video_stream.codec.canonical_name
|
||||
video_info["video.pix_fmt"] = video_stream.pix_fmt
|
||||
video_info["video.is_depth_map"] = False
|
||||
|
||||
pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"])
|
||||
# Calculate fps from r_frame_rate
|
||||
video_info["video.fps"] = int(video_stream.base_rate)
|
||||
|
||||
video_info = {
|
||||
"video.fps": fps,
|
||||
"video.height": video_stream_info["height"],
|
||||
"video.width": video_stream_info["width"],
|
||||
"video.channels": pixel_channels,
|
||||
"video.codec": video_stream_info["codec_name"],
|
||||
"video.pix_fmt": video_stream_info["pix_fmt"],
|
||||
"video.is_depth_map": False,
|
||||
**get_audio_info(video_path),
|
||||
}
|
||||
pixel_channels = get_video_pixel_channels(video_stream.pix_fmt)
|
||||
video_info["video.channels"] = pixel_channels
|
||||
|
||||
# Reset logging level
|
||||
av.logging.restore_default_callback()
|
||||
|
||||
# Adding audio stream information
|
||||
video_info.update(**get_audio_info(video_path))
|
||||
|
||||
return video_info
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ from dataclasses import dataclass, field
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
|
||||
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
|
||||
from lerobot.configs.types import FeatureType, PolicyFeature
|
||||
|
||||
|
||||
@@ -53,7 +53,7 @@ class AlohaEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"agent_pos": OBS_STATE,
|
||||
"top": f"{OBS_IMAGE}.top",
|
||||
"pixels/top": f"{OBS_IMAGES}.top",
|
||||
}
|
||||
@@ -94,8 +94,8 @@ class PushtEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"environment_state": OBS_ENV,
|
||||
"agent_pos": OBS_STATE,
|
||||
"environment_state": OBS_ENV_STATE,
|
||||
"pixels": OBS_IMAGE,
|
||||
}
|
||||
)
|
||||
@@ -136,7 +136,7 @@ class XarmEnv(EnvConfig):
|
||||
features_map: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"action": ACTION,
|
||||
"agent_pos": OBS_ROBOT,
|
||||
"agent_pos": OBS_STATE,
|
||||
"pixels": OBS_IMAGE,
|
||||
}
|
||||
)
|
||||
|
||||
43
lerobot/common/errors.py
Normal file
43
lerobot/common/errors.py
Normal file
@@ -0,0 +1,43 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
class DeviceNotConnectedError(ConnectionError):
|
||||
"""Exception raised when the device is not connected."""
|
||||
|
||||
def __init__(self, message="This device is not connected. Try calling `connect()` first."):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class DeviceAlreadyConnectedError(ConnectionError):
|
||||
"""Exception raised when the device is already connected."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
message="This device is already connected. Try not calling `connect()` twice.",
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class InvalidActionError(ValueError):
|
||||
"""Exception raised when an action is already invalid."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
message="The action is invalid. Check the value follows what it is expected from the action space.",
|
||||
):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
1
lerobot/common/motors/__init__.py
Normal file
1
lerobot/common/motors/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .motors_bus import Motor, MotorCalibration, MotorNormMode, MotorsBus
|
||||
2
lerobot/common/motors/dynamixel/__init__.py
Normal file
2
lerobot/common/motors/dynamixel/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .dynamixel import DriveMode, DynamixelMotorsBus, OperatingMode, TorqueMode
|
||||
from .tables import *
|
||||
259
lerobot/common/motors/dynamixel/dynamixel.py
Normal file
259
lerobot/common/motors/dynamixel/dynamixel.py
Normal file
@@ -0,0 +1,259 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO(aliberts): Should we implement FastSyncRead/Write?
|
||||
# https://github.com/ROBOTIS-GIT/DynamixelSDK/pull/643
|
||||
# https://github.com/ROBOTIS-GIT/DynamixelSDK/releases/tag/3.8.2
|
||||
# https://emanual.robotis.com/docs/en/dxl/protocol2/#fast-sync-read-0x8a
|
||||
# -> Need to check compatibility across models
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
|
||||
from lerobot.common.utils.encoding_utils import decode_twos_complement, encode_twos_complement
|
||||
|
||||
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value, get_address
|
||||
from .tables import (
|
||||
AVAILABLE_BAUDRATES,
|
||||
MODEL_BAUDRATE_TABLE,
|
||||
MODEL_CONTROL_TABLE,
|
||||
MODEL_ENCODING_TABLE,
|
||||
MODEL_NUMBER_TABLE,
|
||||
MODEL_RESOLUTION,
|
||||
)
|
||||
|
||||
PROTOCOL_VERSION = 2.0
|
||||
DEFAULT_BAUDRATE = 1_000_000
|
||||
DEFAULT_TIMEOUT_MS = 1000
|
||||
|
||||
NORMALIZED_DATA = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OperatingMode(Enum):
|
||||
# DYNAMIXEL only controls current(torque) regardless of speed and position. This mode is ideal for a
|
||||
# gripper or a system that only uses current(torque) control or a system that has additional
|
||||
# velocity/position controllers.
|
||||
CURRENT = 0
|
||||
|
||||
# This mode controls velocity. This mode is identical to the Wheel Mode(endless) from existing DYNAMIXEL.
|
||||
# This mode is ideal for wheel-type robots.
|
||||
VELOCITY = 1
|
||||
|
||||
# This mode controls position. This mode is identical to the Joint Mode from existing DYNAMIXEL. Operating
|
||||
# position range is limited by the Max Position Limit(48) and the Min Position Limit(52). This mode is
|
||||
# ideal for articulated robots that each joint rotates less than 360 degrees.
|
||||
POSITION = 3
|
||||
|
||||
# This mode controls position. This mode is identical to the Multi-turn Position Control from existing
|
||||
# DYNAMIXEL. 512 turns are supported(-256[rev] ~ 256[rev]). This mode is ideal for multi-turn wrists or
|
||||
# conveyer systems or a system that requires an additional reduction gear. Note that Max Position
|
||||
# Limit(48), Min Position Limit(52) are not used on Extended Position Control Mode.
|
||||
EXTENDED_POSITION = 4
|
||||
|
||||
# This mode controls both position and current(torque). Up to 512 turns are supported (-256[rev] ~
|
||||
# 256[rev]). This mode is ideal for a system that requires both position and current control such as
|
||||
# articulated robots or grippers.
|
||||
CURRENT_POSITION = 5
|
||||
|
||||
# This mode directly controls PWM output. (Voltage Control Mode)
|
||||
PWM = 16
|
||||
|
||||
|
||||
class DriveMode(Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class TorqueMode(Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
def _split_into_byte_chunks(value: int, length: int) -> list[int]:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if length == 1:
|
||||
data = [value]
|
||||
elif length == 2:
|
||||
data = [dxl.DXL_LOBYTE(value), dxl.DXL_HIBYTE(value)]
|
||||
elif length == 4:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
|
||||
]
|
||||
return data
|
||||
|
||||
|
||||
class DynamixelMotorsBus(MotorsBus):
|
||||
"""
|
||||
The Dynamixel implementation for a MotorsBus. It relies on the python dynamixel sdk to communicate with
|
||||
the motors. For more info, see the Dynamixel SDK Documentation:
|
||||
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20
|
||||
"""
|
||||
|
||||
available_baudrates = deepcopy(AVAILABLE_BAUDRATES)
|
||||
default_baudrate = DEFAULT_BAUDRATE
|
||||
default_timeout = DEFAULT_TIMEOUT_MS
|
||||
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
|
||||
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
model_encoding_table = deepcopy(MODEL_ENCODING_TABLE)
|
||||
model_number_table = deepcopy(MODEL_NUMBER_TABLE)
|
||||
model_resolution_table = deepcopy(MODEL_RESOLUTION)
|
||||
normalized_data = deepcopy(NORMALIZED_DATA)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
port: str,
|
||||
motors: dict[str, Motor],
|
||||
calibration: dict[str, MotorCalibration] | None = None,
|
||||
):
|
||||
super().__init__(port, motors, calibration)
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
self.port_handler = dxl.PortHandler(self.port)
|
||||
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
||||
self.sync_reader = dxl.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
|
||||
self.sync_writer = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
|
||||
self._comm_success = dxl.COMM_SUCCESS
|
||||
self._no_error = 0x00
|
||||
|
||||
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
|
||||
pass
|
||||
|
||||
def _handshake(self) -> None:
|
||||
self._assert_motors_exist()
|
||||
|
||||
def _find_single_motor(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
|
||||
model = self.motors[motor].model
|
||||
search_baudrates = (
|
||||
[initial_baudrate] if initial_baudrate is not None else self.model_baudrate_table[model]
|
||||
)
|
||||
|
||||
for baudrate in search_baudrates:
|
||||
self.set_baudrate(baudrate)
|
||||
id_model = self.broadcast_ping()
|
||||
if id_model:
|
||||
found_id, found_model = next(iter(id_model.items()))
|
||||
expected_model_nb = self.model_number_table[model]
|
||||
if found_model != expected_model_nb:
|
||||
raise RuntimeError(
|
||||
f"Found one motor on {baudrate=} with id={found_id} but it has a "
|
||||
f"model number '{found_model}' different than the one expected: '{expected_model_nb}'. "
|
||||
f"Make sure you are connected only connected to the '{motor}' motor (model '{model}')."
|
||||
)
|
||||
return baudrate, found_id
|
||||
|
||||
raise RuntimeError(f"Motor '{motor}' (model '{model}') was not found. Make sure it is connected.")
|
||||
|
||||
def configure_motors(self) -> None:
|
||||
# By default, Dynamixel motors have a 500µs delay response time (corresponding to a value of 250 on
|
||||
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
|
||||
for motor in self.motors:
|
||||
self.write("Return_Delay_Time", motor, 0)
|
||||
|
||||
def read_calibration(self) -> dict[str, MotorCalibration]:
|
||||
offsets = self.sync_read("Homing_Offset", normalize=False)
|
||||
mins = self.sync_read("Min_Position_Limit", normalize=False)
|
||||
maxes = self.sync_read("Max_Position_Limit", normalize=False)
|
||||
drive_modes = self.sync_read("Drive_Mode", normalize=False)
|
||||
|
||||
calibration = {}
|
||||
for motor, m in self.motors.items():
|
||||
calibration[motor] = MotorCalibration(
|
||||
id=m.id,
|
||||
drive_mode=drive_modes[motor],
|
||||
homing_offset=offsets[motor],
|
||||
range_min=mins[motor],
|
||||
range_max=maxes[motor],
|
||||
)
|
||||
|
||||
return calibration
|
||||
|
||||
def write_calibration(self, calibration_dict: dict[str, MotorCalibration]) -> None:
|
||||
for motor, calibration in calibration_dict.items():
|
||||
self.write("Homing_Offset", motor, calibration.homing_offset)
|
||||
self.write("Min_Position_Limit", motor, calibration.range_min)
|
||||
self.write("Max_Position_Limit", motor, calibration.range_max)
|
||||
|
||||
self.calibration = calibration_dict
|
||||
|
||||
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for motor in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", motor, TorqueMode.DISABLED.value, num_retry=num_retry)
|
||||
|
||||
def _disable_torque(self, motor_id: int, model: str, num_retry: int = 0) -> None:
|
||||
addr, length = get_address(self.model_ctrl_table, model, "Torque_Enable")
|
||||
self._write(addr, length, motor_id, TorqueMode.DISABLED.value, num_retry=num_retry)
|
||||
|
||||
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for motor in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", motor, TorqueMode.ENABLED.value, num_retry=num_retry)
|
||||
|
||||
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
n_bytes = encoding_table[data_name]
|
||||
ids_values[id_] = encode_twos_complement(ids_values[id_], n_bytes)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
n_bytes = encoding_table[data_name]
|
||||
ids_values[id_] = decode_twos_complement(ids_values[id_], n_bytes)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
|
||||
"""
|
||||
On Dynamixel Motors:
|
||||
Present_Position = Actual_Position + Homing_Offset
|
||||
"""
|
||||
half_turn_homings = {}
|
||||
for motor, pos in positions.items():
|
||||
model = self._get_motor_model(motor)
|
||||
max_res = self.model_resolution_table[model] - 1
|
||||
half_turn_homings[motor] = int(max_res / 2) - pos
|
||||
|
||||
return half_turn_homings
|
||||
|
||||
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
|
||||
return _split_into_byte_chunks(value, length)
|
||||
|
||||
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
|
||||
for n_try in range(1 + num_retry):
|
||||
data_list, comm = self.packet_handler.broadcastPing(self.port_handler)
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(f"Broadcast ping failed on port '{self.port}' ({n_try=})")
|
||||
logger.debug(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
if not self._is_comm_success(comm):
|
||||
if raise_on_error:
|
||||
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
return
|
||||
|
||||
return {id_: data[0] for id_, data in data_list.items()}
|
||||
197
lerobot/common/motors/dynamixel/tables.py
Normal file
197
lerobot/common/motors/dynamixel/tables.py
Normal file
@@ -0,0 +1,197 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO(Steven): Consider doing the following:
|
||||
# from enum import Enum
|
||||
# class MyControlTableKey(Enum):
|
||||
# ID = "ID"
|
||||
# GOAL_SPEED = "Goal_Speed"
|
||||
# ...
|
||||
#
|
||||
# MY_CONTROL_TABLE ={
|
||||
# MyControlTableKey.ID.value: (5,1)
|
||||
# MyControlTableKey.GOAL_SPEED.value: (46, 2)
|
||||
# ...
|
||||
# }
|
||||
# This allows me do to:
|
||||
# bus.write(MyControlTableKey.GOAL_SPEED, ...)
|
||||
# Instead of:
|
||||
# bus.write("Goal_Speed", ...)
|
||||
# This is important for two reasons:
|
||||
# 1. The linter will tell me if I'm trying to use an invalid key, instead of me realizing when I get the RunTimeError
|
||||
# 2. We can change the value of the MyControlTableKey enums without impacting the client code
|
||||
|
||||
|
||||
# {data_name: (address, size_byte)}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table
|
||||
X_SERIES_CONTROL_TABLE = {
|
||||
"Model_Number": (0, 2),
|
||||
"Model_Information": (2, 4),
|
||||
"Firmware_Version": (6, 1),
|
||||
"ID": (7, 1),
|
||||
"Baud_Rate": (8, 1),
|
||||
"Return_Delay_Time": (9, 1),
|
||||
"Drive_Mode": (10, 1),
|
||||
"Operating_Mode": (11, 1),
|
||||
"Secondary_ID": (12, 1),
|
||||
"Protocol_Type": (13, 1),
|
||||
"Homing_Offset": (20, 4),
|
||||
"Moving_Threshold": (24, 4),
|
||||
"Temperature_Limit": (31, 1),
|
||||
"Max_Voltage_Limit": (32, 2),
|
||||
"Min_Voltage_Limit": (34, 2),
|
||||
"PWM_Limit": (36, 2),
|
||||
"Current_Limit": (38, 2),
|
||||
"Acceleration_Limit": (40, 4),
|
||||
"Velocity_Limit": (44, 4),
|
||||
"Max_Position_Limit": (48, 4),
|
||||
"Min_Position_Limit": (52, 4),
|
||||
"Shutdown": (63, 1),
|
||||
"Torque_Enable": (64, 1),
|
||||
"LED": (65, 1),
|
||||
"Status_Return_Level": (68, 1),
|
||||
"Registered_Instruction": (69, 1),
|
||||
"Hardware_Error_Status": (70, 1),
|
||||
"Velocity_I_Gain": (76, 2),
|
||||
"Velocity_P_Gain": (78, 2),
|
||||
"Position_D_Gain": (80, 2),
|
||||
"Position_I_Gain": (82, 2),
|
||||
"Position_P_Gain": (84, 2),
|
||||
"Feedforward_2nd_Gain": (88, 2),
|
||||
"Feedforward_1st_Gain": (90, 2),
|
||||
"Bus_Watchdog": (98, 1),
|
||||
"Goal_PWM": (100, 2),
|
||||
"Goal_Current": (102, 2),
|
||||
"Goal_Velocity": (104, 4),
|
||||
"Profile_Acceleration": (108, 4),
|
||||
"Profile_Velocity": (112, 4),
|
||||
"Goal_Position": (116, 4),
|
||||
"Realtime_Tick": (120, 2),
|
||||
"Moving": (122, 1),
|
||||
"Moving_Status": (123, 1),
|
||||
"Present_PWM": (124, 2),
|
||||
"Present_Current": (126, 2),
|
||||
"Present_Velocity": (128, 4),
|
||||
"Present_Position": (132, 4),
|
||||
"Velocity_Trajectory": (136, 4),
|
||||
"Position_Trajectory": (140, 4),
|
||||
"Present_Input_Voltage": (144, 2),
|
||||
"Present_Temperature": (146, 1),
|
||||
}
|
||||
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#baud-rate8
|
||||
X_SERIES_BAUDRATE_TABLE = {
|
||||
9_600: 0,
|
||||
57_600: 1,
|
||||
115_200: 2,
|
||||
1_000_000: 3,
|
||||
2_000_000: 4,
|
||||
3_000_000: 5,
|
||||
4_000_000: 6,
|
||||
}
|
||||
|
||||
# {data_name: size_byte}
|
||||
X_SERIES_ENCODINGS_TABLE = {
|
||||
"Homing_Offset": X_SERIES_CONTROL_TABLE["Homing_Offset"][1],
|
||||
"Goal_PWM": X_SERIES_CONTROL_TABLE["Goal_PWM"][1],
|
||||
"Goal_Current": X_SERIES_CONTROL_TABLE["Goal_Current"][1],
|
||||
"Goal_Velocity": X_SERIES_CONTROL_TABLE["Goal_Velocity"][1],
|
||||
"Present_PWM": X_SERIES_CONTROL_TABLE["Present_PWM"][1],
|
||||
"Present_Current": X_SERIES_CONTROL_TABLE["Present_Current"][1],
|
||||
"Present_Velocity": X_SERIES_CONTROL_TABLE["Present_Velocity"][1],
|
||||
}
|
||||
|
||||
MODEL_ENCODING_TABLE = {
|
||||
"x_series": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl330-m077": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl330-m288": X_SERIES_ENCODINGS_TABLE,
|
||||
"xl430-w250": X_SERIES_ENCODINGS_TABLE,
|
||||
"xm430-w350": X_SERIES_ENCODINGS_TABLE,
|
||||
"xm540-w270": X_SERIES_ENCODINGS_TABLE,
|
||||
"xc430-w150": X_SERIES_ENCODINGS_TABLE,
|
||||
}
|
||||
|
||||
# {model: model_resolution}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#specifications
|
||||
MODEL_RESOLUTION = {
|
||||
"x_series": 4096,
|
||||
"xl330-m077": 4096,
|
||||
"xl330-m288": 4096,
|
||||
"xl430-w250": 4096,
|
||||
"xm430-w350": 4096,
|
||||
"xm540-w270": 4096,
|
||||
"xc430-w150": 4096,
|
||||
}
|
||||
|
||||
# {model: model_number}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table-of-eeprom-area
|
||||
MODEL_NUMBER_TABLE = {
|
||||
"xl330-m077": 1190,
|
||||
"xl330-m288": 1200,
|
||||
"xl430-w250": 1060,
|
||||
"xm430-w350": 1020,
|
||||
"xm540-w270": 1120,
|
||||
"xc430-w150": 1070,
|
||||
}
|
||||
|
||||
# {model: available_operating_modes}
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#operating-mode11
|
||||
MODEL_OPERATING_MODES = {
|
||||
"xl330-m077": [0, 1, 3, 4, 5, 16],
|
||||
"xl330-m288": [0, 1, 3, 4, 5, 16],
|
||||
"xl430-w250": [1, 3, 4, 16],
|
||||
"xm430-w350": [0, 1, 3, 4, 5, 16],
|
||||
"xm540-w270": [0, 1, 3, 4, 5, 16],
|
||||
"xc430-w150": [1, 3, 4, 16],
|
||||
}
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"x_series": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m077": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m288": X_SERIES_CONTROL_TABLE,
|
||||
"xl430-w250": X_SERIES_CONTROL_TABLE,
|
||||
"xm430-w350": X_SERIES_CONTROL_TABLE,
|
||||
"xm540-w270": X_SERIES_CONTROL_TABLE,
|
||||
"xc430-w150": X_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"x_series": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
|
||||
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
AVAILABLE_BAUDRATES = [
|
||||
9_600,
|
||||
19_200,
|
||||
38_400,
|
||||
57_600,
|
||||
115_200,
|
||||
230_400,
|
||||
460_800,
|
||||
500_000,
|
||||
576_000,
|
||||
921_600,
|
||||
1_000_000,
|
||||
1_152_000,
|
||||
2_000_000,
|
||||
2_500_000,
|
||||
3_000_000,
|
||||
3_500_000,
|
||||
4_000_000,
|
||||
]
|
||||
2
lerobot/common/motors/feetech/__init__.py
Normal file
2
lerobot/common/motors/feetech/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .feetech import DriveMode, FeetechMotorsBus, OperatingMode, TorqueMode
|
||||
from .tables import *
|
||||
441
lerobot/common/motors/feetech/feetech.py
Normal file
441
lerobot/common/motors/feetech/feetech.py
Normal file
@@ -0,0 +1,441 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from pprint import pformat
|
||||
|
||||
from lerobot.common.utils.encoding_utils import decode_sign_magnitude, encode_sign_magnitude
|
||||
|
||||
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value, get_address
|
||||
from .tables import (
|
||||
FIRMWARE_MAJOR_VERSION,
|
||||
FIRMWARE_MINOR_VERSION,
|
||||
MODEL_BAUDRATE_TABLE,
|
||||
MODEL_CONTROL_TABLE,
|
||||
MODEL_ENCODING_TABLE,
|
||||
MODEL_NUMBER,
|
||||
MODEL_NUMBER_TABLE,
|
||||
MODEL_PROTOCOL,
|
||||
MODEL_RESOLUTION,
|
||||
SCAN_BAUDRATES,
|
||||
)
|
||||
|
||||
DEFAULT_PROTOCOL_VERSION = 0
|
||||
DEFAULT_BAUDRATE = 1_000_000
|
||||
DEFAULT_TIMEOUT_MS = 1000
|
||||
|
||||
NORMALIZED_DATA = ["Goal_Position", "Present_Position"]
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OperatingMode(Enum):
|
||||
# position servo mode
|
||||
POSITION = 0
|
||||
# The motor is in constant speed mode, which is controlled by parameter 0x2e, and the highest bit 15 is
|
||||
# the direction bit
|
||||
VELOCITY = 1
|
||||
# PWM open-loop speed regulation mode, with parameter 0x2c running time parameter control, bit11 as
|
||||
# direction bit
|
||||
PWM = 2
|
||||
# In step servo mode, the number of step progress is represented by parameter 0x2a, and the highest bit 15
|
||||
# is the direction bit
|
||||
STEP = 3
|
||||
|
||||
|
||||
class DriveMode(Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class TorqueMode(Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
def _split_into_byte_chunks(value: int, length: int) -> list[int]:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if length == 1:
|
||||
data = [value]
|
||||
elif length == 2:
|
||||
data = [scs.SCS_LOBYTE(value), scs.SCS_HIBYTE(value)]
|
||||
elif length == 4:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
|
||||
]
|
||||
return data
|
||||
|
||||
|
||||
def patch_setPacketTimeout(self, packet_length): # noqa: N802
|
||||
"""
|
||||
HACK: This patches the PortHandler behavior to set the correct packet timeouts.
|
||||
|
||||
It fixes https://gitee.com/ftservo/SCServoSDK/issues/IBY2S6
|
||||
The bug is fixed on the official Feetech SDK repo (https://gitee.com/ftservo/FTServo_Python)
|
||||
but because that version is not published on PyPI, we rely on the (unofficial) on that is, which needs
|
||||
patching.
|
||||
"""
|
||||
self.packet_start_time = self.getCurrentTime()
|
||||
self.packet_timeout = (self.tx_time_per_byte * packet_length) + (self.tx_time_per_byte * 3.0) + 50
|
||||
|
||||
|
||||
class FeetechMotorsBus(MotorsBus):
|
||||
"""
|
||||
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on the
|
||||
python feetech sdk to communicate with the motors, which is itself based on the dynamixel sdk.
|
||||
"""
|
||||
|
||||
available_baudrates = deepcopy(SCAN_BAUDRATES)
|
||||
default_baudrate = DEFAULT_BAUDRATE
|
||||
default_timeout = DEFAULT_TIMEOUT_MS
|
||||
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
|
||||
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
model_encoding_table = deepcopy(MODEL_ENCODING_TABLE)
|
||||
model_number_table = deepcopy(MODEL_NUMBER_TABLE)
|
||||
model_resolution_table = deepcopy(MODEL_RESOLUTION)
|
||||
normalized_data = deepcopy(NORMALIZED_DATA)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
port: str,
|
||||
motors: dict[str, Motor],
|
||||
calibration: dict[str, MotorCalibration] | None = None,
|
||||
protocol_version: int = DEFAULT_PROTOCOL_VERSION,
|
||||
):
|
||||
super().__init__(port, motors, calibration)
|
||||
self.protocol_version = protocol_version
|
||||
self._assert_same_protocol()
|
||||
import scservo_sdk as scs
|
||||
|
||||
self.port_handler = scs.PortHandler(self.port)
|
||||
# HACK: monkeypatch
|
||||
self.port_handler.setPacketTimeout = patch_setPacketTimeout.__get__(
|
||||
self.port_handler, scs.PortHandler
|
||||
)
|
||||
self.packet_handler = scs.PacketHandler(protocol_version)
|
||||
self.sync_reader = scs.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
|
||||
self.sync_writer = scs.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
|
||||
self._comm_success = scs.COMM_SUCCESS
|
||||
self._no_error = 0x00
|
||||
|
||||
if any(MODEL_PROTOCOL[model] != self.protocol_version for model in self.models):
|
||||
raise ValueError(f"Some motors are incompatible with protocol_version={self.protocol_version}")
|
||||
|
||||
def _assert_same_protocol(self) -> None:
|
||||
if any(MODEL_PROTOCOL[model] != self.protocol_version for model in self.models):
|
||||
raise RuntimeError("Some motors use an incompatible protocol.")
|
||||
|
||||
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
|
||||
if instruction_name == "sync_read" and self.protocol_version == 1:
|
||||
raise NotImplementedError(
|
||||
"'Sync Read' is not available with Feetech motors using Protocol 1. Use 'Read' sequentially instead."
|
||||
)
|
||||
if instruction_name == "broadcast_ping" and self.protocol_version == 1:
|
||||
raise NotImplementedError(
|
||||
"'Broadcast Ping' is not available with Feetech motors using Protocol 1. Use 'Ping' sequentially instead."
|
||||
)
|
||||
|
||||
def _assert_same_firmware(self) -> None:
|
||||
firmware_versions = self._read_firmware_version(self.ids)
|
||||
if len(set(firmware_versions.values())) != 1:
|
||||
raise RuntimeError(
|
||||
"Some Motors use different firmware versions. Update their firmware first using Feetech's software. "
|
||||
"Visit https://www.feetechrc.com/software."
|
||||
)
|
||||
|
||||
def _handshake(self) -> None:
|
||||
self._assert_motors_exist()
|
||||
self._assert_same_firmware()
|
||||
|
||||
def _find_single_motor(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
|
||||
if self.protocol_version == 0:
|
||||
return self._find_single_motor_p0(motor, initial_baudrate)
|
||||
else:
|
||||
return self._find_single_motor_p1(motor, initial_baudrate)
|
||||
|
||||
def _find_single_motor_p0(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
|
||||
model = self.motors[motor].model
|
||||
search_baudrates = (
|
||||
[initial_baudrate] if initial_baudrate is not None else self.model_baudrate_table[model]
|
||||
)
|
||||
expected_model_nb = self.model_number_table[model]
|
||||
|
||||
for baudrate in search_baudrates:
|
||||
self.set_baudrate(baudrate)
|
||||
id_model = self.broadcast_ping()
|
||||
if id_model:
|
||||
found_id, found_model = next(iter(id_model.items()))
|
||||
if found_model != expected_model_nb:
|
||||
raise RuntimeError(
|
||||
f"Found one motor on {baudrate=} with id={found_id} but it has a "
|
||||
f"model number '{found_model}' different than the one expected: '{expected_model_nb}'. "
|
||||
f"Make sure you are connected only connected to the '{motor}' motor (model '{model}')."
|
||||
)
|
||||
return baudrate, found_id
|
||||
|
||||
raise RuntimeError(f"Motor '{motor}' (model '{model}') was not found. Make sure it is connected.")
|
||||
|
||||
def _find_single_motor_p1(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
|
||||
import scservo_sdk as scs
|
||||
|
||||
model = self.motors[motor].model
|
||||
search_baudrates = (
|
||||
[initial_baudrate] if initial_baudrate is not None else self.model_baudrate_table[model]
|
||||
)
|
||||
expected_model_nb = self.model_number_table[model]
|
||||
|
||||
for baudrate in search_baudrates:
|
||||
self.set_baudrate(baudrate)
|
||||
for id_ in range(scs.MAX_ID + 1):
|
||||
found_model = self.ping(id_)
|
||||
if found_model is not None:
|
||||
if found_model != expected_model_nb:
|
||||
raise RuntimeError(
|
||||
f"Found one motor on {baudrate=} with id={id_} but it has a "
|
||||
f"model number '{found_model}' different than the one expected: '{expected_model_nb}'. "
|
||||
f"Make sure you are connected only connected to the '{motor}' motor (model '{model}')."
|
||||
)
|
||||
return baudrate, id_
|
||||
|
||||
raise RuntimeError(f"Motor '{motor}' (model '{model}') was not found. Make sure it is connected.")
|
||||
|
||||
def configure_motors(self) -> None:
|
||||
for motor in self.motors:
|
||||
# By default, Feetech motors have a 500µs delay response time (corresponding to a value of 250 on
|
||||
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
|
||||
self.write("Return_Delay_Time", motor, 0)
|
||||
# Set 'Maximum_Acceleration' to 254 to speedup acceleration and deceleration of the motors.
|
||||
# Note: this address is not in the official STS3215 Memory Table
|
||||
self.write("Maximum_Acceleration", motor, 254)
|
||||
self.write("Acceleration", motor, 254)
|
||||
|
||||
def read_calibration(self) -> dict[str, MotorCalibration]:
|
||||
if self.protocol_version == 0:
|
||||
offsets = self.sync_read("Homing_Offset", normalize=False)
|
||||
mins = self.sync_read("Min_Position_Limit", normalize=False)
|
||||
maxes = self.sync_read("Max_Position_Limit", normalize=False)
|
||||
drive_modes = dict.fromkeys(self.motors, 0)
|
||||
else:
|
||||
offsets, mins, maxes, drive_modes = {}, {}, {}, {}
|
||||
for motor in self.motors:
|
||||
offsets[motor] = 0
|
||||
mins[motor] = self.read("Min_Position_Limit", motor, normalize=False)
|
||||
maxes[motor] = self.read("Max_Position_Limit", motor, normalize=False)
|
||||
drive_modes[motor] = 0
|
||||
|
||||
# TODO(aliberts): add set/get_drive_mode?
|
||||
|
||||
calibration = {}
|
||||
for motor, m in self.motors.items():
|
||||
calibration[motor] = MotorCalibration(
|
||||
id=m.id,
|
||||
drive_mode=drive_modes[motor],
|
||||
homing_offset=offsets[motor],
|
||||
range_min=mins[motor],
|
||||
range_max=maxes[motor],
|
||||
)
|
||||
|
||||
return calibration
|
||||
|
||||
def write_calibration(self, calibration_dict: dict[str, MotorCalibration]) -> None:
|
||||
for motor, calibration in calibration_dict.items():
|
||||
if self.protocol_version == 0:
|
||||
self.write("Homing_Offset", motor, calibration.homing_offset)
|
||||
self.write("Min_Position_Limit", motor, calibration.range_min)
|
||||
self.write("Max_Position_Limit", motor, calibration.range_max)
|
||||
|
||||
self.calibration = calibration_dict
|
||||
|
||||
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
|
||||
"""
|
||||
On Feetech Motors:
|
||||
Present_Position = Actual_Position - Homing_Offset
|
||||
"""
|
||||
half_turn_homings = {}
|
||||
for motor, pos in positions.items():
|
||||
model = self._get_motor_model(motor)
|
||||
max_res = self.model_resolution_table[model] - 1
|
||||
half_turn_homings[motor] = pos - int(max_res / 2)
|
||||
|
||||
return half_turn_homings
|
||||
|
||||
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for motor in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", motor, TorqueMode.DISABLED.value, num_retry=num_retry)
|
||||
self.write("Lock", motor, 0, num_retry=num_retry)
|
||||
|
||||
def _disable_torque(self, motor_id: int, model: str, num_retry: int = 0) -> None:
|
||||
addr, length = get_address(self.model_ctrl_table, model, "Torque_Enable")
|
||||
self._write(addr, length, motor_id, TorqueMode.DISABLED.value, num_retry=num_retry)
|
||||
addr, length = get_address(self.model_ctrl_table, model, "Lock")
|
||||
self._write(addr, length, motor_id, 0, num_retry=num_retry)
|
||||
|
||||
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
|
||||
for motor in self._get_motors_list(motors):
|
||||
self.write("Torque_Enable", motor, TorqueMode.ENABLED.value, num_retry=num_retry)
|
||||
self.write("Lock", motor, 1, num_retry=num_retry)
|
||||
|
||||
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
sign_bit = encoding_table[data_name]
|
||||
ids_values[id_] = encode_sign_magnitude(ids_values[id_], sign_bit)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
|
||||
for id_ in ids_values:
|
||||
model = self._id_to_model(id_)
|
||||
encoding_table = self.model_encoding_table.get(model)
|
||||
if encoding_table and data_name in encoding_table:
|
||||
sign_bit = encoding_table[data_name]
|
||||
ids_values[id_] = decode_sign_magnitude(ids_values[id_], sign_bit)
|
||||
|
||||
return ids_values
|
||||
|
||||
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
|
||||
return _split_into_byte_chunks(value, length)
|
||||
|
||||
def _broadcast_ping(self) -> tuple[dict[int, int], int]:
|
||||
import scservo_sdk as scs
|
||||
|
||||
data_list = {}
|
||||
|
||||
status_length = 6
|
||||
|
||||
rx_length = 0
|
||||
wait_length = status_length * scs.MAX_ID
|
||||
|
||||
txpacket = [0] * 6
|
||||
|
||||
tx_time_per_byte = (1000.0 / self.port_handler.getBaudRate()) * 10.0
|
||||
|
||||
txpacket[scs.PKT_ID] = scs.BROADCAST_ID
|
||||
txpacket[scs.PKT_LENGTH] = 2
|
||||
txpacket[scs.PKT_INSTRUCTION] = scs.INST_PING
|
||||
|
||||
result = self.packet_handler.txPacket(self.port_handler, txpacket)
|
||||
if result != scs.COMM_SUCCESS:
|
||||
self.port_handler.is_using = False
|
||||
return data_list, result
|
||||
|
||||
# set rx timeout
|
||||
self.port_handler.setPacketTimeoutMillis((wait_length * tx_time_per_byte) + (3.0 * scs.MAX_ID) + 16.0)
|
||||
|
||||
rxpacket = []
|
||||
while True:
|
||||
rxpacket += self.port_handler.readPort(wait_length - rx_length)
|
||||
rx_length = len(rxpacket)
|
||||
|
||||
if self.port_handler.isPacketTimeout(): # or rx_length >= wait_length
|
||||
break
|
||||
|
||||
self.port_handler.is_using = False
|
||||
|
||||
if rx_length == 0:
|
||||
return data_list, scs.COMM_RX_TIMEOUT
|
||||
|
||||
while True:
|
||||
if rx_length < status_length:
|
||||
return data_list, scs.COMM_RX_CORRUPT
|
||||
|
||||
# find packet header
|
||||
for idx in range(0, (rx_length - 1)):
|
||||
if (rxpacket[idx] == 0xFF) and (rxpacket[idx + 1] == 0xFF):
|
||||
break
|
||||
|
||||
if idx == 0: # found at the beginning of the packet
|
||||
# calculate checksum
|
||||
checksum = 0
|
||||
for idx in range(2, status_length - 1): # except header & checksum
|
||||
checksum += rxpacket[idx]
|
||||
|
||||
checksum = ~checksum & 0xFF
|
||||
if rxpacket[status_length - 1] == checksum:
|
||||
result = scs.COMM_SUCCESS
|
||||
data_list[rxpacket[scs.PKT_ID]] = rxpacket[scs.PKT_ERROR]
|
||||
|
||||
del rxpacket[0:status_length]
|
||||
rx_length = rx_length - status_length
|
||||
|
||||
if rx_length == 0:
|
||||
return data_list, result
|
||||
else:
|
||||
result = scs.COMM_RX_CORRUPT
|
||||
# remove header (0xFF 0xFF)
|
||||
del rxpacket[0:2]
|
||||
rx_length = rx_length - 2
|
||||
else:
|
||||
# remove unnecessary packets
|
||||
del rxpacket[0:idx]
|
||||
rx_length = rx_length - idx
|
||||
|
||||
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
|
||||
self._assert_protocol_is_compatible("broadcast_ping")
|
||||
for n_try in range(1 + num_retry):
|
||||
ids_status, comm = self._broadcast_ping()
|
||||
if self._is_comm_success(comm):
|
||||
break
|
||||
logger.debug(f"Broadcast ping failed on port '{self.port}' ({n_try=})")
|
||||
logger.debug(self.packet_handler.getTxRxResult(comm))
|
||||
|
||||
if not self._is_comm_success(comm):
|
||||
if raise_on_error:
|
||||
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
|
||||
return
|
||||
|
||||
ids_errors = {id_: status for id_, status in ids_status.items() if self._is_error(status)}
|
||||
if ids_errors:
|
||||
display_dict = {id_: self.packet_handler.getRxPacketError(err) for id_, err in ids_errors.items()}
|
||||
logger.error(f"Some motors found returned an error status:\n{pformat(display_dict, indent=4)}")
|
||||
|
||||
return self._read_model_number(list(ids_status), raise_on_error)
|
||||
|
||||
def _read_firmware_version(self, motor_ids: list[int], raise_on_error: bool = False) -> dict[int, str]:
|
||||
firmware_versions = {}
|
||||
for id_ in motor_ids:
|
||||
firm_ver_major, comm, error = self._read(
|
||||
*FIRMWARE_MAJOR_VERSION, id_, raise_on_error=raise_on_error
|
||||
)
|
||||
if not self._is_comm_success(comm) or self._is_error(error):
|
||||
return
|
||||
|
||||
firm_ver_minor, comm, error = self._read(
|
||||
*FIRMWARE_MINOR_VERSION, id_, raise_on_error=raise_on_error
|
||||
)
|
||||
if not self._is_comm_success(comm) or self._is_error(error):
|
||||
return
|
||||
|
||||
firmware_versions[id_] = f"{firm_ver_major}.{firm_ver_minor}"
|
||||
|
||||
return firmware_versions
|
||||
|
||||
def _read_model_number(self, motor_ids: list[int], raise_on_error: bool = False) -> dict[int, int]:
|
||||
model_numbers = {}
|
||||
for id_ in motor_ids:
|
||||
model_nb, comm, error = self._read(*MODEL_NUMBER, id_, raise_on_error=raise_on_error)
|
||||
if not self._is_comm_success(comm) or self._is_error(error):
|
||||
return
|
||||
|
||||
model_numbers[id_] = model_nb
|
||||
|
||||
return model_numbers
|
||||
251
lerobot/common/motors/feetech/tables.py
Normal file
251
lerobot/common/motors/feetech/tables.py
Normal file
@@ -0,0 +1,251 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
FIRMWARE_MAJOR_VERSION = (0, 1)
|
||||
FIRMWARE_MINOR_VERSION = (1, 1)
|
||||
MODEL_NUMBER = (3, 2)
|
||||
|
||||
# TODO(Steven): Consider doing the following:
|
||||
# from enum import Enum
|
||||
# class MyControlTableKey(Enum):
|
||||
# ID = "ID"
|
||||
# GOAL_SPEED = "Goal_Speed"
|
||||
# ...
|
||||
#
|
||||
# MY_CONTROL_TABLE ={
|
||||
# MyControlTableKey.ID.value: (5,1)
|
||||
# MyControlTableKey.GOAL_SPEED.value: (46, 2)
|
||||
# ...
|
||||
# }
|
||||
# This allows me do to:
|
||||
# bus.write(MyControlTableKey.GOAL_SPEED, ...)
|
||||
# Instead of:
|
||||
# bus.write("Goal_Speed", ...)
|
||||
# This is important for two reasons:
|
||||
# 1. The linter will tell me if I'm trying to use an invalid key, instead of me realizing when I get the RunTimeError
|
||||
# 2. We can change the value of the MyControlTableKey enums without impacting the client code
|
||||
|
||||
# data_name: (address, size_byte)
|
||||
# http://doc.feetech.cn/#/prodinfodownload?srcType=FT-SMS-STS-emanual-229f4476422d4059abfb1cb0
|
||||
STS_SMS_SERIES_CONTROL_TABLE = {
|
||||
# EPROM
|
||||
"Firmware_Major_Version": FIRMWARE_MAJOR_VERSION, # read-only
|
||||
"Firmware_Minor_Version": FIRMWARE_MINOR_VERSION, # read-only
|
||||
"Model_Number": MODEL_NUMBER, # read-only
|
||||
"ID": (5, 1),
|
||||
"Baud_Rate": (6, 1),
|
||||
"Return_Delay_Time": (7, 1),
|
||||
"Response_Status_Level": (8, 1),
|
||||
"Min_Position_Limit": (9, 2),
|
||||
"Max_Position_Limit": (11, 2),
|
||||
"Max_Temperature_Limit": (13, 1),
|
||||
"Max_Voltage_Limit": (14, 1),
|
||||
"Min_Voltage_Limit": (15, 1),
|
||||
"Max_Torque_Limit": (16, 2),
|
||||
"Phase": (18, 1),
|
||||
"Unloading_Condition": (19, 1),
|
||||
"LED_Alarm_Condition": (20, 1),
|
||||
"P_Coefficient": (21, 1),
|
||||
"D_Coefficient": (22, 1),
|
||||
"I_Coefficient": (23, 1),
|
||||
"Minimum_Startup_Force": (24, 2),
|
||||
"CW_Dead_Zone": (26, 1),
|
||||
"CCW_Dead_Zone": (27, 1),
|
||||
"Protection_Current": (28, 2),
|
||||
"Angular_Resolution": (30, 1),
|
||||
"Homing_Offset": (31, 2),
|
||||
"Operating_Mode": (33, 1),
|
||||
"Protective_Torque": (34, 1),
|
||||
"Protection_Time": (35, 1),
|
||||
"Overload_Torque": (36, 1),
|
||||
"Velocity_closed_loop_P_proportional_coefficient": (37, 1),
|
||||
"Over_Current_Protection_Time": (38, 1),
|
||||
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
|
||||
# SRAM
|
||||
"Torque_Enable": (40, 1),
|
||||
"Acceleration": (41, 1),
|
||||
"Goal_Position": (42, 2),
|
||||
"Goal_Time": (44, 2),
|
||||
"Goal_Velocity": (46, 2),
|
||||
"Torque_Limit": (48, 2),
|
||||
"Lock": (55, 1),
|
||||
"Present_Position": (56, 2), # read-only
|
||||
"Present_Velocity": (58, 2), # read-only
|
||||
"Present_Load": (60, 2), # read-only
|
||||
"Present_Voltage": (62, 1), # read-only
|
||||
"Present_Temperature": (63, 1), # read-only
|
||||
"Status": (65, 1), # read-only
|
||||
"Moving": (66, 1), # read-only
|
||||
"Present_Current": (69, 2), # read-only
|
||||
"Goal_Position_2": (71, 2), # read-only
|
||||
# Factory
|
||||
"Moving_Velocity": (80, 1),
|
||||
"Moving_Velocity_Threshold": (80, 1),
|
||||
"DTs": (81, 1), # (ms)
|
||||
"Velocity_Unit_factor": (82, 1),
|
||||
"Hts": (83, 1), # (ns) valid for firmware >= 2.54, other versions keep 0
|
||||
"Maximum_Velocity_Limit": (84, 1),
|
||||
"Maximum_Acceleration": (85, 1),
|
||||
"Acceleration_Multiplier ": (86, 1), # Acceleration multiplier in effect when acceleration is 0
|
||||
}
|
||||
|
||||
# http://doc.feetech.cn/#/prodinfodownload?srcType=FT-SCSCL-emanual-cbcc8ab2e3384282a01d4bf3
|
||||
SCS_SERIES_CONTROL_TABLE = {
|
||||
# EPROM
|
||||
"Firmware_Major_Version": FIRMWARE_MAJOR_VERSION, # read-only
|
||||
"Firmware_Minor_Version": FIRMWARE_MINOR_VERSION, # read-only
|
||||
"Model_Number": MODEL_NUMBER, # read-only
|
||||
"ID": (5, 1),
|
||||
"Baud_Rate": (6, 1),
|
||||
"Return_Delay_Time": (7, 1),
|
||||
"Response_Status_Level": (8, 1),
|
||||
"Min_Position_Limit": (9, 2),
|
||||
"Max_Position_Limit": (11, 2),
|
||||
"Max_Temperature_Limit": (13, 1),
|
||||
"Max_Voltage_Limit": (14, 1),
|
||||
"Min_Voltage_Limit": (15, 1),
|
||||
"Max_Torque_Limit": (16, 2),
|
||||
"Phase": (18, 1),
|
||||
"Unloading_Condition": (19, 1),
|
||||
"LED_Alarm_Condition": (20, 1),
|
||||
"P_Coefficient": (21, 1),
|
||||
"D_Coefficient": (22, 1),
|
||||
"I_Coefficient": (23, 1),
|
||||
"Minimum_Startup_Force": (24, 2),
|
||||
"CW_Dead_Zone": (26, 1),
|
||||
"CCW_Dead_Zone": (27, 1),
|
||||
"Protective_Torque": (37, 1),
|
||||
"Protection_Time": (38, 1),
|
||||
# SRAM
|
||||
"Torque_Enable": (40, 1),
|
||||
"Acceleration": (41, 1),
|
||||
"Goal_Position": (42, 2),
|
||||
"Running_Time": (44, 2),
|
||||
"Goal_Velocity": (46, 2),
|
||||
"Lock": (48, 1),
|
||||
"Present_Position": (56, 2), # read-only
|
||||
"Present_Velocity": (58, 2), # read-only
|
||||
"Present_Load": (60, 2), # read-only
|
||||
"Present_Voltage": (62, 1), # read-only
|
||||
"Present_Temperature": (63, 1), # read-only
|
||||
"Sync_Write_Flag": (64, 1), # read-only
|
||||
"Status": (65, 1), # read-only
|
||||
"Moving": (66, 1), # read-only
|
||||
# Factory
|
||||
"PWM_Maximum_Step": (78, 1),
|
||||
"Moving_Velocity_Threshold*50": (79, 1),
|
||||
"DTs": (80, 1), # (ms)
|
||||
"Minimum_Velocity_Limit*50": (81, 1),
|
||||
"Maximum_Velocity_Limit*50": (82, 1),
|
||||
"Acceleration_2": (83, 1), # don't know what that is
|
||||
}
|
||||
|
||||
STS_SMS_SERIES_BAUDRATE_TABLE = {
|
||||
1_000_000: 0,
|
||||
500_000: 1,
|
||||
250_000: 2,
|
||||
128_000: 3,
|
||||
115_200: 4,
|
||||
57_600: 5,
|
||||
38_400: 6,
|
||||
19_200: 7,
|
||||
}
|
||||
|
||||
SCS_SERIES_BAUDRATE_TABLE = {
|
||||
1_000_000: 0,
|
||||
500_000: 1,
|
||||
250_000: 2,
|
||||
128_000: 3,
|
||||
115_200: 4,
|
||||
57_600: 5,
|
||||
38_400: 6,
|
||||
19_200: 7,
|
||||
}
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"sts_series": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"scs_series": SCS_SERIES_CONTROL_TABLE,
|
||||
"sms_series": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"sts3215": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"sts3250": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
"scs0009": SCS_SERIES_CONTROL_TABLE,
|
||||
"sm8512bl": STS_SMS_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_RESOLUTION = {
|
||||
"sts_series": 4096,
|
||||
"sms_series": 4096,
|
||||
"scs_series": 1024,
|
||||
"sts3215": 4096,
|
||||
"sts3250": 4096,
|
||||
"sm8512bl": 65536,
|
||||
"scs0009": 1024,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"sts_series": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"sms_series": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
|
||||
"sm8512bl": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"sts3215": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"sts3250": STS_SMS_SERIES_BAUDRATE_TABLE,
|
||||
"scs0009": SCS_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
# Sign-Magnitude encoding bits
|
||||
STS_SMS_SERIES_ENCODINGS_TABLE = {
|
||||
"Homing_Offset": 11,
|
||||
"Goal_Velocity": 15,
|
||||
}
|
||||
|
||||
MODEL_ENCODING_TABLE = {
|
||||
"sts_series": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"sms_series": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"scs_series": {},
|
||||
"sts3215": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"sts3250": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"sm8512bl": STS_SMS_SERIES_ENCODINGS_TABLE,
|
||||
"scs0009": {},
|
||||
}
|
||||
|
||||
SCAN_BAUDRATES = [
|
||||
4_800,
|
||||
9_600,
|
||||
14_400,
|
||||
19_200,
|
||||
38_400,
|
||||
57_600,
|
||||
115_200,
|
||||
128_000,
|
||||
250_000,
|
||||
500_000,
|
||||
1_000_000,
|
||||
]
|
||||
|
||||
MODEL_NUMBER_TABLE = {
|
||||
"sts3215": 777,
|
||||
"sts3250": 2825,
|
||||
"sm8512bl": 11272,
|
||||
"scs0009": 1284,
|
||||
}
|
||||
|
||||
MODEL_PROTOCOL = {
|
||||
"sts_series": 0,
|
||||
"sms_series": 0,
|
||||
"scs_series": 1,
|
||||
"sts3215": 0,
|
||||
"sts3250": 0,
|
||||
"sm8512bl": 0,
|
||||
"scs0009": 1,
|
||||
}
|
||||
1183
lerobot/common/motors/motors_bus.py
Normal file
1183
lerobot/common/motors/motors_bus.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -12,22 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Protocol
|
||||
|
||||
from lerobot.common.robot_devices.motors.configs import (
|
||||
DynamixelMotorsBusConfig,
|
||||
FeetechMotorsBusConfig,
|
||||
MotorsBusConfig,
|
||||
)
|
||||
|
||||
|
||||
class MotorsBus(Protocol):
|
||||
def motor_names(self): ...
|
||||
def set_calibration(self): ...
|
||||
def apply_calibration(self): ...
|
||||
def revert_calibration(self): ...
|
||||
def read(self): ...
|
||||
def write(self): ...
|
||||
from .configs import MotorsBusConfig
|
||||
from .motors_bus import MotorsBus
|
||||
|
||||
|
||||
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
|
||||
@@ -35,12 +21,12 @@ def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig
|
||||
|
||||
for key, cfg in motors_bus_configs.items():
|
||||
if cfg.type == "dynamixel":
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
|
||||
from .dynamixel import DynamixelMotorsBus
|
||||
|
||||
motors_buses[key] = DynamixelMotorsBus(cfg)
|
||||
|
||||
elif cfg.type == "feetech":
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
|
||||
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus
|
||||
|
||||
motors_buses[key] = FeetechMotorsBus(cfg)
|
||||
|
||||
@@ -52,13 +38,16 @@ def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig
|
||||
|
||||
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
|
||||
if motor_type == "dynamixel":
|
||||
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
|
||||
from .configs import DynamixelMotorsBusConfig
|
||||
from .dynamixel import DynamixelMotorsBus
|
||||
|
||||
config = DynamixelMotorsBusConfig(**kwargs)
|
||||
return DynamixelMotorsBus(config)
|
||||
|
||||
elif motor_type == "feetech":
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
|
||||
from feetech import FeetechMotorsBus
|
||||
|
||||
from .configs import FeetechMotorsBusConfig
|
||||
|
||||
config = FeetechMotorsBusConfig(**kwargs)
|
||||
return FeetechMotorsBus(config)
|
||||
@@ -33,7 +33,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
||||
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
||||
from torch import Tensor, nn
|
||||
|
||||
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
|
||||
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
@@ -238,8 +238,8 @@ class DiffusionModel(nn.Module):
|
||||
|
||||
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Encode image features and concatenate them all together along with the state vector."""
|
||||
batch_size, n_obs_steps = batch[OBS_ROBOT].shape[:2]
|
||||
global_cond_feats = [batch[OBS_ROBOT]]
|
||||
batch_size, n_obs_steps = batch[OBS_STATE].shape[:2]
|
||||
global_cond_feats = [batch[OBS_STATE]]
|
||||
# Extract image features.
|
||||
if self.config.image_features:
|
||||
if self.config.use_separate_rgb_encoder_per_camera:
|
||||
@@ -269,7 +269,7 @@ class DiffusionModel(nn.Module):
|
||||
global_cond_feats.append(img_features)
|
||||
|
||||
if self.config.env_state_feature:
|
||||
global_cond_feats.append(batch[OBS_ENV])
|
||||
global_cond_feats.append(batch[OBS_ENV_STATE])
|
||||
|
||||
# Concatenate features then flatten to (B, global_cond_dim).
|
||||
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)
|
||||
|
||||
@@ -57,7 +57,7 @@ import torch.nn.functional as F # noqa: N812
|
||||
from torch import Tensor, nn
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from lerobot.common.constants import ACTION, OBS_ROBOT
|
||||
from lerobot.common.constants import ACTION, OBS_STATE
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
|
||||
from lerobot.common.policies.pi0.paligemma_with_expert import (
|
||||
@@ -271,7 +271,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
self.eval()
|
||||
|
||||
if self.config.adapt_to_pi_aloha:
|
||||
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
|
||||
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
|
||||
@@ -303,7 +303,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
|
||||
"""Do a full training forward pass to compute the loss"""
|
||||
if self.config.adapt_to_pi_aloha:
|
||||
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
|
||||
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
|
||||
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
@@ -380,7 +380,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
|
||||
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
|
||||
"""Tokenize the text input"""
|
||||
device = batch[OBS_ROBOT].device
|
||||
device = batch[OBS_STATE].device
|
||||
tasks = batch["task"]
|
||||
|
||||
# PaliGemma prompt has to end with a new line
|
||||
@@ -427,7 +427,7 @@ class PI0Policy(PreTrainedPolicy):
|
||||
|
||||
def prepare_state(self, batch):
|
||||
"""Pad state"""
|
||||
state = pad_vector(batch[OBS_ROBOT], self.config.max_state_dim)
|
||||
state = pad_vector(batch[OBS_STATE], self.config.max_state_dim)
|
||||
return state
|
||||
|
||||
def prepare_action(self, batch):
|
||||
|
||||
@@ -35,7 +35,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
|
||||
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
|
||||
@@ -753,9 +753,9 @@ class TDMPCObservationEncoder(nn.Module):
|
||||
)
|
||||
)
|
||||
if self.config.env_state_feature:
|
||||
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV]))
|
||||
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV_STATE]))
|
||||
if self.config.robot_state_feature:
|
||||
feat.append(self.state_enc_layers(obs_dict[OBS_ROBOT]))
|
||||
feat.append(self.state_enc_layers(obs_dict[OBS_STATE]))
|
||||
return torch.stack(feat, dim=0).mean(0)
|
||||
|
||||
|
||||
|
||||
@@ -1,114 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass
|
||||
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("opencv")
|
||||
@dataclass
|
||||
class OpenCVCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
OpenCVCameraConfig(0, 30, 640, 480)
|
||||
OpenCVCameraConfig(0, 60, 640, 480)
|
||||
OpenCVCameraConfig(0, 90, 640, 480)
|
||||
OpenCVCameraConfig(0, 30, 1280, 720)
|
||||
```
|
||||
"""
|
||||
|
||||
camera_index: int
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
|
||||
|
||||
@CameraConfig.register_subclass("intelrealsense")
|
||||
@dataclass
|
||||
class IntelRealSenseCameraConfig(CameraConfig):
|
||||
"""
|
||||
Example of tested options for Intel Real Sense D405:
|
||||
|
||||
```python
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 60, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 90, 640, 480)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 1280, 720)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
|
||||
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
|
||||
```
|
||||
"""
|
||||
|
||||
name: str | None = None
|
||||
serial_number: int | None = None
|
||||
fps: int | None = None
|
||||
width: int | None = None
|
||||
height: int | None = None
|
||||
color_mode: str = "rgb"
|
||||
channels: int | None = None
|
||||
use_depth: bool = False
|
||||
force_hardware_reset: bool = True
|
||||
rotation: int | None = None
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
# bool is stronger than is None, since it works with empty strings
|
||||
if bool(self.name) and bool(self.serial_number):
|
||||
raise ValueError(
|
||||
f"One of them must be set: name or serial_number, but {self.name=} and {self.serial_number=} provided."
|
||||
)
|
||||
|
||||
if self.color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
|
||||
)
|
||||
|
||||
self.channels = 3
|
||||
|
||||
at_least_one_is_not_none = self.fps is not None or self.width is not None or self.height is not None
|
||||
at_least_one_is_none = self.fps is None or self.width is None or self.height is None
|
||||
if at_least_one_is_not_none and at_least_one_is_none:
|
||||
raise ValueError(
|
||||
"For `fps`, `width` and `height`, either all of them need to be set, or none of them, "
|
||||
f"but {self.fps=}, {self.width=}, {self.height=} were provided."
|
||||
)
|
||||
|
||||
if self.rotation not in [-90, None, 90, 180]:
|
||||
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
|
||||
@@ -1,538 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file contains utilities for recording frames from Intel Realsense cameras.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import logging
|
||||
import math
|
||||
import shutil
|
||||
import threading
|
||||
import time
|
||||
import traceback
|
||||
from collections import Counter
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
SERIAL_NUMBER_INDEX = 1
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
|
||||
"""
|
||||
Find the names and the serial numbers of the Intel RealSense cameras
|
||||
connected to the computer.
|
||||
"""
|
||||
if mock:
|
||||
import tests.cameras.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
cameras = []
|
||||
for device in rs.context().query_devices():
|
||||
serial_number = int(device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX)))
|
||||
name = device.get_info(rs.camera_info.name)
|
||||
cameras.append(
|
||||
{
|
||||
"serial_number": serial_number,
|
||||
"name": name,
|
||||
}
|
||||
)
|
||||
|
||||
if raise_when_empty and len(cameras) == 0:
|
||||
raise OSError(
|
||||
"Not a single camera was detected. Try re-plugging, or re-installing `librealsense` and its python wrapper `pyrealsense2`, or updating the firmware."
|
||||
)
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def save_image(img_array, serial_number, frame_index, images_dir):
|
||||
try:
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{serial_number}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
logging.info(f"Saved image: {path}")
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to save image for camera {serial_number} frame {frame_index}: {e}")
|
||||
|
||||
|
||||
def save_images_from_cameras(
|
||||
images_dir: Path,
|
||||
serial_numbers: list[int] | None = None,
|
||||
fps=None,
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given serial number.
|
||||
"""
|
||||
if serial_numbers is None or len(serial_numbers) == 0:
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
serial_numbers = [cam["serial_number"] for cam in camera_infos]
|
||||
|
||||
if mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_sn in serial_numbers:
|
||||
print(f"{cam_sn=}")
|
||||
config = IntelRealSenseCameraConfig(
|
||||
serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock
|
||||
)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
camera.connect()
|
||||
print(
|
||||
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
images_dir = Path(images_dir)
|
||||
if images_dir.exists():
|
||||
shutil.rmtree(
|
||||
images_dir,
|
||||
)
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Saving images to {images_dir}")
|
||||
frame_index = 0
|
||||
start_time = time.perf_counter()
|
||||
try:
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
|
||||
for camera in cameras:
|
||||
# If we use async_read when fps is None, the loop will go full speed, and we will end up
|
||||
# saving the same images from the cameras multiple times until the RAM/disk is full.
|
||||
image = camera.read() if fps is None else camera.async_read()
|
||||
if image is None:
|
||||
print("No Frame")
|
||||
|
||||
bgr_converted_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
executor.submit(
|
||||
save_image,
|
||||
bgr_converted_image,
|
||||
camera.serial_number,
|
||||
frame_index,
|
||||
images_dir,
|
||||
)
|
||||
|
||||
if fps is not None:
|
||||
dt_s = time.perf_counter() - now
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
|
||||
frame_index += 1
|
||||
finally:
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
for camera in cameras:
|
||||
camera.disconnect()
|
||||
|
||||
|
||||
class IntelRealSenseCamera:
|
||||
"""
|
||||
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
|
||||
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
|
||||
- can also be instantiated with the camera's name — if it's unique — using IntelRealSenseCamera.init_from_name(),
|
||||
- depth map can be returned.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
|
||||
```
|
||||
|
||||
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
|
||||
Example of instantiating with a serial number:
|
||||
```python
|
||||
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
|
||||
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
camera.disconnect()
|
||||
```
|
||||
|
||||
Example of instantiating with a name if it's unique:
|
||||
```
|
||||
config = IntelRealSenseCameraConfig(name="Intel RealSense D405")
|
||||
```
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
|
||||
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
|
||||
```
|
||||
|
||||
Example of returning depth:
|
||||
```python
|
||||
config = IntelRealSenseCameraConfig(serial_number=128422271347, use_depth=True)
|
||||
camera = IntelRealSenseCamera(config)
|
||||
camera.connect()
|
||||
color_image, depth_map = camera.read()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: IntelRealSenseCameraConfig,
|
||||
):
|
||||
self.config = config
|
||||
if config.name is not None:
|
||||
self.serial_number = self.find_serial_number_from_name(config.name)
|
||||
else:
|
||||
self.serial_number = config.serial_number
|
||||
|
||||
# Store the raw (capture) resolution from the config.
|
||||
self.capture_width = config.width
|
||||
self.capture_height = config.height
|
||||
|
||||
# If rotated by ±90, swap width and height.
|
||||
if config.rotation in [-90, 90]:
|
||||
self.width = config.height
|
||||
self.height = config.width
|
||||
else:
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
|
||||
self.fps = config.fps
|
||||
self.channels = config.channels
|
||||
self.color_mode = config.color_mode
|
||||
self.use_depth = config.use_depth
|
||||
self.force_hardware_reset = config.force_hardware_reset
|
||||
self.mock = config.mock
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
self.color_image = None
|
||||
self.depth_map = None
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
elif config.rotation == 90:
|
||||
self.rotation = cv2.ROTATE_90_CLOCKWISE
|
||||
elif config.rotation == 180:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
|
||||
def find_serial_number_from_name(self, name):
|
||||
camera_infos = find_cameras()
|
||||
camera_names = [cam["name"] for cam in camera_infos]
|
||||
this_name_count = Counter(camera_names)[name]
|
||||
if this_name_count > 1:
|
||||
# TODO(aliberts): Test this with multiple identical cameras (Aloha)
|
||||
raise ValueError(
|
||||
f"Multiple {name} cameras have been detected. Please use their serial number to instantiate them."
|
||||
)
|
||||
|
||||
name_to_serial_dict = {cam["name"]: cam["serial_number"] for cam in camera_infos}
|
||||
cam_sn = name_to_serial_dict[name]
|
||||
|
||||
return cam_sn
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is already connected."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_pyrealsense2 as rs
|
||||
else:
|
||||
import pyrealsense2 as rs
|
||||
|
||||
config = rs.config()
|
||||
config.enable_device(str(self.serial_number))
|
||||
|
||||
if self.fps and self.capture_width and self.capture_height:
|
||||
# TODO(rcadene): can we set rgb8 directly?
|
||||
config.enable_stream(
|
||||
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.color)
|
||||
|
||||
if self.use_depth:
|
||||
if self.fps and self.capture_width and self.capture_height:
|
||||
config.enable_stream(
|
||||
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
|
||||
)
|
||||
else:
|
||||
config.enable_stream(rs.stream.depth)
|
||||
|
||||
self.camera = rs.pipeline()
|
||||
try:
|
||||
profile = self.camera.start(config)
|
||||
is_camera_open = True
|
||||
except RuntimeError:
|
||||
is_camera_open = False
|
||||
traceback.print_exc()
|
||||
|
||||
# If the camera doesn't work, display the camera indices corresponding to
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `serial_number` is valid before printing the traceback
|
||||
camera_infos = find_cameras()
|
||||
serial_numbers = [cam["serial_number"] for cam in camera_infos]
|
||||
if self.serial_number not in serial_numbers:
|
||||
raise ValueError(
|
||||
f"`serial_number` is expected to be one of these available cameras {serial_numbers}, but {self.serial_number} is provided instead. "
|
||||
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
|
||||
)
|
||||
|
||||
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_stream = profile.get_stream(rs.stream.color)
|
||||
color_profile = color_stream.as_video_stream_profile()
|
||||
actual_fps = color_profile.fps()
|
||||
actual_width = color_profile.width()
|
||||
actual_height = color_profile.height()
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.capture_width is not None and self.capture_width != actual_width:
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.capture_height is not None and self.capture_height != actual_height:
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.capture_width = round(actual_width)
|
||||
self.capture_height = round(actual_height)
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
|
||||
"""Read a frame from the camera returned in the format height x width x channels (e.g. 480 x 640 x 3)
|
||||
of type `np.uint8`, contrarily to the pytorch format which is float channel first.
|
||||
|
||||
When `use_depth=True`, returns a tuple `(color_image, depth_map)` with a depth map in the format
|
||||
height x width (e.g. 480 x 640) of type np.uint16.
|
||||
|
||||
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
frame = self.camera.wait_for_frames(timeout_ms=5000)
|
||||
|
||||
color_frame = frame.get_color_frame()
|
||||
|
||||
if not color_frame:
|
||||
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
color_image = np.asanyarray(color_frame.get_data())
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color is None else temporary_color
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
|
||||
)
|
||||
|
||||
# IntelRealSense uses RGB format as default (red, green, blue).
|
||||
if requested_color_mode == "bgr":
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
color_image = cv2.rotate(color_image, self.rotation)
|
||||
|
||||
# log the number of seconds it took to read the image
|
||||
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the image was received
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
|
||||
if self.use_depth:
|
||||
depth_frame = frame.get_depth_frame()
|
||||
if not depth_frame:
|
||||
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
|
||||
|
||||
depth_map = np.asanyarray(depth_frame.get_data())
|
||||
|
||||
h, w = depth_map.shape
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
depth_map = cv2.rotate(depth_map, self.rotation)
|
||||
|
||||
return color_image, depth_map
|
||||
else:
|
||||
return color_image
|
||||
|
||||
def read_loop(self):
|
||||
while not self.stop_event.is_set():
|
||||
if self.use_depth:
|
||||
self.color_image, self.depth_map = self.read()
|
||||
else:
|
||||
self.color_image = self.read()
|
||||
|
||||
def async_read(self):
|
||||
"""Access the latest color image"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
|
||||
num_tries = 0
|
||||
while self.color_image is None:
|
||||
# TODO(rcadene, aliberts): intelrealsense has diverged compared to opencv over here
|
||||
num_tries += 1
|
||||
time.sleep(1 / self.fps)
|
||||
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
|
||||
raise Exception(
|
||||
"The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called."
|
||||
)
|
||||
|
||||
if self.use_depth:
|
||||
return self.color_image, self.depth_map
|
||||
else:
|
||||
return self.color_image
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is not None and self.thread.is_alive():
|
||||
# wait for the thread to finish
|
||||
self.stop_event.set()
|
||||
self.thread.join()
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
|
||||
self.camera.stop()
|
||||
self.camera = None
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--serial-numbers",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=30,
|
||||
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=str,
|
||||
default=640,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=str,
|
||||
default=480,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--images-dir",
|
||||
type=Path,
|
||||
default="outputs/images_from_intelrealsense_cameras",
|
||||
help="Set directory to save a few frames for each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-time-s",
|
||||
type=float,
|
||||
default=2.0,
|
||||
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
save_images_from_cameras(**vars(args))
|
||||
@@ -1,518 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import concurrent.futures
|
||||
import math
|
||||
import platform
|
||||
import shutil
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||
from lerobot.common.robot_devices.utils import (
|
||||
RobotDeviceAlreadyConnectedError,
|
||||
RobotDeviceNotConnectedError,
|
||||
busy_wait,
|
||||
)
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
# The maximum opencv device index depends on your operating system. For instance,
|
||||
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
|
||||
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
|
||||
# When you change the USB port or reboot the computer, the operating system might
|
||||
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
|
||||
cameras = []
|
||||
if platform.system() == "Linux":
|
||||
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
|
||||
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
|
||||
ports = _find_cameras(possible_ports, mock=mock)
|
||||
for port in ports:
|
||||
cameras.append(
|
||||
{
|
||||
"port": port,
|
||||
"index": int(port.removeprefix("/dev/video")),
|
||||
}
|
||||
)
|
||||
else:
|
||||
print(
|
||||
"Mac or Windows detected. Finding available camera indices through "
|
||||
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
|
||||
)
|
||||
possible_indices = range(max_index_search_range)
|
||||
indices = _find_cameras(possible_indices, mock=mock)
|
||||
for index in indices:
|
||||
cameras.append(
|
||||
{
|
||||
"port": None,
|
||||
"index": index,
|
||||
}
|
||||
)
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def _find_cameras(
|
||||
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
|
||||
) -> list[int | str]:
|
||||
if mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
camera_ids = []
|
||||
for camera_idx in possible_camera_ids:
|
||||
camera = cv2.VideoCapture(camera_idx)
|
||||
is_open = camera.isOpened()
|
||||
camera.release()
|
||||
|
||||
if is_open:
|
||||
print(f"Camera found at index {camera_idx}")
|
||||
camera_ids.append(camera_idx)
|
||||
|
||||
if raise_when_empty and len(camera_ids) == 0:
|
||||
raise OSError(
|
||||
"Not a single camera was detected. Try re-plugging, or re-installing `opencv2`, "
|
||||
"or your camera driver, or make sure your camera is compatible with opencv2."
|
||||
)
|
||||
|
||||
return camera_ids
|
||||
|
||||
|
||||
def is_valid_unix_path(path: str) -> bool:
|
||||
"""Note: if 'path' points to a symlink, this will return True only if the target exists"""
|
||||
p = Path(path)
|
||||
return p.is_absolute() and p.exists()
|
||||
|
||||
|
||||
def get_camera_index_from_unix_port(port: Path) -> int:
|
||||
return int(str(port.resolve()).removeprefix("/dev/video"))
|
||||
|
||||
|
||||
def save_image(img_array, camera_index, frame_index, images_dir):
|
||||
img = Image.fromarray(img_array)
|
||||
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
|
||||
path.parent.mkdir(parents=True, exist_ok=True)
|
||||
img.save(str(path), quality=100)
|
||||
|
||||
|
||||
def save_images_from_cameras(
|
||||
images_dir: Path,
|
||||
camera_ids: list | None = None,
|
||||
fps=None,
|
||||
width=None,
|
||||
height=None,
|
||||
record_time_s=2,
|
||||
mock=False,
|
||||
):
|
||||
"""
|
||||
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
|
||||
associated to a given camera index.
|
||||
"""
|
||||
if camera_ids is None or len(camera_ids) == 0:
|
||||
camera_infos = find_cameras(mock=mock)
|
||||
camera_ids = [cam["index"] for cam in camera_infos]
|
||||
|
||||
print("Connecting cameras")
|
||||
cameras = []
|
||||
for cam_idx in camera_ids:
|
||||
config = OpenCVCameraConfig(camera_index=cam_idx, fps=fps, width=width, height=height, mock=mock)
|
||||
camera = OpenCVCamera(config)
|
||||
camera.connect()
|
||||
print(
|
||||
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.capture_width}, "
|
||||
f"height={camera.capture_height}, color_mode={camera.color_mode})"
|
||||
)
|
||||
cameras.append(camera)
|
||||
|
||||
images_dir = Path(images_dir)
|
||||
if images_dir.exists():
|
||||
shutil.rmtree(
|
||||
images_dir,
|
||||
)
|
||||
images_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f"Saving images to {images_dir}")
|
||||
frame_index = 0
|
||||
start_time = time.perf_counter()
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
||||
while True:
|
||||
now = time.perf_counter()
|
||||
|
||||
for camera in cameras:
|
||||
# If we use async_read when fps is None, the loop will go full speed, and we will endup
|
||||
# saving the same images from the cameras multiple times until the RAM/disk is full.
|
||||
image = camera.read() if fps is None else camera.async_read()
|
||||
|
||||
executor.submit(
|
||||
save_image,
|
||||
image,
|
||||
camera.camera_index,
|
||||
frame_index,
|
||||
images_dir,
|
||||
)
|
||||
|
||||
if fps is not None:
|
||||
dt_s = time.perf_counter() - now
|
||||
busy_wait(1 / fps - dt_s)
|
||||
|
||||
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
|
||||
|
||||
if time.perf_counter() - start_time > record_time_s:
|
||||
break
|
||||
|
||||
frame_index += 1
|
||||
|
||||
print(f"Images have been saved to {images_dir}")
|
||||
|
||||
|
||||
class OpenCVCamera:
|
||||
"""
|
||||
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
|
||||
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
An OpenCVCamera instance requires a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera
|
||||
like a webcam of a laptop, the camera index is expected to be 0, but it might also be very different, and the camera index
|
||||
might change if you reboot your computer or re-plug your camera. This behavior depends on your operation system.
|
||||
|
||||
To find the camera indices of your cameras, you can run our utility script that will be save a few frames for each camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/opencv.py --images-dir outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
When an OpenCVCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
|
||||
of the given camera will be used.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
|
||||
|
||||
config = OpenCVCameraConfig(camera_index=0)
|
||||
camera = OpenCVCamera(config)
|
||||
camera.connect()
|
||||
color_image = camera.read()
|
||||
# when done using the camera, consider disconnecting
|
||||
camera.disconnect()
|
||||
```
|
||||
|
||||
Example of changing default fps, width, height and color_mode:
|
||||
```python
|
||||
config = OpenCVCameraConfig(camera_index=0, fps=30, width=1280, height=720)
|
||||
config = OpenCVCameraConfig(camera_index=0, fps=90, width=640, height=480)
|
||||
config = OpenCVCameraConfig(camera_index=0, fps=90, width=640, height=480, color_mode="bgr")
|
||||
# Note: might error out open `camera.connect()` if these settings are not compatible with the camera
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, config: OpenCVCameraConfig):
|
||||
self.config = config
|
||||
self.camera_index = config.camera_index
|
||||
self.port = None
|
||||
|
||||
# Linux uses ports for connecting to cameras
|
||||
if platform.system() == "Linux":
|
||||
if isinstance(self.camera_index, int):
|
||||
self.port = Path(f"/dev/video{self.camera_index}")
|
||||
elif isinstance(self.camera_index, str) and is_valid_unix_path(self.camera_index):
|
||||
self.port = Path(self.camera_index)
|
||||
# Retrieve the camera index from a potentially symlinked path
|
||||
self.camera_index = get_camera_index_from_unix_port(self.port)
|
||||
else:
|
||||
raise ValueError(f"Please check the provided camera_index: {self.camera_index}")
|
||||
|
||||
# Store the raw (capture) resolution from the config.
|
||||
self.capture_width = config.width
|
||||
self.capture_height = config.height
|
||||
|
||||
# If rotated by ±90, swap width and height.
|
||||
if config.rotation in [-90, 90]:
|
||||
self.width = config.height
|
||||
self.height = config.width
|
||||
else:
|
||||
self.width = config.width
|
||||
self.height = config.height
|
||||
|
||||
self.fps = config.fps
|
||||
self.channels = config.channels
|
||||
self.color_mode = config.color_mode
|
||||
self.mock = config.mock
|
||||
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
self.color_image = None
|
||||
self.logs = {}
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
self.rotation = None
|
||||
if config.rotation == -90:
|
||||
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
|
||||
elif config.rotation == 90:
|
||||
self.rotation = cv2.ROTATE_90_CLOCKWISE
|
||||
elif config.rotation == 180:
|
||||
self.rotation = cv2.ROTATE_180
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
|
||||
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
|
||||
# when other threads are used to save the images.
|
||||
cv2.setNumThreads(1)
|
||||
|
||||
backend = (
|
||||
cv2.CAP_V4L2
|
||||
if platform.system() == "Linux"
|
||||
else cv2.CAP_DSHOW
|
||||
if platform.system() == "Windows"
|
||||
else cv2.CAP_AVFOUNDATION
|
||||
if platform.system() == "Darwin"
|
||||
else cv2.CAP_ANY
|
||||
)
|
||||
|
||||
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
|
||||
# First create a temporary camera trying to access `camera_index`,
|
||||
# and verify it is a valid camera by calling `isOpened`.
|
||||
tmp_camera = cv2.VideoCapture(camera_idx, backend)
|
||||
is_camera_open = tmp_camera.isOpened()
|
||||
# Release camera to make it accessible for `find_camera_indices`
|
||||
tmp_camera.release()
|
||||
del tmp_camera
|
||||
|
||||
# If the camera doesn't work, display the camera indices corresponding to
|
||||
# valid cameras.
|
||||
if not is_camera_open:
|
||||
# Verify that the provided `camera_index` is valid before printing the traceback
|
||||
cameras_info = find_cameras()
|
||||
available_cam_ids = [cam["index"] for cam in cameras_info]
|
||||
if self.camera_index not in available_cam_ids:
|
||||
raise ValueError(
|
||||
f"`camera_index` is expected to be one of these available cameras {available_cam_ids}, but {self.camera_index} is provided instead. "
|
||||
"To find the camera index you should use, run `python lerobot/common/robot_devices/cameras/opencv.py`."
|
||||
)
|
||||
|
||||
raise OSError(f"Can't access OpenCVCamera({camera_idx}).")
|
||||
|
||||
# Secondly, create the camera that will be used downstream.
|
||||
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
|
||||
# needs to be re-created.
|
||||
self.camera = cv2.VideoCapture(camera_idx, backend)
|
||||
|
||||
if self.fps is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
|
||||
if self.capture_width is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.capture_width)
|
||||
if self.capture_height is not None:
|
||||
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.capture_height)
|
||||
|
||||
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
|
||||
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
|
||||
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
||||
|
||||
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
|
||||
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
|
||||
# Using `OSError` since it's a broad that encompasses issues related to device communication
|
||||
raise OSError(
|
||||
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
|
||||
)
|
||||
if self.capture_width is not None and not math.isclose(
|
||||
self.capture_width, actual_width, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
|
||||
)
|
||||
if self.capture_height is not None and not math.isclose(
|
||||
self.capture_height, actual_height, rel_tol=1e-3
|
||||
):
|
||||
raise OSError(
|
||||
f"Can't set {self.capture_height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
|
||||
)
|
||||
|
||||
self.fps = round(actual_fps)
|
||||
self.capture_width = round(actual_width)
|
||||
self.capture_height = round(actual_height)
|
||||
self.is_connected = True
|
||||
|
||||
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
|
||||
"""Read a frame from the camera returned in the format (height, width, channels)
|
||||
(e.g. 480 x 640 x 3), contrarily to the pytorch format which is channel first.
|
||||
|
||||
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
|
||||
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
ret, color_image = self.camera.read()
|
||||
|
||||
if not ret:
|
||||
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
|
||||
|
||||
requested_color_mode = self.color_mode if temporary_color_mode is None else temporary_color_mode
|
||||
|
||||
if requested_color_mode not in ["rgb", "bgr"]:
|
||||
raise ValueError(
|
||||
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
|
||||
)
|
||||
|
||||
# OpenCV uses BGR format as default (blue, green, red) for all operations, including displaying images.
|
||||
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
|
||||
# so we convert the image color from BGR to RGB.
|
||||
if requested_color_mode == "rgb":
|
||||
if self.mock:
|
||||
import tests.cameras.mock_cv2 as cv2
|
||||
else:
|
||||
import cv2
|
||||
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.capture_height or w != self.capture_width:
|
||||
raise OSError(
|
||||
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
|
||||
)
|
||||
|
||||
if self.rotation is not None:
|
||||
color_image = cv2.rotate(color_image, self.rotation)
|
||||
|
||||
# log the number of seconds it took to read the image
|
||||
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the image was received
|
||||
self.logs["timestamp_utc"] = capture_timestamp_utc()
|
||||
|
||||
self.color_image = color_image
|
||||
|
||||
return color_image
|
||||
|
||||
def read_loop(self):
|
||||
while not self.stop_event.is_set():
|
||||
try:
|
||||
self.color_image = self.read()
|
||||
except Exception as e:
|
||||
print(f"Error reading in thread: {e}")
|
||||
|
||||
def async_read(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is None:
|
||||
self.stop_event = threading.Event()
|
||||
self.thread = Thread(target=self.read_loop, args=())
|
||||
self.thread.daemon = True
|
||||
self.thread.start()
|
||||
|
||||
num_tries = 0
|
||||
while True:
|
||||
if self.color_image is not None:
|
||||
return self.color_image
|
||||
|
||||
time.sleep(1 / self.fps)
|
||||
num_tries += 1
|
||||
if num_tries > self.fps * 2:
|
||||
raise TimeoutError("Timed out waiting for async_read() to start.")
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
|
||||
)
|
||||
|
||||
if self.thread is not None:
|
||||
self.stop_event.set()
|
||||
self.thread.join() # wait for the thread to finish
|
||||
self.thread = None
|
||||
self.stop_event = None
|
||||
|
||||
self.camera.release()
|
||||
self.camera = None
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Save a few frames using `OpenCVCamera` for all cameras connected to the computer, or a selected subset."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--camera-ids",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="List of camera indices used to instantiate the `OpenCVCamera`. If not provided, find and use all available camera indices.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--width",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Set the width for all cameras. If not provided, use the default width of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--height",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Set the height for all cameras. If not provided, use the default height of each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--images-dir",
|
||||
type=Path,
|
||||
default="outputs/images_from_opencv_cameras",
|
||||
help="Set directory to save a few frames for each camera.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--record-time-s",
|
||||
type=float,
|
||||
default=4.0,
|
||||
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
save_images_from_cameras(**vars(args))
|
||||
@@ -1,67 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Protocol
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import (
|
||||
CameraConfig,
|
||||
IntelRealSenseCameraConfig,
|
||||
OpenCVCameraConfig,
|
||||
)
|
||||
|
||||
|
||||
# Defines a camera type
|
||||
class Camera(Protocol):
|
||||
def connect(self): ...
|
||||
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
|
||||
def async_read(self) -> np.ndarray: ...
|
||||
def disconnect(self): ...
|
||||
|
||||
|
||||
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[Camera]:
|
||||
cameras = {}
|
||||
|
||||
for key, cfg in camera_configs.items():
|
||||
if cfg.type == "opencv":
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
|
||||
cameras[key] = OpenCVCamera(cfg)
|
||||
|
||||
elif cfg.type == "intelrealsense":
|
||||
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
|
||||
|
||||
cameras[key] = IntelRealSenseCamera(cfg)
|
||||
else:
|
||||
raise ValueError(f"The camera type '{cfg.type}' is not valid.")
|
||||
|
||||
return cameras
|
||||
|
||||
|
||||
def make_camera(camera_type, **kwargs) -> Camera:
|
||||
if camera_type == "opencv":
|
||||
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
|
||||
|
||||
config = OpenCVCameraConfig(**kwargs)
|
||||
return OpenCVCamera(config)
|
||||
|
||||
elif camera_type == "intelrealsense":
|
||||
from lerobot.common.robot_devices.cameras.intelrealsense import IntelRealSenseCamera
|
||||
|
||||
config = IntelRealSenseCameraConfig(**kwargs)
|
||||
return IntelRealSenseCamera(config)
|
||||
|
||||
else:
|
||||
raise ValueError(f"The camera type '{camera_type}' is not valid.")
|
||||
@@ -1,873 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import enum
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.robot_devices.motors.configs import DynamixelMotorsBusConfig
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
PROTOCOL_VERSION = 2.0
|
||||
BAUDRATE = 1_000_000
|
||||
TIMEOUT_MS = 1000
|
||||
|
||||
MAX_ID_RANGE = 252
|
||||
|
||||
# The following bounds define the lower and upper joints range (after calibration).
|
||||
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
|
||||
# which corresponds to a half rotation on the left and half rotation on the right.
|
||||
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
|
||||
# an error is raised.
|
||||
LOWER_BOUND_DEGREE = -270
|
||||
UPPER_BOUND_DEGREE = 270
|
||||
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
|
||||
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
|
||||
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
|
||||
# [-10, 110] until an error is raised.
|
||||
LOWER_BOUND_LINEAR = -10
|
||||
UPPER_BOUND_LINEAR = 110
|
||||
|
||||
HALF_TURN_DEGREE = 180
|
||||
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m077
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl330-m288
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xl430-w250
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xm430-w350
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xm540-w270
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/xc430-w150
|
||||
|
||||
# data_name: (address, size_byte)
|
||||
X_SERIES_CONTROL_TABLE = {
|
||||
"Model_Number": (0, 2),
|
||||
"Model_Information": (2, 4),
|
||||
"Firmware_Version": (6, 1),
|
||||
"ID": (7, 1),
|
||||
"Baud_Rate": (8, 1),
|
||||
"Return_Delay_Time": (9, 1),
|
||||
"Drive_Mode": (10, 1),
|
||||
"Operating_Mode": (11, 1),
|
||||
"Secondary_ID": (12, 1),
|
||||
"Protocol_Type": (13, 1),
|
||||
"Homing_Offset": (20, 4),
|
||||
"Moving_Threshold": (24, 4),
|
||||
"Temperature_Limit": (31, 1),
|
||||
"Max_Voltage_Limit": (32, 2),
|
||||
"Min_Voltage_Limit": (34, 2),
|
||||
"PWM_Limit": (36, 2),
|
||||
"Current_Limit": (38, 2),
|
||||
"Acceleration_Limit": (40, 4),
|
||||
"Velocity_Limit": (44, 4),
|
||||
"Max_Position_Limit": (48, 4),
|
||||
"Min_Position_Limit": (52, 4),
|
||||
"Shutdown": (63, 1),
|
||||
"Torque_Enable": (64, 1),
|
||||
"LED": (65, 1),
|
||||
"Status_Return_Level": (68, 1),
|
||||
"Registered_Instruction": (69, 1),
|
||||
"Hardware_Error_Status": (70, 1),
|
||||
"Velocity_I_Gain": (76, 2),
|
||||
"Velocity_P_Gain": (78, 2),
|
||||
"Position_D_Gain": (80, 2),
|
||||
"Position_I_Gain": (82, 2),
|
||||
"Position_P_Gain": (84, 2),
|
||||
"Feedforward_2nd_Gain": (88, 2),
|
||||
"Feedforward_1st_Gain": (90, 2),
|
||||
"Bus_Watchdog": (98, 1),
|
||||
"Goal_PWM": (100, 2),
|
||||
"Goal_Current": (102, 2),
|
||||
"Goal_Velocity": (104, 4),
|
||||
"Profile_Acceleration": (108, 4),
|
||||
"Profile_Velocity": (112, 4),
|
||||
"Goal_Position": (116, 4),
|
||||
"Realtime_Tick": (120, 2),
|
||||
"Moving": (122, 1),
|
||||
"Moving_Status": (123, 1),
|
||||
"Present_PWM": (124, 2),
|
||||
"Present_Current": (126, 2),
|
||||
"Present_Velocity": (128, 4),
|
||||
"Present_Position": (132, 4),
|
||||
"Velocity_Trajectory": (136, 4),
|
||||
"Position_Trajectory": (140, 4),
|
||||
"Present_Input_Voltage": (144, 2),
|
||||
"Present_Temperature": (146, 1),
|
||||
}
|
||||
|
||||
X_SERIES_BAUDRATE_TABLE = {
|
||||
0: 9_600,
|
||||
1: 57_600,
|
||||
2: 115_200,
|
||||
3: 1_000_000,
|
||||
4: 2_000_000,
|
||||
5: 3_000_000,
|
||||
6: 4_000_000,
|
||||
}
|
||||
|
||||
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"x_series": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m077": X_SERIES_CONTROL_TABLE,
|
||||
"xl330-m288": X_SERIES_CONTROL_TABLE,
|
||||
"xl430-w250": X_SERIES_CONTROL_TABLE,
|
||||
"xm430-w350": X_SERIES_CONTROL_TABLE,
|
||||
"xm540-w270": X_SERIES_CONTROL_TABLE,
|
||||
"xc430-w150": X_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_RESOLUTION = {
|
||||
"x_series": 4096,
|
||||
"xl330-m077": 4096,
|
||||
"xl330-m288": 4096,
|
||||
"xl430-w250": 4096,
|
||||
"xm430-w350": 4096,
|
||||
"xm540-w270": 4096,
|
||||
"xc430-w150": 4096,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"x_series": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
|
||||
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
|
||||
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
|
||||
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
NUM_READ_RETRY = 10
|
||||
NUM_WRITE_RETRY = 10
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
"""
|
||||
resolutions = [MODEL_RESOLUTION[model] for model in models]
|
||||
steps = degrees / 180 * np.array(resolutions) / 2
|
||||
steps = steps.astype(int)
|
||||
return steps
|
||||
|
||||
|
||||
def convert_to_bytes(value, bytes, mock=False):
|
||||
if mock:
|
||||
return value
|
||||
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
# Note: No need to convert back into unsigned int, since this byte preprocessing
|
||||
# already handles it for us.
|
||||
if bytes == 1:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 2:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 4:
|
||||
data = [
|
||||
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
|
||||
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
|
||||
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
|
||||
]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
||||
f"{bytes} is provided instead."
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
def get_group_sync_key(data_name, motor_names):
|
||||
group_key = f"{data_name}_" + "_".join(motor_names)
|
||||
return group_key
|
||||
|
||||
|
||||
def get_result_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
rslt_name = f"{fn_name}_{group_key}"
|
||||
return rslt_name
|
||||
|
||||
|
||||
def get_queue_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
queue_name = f"{fn_name}_{group_key}"
|
||||
return queue_name
|
||||
|
||||
|
||||
def get_log_name(var_name, fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
log_name = f"{var_name}_{fn_name}_{group_key}"
|
||||
return log_name
|
||||
|
||||
|
||||
def assert_same_address(model_ctrl_table, motor_models, data_name):
|
||||
all_addr = []
|
||||
all_bytes = []
|
||||
for model in motor_models:
|
||||
addr, bytes = model_ctrl_table[model][data_name]
|
||||
all_addr.append(addr)
|
||||
all_bytes.append(bytes)
|
||||
|
||||
if len(set(all_addr)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
if len(set(all_bytes)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
|
||||
class TorqueMode(enum.Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
class DriveMode(enum.Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class CalibrationMode(enum.Enum):
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
DEGREE = 0
|
||||
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||
LINEAR = 1
|
||||
|
||||
|
||||
class JointOutOfRangeError(Exception):
|
||||
def __init__(self, message="Joint is out of range"):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class DynamixelMotorsBus:
|
||||
"""
|
||||
The DynamixelMotorsBus class allows to efficiently read and write to the attached motors. It relies on
|
||||
the python dynamixel sdk to communicate with the motors. For more info, see the [Dynamixel SDK Documentation](https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
|
||||
|
||||
A DynamixelMotorsBus instance requires a port (e.g. `DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
||||
To find the port, you can run our utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
>>> Finding all available ports for the MotorBus.
|
||||
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
>>> Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
|
||||
>>> The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751.
|
||||
>>> Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example of usage for 1 motor connected to the bus:
|
||||
```python
|
||||
motor_name = "gripper"
|
||||
motor_index = 6
|
||||
motor_model = "xl330-m288"
|
||||
|
||||
config = DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={motor_name: (motor_index, motor_model)},
|
||||
)
|
||||
motors_bus = DynamixelMotorsBus(config)
|
||||
motors_bus.connect()
|
||||
|
||||
position = motors_bus.read("Present_Position")
|
||||
|
||||
# move from a few motor steps as an example
|
||||
few_steps = 30
|
||||
motors_bus.write("Goal_Position", position + few_steps)
|
||||
|
||||
# when done, consider disconnecting
|
||||
motors_bus.disconnect()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: DynamixelMotorsBusConfig,
|
||||
):
|
||||
self.port = config.port
|
||||
self.motors = config.motors
|
||||
self.mock = config.mock
|
||||
|
||||
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
self.model_resolution = deepcopy(MODEL_RESOLUTION)
|
||||
|
||||
self.port_handler = None
|
||||
self.packet_handler = None
|
||||
self.calibration = None
|
||||
self.is_connected = False
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.logs = {}
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
self.port_handler = dxl.PortHandler(self.port)
|
||||
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
try:
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
|
||||
)
|
||||
raise
|
||||
|
||||
# Allow to read and write
|
||||
self.is_connected = True
|
||||
|
||||
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
|
||||
|
||||
def reconnect(self):
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
self.port_handler = dxl.PortHandler(self.port)
|
||||
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def are_motors_configured(self):
|
||||
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
|
||||
# a ConnectionError will be raised anyway.
|
||||
try:
|
||||
return (self.motor_indices == self.read("ID")).all()
|
||||
except ConnectionError as e:
|
||||
print(e)
|
||||
return False
|
||||
|
||||
def find_motor_indices(self, possible_ids=None, num_retry=2):
|
||||
if possible_ids is None:
|
||||
possible_ids = range(MAX_ID_RANGE)
|
||||
|
||||
indices = []
|
||||
for idx in tqdm.tqdm(possible_ids):
|
||||
try:
|
||||
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
|
||||
except ConnectionError:
|
||||
continue
|
||||
|
||||
if idx != present_idx:
|
||||
# sanity check
|
||||
raise OSError(
|
||||
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
|
||||
)
|
||||
indices.append(idx)
|
||||
|
||||
return indices
|
||||
|
||||
def set_bus_baudrate(self, baudrate):
|
||||
present_bus_baudrate = self.port_handler.getBaudRate()
|
||||
if present_bus_baudrate != baudrate:
|
||||
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
||||
self.port_handler.setBaudRate(baudrate)
|
||||
|
||||
if self.port_handler.getBaudRate() != baudrate:
|
||||
raise OSError("Failed to write bus baud rate.")
|
||||
|
||||
@property
|
||||
def motor_names(self) -> list[str]:
|
||||
return list(self.motors.keys())
|
||||
|
||||
@property
|
||||
def motor_models(self) -> list[str]:
|
||||
return [model for _, model in self.motors.values()]
|
||||
|
||||
@property
|
||||
def motor_indices(self) -> list[int]:
|
||||
return [idx for idx, _ in self.motors.values()]
|
||||
|
||||
def set_calibration(self, calibration: dict[str, list]):
|
||||
self.calibration = calibration
|
||||
|
||||
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function applies the calibration, automatically detects out of range errors for motors values and attempts to correct.
|
||||
|
||||
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
|
||||
"""
|
||||
try:
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
except JointOutOfRangeError as e:
|
||||
print(e)
|
||||
self.autocorrect_calibration(values, motor_names)
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
return values
|
||||
|
||||
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
|
||||
a "zero position" at 0 degree.
|
||||
|
||||
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
|
||||
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
|
||||
|
||||
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
|
||||
when given a goal position that is + or - their resolution. For instance, dynamixel xl330-m077 have a resolution of 4096, and
|
||||
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
|
||||
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
|
||||
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
|
||||
in the centered nominal degree range ]-180, 180[.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Update direction of rotation of the motor to match between leader and follower.
|
||||
# In fact, the motor of the leader for a given joint can be assembled in an
|
||||
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from range [-2**31, 2**31] to
|
||||
# nominal range [-resolution//2, resolution//2] (e.g. [-2048, 2048])
|
||||
values[i] += homing_offset
|
||||
|
||||
# Convert from range [-resolution//2, resolution//2] to
|
||||
# universal float32 centered degree range [-180, 180]
|
||||
# (e.g. 2048 / (4096 // 2) * 180 = 180)
|
||||
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
|
||||
|
||||
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
|
||||
f"but present value is {values[i]} degree. "
|
||||
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Rescale the present position to a nominal range [0, 100] %,
|
||||
# useful for joints with linear motions like Aloha gripper
|
||||
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
|
||||
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
|
||||
f"but present value is {values[i]} %. "
|
||||
"This might be due to a cable connection issue creating an artificial jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
|
||||
|
||||
Some motors might have values outside of expected maximum bounds after calibration.
|
||||
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
|
||||
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
|
||||
|
||||
Known issues:
|
||||
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
|
||||
#2: Motor internal homing offset is shifted by a full turn, caused by using default calibration (e.g Aloha).
|
||||
#3: motor internal homing offset is shifted by less or more than a full turn, caused by using default calibration
|
||||
or by human error during manual calibration.
|
||||
|
||||
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
|
||||
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
|
||||
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
|
||||
|
||||
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Update direction of rotation of the motor to match between leader and follower.
|
||||
# In fact, the motor of the leader for a given joint can be assembled in an
|
||||
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from initial range to range [-180, 180] degrees
|
||||
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
|
||||
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
|
||||
# (- (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= ((resolution // 2) - values[i] - homing_offset) / resolution
|
||||
low_factor = (-(resolution // 2) - values[i] - homing_offset) / resolution
|
||||
upp_factor = ((resolution // 2) - values[i] - homing_offset) / resolution
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from initial range to range [0, 100] in %
|
||||
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [0, 100] %
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
|
||||
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
|
||||
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
|
||||
low_factor = (start_pos - values[i]) / resolution
|
||||
upp_factor = (end_pos - values[i]) / resolution
|
||||
|
||||
if not in_range:
|
||||
# Get first integer between the two bounds
|
||||
if low_factor < upp_factor:
|
||||
factor = math.ceil(low_factor)
|
||||
|
||||
if factor > upp_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
else:
|
||||
factor = math.ceil(upp_factor)
|
||||
|
||||
if factor > low_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
|
||||
logging.warning(
|
||||
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
|
||||
f"from '{out_of_range_str}' to '{in_range_str}'."
|
||||
)
|
||||
|
||||
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
self.calibration["homing_offset"][calib_idx] += resolution * factor
|
||||
|
||||
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Inverse of `apply_calibration`."""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Convert from nominal 0-centered degree range [-180, 180] to
|
||||
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
||||
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
||||
|
||||
# Subtract the homing offsets to come back to actual motor range of values
|
||||
# which can be arbitrary.
|
||||
values[i] -= homing_offset
|
||||
|
||||
# Remove drive mode, which is the rotation direction of the motor, to come back to
|
||||
# actual motor rotation direction which can be arbitrary.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from nominal lnear range of [0, 100] % to
|
||||
# actual motor range of values which can be arbitrary.
|
||||
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
|
||||
|
||||
values = np.round(values).astype(np.int32)
|
||||
return values
|
||||
|
||||
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
return_list = True
|
||||
if not isinstance(motor_ids, list):
|
||||
return_list = False
|
||||
motor_ids = [motor_ids]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = dxl.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx in motor_ids:
|
||||
group.addParam(idx)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txRxPacket()
|
||||
if comm == dxl.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = group.getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
if return_list:
|
||||
return values
|
||||
else:
|
||||
return values[0]
|
||||
|
||||
def read(self, data_name, motor_names: str | list[str] | None = None):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
if data_name not in self.group_readers:
|
||||
# create new group reader
|
||||
self.group_readers[group_key] = dxl.GroupSyncRead(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
for idx in motor_ids:
|
||||
self.group_readers[group_key].addParam(idx)
|
||||
|
||||
for _ in range(NUM_READ_RETRY):
|
||||
comm = self.group_readers[group_key].txRxPacket()
|
||||
if comm == dxl.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = self.group_readers[group_key].getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
# Convert to signed int to use range [-2048, 2048] for our motor positions.
|
||||
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
|
||||
values = values.astype(np.int32)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.apply_calibration_autocorrect(values, motor_names)
|
||||
|
||||
# log the number of seconds it took to read the data from the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the data was received
|
||||
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
return values
|
||||
|
||||
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if not isinstance(motor_ids, list):
|
||||
motor_ids = [motor_ids]
|
||||
if not isinstance(values, list):
|
||||
values = [values]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
group.addParam(idx, data)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txPacket()
|
||||
if comm == dxl.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_dynamixel_sdk as dxl
|
||||
else:
|
||||
import dynamixel_sdk as dxl
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
if isinstance(values, (int, float, np.integer)):
|
||||
values = [int(values)] * len(motor_names)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.revert_calibration(values, motor_names)
|
||||
|
||||
values = values.tolist()
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
init_group = data_name not in self.group_readers
|
||||
if init_group:
|
||||
self.group_writers[group_key] = dxl.GroupSyncWrite(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
if init_group:
|
||||
self.group_writers[group_key].addParam(idx, data)
|
||||
else:
|
||||
self.group_writers[group_key].changeParam(idx, data)
|
||||
|
||||
comm = self.group_writers[group_key].txPacket()
|
||||
if comm != dxl.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
# log the number of seconds it took to write the data to the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# TODO(rcadene): should we log the time before sending the write command?
|
||||
# log the utc time when the write has been completed
|
||||
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
|
||||
)
|
||||
|
||||
if self.port_handler is not None:
|
||||
self.port_handler.closePort()
|
||||
self.port_handler = None
|
||||
|
||||
self.packet_handler = None
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
@@ -1,898 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import enum
|
||||
import logging
|
||||
import math
|
||||
import time
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.robot_devices.motors.configs import FeetechMotorsBusConfig
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from lerobot.common.utils.utils import capture_timestamp_utc
|
||||
|
||||
PROTOCOL_VERSION = 0
|
||||
BAUDRATE = 1_000_000
|
||||
TIMEOUT_MS = 1000
|
||||
|
||||
MAX_ID_RANGE = 252
|
||||
|
||||
# The following bounds define the lower and upper joints range (after calibration).
|
||||
# For joints in degree (i.e. revolute joints), their nominal range is [-180, 180] degrees
|
||||
# which corresponds to a half rotation on the left and half rotation on the right.
|
||||
# Some joints might require higher range, so we allow up to [-270, 270] degrees until
|
||||
# an error is raised.
|
||||
LOWER_BOUND_DEGREE = -270
|
||||
UPPER_BOUND_DEGREE = 270
|
||||
# For joints in percentage (i.e. joints that move linearly like the prismatic joint of a gripper),
|
||||
# their nominal range is [0, 100] %. For instance, for Aloha gripper, 0% is fully
|
||||
# closed, and 100% is fully open. To account for slight calibration issue, we allow up to
|
||||
# [-10, 110] until an error is raised.
|
||||
LOWER_BOUND_LINEAR = -10
|
||||
UPPER_BOUND_LINEAR = 110
|
||||
|
||||
HALF_TURN_DEGREE = 180
|
||||
|
||||
|
||||
# See this link for STS3215 Memory Table:
|
||||
# https://docs.google.com/spreadsheets/d/1GVs7W1VS1PqdhA1nW-abeyAHhTUxKUdR/edit?usp=sharing&ouid=116566590112741600240&rtpof=true&sd=true
|
||||
# data_name: (address, size_byte)
|
||||
SCS_SERIES_CONTROL_TABLE = {
|
||||
"Model": (3, 2),
|
||||
"ID": (5, 1),
|
||||
"Baud_Rate": (6, 1),
|
||||
"Return_Delay": (7, 1),
|
||||
"Response_Status_Level": (8, 1),
|
||||
"Min_Angle_Limit": (9, 2),
|
||||
"Max_Angle_Limit": (11, 2),
|
||||
"Max_Temperature_Limit": (13, 1),
|
||||
"Max_Voltage_Limit": (14, 1),
|
||||
"Min_Voltage_Limit": (15, 1),
|
||||
"Max_Torque_Limit": (16, 2),
|
||||
"Phase": (18, 1),
|
||||
"Unloading_Condition": (19, 1),
|
||||
"LED_Alarm_Condition": (20, 1),
|
||||
"P_Coefficient": (21, 1),
|
||||
"D_Coefficient": (22, 1),
|
||||
"I_Coefficient": (23, 1),
|
||||
"Minimum_Startup_Force": (24, 2),
|
||||
"CW_Dead_Zone": (26, 1),
|
||||
"CCW_Dead_Zone": (27, 1),
|
||||
"Protection_Current": (28, 2),
|
||||
"Angular_Resolution": (30, 1),
|
||||
"Offset": (31, 2),
|
||||
"Mode": (33, 1),
|
||||
"Protective_Torque": (34, 1),
|
||||
"Protection_Time": (35, 1),
|
||||
"Overload_Torque": (36, 1),
|
||||
"Speed_closed_loop_P_proportional_coefficient": (37, 1),
|
||||
"Over_Current_Protection_Time": (38, 1),
|
||||
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
|
||||
"Torque_Enable": (40, 1),
|
||||
"Acceleration": (41, 1),
|
||||
"Goal_Position": (42, 2),
|
||||
"Goal_Time": (44, 2),
|
||||
"Goal_Speed": (46, 2),
|
||||
"Torque_Limit": (48, 2),
|
||||
"Lock": (55, 1),
|
||||
"Present_Position": (56, 2),
|
||||
"Present_Speed": (58, 2),
|
||||
"Present_Load": (60, 2),
|
||||
"Present_Voltage": (62, 1),
|
||||
"Present_Temperature": (63, 1),
|
||||
"Status": (65, 1),
|
||||
"Moving": (66, 1),
|
||||
"Present_Current": (69, 2),
|
||||
# Not in the Memory Table
|
||||
"Maximum_Acceleration": (85, 2),
|
||||
}
|
||||
|
||||
SCS_SERIES_BAUDRATE_TABLE = {
|
||||
0: 1_000_000,
|
||||
1: 500_000,
|
||||
2: 250_000,
|
||||
3: 128_000,
|
||||
4: 115_200,
|
||||
5: 57_600,
|
||||
6: 38_400,
|
||||
7: 19_200,
|
||||
}
|
||||
|
||||
CALIBRATION_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
|
||||
|
||||
|
||||
MODEL_CONTROL_TABLE = {
|
||||
"scs_series": SCS_SERIES_CONTROL_TABLE,
|
||||
"sts3215": SCS_SERIES_CONTROL_TABLE,
|
||||
}
|
||||
|
||||
MODEL_RESOLUTION = {
|
||||
"scs_series": 4096,
|
||||
"sts3215": 4096,
|
||||
}
|
||||
|
||||
MODEL_BAUDRATE_TABLE = {
|
||||
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
|
||||
"sts3215": SCS_SERIES_BAUDRATE_TABLE,
|
||||
}
|
||||
|
||||
# High number of retries is needed for feetech compared to dynamixel motors.
|
||||
NUM_READ_RETRY = 20
|
||||
NUM_WRITE_RETRY = 20
|
||||
|
||||
|
||||
def convert_degrees_to_steps(degrees: float | np.ndarray, models: str | list[str]) -> np.ndarray:
|
||||
"""This function converts the degree range to the step range for indicating motors rotation.
|
||||
It assumes a motor achieves a full rotation by going from -180 degree position to +180.
|
||||
The motor resolution (e.g. 4096) corresponds to the number of steps needed to achieve a full rotation.
|
||||
"""
|
||||
resolutions = [MODEL_RESOLUTION[model] for model in models]
|
||||
steps = degrees / 180 * np.array(resolutions) / 2
|
||||
steps = steps.astype(int)
|
||||
return steps
|
||||
|
||||
|
||||
def convert_to_bytes(value, bytes, mock=False):
|
||||
if mock:
|
||||
return value
|
||||
|
||||
import scservo_sdk as scs
|
||||
|
||||
# Note: No need to convert back into unsigned int, since this byte preprocessing
|
||||
# already handles it for us.
|
||||
if bytes == 1:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 2:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
|
||||
]
|
||||
elif bytes == 4:
|
||||
data = [
|
||||
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
|
||||
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
|
||||
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
|
||||
]
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Value of the number of bytes to be sent is expected to be in [1, 2, 4], but "
|
||||
f"{bytes} is provided instead."
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
def get_group_sync_key(data_name, motor_names):
|
||||
group_key = f"{data_name}_" + "_".join(motor_names)
|
||||
return group_key
|
||||
|
||||
|
||||
def get_result_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
rslt_name = f"{fn_name}_{group_key}"
|
||||
return rslt_name
|
||||
|
||||
|
||||
def get_queue_name(fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
queue_name = f"{fn_name}_{group_key}"
|
||||
return queue_name
|
||||
|
||||
|
||||
def get_log_name(var_name, fn_name, data_name, motor_names):
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
log_name = f"{var_name}_{fn_name}_{group_key}"
|
||||
return log_name
|
||||
|
||||
|
||||
def assert_same_address(model_ctrl_table, motor_models, data_name):
|
||||
all_addr = []
|
||||
all_bytes = []
|
||||
for model in motor_models:
|
||||
addr, bytes = model_ctrl_table[model][data_name]
|
||||
all_addr.append(addr)
|
||||
all_bytes.append(bytes)
|
||||
|
||||
if len(set(all_addr)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different address for `data_name`='{data_name}' ({list(zip(motor_models, all_addr, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
if len(set(all_bytes)) != 1:
|
||||
raise NotImplementedError(
|
||||
f"At least two motor models use a different bytes representation for `data_name`='{data_name}' ({list(zip(motor_models, all_bytes, strict=False))}). Contact a LeRobot maintainer."
|
||||
)
|
||||
|
||||
|
||||
class TorqueMode(enum.Enum):
|
||||
ENABLED = 1
|
||||
DISABLED = 0
|
||||
|
||||
|
||||
class DriveMode(enum.Enum):
|
||||
NON_INVERTED = 0
|
||||
INVERTED = 1
|
||||
|
||||
|
||||
class CalibrationMode(enum.Enum):
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
DEGREE = 0
|
||||
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||
LINEAR = 1
|
||||
|
||||
|
||||
class JointOutOfRangeError(Exception):
|
||||
def __init__(self, message="Joint is out of range"):
|
||||
self.message = message
|
||||
super().__init__(self.message)
|
||||
|
||||
|
||||
class FeetechMotorsBus:
|
||||
"""
|
||||
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on
|
||||
the python feetech sdk to communicate with the motors. For more info, see the [feetech SDK Documentation](https://emanual.robotis.com/docs/en/software/feetech/feetech_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20).
|
||||
|
||||
A FeetechMotorsBus instance requires a port (e.g. `FeetechMotorsBus(port="/dev/tty.usbmodem575E0031751"`)).
|
||||
To find the port, you can run our utility script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
>>> Finding all available ports for the MotorsBus.
|
||||
>>> ['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
>>> Remove the usb cable from your FeetechMotorsBus and press Enter when done.
|
||||
>>> The port of this FeetechMotorsBus is /dev/tty.usbmodem575E0031751.
|
||||
>>> Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example of usage for 1 motor connected to the bus:
|
||||
```python
|
||||
motor_name = "gripper"
|
||||
motor_index = 6
|
||||
motor_model = "sts3215"
|
||||
|
||||
config = FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={motor_name: (motor_index, motor_model)},
|
||||
)
|
||||
motors_bus = FeetechMotorsBus(config)
|
||||
motors_bus.connect()
|
||||
|
||||
position = motors_bus.read("Present_Position")
|
||||
|
||||
# move from a few motor steps as an example
|
||||
few_steps = 30
|
||||
motors_bus.write("Goal_Position", position + few_steps)
|
||||
|
||||
# when done, consider disconnecting
|
||||
motors_bus.disconnect()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: FeetechMotorsBusConfig,
|
||||
):
|
||||
self.port = config.port
|
||||
self.motors = config.motors
|
||||
self.mock = config.mock
|
||||
|
||||
self.model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
|
||||
self.model_resolution = deepcopy(MODEL_RESOLUTION)
|
||||
|
||||
self.port_handler = None
|
||||
self.packet_handler = None
|
||||
self.calibration = None
|
||||
self.is_connected = False
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.logs = {}
|
||||
|
||||
self.track_positions = {}
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is already connected. Do not call `motors_bus.connect()` twice."
|
||||
)
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
self.port_handler = scs.PortHandler(self.port)
|
||||
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
try:
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
print(
|
||||
"\nTry running `python lerobot/scripts/find_motors_bus_port.py` to make sure you are using the correct port.\n"
|
||||
)
|
||||
raise
|
||||
|
||||
# Allow to read and write
|
||||
self.is_connected = True
|
||||
|
||||
self.port_handler.setPacketTimeoutMillis(TIMEOUT_MS)
|
||||
|
||||
def reconnect(self):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
self.port_handler = scs.PortHandler(self.port)
|
||||
self.packet_handler = scs.PacketHandler(PROTOCOL_VERSION)
|
||||
|
||||
if not self.port_handler.openPort():
|
||||
raise OSError(f"Failed to open port '{self.port}'.")
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def are_motors_configured(self):
|
||||
# Only check the motor indices and not baudrate, since if the motor baudrates are incorrect,
|
||||
# a ConnectionError will be raised anyway.
|
||||
try:
|
||||
return (self.motor_indices == self.read("ID")).all()
|
||||
except ConnectionError as e:
|
||||
print(e)
|
||||
return False
|
||||
|
||||
def find_motor_indices(self, possible_ids=None, num_retry=2):
|
||||
if possible_ids is None:
|
||||
possible_ids = range(MAX_ID_RANGE)
|
||||
|
||||
indices = []
|
||||
for idx in tqdm.tqdm(possible_ids):
|
||||
try:
|
||||
present_idx = self.read_with_motor_ids(self.motor_models, [idx], "ID", num_retry=num_retry)[0]
|
||||
except ConnectionError:
|
||||
continue
|
||||
|
||||
if idx != present_idx:
|
||||
# sanity check
|
||||
raise OSError(
|
||||
"Motor index used to communicate through the bus is not the same as the one present in the motor memory. The motor memory might be damaged."
|
||||
)
|
||||
indices.append(idx)
|
||||
|
||||
return indices
|
||||
|
||||
def set_bus_baudrate(self, baudrate):
|
||||
present_bus_baudrate = self.port_handler.getBaudRate()
|
||||
if present_bus_baudrate != baudrate:
|
||||
print(f"Setting bus baud rate to {baudrate}. Previously {present_bus_baudrate}.")
|
||||
self.port_handler.setBaudRate(baudrate)
|
||||
|
||||
if self.port_handler.getBaudRate() != baudrate:
|
||||
raise OSError("Failed to write bus baud rate.")
|
||||
|
||||
@property
|
||||
def motor_names(self) -> list[str]:
|
||||
return list(self.motors.keys())
|
||||
|
||||
@property
|
||||
def motor_models(self) -> list[str]:
|
||||
return [model for _, model in self.motors.values()]
|
||||
|
||||
@property
|
||||
def motor_indices(self) -> list[int]:
|
||||
return [idx for idx, _ in self.motors.values()]
|
||||
|
||||
def set_calibration(self, calibration: dict[str, list]):
|
||||
self.calibration = calibration
|
||||
|
||||
def apply_calibration_autocorrect(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function apply the calibration, automatically detects out of range errors for motors values and attempt to correct.
|
||||
|
||||
For more info, see docstring of `apply_calibration` and `autocorrect_calibration`.
|
||||
"""
|
||||
try:
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
except JointOutOfRangeError as e:
|
||||
print(e)
|
||||
self.autocorrect_calibration(values, motor_names)
|
||||
values = self.apply_calibration(values, motor_names)
|
||||
return values
|
||||
|
||||
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
|
||||
a "zero position" at 0 degree.
|
||||
|
||||
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
|
||||
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
|
||||
|
||||
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
|
||||
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
|
||||
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
|
||||
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
|
||||
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
|
||||
in the centered nominal degree range ]-180, 180[.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Update direction of rotation of the motor to match between leader and follower.
|
||||
# In fact, the motor of the leader for a given joint can be assembled in an
|
||||
# opposite direction in term of rotation than the motor of the follower on the same joint.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from range [-2**31, 2**31[ to
|
||||
# nominal range ]-resolution, resolution[ (e.g. ]-2048, 2048[)
|
||||
values[i] += homing_offset
|
||||
|
||||
# Convert from range ]-resolution, resolution[ to
|
||||
# universal float32 centered degree range ]-180, 180[
|
||||
values[i] = values[i] / (resolution // 2) * HALF_TURN_DEGREE
|
||||
|
||||
if (values[i] < LOWER_BOUND_DEGREE) or (values[i] > UPPER_BOUND_DEGREE):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [-{HALF_TURN_DEGREE}, {HALF_TURN_DEGREE}] degrees (a full rotation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_DEGREE}, {UPPER_BOUND_DEGREE}] degrees to account for joints that can rotate a bit more, "
|
||||
f"but present value is {values[i]} degree. "
|
||||
"This might be due to a cable connection issue creating an artificial 360 degrees jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Rescale the present position to a nominal range [0, 100] %,
|
||||
# useful for joints with linear motions like Aloha gripper
|
||||
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
|
||||
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
|
||||
raise JointOutOfRangeError(
|
||||
f"Wrong motor position range detected for {name}. "
|
||||
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
|
||||
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
|
||||
f"but present value is {values[i]} %. "
|
||||
"This might be due to a cable connection issue creating an artificial jump in motor values. "
|
||||
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
def autocorrect_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""This function automatically detects issues with values of motors after calibration, and correct for these issues.
|
||||
|
||||
Some motors might have values outside of expected maximum bounds after calibration.
|
||||
For instance, for a joint in degree, its value can be outside [-270, 270] degrees, which is totally unexpected given
|
||||
a nominal range of [-180, 180] degrees, which represents half a turn to the left or right starting from zero position.
|
||||
|
||||
Known issues:
|
||||
#1: Motor value randomly shifts of a full turn, caused by hardware/connection errors.
|
||||
#2: Motor internal homing offset is shifted of a full turn, caused by using default calibration (e.g Aloha).
|
||||
#3: motor internal homing offset is shifted of less or more than a full turn, caused by using default calibration
|
||||
or by human error during manual calibration.
|
||||
|
||||
Issues #1 and #2 can be solved by shifting the calibration homing offset by a full turn.
|
||||
Issue #3 will be visually detected by user and potentially captured by the safety feature `max_relative_target`,
|
||||
that will slow down the motor, raise an error asking to recalibrate. Manual recalibrating will solve the issue.
|
||||
|
||||
Note: A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
"""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
|
||||
values = values.astype(np.float32)
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
# Convert from initial range to range [-180, 180] degrees
|
||||
calib_val = (values[i] + homing_offset) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
in_range = (calib_val > LOWER_BOUND_DEGREE) and (calib_val < UPPER_BOUND_DEGREE)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [-180, 180] degrees
|
||||
# values[i] = (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE
|
||||
# - HALF_TURN_DEGREE <= (values[i] + homing_offset + resolution * factor) / (resolution // 2) * HALF_TURN_DEGREE <= HALF_TURN_DEGREE
|
||||
# (- HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset) / resolution <= factor <= (HALF_TURN_DEGREE / 180 * (resolution // 2) - values[i] - homing_offset) / resolution
|
||||
low_factor = (
|
||||
-HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
|
||||
) / resolution
|
||||
upp_factor = (
|
||||
HALF_TURN_DEGREE / HALF_TURN_DEGREE * (resolution // 2) - values[i] - homing_offset
|
||||
) / resolution
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from initial range to range [0, 100] in %
|
||||
calib_val = (values[i] - start_pos) / (end_pos - start_pos) * 100
|
||||
in_range = (calib_val > LOWER_BOUND_LINEAR) and (calib_val < UPPER_BOUND_LINEAR)
|
||||
|
||||
# Solve this inequality to find the factor to shift the range into [0, 100] %
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos + resolution * factor - start_pos - resolution * factor) * 100
|
||||
# values[i] = (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100
|
||||
# 0 <= (values[i] - start_pos + resolution * factor) / (end_pos - start_pos) * 100 <= 100
|
||||
# (start_pos - values[i]) / resolution <= factor <= (end_pos - values[i]) / resolution
|
||||
low_factor = (start_pos - values[i]) / resolution
|
||||
upp_factor = (end_pos - values[i]) / resolution
|
||||
|
||||
if not in_range:
|
||||
# Get first integer between the two bounds
|
||||
if low_factor < upp_factor:
|
||||
factor = math.ceil(low_factor)
|
||||
|
||||
if factor > upp_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
else:
|
||||
factor = math.ceil(upp_factor)
|
||||
|
||||
if factor > low_factor:
|
||||
raise ValueError(f"No integer found between bounds [{low_factor=}, {upp_factor=}]")
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
out_of_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
in_range_str = f"{LOWER_BOUND_DEGREE} < {calib_val} < {UPPER_BOUND_DEGREE} degrees"
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
out_of_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
in_range_str = f"{LOWER_BOUND_LINEAR} < {calib_val} < {UPPER_BOUND_LINEAR} %"
|
||||
|
||||
logging.warning(
|
||||
f"Auto-correct calibration of motor '{name}' by shifting value by {abs(factor)} full turns, "
|
||||
f"from '{out_of_range_str}' to '{in_range_str}'."
|
||||
)
|
||||
|
||||
# A full turn corresponds to 360 degrees but also to 4096 steps for a motor resolution of 4096.
|
||||
self.calibration["homing_offset"][calib_idx] += resolution * factor
|
||||
|
||||
def revert_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
|
||||
"""Inverse of `apply_calibration`."""
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
calib_idx = self.calibration["motor_names"].index(name)
|
||||
calib_mode = self.calibration["calib_mode"][calib_idx]
|
||||
|
||||
if CalibrationMode[calib_mode] == CalibrationMode.DEGREE:
|
||||
drive_mode = self.calibration["drive_mode"][calib_idx]
|
||||
homing_offset = self.calibration["homing_offset"][calib_idx]
|
||||
_, model = self.motors[name]
|
||||
resolution = self.model_resolution[model]
|
||||
|
||||
# Convert from nominal 0-centered degree range [-180, 180] to
|
||||
# 0-centered resolution range (e.g. [-2048, 2048] for resolution=4096)
|
||||
values[i] = values[i] / HALF_TURN_DEGREE * (resolution // 2)
|
||||
|
||||
# Subtract the homing offsets to come back to actual motor range of values
|
||||
# which can be arbitrary.
|
||||
values[i] -= homing_offset
|
||||
|
||||
# Remove drive mode, which is the rotation direction of the motor, to come back to
|
||||
# actual motor rotation direction which can be arbitrary.
|
||||
if drive_mode:
|
||||
values[i] *= -1
|
||||
|
||||
elif CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
|
||||
start_pos = self.calibration["start_pos"][calib_idx]
|
||||
end_pos = self.calibration["end_pos"][calib_idx]
|
||||
|
||||
# Convert from nominal lnear range of [0, 100] % to
|
||||
# actual motor range of values which can be arbitrary.
|
||||
values[i] = values[i] / 100 * (end_pos - start_pos) + start_pos
|
||||
|
||||
values = np.round(values).astype(np.int32)
|
||||
return values
|
||||
|
||||
def avoid_rotation_reset(self, values, motor_names, data_name):
|
||||
if data_name not in self.track_positions:
|
||||
self.track_positions[data_name] = {
|
||||
"prev": [None] * len(self.motor_names),
|
||||
# Assume False at initialization
|
||||
"below_zero": [False] * len(self.motor_names),
|
||||
"above_max": [False] * len(self.motor_names),
|
||||
}
|
||||
|
||||
track = self.track_positions[data_name]
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
for i, name in enumerate(motor_names):
|
||||
idx = self.motor_names.index(name)
|
||||
|
||||
if track["prev"][idx] is None:
|
||||
track["prev"][idx] = values[i]
|
||||
continue
|
||||
|
||||
# Detect a full rotation occurred
|
||||
if abs(track["prev"][idx] - values[i]) > 2048:
|
||||
# Position went below 0 and got reset to 4095
|
||||
if track["prev"][idx] < values[i]:
|
||||
# So we set negative value by adding a full rotation
|
||||
values[i] -= 4096
|
||||
|
||||
# Position went above 4095 and got reset to 0
|
||||
elif track["prev"][idx] > values[i]:
|
||||
# So we add a full rotation
|
||||
values[i] += 4096
|
||||
|
||||
track["prev"][idx] = values[i]
|
||||
|
||||
return values
|
||||
|
||||
def read_with_motor_ids(self, motor_models, motor_ids, data_name, num_retry=NUM_READ_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
return_list = True
|
||||
if not isinstance(motor_ids, list):
|
||||
return_list = False
|
||||
motor_ids = [motor_ids]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, self.motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = scs.GroupSyncRead(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx in motor_ids:
|
||||
group.addParam(idx)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txRxPacket()
|
||||
if comm == scs.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = group.getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
if return_list:
|
||||
return values
|
||||
else:
|
||||
return values[0]
|
||||
|
||||
def read(self, data_name, motor_names: str | list[str] | None = None):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
if data_name not in self.group_readers:
|
||||
# Very Important to flush the buffer!
|
||||
self.port_handler.ser.reset_output_buffer()
|
||||
self.port_handler.ser.reset_input_buffer()
|
||||
|
||||
# create new group reader
|
||||
self.group_readers[group_key] = scs.GroupSyncRead(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
for idx in motor_ids:
|
||||
self.group_readers[group_key].addParam(idx)
|
||||
|
||||
for _ in range(NUM_READ_RETRY):
|
||||
comm = self.group_readers[group_key].txRxPacket()
|
||||
if comm == scs.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Read failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
values = []
|
||||
for idx in motor_ids:
|
||||
value = self.group_readers[group_key].getData(idx, addr, bytes)
|
||||
values.append(value)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
# Convert to signed int to use range [-2048, 2048] for our motor positions.
|
||||
if data_name in CONVERT_UINT32_TO_INT32_REQUIRED:
|
||||
values = values.astype(np.int32)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED:
|
||||
values = self.avoid_rotation_reset(values, motor_names, data_name)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.apply_calibration_autocorrect(values, motor_names)
|
||||
|
||||
# log the number of seconds it took to read the data from the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "read", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# log the utc time at which the data was received
|
||||
ts_utc_name = get_log_name("timestamp_utc", "read", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
return values
|
||||
|
||||
def write_with_motor_ids(self, motor_models, motor_ids, data_name, values, num_retry=NUM_WRITE_RETRY):
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if not isinstance(motor_ids, list):
|
||||
motor_ids = [motor_ids]
|
||||
if not isinstance(values, list):
|
||||
values = [values]
|
||||
|
||||
assert_same_address(self.model_ctrl_table, motor_models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[motor_models[0]][data_name]
|
||||
group = scs.GroupSyncWrite(self.port_handler, self.packet_handler, addr, bytes)
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
group.addParam(idx, data)
|
||||
|
||||
for _ in range(num_retry):
|
||||
comm = group.txPacket()
|
||||
if comm == scs.COMM_SUCCESS:
|
||||
break
|
||||
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port_handler.port_name} for indices {motor_ids}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`."
|
||||
)
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if self.mock:
|
||||
import tests.motors.mock_scservo_sdk as scs
|
||||
else:
|
||||
import scservo_sdk as scs
|
||||
|
||||
if motor_names is None:
|
||||
motor_names = self.motor_names
|
||||
|
||||
if isinstance(motor_names, str):
|
||||
motor_names = [motor_names]
|
||||
|
||||
if isinstance(values, (int, float, np.integer)):
|
||||
values = [int(values)] * len(motor_names)
|
||||
|
||||
values = np.array(values)
|
||||
|
||||
motor_ids = []
|
||||
models = []
|
||||
for name in motor_names:
|
||||
motor_idx, model = self.motors[name]
|
||||
motor_ids.append(motor_idx)
|
||||
models.append(model)
|
||||
|
||||
if data_name in CALIBRATION_REQUIRED and self.calibration is not None:
|
||||
values = self.revert_calibration(values, motor_names)
|
||||
|
||||
values = values.tolist()
|
||||
|
||||
assert_same_address(self.model_ctrl_table, models, data_name)
|
||||
addr, bytes = self.model_ctrl_table[model][data_name]
|
||||
group_key = get_group_sync_key(data_name, motor_names)
|
||||
|
||||
init_group = data_name not in self.group_readers
|
||||
if init_group:
|
||||
self.group_writers[group_key] = scs.GroupSyncWrite(
|
||||
self.port_handler, self.packet_handler, addr, bytes
|
||||
)
|
||||
|
||||
for idx, value in zip(motor_ids, values, strict=True):
|
||||
data = convert_to_bytes(value, bytes, self.mock)
|
||||
if init_group:
|
||||
self.group_writers[group_key].addParam(idx, data)
|
||||
else:
|
||||
self.group_writers[group_key].changeParam(idx, data)
|
||||
|
||||
comm = self.group_writers[group_key].txPacket()
|
||||
if comm != scs.COMM_SUCCESS:
|
||||
raise ConnectionError(
|
||||
f"Write failed due to communication error on port {self.port} for group_key {group_key}: "
|
||||
f"{self.packet_handler.getTxRxResult(comm)}"
|
||||
)
|
||||
|
||||
# log the number of seconds it took to write the data to the motors
|
||||
delta_ts_name = get_log_name("delta_timestamp_s", "write", data_name, motor_names)
|
||||
self.logs[delta_ts_name] = time.perf_counter() - start_time
|
||||
|
||||
# TODO(rcadene): should we log the time before sending the write command?
|
||||
# log the utc time when the write has been completed
|
||||
ts_utc_name = get_log_name("timestamp_utc", "write", data_name, motor_names)
|
||||
self.logs[ts_utc_name] = capture_timestamp_utc()
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
f"FeetechMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first."
|
||||
)
|
||||
|
||||
if self.port_handler is not None:
|
||||
self.port_handler.closePort()
|
||||
self.port_handler = None
|
||||
|
||||
self.packet_handler = None
|
||||
self.group_readers = {}
|
||||
self.group_writers = {}
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
@@ -1,613 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Sequence
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.robot_devices.cameras.configs import (
|
||||
CameraConfig,
|
||||
IntelRealSenseCameraConfig,
|
||||
OpenCVCameraConfig,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.configs import (
|
||||
DynamixelMotorsBusConfig,
|
||||
FeetechMotorsBusConfig,
|
||||
MotorsBusConfig,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
|
||||
|
||||
# TODO(rcadene, aliberts): remove ManipulatorRobotConfig abstraction
|
||||
@dataclass
|
||||
class ManipulatorRobotConfig(RobotConfig):
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(default_factory=lambda: {})
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=lambda: {})
|
||||
|
||||
# Optionally limit the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length
|
||||
# as the number of motors in your follower arms (assumes all follower arms have the same number of
|
||||
# motors).
|
||||
max_relative_target: list[float] | float | None = None
|
||||
|
||||
# Optionally set the leader arm in torque mode with the gripper motor set to this angle. This makes it
|
||||
# possible to squeeze the gripper and have it spring back to an open position on its own. If None, the
|
||||
# gripper is not put in torque mode.
|
||||
gripper_open_degree: float | None = None
|
||||
|
||||
mock: bool = False
|
||||
|
||||
def __post_init__(self):
|
||||
if self.mock:
|
||||
for arm in self.leader_arms.values():
|
||||
if not arm.mock:
|
||||
arm.mock = True
|
||||
for arm in self.follower_arms.values():
|
||||
if not arm.mock:
|
||||
arm.mock = True
|
||||
for cam in self.cameras.values():
|
||||
if not cam.mock:
|
||||
cam.mock = True
|
||||
|
||||
if self.max_relative_target is not None and isinstance(self.max_relative_target, Sequence):
|
||||
for name in self.follower_arms:
|
||||
if len(self.follower_arms[name].motors) != len(self.max_relative_target):
|
||||
raise ValueError(
|
||||
f"len(max_relative_target)={len(self.max_relative_target)} but the follower arm with name {name} has "
|
||||
f"{len(self.follower_arms[name].motors)} motors. Please make sure that the "
|
||||
f"`max_relative_target` list has as many parameters as there are motors per arm. "
|
||||
"Note: This feature does not yet work with robots where different follower arms have "
|
||||
"different numbers of motors."
|
||||
)
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("aloha")
|
||||
@dataclass
|
||||
class AlohaRobotConfig(ManipulatorRobotConfig):
|
||||
# Specific to Aloha, LeRobot comes with default calibration files. Assuming the motors have been
|
||||
# properly assembled, no manual calibration step is expected. If you need to run manual calibration,
|
||||
# simply update this path to ".cache/calibration/aloha"
|
||||
calibration_dir: str = ".cache/calibration/aloha_default"
|
||||
|
||||
# /!\ FOR SAFETY, READ THIS /!\
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
|
||||
# When you feel more confident with teleoperation or running the policy, you can extend
|
||||
# this safety limit and even removing it by setting it to `null`.
|
||||
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
|
||||
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
|
||||
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
|
||||
max_relative_target: int | None = 5
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
# window_x
|
||||
port="/dev/ttyDXL_leader_left",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm430-w350"],
|
||||
"shoulder": [2, "xm430-w350"],
|
||||
"shoulder_shadow": [3, "xm430-w350"],
|
||||
"elbow": [4, "xm430-w350"],
|
||||
"elbow_shadow": [5, "xm430-w350"],
|
||||
"forearm_roll": [6, "xm430-w350"],
|
||||
"wrist_angle": [7, "xm430-w350"],
|
||||
"wrist_rotate": [8, "xl430-w250"],
|
||||
"gripper": [9, "xc430-w150"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
# window_x
|
||||
port="/dev/ttyDXL_leader_right",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm430-w350"],
|
||||
"shoulder": [2, "xm430-w350"],
|
||||
"shoulder_shadow": [3, "xm430-w350"],
|
||||
"elbow": [4, "xm430-w350"],
|
||||
"elbow_shadow": [5, "xm430-w350"],
|
||||
"forearm_roll": [6, "xm430-w350"],
|
||||
"wrist_angle": [7, "xm430-w350"],
|
||||
"wrist_rotate": [8, "xl430-w250"],
|
||||
"gripper": [9, "xc430-w150"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
port="/dev/ttyDXL_follower_left",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm540-w270"],
|
||||
"shoulder": [2, "xm540-w270"],
|
||||
"shoulder_shadow": [3, "xm540-w270"],
|
||||
"elbow": [4, "xm540-w270"],
|
||||
"elbow_shadow": [5, "xm540-w270"],
|
||||
"forearm_roll": [6, "xm540-w270"],
|
||||
"wrist_angle": [7, "xm540-w270"],
|
||||
"wrist_rotate": [8, "xm430-w350"],
|
||||
"gripper": [9, "xm430-w350"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
port="/dev/ttyDXL_follower_right",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"waist": [1, "xm540-w270"],
|
||||
"shoulder": [2, "xm540-w270"],
|
||||
"shoulder_shadow": [3, "xm540-w270"],
|
||||
"elbow": [4, "xm540-w270"],
|
||||
"elbow_shadow": [5, "xm540-w270"],
|
||||
"forearm_roll": [6, "xm540-w270"],
|
||||
"wrist_angle": [7, "xm540-w270"],
|
||||
"wrist_rotate": [8, "xm430-w350"],
|
||||
"gripper": [9, "xm430-w350"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
# Troubleshooting: If one of your IntelRealSense cameras freeze during
|
||||
# data recording due to bandwidth limit, you might need to plug the camera
|
||||
# on another USB hub or PCIe card.
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"cam_high": IntelRealSenseCameraConfig(
|
||||
serial_number=128422271347,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"cam_low": IntelRealSenseCameraConfig(
|
||||
serial_number=130322270656,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"cam_left_wrist": IntelRealSenseCameraConfig(
|
||||
serial_number=218622272670,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"cam_right_wrist": IntelRealSenseCameraConfig(
|
||||
serial_number=130322272300,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("koch")
|
||||
@dataclass
|
||||
class KochRobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/koch"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0085511",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl330-m077"],
|
||||
"shoulder_lift": [2, "xl330-m077"],
|
||||
"elbow_flex": [3, "xl330-m077"],
|
||||
"wrist_flex": [4, "xl330-m077"],
|
||||
"wrist_roll": [5, "xl330-m077"],
|
||||
"gripper": [6, "xl330-m077"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl430-w250"],
|
||||
"shoulder_lift": [2, "xl430-w250"],
|
||||
"elbow_flex": [3, "xl330-m288"],
|
||||
"wrist_flex": [4, "xl330-m288"],
|
||||
"wrist_roll": [5, "xl330-m288"],
|
||||
"gripper": [6, "xl330-m288"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
# ~ Koch specific settings ~
|
||||
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
gripper_open_degree: float = 35.156
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("koch_bimanual")
|
||||
@dataclass
|
||||
class KochBimanualRobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/koch_bimanual"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0085511",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl330-m077"],
|
||||
"shoulder_lift": [2, "xl330-m077"],
|
||||
"elbow_flex": [3, "xl330-m077"],
|
||||
"wrist_flex": [4, "xl330-m077"],
|
||||
"wrist_roll": [5, "xl330-m077"],
|
||||
"gripper": [6, "xl330-m077"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl330-m077"],
|
||||
"shoulder_lift": [2, "xl330-m077"],
|
||||
"elbow_flex": [3, "xl330-m077"],
|
||||
"wrist_flex": [4, "xl330-m077"],
|
||||
"wrist_roll": [5, "xl330-m077"],
|
||||
"gripper": [6, "xl330-m077"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"left": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl430-w250"],
|
||||
"shoulder_lift": [2, "xl430-w250"],
|
||||
"elbow_flex": [3, "xl330-m288"],
|
||||
"wrist_flex": [4, "xl330-m288"],
|
||||
"wrist_roll": [5, "xl330-m288"],
|
||||
"gripper": [6, "xl330-m288"],
|
||||
},
|
||||
),
|
||||
"right": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0032081",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "xl430-w250"],
|
||||
"shoulder_lift": [2, "xl430-w250"],
|
||||
"elbow_flex": [3, "xl330-m288"],
|
||||
"wrist_flex": [4, "xl330-m288"],
|
||||
"wrist_roll": [5, "xl330-m288"],
|
||||
"gripper": [6, "xl330-m288"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
# ~ Koch specific settings ~
|
||||
# Sets the leader arm in torque mode with the gripper motor set to this angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
gripper_open_degree: float = 35.156
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("moss")
|
||||
@dataclass
|
||||
class MossRobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/moss"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem58760431091",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("so100")
|
||||
@dataclass
|
||||
class So100RobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/so100"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem58760431091",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("stretch")
|
||||
@dataclass
|
||||
class StretchRobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"navigation": OpenCVCameraConfig(
|
||||
camera_index="/dev/hello-nav-head-camera",
|
||||
fps=10,
|
||||
width=1280,
|
||||
height=720,
|
||||
rotation=-90,
|
||||
),
|
||||
"head": IntelRealSenseCameraConfig(
|
||||
name="Intel RealSense D435I",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
rotation=90,
|
||||
),
|
||||
"wrist": IntelRealSenseCameraConfig(
|
||||
name="Intel RealSense D405",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiRobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# Network Configuration
|
||||
ip: str = "192.168.0.193"
|
||||
port: int = 5555
|
||||
video_port: int = 5556
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"front": OpenCVCameraConfig(
|
||||
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=90
|
||||
),
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
calibration_dir: str = ".cache/calibration/lekiwi"
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0077581",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/ttyACM0",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
"left_wheel": (7, "sts3215"),
|
||||
"back_wheel": (8, "sts3215"),
|
||||
"right_wheel": (9, "sts3215"),
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
teleop_keys: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
# Movement
|
||||
"forward": "w",
|
||||
"backward": "s",
|
||||
"left": "a",
|
||||
"right": "d",
|
||||
"rotate_left": "z",
|
||||
"rotate_right": "x",
|
||||
# Speed control
|
||||
"speed_up": "r",
|
||||
"speed_down": "f",
|
||||
# quit teleop
|
||||
"quit": "q",
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
@@ -1,144 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Logic to calibrate a robot arm built with dynamixel motors"""
|
||||
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
ZERO_POSITION_DEGREE = 0
|
||||
ROTATED_POSITION_DEGREE = 90
|
||||
|
||||
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def compute_nearest_rounded_position(position, models):
|
||||
delta_turn = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, models)
|
||||
nearest_pos = np.round(position.astype(float) / delta_turn) * delta_turn
|
||||
return nearest_pos.astype(position.dtype)
|
||||
|
||||
|
||||
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
the two robots will move to the same position.To this end, this function computes the homing offset
|
||||
and the drive mode for each motor of a given robot.
|
||||
|
||||
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
|
||||
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
|
||||
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
|
||||
|
||||
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
|
||||
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
|
||||
to the "rotated position".
|
||||
|
||||
After calibration, the homing offsets and drive modes are stored in a cache.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "koch", "left", "follower")
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
zero_nearest_pos = compute_nearest_rounded_position(zero_pos, arm.motor_models)
|
||||
homing_offset = zero_target_pos - zero_nearest_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
# This allows to identify the rotation direction of each motor.
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
rotated_pos = arm.read("Present_Position")
|
||||
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
rotated_nearest_pos = compute_nearest_rounded_position(rotated_drived_pos, arm.motor_models)
|
||||
homing_offset = rotated_target_pos - rotated_nearest_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_mode = [CalibrationMode.DEGREE.name] * len(arm.motor_names)
|
||||
|
||||
# TODO(rcadene): make type of joints (DEGREE or LINEAR) configurable from yaml?
|
||||
if robot_type in ["aloha"] and "gripper" in arm.motor_names:
|
||||
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
|
||||
calib_idx = arm.motor_names.index("gripper")
|
||||
calib_mode[calib_idx] = CalibrationMode.LINEAR.name
|
||||
|
||||
calib_data = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
"drive_mode": drive_mode.tolist(),
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_mode,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_data
|
||||
@@ -1,498 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Logic to calibrate a robot arm built with feetech motors"""
|
||||
# TODO(rcadene, aliberts): move this logic into the robot code when refactoring
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
|
||||
from lerobot.common.robot_devices.motors.feetech import (
|
||||
CalibrationMode,
|
||||
TorqueMode,
|
||||
convert_degrees_to_steps,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
|
||||
URL_TEMPLATE = (
|
||||
"https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.webp"
|
||||
)
|
||||
|
||||
# The following positions are provided in nominal degree range ]-180, +180[
|
||||
# For more info on these constants, see comments in the code where they get used.
|
||||
ZERO_POSITION_DEGREE = 0
|
||||
ROTATED_POSITION_DEGREE = 90
|
||||
|
||||
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def move_until_block(arm, motor_name, positive_direction=True, while_move_hook=None):
|
||||
count = 0
|
||||
while True:
|
||||
present_pos = arm.read("Present_Position", motor_name)
|
||||
if positive_direction:
|
||||
# Move +100 steps every time. Lower the steps to lower the speed at which the arm moves.
|
||||
arm.write("Goal_Position", present_pos + 100, motor_name)
|
||||
else:
|
||||
arm.write("Goal_Position", present_pos - 100, motor_name)
|
||||
|
||||
if while_move_hook is not None:
|
||||
while_move_hook()
|
||||
|
||||
present_pos = arm.read("Present_Position", motor_name).item()
|
||||
present_speed = arm.read("Present_Speed", motor_name).item()
|
||||
present_current = arm.read("Present_Current", motor_name).item()
|
||||
# present_load = arm.read("Present_Load", motor_name).item()
|
||||
# present_voltage = arm.read("Present_Voltage", motor_name).item()
|
||||
# present_temperature = arm.read("Present_Temperature", motor_name).item()
|
||||
|
||||
# print(f"{present_pos=}")
|
||||
# print(f"{present_speed=}")
|
||||
# print(f"{present_current=}")
|
||||
# print(f"{present_load=}")
|
||||
# print(f"{present_voltage=}")
|
||||
# print(f"{present_temperature=}")
|
||||
|
||||
if present_speed == 0 and present_current > 40:
|
||||
count += 1
|
||||
if count > 100 or present_current > 300:
|
||||
return present_pos
|
||||
else:
|
||||
count = 0
|
||||
|
||||
|
||||
def move_to_calibrate(
|
||||
arm,
|
||||
motor_name,
|
||||
invert_drive_mode=False,
|
||||
positive_first=True,
|
||||
in_between_move_hook=None,
|
||||
while_move_hook=None,
|
||||
):
|
||||
initial_pos = arm.read("Present_Position", motor_name)
|
||||
|
||||
if positive_first:
|
||||
p_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
|
||||
)
|
||||
else:
|
||||
n_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
|
||||
)
|
||||
|
||||
if in_between_move_hook is not None:
|
||||
in_between_move_hook()
|
||||
|
||||
if positive_first:
|
||||
n_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=False, while_move_hook=while_move_hook
|
||||
)
|
||||
else:
|
||||
p_present_pos = move_until_block(
|
||||
arm, motor_name, positive_direction=True, while_move_hook=while_move_hook
|
||||
)
|
||||
|
||||
zero_pos = (n_present_pos + p_present_pos) / 2
|
||||
|
||||
calib_data = {
|
||||
"initial_pos": initial_pos,
|
||||
"homing_offset": zero_pos if invert_drive_mode else -zero_pos,
|
||||
"invert_drive_mode": invert_drive_mode,
|
||||
"drive_mode": -1 if invert_drive_mode else 0,
|
||||
"zero_pos": zero_pos,
|
||||
"start_pos": n_present_pos if invert_drive_mode else p_present_pos,
|
||||
"end_pos": p_present_pos if invert_drive_mode else n_present_pos,
|
||||
}
|
||||
return calib_data
|
||||
|
||||
|
||||
def apply_offset(calib, offset):
|
||||
calib["zero_pos"] += offset
|
||||
if calib["drive_mode"]:
|
||||
calib["homing_offset"] += offset
|
||||
else:
|
||||
calib["homing_offset"] -= offset
|
||||
return calib
|
||||
|
||||
|
||||
def run_arm_auto_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
if robot_type == "so100":
|
||||
return run_arm_auto_calibration_so100(arm, robot_type, arm_name, arm_type)
|
||||
elif robot_type == "moss":
|
||||
return run_arm_auto_calibration_moss(arm, robot_type, arm_name, arm_type)
|
||||
else:
|
||||
raise ValueError(robot_type)
|
||||
|
||||
|
||||
def run_arm_auto_calibration_so100(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
if not (robot_type == "so100" and arm_type == "follower"):
|
||||
raise NotImplementedError("Auto calibration only supports the follower of so100 arms for now.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to initial position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# Lower the acceleration of the motors (in [0,254])
|
||||
initial_acceleration = arm.read("Acceleration")
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", 10)
|
||||
time.sleep(1)
|
||||
|
||||
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
|
||||
|
||||
print(f'{arm.read("Present_Position", "elbow_flex")=}')
|
||||
|
||||
calib = {}
|
||||
|
||||
init_wf_pos = arm.read("Present_Position", "wrist_flex")
|
||||
init_sl_pos = arm.read("Present_Position", "shoulder_lift")
|
||||
init_ef_pos = arm.read("Present_Position", "elbow_flex")
|
||||
arm.write("Goal_Position", init_wf_pos - 800, "wrist_flex")
|
||||
arm.write("Goal_Position", init_sl_pos + 150 + 1024, "shoulder_lift")
|
||||
arm.write("Goal_Position", init_ef_pos - 2048, "elbow_flex")
|
||||
time.sleep(2)
|
||||
|
||||
print("Calibrate shoulder_pan")
|
||||
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
|
||||
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate gripper")
|
||||
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate wrist_flex")
|
||||
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex")
|
||||
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=80)
|
||||
|
||||
def in_between_move_hook():
|
||||
nonlocal arm, calib
|
||||
time.sleep(2)
|
||||
ef_pos = arm.read("Present_Position", "elbow_flex")
|
||||
sl_pos = arm.read("Present_Position", "shoulder_lift")
|
||||
arm.write("Goal_Position", ef_pos + 1024, "elbow_flex")
|
||||
arm.write("Goal_Position", sl_pos - 1024, "shoulder_lift")
|
||||
time.sleep(2)
|
||||
|
||||
print("Calibrate elbow_flex")
|
||||
calib["elbow_flex"] = move_to_calibrate(
|
||||
arm, "elbow_flex", positive_first=False, in_between_move_hook=in_between_move_hook
|
||||
)
|
||||
calib["elbow_flex"] = apply_offset(calib["elbow_flex"], offset=80 - 1024)
|
||||
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1024 + 512, "elbow_flex")
|
||||
time.sleep(1)
|
||||
|
||||
def in_between_move_hook():
|
||||
nonlocal arm, calib
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"], "elbow_flex")
|
||||
|
||||
print("Calibrate shoulder_lift")
|
||||
calib["shoulder_lift"] = move_to_calibrate(
|
||||
arm,
|
||||
"shoulder_lift",
|
||||
invert_drive_mode=True,
|
||||
positive_first=False,
|
||||
in_between_move_hook=in_between_move_hook,
|
||||
)
|
||||
# add an 30 steps as offset to align with body
|
||||
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=1024 - 50)
|
||||
|
||||
def while_move_hook():
|
||||
nonlocal arm, calib
|
||||
positions = {
|
||||
"shoulder_lift": round(calib["shoulder_lift"]["zero_pos"] - 1600),
|
||||
"elbow_flex": round(calib["elbow_flex"]["zero_pos"] + 1700),
|
||||
"wrist_flex": round(calib["wrist_flex"]["zero_pos"] + 800),
|
||||
"gripper": round(calib["gripper"]["end_pos"]),
|
||||
}
|
||||
arm.write("Goal_Position", list(positions.values()), list(positions.keys()))
|
||||
|
||||
arm.write("Goal_Position", round(calib["shoulder_lift"]["zero_pos"] - 1600), "shoulder_lift")
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["elbow_flex"]["zero_pos"] + 1700), "elbow_flex")
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["wrist_flex"]["zero_pos"] + 800), "wrist_flex")
|
||||
time.sleep(2)
|
||||
arm.write("Goal_Position", round(calib["gripper"]["end_pos"]), "gripper")
|
||||
time.sleep(2)
|
||||
|
||||
print("Calibrate wrist_roll")
|
||||
calib["wrist_roll"] = move_to_calibrate(
|
||||
arm, "wrist_roll", invert_drive_mode=True, positive_first=False, while_move_hook=while_move_hook
|
||||
)
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 2048, "elbow_flex")
|
||||
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] - 2048, "shoulder_lift")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
|
||||
time.sleep(1)
|
||||
|
||||
calib_modes = []
|
||||
for name in arm.motor_names:
|
||||
if name == "gripper":
|
||||
calib_modes.append(CalibrationMode.LINEAR.name)
|
||||
else:
|
||||
calib_modes.append(CalibrationMode.DEGREE.name)
|
||||
|
||||
calib_dict = {
|
||||
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
|
||||
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
|
||||
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
|
||||
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
|
||||
"calib_mode": calib_modes,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
|
||||
# Re-enable original accerlation
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", initial_acceleration)
|
||||
time.sleep(1)
|
||||
|
||||
return calib_dict
|
||||
|
||||
|
||||
def run_arm_auto_calibration_moss(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""All the offsets and magic numbers are hand tuned, and are unique to SO-100 follower arms"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
if not (robot_type == "moss" and arm_type == "follower"):
|
||||
raise NotImplementedError("Auto calibration only supports the follower of moss arms for now.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to initial position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="initial"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# Lower the acceleration of the motors (in [0,254])
|
||||
initial_acceleration = arm.read("Acceleration")
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", 10)
|
||||
time.sleep(1)
|
||||
|
||||
arm.write("Torque_Enable", TorqueMode.ENABLED.value)
|
||||
|
||||
sl_pos = arm.read("Present_Position", "shoulder_lift")
|
||||
arm.write("Goal_Position", sl_pos - 1024 - 450, "shoulder_lift")
|
||||
ef_pos = arm.read("Present_Position", "elbow_flex")
|
||||
arm.write("Goal_Position", ef_pos + 1024 + 450, "elbow_flex")
|
||||
time.sleep(2)
|
||||
|
||||
calib = {}
|
||||
|
||||
print("Calibrate shoulder_pan")
|
||||
calib["shoulder_pan"] = move_to_calibrate(arm, "shoulder_pan")
|
||||
arm.write("Goal_Position", calib["shoulder_pan"]["zero_pos"], "shoulder_pan")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate gripper")
|
||||
calib["gripper"] = move_to_calibrate(arm, "gripper", invert_drive_mode=True)
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate wrist_flex")
|
||||
calib["wrist_flex"] = move_to_calibrate(arm, "wrist_flex", invert_drive_mode=True)
|
||||
calib["wrist_flex"] = apply_offset(calib["wrist_flex"], offset=-210 + 1024)
|
||||
|
||||
wr_pos = arm.read("Present_Position", "wrist_roll")
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", wr_pos - 1024, "wrist_roll")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["gripper"]["end_pos"], "gripper")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate wrist_roll")
|
||||
calib["wrist_roll"] = move_to_calibrate(arm, "wrist_roll", invert_drive_mode=True)
|
||||
calib["wrist_roll"] = apply_offset(calib["wrist_roll"], offset=790)
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"] - 1024, "wrist_roll")
|
||||
arm.write("Goal_Position", calib["gripper"]["start_pos"], "gripper")
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_roll"]["zero_pos"], "wrist_roll")
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 2048, "wrist_flex")
|
||||
|
||||
def in_between_move_elbow_flex_hook():
|
||||
nonlocal arm, calib
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"], "wrist_flex")
|
||||
|
||||
print("Calibrate elbow_flex")
|
||||
calib["elbow_flex"] = move_to_calibrate(
|
||||
arm,
|
||||
"elbow_flex",
|
||||
invert_drive_mode=True,
|
||||
in_between_move_hook=in_between_move_elbow_flex_hook,
|
||||
)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
|
||||
def in_between_move_shoulder_lift_hook():
|
||||
nonlocal arm, calib
|
||||
sl = arm.read("Present_Position", "shoulder_lift")
|
||||
arm.write("Goal_Position", sl - 1500, "shoulder_lift")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] + 1536, "elbow_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["start_pos"], "wrist_flex")
|
||||
time.sleep(1)
|
||||
|
||||
print("Calibrate shoulder_lift")
|
||||
calib["shoulder_lift"] = move_to_calibrate(
|
||||
arm, "shoulder_lift", in_between_move_hook=in_between_move_shoulder_lift_hook
|
||||
)
|
||||
calib["shoulder_lift"] = apply_offset(calib["shoulder_lift"], offset=-1024)
|
||||
|
||||
arm.write("Goal_Position", calib["wrist_flex"]["zero_pos"] - 1024, "wrist_flex")
|
||||
time.sleep(1)
|
||||
arm.write("Goal_Position", calib["shoulder_lift"]["zero_pos"] + 2048, "shoulder_lift")
|
||||
arm.write("Goal_Position", calib["elbow_flex"]["zero_pos"] - 1024 - 400, "elbow_flex")
|
||||
time.sleep(2)
|
||||
|
||||
calib_modes = []
|
||||
for name in arm.motor_names:
|
||||
if name == "gripper":
|
||||
calib_modes.append(CalibrationMode.LINEAR.name)
|
||||
else:
|
||||
calib_modes.append(CalibrationMode.DEGREE.name)
|
||||
|
||||
calib_dict = {
|
||||
"homing_offset": [calib[name]["homing_offset"] for name in arm.motor_names],
|
||||
"drive_mode": [calib[name]["drive_mode"] for name in arm.motor_names],
|
||||
"start_pos": [calib[name]["start_pos"] for name in arm.motor_names],
|
||||
"end_pos": [calib[name]["end_pos"] for name in arm.motor_names],
|
||||
"calib_mode": calib_modes,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
|
||||
# Re-enable original accerlation
|
||||
arm.write("Lock", 0)
|
||||
arm.write("Acceleration", initial_acceleration)
|
||||
time.sleep(1)
|
||||
|
||||
return calib_dict
|
||||
|
||||
|
||||
def run_arm_manual_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""This function ensures that a neural network trained on data collected on a given robot
|
||||
can work on another robot. For instance before calibration, setting a same goal position
|
||||
for each motor of two different robots will get two very different positions. But after calibration,
|
||||
the two robots will move to the same position.To this end, this function computes the homing offset
|
||||
and the drive mode for each motor of a given robot.
|
||||
|
||||
Homing offset is used to shift the motor position to a ]-2048, +2048[ nominal range (when the motor uses 2048 steps
|
||||
to complete a half a turn). This range is set around an arbitrary "zero position" corresponding to all motor positions
|
||||
being 0. During the calibration process, you will need to manually move the robot to this "zero position".
|
||||
|
||||
Drive mode is used to invert the rotation direction of the motor. This is useful when some motors have been assembled
|
||||
in the opposite orientation for some robots. During the calibration process, you will need to manually move the robot
|
||||
to the "rotated position".
|
||||
|
||||
After calibration, the homing offsets and drive modes are stored in a cache.
|
||||
|
||||
Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "so100", "left", "follower")
|
||||
```
|
||||
"""
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run calibration, the torque must be disabled on all motors.")
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
print("\nMove arm to zero position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="zero"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
# We arbitrarily chose our zero target position to be a straight horizontal position with gripper upwards and closed.
|
||||
# It is easy to identify and all motors are in a "quarter turn" position. Once calibration is done, this position will
|
||||
# correspond to every motor angle being 0. If you set all 0 as Goal Position, the arm will move in this position.
|
||||
zero_target_pos = convert_degrees_to_steps(ZERO_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`.
|
||||
zero_pos = arm.read("Present_Position")
|
||||
homing_offset = zero_target_pos - zero_pos
|
||||
|
||||
# The rotated target position corresponds to a rotation of a quarter turn from the zero position.
|
||||
# This allows to identify the rotation direction of each motor.
|
||||
# For instance, if the motor rotates 90 degree, and its value is -90 after applying the homing offset, then we know its rotation direction
|
||||
# is inverted. However, for the calibration being successful, we need everyone to follow the same target position.
|
||||
# Sometimes, there is only one possible rotation direction. For instance, if the gripper is closed, there is only one direction which
|
||||
# corresponds to opening the gripper. When the rotation direction is ambiguous, we arbitrarily rotate clockwise from the point of view
|
||||
# of the previous motor in the kinetic chain.
|
||||
print("\nMove arm to rotated target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rotated"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
rotated_target_pos = convert_degrees_to_steps(ROTATED_POSITION_DEGREE, arm.motor_models)
|
||||
|
||||
# Find drive mode by rotating each motor by a quarter of a turn.
|
||||
# Drive mode indicates if the motor rotation direction should be inverted (=1) or not (=0).
|
||||
rotated_pos = arm.read("Present_Position")
|
||||
drive_mode = (rotated_pos < zero_pos).astype(np.int32)
|
||||
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
rotated_drived_pos = apply_drive_mode(rotated_pos, drive_mode)
|
||||
homing_offset = rotated_target_pos - rotated_drived_pos
|
||||
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
print()
|
||||
|
||||
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
|
||||
calib_modes = []
|
||||
for name in arm.motor_names:
|
||||
if name == "gripper":
|
||||
calib_modes.append(CalibrationMode.LINEAR.name)
|
||||
else:
|
||||
calib_modes.append(CalibrationMode.DEGREE.name)
|
||||
|
||||
calib_dict = {
|
||||
"homing_offset": homing_offset.tolist(),
|
||||
"drive_mode": drive_mode.tolist(),
|
||||
"start_pos": zero_pos.tolist(),
|
||||
"end_pos": rotated_pos.tolist(),
|
||||
"calib_mode": calib_modes,
|
||||
"motor_names": arm.motor_names,
|
||||
}
|
||||
return calib_dict
|
||||
@@ -1,224 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import base64
|
||||
import json
|
||||
import threading
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import zmq
|
||||
|
||||
from lerobot.common.robot_devices.robots.mobile_manipulator import LeKiwi
|
||||
|
||||
|
||||
def setup_zmq_sockets(config):
|
||||
context = zmq.Context()
|
||||
cmd_socket = context.socket(zmq.PULL)
|
||||
cmd_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
cmd_socket.bind(f"tcp://*:{config.port}")
|
||||
|
||||
video_socket = context.socket(zmq.PUSH)
|
||||
video_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
video_socket.bind(f"tcp://*:{config.video_port}")
|
||||
|
||||
return context, cmd_socket, video_socket
|
||||
|
||||
|
||||
def run_camera_capture(cameras, images_lock, latest_images_dict, stop_event):
|
||||
while not stop_event.is_set():
|
||||
local_dict = {}
|
||||
for name, cam in cameras.items():
|
||||
frame = cam.async_read()
|
||||
ret, buffer = cv2.imencode(".jpg", frame, [int(cv2.IMWRITE_JPEG_QUALITY), 90])
|
||||
if ret:
|
||||
local_dict[name] = base64.b64encode(buffer).decode("utf-8")
|
||||
else:
|
||||
local_dict[name] = ""
|
||||
with images_lock:
|
||||
latest_images_dict.update(local_dict)
|
||||
time.sleep(0.01)
|
||||
|
||||
|
||||
def calibrate_follower_arm(motors_bus, calib_dir_str):
|
||||
"""
|
||||
Calibrates the follower arm. Attempts to load an existing calibration file;
|
||||
if not found, runs manual calibration and saves the result.
|
||||
"""
|
||||
calib_dir = Path(calib_dir_str)
|
||||
calib_dir.mkdir(parents=True, exist_ok=True)
|
||||
calib_file = calib_dir / "main_follower.json"
|
||||
try:
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
|
||||
except ImportError:
|
||||
print("[WARNING] Calibration function not available. Skipping calibration.")
|
||||
return
|
||||
|
||||
if calib_file.exists():
|
||||
with open(calib_file) as f:
|
||||
calibration = json.load(f)
|
||||
print(f"[INFO] Loaded calibration from {calib_file}")
|
||||
else:
|
||||
print("[INFO] Calibration file not found. Running manual calibration...")
|
||||
calibration = run_arm_manual_calibration(motors_bus, "lekiwi", "follower_arm", "follower")
|
||||
print(f"[INFO] Calibration complete. Saving to {calib_file}")
|
||||
with open(calib_file, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
try:
|
||||
motors_bus.set_calibration(calibration)
|
||||
print("[INFO] Applied calibration for follower arm.")
|
||||
except Exception as e:
|
||||
print(f"[WARNING] Could not apply calibration: {e}")
|
||||
|
||||
|
||||
def run_lekiwi(robot_config):
|
||||
"""
|
||||
Runs the LeKiwi robot:
|
||||
- Sets up cameras and connects them.
|
||||
- Initializes the follower arm motors.
|
||||
- Calibrates the follower arm if necessary.
|
||||
- Creates ZeroMQ sockets for receiving commands and streaming observations.
|
||||
- Processes incoming commands (arm and wheel commands) and sends back sensor and camera data.
|
||||
"""
|
||||
# Import helper functions and classes
|
||||
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus, TorqueMode
|
||||
|
||||
# Initialize cameras from the robot configuration.
|
||||
cameras = make_cameras_from_configs(robot_config.cameras)
|
||||
for cam in cameras.values():
|
||||
cam.connect()
|
||||
|
||||
# Initialize the motors bus using the follower arm configuration.
|
||||
motor_config = robot_config.follower_arms.get("main")
|
||||
if motor_config is None:
|
||||
print("[ERROR] Follower arm 'main' configuration not found.")
|
||||
return
|
||||
motors_bus = FeetechMotorsBus(motor_config)
|
||||
motors_bus.connect()
|
||||
|
||||
# Calibrate the follower arm.
|
||||
calibrate_follower_arm(motors_bus, robot_config.calibration_dir)
|
||||
|
||||
# Create the LeKiwi robot instance.
|
||||
robot = LeKiwi(motors_bus)
|
||||
|
||||
# Define the expected arm motor IDs.
|
||||
arm_motor_ids = ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"]
|
||||
|
||||
# Disable torque for each arm motor.
|
||||
for motor in arm_motor_ids:
|
||||
motors_bus.write("Torque_Enable", TorqueMode.DISABLED.value, motor)
|
||||
|
||||
# Set up ZeroMQ sockets.
|
||||
context, cmd_socket, video_socket = setup_zmq_sockets(robot_config)
|
||||
|
||||
# Start the camera capture thread.
|
||||
latest_images_dict = {}
|
||||
images_lock = threading.Lock()
|
||||
stop_event = threading.Event()
|
||||
cam_thread = threading.Thread(
|
||||
target=run_camera_capture, args=(cameras, images_lock, latest_images_dict, stop_event), daemon=True
|
||||
)
|
||||
cam_thread.start()
|
||||
|
||||
last_cmd_time = time.time()
|
||||
print("LeKiwi robot server started. Waiting for commands...")
|
||||
|
||||
try:
|
||||
while True:
|
||||
loop_start_time = time.time()
|
||||
|
||||
# Process incoming commands (non-blocking).
|
||||
while True:
|
||||
try:
|
||||
msg = cmd_socket.recv_string(zmq.NOBLOCK)
|
||||
except zmq.Again:
|
||||
break
|
||||
try:
|
||||
data = json.loads(msg)
|
||||
# Process arm position commands.
|
||||
if "arm_positions" in data:
|
||||
arm_positions = data["arm_positions"]
|
||||
if not isinstance(arm_positions, list):
|
||||
print(f"[ERROR] Invalid arm_positions: {arm_positions}")
|
||||
elif len(arm_positions) < len(arm_motor_ids):
|
||||
print(
|
||||
f"[WARNING] Received {len(arm_positions)} arm positions, expected {len(arm_motor_ids)}"
|
||||
)
|
||||
else:
|
||||
for motor, pos in zip(arm_motor_ids, arm_positions, strict=False):
|
||||
motors_bus.write("Goal_Position", pos, motor)
|
||||
# Process wheel (base) commands.
|
||||
if "raw_velocity" in data:
|
||||
raw_command = data["raw_velocity"]
|
||||
# Expect keys: "left_wheel", "back_wheel", "right_wheel".
|
||||
command_speeds = [
|
||||
int(raw_command.get("left_wheel", 0)),
|
||||
int(raw_command.get("back_wheel", 0)),
|
||||
int(raw_command.get("right_wheel", 0)),
|
||||
]
|
||||
robot.set_velocity(command_speeds)
|
||||
last_cmd_time = time.time()
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Parsing message failed: {e}")
|
||||
|
||||
# Watchdog: stop the robot if no command is received for over 0.5 seconds.
|
||||
now = time.time()
|
||||
if now - last_cmd_time > 0.5:
|
||||
robot.stop()
|
||||
last_cmd_time = now
|
||||
|
||||
# Read current wheel speeds from the robot.
|
||||
current_velocity = robot.read_velocity()
|
||||
|
||||
# Read the follower arm state from the motors bus.
|
||||
follower_arm_state = []
|
||||
for motor in arm_motor_ids:
|
||||
try:
|
||||
pos = motors_bus.read("Present_Position", motor)
|
||||
# Convert the position to a float (or use as is if already numeric).
|
||||
follower_arm_state.append(float(pos) if not isinstance(pos, (int, float)) else pos)
|
||||
except Exception as e:
|
||||
print(f"[ERROR] Reading motor {motor} failed: {e}")
|
||||
|
||||
# Get the latest camera images.
|
||||
with images_lock:
|
||||
images_dict_copy = dict(latest_images_dict)
|
||||
|
||||
# Build the observation dictionary.
|
||||
observation = {
|
||||
"images": images_dict_copy,
|
||||
"present_speed": current_velocity,
|
||||
"follower_arm_state": follower_arm_state,
|
||||
}
|
||||
# Send the observation over the video socket.
|
||||
video_socket.send_string(json.dumps(observation))
|
||||
|
||||
# Ensure a short sleep to avoid overloading the CPU.
|
||||
elapsed = time.time() - loop_start_time
|
||||
time.sleep(
|
||||
max(0.033 - elapsed, 0)
|
||||
) # If robot jitters increase the sleep and monitor cpu load with `top` in cmd
|
||||
except KeyboardInterrupt:
|
||||
print("Shutting down LeKiwi server.")
|
||||
finally:
|
||||
stop_event.set()
|
||||
cam_thread.join()
|
||||
robot.stop()
|
||||
motors_bus.disconnect()
|
||||
cmd_socket.close()
|
||||
video_socket.close()
|
||||
context.term()
|
||||
@@ -1,627 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Contains logic to instantiate a robot, read information from its motors and cameras,
|
||||
and send orders to its motors.
|
||||
"""
|
||||
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
|
||||
# calibration procedure, to make it easy for people to add their own robot.
|
||||
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
|
||||
from lerobot.common.robot_devices.robots.configs import ManipulatorRobotConfig
|
||||
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
|
||||
|
||||
def ensure_safe_goal_position(
|
||||
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
|
||||
):
|
||||
# Cap relative action target magnitude for safety.
|
||||
diff = goal_pos - present_pos
|
||||
max_relative_target = torch.tensor(max_relative_target)
|
||||
safe_diff = torch.minimum(diff, max_relative_target)
|
||||
safe_diff = torch.maximum(safe_diff, -max_relative_target)
|
||||
safe_goal_pos = present_pos + safe_diff
|
||||
|
||||
if not torch.allclose(goal_pos, safe_goal_pos):
|
||||
logging.warning(
|
||||
"Relative goal position magnitude had to be clamped to be safe.\n"
|
||||
f" requested relative goal position target: {diff}\n"
|
||||
f" clamped relative goal position target: {safe_diff}"
|
||||
)
|
||||
|
||||
return safe_goal_pos
|
||||
|
||||
|
||||
class ManipulatorRobot:
|
||||
# TODO(rcadene): Implement force feedback
|
||||
"""This class allows to control any manipulator robot of various number of motors.
|
||||
|
||||
Non exhaustive list of robots:
|
||||
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow expansion, developed
|
||||
by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
|
||||
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
|
||||
- [Aloha](https://www.trossenrobotics.com/aloha-kits) developed by Trossen Robotics
|
||||
|
||||
Example of instantiation, a pre-defined robot config is required:
|
||||
```python
|
||||
robot = ManipulatorRobot(KochRobotConfig())
|
||||
```
|
||||
|
||||
Example of overwriting motors during instantiation:
|
||||
```python
|
||||
# Defines how to communicate with the motors of the leader and follower arms
|
||||
leader_arms = {
|
||||
"main": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl330-m077"),
|
||||
"shoulder_lift": (2, "xl330-m077"),
|
||||
"elbow_flex": (3, "xl330-m077"),
|
||||
"wrist_flex": (4, "xl330-m077"),
|
||||
"wrist_roll": (5, "xl330-m077"),
|
||||
"gripper": (6, "xl330-m077"),
|
||||
},
|
||||
),
|
||||
}
|
||||
follower_arms = {
|
||||
"main": DynamixelMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem575E0032081",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": (1, "xl430-w250"),
|
||||
"shoulder_lift": (2, "xl430-w250"),
|
||||
"elbow_flex": (3, "xl330-m288"),
|
||||
"wrist_flex": (4, "xl330-m288"),
|
||||
"wrist_roll": (5, "xl330-m288"),
|
||||
"gripper": (6, "xl330-m288"),
|
||||
},
|
||||
),
|
||||
}
|
||||
robot_config = KochRobotConfig(leader_arms=leader_arms, follower_arms=follower_arms)
|
||||
robot = ManipulatorRobot(robot_config)
|
||||
```
|
||||
|
||||
Example of overwriting cameras during instantiation:
|
||||
```python
|
||||
# Defines how to communicate with 2 cameras connected to the computer.
|
||||
# Here, the webcam of the laptop and the phone (connected in USB to the laptop)
|
||||
# can be reached respectively using the camera indices 0 and 1. These indices can be
|
||||
# arbitrary. See the documentation of `OpenCVCamera` to find your own camera indices.
|
||||
cameras = {
|
||||
"laptop": OpenCVCamera(camera_index=0, fps=30, width=640, height=480),
|
||||
"phone": OpenCVCamera(camera_index=1, fps=30, width=640, height=480),
|
||||
}
|
||||
robot = ManipulatorRobot(KochRobotConfig(cameras=cameras))
|
||||
```
|
||||
|
||||
Once the robot is instantiated, connect motors buses and cameras if any (Required):
|
||||
```python
|
||||
robot.connect()
|
||||
```
|
||||
|
||||
Example of highest frequency teleoperation, which doesn't require cameras:
|
||||
```python
|
||||
while True:
|
||||
robot.teleop_step()
|
||||
```
|
||||
|
||||
Example of highest frequency data collection from motors and cameras (if any):
|
||||
```python
|
||||
while True:
|
||||
observation, action = robot.teleop_step(record_data=True)
|
||||
```
|
||||
|
||||
Example of controlling the robot with a policy:
|
||||
```python
|
||||
while True:
|
||||
# Uses the follower arms and cameras to capture an observation
|
||||
observation = robot.capture_observation()
|
||||
|
||||
# Assumes a policy has been instantiated
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation)
|
||||
|
||||
# Orders the robot to move
|
||||
robot.send_action(action)
|
||||
```
|
||||
|
||||
Example of disconnecting which is not mandatory since we disconnect when the object is deleted:
|
||||
```python
|
||||
robot.disconnect()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: ManipulatorRobotConfig,
|
||||
):
|
||||
self.config = config
|
||||
self.robot_type = self.config.type
|
||||
self.calibration_dir = Path(self.config.calibration_dir)
|
||||
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
|
||||
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
|
||||
self.cameras = make_cameras_from_configs(self.config.cameras)
|
||||
self.is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
def get_motor_names(self, arm: dict[str, MotorsBus]) -> list:
|
||||
return [f"{arm}_{motor}" for arm, bus in arm.items() for motor in bus.motors]
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
key = f"observation.images.{cam_key}"
|
||||
cam_ft[key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def motor_features(self) -> dict:
|
||||
action_names = self.get_motor_names(self.leader_arms)
|
||||
state_names = self.get_motor_names(self.leader_arms)
|
||||
return {
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (len(action_names),),
|
||||
"names": action_names,
|
||||
},
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (len(state_names),),
|
||||
"names": state_names,
|
||||
},
|
||||
}
|
||||
|
||||
@property
|
||||
def features(self):
|
||||
return {**self.motor_features, **self.camera_features}
|
||||
|
||||
@property
|
||||
def has_camera(self):
|
||||
return len(self.cameras) > 0
|
||||
|
||||
@property
|
||||
def num_cameras(self):
|
||||
return len(self.cameras)
|
||||
|
||||
@property
|
||||
def available_arms(self):
|
||||
available_arms = []
|
||||
for name in self.follower_arms:
|
||||
arm_id = get_arm_id(name, "follower")
|
||||
available_arms.append(arm_id)
|
||||
for name in self.leader_arms:
|
||||
arm_id = get_arm_id(name, "leader")
|
||||
available_arms.append(arm_id)
|
||||
return available_arms
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
|
||||
)
|
||||
|
||||
if not self.leader_arms and not self.follower_arms and not self.cameras:
|
||||
raise ValueError(
|
||||
"ManipulatorRobot doesn't have any device to connect. See example of usage in docstring of the class."
|
||||
)
|
||||
|
||||
# Connect the arms
|
||||
for name in self.follower_arms:
|
||||
print(f"Connecting {name} follower arm.")
|
||||
self.follower_arms[name].connect()
|
||||
for name in self.leader_arms:
|
||||
print(f"Connecting {name} leader arm.")
|
||||
self.leader_arms[name].connect()
|
||||
|
||||
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
|
||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
||||
|
||||
# We assume that at connection time, arms are in a rest position, and torque can
|
||||
# be safely disabled to run calibration and/or set robot preset configurations.
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value)
|
||||
|
||||
self.activate_calibration()
|
||||
|
||||
# Set robot preset (e.g. torque in leader gripper for Koch v1.1)
|
||||
if self.robot_type in ["koch", "koch_bimanual"]:
|
||||
self.set_koch_robot_preset()
|
||||
elif self.robot_type == "aloha":
|
||||
self.set_aloha_robot_preset()
|
||||
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||
self.set_so100_robot_preset()
|
||||
|
||||
# Enable torque on all motors of the follower arms
|
||||
for name in self.follower_arms:
|
||||
print(f"Activating torque on {name} follower arm.")
|
||||
self.follower_arms[name].write("Torque_Enable", 1)
|
||||
|
||||
if self.config.gripper_open_degree is not None:
|
||||
if self.robot_type not in ["koch", "koch_bimanual"]:
|
||||
raise NotImplementedError(
|
||||
f"{self.robot_type} does not support position AND current control in the handle, which is require to set the gripper open."
|
||||
)
|
||||
# Set the leader arm in torque mode with the gripper motor set to an angle. This makes it possible
|
||||
# to squeeze the gripper and have it spring back to an open position on its own.
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
|
||||
|
||||
# Check both arms can be read
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].read("Present_Position")
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].read("Present_Position")
|
||||
|
||||
# Connect the cameras
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def activate_calibration(self):
|
||||
"""After calibration all motors function in human interpretable ranges.
|
||||
Rotations are expressed in degrees in nominal range of [-180, 180],
|
||||
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
|
||||
"""
|
||||
|
||||
def load_or_run_calibration_(name, arm, arm_type):
|
||||
arm_id = get_arm_id(name, arm_type)
|
||||
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
|
||||
|
||||
if arm_calib_path.exists():
|
||||
with open(arm_calib_path) as f:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
# TODO(rcadene): display a warning in __init__ if calibration file not available
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
|
||||
if self.robot_type in ["koch", "koch_bimanual", "aloha"]:
|
||||
from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration
|
||||
|
||||
calibration = run_arm_calibration(arm, self.robot_type, name, arm_type)
|
||||
|
||||
elif self.robot_type in ["so100", "moss", "lekiwi"]:
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import (
|
||||
run_arm_manual_calibration,
|
||||
)
|
||||
|
||||
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
|
||||
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(arm_calib_path, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
|
||||
return calibration
|
||||
|
||||
for name, arm in self.follower_arms.items():
|
||||
calibration = load_or_run_calibration_(name, arm, "follower")
|
||||
arm.set_calibration(calibration)
|
||||
for name, arm in self.leader_arms.items():
|
||||
calibration = load_or_run_calibration_(name, arm, "leader")
|
||||
arm.set_calibration(calibration)
|
||||
|
||||
def set_koch_robot_preset(self):
|
||||
def set_operating_mode_(arm):
|
||||
from lerobot.common.robot_devices.motors.dynamixel import TorqueMode
|
||||
|
||||
if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any():
|
||||
raise ValueError("To run set robot preset, the torque must be disabled on all motors.")
|
||||
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
|
||||
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
|
||||
if len(all_motors_except_gripper) > 0:
|
||||
# 4 corresponds to Extended Position on Koch motors
|
||||
arm.write("Operating_Mode", 4, all_motors_except_gripper)
|
||||
|
||||
# Use 'position control current based' for gripper to be limited by the limit of the current.
|
||||
# For the follower gripper, it means it can grasp an object without forcing too much even tho,
|
||||
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
# For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger
|
||||
# to make it move, and it will move back to its original target position when we release the force.
|
||||
# 5 corresponds to Current Controlled Position on Koch gripper motors "xl330-m077, xl330-m288"
|
||||
arm.write("Operating_Mode", 5, "gripper")
|
||||
|
||||
for name in self.follower_arms:
|
||||
set_operating_mode_(self.follower_arms[name])
|
||||
|
||||
# Set better PID values to close the gap between recorded states and actions
|
||||
# TODO(rcadene): Implement an automatic procedure to set optimal PID values for each motor
|
||||
self.follower_arms[name].write("Position_P_Gain", 1500, "elbow_flex")
|
||||
self.follower_arms[name].write("Position_I_Gain", 0, "elbow_flex")
|
||||
self.follower_arms[name].write("Position_D_Gain", 600, "elbow_flex")
|
||||
|
||||
if self.config.gripper_open_degree is not None:
|
||||
for name in self.leader_arms:
|
||||
set_operating_mode_(self.leader_arms[name])
|
||||
|
||||
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
|
||||
# so that we can use it as a trigger to close the gripper of the follower arms.
|
||||
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper")
|
||||
|
||||
def set_aloha_robot_preset(self):
|
||||
def set_shadow_(arm):
|
||||
# Set secondary/shadow ID for shoulder and elbow. These joints have two motors.
|
||||
# As a result, if only one of them is required to move to a certain position,
|
||||
# the other will follow. This is to avoid breaking the motors.
|
||||
if "shoulder_shadow" in arm.motor_names:
|
||||
shoulder_idx = arm.read("ID", "shoulder")
|
||||
arm.write("Secondary_ID", shoulder_idx, "shoulder_shadow")
|
||||
|
||||
if "elbow_shadow" in arm.motor_names:
|
||||
elbow_idx = arm.read("ID", "elbow")
|
||||
arm.write("Secondary_ID", elbow_idx, "elbow_shadow")
|
||||
|
||||
for name in self.follower_arms:
|
||||
set_shadow_(self.follower_arms[name])
|
||||
|
||||
for name in self.leader_arms:
|
||||
set_shadow_(self.leader_arms[name])
|
||||
|
||||
for name in self.follower_arms:
|
||||
# Set a velocity limit of 131 as advised by Trossen Robotics
|
||||
self.follower_arms[name].write("Velocity_Limit", 131)
|
||||
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't
|
||||
# rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm,
|
||||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [
|
||||
name for name in self.follower_arms[name].motor_names if name != "gripper"
|
||||
]
|
||||
if len(all_motors_except_gripper) > 0:
|
||||
# 4 corresponds to Extended Position on Aloha motors
|
||||
self.follower_arms[name].write("Operating_Mode", 4, all_motors_except_gripper)
|
||||
|
||||
# Use 'position control current based' for follower gripper to be limited by the limit of the current.
|
||||
# It can grasp an object without forcing too much even tho,
|
||||
# it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
# 5 corresponds to Current Controlled Position on Aloha gripper follower "xm430-w350"
|
||||
self.follower_arms[name].write("Operating_Mode", 5, "gripper")
|
||||
|
||||
# Note: We can't enable torque on the leader gripper since "xc430-w150" doesn't have
|
||||
# a Current Controlled Position mode.
|
||||
|
||||
if self.config.gripper_open_degree is not None:
|
||||
warnings.warn(
|
||||
f"`gripper_open_degree` is set to {self.config.gripper_open_degree}, but None is expected for Aloha instead",
|
||||
stacklevel=1,
|
||||
)
|
||||
|
||||
def set_so100_robot_preset(self):
|
||||
for name in self.follower_arms:
|
||||
# Mode=0 for Position Control
|
||||
self.follower_arms[name].write("Mode", 0)
|
||||
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
|
||||
self.follower_arms[name].write("P_Coefficient", 16)
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.follower_arms[name].write("I_Coefficient", 0)
|
||||
self.follower_arms[name].write("D_Coefficient", 32)
|
||||
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
|
||||
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
|
||||
self.follower_arms[name].write("Lock", 0)
|
||||
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
|
||||
# the motors. Note: this configuration is not in the official STS3215 Memory Table
|
||||
self.follower_arms[name].write("Maximum_Acceleration", 254)
|
||||
self.follower_arms[name].write("Acceleration", 254)
|
||||
|
||||
def teleop_step(
|
||||
self, record_data=False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
# Prepare to assign the position of the leader to the follower
|
||||
leader_pos = {}
|
||||
for name in self.leader_arms:
|
||||
before_lread_t = time.perf_counter()
|
||||
leader_pos[name] = self.leader_arms[name].read("Present_Position")
|
||||
leader_pos[name] = torch.from_numpy(leader_pos[name])
|
||||
self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - before_lread_t
|
||||
|
||||
# Send goal position to the follower
|
||||
follower_goal_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fwrite_t = time.perf_counter()
|
||||
goal_pos = leader_pos[name]
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.follower_arms[name].read("Present_Position")
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
|
||||
# Used when record_data=True
|
||||
follower_goal_pos[name] = goal_pos
|
||||
|
||||
goal_pos = goal_pos.numpy().astype(np.float32)
|
||||
self.follower_arms[name].write("Goal_Position", goal_pos)
|
||||
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t
|
||||
|
||||
# Early exit when recording data is not requested
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
# TODO(rcadene): Add velocity and other info
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = torch.cat(state)
|
||||
|
||||
# Create action by concatenating follower goal position
|
||||
action = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_goal_pos:
|
||||
action.append(follower_goal_pos[name])
|
||||
action = torch.cat(action)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = state
|
||||
action_dict["action"] = action
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def capture_observation(self):
|
||||
"""The returned observations do not have a batch dimension."""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = self.follower_arms[name].read("Present_Position")
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = torch.cat(state)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries and format to pytorch
|
||||
obs_dict = {}
|
||||
obs_dict["observation.state"] = state
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
"""Command the follower arms to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Args:
|
||||
action: tensor containing the concatenated goal positions for the follower arms.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
from_idx = 0
|
||||
to_idx = 0
|
||||
action_sent = []
|
||||
for name in self.follower_arms:
|
||||
# Get goal position of each follower arm by splitting the action vector
|
||||
to_idx += len(self.follower_arms[name].motor_names)
|
||||
goal_pos = action[from_idx:to_idx]
|
||||
from_idx = to_idx
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.follower_arms[name].read("Present_Position")
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
|
||||
# Save tensor to concat and return
|
||||
action_sent.append(goal_pos)
|
||||
|
||||
# Send goal position to each follower
|
||||
goal_pos = goal_pos.numpy().astype(np.float32)
|
||||
self.follower_arms[name].write("Goal_Position", goal_pos)
|
||||
|
||||
return torch.cat(action_sent)
|
||||
|
||||
def print_logs(self):
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting."
|
||||
)
|
||||
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].disconnect()
|
||||
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].disconnect()
|
||||
|
||||
for name in self.cameras:
|
||||
self.cameras[name].disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
@@ -1,703 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import base64
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import zmq
|
||||
|
||||
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.robot_devices.motors.feetech import TorqueMode
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs
|
||||
from lerobot.common.robot_devices.robots.configs import LeKiwiRobotConfig
|
||||
from lerobot.common.robot_devices.robots.feetech_calibration import run_arm_manual_calibration
|
||||
from lerobot.common.robot_devices.robots.utils import get_arm_id
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError
|
||||
|
||||
PYNPUT_AVAILABLE = True
|
||||
try:
|
||||
# Only import if there's a valid X server or if we're not on a Pi
|
||||
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
|
||||
print("No DISPLAY set. Skipping pynput import.")
|
||||
raise ImportError("pynput blocked intentionally due to no display.")
|
||||
|
||||
from pynput import keyboard
|
||||
except ImportError:
|
||||
keyboard = None
|
||||
PYNPUT_AVAILABLE = False
|
||||
except Exception as e:
|
||||
keyboard = None
|
||||
PYNPUT_AVAILABLE = False
|
||||
print(f"Could not import pynput: {e}")
|
||||
|
||||
|
||||
class MobileManipulator:
|
||||
"""
|
||||
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
|
||||
The robot includes a three omniwheel mobile base and a remote follower arm.
|
||||
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
|
||||
forwarded to the remote follower arm (after applying a safety clamp).
|
||||
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
|
||||
"""
|
||||
|
||||
def __init__(self, config: LeKiwiRobotConfig):
|
||||
"""
|
||||
Expected keys in config:
|
||||
- ip, port, video_port for the remote connection.
|
||||
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
|
||||
"""
|
||||
self.robot_type = config.type
|
||||
self.config = config
|
||||
self.remote_ip = config.ip
|
||||
self.remote_port = config.port
|
||||
self.remote_port_video = config.video_port
|
||||
self.calibration_dir = Path(self.config.calibration_dir)
|
||||
self.logs = {}
|
||||
|
||||
self.teleop_keys = self.config.teleop_keys
|
||||
|
||||
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
|
||||
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
|
||||
|
||||
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
|
||||
|
||||
self.cameras = make_cameras_from_configs(self.config.cameras)
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
self.last_frames = {}
|
||||
self.last_present_speed = {}
|
||||
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
|
||||
|
||||
# Define three speed levels and a current index
|
||||
self.speed_levels = [
|
||||
{"xy": 0.1, "theta": 30}, # slow
|
||||
{"xy": 0.2, "theta": 60}, # medium
|
||||
{"xy": 0.3, "theta": 90}, # fast
|
||||
]
|
||||
self.speed_index = 0 # Start at slow
|
||||
|
||||
# ZeroMQ context and sockets.
|
||||
self.context = None
|
||||
self.cmd_socket = None
|
||||
self.video_socket = None
|
||||
|
||||
# Keyboard state for base teleoperation.
|
||||
self.running = True
|
||||
self.pressed_keys = {
|
||||
"forward": False,
|
||||
"backward": False,
|
||||
"left": False,
|
||||
"right": False,
|
||||
"rotate_left": False,
|
||||
"rotate_right": False,
|
||||
}
|
||||
|
||||
if PYNPUT_AVAILABLE:
|
||||
print("pynput is available - enabling local keyboard listener.")
|
||||
self.listener = keyboard.Listener(
|
||||
on_press=self.on_press,
|
||||
on_release=self.on_release,
|
||||
)
|
||||
self.listener.start()
|
||||
else:
|
||||
print("pynput not available - skipping local keyboard listener.")
|
||||
self.listener = None
|
||||
|
||||
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
|
||||
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
key = f"observation.images.{cam_key}"
|
||||
cam_ft[key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def motor_features(self) -> dict:
|
||||
follower_arm_names = [
|
||||
"shoulder_pan",
|
||||
"shoulder_lift",
|
||||
"elbow_flex",
|
||||
"wrist_flex",
|
||||
"wrist_roll",
|
||||
"gripper",
|
||||
]
|
||||
observations = ["x_mm", "y_mm", "theta"]
|
||||
combined_names = follower_arm_names + observations
|
||||
return {
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (len(combined_names),),
|
||||
"names": combined_names,
|
||||
},
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (len(combined_names),),
|
||||
"names": combined_names,
|
||||
},
|
||||
}
|
||||
|
||||
@property
|
||||
def features(self):
|
||||
return {**self.motor_features, **self.camera_features}
|
||||
|
||||
@property
|
||||
def has_camera(self):
|
||||
return len(self.cameras) > 0
|
||||
|
||||
@property
|
||||
def num_cameras(self):
|
||||
return len(self.cameras)
|
||||
|
||||
@property
|
||||
def available_arms(self):
|
||||
available = []
|
||||
for name in self.leader_arms:
|
||||
available.append(get_arm_id(name, "leader"))
|
||||
for name in self.follower_arms:
|
||||
available.append(get_arm_id(name, "follower"))
|
||||
return available
|
||||
|
||||
def on_press(self, key):
|
||||
try:
|
||||
# Movement
|
||||
if key.char == self.teleop_keys["forward"]:
|
||||
self.pressed_keys["forward"] = True
|
||||
elif key.char == self.teleop_keys["backward"]:
|
||||
self.pressed_keys["backward"] = True
|
||||
elif key.char == self.teleop_keys["left"]:
|
||||
self.pressed_keys["left"] = True
|
||||
elif key.char == self.teleop_keys["right"]:
|
||||
self.pressed_keys["right"] = True
|
||||
elif key.char == self.teleop_keys["rotate_left"]:
|
||||
self.pressed_keys["rotate_left"] = True
|
||||
elif key.char == self.teleop_keys["rotate_right"]:
|
||||
self.pressed_keys["rotate_right"] = True
|
||||
|
||||
# Quit teleoperation
|
||||
elif key.char == self.teleop_keys["quit"]:
|
||||
self.running = False
|
||||
return False
|
||||
|
||||
# Speed control
|
||||
elif key.char == self.teleop_keys["speed_up"]:
|
||||
self.speed_index = min(self.speed_index + 1, 2)
|
||||
print(f"Speed index increased to {self.speed_index}")
|
||||
elif key.char == self.teleop_keys["speed_down"]:
|
||||
self.speed_index = max(self.speed_index - 1, 0)
|
||||
print(f"Speed index decreased to {self.speed_index}")
|
||||
|
||||
except AttributeError:
|
||||
# e.g., if key is special like Key.esc
|
||||
if key == keyboard.Key.esc:
|
||||
self.running = False
|
||||
return False
|
||||
|
||||
def on_release(self, key):
|
||||
try:
|
||||
if hasattr(key, "char"):
|
||||
if key.char == self.teleop_keys["forward"]:
|
||||
self.pressed_keys["forward"] = False
|
||||
elif key.char == self.teleop_keys["backward"]:
|
||||
self.pressed_keys["backward"] = False
|
||||
elif key.char == self.teleop_keys["left"]:
|
||||
self.pressed_keys["left"] = False
|
||||
elif key.char == self.teleop_keys["right"]:
|
||||
self.pressed_keys["right"] = False
|
||||
elif key.char == self.teleop_keys["rotate_left"]:
|
||||
self.pressed_keys["rotate_left"] = False
|
||||
elif key.char == self.teleop_keys["rotate_right"]:
|
||||
self.pressed_keys["rotate_right"] = False
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
def connect(self):
|
||||
if not self.leader_arms:
|
||||
raise ValueError("MobileManipulator has no leader arm to connect.")
|
||||
for name in self.leader_arms:
|
||||
print(f"Connecting {name} leader arm.")
|
||||
self.calibrate_leader()
|
||||
|
||||
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
|
||||
self.context = zmq.Context()
|
||||
self.cmd_socket = self.context.socket(zmq.PUSH)
|
||||
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
|
||||
self.cmd_socket.connect(connection_string)
|
||||
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
self.video_socket = self.context.socket(zmq.PULL)
|
||||
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
|
||||
self.video_socket.connect(video_connection)
|
||||
self.video_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
print(
|
||||
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
|
||||
)
|
||||
self.is_connected = True
|
||||
|
||||
def load_or_run_calibration_(self, name, arm, arm_type):
|
||||
arm_id = get_arm_id(name, arm_type)
|
||||
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
|
||||
|
||||
if arm_calib_path.exists():
|
||||
with open(arm_calib_path) as f:
|
||||
calibration = json.load(f)
|
||||
else:
|
||||
print(f"Missing calibration file '{arm_calib_path}'")
|
||||
calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type)
|
||||
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
|
||||
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
with open(arm_calib_path, "w") as f:
|
||||
json.dump(calibration, f)
|
||||
|
||||
return calibration
|
||||
|
||||
def calibrate_leader(self):
|
||||
for name, arm in self.leader_arms.items():
|
||||
# Connect the bus
|
||||
arm.connect()
|
||||
|
||||
# Disable torque on all motors
|
||||
for motor_id in arm.motors:
|
||||
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
|
||||
|
||||
# Now run calibration
|
||||
calibration = self.load_or_run_calibration_(name, arm, "leader")
|
||||
arm.set_calibration(calibration)
|
||||
|
||||
def calibrate_follower(self):
|
||||
for name, bus in self.follower_arms.items():
|
||||
bus.connect()
|
||||
|
||||
# Disable torque on all motors
|
||||
for motor_id in bus.motors:
|
||||
bus.write("Torque_Enable", 0, motor_id)
|
||||
|
||||
# Then filter out wheels
|
||||
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
|
||||
if not arm_only_dict:
|
||||
continue
|
||||
|
||||
original_motors = bus.motors
|
||||
bus.motors = arm_only_dict
|
||||
|
||||
calibration = self.load_or_run_calibration_(name, bus, "follower")
|
||||
bus.set_calibration(calibration)
|
||||
|
||||
bus.motors = original_motors
|
||||
|
||||
def _get_data(self):
|
||||
"""
|
||||
Polls the video socket for up to 15 ms. If data arrives, decode only
|
||||
the *latest* message, returning frames, speed, and arm state. If
|
||||
nothing arrives for any field, use the last known values.
|
||||
"""
|
||||
frames = {}
|
||||
present_speed = {}
|
||||
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
|
||||
|
||||
# Poll up to 15 ms
|
||||
poller = zmq.Poller()
|
||||
poller.register(self.video_socket, zmq.POLLIN)
|
||||
socks = dict(poller.poll(15))
|
||||
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
|
||||
# No new data arrived → reuse ALL old data
|
||||
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||
|
||||
# Drain all messages, keep only the last
|
||||
last_msg = None
|
||||
while True:
|
||||
try:
|
||||
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
|
||||
last_msg = obs_string
|
||||
except zmq.Again:
|
||||
break
|
||||
|
||||
if not last_msg:
|
||||
# No new message → also reuse old
|
||||
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||
|
||||
# Decode only the final message
|
||||
try:
|
||||
observation = json.loads(last_msg)
|
||||
|
||||
images_dict = observation.get("images", {})
|
||||
new_speed = observation.get("present_speed", {})
|
||||
new_arm_state = observation.get("follower_arm_state", None)
|
||||
|
||||
# Convert images
|
||||
for cam_name, image_b64 in images_dict.items():
|
||||
if image_b64:
|
||||
jpg_data = base64.b64decode(image_b64)
|
||||
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
|
||||
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
||||
if frame_candidate is not None:
|
||||
frames[cam_name] = frame_candidate
|
||||
|
||||
# If remote_arm_state is None and frames is None there is no message then use the previous message
|
||||
if new_arm_state is not None and frames is not None:
|
||||
self.last_frames = frames
|
||||
|
||||
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
|
||||
self.last_remote_arm_state = remote_arm_state_tensor
|
||||
|
||||
present_speed = new_speed
|
||||
self.last_present_speed = new_speed
|
||||
else:
|
||||
frames = self.last_frames
|
||||
|
||||
remote_arm_state_tensor = self.last_remote_arm_state
|
||||
|
||||
present_speed = self.last_present_speed
|
||||
|
||||
except Exception as e:
|
||||
print(f"[DEBUG] Error decoding video message: {e}")
|
||||
# If decode fails, fall back to old data
|
||||
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
|
||||
|
||||
return frames, present_speed, remote_arm_state_tensor
|
||||
|
||||
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
|
||||
state_tensor = torch.zeros(3, dtype=torch.int32)
|
||||
if present_speed:
|
||||
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
|
||||
if "1" in decoded:
|
||||
state_tensor[0] = decoded["1"]
|
||||
if "2" in decoded:
|
||||
state_tensor[1] = decoded["2"]
|
||||
if "3" in decoded:
|
||||
state_tensor[2] = decoded["3"]
|
||||
return state_tensor
|
||||
|
||||
def teleop_step(
|
||||
self, record_data: bool = False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
|
||||
|
||||
speed_setting = self.speed_levels[self.speed_index]
|
||||
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
|
||||
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
|
||||
|
||||
# Prepare to assign the position of the leader to the follower
|
||||
arm_positions = []
|
||||
for name in self.leader_arms:
|
||||
pos = self.leader_arms[name].read("Present_Position")
|
||||
pos_tensor = torch.from_numpy(pos).float()
|
||||
arm_positions.extend(pos_tensor.tolist())
|
||||
|
||||
y_cmd = 0.0 # m/s forward/backward
|
||||
x_cmd = 0.0 # m/s lateral
|
||||
theta_cmd = 0.0 # deg/s rotation
|
||||
if self.pressed_keys["forward"]:
|
||||
y_cmd += xy_speed
|
||||
if self.pressed_keys["backward"]:
|
||||
y_cmd -= xy_speed
|
||||
if self.pressed_keys["left"]:
|
||||
x_cmd += xy_speed
|
||||
if self.pressed_keys["right"]:
|
||||
x_cmd -= xy_speed
|
||||
if self.pressed_keys["rotate_left"]:
|
||||
theta_cmd += theta_speed
|
||||
if self.pressed_keys["rotate_right"]:
|
||||
theta_cmd -= theta_speed
|
||||
|
||||
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||
|
||||
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
|
||||
self.cmd_socket.send_string(json.dumps(message))
|
||||
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
obs_dict = self.capture_observation()
|
||||
|
||||
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
|
||||
|
||||
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
|
||||
wheel_velocity_mm = (
|
||||
wheel_velocity_tuple[0] * 1000.0,
|
||||
wheel_velocity_tuple[1] * 1000.0,
|
||||
wheel_velocity_tuple[2],
|
||||
)
|
||||
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
|
||||
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
|
||||
action_dict = {"action": action_tensor}
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def capture_observation(self) -> dict:
|
||||
"""
|
||||
Capture observations from the remote robot: current follower arm positions,
|
||||
present wheel speeds (converted to body-frame velocities: x, y, theta),
|
||||
and a camera frame.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
|
||||
frames, present_speed, remote_arm_state_tensor = self._get_data()
|
||||
|
||||
body_state = self.wheel_raw_to_body(present_speed)
|
||||
|
||||
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
|
||||
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
|
||||
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
|
||||
|
||||
obs_dict = {"observation.state": combined_state_tensor}
|
||||
|
||||
# Loop over each configured camera
|
||||
for cam_name, cam in self.cameras.items():
|
||||
frame = frames.get(cam_name, None)
|
||||
if frame is None:
|
||||
# Create a black image using the camera's configured width, height, and channels
|
||||
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
|
||||
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError("Not connected. Run `connect()` first.")
|
||||
|
||||
# Ensure the action tensor has at least 9 elements:
|
||||
# - First 6: arm positions.
|
||||
# - Last 3: base commands.
|
||||
if action.numel() < 9:
|
||||
# Pad with zeros if there are not enough elements.
|
||||
padded = torch.zeros(9, dtype=action.dtype)
|
||||
padded[: action.numel()] = action
|
||||
action = padded
|
||||
|
||||
# Extract arm and base actions.
|
||||
arm_actions = action[:6].flatten()
|
||||
base_actions = action[6:].flatten()
|
||||
|
||||
x_cmd_mm = base_actions[0].item() # mm/s
|
||||
y_cmd_mm = base_actions[1].item() # mm/s
|
||||
theta_cmd = base_actions[2].item() # deg/s
|
||||
|
||||
# Convert mm/s to m/s for the kinematics calculations.
|
||||
x_cmd = x_cmd_mm / 1000.0 # m/s
|
||||
y_cmd = y_cmd_mm / 1000.0 # m/s
|
||||
|
||||
# Compute wheel commands from body commands.
|
||||
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||
|
||||
arm_positions_list = arm_actions.tolist()
|
||||
|
||||
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
|
||||
self.cmd_socket.send_string(json.dumps(message))
|
||||
|
||||
return action
|
||||
|
||||
def print_logs(self):
|
||||
pass
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError("Not connected.")
|
||||
if self.cmd_socket:
|
||||
stop_cmd = {
|
||||
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
|
||||
"arm_positions": {},
|
||||
}
|
||||
self.cmd_socket.send_string(json.dumps(stop_cmd))
|
||||
self.cmd_socket.close()
|
||||
if self.video_socket:
|
||||
self.video_socket.close()
|
||||
if self.context:
|
||||
self.context.term()
|
||||
if PYNPUT_AVAILABLE:
|
||||
self.listener.stop()
|
||||
self.is_connected = False
|
||||
print("[INFO] Disconnected from remote robot.")
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
||||
if PYNPUT_AVAILABLE:
|
||||
self.listener.stop()
|
||||
|
||||
@staticmethod
|
||||
def degps_to_raw(degps: float) -> int:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
speed_in_steps = abs(degps) * steps_per_deg
|
||||
speed_int = int(round(speed_in_steps))
|
||||
if speed_int > 0x7FFF:
|
||||
speed_int = 0x7FFF
|
||||
if degps < 0:
|
||||
return speed_int | 0x8000
|
||||
else:
|
||||
return speed_int & 0x7FFF
|
||||
|
||||
@staticmethod
|
||||
def raw_to_degps(raw_speed: int) -> float:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
magnitude = raw_speed & 0x7FFF
|
||||
degps = magnitude / steps_per_deg
|
||||
if raw_speed & 0x8000:
|
||||
degps = -degps
|
||||
return degps
|
||||
|
||||
def body_to_wheel_raw(
|
||||
self,
|
||||
x_cmd: float,
|
||||
y_cmd: float,
|
||||
theta_cmd: float,
|
||||
wheel_radius: float = 0.05,
|
||||
base_radius: float = 0.125,
|
||||
max_raw: int = 3000,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert desired body-frame velocities into wheel raw commands.
|
||||
|
||||
Parameters:
|
||||
x_cmd : Linear velocity in x (m/s).
|
||||
y_cmd : Linear velocity in y (m/s).
|
||||
theta_cmd : Rotational velocity (deg/s).
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the center of rotation to each wheel (meters).
|
||||
max_raw : Maximum allowed raw command (ticks) per wheel.
|
||||
|
||||
Returns:
|
||||
A dictionary with wheel raw commands:
|
||||
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
|
||||
|
||||
Notes:
|
||||
- Internally, the method converts theta_cmd to rad/s for the kinematics.
|
||||
- The raw command is computed from the wheels angular speed in deg/s
|
||||
using degps_to_raw(). If any command exceeds max_raw, all commands
|
||||
are scaled down proportionally.
|
||||
"""
|
||||
# Convert rotational velocity from deg/s to rad/s.
|
||||
theta_rad = theta_cmd * (np.pi / 180.0)
|
||||
# Create the body velocity vector [x, y, theta_rad].
|
||||
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
|
||||
|
||||
# Define the wheel mounting angles (defined from y axis cw)
|
||||
angles = np.radians(np.array([300, 180, 60]))
|
||||
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
|
||||
# The third column (base_radius) accounts for the effect of rotation.
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
|
||||
wheel_linear_speeds = m.dot(velocity_vector)
|
||||
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
|
||||
|
||||
# Convert wheel angular speeds from rad/s to deg/s.
|
||||
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
|
||||
|
||||
# Scaling
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
|
||||
max_raw_computed = max(raw_floats)
|
||||
if max_raw_computed > max_raw:
|
||||
scale = max_raw / max_raw_computed
|
||||
wheel_degps = wheel_degps * scale
|
||||
|
||||
# Convert each wheel’s angular speed (deg/s) to a raw integer.
|
||||
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
|
||||
|
||||
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
|
||||
|
||||
def wheel_raw_to_body(
|
||||
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
|
||||
) -> tuple:
|
||||
"""
|
||||
Convert wheel raw command feedback back into body-frame velocities.
|
||||
|
||||
Parameters:
|
||||
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the robot center to each wheel (meters).
|
||||
|
||||
Returns:
|
||||
A tuple (x_cmd, y_cmd, theta_cmd) where:
|
||||
x_cmd : Linear velocity in x (m/s).
|
||||
y_cmd : Linear velocity in y (m/s).
|
||||
theta_cmd : Rotational velocity in deg/s.
|
||||
"""
|
||||
# Extract the raw values in order.
|
||||
raw_list = [
|
||||
int(wheel_raw.get("left_wheel", 0)),
|
||||
int(wheel_raw.get("back_wheel", 0)),
|
||||
int(wheel_raw.get("right_wheel", 0)),
|
||||
]
|
||||
|
||||
# Convert each raw command back to an angular speed in deg/s.
|
||||
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
|
||||
# Convert from deg/s to rad/s.
|
||||
wheel_radps = wheel_degps * (np.pi / 180.0)
|
||||
# Compute each wheel’s linear speed (m/s) from its angular speed.
|
||||
wheel_linear_speeds = wheel_radps * wheel_radius
|
||||
|
||||
# Define the wheel mounting angles (defined from y axis cw)
|
||||
angles = np.radians(np.array([300, 180, 60]))
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
|
||||
m_inv = np.linalg.inv(m)
|
||||
velocity_vector = m_inv.dot(wheel_linear_speeds)
|
||||
x_cmd, y_cmd, theta_rad = velocity_vector
|
||||
theta_cmd = theta_rad * (180.0 / np.pi)
|
||||
return (x_cmd, y_cmd, theta_cmd)
|
||||
|
||||
|
||||
class LeKiwi:
|
||||
def __init__(self, motor_bus):
|
||||
"""
|
||||
Initializes the LeKiwi with Feetech motors bus.
|
||||
"""
|
||||
self.motor_bus = motor_bus
|
||||
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
|
||||
|
||||
# Initialize motors in velocity mode.
|
||||
self.motor_bus.write("Lock", 0)
|
||||
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
|
||||
self.motor_bus.write("Lock", 1)
|
||||
print("Motors set to velocity mode.")
|
||||
|
||||
def read_velocity(self):
|
||||
"""
|
||||
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
|
||||
"""
|
||||
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
|
||||
return {
|
||||
"left_wheel": int(raw_speeds[0]),
|
||||
"back_wheel": int(raw_speeds[1]),
|
||||
"right_wheel": int(raw_speeds[2]),
|
||||
}
|
||||
|
||||
def set_velocity(self, command_speeds):
|
||||
"""
|
||||
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
|
||||
The order of speeds must correspond to self.motor_ids.
|
||||
"""
|
||||
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)
|
||||
|
||||
def stop(self):
|
||||
"""Stops the robot by setting all motor speeds to zero."""
|
||||
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
|
||||
print("Motors stopped.")
|
||||
@@ -1,208 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import time
|
||||
from dataclasses import replace
|
||||
|
||||
import torch
|
||||
from stretch_body.gamepad_teleop import GamePadTeleop
|
||||
from stretch_body.robot import Robot as StretchAPI
|
||||
from stretch_body.robot_params import RobotParams
|
||||
|
||||
from lerobot.common.robot_devices.robots.configs import StretchRobotConfig
|
||||
|
||||
|
||||
class StretchRobot(StretchAPI):
|
||||
"""Wrapper of stretch_body.robot.Robot"""
|
||||
|
||||
def __init__(self, config: StretchRobotConfig | None = None, **kwargs):
|
||||
super().__init__()
|
||||
if config is None:
|
||||
self.config = StretchRobotConfig(**kwargs)
|
||||
else:
|
||||
# Overwrite config arguments using kwargs
|
||||
self.config = replace(config, **kwargs)
|
||||
|
||||
self.robot_type = self.config.type
|
||||
self.cameras = self.config.cameras
|
||||
self.is_connected = False
|
||||
self.teleop = None
|
||||
self.logs = {}
|
||||
|
||||
# TODO(aliberts): test this
|
||||
RobotParams.set_logging_level("WARNING")
|
||||
RobotParams.set_logging_formatter("brief_console_formatter")
|
||||
|
||||
self.state_keys = None
|
||||
self.action_keys = None
|
||||
|
||||
def connect(self) -> None:
|
||||
self.is_connected = self.startup()
|
||||
if not self.is_connected:
|
||||
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
|
||||
raise ConnectionError()
|
||||
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
self.is_connected = self.is_connected and self.cameras[name].is_connected
|
||||
|
||||
if not self.is_connected:
|
||||
print("Could not connect to the cameras, check that all cameras are plugged-in.")
|
||||
raise ConnectionError()
|
||||
|
||||
self.run_calibration()
|
||||
|
||||
def run_calibration(self) -> None:
|
||||
if not self.is_homed():
|
||||
self.home()
|
||||
|
||||
def teleop_step(
|
||||
self, record_data=False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
before_read_t = time.perf_counter()
|
||||
state = self.get_state()
|
||||
action = self.teleop.gamepad_controller.get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
state = torch.as_tensor(list(state.values()))
|
||||
action = torch.as_tensor(list(action.values()))
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = state
|
||||
action_dict["action"] = action
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def get_state(self) -> dict:
|
||||
status = self.get_status()
|
||||
return {
|
||||
"head_pan.pos": status["head"]["head_pan"]["pos"],
|
||||
"head_tilt.pos": status["head"]["head_tilt"]["pos"],
|
||||
"lift.pos": status["lift"]["pos"],
|
||||
"arm.pos": status["arm"]["pos"],
|
||||
"wrist_pitch.pos": status["end_of_arm"]["wrist_pitch"]["pos"],
|
||||
"wrist_roll.pos": status["end_of_arm"]["wrist_roll"]["pos"],
|
||||
"wrist_yaw.pos": status["end_of_arm"]["wrist_yaw"]["pos"],
|
||||
"gripper.pos": status["end_of_arm"]["stretch_gripper"]["pos"],
|
||||
"base_x.vel": status["base"]["x_vel"],
|
||||
"base_y.vel": status["base"]["y_vel"],
|
||||
"base_theta.vel": status["base"]["theta_vel"],
|
||||
}
|
||||
|
||||
def capture_observation(self) -> dict:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
before_read_t = time.perf_counter()
|
||||
state = self.get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
state = torch.as_tensor(list(state.values()))
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries
|
||||
obs_dict = {}
|
||||
obs_dict["observation.state"] = state
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
# TODO(aliberts): return ndarrays instead of torch.Tensors
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
if self.action_keys is None:
|
||||
dummy_action = self.teleop.gamepad_controller.get_state()
|
||||
self.action_keys = list(dummy_action.keys())
|
||||
|
||||
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(state=action_dict, robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
# TODO(aliberts): return action_sent when motion is limited
|
||||
return action
|
||||
|
||||
def print_logs(self) -> None:
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def teleop_safety_stop(self) -> None:
|
||||
if self.teleop is not None:
|
||||
self.teleop._safety_stop(robot=self)
|
||||
|
||||
def disconnect(self) -> None:
|
||||
self.stop()
|
||||
if self.teleop is not None:
|
||||
self.teleop.gamepad_controller.stop()
|
||||
self.teleop.stop()
|
||||
|
||||
if len(self.cameras) > 0:
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
self.disconnect()
|
||||
@@ -1,86 +0,0 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Protocol
|
||||
|
||||
from lerobot.common.robot_devices.robots.configs import (
|
||||
AlohaRobotConfig,
|
||||
KochBimanualRobotConfig,
|
||||
KochRobotConfig,
|
||||
LeKiwiRobotConfig,
|
||||
ManipulatorRobotConfig,
|
||||
MossRobotConfig,
|
||||
RobotConfig,
|
||||
So100RobotConfig,
|
||||
StretchRobotConfig,
|
||||
)
|
||||
|
||||
|
||||
def get_arm_id(name, arm_type):
|
||||
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
|
||||
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
|
||||
"""
|
||||
return f"{name}_{arm_type}"
|
||||
|
||||
|
||||
class Robot(Protocol):
|
||||
# TODO(rcadene, aliberts): Add unit test checking the protocol is implemented in the corresponding classes
|
||||
robot_type: str
|
||||
features: dict
|
||||
|
||||
def connect(self): ...
|
||||
def run_calibration(self): ...
|
||||
def teleop_step(self, record_data=False): ...
|
||||
def capture_observation(self): ...
|
||||
def send_action(self, action): ...
|
||||
def disconnect(self): ...
|
||||
|
||||
|
||||
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
||||
if robot_type == "aloha":
|
||||
return AlohaRobotConfig(**kwargs)
|
||||
elif robot_type == "koch":
|
||||
return KochRobotConfig(**kwargs)
|
||||
elif robot_type == "koch_bimanual":
|
||||
return KochBimanualRobotConfig(**kwargs)
|
||||
elif robot_type == "moss":
|
||||
return MossRobotConfig(**kwargs)
|
||||
elif robot_type == "so100":
|
||||
return So100RobotConfig(**kwargs)
|
||||
elif robot_type == "stretch":
|
||||
return StretchRobotConfig(**kwargs)
|
||||
elif robot_type == "lekiwi":
|
||||
return LeKiwiRobotConfig(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Robot type '{robot_type}' is not available.")
|
||||
|
||||
|
||||
def make_robot_from_config(config: RobotConfig):
|
||||
if isinstance(config, ManipulatorRobotConfig):
|
||||
from lerobot.common.robot_devices.robots.manipulator import ManipulatorRobot
|
||||
|
||||
return ManipulatorRobot(config)
|
||||
elif isinstance(config, LeKiwiRobotConfig):
|
||||
from lerobot.common.robot_devices.robots.mobile_manipulator import MobileManipulator
|
||||
|
||||
return MobileManipulator(config)
|
||||
else:
|
||||
from lerobot.common.robot_devices.robots.stretch import StretchRobot
|
||||
|
||||
return StretchRobot(config)
|
||||
|
||||
|
||||
def make_robot(robot_type: str, **kwargs) -> Robot:
|
||||
config = make_robot_config(robot_type, **kwargs)
|
||||
return make_robot_from_config(config)
|
||||
3
lerobot/common/robots/__init__.py
Normal file
3
lerobot/common/robots/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .config import RobotConfig
|
||||
from .robot import Robot
|
||||
from .utils import make_robot_from_config
|
||||
42
lerobot/common/robots/config.py
Normal file
42
lerobot/common/robots/config.py
Normal file
@@ -0,0 +1,42 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
import draccus
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class RobotConfig(draccus.ChoiceRegistry, abc.ABC):
|
||||
# Allows to distinguish between different robots of the same type
|
||||
id: str | None = None
|
||||
# Directory to store calibration file
|
||||
calibration_dir: Path | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
if hasattr(self, "cameras"):
|
||||
cameras = self.cameras
|
||||
if cameras:
|
||||
for cam_name, cam_config in cameras.items():
|
||||
for attr in ["width", "height", "fps"]:
|
||||
if getattr(cam_config, attr) is None:
|
||||
raise ValueError(
|
||||
f"Camera config for '{cam_name}' has None value for required attribute '{attr}'"
|
||||
)
|
||||
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return self.get_choice_name(self.__class__)
|
||||
328
lerobot/common/robots/koch_follower/README.md
Normal file
328
lerobot/common/robots/koch_follower/README.md
Normal file
@@ -0,0 +1,328 @@
|
||||
# Using the [Koch v1.1](https://github.com/jess-moss/koch-v1-1) with LeRobot
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [A. Order and Assemble the parts](#a-order-and-assemble-the-parts)
|
||||
- [B. Install LeRobot](#b-install-lerobot)
|
||||
- [C. Configure the Motors](#c-configure-the-motors)
|
||||
- [D. Calibrate](#d-calibrate)
|
||||
- [E. Teleoperate](#e-teleoperate)
|
||||
- [F. Record a dataset](#f-record-a-dataset)
|
||||
- [G. Visualize a dataset](#g-visualize-a-dataset)
|
||||
- [H. Replay an episode](#h-replay-an-episode)
|
||||
- [I. Train a policy](#i-train-a-policy)
|
||||
- [J. Evaluate your policy](#j-evaluate-your-policy)
|
||||
- [K. More Information](#k-more-information)
|
||||
|
||||
## A. Order and Assemble the parts
|
||||
|
||||
Follow the sourcing and assembling instructions provided on the [Koch v1.1 Github page](https://github.com/jess-moss/koch-v1-1). This will guide you through setting up both the follower and leader arms, as shown in the image below.
|
||||
|
||||
<div style="text-align:center;">
|
||||
<img src="../media/tutorial/koch_v1_1_leader_follower.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="50%">
|
||||
</div>
|
||||
|
||||
For a visual walkthrough of the assembly process, you can refer to [this video tutorial](https://youtu.be/8nQIg9BwwTk).
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Since the production of this video, we simplified the configuration phase (detailed in [section C](#c-configure-the-motors)) of the motors.
|
||||
> Because of this, two things differ from the instructions in that video:
|
||||
> - Don't plug all the motors cables right away and wait for being instructed to do so in [section C](#c-configure-the-motors).
|
||||
> - Don't screw in the controller board (PCB) to the base right away and wait for being instructed to do so in [section C](#c-configure-the-motors).
|
||||
|
||||
|
||||
## B. Install LeRobot
|
||||
|
||||
> [!TIP]
|
||||
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
|
||||
|
||||
Follow instructions on our [README](https://github.com/huggingface/lerobot) to install LeRobot.
|
||||
|
||||
In addition to these instructions, you need to install the dynamixel sdk:
|
||||
```bash
|
||||
pip install -e ".[dynamixel]"
|
||||
```
|
||||
|
||||
## C. Configure the motors
|
||||
|
||||
### 1. Find the USB ports associated to each arm
|
||||
|
||||
For each controller board (Waveshare Serial Bus Servo Driver Board, one for the leader arm and one for the follower), connect it first to your computer through usb. To then find the internal port its connected to -which we will need later on- run the utility script:
|
||||
```bash
|
||||
python -m lerobot.find_port
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Note: On Linux, you might need to give access to the USB ports by running:
|
||||
> ```bash
|
||||
> sudo chmod 666 /dev/ttyACM0
|
||||
> sudo chmod 666 /dev/ttyACM1
|
||||
> ```
|
||||
|
||||
This will first display all currently available ports on your computer. As prompted by the script, unplug the controller board usb cable from your computer. The script will then detect which port has been disconnected and will display it.
|
||||
|
||||
|
||||
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
You can now reconnect the usb cable to your computer.
|
||||
|
||||
### 2. Set the motors ids and baudrate
|
||||
|
||||
Each motor is identified by a unique id on the bus. When brand new, motors usually come with a default id of `1`. For the communication to work properly between the motors and the controller, we first need to set a unique, different id to each motor. Additionally, the speed at which data is transmitted on the bus is determined by the baudrate. In order to talk to each other, the controller and all the motors need to be configured with the same baudrate.
|
||||
|
||||
To that end, we first need to connect to each motor individually with the controller in order to set these. Since we will write these parameters in the non-volatile section of the motors' internal memory (EEPROM), we'll only need to do this once.
|
||||
|
||||
> [!NOTE]
|
||||
> Note: If you are repurposing motors from another robot, you will probably also need to perform this step as the ids and baudrate likely won't match.
|
||||
|
||||
Connect the usb cable from your computer and the 5V power supply to the leader arm's controller board. Then, run the following command with the port you got from the previous step. You'll also need to give your leader arm a name with the `id` parameter.
|
||||
|
||||
```bash
|
||||
python -m lerobot.setup_motors \
|
||||
--device.type=so100_leader \
|
||||
--device.port=/dev/tty.usbmodem575E0031751 # <- paste here the port found at previous step
|
||||
```
|
||||
|
||||
Note that the command above is equivalent to running the following script:
|
||||
<details>
|
||||
<summary>Setup script</summary>
|
||||
|
||||
```python
|
||||
from lerobot.common.teleoperators.koch import KochLeader, KochLeaderConfig
|
||||
|
||||
config = KochLeaderConfig(
|
||||
port="/dev/tty.usbmodem575E0031751",
|
||||
)
|
||||
leader = KochLeader(config)
|
||||
leader.setup_motors()
|
||||
```
|
||||
</details>
|
||||
|
||||
|
||||
You should see the following instruction
|
||||
```
|
||||
Connect the controller board to the 'gripper' motor only and press enter.
|
||||
```
|
||||
|
||||
As instructed, plug the gripper's motor. Make sure it's the only motor connected to the board, and that the motor itself is not yet daisy chained to any other motor. As you press `[Enter]`, the script will automatically set the id and baudrate for that motor.
|
||||
|
||||
|
||||
<details>
|
||||
<summary>Troubleshooting</summary>
|
||||
|
||||
If you get an error at that point, check your cables and make sure they are plugged-in properly:
|
||||
- Power supply
|
||||
- USB cable between from your computer to the controller board
|
||||
- The 3-pin cable from the controller board to the motor.
|
||||
|
||||
If you are using a Waveshare controller board, make sure that the two jumpers are set on the `B` channel (USB).
|
||||
</details>
|
||||
|
||||
You should then see the following message:
|
||||
```
|
||||
'gripper' motor id set to 6
|
||||
```
|
||||
|
||||
Followed by the next instruction:
|
||||
```
|
||||
Connect the controller board to the 'wrist_roll' motor only and press enter.
|
||||
```
|
||||
|
||||
You can disconnect the 3-pin cable from the controller board but you can leave it connected to the gripper motor on the other end as it will already be in the right place. Now, plug-in another 3-pin cable to the wrist roll motor and connect it to the controller board. As with the previous motor, make sure it is the only motor connected to the board and that the motor itself isn't connected to any other one.
|
||||
|
||||
Repeat the operation for each motor as instructed.
|
||||
|
||||
> [!TIP]
|
||||
> Check your cabling at each step before pressing Enter. For instance, the power supply cable is not solidly anchored to the board and might disconnect easily as you manipulate the board.
|
||||
|
||||
When you are done, the script will simply finish, at which point the motors are ready to be used. You can now plug the 3-pin cable from each motor to the next one, and the cable from the first motor (the 'shoulder pan' with id=1) to the controller board, which can now be attached to the base of the arm.
|
||||
|
||||
## D. Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
|
||||
|
||||
#### a. Manual calibration of follower arm
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||
|
||||
You will need to move the follower arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### b. Manual calibration of leader arm
|
||||
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
|
||||
## E. Teleoperate
|
||||
|
||||
**Simple teleop**
|
||||
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
|
||||
#### a. Teleop with displaying cameras
|
||||
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
|
||||
|
||||
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
## F. Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/so100_test \
|
||||
--control.tags='["so100","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
Note: You can resume recording by adding `--control.resume=true`.
|
||||
|
||||
## G. Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/so100_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/so100_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
## H. Replay an episode
|
||||
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/so100_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
## I. Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/so100_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_so100_test \
|
||||
--job_name=act_so100_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
|
||||
|
||||
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so100_test` policy:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_so100_test/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true
|
||||
```
|
||||
|
||||
## J. Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so100 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_so100_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_so100_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so100_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so100_test`).
|
||||
|
||||
## K. More Information
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
||||
|
||||
> [!TIP]
|
||||
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).
|
||||
2
lerobot/common/robots/koch_follower/__init__.py
Normal file
2
lerobot/common/robots/koch_follower/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .config_koch_follower import KochFollowerConfig
|
||||
from .koch_follower import KochFollower
|
||||
36
lerobot/common/robots/koch_follower/config_koch_follower.py
Normal file
36
lerobot/common/robots/koch_follower/config_koch_follower.py
Normal file
@@ -0,0 +1,36 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("koch_follower")
|
||||
@dataclass
|
||||
class KochFollowerConfig(RobotConfig):
|
||||
# Port to connect to the arm
|
||||
port: str
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
233
lerobot/common/robots/koch_follower/koch_follower.py
Normal file
233
lerobot/common/robots/koch_follower/koch_follower.py
Normal file
@@ -0,0 +1,233 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
from functools import cached_property
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.dynamixel import (
|
||||
DynamixelMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .config_koch_follower import KochFollowerConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class KochFollower(Robot):
|
||||
"""
|
||||
- [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow
|
||||
expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com)
|
||||
- [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss
|
||||
"""
|
||||
|
||||
config_class = KochFollowerConfig
|
||||
name = "koch_follower"
|
||||
|
||||
def __init__(self, config: KochFollowerConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.bus = DynamixelMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": Motor(1, "xl430-w250", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder_lift": Motor(2, "xl430-w250", MotorNormMode.RANGE_M100_100),
|
||||
"elbow_flex": Motor(3, "xl330-m288", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_flex": Motor(4, "xl330-m288", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_roll": Motor(5, "xl330-m288", MotorNormMode.RANGE_M100_100),
|
||||
"gripper": Motor(6, "xl330-m288", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def _motors_ft(self) -> dict[str, type]:
|
||||
return {f"{motor}.pos": float for motor in self.bus.motors}
|
||||
|
||||
@property
|
||||
def _cameras_ft(self) -> dict[str, tuple]:
|
||||
return {
|
||||
cam: (self.config.cameras[cam].height, self.config.cameras[cam].width, 3) for cam in self.cameras
|
||||
}
|
||||
|
||||
@cached_property
|
||||
def observation_features(self) -> dict[str, type | tuple]:
|
||||
return {**self._motors_ft, **self._cameras_ft}
|
||||
|
||||
@cached_property
|
||||
def action_features(self) -> dict[str, type]:
|
||||
return self._motors_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
# TODO(aliberts): add cam.is_connected for cam in self.cameras
|
||||
return self.bus.is_connected
|
||||
|
||||
def connect(self, calibrate: bool = True) -> None:
|
||||
"""
|
||||
We assume that at connection time, arm is in a rest position,
|
||||
and torque can be safely disabled to run calibration.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.bus.connect()
|
||||
if not self.is_calibrated and calibrate:
|
||||
self.calibrate()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.bus.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
self.bus.disable_torque()
|
||||
for motor in self.bus.motors:
|
||||
self.bus.write("Operating_Mode", motor, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
input(f"Move {self} to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.bus.set_half_turn_homings()
|
||||
|
||||
full_turn_motors = ["shoulder_pan", "wrist_roll"]
|
||||
unknown_range_motors = [motor for motor in self.bus.motors if motor not in full_turn_motors]
|
||||
print(
|
||||
f"Move all joints except {full_turn_motors} sequentially through their entire "
|
||||
"ranges of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.bus.record_ranges_of_motion(unknown_range_motors)
|
||||
for motor in full_turn_motors:
|
||||
range_mins[motor] = 0
|
||||
range_maxes[motor] = 4095
|
||||
|
||||
self.calibration = {}
|
||||
for motor, m in self.bus.motors.items():
|
||||
self.calibration[motor] = MotorCalibration(
|
||||
id=m.id,
|
||||
drive_mode=0,
|
||||
homing_offset=homing_offsets[motor],
|
||||
range_min=range_mins[motor],
|
||||
range_max=range_maxes[motor],
|
||||
)
|
||||
|
||||
self.bus.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
logger.info(f"Calibration saved to {self.calibration_fpath}")
|
||||
|
||||
def configure(self) -> None:
|
||||
with self.bus.torque_disabled():
|
||||
self.bus.configure_motors()
|
||||
# Use 'extended position mode' for all motors except gripper, because in joint mode the servos
|
||||
# can't rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling
|
||||
# the arm, you could end up with a servo with a position 0 or 4095 at a crucial point
|
||||
for motor in self.bus.motors:
|
||||
if motor != "gripper":
|
||||
self.bus.write("Operating_Mode", motor, OperatingMode.EXTENDED_POSITION.value)
|
||||
|
||||
# Use 'position control current based' for gripper to be limited by the limit of the current. For
|
||||
# the follower gripper, it means it can grasp an object without forcing too much even tho, its
|
||||
# goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch).
|
||||
# For the leader gripper, it means we can use it as a physical trigger, since we can force with
|
||||
# our finger to make it move, and it will move back to its original target position when we
|
||||
# release the force.
|
||||
self.bus.write("Operating_Mode", "gripper", OperatingMode.CURRENT_POSITION.value)
|
||||
|
||||
# Set better PID values to close the gap between recorded states and actions
|
||||
# TODO(rcadene): Implement an automatic procedure to set optimal PID values for each motor
|
||||
self.bus.write("Position_P_Gain", "elbow_flex", 1500)
|
||||
self.bus.write("Position_I_Gain", "elbow_flex", 0)
|
||||
self.bus.write("Position_D_Gain", "elbow_flex", 600)
|
||||
|
||||
def setup_motors(self) -> None:
|
||||
for motor in reversed(self.bus.motors):
|
||||
input(f"Connect the controller board to the '{motor}' motor only and press enter.")
|
||||
self.bus.setup_motor(motor)
|
||||
print(f"'{motor}' motor id set to {self.bus.motors[motor].id}")
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
obs_dict = {}
|
||||
|
||||
# Read arm position
|
||||
start = time.perf_counter()
|
||||
obs_dict[OBS_STATE] = self.bus.sync_read("Present_Position")
|
||||
obs_dict = {f"{motor}.pos": val for motor, val in obs_dict.items()}
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
start = time.perf_counter()
|
||||
obs_dict[cam_key] = cam.async_read()
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: dict[str, float]) -> dict[str, float]:
|
||||
"""Command arm to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Args:
|
||||
action (dict[str, float]): The goal positions for the motors.
|
||||
|
||||
Returns:
|
||||
dict[str, float]: The action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
goal_pos = {key.removesuffix(".pos"): val for key, val in action.items() if key.endswith(".pos")}
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.bus.sync_read("Present_Position")
|
||||
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
|
||||
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
|
||||
|
||||
# Send goal position to the arm
|
||||
self.bus.sync_write("Goal_Position", goal_pos)
|
||||
return {f"{motor}.pos": val for motor, val in goal_pos.items()}
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.bus.disconnect(self.config.disable_torque_on_disconnect)
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
@@ -134,7 +134,7 @@ First we will assemble the two SO100 arms. One to attach to the mobile base and
|
||||
|
||||
## SO100 Arms
|
||||
### Configure motors
|
||||
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These needs to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
|
||||
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These need to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
|
||||
|
||||
<img src="../media/lekiwi/motor_ids.webp?raw=true" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
|
||||
|
||||
@@ -194,11 +194,11 @@ sudo chmod 666 /dev/ttyACM1
|
||||
|
||||
#### d. Update config file
|
||||
|
||||
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
|
||||
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
|
||||
```python
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiRobotConfig(RobotConfig):
|
||||
class LeKiwiConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
@@ -281,7 +281,7 @@ For the wired LeKiwi version your configured IP address should refer to your own
|
||||
```python
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiRobotConfig(RobotConfig):
|
||||
class LeKiwiConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
@@ -446,7 +446,7 @@ You should see on your laptop something like this: ```[INFO] Connected to remote
|
||||
| F | Decrease speed |
|
||||
|
||||
> [!TIP]
|
||||
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py).
|
||||
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py).
|
||||
|
||||
### Wired version
|
||||
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.
|
||||
@@ -567,7 +567,7 @@ python lerobot/scripts/train.py \
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/lekiwi_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
3
lerobot/common/robots/lekiwi/__init__.py
Normal file
3
lerobot/common/robots/lekiwi/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from .config_lekiwi import LeKiwiClientConfig, LeKiwiConfig
|
||||
from .lekiwi import LeKiwi
|
||||
from .lekiwi_client import LeKiwiClient
|
||||
89
lerobot/common/robots/lekiwi/config_lekiwi.py
Normal file
89
lerobot/common/robots/lekiwi/config_lekiwi.py
Normal file
@@ -0,0 +1,89 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras.configs import CameraConfig
|
||||
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiConfig(RobotConfig):
|
||||
port = "/dev/ttyACM0" # port to connect to the bus
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"front": OpenCVCameraConfig(
|
||||
camera_index="/dev/video0", fps=30, width=640, height=480, rotation=None
|
||||
),
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index="/dev/video2", fps=30, width=640, height=480, rotation=180
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class LeKiwiHostConfig:
|
||||
# Network Configuration
|
||||
port_zmq_cmd: int = 5555
|
||||
port_zmq_observations: int = 5556
|
||||
|
||||
# Duration of the application
|
||||
connection_time_s: int = 30
|
||||
|
||||
# Watchdog: stop the robot if no command is received for over 0.5 seconds.
|
||||
watchdog_timeout_ms: int = 500
|
||||
|
||||
# If robot jitters decrease the frequency and monitor cpu load with `top` in cmd
|
||||
max_loop_freq_hz: int = 30
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("lekiwi_client")
|
||||
@dataclass
|
||||
class LeKiwiClientConfig(RobotConfig):
|
||||
# Network Configuration
|
||||
remote_ip: str
|
||||
port_zmq_cmd: int = 5555
|
||||
port_zmq_observations: int = 5556
|
||||
|
||||
teleop_keys: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
# Movement
|
||||
"forward": "w",
|
||||
"backward": "s",
|
||||
"left": "a",
|
||||
"right": "d",
|
||||
"rotate_left": "z",
|
||||
"rotate_right": "x",
|
||||
# Speed control
|
||||
"speed_up": "r",
|
||||
"speed_down": "f",
|
||||
# quit teleop
|
||||
"quit": "q",
|
||||
}
|
||||
)
|
||||
|
||||
polling_timeout_ms: int = 15
|
||||
connect_timeout_s: int = 5
|
||||
254
lerobot/common/robots/lekiwi/lekiwi.py
Normal file
254
lerobot/common/robots/lekiwi/lekiwi.py
Normal file
@@ -0,0 +1,254 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.feetech import (
|
||||
FeetechMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .config_lekiwi import LeKiwiConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LeKiwi(Robot):
|
||||
"""
|
||||
The robot includes a three omniwheel mobile base and a remote follower arm.
|
||||
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
|
||||
forwarded to the remote follower arm (after applying a safety clamp).
|
||||
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
|
||||
"""
|
||||
|
||||
config_class = LeKiwiConfig
|
||||
name = "lekiwi"
|
||||
|
||||
def __init__(self, config: LeKiwiConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.bus = FeetechMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
# arm
|
||||
"arm_shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"arm_shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"arm_elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"arm_wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"arm_wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"arm_gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
|
||||
# base
|
||||
"base_left_wheel": Motor(7, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"base_right_wheel": Motor(8, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"base_back_wheel": Motor(9, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
self.arm_motors = [motor for motor in self.bus.motors if motor.startswith("arm")]
|
||||
self.base_motors = [motor for motor in self.bus.motors if motor.startswith("base")]
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
state_ft = {
|
||||
"arm_shoulder_pan": {"dtype": "float32"},
|
||||
"arm_shoulder_lift": {"dtype": "float32"},
|
||||
"arm_elbow_flex": {"dtype": "float32"},
|
||||
"arm_wrist_flex": {"dtype": "float32"},
|
||||
"arm_wrist_roll": {"dtype": "float32"},
|
||||
"arm_gripper": {"dtype": "float32"},
|
||||
"base_left_wheel": {"dtype": "float32"},
|
||||
"base_right_wheel": {"dtype": "float32"},
|
||||
"base_back_wheel": {"dtype": "float32"},
|
||||
}
|
||||
return state_ft
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
return self.state_feature
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
cam_ft[cam_key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
# TODO(aliberts): add cam.is_connected for cam in self.cameras
|
||||
return self.bus.is_connected
|
||||
|
||||
def connect(self, calibrate: bool = True) -> None:
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.bus.connect()
|
||||
if not self.is_calibrated and calibrate:
|
||||
self.calibrate()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.bus.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
|
||||
motors = self.arm_motors + self.base_motors
|
||||
|
||||
self.bus.disable_torque(self.arm_motors)
|
||||
for name in self.arm_motors:
|
||||
self.bus.write("Operating_Mode", name, OperatingMode.POSITION.value)
|
||||
|
||||
input("Move robot to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.bus.set_half_turn_homings(self.arm_motors)
|
||||
|
||||
homing_offsets.update(dict.fromkeys(self.base_motors, 0))
|
||||
|
||||
full_turn_motor = [
|
||||
motor for motor in motors if any(keyword in motor for keyword in ["wheel", "wrist"])
|
||||
]
|
||||
unknown_range_motors = [motor for motor in motors if motor not in full_turn_motor]
|
||||
|
||||
print(
|
||||
f"Move all arm joints except '{full_turn_motor}' sequentially through their "
|
||||
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.bus.record_ranges_of_motion(unknown_range_motors)
|
||||
for name in full_turn_motor:
|
||||
range_mins[name] = 0
|
||||
range_maxes[name] = 4095
|
||||
|
||||
self.calibration = {}
|
||||
for name, motor in self.bus.motors.items():
|
||||
self.calibration[name] = MotorCalibration(
|
||||
id=motor.id,
|
||||
drive_mode=0,
|
||||
homing_offset=homing_offsets[name],
|
||||
range_min=range_mins[name],
|
||||
range_max=range_maxes[name],
|
||||
)
|
||||
|
||||
self.bus.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
print("Calibration saved to", self.calibration_fpath)
|
||||
|
||||
def configure(self):
|
||||
# Set-up arm actuators (position mode)
|
||||
# We assume that at connection time, arm is in a rest position,
|
||||
# and torque can be safely disabled to run calibration.
|
||||
self.bus.disable_torque()
|
||||
self.bus.configure_motors()
|
||||
for name in self.arm_motors:
|
||||
self.bus.write("Operating_Mode", name, OperatingMode.POSITION.value)
|
||||
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
|
||||
self.bus.write("P_Coefficient", name, 16)
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.bus.write("I_Coefficient", name, 0)
|
||||
self.bus.write("D_Coefficient", name, 32)
|
||||
|
||||
for name in self.base_motors:
|
||||
self.bus.write("Operating_Mode", name, OperatingMode.VELOCITY.value)
|
||||
|
||||
self.bus.enable_torque()
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
# Read actuators position for arm and vel for base
|
||||
start = time.perf_counter()
|
||||
arm_pos = self.bus.sync_read("Present_Position", self.arm_motors)
|
||||
base_vel = self.bus.sync_read("Present_Velocity", self.base_motors)
|
||||
obs_dict = {**arm_pos, **base_vel}
|
||||
obs_dict = {f"{OBS_STATE}." + key: value for key, value in obs_dict.items()}
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
start = time.perf_counter()
|
||||
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Command lekiwi to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Raises:
|
||||
RobotDeviceNotConnectedError: if robot is not connected.
|
||||
|
||||
Returns:
|
||||
np.ndarray: the action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
arm_goal_pos = {k: v for k, v in action.items() if k in self.arm_motors}
|
||||
base_goal_vel = {k: v for k, v in action.items() if k in self.base_motors}
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.bus.sync_read("Present_Position", self.arm_motors)
|
||||
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in arm_goal_pos.items()}
|
||||
arm_safe_goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
|
||||
arm_goal_pos = arm_safe_goal_pos
|
||||
|
||||
# Send goal position to the actuators
|
||||
self.bus.sync_write("Goal_Position", arm_goal_pos)
|
||||
self.bus.sync_write("Goal_Velocity", base_goal_vel)
|
||||
|
||||
return {**arm_goal_pos, **base_goal_vel}
|
||||
|
||||
def stop_base(self):
|
||||
self.bus.sync_write("Goal_Velocity", dict.fromkeys(self.base_motors, 0), num_retry=5)
|
||||
logger.info("Base motors stopped")
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.stop_base()
|
||||
self.bus.disconnect(self.config.disable_torque_on_disconnect)
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
495
lerobot/common/robots/lekiwi/lekiwi_client.py
Normal file
495
lerobot/common/robots/lekiwi/lekiwi_client.py
Normal file
@@ -0,0 +1,495 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import zmq
|
||||
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
|
||||
from ..robot import Robot
|
||||
from .config_lekiwi import LeKiwiClientConfig
|
||||
|
||||
|
||||
class LeKiwiClient(Robot):
|
||||
config_class = LeKiwiClientConfig
|
||||
name = "lekiwi_client"
|
||||
|
||||
def __init__(self, config: LeKiwiClientConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.id = config.id
|
||||
self.robot_type = config.type
|
||||
|
||||
self.remote_ip = config.remote_ip
|
||||
self.port_zmq_cmd = config.port_zmq_cmd
|
||||
self.port_zmq_observations = config.port_zmq_observations
|
||||
|
||||
self.teleop_keys = config.teleop_keys
|
||||
|
||||
self.polling_timeout_ms = config.polling_timeout_ms
|
||||
self.connect_timeout_s = config.connect_timeout_s
|
||||
|
||||
self.zmq_context = None
|
||||
self.zmq_cmd_socket = None
|
||||
self.zmq_observation_socket = None
|
||||
|
||||
self.last_frames = {}
|
||||
|
||||
self.last_remote_arm_state = {}
|
||||
self.last_remote_base_state = {"base_left_wheel": 0, "base_back_wheel": 0, "base_right_wheel": 0}
|
||||
|
||||
# Define three speed levels and a current index
|
||||
self.speed_levels = [
|
||||
{"xy": 0.1, "theta": 30}, # slow
|
||||
{"xy": 0.2, "theta": 60}, # medium
|
||||
{"xy": 0.3, "theta": 90}, # fast
|
||||
]
|
||||
self.speed_index = 0 # Start at slow
|
||||
|
||||
self._is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
@property
|
||||
def state_feature(self) -> dict:
|
||||
state_ft = {
|
||||
"arm_shoulder_pan": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_shoulder_lift": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_elbow_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_roll": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_gripper": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"x_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"y_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"theta_cmd": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
}
|
||||
return state_ft
|
||||
|
||||
@property
|
||||
def action_feature(self) -> dict:
|
||||
action_ft = {
|
||||
"arm_shoulder_pan": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_shoulder_lift": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_elbow_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_flex": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_wrist_roll": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"arm_gripper": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"base_left_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"base_right_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
"base_back_wheel": {"shape": (1,), "info": None, "dtype": "float32"},
|
||||
}
|
||||
return action_ft
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {
|
||||
f"{OBS_IMAGES}.front": {
|
||||
"shape": (480, 640, 3),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
"dtype": "image",
|
||||
},
|
||||
f"{OBS_IMAGES}.wrist": {
|
||||
"shape": (480, 640, 3),
|
||||
"names": ["height", "width", "channels"],
|
||||
"dtype": "image",
|
||||
"info": None,
|
||||
},
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
return self._is_connected
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
pass
|
||||
|
||||
def connect(self) -> None:
|
||||
"""Establishes ZMQ sockets with the remote mobile robot"""
|
||||
|
||||
if self._is_connected:
|
||||
raise DeviceAlreadyConnectedError(
|
||||
"LeKiwi Daemon is already connected. Do not run `robot.connect()` twice."
|
||||
)
|
||||
|
||||
self.zmq_context = zmq.Context()
|
||||
self.zmq_cmd_socket = self.zmq_context.socket(zmq.PUSH)
|
||||
zmq_cmd_locator = f"tcp://{self.remote_ip}:{self.port_zmq_cmd}"
|
||||
self.zmq_cmd_socket.connect(zmq_cmd_locator)
|
||||
self.zmq_cmd_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
|
||||
self.zmq_observation_socket = self.zmq_context.socket(zmq.PULL)
|
||||
zmq_observations_locator = f"tcp://{self.remote_ip}:{self.port_zmq_observations}"
|
||||
self.zmq_observation_socket.connect(zmq_observations_locator)
|
||||
self.zmq_observation_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
|
||||
poller = zmq.Poller()
|
||||
poller.register(self.zmq_observation_socket, zmq.POLLIN)
|
||||
socks = dict(poller.poll(self.connect_timeout_s * 1000))
|
||||
if self.zmq_observation_socket not in socks or socks[self.zmq_observation_socket] != zmq.POLLIN:
|
||||
raise DeviceNotConnectedError("Timeout waiting for LeKiwi Host to connect expired.")
|
||||
|
||||
self._is_connected = True
|
||||
|
||||
def calibrate(self) -> None:
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def _degps_to_raw(degps: float) -> int:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
speed_in_steps = degps * steps_per_deg
|
||||
speed_int = int(round(speed_in_steps))
|
||||
# Cap the value to fit within signed 16-bit range (-32768 to 32767)
|
||||
if speed_int > 0x7FFF:
|
||||
speed_int = 0x7FFF # 32767 -> maximum positive value
|
||||
elif speed_int < -0x8000:
|
||||
speed_int = -0x8000 # -32768 -> minimum negative value
|
||||
return speed_int
|
||||
|
||||
@staticmethod
|
||||
def _raw_to_degps(raw_speed: int) -> float:
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
magnitude = raw_speed
|
||||
degps = magnitude / steps_per_deg
|
||||
return degps
|
||||
|
||||
def _body_to_wheel_raw(
|
||||
self,
|
||||
x_cmd: float,
|
||||
y_cmd: float,
|
||||
theta_cmd: float,
|
||||
wheel_radius: float = 0.05,
|
||||
base_radius: float = 0.125,
|
||||
max_raw: int = 3000,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert desired body-frame velocities into wheel raw commands.
|
||||
|
||||
Parameters:
|
||||
x_cmd : Linear velocity in x (m/s).
|
||||
y_cmd : Linear velocity in y (m/s).
|
||||
theta_cmd : Rotational velocity (deg/s).
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the center of rotation to each wheel (meters).
|
||||
max_raw : Maximum allowed raw command (ticks) per wheel.
|
||||
|
||||
Returns:
|
||||
A dictionary with wheel raw commands:
|
||||
{"base_left_wheel": value, "base_back_wheel": value, "base_right_wheel": value}.
|
||||
|
||||
Notes:
|
||||
- Internally, the method converts theta_cmd to rad/s for the kinematics.
|
||||
- The raw command is computed from the wheels angular speed in deg/s
|
||||
using _degps_to_raw(). If any command exceeds max_raw, all commands
|
||||
are scaled down proportionally.
|
||||
"""
|
||||
# Convert rotational velocity from deg/s to rad/s.
|
||||
theta_rad = theta_cmd * (np.pi / 180.0)
|
||||
# Create the body velocity vector [x, y, theta_rad].
|
||||
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
|
||||
# The third column (base_radius) accounts for the effect of rotation.
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Compute each wheel’s linear speed (m/s) and then its angular speed (rad/s).
|
||||
wheel_linear_speeds = m.dot(velocity_vector)
|
||||
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
|
||||
|
||||
# Convert wheel angular speeds from rad/s to deg/s.
|
||||
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
|
||||
|
||||
# Scaling
|
||||
steps_per_deg = 4096.0 / 360.0
|
||||
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
|
||||
max_raw_computed = max(raw_floats)
|
||||
if max_raw_computed > max_raw:
|
||||
scale = max_raw / max_raw_computed
|
||||
wheel_degps = wheel_degps * scale
|
||||
|
||||
# Convert each wheel’s angular speed (deg/s) to a raw integer.
|
||||
wheel_raw = [self._degps_to_raw(deg) for deg in wheel_degps]
|
||||
|
||||
return {
|
||||
"base_left_wheel": wheel_raw[0],
|
||||
"base_back_wheel": wheel_raw[1],
|
||||
"base_right_wheel": wheel_raw[2],
|
||||
}
|
||||
|
||||
def _wheel_raw_to_body(
|
||||
self, wheel_raw: dict[str, Any], wheel_radius: float = 0.05, base_radius: float = 0.125
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Convert wheel raw command feedback back into body-frame velocities.
|
||||
|
||||
Parameters:
|
||||
wheel_raw : Vector with raw wheel commands ("base_left_wheel", "base_back_wheel", "base_right_wheel").
|
||||
wheel_radius: Radius of each wheel (meters).
|
||||
base_radius : Distance from the robot center to each wheel (meters).
|
||||
|
||||
Returns:
|
||||
A dict (x_cmd, y_cmd, theta_cmd) where:
|
||||
OBS_STATE.x_cmd : Linear velocity in x (m/s).
|
||||
OBS_STATE.y_cmd : Linear velocity in y (m/s).
|
||||
OBS_STATE.theta_cmd : Rotational velocity in deg/s.
|
||||
"""
|
||||
|
||||
# Convert each raw command back to an angular speed in deg/s.
|
||||
wheel_degps = np.array([LeKiwiClient._raw_to_degps(int(v)) for _, v in wheel_raw.items()])
|
||||
# Convert from deg/s to rad/s.
|
||||
wheel_radps = wheel_degps * (np.pi / 180.0)
|
||||
# Compute each wheel’s linear speed (m/s) from its angular speed.
|
||||
wheel_linear_speeds = wheel_radps * wheel_radius
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
|
||||
m_inv = np.linalg.inv(m)
|
||||
velocity_vector = m_inv.dot(wheel_linear_speeds)
|
||||
x_cmd, y_cmd, theta_rad = velocity_vector
|
||||
theta_cmd = theta_rad * (180.0 / np.pi)
|
||||
return {
|
||||
f"{OBS_STATE}.x_cmd": x_cmd * 1000,
|
||||
f"{OBS_STATE}.y_cmd": y_cmd * 1000,
|
||||
f"{OBS_STATE}.theta_cmd": theta_cmd,
|
||||
} # Convert to mm/s
|
||||
|
||||
def _poll_and_get_latest_message(self) -> Optional[str]:
|
||||
"""Polls the ZMQ socket for a limited time and returns the latest message string."""
|
||||
poller = zmq.Poller()
|
||||
poller.register(self.zmq_observation_socket, zmq.POLLIN)
|
||||
|
||||
try:
|
||||
socks = dict(poller.poll(self.polling_timeout_ms))
|
||||
except zmq.ZMQError as e:
|
||||
logging.error(f"ZMQ polling error: {e}")
|
||||
return None
|
||||
|
||||
if self.zmq_observation_socket not in socks:
|
||||
logging.info("No new data available within timeout.")
|
||||
return None
|
||||
|
||||
last_msg = None
|
||||
while True:
|
||||
try:
|
||||
msg = self.zmq_observation_socket.recv_string(zmq.NOBLOCK)
|
||||
last_msg = msg
|
||||
except zmq.Again:
|
||||
break
|
||||
|
||||
if last_msg is None:
|
||||
logging.warning("Poller indicated data, but failed to retrieve message.")
|
||||
|
||||
return last_msg
|
||||
|
||||
def _parse_observation_json(self, obs_string: str) -> Optional[Dict[str, Any]]:
|
||||
"""Parses the JSON observation string."""
|
||||
try:
|
||||
return json.loads(obs_string)
|
||||
except json.JSONDecodeError as e:
|
||||
logging.error(f"Error decoding JSON observation: {e}")
|
||||
return None
|
||||
|
||||
def _decode_image_from_b64(self, image_b64: str) -> Optional[np.ndarray]:
|
||||
"""Decodes a base64 encoded image string to an OpenCV image."""
|
||||
if not image_b64:
|
||||
return None
|
||||
try:
|
||||
jpg_data = base64.b64decode(image_b64)
|
||||
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
|
||||
frame = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
||||
if frame is None:
|
||||
logging.warning("cv2.imdecode returned None for an image.")
|
||||
return frame
|
||||
except (TypeError, ValueError) as e:
|
||||
logging.error(f"Error decoding base64 image data: {e}")
|
||||
return None
|
||||
|
||||
def _remote_state_from_obs(
|
||||
self, observation: Dict[str, Any]
|
||||
) -> Tuple[Dict[str, np.ndarray], Dict[str, Any], Dict[str, Any]]:
|
||||
"""Extracts frames, speed, and arm state from the parsed observation."""
|
||||
|
||||
# Separate image and state data
|
||||
image_observation = {k: v for k, v in observation.items() if k.startswith(OBS_IMAGES)}
|
||||
state_observation = {k: v for k, v in observation.items() if k.startswith(OBS_STATE)}
|
||||
|
||||
# Decode images
|
||||
current_frames: Dict[str, np.ndarray] = {}
|
||||
for cam_name, image_b64 in image_observation.items():
|
||||
frame = self._decode_image_from_b64(image_b64)
|
||||
if frame is not None:
|
||||
current_frames[cam_name] = frame
|
||||
|
||||
# Extract state components
|
||||
current_arm_state = {k: v for k, v in state_observation.items() if k.startswith(f"{OBS_STATE}.arm")}
|
||||
current_base_state = {k: v for k, v in state_observation.items() if k.startswith(f"{OBS_STATE}.base")}
|
||||
|
||||
return current_frames, current_arm_state, current_base_state
|
||||
|
||||
def _get_data(self) -> Tuple[Dict[str, np.ndarray], Dict[str, Any], Dict[str, Any]]:
|
||||
"""
|
||||
Polls the video socket for the latest observation data.
|
||||
|
||||
Attempts to retrieve and decode the latest message within a short timeout.
|
||||
If successful, updates and returns the new frames, speed, and arm state.
|
||||
If no new data arrives or decoding fails, returns the last known values.
|
||||
"""
|
||||
|
||||
# 1. Get the latest message string from the socket
|
||||
latest_message_str = self._poll_and_get_latest_message()
|
||||
|
||||
# 2. If no message, return cached data
|
||||
if latest_message_str is None:
|
||||
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
|
||||
|
||||
# 3. Parse the JSON message
|
||||
observation = self._parse_observation_json(latest_message_str)
|
||||
|
||||
# 4. If JSON parsing failed, return cached data
|
||||
if observation is None:
|
||||
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
|
||||
|
||||
# 5. Process the valid observation data
|
||||
try:
|
||||
new_frames, new_arm_state, new_base_state = self._remote_state_from_obs(observation)
|
||||
except Exception as e:
|
||||
logging.error(f"Error processing observation data, serving last observation: {e}")
|
||||
return self.last_frames, self.last_remote_arm_state, self.last_remote_base_state
|
||||
|
||||
self.last_frames = new_frames
|
||||
self.last_remote_arm_state = new_arm_state
|
||||
self.last_remote_base_state = new_base_state
|
||||
|
||||
return new_frames, new_arm_state, new_base_state
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
"""
|
||||
Capture observations from the remote robot: current follower arm positions,
|
||||
present wheel speeds (converted to body-frame velocities: x, y, theta),
|
||||
and a camera frame. Receives over ZMQ, translate to body-frame vel
|
||||
"""
|
||||
if not self._is_connected:
|
||||
raise DeviceNotConnectedError("LeKiwiClient is not connected. You need to run `robot.connect()`.")
|
||||
|
||||
frames, remote_arm_state, remote_base_state = self._get_data()
|
||||
remote_body_state = self._wheel_raw_to_body(remote_base_state)
|
||||
|
||||
obs_dict = {**remote_arm_state, **remote_body_state}
|
||||
|
||||
# TODO(Steven): Remove this when it is possible to record a non-numpy array value
|
||||
obs_dict = {k: np.array([v], dtype=np.float32) for k, v in obs_dict.items()}
|
||||
|
||||
# Loop over each configured camera
|
||||
for cam_name, frame in frames.items():
|
||||
if frame is None:
|
||||
logging.warning("Frame is None")
|
||||
frame = np.zeros((640, 480, 3), dtype=np.uint8)
|
||||
obs_dict[cam_name] = torch.from_numpy(frame)
|
||||
|
||||
return obs_dict
|
||||
|
||||
def _from_keyboard_to_wheel_action(self, pressed_keys: np.ndarray):
|
||||
# Speed control
|
||||
if self.teleop_keys["speed_up"] in pressed_keys:
|
||||
self.speed_index = min(self.speed_index + 1, 2)
|
||||
if self.teleop_keys["speed_down"] in pressed_keys:
|
||||
self.speed_index = max(self.speed_index - 1, 0)
|
||||
speed_setting = self.speed_levels[self.speed_index]
|
||||
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
|
||||
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
|
||||
|
||||
x_cmd = 0.0 # m/s forward/backward
|
||||
y_cmd = 0.0 # m/s lateral
|
||||
theta_cmd = 0.0 # deg/s rotation
|
||||
|
||||
if self.teleop_keys["forward"] in pressed_keys:
|
||||
x_cmd += xy_speed
|
||||
if self.teleop_keys["backward"] in pressed_keys:
|
||||
x_cmd -= xy_speed
|
||||
if self.teleop_keys["left"] in pressed_keys:
|
||||
y_cmd += xy_speed
|
||||
if self.teleop_keys["right"] in pressed_keys:
|
||||
y_cmd -= xy_speed
|
||||
if self.teleop_keys["rotate_left"] in pressed_keys:
|
||||
theta_cmd += theta_speed
|
||||
if self.teleop_keys["rotate_right"] in pressed_keys:
|
||||
theta_cmd -= theta_speed
|
||||
return self._body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
|
||||
|
||||
def configure(self):
|
||||
pass
|
||||
|
||||
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Command lekiwi to move to a target joint configuration. Translates to motor space + sends over ZMQ
|
||||
|
||||
Args:
|
||||
action (np.ndarray): array containing the goal positions for the motors.
|
||||
|
||||
Raises:
|
||||
RobotDeviceNotConnectedError: if robot is not connected.
|
||||
|
||||
Returns:
|
||||
np.ndarray: the action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self._is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
goal_pos = {}
|
||||
|
||||
common_keys = [
|
||||
key
|
||||
for key in action
|
||||
if key in (motor.replace("arm_", "") for motor, _ in self.action_feature.items())
|
||||
]
|
||||
|
||||
arm_actions = {"arm_" + arm_motor: action[arm_motor] for arm_motor in common_keys}
|
||||
goal_pos = arm_actions
|
||||
|
||||
keyboard_keys = np.array(list(set(action.keys()) - set(common_keys)))
|
||||
wheel_actions = self._from_keyboard_to_wheel_action(keyboard_keys)
|
||||
goal_pos = {**arm_actions, **wheel_actions}
|
||||
|
||||
self.zmq_cmd_socket.send_string(json.dumps(goal_pos)) # action is in motor space
|
||||
|
||||
# TODO(Steven): Remove the np conversion when it is possible to record a non-numpy array value
|
||||
goal_pos = {"action." + k: np.array([v], dtype=np.float32) for k, v in goal_pos.items()}
|
||||
return goal_pos
|
||||
|
||||
def disconnect(self):
|
||||
"""Cleans ZMQ comms"""
|
||||
|
||||
if not self._is_connected:
|
||||
raise DeviceNotConnectedError(
|
||||
"LeKiwi is not connected. You need to run `robot.connect()` before disconnecting."
|
||||
)
|
||||
self.zmq_observation_socket.close()
|
||||
self.zmq_cmd_socket.close()
|
||||
self.zmq_context.term()
|
||||
self._is_connected = False
|
||||
129
lerobot/common/robots/lekiwi/lekiwi_host.py
Normal file
129
lerobot/common/robots/lekiwi/lekiwi_host.py
Normal file
@@ -0,0 +1,129 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import zmq
|
||||
|
||||
from lerobot.common.constants import OBS_IMAGES
|
||||
|
||||
from .config_lekiwi import LeKiwiConfig, LeKiwiHostConfig
|
||||
from .lekiwi import LeKiwi
|
||||
|
||||
|
||||
class LeKiwiHost:
|
||||
def __init__(self, config: LeKiwiHostConfig):
|
||||
self.zmq_context = zmq.Context()
|
||||
self.zmq_cmd_socket = self.zmq_context.socket(zmq.PULL)
|
||||
self.zmq_cmd_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
self.zmq_cmd_socket.bind(f"tcp://*:{config.port_zmq_cmd}")
|
||||
|
||||
self.zmq_observation_socket = self.zmq_context.socket(zmq.PUSH)
|
||||
self.zmq_observation_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
self.zmq_observation_socket.bind(f"tcp://*:{config.port_zmq_observations}")
|
||||
|
||||
self.connection_time_s = config.connection_time_s
|
||||
self.watchdog_timeout_ms = config.watchdog_timeout_ms
|
||||
self.max_loop_freq_hz = config.max_loop_freq_hz
|
||||
|
||||
def disconnect(self):
|
||||
self.zmq_observation_socket.close()
|
||||
self.zmq_cmd_socket.close()
|
||||
self.zmq_context.term()
|
||||
|
||||
|
||||
def main():
|
||||
logging.info("Configuring LeKiwi")
|
||||
robot_config = LeKiwiConfig()
|
||||
robot = LeKiwi(robot_config)
|
||||
|
||||
logging.info("Connecting LeKiwi")
|
||||
robot.connect()
|
||||
|
||||
logging.info("Starting HostAgent")
|
||||
host_config = LeKiwiHostConfig()
|
||||
host = LeKiwiHost(host_config)
|
||||
|
||||
last_cmd_time = time.time()
|
||||
watchdog_active = False
|
||||
logging.info("Waiting for commands...")
|
||||
try:
|
||||
# Business logic
|
||||
start = time.perf_counter()
|
||||
duration = 0
|
||||
while duration < host.connection_time_s:
|
||||
loop_start_time = time.time()
|
||||
try:
|
||||
msg = host.zmq_cmd_socket.recv_string(zmq.NOBLOCK)
|
||||
data = dict(json.loads(msg))
|
||||
_action_sent = robot.send_action(data)
|
||||
last_cmd_time = time.time()
|
||||
watchdog_active = False
|
||||
except zmq.Again:
|
||||
if not watchdog_active:
|
||||
logging.warning("No command available")
|
||||
except Exception as e:
|
||||
logging.error("Message fetching failed: %s", e)
|
||||
|
||||
now = time.time()
|
||||
if (now - last_cmd_time > host.watchdog_timeout_ms / 1000) and not watchdog_active:
|
||||
logging.warning(
|
||||
f"Command not received for more than {host.watchdog_timeout_ms} milliseconds. Stopping the base."
|
||||
)
|
||||
watchdog_active = True
|
||||
robot.stop_base()
|
||||
|
||||
last_observation = robot.get_observation()
|
||||
|
||||
# Encode ndarrays to base64 strings
|
||||
for cam_key, _ in robot.cameras.items():
|
||||
ret, buffer = cv2.imencode(
|
||||
".jpg", last_observation[f"{OBS_IMAGES}.{cam_key}"], [int(cv2.IMWRITE_JPEG_QUALITY), 90]
|
||||
)
|
||||
if ret:
|
||||
last_observation[f"{OBS_IMAGES}.{cam_key}"] = base64.b64encode(buffer).decode("utf-8")
|
||||
else:
|
||||
last_observation[f"{OBS_IMAGES}.{cam_key}"] = ""
|
||||
|
||||
# Send the observation to the remote agent
|
||||
try:
|
||||
host.zmq_observation_socket.send_string(json.dumps(last_observation), flags=zmq.NOBLOCK)
|
||||
except zmq.Again:
|
||||
logging.info("Dropping observation, no client connected")
|
||||
|
||||
# Ensure a short sleep to avoid overloading the CPU.
|
||||
elapsed = time.time() - loop_start_time
|
||||
|
||||
time.sleep(max(1 / host.max_loop_freq_hz - elapsed, 0))
|
||||
duration = time.perf_counter() - start
|
||||
print("Cycle time reached.")
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("Keyboard interrupt received. Exiting...")
|
||||
finally:
|
||||
print("Shutting down Lekiwi Host.")
|
||||
robot.disconnect()
|
||||
host.disconnect()
|
||||
|
||||
logging.info("Finished LeKiwi cleanly")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
105
lerobot/common/robots/robot.py
Normal file
105
lerobot/common/robots/robot.py
Normal file
@@ -0,0 +1,105 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import draccus
|
||||
|
||||
from lerobot.common.constants import HF_LEROBOT_CALIBRATION, ROBOTS
|
||||
from lerobot.common.motors import MotorCalibration
|
||||
|
||||
from .config import RobotConfig
|
||||
|
||||
|
||||
# TODO(aliberts): action/obs typing such as Generic[ObsType, ActType] similar to gym.Env ?
|
||||
# https://github.com/Farama-Foundation/Gymnasium/blob/3287c869f9a48d99454306b0d4b4ec537f0f35e3/gymnasium/core.py#L23
|
||||
class Robot(abc.ABC):
|
||||
"""The main LeRobot class for implementing robots."""
|
||||
|
||||
# Set these in ALL subclasses
|
||||
config_class: RobotConfig
|
||||
name: str
|
||||
|
||||
def __init__(self, config: RobotConfig):
|
||||
self.robot_type = self.name
|
||||
self.id = config.id
|
||||
self.calibration_dir = (
|
||||
config.calibration_dir if config.calibration_dir else HF_LEROBOT_CALIBRATION / ROBOTS / self.name
|
||||
)
|
||||
self.calibration_dir.mkdir(parents=True, exist_ok=True)
|
||||
self.calibration_fpath = self.calibration_dir / f"{self.id}.json"
|
||||
self.calibration: dict[str, MotorCalibration] = {}
|
||||
if self.calibration_fpath.is_file():
|
||||
self._load_calibration()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.id} {self.__class__.__name__}"
|
||||
|
||||
# TODO(aliberts): create a proper Feature class for this that links with datasets
|
||||
@abc.abstractproperty
|
||||
def observation_features(self) -> dict:
|
||||
pass
|
||||
|
||||
@abc.abstractproperty
|
||||
def action_features(self) -> dict:
|
||||
pass
|
||||
|
||||
@abc.abstractproperty
|
||||
def is_connected(self) -> bool:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def connect(self, calibrate: bool = True) -> None:
|
||||
"""Connects to the robot."""
|
||||
pass
|
||||
|
||||
@abc.abstractproperty
|
||||
def is_calibrated(self) -> bool:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def calibrate(self) -> None:
|
||||
"""Calibrates the robot."""
|
||||
pass
|
||||
|
||||
def _load_calibration(self, fpath: Path | None = None) -> None:
|
||||
fpath = self.calibration_fpath if fpath is None else fpath
|
||||
with open(fpath) as f, draccus.config_type("json"):
|
||||
self.calibration = draccus.load(dict[str, MotorCalibration], f)
|
||||
|
||||
def _save_calibration(self, fpath: Path | None = None) -> None:
|
||||
fpath = self.calibration_fpath if fpath is None else fpath
|
||||
with open(fpath, "w") as f, draccus.config_type("json"):
|
||||
draccus.dump(self.calibration, f, indent=4)
|
||||
|
||||
@abc.abstractmethod
|
||||
def configure(self) -> None:
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
"""Gets observation from the robot."""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Sends actions to the robot."""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def disconnect(self) -> None:
|
||||
"""Disconnects from the robot."""
|
||||
pass
|
||||
@@ -128,7 +128,7 @@ sudo chmod 666 /dev/ttyACM1
|
||||
#### d. Update config file
|
||||
|
||||
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`SO100RobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
|
||||
```python
|
||||
```diff
|
||||
@RobotConfig.register_subclass("so100")
|
||||
@dataclass
|
||||
class So100RobotConfig(ManipulatorRobotConfig):
|
||||
@@ -141,7 +141,8 @@ class So100RobotConfig(ManipulatorRobotConfig):
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem58760431091", <-- UPDATE HERE
|
||||
- port="/dev/tty.usbmodem58760431091",
|
||||
+ port="{ADD YOUR LEADER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
@@ -158,7 +159,8 @@ class So100RobotConfig(ManipulatorRobotConfig):
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
port="/dev/tty.usbmodem585A0076891", <-- UPDATE HERE
|
||||
- port="/dev/tty.usbmodem585A0076891",
|
||||
+ port="{ADD YOUR FOLLOWER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
@@ -191,7 +193,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
--id 1
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
@@ -204,7 +206,7 @@ python lerobot/scripts/configure_motor.py \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
--id 2
|
||||
```
|
||||
|
||||
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
|
||||
@@ -445,18 +447,16 @@ For the leader configuration, perform **Steps 1–23**. Make sure that you remov
|
||||
|
||||
## E. Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
|
||||
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one SO-100 robot to work on another.
|
||||
|
||||
#### a. Manual calibration of follower arm
|
||||
#### Manual calibration of follower arm
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
|
||||
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
|
||||
|
||||
You will need to move the follower arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
@@ -467,12 +467,12 @@ python lerobot/scripts/control_robot.py \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### b. Manual calibration of leader arm
|
||||
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
|
||||
#### Manual calibration of leader arm
|
||||
You will also need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Zero position | 2. Rotated position | 3. Rest position |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-100 leader arm middle position" title="SO-100 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
@@ -580,7 +580,7 @@ python lerobot/scripts/train.py \
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
2
lerobot/common/robots/so100_follower/__init__.py
Normal file
2
lerobot/common/robots/so100_follower/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .config_so100_follower import SO100FollowerConfig
|
||||
from .so100_follower import SO100Follower
|
||||
@@ -0,0 +1,36 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("so100_follower")
|
||||
@dataclass
|
||||
class SO100FollowerConfig(RobotConfig):
|
||||
# Port to connect to the arm
|
||||
port: str
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
215
lerobot/common/robots/so100_follower/so100_follower.py
Normal file
215
lerobot/common/robots/so100_follower/so100_follower.py
Normal file
@@ -0,0 +1,215 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
from functools import cached_property
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.feetech import (
|
||||
FeetechMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .config_so100_follower import SO100FollowerConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SO100Follower(Robot):
|
||||
"""
|
||||
[SO-100 Follower Arm](https://github.com/TheRobotStudio/SO-ARM100) designed by TheRobotStudio
|
||||
"""
|
||||
|
||||
config_class = SO100FollowerConfig
|
||||
name = "so100_follower"
|
||||
|
||||
def __init__(self, config: SO100FollowerConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.bus = FeetechMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def _motors_ft(self) -> dict[str, type]:
|
||||
return {f"{motor}.pos": float for motor in self.bus.motors}
|
||||
|
||||
@property
|
||||
def _cameras_ft(self) -> dict[str, tuple]:
|
||||
return {
|
||||
cam: (self.config.cameras[cam].height, self.config.cameras[cam].width, 3) for cam in self.cameras
|
||||
}
|
||||
|
||||
@cached_property
|
||||
def observation_features(self) -> dict[str, type | tuple]:
|
||||
return {**self._motors_ft, **self._cameras_ft}
|
||||
|
||||
@cached_property
|
||||
def action_features(self) -> dict[str, type]:
|
||||
return self._motors_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
# TODO(aliberts): add cam.is_connected for cam in self.cameras
|
||||
return self.bus.is_connected
|
||||
|
||||
def connect(self, calibrate: bool = True) -> None:
|
||||
"""
|
||||
We assume that at connection time, arm is in a rest position,
|
||||
and torque can be safely disabled to run calibration.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.bus.connect()
|
||||
if not self.is_calibrated and calibrate:
|
||||
self.calibrate()
|
||||
|
||||
# Connect the cameras
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.bus.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
self.bus.disable_torque()
|
||||
for motor in self.bus.motors:
|
||||
self.bus.write("Operating_Mode", motor, OperatingMode.POSITION.value)
|
||||
|
||||
input(f"Move {self} to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.bus.set_half_turn_homings()
|
||||
|
||||
full_turn_motor = "wrist_roll"
|
||||
unknown_range_motors = [motor for motor in self.bus.motors if motor != full_turn_motor]
|
||||
print(
|
||||
f"Move all joints except '{full_turn_motor}' sequentially through their "
|
||||
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.bus.record_ranges_of_motion(unknown_range_motors)
|
||||
range_mins[full_turn_motor] = 0
|
||||
range_maxes[full_turn_motor] = 4095
|
||||
|
||||
self.calibration = {}
|
||||
for motor, m in self.bus.motors.items():
|
||||
self.calibration[motor] = MotorCalibration(
|
||||
id=m.id,
|
||||
drive_mode=0,
|
||||
homing_offset=homing_offsets[motor],
|
||||
range_min=range_mins[motor],
|
||||
range_max=range_maxes[motor],
|
||||
)
|
||||
|
||||
self.bus.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
print("Calibration saved to", self.calibration_fpath)
|
||||
|
||||
def configure(self) -> None:
|
||||
with self.bus.torque_disabled():
|
||||
self.bus.configure_motors()
|
||||
for motor in self.bus.motors:
|
||||
self.bus.write("Operating_Mode", motor, OperatingMode.POSITION.value)
|
||||
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
|
||||
self.bus.write("P_Coefficient", motor, 16)
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.bus.write("I_Coefficient", motor, 0)
|
||||
self.bus.write("D_Coefficient", motor, 32)
|
||||
|
||||
def setup_motors(self) -> None:
|
||||
for motor in reversed(self.bus.motors):
|
||||
input(f"Connect the controller board to the '{motor}' motor only and press enter.")
|
||||
self.bus.setup_motor(motor)
|
||||
print(f"'{motor}' motor id set to {self.bus.motors[motor].id}")
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
# Read arm position
|
||||
start = time.perf_counter()
|
||||
obs_dict = self.bus.sync_read("Present_Position")
|
||||
obs_dict = {f"{motor}.pos": val for motor, val in obs_dict.items()}
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
start = time.perf_counter()
|
||||
obs_dict[cam_key] = cam.async_read()
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Command arm to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Raises:
|
||||
RobotDeviceNotConnectedError: if robot is not connected.
|
||||
|
||||
Returns:
|
||||
the action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
goal_pos = {key.removesuffix(".pos"): val for key, val in action.items() if key.endswith(".pos")}
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.bus.sync_read("Present_Position")
|
||||
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
|
||||
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
|
||||
|
||||
# Send goal position to the arm
|
||||
self.bus.sync_write("Goal_Position", goal_pos)
|
||||
return {f"{motor}.pos": val for motor, val in goal_pos.items()}
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.bus.disconnect(self.config.disable_torque_on_disconnect)
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
711
lerobot/common/robots/so101_follower/README.md
Normal file
711
lerobot/common/robots/so101_follower/README.md
Normal file
@@ -0,0 +1,711 @@
|
||||
# Assemble and use SO-101
|
||||
|
||||
In the steps below we explain how to assemble and use our flagship robot, the SO-101 with LeRobot 🤗.
|
||||
|
||||
## Source the parts
|
||||
|
||||
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
|
||||
and advice if it's your first time printing or if you don't own a 3D printer.
|
||||
|
||||
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
> [!TIP]
|
||||
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
|
||||
|
||||
Download our source code:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git
|
||||
cd lerobot
|
||||
```
|
||||
|
||||
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10
|
||||
```
|
||||
Now restart the shell by running:
|
||||
|
||||
##### Windows:
|
||||
```bash
|
||||
`source ~/.bashrc`
|
||||
```
|
||||
|
||||
##### Mac:
|
||||
```bash
|
||||
`source ~/.bash_profile`
|
||||
```
|
||||
|
||||
##### zshell:
|
||||
```bash
|
||||
`source ~/.zshrc`
|
||||
```
|
||||
|
||||
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
|
||||
```bash
|
||||
conda activate lerobot
|
||||
```
|
||||
|
||||
When using `miniconda`, install `ffmpeg` in your environment:
|
||||
```bash
|
||||
conda install ffmpeg -c conda-forge
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
|
||||
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
|
||||
> ```bash
|
||||
> conda install ffmpeg=7.1.1 -c conda-forge
|
||||
> ```
|
||||
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
|
||||
|
||||
Install 🤗 LeRobot:
|
||||
```bash
|
||||
cd lerobot && pip install ".[feetech]"
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run: `sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
|
||||
|
||||
|
||||
## Configure motors
|
||||
|
||||
To configure the motors designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6.
|
||||
|
||||
You now should plug the 5V or 12V power supply to the motor bus. 5V for the STS3215 7.4V motors and 12V for the STS3215 12V motors. Note that the leader arm always uses the 7.4V motors, so watch out that you plug in the right power supply if you have 12V and 7.4V motors, otherwise you might burn your motors! Now, connect the motor bus to your computer via USB. Note that the USB doesn't provide any power, and both the power supply and USB have to be plugged in.
|
||||
|
||||
### Find the USB ports associated to each arm
|
||||
|
||||
To find the port for each bus servo adapter, run this script:
|
||||
```bash
|
||||
python lerobot/scripts/find_motors_bus_port.py
|
||||
```
|
||||
#### Example outputs of script
|
||||
|
||||
##### Mac:
|
||||
Example output leader arm's port: `/dev/tty.usbmodem575E0031751`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/tty.usbmodem575E0032081`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
##### Linux:
|
||||
On Linux, you might need to give access to the USB ports by running:
|
||||
```bash
|
||||
sudo chmod 666 /dev/ttyACM0
|
||||
sudo chmod 666 /dev/ttyACM1
|
||||
```
|
||||
|
||||
Example output leader arm port: `/dev/ttyACM0`
|
||||
|
||||
```bash
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect leader arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM0
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
Example output follower arm port: `/dev/ttyACM1`
|
||||
|
||||
```
|
||||
Finding all available ports for the MotorBus.
|
||||
['/dev/ttyACM0', '/dev/ttyACM1']
|
||||
Remove the usb cable from your MotorsBus and press Enter when done.
|
||||
|
||||
[...Disconnect follower arm and press Enter...]
|
||||
|
||||
The port of this MotorsBus is /dev/ttyACM1
|
||||
Reconnect the usb cable.
|
||||
```
|
||||
|
||||
#### Update config file
|
||||
|
||||
Now that you have your ports, update the **port** default values of [`SO101RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py).
|
||||
You will find a class called `so101` where you can update the `port` values with your actual motor ports:
|
||||
```diff
|
||||
@RobotConfig.register_subclass("so101")
|
||||
@dataclass
|
||||
class So101RobotConfig(ManipulatorRobotConfig):
|
||||
calibration_dir: str = ".cache/calibration/so101"
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem58760431091",
|
||||
+ port="{ADD YOUR LEADER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
follower_arms: dict[str, MotorsBusConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"main": FeetechMotorsBusConfig(
|
||||
- port="/dev/tty.usbmodem585A0076891",
|
||||
+ port="{ADD YOUR FOLLOWER PORT}",
|
||||
motors={
|
||||
# name: (index, model)
|
||||
"shoulder_pan": [1, "sts3215"],
|
||||
"shoulder_lift": [2, "sts3215"],
|
||||
"elbow_flex": [3, "sts3215"],
|
||||
"wrist_flex": [4, "sts3215"],
|
||||
"wrist_roll": [5, "sts3215"],
|
||||
"gripper": [6, "sts3215"],
|
||||
},
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
Here is a video of the process:
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/fc45d756-31bb-4a61-b973-a87d633d08a7" type="video/mp4"></video>
|
||||
|
||||
### Set motor IDs
|
||||
|
||||
Now we need to set the motor ID for each motor. Plug your motor in only one of the two ports of the motor bus and run this script to set its ID to 1. Replace the text after --port to the corresponding control board port.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 1
|
||||
```
|
||||
|
||||
Then unplug your motor and plug the second motor and set its ID to 2.
|
||||
```bash
|
||||
python lerobot/scripts/configure_motor.py \
|
||||
--port /dev/tty.usbmodem58760432961 \
|
||||
--brand feetech \
|
||||
--model sts3215 \
|
||||
--baudrate 1000000 \
|
||||
--ID 2
|
||||
```
|
||||
|
||||
Redo this process for all your motors until ID 6. Do the same for the 6 motors of the leader arm, but make sure to change the power supply if you use motors with different voltage.
|
||||
|
||||
Here is a video of the process:
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/b31c115f-e706-4dcd-b7f1-4535da62416d" type="video/mp4"></video>
|
||||
|
||||
## Step-by-Step Assembly Instructions
|
||||
|
||||
The follower arm uses 6x STS3215 motors with 1/345 gearing. The leader however uses three differently geared motors to make sure it can both sustain its own weight and it can be moved without requiring much force. Which motor is needed for which joint is shown in table below.
|
||||
|
||||
| Leader-Arm Axis | Motor | Gear Ratio |
|
||||
|-----------------|:-------:|:----------:|
|
||||
| Base / Shoulder Yaw | 1 | 1 / 191 |
|
||||
| Shoulder Pitch | 2 | 1 / 345 |
|
||||
| Elbow | 3 | 1 / 191 |
|
||||
| Wrist Roll | 4 | 1 / 147 |
|
||||
| Wrist Pitch | 5 | 1 / 147 |
|
||||
| Gripper | 6 | 1 / 147 |
|
||||
|
||||
|
||||
### Clean Parts
|
||||
Remove all support material from the 3D-printed parts.
|
||||
|
||||
### Joint 1
|
||||
|
||||
- Place the first motor into the base.
|
||||
- Fasten the motor with 4 M2x6mm screws (smallest screws). Two from the top and two from bottom.
|
||||
- Slide over the first motor holder and fasten it using two M2x6mm screws (one on each side).
|
||||
- Install both motor horns, securing the top horn with a M3x6mm screw.
|
||||
- Attach the shoulder part.
|
||||
- Tighten the shoulder part with 4 M3x6mm screws on top and 4 M3x6mm screws on the bottom
|
||||
- Add the shoulder motor holder.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/b0ee9dee-a2d0-445b-8489-02ebecb3d639" type="video/mp4"></video>
|
||||
|
||||
### Joint 2
|
||||
|
||||
- Slide the second motor in from the top.
|
||||
- Fasten the second motor with 4 M2x6mm screws.
|
||||
- Attach both motor horns to motor 2, again use the M3x6mm horn screw.
|
||||
- Attach the upper arm with 4 M3x6mm screws on each side.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/32453dc2-5006-4140-9f56-f0d78eae5155" type="video/mp4"></video>
|
||||
|
||||
### Joint 3
|
||||
|
||||
- Insert motor 3 and fasten using 4 M2x6mm screws
|
||||
- Attach both motor horns to motor 3 and secure one again with a M3x6mm horn screw.
|
||||
- Connect the forearm to motor 3 using 4 M3x6mm screws on each side.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/7384b9a7-a946-440c-b292-91391bcc4d6b" type="video/mp4"></video>
|
||||
|
||||
### Joint 4
|
||||
|
||||
- Slide over motor holder 4.
|
||||
- Slide in motor 4.
|
||||
- Fasten motor 4 with 4 M2x6mm screws and attach its motor horns, use a M3x6mm horn screw.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/dca78ad0-7c36-4bdf-8162-c9ac42a1506f" type="video/mp4"></video>
|
||||
|
||||
### Joint 5
|
||||
|
||||
- Insert motor 5 into the wrist holder and secure it with 2 M2x6mm front screws.
|
||||
- Install only one motor horn on the wrist motor and secure it with a M3x6mm horn screw.
|
||||
- Secure the wrist to motor 4 using 4 M3x6mm screws on both sides.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/55f5d245-976d-49ff-8b4a-59843c441b12" type="video/mp4"></video>
|
||||
|
||||
### Gripper / Handle
|
||||
|
||||
#### Follower:
|
||||
|
||||
- Attach the gripper to motor 5, attach it to the motor horn on the wrist using 4 M3x6mm screws.
|
||||
- Insert the gripper motor and secure it with 2 M2x6mm screws on each side.
|
||||
- Attach the motor horns and again use a M3x6mm horn screw.
|
||||
- Install the gripper claw and secure it with 4 M3x6mm screws on both sides.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/6f766aa9-cfae-4388-89e7-0247f198c086" type="video/mp4"></video>
|
||||
|
||||
#### Leader:
|
||||
|
||||
- Mount the leader holder onto the wrist and secure it with 4 M3x6mm screws.
|
||||
- Attach the handle to motor 5 using 1 M2x6mm screw.
|
||||
- Insert the gripper motor, secure it with 2 M2x6mm screws on each side, attach a motor horn using a M3x6mm horn screw.
|
||||
- Attach the follower trigger with 4 M3x6mm screws.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/1308c93d-2ef1-4560-8e93-a3812568a202" type="video/mp4"></video>
|
||||
|
||||
##### Wiring
|
||||
|
||||
- Attach the motor controller on the back.
|
||||
- Then insert all wires, use the wire guides everywhere to make sure the wires don't unplug themselves and stay in place.
|
||||
|
||||
<video controls width="640" src="https://github.com/user-attachments/assets/4c2cacfd-9276-4ee4-8bf2-ba2492667b78" type="video/mp4"></video>
|
||||
|
||||
## Calibrate
|
||||
|
||||
Next, you'll need to calibrate your SO-101 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position.
|
||||
The calibration process is very important because it allows a neural network trained on one SO-101 robot to work on another.
|
||||
|
||||
#### Manual calibration of follower arm
|
||||
|
||||
You will need to move the follower arm to these positions sequentially, note that the rotated position is on the right side of the robot and you have to open the gripper fully.
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/follower_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/follower_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/follower_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/follower_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Make sure both arms are connected and run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_follower"]'
|
||||
```
|
||||
|
||||
#### Manual calibration of leader arm
|
||||
You will also need to move the leader arm to these positions sequentially:
|
||||
|
||||
| 1. Middle position | 2. Zero position | 3. Rotated position | 4. Rest position |
|
||||
| ------------ |------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| <img src="../media/so101/leader_middle.webp?raw=true" alt="SO-101 leader arm middle position" title="SO-101 leader arm middle position" style="width:100%;"> | <img src="../media/so101/leader_zero.webp?raw=true" alt="SO-101 leader arm zero position" title="SO-101 leader arm zero position" style="width:100%;"> | <img src="../media/so101/leader_rotated.webp?raw=true" alt="SO-101 leader arm rotated position" title="SO-101 leader arm rotated position" style="width:100%;"> | <img src="../media/so101/leader_rest.webp?raw=true" alt="SO-101 leader arm rest position" title="SO-101 leader arm rest position" style="width:100%;"> |
|
||||
|
||||
Run this script to launch manual calibration:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=calibrate \
|
||||
--control.arms='["main_leader"]'
|
||||
```
|
||||
## Control your robot
|
||||
|
||||
Congrats 🎉, your robot is all set to learn a task on its own. Next we will explain to you how to train a neural network to autonomously control a real robot.
|
||||
|
||||
**You'll learn to:**
|
||||
1. How to record and visualize your dataset.
|
||||
2. How to train a policy using your data and prepare it for evaluation.
|
||||
3. How to evaluate your policy and visualize the results.
|
||||
|
||||
By following these steps, you'll be able to replicate tasks like picking up a Lego block and placing it in a bin with a high success rate, as demonstrated in [this video](https://x.com/RemiCadene/status/1814680760592572934).
|
||||
|
||||
This tutorial is specifically made for the affordable [SO-101](https://github.com/TheRobotStudio/SO-ARM100) robot, but it contains additional information to be easily adapted to various types of robots like [Aloha bimanual robot](https://aloha-2.github.io) by changing some configurations. The SO-101 consists of a leader arm and a follower arm, each with 6 motors. It can work with one or several cameras to record the scene, which serve as visual sensors for the robot.
|
||||
|
||||
During the data collection phase, you will control the follower arm by moving the leader arm. This process is known as "teleoperation." This technique is used to collect robot trajectories. Afterward, you'll train a neural network to imitate these trajectories and deploy the network to enable your robot to operate autonomously.
|
||||
|
||||
If you encounter any issues at any step of the tutorial, feel free to seek help on [Discord](https://discord.com/invite/s3KuuzsPFb) or don't hesitate to iterate with us on the tutorial by creating issues or pull requests.
|
||||
|
||||
## Teleoperate
|
||||
|
||||
Run this simple script to teleoperate your robot (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
The teleoperate command will automatically:
|
||||
1. Identify any missing calibrations and initiate the calibration procedure.
|
||||
2. Connect the robot and start teleoperation.
|
||||
|
||||
## Setup Cameras
|
||||
|
||||
To connect a camera you have three options:
|
||||
1. OpenCVCamera which allows us to use any camera: usb, realsense, laptop webcam
|
||||
2. iPhone camera with MacOS
|
||||
3. Phone camera on Linux
|
||||
|
||||
### Use OpenCVCamera
|
||||
|
||||
The [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py) class allows you to efficiently record frames from most cameras using the [`opencv2`](https://docs.opencv.org) library. For more details on compatibility, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
|
||||
|
||||
To instantiate an [`OpenCVCamera`](../lerobot/common/robot_devices/cameras/opencv.py), you need a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
|
||||
|
||||
To find the camera indices, run the following utility script, which will save a few frames from each detected camera:
|
||||
```bash
|
||||
python lerobot/common/robot_devices/cameras/opencv.py \
|
||||
--images-dir outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
The output will look something like this if you have two cameras connected:
|
||||
```
|
||||
Mac or Windows detected. Finding available camera indices through scanning all indices from 0 to 60
|
||||
[...]
|
||||
Camera found at index 0
|
||||
Camera found at index 1
|
||||
[...]
|
||||
Connecting cameras
|
||||
OpenCVCamera(0, fps=30.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
OpenCVCamera(1, fps=24.0, width=1920.0, height=1080.0, color_mode=rgb)
|
||||
Saving images to outputs/images_from_opencv_cameras
|
||||
Frame: 0000 Latency (ms): 39.52
|
||||
[...]
|
||||
Frame: 0046 Latency (ms): 40.07
|
||||
Images have been saved to outputs/images_from_opencv_cameras
|
||||
```
|
||||
|
||||
Check the saved images in `outputs/images_from_opencv_cameras` to identify which camera index corresponds to which physical camera (e.g. `0` for `camera_00` or `1` for `camera_01`):
|
||||
```
|
||||
camera_00_frame_000000.png
|
||||
[...]
|
||||
camera_00_frame_000047.png
|
||||
camera_01_frame_000000.png
|
||||
[...]
|
||||
camera_01_frame_000047.png
|
||||
```
|
||||
|
||||
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
|
||||
|
||||
Now that you have the camera indexes, you should change them in the config. You can also change the fps, width or height of the camera.
|
||||
|
||||
The camera config is defined per robot, can be found here [`RobotConfig`](https://github.com/huggingface/lerobot/blob/main/lerobot/common/robot_devices/robots/configs.py) and looks like this:
|
||||
```python
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"wrist": OpenCVCameraConfig(
|
||||
camera_index=0, <-- UPDATE HERE
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"base": OpenCVCameraConfig(
|
||||
camera_index=1, <-- UPDATE HERE
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Use your phone
|
||||
#### Mac:
|
||||
|
||||
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
|
||||
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
|
||||
- Sign in both devices with the same Apple ID.
|
||||
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
|
||||
|
||||
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
|
||||
|
||||
Your iPhone should be detected automatically when running the camera setup script in the next section.
|
||||
|
||||
#### Linux:
|
||||
|
||||
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
|
||||
|
||||
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
|
||||
```python
|
||||
sudo apt install v4l2loopback-dkms v4l-utils
|
||||
```
|
||||
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
|
||||
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio
|
||||
```
|
||||
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
|
||||
```python
|
||||
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
|
||||
```
|
||||
5. *Start OBS Studio*. Launch with:
|
||||
```python
|
||||
flatpak run com.obsproject.Studio
|
||||
```
|
||||
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
|
||||
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
|
||||
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
|
||||
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
|
||||
```python
|
||||
v4l2-ctl --list-devices
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
VirtualCam (platform:v4l2loopback-000):
|
||||
/dev/video1
|
||||
```
|
||||
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
|
||||
```python
|
||||
v4l2-ctl -d /dev/video1 --get-fmt-video
|
||||
```
|
||||
You should see an entry like:
|
||||
```
|
||||
>>> Format Video Capture:
|
||||
>>> Width/Height : 640/480
|
||||
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
|
||||
```
|
||||
|
||||
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
|
||||
|
||||
If everything is set up correctly, you can proceed with the rest of the tutorial.
|
||||
|
||||
### Add wrist camera
|
||||
If you have an additional camera you can add a wrist camera to the SO101. There are already many premade wrist camera holders that you can find in the SO101 repo: [Wrist camera's](https://github.com/TheRobotStudio/SO-ARM100#wrist-cameras)
|
||||
|
||||
## Teleoperate with cameras
|
||||
|
||||
We can now teleoperate again while at the same time visualizing the cameras and joint positions with `rerun`.
|
||||
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=teleoperate \
|
||||
--control.display_data=true
|
||||
```
|
||||
|
||||
## Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with SO-101.
|
||||
|
||||
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
|
||||
|
||||
Add your token to the cli by running this command:
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Then store your Hugging Face repository name in a variable:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Now you can record a dataset, to record 2 episodes and upload your dataset to the hub execute this command:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.tags='["so101","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.display_data=true \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
You will see a lot of lines appearing like this one:
|
||||
```
|
||||
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
|
||||
```
|
||||
It contains:
|
||||
- `2024-08-10 15:02:58` which is the date and time of the call to the print function,
|
||||
- `ol_robot.py:219` which is the end of the file name and the line number where the print function is called (`lerobot/scripts/control_robot.py` line `219`).
|
||||
- `dt:33.34 (30.0hz)` which is the "delta time" or the number of milliseconds spent between the previous call to `robot.teleop_step(record_data=True)` and the current one, associated with the frequency (33.34 ms equals 30.0 Hz) ; note that we use `--fps 30` so we expect 30.0 Hz ; when a step takes more time, the line appears in yellow.
|
||||
- `dtRlead: 5.06 (197.5hz)` which is the delta time of reading the present position of the leader arm.
|
||||
- `dtWfoll: 0.25 (3963.7hz)` which is the delta time of writing the goal position on the follower arm ; writing is asynchronous so it takes less time than reading.
|
||||
- `dtRfoll: 6.22 (160.7hz)` which is the delta time of reading the present position on the follower arm.
|
||||
- `dtRlaptop:32.57 (30.7hz) ` which is the delta time of capturing an image from the laptop camera in the thread running asynchronously.
|
||||
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
|
||||
|
||||
#### Dataset upload
|
||||
Locally your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
|
||||
```bash
|
||||
echo https://huggingface.co/datasets/${HF_USER}/so101_test
|
||||
```
|
||||
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
|
||||
|
||||
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
|
||||
|
||||
#### Record function
|
||||
|
||||
The `record` function provides a suite of tools for capturing and managing data during robot operation:
|
||||
1. Set the flow of data recording using command line arguments:
|
||||
- `--control.warmup_time_s=10` defines the number of seconds before starting data collection. It allows the robot devices to warmup and synchronize (10 seconds by default).
|
||||
- `--control.episode_time_s=60` defines the number of seconds for data recording for each episode (60 seconds by default).
|
||||
- `--control.reset_time_s=60` defines the number of seconds for resetting the environment after each episode (60 seconds by default).
|
||||
- `--control.num_episodes=50` defines the number of episodes to record (50 by default).
|
||||
2. Control the flow during data recording using keyboard keys:
|
||||
- Press right arrow `->` at any time during episode recording to early stop and go to resetting. Same during resetting, to early stop and to go to the next episode recording.
|
||||
- Press left arrow `<-` at any time during episode recording or resetting to early stop, cancel the current episode, and re-record it.
|
||||
- Press escape `ESC` at any time during episode recording to end the session early and go straight to video encoding and dataset uploading.
|
||||
3. Checkpoints are done set during recording, so if any issue occurs, you can resume recording by re-running the same command again with `--control.resume=true`. You will need to manually delete the dataset directory if you want to start recording from scratch.
|
||||
|
||||
#### Tips for gathering data
|
||||
|
||||
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
|
||||
|
||||
In the following sections, you’ll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
|
||||
|
||||
Avoid adding too much variation too quickly, as it may hinder your results.
|
||||
|
||||
#### Troubleshooting:
|
||||
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
|
||||
|
||||
## Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/so101_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/so101_test \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
This will launch a local web server that looks like this:
|
||||
|
||||
<div style="text-align:center;">
|
||||
<img src="../media/tutorial/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
|
||||
</div>
|
||||
|
||||
## Replay an episode
|
||||
|
||||
A useful feature is the `replay` function, which allows to replay on your robot any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
|
||||
|
||||
You can replay the first episode on your robot with:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/so101_test \
|
||||
--control.episode=0
|
||||
```
|
||||
|
||||
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
|
||||
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/so101_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_so101_test \
|
||||
--job_name=act_so101_test \
|
||||
--policy.device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain the command:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
|
||||
|
||||
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true
|
||||
```
|
||||
|
||||
#### Upload policy checkpoints
|
||||
|
||||
Once training is done, upload the latest checkpoint with:
|
||||
```bash
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test \
|
||||
outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
You can also upload intermediate checkpoints with:
|
||||
```bash
|
||||
CKPT=010000
|
||||
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
|
||||
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
|
||||
```
|
||||
|
||||
## Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=so101 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a lego block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_so101_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_so101_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).
|
||||
2
lerobot/common/robots/so101_follower/__init__.py
Normal file
2
lerobot/common/robots/so101_follower/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .config_so101_follower import SO101FollowerConfig
|
||||
from .so101_follower import SO101Follower
|
||||
@@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("so101_follower")
|
||||
@dataclass
|
||||
class SO101FollowerConfig(RobotConfig):
|
||||
# Port to connect to the arm
|
||||
port: str
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
211
lerobot/common/robots/so101_follower/so101_follower.py
Normal file
211
lerobot/common/robots/so101_follower/so101_follower.py
Normal file
@@ -0,0 +1,211 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
import time
|
||||
from functools import cached_property
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
|
||||
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
|
||||
from lerobot.common.motors.feetech import (
|
||||
FeetechMotorsBus,
|
||||
OperatingMode,
|
||||
)
|
||||
|
||||
from ..robot import Robot
|
||||
from ..utils import ensure_safe_goal_position
|
||||
from .config_so101_follower import SO101FollowerConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SO101Follower(Robot):
|
||||
"""
|
||||
SO-101 Follower Arm designed by TheRobotStudio and Hugging Face.
|
||||
"""
|
||||
|
||||
config_class = SO101FollowerConfig
|
||||
name = "so101_follower"
|
||||
|
||||
def __init__(self, config: SO101FollowerConfig):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.bus = FeetechMotorsBus(
|
||||
port=self.config.port,
|
||||
motors={
|
||||
"shoulder_pan": Motor(1, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"shoulder_lift": Motor(2, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"elbow_flex": Motor(3, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_flex": Motor(4, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
|
||||
"gripper": Motor(6, "sts3215", MotorNormMode.RANGE_0_100),
|
||||
},
|
||||
calibration=self.calibration,
|
||||
)
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
@property
|
||||
def _motors_ft(self) -> dict[str, type]:
|
||||
return {f"{motor}.pos": float for motor in self.bus.motors}
|
||||
|
||||
@property
|
||||
def _cameras_ft(self) -> dict[str, tuple]:
|
||||
return {
|
||||
cam: (self.config.cameras[cam].height, self.config.cameras[cam].width, 3) for cam in self.cameras
|
||||
}
|
||||
|
||||
@cached_property
|
||||
def observation_features(self) -> dict[str, type | tuple]:
|
||||
return {**self._motors_ft, **self._cameras_ft}
|
||||
|
||||
@cached_property
|
||||
def action_features(self) -> dict[str, type]:
|
||||
return self._motors_ft
|
||||
|
||||
@property
|
||||
def is_connected(self) -> bool:
|
||||
# TODO(aliberts): add cam.is_connected for cam in self.cameras
|
||||
return self.bus.is_connected
|
||||
|
||||
def connect(self, calibrate: bool = True) -> None:
|
||||
"""
|
||||
We assume that at connection time, arm is in a rest position,
|
||||
and torque can be safely disabled to run calibration.
|
||||
"""
|
||||
if self.is_connected:
|
||||
raise DeviceAlreadyConnectedError(f"{self} already connected")
|
||||
|
||||
self.bus.connect()
|
||||
if not self.is_calibrated and calibrate:
|
||||
self.calibrate()
|
||||
|
||||
# Connect the cameras
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
|
||||
self.configure()
|
||||
logger.info(f"{self} connected.")
|
||||
|
||||
@property
|
||||
def is_calibrated(self) -> bool:
|
||||
return self.bus.is_calibrated
|
||||
|
||||
def calibrate(self) -> None:
|
||||
logger.info(f"\nRunning calibration of {self}")
|
||||
self.bus.disable_torque()
|
||||
for motor in self.bus.motors:
|
||||
self.bus.write("Operating_Mode", motor, OperatingMode.POSITION.value)
|
||||
|
||||
input(f"Move {self} to the middle of its range of motion and press ENTER....")
|
||||
homing_offsets = self.bus.set_half_turn_homings()
|
||||
|
||||
print(
|
||||
"Move all joints sequentially through their entire ranges "
|
||||
"of motion.\nRecording positions. Press ENTER to stop..."
|
||||
)
|
||||
range_mins, range_maxes = self.bus.record_ranges_of_motion()
|
||||
|
||||
self.calibration = {}
|
||||
for motor, m in self.bus.motors.items():
|
||||
self.calibration[motor] = MotorCalibration(
|
||||
id=m.id,
|
||||
drive_mode=0,
|
||||
homing_offset=homing_offsets[motor],
|
||||
range_min=range_mins[motor],
|
||||
range_max=range_maxes[motor],
|
||||
)
|
||||
|
||||
self.bus.write_calibration(self.calibration)
|
||||
self._save_calibration()
|
||||
print("Calibration saved to", self.calibration_fpath)
|
||||
|
||||
def configure(self) -> None:
|
||||
with self.bus.torque_disabled():
|
||||
self.bus.configure_motors()
|
||||
for motor in self.bus.motors:
|
||||
self.bus.write("Operating_Mode", motor, OperatingMode.POSITION.value)
|
||||
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
|
||||
self.bus.write("P_Coefficient", motor, 16)
|
||||
# Set I_Coefficient and D_Coefficient to default value 0 and 32
|
||||
self.bus.write("I_Coefficient", motor, 0)
|
||||
self.bus.write("D_Coefficient", motor, 32)
|
||||
|
||||
def setup_motors(self) -> None:
|
||||
for motor in reversed(self.bus.motors):
|
||||
input(f"Connect the controller board to the '{motor}' motor only and press enter.")
|
||||
self.bus.setup_motor(motor)
|
||||
print(f"'{motor}' motor id set to {self.bus.motors[motor].id}")
|
||||
|
||||
def get_observation(self) -> dict[str, Any]:
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
# Read arm position
|
||||
start = time.perf_counter()
|
||||
obs_dict = self.bus.sync_read("Present_Position")
|
||||
obs_dict = {f"{motor}.pos": val for motor, val in obs_dict.items()}
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
start = time.perf_counter()
|
||||
obs_dict[cam_key] = cam.async_read()
|
||||
dt_ms = (time.perf_counter() - start) * 1e3
|
||||
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Command arm to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Raises:
|
||||
RobotDeviceNotConnectedError: if robot is not connected.
|
||||
|
||||
Returns:
|
||||
the action sent to the motors, potentially clipped.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
goal_pos = {key.removesuffix(".pos"): val for key, val in action.items() if key.endswith(".pos")}
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# /!\ Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = self.bus.sync_read("Present_Position")
|
||||
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
|
||||
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
|
||||
|
||||
# Send goal position to the arm
|
||||
self.bus.sync_write("Goal_Position", goal_pos)
|
||||
return {f"{motor}.pos": val for motor, val in goal_pos.items()}
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise DeviceNotConnectedError(f"{self} is not connected.")
|
||||
|
||||
self.bus.disconnect(self.config.disable_torque_on_disconnect)
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
logger.info(f"{self} disconnected.")
|
||||
@@ -99,7 +99,7 @@ This is equivalent to running `stretch_robot_home.py`
|
||||
> **Note:** If you run any of the LeRobot scripts below and Stretch is not properly homed, it will automatically home/calibrate first.
|
||||
|
||||
**Teleoperate**
|
||||
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
|
||||
Before trying teleoperation, you need to activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
|
||||
|
||||
Now try out teleoperation (see above documentation to learn about the gamepad controls):
|
||||
|
||||
2
lerobot/common/robots/stretch3/__init__.py
Normal file
2
lerobot/common/robots/stretch3/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .configuration_stretch3 import Stretch3RobotConfig
|
||||
from .robot_stretch3 import Stretch3Robot
|
||||
58
lerobot/common/robots/stretch3/configuration_stretch3.py
Normal file
58
lerobot/common/robots/stretch3/configuration_stretch3.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
from lerobot.common.cameras.intel import RealSenseCameraConfig
|
||||
from lerobot.common.cameras.opencv import OpenCVCameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("stretch3")
|
||||
@dataclass
|
||||
class Stretch3RobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"navigation": OpenCVCameraConfig(
|
||||
index_or_path="/dev/hello-nav-head-camera",
|
||||
fps=10,
|
||||
width=1280,
|
||||
height=720,
|
||||
rotation=-90,
|
||||
),
|
||||
"head": RealSenseCameraConfig(
|
||||
name="Intel RealSense D435I",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
rotation=90,
|
||||
),
|
||||
"wrist": RealSenseCameraConfig(
|
||||
name="Intel RealSense D405",
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
183
lerobot/common/robots/stretch3/robot_stretch3.py
Normal file
183
lerobot/common/robots/stretch3/robot_stretch3.py
Normal file
@@ -0,0 +1,183 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from stretch_body.gamepad_teleop import GamePadTeleop
|
||||
from stretch_body.robot import Robot as StretchAPI
|
||||
from stretch_body.robot_params import RobotParams
|
||||
|
||||
from lerobot.common.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
|
||||
from lerobot.common.datasets.utils import get_nested_item
|
||||
|
||||
from ..robot import Robot
|
||||
from .configuration_stretch3 import Stretch3RobotConfig
|
||||
|
||||
# {lerobot_keys: stretch.api.keys}
|
||||
STRETCH_MOTORS = {
|
||||
"head_pan.pos": "head.head_pan.pos",
|
||||
"head_tilt.pos": "head.head_tilt.pos",
|
||||
"lift.pos": "lift.pos",
|
||||
"arm.pos": "arm.pos",
|
||||
"wrist_pitch.pos": "end_of_arm.wrist_pitch.pos",
|
||||
"wrist_roll.pos": "end_of_arm.wrist_roll.pos",
|
||||
"wrist_yaw.pos": "end_of_arm.wrist_yaw.pos",
|
||||
"gripper.pos": "end_of_arm.stretch_gripper.pos",
|
||||
"base_x.vel": "base.x_vel",
|
||||
"base_y.vel": "base.y_vel",
|
||||
"base_theta.vel": "base.theta_vel",
|
||||
}
|
||||
|
||||
|
||||
class Stretch3Robot(Robot):
|
||||
"""[Stretch 3](https://hello-robot.com/stretch-3-product), by Hello Robot."""
|
||||
|
||||
config_class = Stretch3RobotConfig
|
||||
name = "stretch3"
|
||||
|
||||
def __init__(self, config: Stretch3RobotConfig):
|
||||
super().__init__(config)
|
||||
|
||||
self.config = config
|
||||
self.robot_type = self.config.type
|
||||
|
||||
self.api = StretchAPI()
|
||||
self.cameras = make_cameras_from_configs(config.cameras)
|
||||
|
||||
self.is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
self.teleop = None # TODO remove
|
||||
|
||||
# TODO(aliberts): test this
|
||||
RobotParams.set_logging_level("WARNING")
|
||||
RobotParams.set_logging_formatter("brief_console_formatter")
|
||||
|
||||
self.state_keys = None
|
||||
self.action_keys = None
|
||||
|
||||
@property
|
||||
def observation_features(self) -> dict:
|
||||
return {
|
||||
"dtype": "float32",
|
||||
"shape": (len(STRETCH_MOTORS),),
|
||||
"names": {"motors": list(STRETCH_MOTORS)},
|
||||
}
|
||||
|
||||
@property
|
||||
def action_features(self) -> dict:
|
||||
return self.observation_features
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict[str, dict]:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
cam_ft[cam_key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
def connect(self) -> None:
|
||||
self.is_connected = self.api.startup()
|
||||
if not self.is_connected:
|
||||
print("Another process is already using Stretch. Try running 'stretch_free_robot_process.py'")
|
||||
raise ConnectionError()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.connect()
|
||||
self.is_connected = self.is_connected and cam.is_connected
|
||||
|
||||
if not self.is_connected:
|
||||
print("Could not connect to the cameras, check that all cameras are plugged-in.")
|
||||
raise ConnectionError()
|
||||
|
||||
self.calibrate()
|
||||
|
||||
def calibrate(self) -> None:
|
||||
if not self.api.is_homed():
|
||||
self.api.home()
|
||||
|
||||
def _get_state(self) -> dict:
|
||||
status = self.api.get_status()
|
||||
return {k: get_nested_item(status, v, sep=".") for k, v in STRETCH_MOTORS.items()}
|
||||
|
||||
def get_observation(self) -> dict[str, np.ndarray]:
|
||||
obs_dict = {}
|
||||
|
||||
# Read Stretch state
|
||||
before_read_t = time.perf_counter()
|
||||
state = self._get_state()
|
||||
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
|
||||
|
||||
if self.state_keys is None:
|
||||
self.state_keys = list(state)
|
||||
|
||||
state = np.asarray(list(state.values()))
|
||||
obs_dict[OBS_STATE] = state
|
||||
|
||||
# Capture images from cameras
|
||||
for cam_key, cam in self.cameras.items():
|
||||
before_camread_t = time.perf_counter()
|
||||
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
|
||||
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: np.ndarray) -> np.ndarray:
|
||||
if not self.is_connected:
|
||||
raise ConnectionError()
|
||||
|
||||
if self.teleop is None:
|
||||
self.teleop = GamePadTeleop(robot_instance=False)
|
||||
self.teleop.startup(robot=self)
|
||||
|
||||
if self.action_keys is None:
|
||||
dummy_action = self.teleop.gamepad_controller.get_state()
|
||||
self.action_keys = list(dummy_action.keys())
|
||||
|
||||
action_dict = dict(zip(self.action_keys, action.tolist(), strict=True))
|
||||
|
||||
before_write_t = time.perf_counter()
|
||||
self.teleop.do_motion(state=action_dict, robot=self)
|
||||
self.push_command()
|
||||
self.logs["write_pos_dt_s"] = time.perf_counter() - before_write_t
|
||||
|
||||
# TODO(aliberts): return action_sent when motion is limited
|
||||
return action
|
||||
|
||||
def print_logs(self) -> None:
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def teleop_safety_stop(self) -> None:
|
||||
if self.teleop is not None:
|
||||
self.teleop._safety_stop(robot=self)
|
||||
|
||||
def disconnect(self) -> None:
|
||||
self.api.stop()
|
||||
if self.teleop is not None:
|
||||
self.teleop.gamepad_controller.stop()
|
||||
self.teleop.stop()
|
||||
|
||||
for cam in self.cameras.values():
|
||||
cam.disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
123
lerobot/common/robots/utils.py
Normal file
123
lerobot/common/robots/utils.py
Normal file
@@ -0,0 +1,123 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import logging
|
||||
from pprint import pformat
|
||||
|
||||
from lerobot.common.robots import RobotConfig
|
||||
|
||||
from .robot import Robot
|
||||
|
||||
|
||||
def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
||||
if robot_type == "aloha":
|
||||
raise NotImplementedError # TODO
|
||||
|
||||
elif robot_type == "koch_follower":
|
||||
from .koch_follower.config_koch_follower import KochFollowerConfig
|
||||
|
||||
return KochFollowerConfig(**kwargs)
|
||||
elif robot_type == "so100_follower":
|
||||
from .so100_follower.config_so100_follower import SO100FollowerConfig
|
||||
|
||||
return SO100FollowerConfig(**kwargs)
|
||||
elif robot_type == "stretch":
|
||||
from .stretch3.configuration_stretch3 import Stretch3RobotConfig
|
||||
|
||||
return Stretch3RobotConfig(**kwargs)
|
||||
elif robot_type == "lekiwi":
|
||||
from .lekiwi.config_lekiwi import LeKiwiConfig
|
||||
|
||||
return LeKiwiConfig(**kwargs)
|
||||
else:
|
||||
raise ValueError(f"Robot type '{robot_type}' is not available.")
|
||||
|
||||
|
||||
def make_robot_from_config(config: RobotConfig) -> Robot:
|
||||
if config.type == "koch_follower":
|
||||
from .koch_follower import KochFollower
|
||||
|
||||
return KochFollower(config)
|
||||
elif config.type == "so100_follower":
|
||||
from .so100_follower import SO100Follower
|
||||
|
||||
return SO100Follower(config)
|
||||
elif config.type == "so101_follower":
|
||||
from .so101_follower import SO101Follower
|
||||
|
||||
return SO101Follower(config)
|
||||
elif config.type == "lekiwi":
|
||||
from .lekiwi import LeKiwiClient
|
||||
|
||||
return LeKiwiClient(config)
|
||||
elif config.type == "stretch3":
|
||||
from .stretch3 import Stretch3Robot
|
||||
|
||||
return Stretch3Robot(config)
|
||||
elif config.type == "viperx":
|
||||
from .viperx import ViperX
|
||||
|
||||
return ViperX(config)
|
||||
elif config.type == "mock_robot":
|
||||
from tests.mocks.mock_robot import MockRobot
|
||||
|
||||
return MockRobot(config)
|
||||
else:
|
||||
raise ValueError(config.type)
|
||||
|
||||
|
||||
def ensure_safe_goal_position(
|
||||
goal_present_pos: dict[str, tuple[float, float]], max_relative_target: float | dict[float]
|
||||
) -> dict[str, float]:
|
||||
"""Caps relative action target magnitude for safety."""
|
||||
|
||||
if isinstance(max_relative_target, float):
|
||||
diff_cap = dict.fromkeys(goal_present_pos, max_relative_target)
|
||||
elif isinstance(max_relative_target, dict):
|
||||
if not set(goal_present_pos) == set(max_relative_target):
|
||||
raise ValueError("max_relative_target keys must match those of goal_present_pos.")
|
||||
diff_cap = max_relative_target
|
||||
else:
|
||||
raise TypeError(max_relative_target)
|
||||
|
||||
warnings_dict = {}
|
||||
safe_goal_positions = {}
|
||||
for key, (goal_pos, present_pos) in goal_present_pos.items():
|
||||
diff = goal_pos - present_pos
|
||||
max_diff = diff_cap[key]
|
||||
safe_diff = min(diff, max_diff)
|
||||
safe_diff = max(safe_diff, -max_diff)
|
||||
safe_goal_pos = present_pos + safe_diff
|
||||
safe_goal_positions[key] = safe_goal_pos
|
||||
if abs(safe_goal_pos - goal_pos) > 1e-4:
|
||||
warnings_dict[key] = {
|
||||
"original goal_pos": goal_pos,
|
||||
"safe goal_pos": safe_goal_pos,
|
||||
}
|
||||
|
||||
if warnings_dict:
|
||||
logging.warning(
|
||||
"Relative goal position magnitude had to be clamped to be safe.\n"
|
||||
f"{pformat(warnings_dict, indent=4)}"
|
||||
)
|
||||
|
||||
return safe_goal_positions
|
||||
|
||||
|
||||
# TODO(aliberts): Remove
|
||||
def get_arm_id(name, arm_type):
|
||||
"""Returns the string identifier of a robot arm. For instance, for a bimanual manipulator
|
||||
like Aloha, it could be left_follower, right_follower, left_leader, or right_leader.
|
||||
"""
|
||||
return f"{name}_{arm_type}"
|
||||
@@ -142,7 +142,7 @@ python lerobot/scripts/train.py \
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/aloha_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
2
lerobot/common/robots/viperx/__init__.py
Normal file
2
lerobot/common/robots/viperx/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .config_viperx import ViperXConfig
|
||||
from .viperx import ViperX
|
||||
45
lerobot/common/robots/viperx/config_viperx.py
Normal file
45
lerobot/common/robots/viperx/config_viperx.py
Normal file
@@ -0,0 +1,45 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from lerobot.common.cameras import CameraConfig
|
||||
|
||||
from ..config import RobotConfig
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("viperx")
|
||||
@dataclass
|
||||
class ViperXConfig(RobotConfig):
|
||||
port: str # Port to connect to the arm
|
||||
|
||||
disable_torque_on_disconnect: bool = True
|
||||
|
||||
# /!\ FOR SAFETY, READ THIS /!\
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
# For Aloha, for every goal position request, motor rotations are capped at 5 degrees by default.
|
||||
# When you feel more confident with teleoperation or running the policy, you can extend
|
||||
# this safety limit and even removing it by setting it to `null`.
|
||||
# Also, everything is expected to work safely out-of-the-box, but we highly advise to
|
||||
# first try to teleoperate the grippers only (by commenting out the rest of the motors in this yaml),
|
||||
# then to gradually add more motors (by uncommenting), until you can teleoperate both arms fully
|
||||
max_relative_target: int | None = 5
|
||||
|
||||
# cameras
|
||||
cameras: dict[str, CameraConfig] = field(default_factory=dict)
|
||||
# Troubleshooting: If one of your IntelRealSense cameras freeze during
|
||||
# data recording due to bandwidth limit, you might need to plug the camera
|
||||
# on another USB hub or PCIe card.
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user