* Remove unused max_relative_target for stretch3
* Fix type annotation and allow integer max_relative_target values
* Configure max_relative_target to be floats instead of ints
* Update docs and types to reflect that max_relative_target can be a dict
* Remove unnecessary isinstance check for ints
* Fix typo in name
---------
Co-authored-by: Justin Huang <justin.huang@jpl.nasa.gov>
The 'episode_data' parameter was previously ignored, causing an error if provided. This change ensures it is correctly used, which allows for asynchronous episode saving by passing a copy of the episode buffer, preventing conflicts with the main data collection loop.
* Refactor observation preprocessing to use a modular pipeline system
- Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations.
- Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline.
- Added tests for the new processing components and ensured they match the original functionality.
- Removed hardcoded logic in favor of a more flexible, composable architecture.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Refactor observation processing and improve modularity
- Updated `ObservationProcessor` to enhance the modular design for processing observations.
- Cleaned up imports and improved code readability by removing unnecessary lines and comments.
- Ensured backward compatibility while integrating new processing components.
- Added tests to validate the functionality of the updated processing architecture.
* Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability.
* Refactor processing architecture to use RobotProcessor
- Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity.
- Introduced ProcessorStepRegistry for better management of processing steps.
- Updated relevant documentation and tests to reflect the new processing structure.
- Enhanced the save/load functionality to support the new processor design.
- Added a model card template for RobotProcessor to facilitate sharing and documentation.
* Add RobotProcessor tutorial to documentation
- Introduced a new tutorial on using RobotProcessor for preprocessing robot data.
- Added a section in the table of contents for easy navigation to the new tutorial.
- The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add normalization processor and related components
- Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization.
- Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks.
- Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports.
- Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity.
- Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Enhance processing architecture with new components
- Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility.
- Updated `__init__.py` to include `RenameProcessor` in module exports.
- Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling.
- Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness.
* chore (docs): add docstring for processor
* fix (test): test factory
* fix(test): policies
* Update tests/processor/test_observation_processor.py
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
* chore(test): add suggestion made by copilot regarding numpy test
* fix(test): import issue
* Refactor normalization components and update tests
- Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity.
- Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`.
- Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes.
- Enhanced handling of missing statistics in normalization processes.
* chore (docstrin):Improve docstring for NormalizerProcessor
* feat (device processor): Implement device processor
* chore (batch handling): Enhance processing components with batch conversion utilities
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix(test): linting issue
* chore (output format): improves output format
* chore (type): add typing for multiprocess envs
* feat (overrides): Implement support for loading processors with parameter overrides
- Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter.
- Enhanced error handling for invalid override keys and instantiation errors.
- Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps.
- Added comprehensive tests to validate the new functionality and ensure backward compatibility.
* chore(normalization): addressing comments from copilot
* chore(learner): nit comment from copilot
* feat(pipeline): Enhance step_through method to support both tuple and dict inputs
* refactor(pipeline): Simplify observation and padding data handling in batch transitions
* Apply suggestions from code review
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* refactor(pipeline): Transition from tuple to dictionary format for EnvTransition
- Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability.
- Replaced instances of TransitionIndex with TransitionKey for accessing transition components.
- Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase.
* refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling
- Introduced constants for observation keys to enhance readability.
- Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly.
- Updated the environment state and agent position assignments to use the new constants, improving maintainability.
* feat(pipeline): Add hook unregistration functionality and enhance documentation
- Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management.
- Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks.
- Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks.
* refactor(pipeline): Clarify hook behavior and improve documentation
- Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability.
- Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions.
- Enhanced documentation to clearly outline the purpose of hooks and their execution semantics.
- Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method.
* feat(pipeline): Add __repr__ method to RobotProcessor for improved readability
- Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed.
- Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values.
- Ensured that the representation handles long lists of steps with truncation for better readability.
* chore(pipeline): Move _CFG_NAME along other class member
* refactor(pipeline): Utilize get_safe_torch_device for device assignment
- Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling.
- This change enhances code readability and maintains consistency in device management across the RobotProcessor class.
* refactor(pipeline): Enhance state filename generation and profiling method
- Updated state filename generation to use the registry name when available, improving clarity in saved files.
- Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling.
- Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results.
* chore(doc): address pip install commant lerobot that not exist yet
* feat(pipeline): Enhance configuration filename handling and state file naming
- Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default.
- Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved.
- Added automatic detection for configuration files when loading from a directory, with error handling for multiple files.
- Updated tests to validate new features, including custom filenames and automatic config detection.
* refactor(pipeline): Improve state file naming conventions for clarity and uniqueness
- Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory.
- Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts.
- Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files.
* docs(pipeline): Add clarification for repo name sanitization process
* Feat/pipeline add feature contract (#1637)
* Add feature contract to pipelinestep and pipeline
* Add tests
* Add processor tests
* PR feedback
* encorperate pr feedback
* type in doc
* oops
* docs(pipeline): Clarify transition handling and hook behavior
- Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats.
- Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change.
- Enhanced test assertions to verify the structure of results and the correctness of processing steps.
* refactor(pipeline): Remove to() method for device management
- Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices.
- Removed associated unit tests that validated the functionality of the to() method across various scenarios.
- Streamlined the pipeline code by focusing on other device management strategies.
* refactor(pipeline): Remove model card generation and streamline processor methods
- Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template.
- Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters.
- Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability.
* refactor(observation): Streamline observation preprocessing and remove unused processor methods
- Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting.
- Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow.
- Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script.
* refactor(pipeline): Rename parameters for clarity and enhance save/load functionality
- Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path.
- Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names.
- Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability.
* refactor(pipeline): minor improvements (#1684)
* chore(pipeline): remove unused features + device torch + envtransition keys
* refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor
* refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code
* test(pipeline): fix broken test after refactors
* docs(pipeline): update docstrings VanillaObservationProcessor
* chore(pipeline): move None check to base pipeline classes
---------
Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
* fix(policies): remove action from batch for offline evaluation in diffusion, tdmpc, and vqbet policies
* style(diffusion): correct comment capitalization for clarity in modeling_diffusion.py
Prevent VAE inference when running in offline mode. In the lerobot dataset, the presence of the 'action' field incorrectly triggers the VAE inference block. This leads to a RuntimeError due to mismatched tensor dimensions (3 vs 2) when concatenating cls_embed, robot_state_embed, and action_embed—since action_embed lacks the chunk_size dimension. Additionally, this aligns with the original paper, where variational inference is skipped during inference.
* Merge together proto files and refactor Async inference
* Fixup for Async inference
* Drop not reuqired changes
* Fix tests
* Drop old async files
* Drop chunk_size param
* Fix versions
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Fix wrong fix
Co-authored-by: Ben Zhang <ben.zhang@uwaterloo.ca>
* Fixup
---------
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>
Co-authored-by: Ben Zhang <ben.zhang@uwaterloo.ca>
Co-authored-by: Francesco Capuano <74058581+fracapuano@users.noreply.github.com>
* test(cameras): increase timeout in depth read for testing
* test(cameras): skip test_depth in realsense
---------
Co-authored-by: Michel Aractingi <michel.aractingi@huggingface.co>