Compare commits

..

355 Commits

Author SHA1 Message Date
Pepijn
b83892092f Minor addition 2025-05-21 16:36:08 +02:00
Pepijn
3b8e714af6 Placed robot docs in robot folders and created symlink for docs 2025-05-21 16:36:04 +02:00
Pepijn
e8a0bbcfb1 Check and improve spelling 2025-05-21 16:36:01 +02:00
Pepijn
60cbde1a78 undo previous commit 2025-05-21 16:35:57 +02:00
Pepijn
95ebc27d32 rename to action_features 2025-05-21 16:35:54 +02:00
Pepijn
6fa290f961 add correct rotation lekiwi config 2025-05-21 16:35:50 +02:00
Pepijn
ca82e9aebf fix for lekiwi config camera index name 2025-05-21 16:35:47 +02:00
Pepijn
5e160be3cc Add initial docs for lekiwi teleop 2025-05-21 16:35:43 +02:00
Pepijn
54da1d8181 fix formatting issue contributing.md 2025-05-21 16:35:40 +02:00
Pepijn
7053cc6aaf Use symlink in docs/ pointing to root CONTRIBUTING.md 2025-05-21 16:35:36 +02:00
Pepijn
8ce28a7d17 remove contributing symlink 2025-05-21 16:35:33 +02:00
Pepijn
c1196e350c Create symlink to contributing 2025-05-21 16:35:28 +02:00
Pepijn
4a539b9d05 doc: Initial changes, removed media images, added robot docs (setup motors+calibration) 2025-05-21 16:35:19 +02:00
Pepijn
3c1b657fdd Merge branch 'user/aliberts/2025_02_25_refactor_robots' into refactor/updated_api_docs 2025-05-21 16:31:38 +02:00
pre-commit-ci[bot]
65ad0650b0 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-05-21 14:13:06 +00:00
Steven Palma
0c411a6832 [skip ci] doc(tests): add comment related to test duration 2025-05-21 16:12:40 +02:00
Steven Palma
4d9825bb1d fix(ci): change default opencv backend 2025-05-21 16:06:16 +02:00
Steven Palma
47d5008407 chore(cameras): address unresolved conversations 2025-05-21 15:41:52 +02:00
Steven Palma
95f3e53eba chore(test): try import rs protect 2025-05-21 15:16:20 +02:00
Steven Palma
625bb9c9d8 chore(cameras): try import rs protect 2025-05-21 15:09:55 +02:00
Steven Palma
95a951883e Merge branch 'user/aliberts/2025_02_25_refactor_robots' into refactor/camera_implementations_and_tests_improvements 2025-05-21 15:02:53 +02:00
Steven Palma
73bb9709a7 chore(cameras): remove 14 logs 2025-05-21 13:50:52 +02:00
Steven Palma
f8c7e59f83 test(cameras): use fixture for realsense patching + depth read test 2025-05-21 13:29:53 +02:00
Steven Palma
7f7c431061 docs(cameras): update find_cameras instructions 2025-05-21 13:29:30 +02:00
Steven Palma
76f661f8b5 chore(robots): fix pre-commit 2025-05-20 19:15:01 +02:00
pre-commit-ci[bot]
1c90cd1269 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-05-20 17:10:38 +00:00
Steven Palma
a36536dc07 Apply suggestions from code review 3
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-05-20 19:10:06 +02:00
Steven Palma
33b8559060 refactor(cameras): move find_cameras to the base class 2025-05-20 19:01:13 +02:00
Steven Palma
91a5fafdae feat(cameras): add check for fps, height and width in realsenseconfig (all or none) 2025-05-20 18:40:20 +02:00
Steven Palma
a653210173 chore(cameras): move _stop_thread under _start_thread methods 2025-05-20 18:31:55 +02:00
Steven Palma
eb2d967c85 docs(cameras): add explanation of warmup arg in connect 2025-05-20 18:18:13 +02:00
Steven Palma
7a4b9f0cbf chore(cameras): rename prerotated_ to capture_ var names 2025-05-20 18:09:22 +02:00
Steven Palma
18b56e1533 refactor(cameras): realsense config arg serial_number_or_name 2025-05-20 18:03:53 +02:00
Steven Palma
39a93a7b28 docs(cameras): update arg in class doc 2025-05-20 17:49:19 +02:00
Steven Palma
b3dafcfb07 docs(cameras): update depth related example 2025-05-20 17:35:24 +02:00
Steven Palma
39f908e9db chore(cameras): move if check out of _validate functions 2025-05-20 17:24:51 +02:00
Steven Palma
99ea24d6a3 chore(cameras): move connect under is_connected 2025-05-20 17:09:16 +02:00
Steven Palma
efd2849184 chore(tests): add ids to parametrize 2025-05-20 16:54:52 +02:00
Steven Palma
ab7565a666 chore(cameras): refactor utility function dictionary fetching style 2025-05-20 16:43:58 +02:00
Steven Palma
525cd68e62 chore(cameras): fix imports renamed folder + add camera configs in utility scripts 2025-05-20 16:39:17 +02:00
Steven Palma
9812f2db09 chore(cameras): rename intel -> realsense 2025-05-20 16:18:49 +02:00
Steven Palma
85b0dd0ec1 chore(tests): delete fakecam images 2025-05-20 14:43:23 +02:00
Steven Palma
41179d0996 chore(cameras): address review comments + make test pass again 2025-05-20 14:42:05 +02:00
pre-commit-ci[bot]
3a08eddeab [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-05-20 11:47:14 +00:00
Steven Palma
3890c38c12 Apply suggestions from code review camera_opencv
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-05-20 13:47:00 +02:00
pre-commit-ci[bot]
05d8825bcb [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-05-20 11:41:00 +00:00
Steven Palma
1f2cfd3828 Apply suggestions from code review camera_realsense.py
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-05-20 13:40:45 +02:00
Simon Alibert
8ab2227148 Replace deprecated abc.abstractproperty 2025-05-20 13:16:34 +02:00
pre-commit-ci[bot]
295b96c539 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-05-20 11:05:57 +00:00
Steven Palma
f27f5f84b0 Apply suggestions from code review 1
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-05-20 13:05:41 +02:00
Simon Alibert
9dab08dfbc Remove old .cache folder 2025-05-20 09:53:01 +02:00
Simon Alibert
05dfa26c54 Fix test 2025-05-19 11:24:10 +02:00
Simon Alibert
edbba48e81 Add so100_follower tests 2025-05-19 10:58:35 +02:00
Simon Alibert
10119c1a59 Move MockMotorsBus 2025-05-18 11:51:47 +02:00
Simon Alibert
c7ef189da0 Add check for same min and max during calibration 2025-05-16 10:48:45 +02:00
Steven Palma
5daf552127 fix(cameras): realsense depth post_process channel check 2025-05-15 16:48:52 +02:00
Steven Palma
6797e1d92b fix(cameras): correct validate_width_height logic 2025-05-15 16:45:19 +02:00
Simon Alibert
51efe6dfee Add setup_motors for lekiwi 2025-05-15 11:46:41 +02:00
Steven Palma
859a369b29 chore(docs): adress notes + add docs in camera code 2025-05-15 11:08:53 +02:00
Steven Palma
cca647307b fix(tests): kill thread when camera async_read tests fail 2025-05-14 14:14:55 +02:00
Steven Palma
dae5f7c74d chore(tests): explicit cameras artefacts in gitattributes 2025-05-14 14:14:51 +02:00
Steven Palma
d6d8f29b5c fix(cameras): correct imports for camera config in scripts 2025-05-14 14:14:48 +02:00
Steven Palma
27bb7c4d71 chore(cameras): remove compressed files + filename better managed in opencv camera tests + add camera artefacts in lfs 2025-05-14 14:14:44 +02:00
Steven Palma
2d86812b97 refactor(cameras): width, fps and height is mandatory to have a value in robot config 2025-05-14 14:14:41 +02:00
Steven Palma
57c2181ed2 refactor(cameras): add read_depth() for realsense + new compressed bag 2025-05-14 14:14:36 +02:00
Steven Palma
81c49cecd0 [skip ci] refactor(cameras): add warmup read + images different size testing opencv + compressed test artefacts 2025-05-14 14:14:30 +02:00
Steven Palma
4675b3cd02 refactor(cameras): add warm-up, fix defaul args, remove width and height from find_cameras utils 2025-05-14 14:14:06 +02:00
Steven Palma
dbce247ec1 refactor(cameras): homogeneous depth processing in realsense camera 2025-05-14 14:14:02 +02:00
Steven Palma
904bc618ee refactor(cameras): fps, width and height are optional at camera level, these 3 are now moved to the camera base class, the width and height specified in the config is now the one output by read() methods 2025-05-14 14:13:59 +02:00
Steven Palma
ddd8fd325b refactor(cameras): improvements utils functionalities v0.2 2025-05-14 14:13:55 +02:00
Steven Palma
7f34e1af9c refactor(cameras): improvements utils functionalities v0.1 2025-05-14 14:13:52 +02:00
Steven Palma
3416036e34 chore(cameras): set timeout to 0 in tests 2025-05-14 14:13:48 +02:00
Steven Palma
2af8edcf74 chore(cameras): delete unused files 2025-05-14 14:13:44 +02:00
Steven Palma
b089c6db3a test(cameras): add minimal realsense test 2025-05-14 14:13:41 +02:00
Steven Palma
15b5d28f45 refactor(cameras): improvements realsense cam v0.1 2025-05-14 14:13:37 +02:00
Steven Palma
35c4b01752 test(cameras): add minimal opencv test 2025-05-14 14:13:33 +02:00
Steven Palma
6348f0f418 refactor(cameras): improvements opencv cam v0.1 2025-05-14 14:13:30 +02:00
Simon Alibert
720a6374ba chore(dependencies): add pyrealsense2 for macos + cleanup init camera modules 2025-05-14 14:13:26 +02:00
Simon Alibert
3297c7e802 refactor(cameras): realsense camera init 2025-05-14 14:13:23 +02:00
Simon Alibert
0b5b438f50 refactor(cameras): opencv camera init 2025-05-14 14:13:20 +02:00
Simon Alibert
8a6412b0db refactor(cameras): init abc class + config 2025-05-14 14:13:16 +02:00
Simon Alibert
b0592d9bc8 Fix dxl _find_single_motor 2025-05-14 13:43:36 +02:00
Simon Alibert
363fe64ff9 Add copyrights 2025-05-13 17:38:39 +02:00
Simon Alibert
bbcb12e919 Fix test_calibrate 2025-05-13 17:19:40 +02:00
Simon Alibert
3e87b09d34 Fix setup_motors & calibrate configs 2025-05-13 17:06:24 +02:00
Simon Alibert
81de27dc9a Remove Moss arm 2025-05-13 16:30:50 +02:00
Simon Alibert
eb94a5f03f Rename arm -> bus 2025-05-13 13:26:04 +02:00
Simon Alibert
742708942c Add MotorsBus docstrings 2025-05-13 13:24:46 +02:00
Simon Alibert
5a2f9b6589 Remove unecessary id 2025-05-12 19:01:30 +02:00
Simon Alibert
06f0c579b7 Rename example 7 2025-05-12 18:56:22 +02:00
Simon Alibert
7890767d34 Remove pynput from optional deps 2025-05-12 18:54:08 +02:00
Simon Alibert
d322cb0220 Add SO101 2025-05-11 13:15:28 +02:00
Simon Alibert
f011173ff6 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-05-11 12:53:04 +02:00
Simon Alibert
20129cd4c2 Fix tests (no-extras install) 2025-05-11 12:52:17 +02:00
Simon Alibert
307823bc8d Add docstrings 2025-05-11 12:45:22 +02:00
masato-ka
a445d9c9da bug fix for #1071 When --display_data=true, Failed running control_robot. (#1073) 2025-05-09 16:53:40 +02:00
CharlesCNorton
f24030d4d8 Update 12_use_so101.md (#1081)
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
2025-05-09 11:04:25 +02:00
Mishig
7598aeaad7 Update 10_use_so100.md; use diff syntax (#944)
Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com>
2025-05-09 11:01:12 +02:00
Pepijn
4485cc0b5b docs: minor corrections and clean-up (#1089) 2025-05-09 11:00:25 +02:00
Simon Alibert
64303781c2 Add calibrate 2025-05-08 18:27:19 +02:00
Simon Alibert
dd3e305164 Remove deprecated scripts & tests 2025-05-08 18:08:38 +02:00
Simon Alibert
cb9cac6a1b Add test_record_and_resume 2025-05-08 17:54:58 +02:00
Simon Alibert
95f9b45418 Add new test_control_robot 2025-05-08 17:38:16 +02:00
Simon Alibert
f9db727647 Add mock robot & teleop 2025-05-08 17:37:49 +02:00
Simon Alibert
230c7fdfab Fix test_datasets 2025-05-08 14:57:12 +02:00
Simon Alibert
320f7e8450 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-05-08 13:24:12 +02:00
Simon Alibert
08fbbb318f Add replay 2025-05-08 13:21:42 +02:00
Simon Alibert
8b98399206 Add record 2025-05-08 13:21:42 +02:00
Simon Alibert
237b14a6ec Add teleoperate 2025-05-08 13:21:42 +02:00
Simon Alibert
2e705ff554 Add setup_motors 2025-05-08 13:21:42 +02:00
Simon Alibert
d72a3f9c32 Remove app script 2025-05-08 13:21:42 +02:00
Simon Alibert
73ac4f38b2 Fix config parsing 2025-05-08 13:21:18 +02:00
Simon Alibert
a0e69dd708 Rename find_port 2025-05-08 13:21:18 +02:00
Simon Alibert
b207babd9e Add make_teleoperator_from_config 2025-05-08 13:21:18 +02:00
Simon Alibert
293870d0f6 Update teleop features & naming 2025-05-08 13:21:17 +02:00
Simon Alibert
87a8cb6d89 Update robot features & naming 2025-05-08 13:20:32 +02:00
Simon Alibert
69dc3f5c9c Remove deprecated manipulator 2025-05-08 13:17:16 +02:00
Steven Palma
e4d4754600 fix(teleoperators): use property is_connected (#1075) 2025-05-07 10:52:44 +02:00
omahs
8cfab38824 Fix typos (#1070) 2025-05-05 10:35:32 +02:00
Pepijn
ee5525fea1 Docs: adapt text + fix video code (#1064) 2025-05-02 16:10:13 +02:00
Pepijn
a1daeaf0c4 feat(docs): Add new docs build process (#1046)
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Steven Palma <steven.palma@huggingface.co>
2025-05-02 12:47:23 +02:00
Steven Palma
2e528a8b12 refactor/lekiwi robot (#863)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-29 17:48:41 +02:00
Caroline Pascal
6d723c45a9 feat(encoding): switching to PyAV for ffmpeg related tasks (#983) 2025-04-29 17:39:35 +02:00
Pepijn
674e784aa9 Add description motor order SO-101 leader (#1051) 2025-04-29 11:17:02 +02:00
Pepijn
42bf1e8b9d Update tutorial (#1021)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-28 09:00:32 +02:00
Adil Zouitine
a75d00970f fix(ci): Pin torchcodec (==0.2.1) to fix pipeline temporarly (#1030) 2025-04-24 12:16:02 +02:00
Adil Zouitine
4df18de636 fix(ci): Pin draccus (<0.10.0) and torch (<2.7) to fix pipeline (#1022)
Co-authored-by: imstevenpmwork <steven.palma@huggingface.co>
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-24 09:42:03 +02:00
Simon Alibert
8dc69c6126 Revert "[pre-commit.ci] pre-commit autoupdate" (#1025) 2025-04-24 09:26:47 +02:00
pre-commit-ci[bot]
7d481e6048 [pre-commit.ci] pre-commit autoupdate (#1011)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-04-23 21:53:09 +02:00
Simon Alibert
b7a9b0689a Remove deprecated import 2025-04-18 17:13:08 +02:00
Simon Alibert
b6b9635be6 Remove names 2025-04-18 09:48:16 +02:00
Simon Alibert
21b1026872 Remove deprecated dynamixel_calibration 2025-04-18 09:34:46 +02:00
Simon Alibert
8c3eab32b0 Remove deprecated configure_motor 2025-04-18 09:19:43 +02:00
Simon Alibert
29633865c7 Fix _find_single_motor 2025-04-18 09:18:56 +02:00
Simon Alibert
702749b7d3 Fix setup_motor & add it to robots 2025-04-17 16:56:38 +02:00
k1000dai
b43ece8934 Add pythno3-dev in Dockerfile to build and modify Readme.md , python-dev to python3-dev (#987)
Co-authored-by: makolon <smakolon385@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-17 16:17:07 +02:00
Alex Thiele
c10c5a0e64 Fix --width --height type parsing on opencv and intelrealsense scripts (#556)
Co-authored-by: Remi <remi.cadene@huggingface.co>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-17 15:19:23 +02:00
Junshan Huang
a8db91c40e Fix Windows HTML visualization to make videos could be seen (#647)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-17 15:07:28 +02:00
HUANG TZU-CHUN
0f5f7ac780 Fix broken links in examples/4_train_policy_with_script.md (#697) 2025-04-17 14:59:43 +02:00
Simon Alibert
bf1c737858 Fix calibration msg display 2025-04-17 13:18:32 +02:00
Simon Alibert
d07c7347f8 Add setup_motor 2025-04-17 13:14:06 +02:00
Simon Alibert
57e5e4cc07 Move read/write_calibration implementations 2025-04-16 11:23:33 +02:00
Simon Alibert
2743c29a96 Update feetech tables 2025-04-16 11:01:12 +02:00
Simon Alibert
2bb73ac431 Add torque_disabled context 2025-04-15 11:43:22 +02:00
Simon Alibert
9afc4b771c Motors config & disconnect fixes 2025-04-15 11:20:42 +02:00
Simon Alibert
f71e224023 Fix tests 2025-04-15 11:18:44 +02:00
pre-commit-ci[bot]
768e36660d [pre-commit.ci] pre-commit autoupdate (#980)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-04-14 21:55:06 +02:00
Simon Alibert
889de7c415 Add handshake, fix feetech _read_firmware_version 2025-04-14 17:14:06 +02:00
Caroline Pascal
790d6740ba fix(installation): adding note on ffmpeg version during installation (#976)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-14 15:36:31 +02:00
Simon Alibert
3539251b18 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-04-14 15:30:35 +02:00
Simon Alibert
1f210bc8a3 Refactor tests 2025-04-14 15:26:29 +02:00
Simon Alibert
d70bc4bde9 Add more segmented tests (dynamixel) 2025-04-14 15:16:38 +02:00
Simon Alibert
bdbca09cb2 Add more segmented tests (base motor bus & feetech), add feetech protocol 1 support 2025-04-14 11:56:53 +02:00
Simon Alibert
e0b292ab51 Remove test_motors_bus fixtures 2025-04-11 12:24:30 +02:00
Simon Alibert
f960f4d8d4 Fix unormalize 2025-04-11 11:58:31 +02:00
Simon Alibert
9e57ec7837 Add support for feetech protocol 1 to _split_into_byte_chunks 2025-04-11 11:58:09 +02:00
Simon Alibert
0a7f51f0da Cleanup 2025-04-11 11:03:09 +02:00
Simon Alibert
4ca92a28e9 Make feetech broadcast ping faster in protocol 1 2025-04-11 11:02:54 +02:00
Simon Alibert
0464dc91b3 Add feetech sm8512bl 2025-04-11 11:02:01 +02:00
Simon Alibert
d32daebf75 Refactor & add _serialize_data 2025-04-11 11:01:12 +02:00
Simon Alibert
27cb0c40bd Add protocol 1 broadcast ping 2025-04-10 17:14:40 +02:00
Simon Alibert
12abc9ca86 Fix broadcast ping type hint 2025-04-10 00:53:17 +02:00
Simon Alibert
4005065223 (nit) move write 2025-04-10 00:51:23 +02:00
Simon Alibert
443fed216c Use constants from sdks 2025-04-10 00:49:03 +02:00
Simon Alibert
42a87e7211 Implement read 2025-04-10 00:35:14 +02:00
Steven Palma
5322417c03 fix(examples): removes extra backtick (#948) 2025-04-09 17:44:32 +02:00
Steven Palma
4041f57943 feat(visualization): replace cv2 GUI with Rerun (and solves ffmpeg versioning issues) (#903) 2025-04-09 17:33:01 +02:00
Simon Alibert
034171a89a Add Feetech protocol version 2025-04-09 10:26:30 +02:00
Simon Alibert
2c86fea78a Switch typos pre-commit to mirror (#953) 2025-04-08 12:44:09 +02:00
pre-commit-ci[bot]
782dff1163 [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
2025-04-08 08:48:18 +00:00
Simon Alibert
8924ccbbab Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-04-08 10:47:40 +02:00
Simon Alibert
792c3d961d Update dynamixel with motors bus & tables changes 2025-04-08 10:47:11 +02:00
Simon Alibert
e998dddcfa Add support for feetech scs series + various fixes 2025-04-08 10:46:29 +02:00
pre-commit-ci[bot]
437fc29e12 [pre-commit.ci] pre-commit autoupdate (#871)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-04-08 06:58:46 +02:00
Junwu Zhang
aee86b4b18 typo fix: example_1 python script (#631)
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-07 17:41:10 +02:00
mshukor
1c873df5c0 Support for PI0+FAST (#921)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Dana Aubakirova <118912928+danaaubakirova@users.noreply.github.com>
Co-authored-by: Remi <re.cadene@gmail.com>
Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
2025-04-04 11:51:11 +02:00
Steven Palma
99c0938b42 feat(teleop): thread-safe keyboard teleop implementation (#869)
Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>
2025-04-04 09:45:18 +02:00
Simon Alibert
716029b1e3 Remove old calibration 2025-04-03 18:42:39 +02:00
Simon Alibert
3848a8f9aa Rename viperx & widowx 2025-04-03 18:37:21 +02:00
Simon Alibert
f7672e14c7 Update viperx & widowx 2025-04-03 18:34:08 +02:00
Simon Alibert
e393af2d88 Add is_calibrated test 2025-04-03 17:35:10 +02:00
Simon Alibert
0dcb2caba8 Simplify motors mocks 2025-04-03 16:43:23 +02:00
Simon Alibert
4679725957 Revert feetech hack and monkeypatch instead 2025-04-03 15:53:54 +02:00
Simon Alibert
57319062aa Remove old calibration tests 2025-04-03 12:17:43 +02:00
Simon Alibert
078f59bfd1 Add calibration tests 2025-04-03 12:14:15 +02:00
Simon Alibert
36fcea2002 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-04-03 08:40:39 +02:00
Simon Alibert
2971bdfed5 Rename Koch classes 2025-04-03 08:23:31 +02:00
Simon Alibert
28cd3a6f3a Rename SO-100 classes 2025-04-03 08:14:35 +02:00
Simon Alibert
c0570b3003 Improve format 2025-04-02 22:40:00 +02:00
Simon Alibert
eeb8490016 Update Koch & SO-100 2025-04-02 22:33:48 +02:00
Simon Alibert
854b78975a Update tests 2025-04-02 22:31:53 +02:00
Simon Alibert
e55d2ffe50 Hack feetech firmware bug 2025-04-02 22:31:45 +02:00
Simon Alibert
1ebd81552c Fix calibration 2025-04-02 22:27:49 +02:00
Steven Palma
145fe4cd17 fix(deps): avoid torchcodec in macos x86_64 (#925) 2025-04-01 15:51:59 +02:00
Simon Alibert
65569ba90e Add test_scan_port (TODO) 2025-03-31 18:40:23 +02:00
Simon Alibert
79293800f1 Implement Koch calibration 2025-03-31 18:18:27 +02:00
Simon Alibert
bc765f9e95 Implement SO-100 follower calibration 2025-03-31 18:17:20 +02:00
Simon Alibert
201311503f Implement SO-100 leader calibration 2025-03-31 18:16:42 +02:00
Simon Alibert
8cc0232e73 Format baudrate tables 2025-03-31 18:14:57 +02:00
Simon Alibert
6bfcc18e73 Add more calibration utilities 2025-03-31 18:14:11 +02:00
Mariusz Dubielecki
e004247ed4 docs: add tip for Mac users regarding Terminal permissions for keyboard (#917)
Signed-off-by: cranberrysoft <dubielecki.mariusz@gmail.com>
2025-03-31 09:44:05 +02:00
Simon Alibert
e096754d14 Rename test 2025-03-31 00:41:25 +02:00
Simon Alibert
02803f545d Add test_encoding_utils 2025-03-31 00:37:28 +02:00
Simon Alibert
8503e8e166 Move encoding functions to encoding_utils 2025-03-31 00:35:31 +02:00
Simon Alibert
d6007c6e7d Add calibration utilities 2025-03-30 15:41:39 +02:00
Simon Alibert
50963fcf13 Add scan_port utility 2025-03-30 15:32:25 +02:00
Simon Alibert
051a52a4ce Remove todo 2025-03-25 21:32:30 +01:00
Simon Alibert
2292b514aa Fix calibration functions 2025-03-25 17:58:54 +01:00
Simon Alibert
1f1a01a798 Rename CalibrationMode -> MotorNormMode 2025-03-25 17:42:18 +01:00
Simon Alibert
faa476f0d2 Remove deprecated scripts 2025-03-25 17:33:05 +01:00
Simon Alibert
5130b69ece Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-25 16:25:47 +01:00
Simon Alibert
aed85241b7 Merge branch 'user/aliberts/2025_02_25_refactor_robots' of github.com:huggingface/lerobot into user/aliberts/2025_02_25_refactor_robots 2025-03-25 16:24:40 +01:00
Pepijn
21c3ac42ee Add new calibration method for robot refactor (#896)
Co-authored-by: Simon Alibert <simon.alibert@huggingface.co>
2025-03-25 16:24:04 +01:00
Simon Alibert
2d3a5fb2be (WIP) _async_read 2025-03-25 15:37:18 +01:00
Simon Alibert
a631e4c11c Rename idx -> id_ 2025-03-25 15:36:36 +01:00
Simon Alibert
222d6f104e Rename idx -> id_ 2025-03-25 14:20:12 +01:00
Simon Alibert
7a3b424cd3 Add calibration 2025-03-25 14:13:55 +01:00
Simon Alibert
af295fadb5 Fix imports 2025-03-25 12:48:58 +01:00
Simon Alibert
9644e2b086 Fix visualize_motors_bus 2025-03-25 12:47:44 +01:00
Simon Alibert
6ccf083127 Update so100 imports 2025-03-25 12:32:38 +01:00
Simon Alibert
bb774e7acd Update Koch imports 2025-03-25 12:31:51 +01:00
Simon Alibert
dcbbeab80b Move DriveMode & TorqueMode 2025-03-25 12:30:07 +01:00
Simon Alibert
b71ac34214 Add test_motors_bus 2025-03-25 12:11:56 +01:00
Simon Alibert
c237d1379e Update tests 2025-03-25 11:12:52 +01:00
Simon Alibert
cf963eb1b0 Ensure motors exist at connection time 2025-03-25 11:12:26 +01:00
Simon Alibert
4293b6a4fb Fix feetech ping tests 2025-03-25 07:26:34 +01:00
Simon Alibert
7a75bb9f61 Improve errors 2025-03-24 21:13:26 +01:00
Simon Alibert
0c1d4cb323 Rename idx -> id_ 2025-03-24 20:58:56 +01:00
Simon Alibert
c6212d585d Add raw_values option 2025-03-24 20:56:58 +01:00
Simon Alibert
7c8ab8e2d6 Implement feetech broadcast ping 2025-03-24 20:46:36 +01:00
Simon Alibert
1de75c46c0 Return models (str) with pings 2025-03-24 20:42:43 +01:00
Simon Alibert
4ad109cff8 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-24 13:25:29 +01:00
Simon Alibert
8994252019 Add _configure_motors & move ping methods 2025-03-24 12:19:03 +01:00
Simon Alibert
9832daf08d Fix dict 2025-03-24 12:16:54 +01:00
Simon Alibert
39d8f45810 Privatize methods & renames 2025-03-24 11:57:12 +01:00
Simon Alibert
30fcd3d417 Update so100 2025-03-23 20:15:47 +01:00
Simon Alibert
039b437ef0 Update ensure_safe_goal_position 2025-03-23 19:43:58 +01:00
Simon Alibert
7582a0a2b0 Caps dxl OperatingMode 2025-03-23 19:42:21 +01:00
Simon Alibert
25388d0947 Add feetech operating modes 2025-03-23 19:41:46 +01:00
Simon Alibert
7152bc8aa7 Update Koch 2025-03-23 19:32:26 +01:00
Simon Alibert
5b46dc0b6a Add is_connected in robots and teleops 2025-03-23 19:26:10 +01:00
Simon Alibert
4273f1f384 Add dxl operating modes 2025-03-23 19:25:21 +01:00
Simon Alibert
97194bf7f3 Nit 2025-03-23 17:05:08 +01:00
Simon Alibert
0ac026b521 Remove test skips & fix docstrings 2025-03-23 17:04:30 +01:00
Simon Alibert
ff7cfdaf40 Move mock_serial patch to dedicated file 2025-03-23 17:03:04 +01:00
Simon Alibert
57c97762e1 Simplify _is_comm_success & _is_error 2025-03-23 16:52:29 +01:00
Simon Alibert
a38bb15e79 Add feetech write test 2025-03-23 16:48:32 +01:00
Simon Alibert
3ceaee999d Refactor feetech tests by functionality 2025-03-23 16:25:12 +01:00
Simon Alibert
d485dc1313 Refactor _is_comm_success 2025-03-23 16:15:53 +01:00
Simon Alibert
329d103453 Add dxl write test 2025-03-23 16:12:24 +01:00
Simon Alibert
9f46a3d8f9 Refactor dxl tests by functionality 2025-03-23 16:11:24 +01:00
Simon Alibert
c9ca9e4316 Rename tests 2025-03-23 13:32:08 +01:00
Simon Alibert
5a57e6f4a7 Rename read/write -> sync_read/write, refactor, add write 2025-03-23 13:25:45 +01:00
Simon Alibert
a2f5c34625 Simplify split_int_bytes 2025-03-23 11:55:39 +01:00
Simon Alibert
1f1e1bcfe8 Add Motor in dxl robots 2025-03-23 11:08:20 +01:00
Simon Alibert
e047074825 Add CalibrationMode 2025-03-23 10:20:08 +01:00
Simon Alibert
c2e761437d Assert ping stub called 2025-03-22 18:53:57 +01:00
Simon Alibert
fedac994c3 Add autoclosing fixture 2025-03-22 18:16:13 +01:00
Simon Alibert
7d558d058e Nit 2025-03-22 17:03:18 +01:00
Simon Alibert
1d3e1cbdbd Add feetech write tests 2025-03-22 17:02:01 +01:00
Simon Alibert
0ccc957d5c Fix imports 2025-03-22 16:58:41 +01:00
Simon Alibert
a4d487bc1d Remove comment 2025-03-22 16:52:42 +01:00
Simon Alibert
8ca03a7255 Add dxl write tests 2025-03-22 14:50:05 +01:00
Simon Alibert
f2ed2bfb2f Improve logging & typing 2025-03-22 11:11:39 +01:00
Simon Alibert
40675ec76c Add logger, rm logs 2025-03-22 10:33:42 +01:00
Simon Alibert
9e34c1d731 Move feetech table & cleanup 2025-03-22 01:24:48 +01:00
Simon Alibert
857f335be9 Improve feetech mocking 2025-03-22 01:19:51 +01:00
Simon Alibert
fc4a95f187 Add CRC docstring 2025-03-22 00:50:01 +01:00
Simon Alibert
4fe1880887 Add ping testing 2025-03-22 00:40:22 +01:00
Simon Alibert
6fa859fa19 Improve dynamixel mocking 2025-03-22 00:39:41 +01:00
Simon Alibert
2abfa5838d Improve read ergonomics & typing, rm find_motor_indices 2025-03-22 00:34:07 +01:00
Simon Alibert
3d119c0ccb Add single value write 2025-03-21 12:31:41 +01:00
Simon Alibert
a32081757d Add Motor class 2025-03-21 12:13:44 +01:00
Simon Alibert
56c04ffc53 Move dxl table & cleanup 2025-03-21 11:28:11 +01:00
Simon Alibert
715d4557af Ruff ignore F401 & F403 for init files 2025-03-21 11:22:02 +01:00
Simon Alibert
6541982dff Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-20 14:48:19 +01:00
Simon Alibert
43bc9404bb Remove motors from koch teleop config 2025-03-20 14:47:53 +01:00
Simon Alibert
375499c323 Remove set_operating_mode 2025-03-20 14:47:17 +01:00
Simon Alibert
17a4447cef Add debugging init 2025-03-20 14:45:18 +01:00
Simon Alibert
287dc13d96 Remove CLI for calibration visualization + move to debugging 2025-03-20 14:44:23 +01:00
Simon Alibert
02a1cf6a4e Fix calibration visualization 2025-03-20 14:33:36 +01:00
Simon Alibert
34cd1e47bf Remove obsolete test 2025-03-20 14:07:55 +01:00
Simon Alibert
74d56834af Fix dxl calib import 2025-03-20 14:03:11 +01:00
Simon Alibert
dd80dbb4cd Simplify Dxl motors bus import 2025-03-20 14:01:34 +01:00
Simon Alibert
bc020ee0a4 Remove mock_feetech sdk & add feetech new tests 2025-03-20 14:00:10 +01:00
Simon Alibert
a15767aff1 Fix feetech reader/writer 2025-03-20 13:59:00 +01:00
Simon Alibert
9af0a9bf37 Add mock_feetech 2025-03-20 13:58:02 +01:00
Simon Alibert
e2c8bc6948 Fix packet length, remove bytearray for easier debug, improve doctrings 2025-03-20 13:57:15 +01:00
Simon Alibert
2c68c6ca40 Implement FeetechMotorsBus & move functions to calibration 2025-03-20 10:22:47 +01:00
Simon Alibert
dd1f33e5ed Add pytest param ids 2025-03-20 09:44:47 +01:00
Simon Alibert
2c1bb766ff Refactor MockMotors, add return values 2025-03-20 09:40:58 +01:00
Simon Alibert
c1c71fb994 Ignore patching when not on MacOS 2025-03-20 09:38:36 +01:00
Simon Alibert
2d56f35071 Improve formats & docstrings 2025-03-20 09:36:17 +01:00
Simon Alibert
64ce2669ca Add bytes stuffing 2025-03-20 09:33:33 +01:00
Simon Alibert
f527adf7a9 Add mock-serial 2025-03-19 19:03:34 +01:00
Simon Alibert
6a77189f50 Fix import 2025-03-19 19:02:58 +01:00
Simon Alibert
e4a6d035f9 Remove Dxl mock sdk & update tests 2025-03-19 19:02:25 +01:00
Simon Alibert
794f6e00fc Introduce Dxl packet mocking logic 2025-03-19 18:57:29 +01:00
Simon Alibert
97494c6a39 (WIP) Implement Dynamixel 2025-03-19 18:46:04 +01:00
Simon Alibert
9358d334c7 Rewrite MotorsBus 2025-03-19 18:44:05 +01:00
Simon Alibert
c85a9253e7 Move imports 2025-03-15 23:43:26 +01:00
Simon Alibert
8d659a6aa9 Update mock SDKs 2025-03-15 22:26:47 +01:00
Simon Alibert
f6a2396484 Move test_configure_motors_all_ids_1 2025-03-15 22:19:50 +01:00
Simon Alibert
7a7af82e35 Nit docstring 2025-03-15 21:53:42 +01:00
Simon Alibert
7f23972f3f Add Feetech & Dxl basic tests 2025-03-15 21:45:05 +01:00
Simon Alibert
3362b665e6 Move test files 2025-03-15 21:44:01 +01:00
Simon Alibert
eeeccdba53 Update docstrings 2025-03-15 21:42:54 +01:00
Simon Alibert
bd5b181dfd Improve type hints 2025-03-15 21:33:45 +01:00
Simon Alibert
858678786a Remove unused functions 2025-03-15 19:22:40 +01:00
Simon Alibert
0f972661e1 Move imports & remove mock entirely 2025-03-15 19:22:12 +01:00
Simon Alibert
2e9b144c56 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-15 13:15:28 +01:00
Simon Alibert
fa8ba9e4e2 Rename set_operating_mode arg 2025-03-15 13:14:29 +01:00
Simon Alibert
2037cc0219 Rename ID -> id 2025-03-15 13:14:05 +01:00
Simon Alibert
5006da72ff Update configure_motor script 2025-03-15 13:13:26 +01:00
Simon Alibert
ad0bacbfe4 Ass model_baudrate_table 2025-03-15 13:11:56 +01:00
Simon Alibert
e33ca2c980 Fix TorqueMode imports 2025-03-15 13:10:57 +01:00
Simon Alibert
f0505e81cc Move common Feetech/Dxl code into MotorsBus base class 2025-03-14 22:00:09 +01:00
Simon Alibert
1f7ddc1d76 New Feetech calibration (#859)
Co-authored-by: Pepijn <pepijn@huggingface.co>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2025-03-14 11:31:23 +01:00
Simon Alibert
ce63cfdb25 Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-13 14:24:50 +01:00
Simon Alibert
d6f1359e69 Remove motors from Koch config 2025-03-12 17:16:09 +01:00
Simon Alibert
2357d4aceb Update base classes typing 2025-03-12 17:15:39 +01:00
Simon Alibert
d6ccdc222c Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-03-10 18:39:48 +01:00
Simon Alibert
9bd0788131 Update paths 2025-03-10 18:34:01 +01:00
Simon Alibert
1ae62c28f7 Move lekiwi files 2025-03-10 18:33:28 +01:00
Simon Alibert
baf6e66c3d Add init files 2025-03-10 18:29:58 +01:00
Simon Alibert
a065bd61ae Add keyboard teleop 2025-03-10 18:28:50 +01:00
Simon Alibert
5dc3c74e64 Add WidowX 2025-03-06 21:31:35 +01:00
Simon Alibert
4214b01703 Add ViperX 2025-03-06 12:53:55 +01:00
Simon Alibert
b974e5541f Update stretch teleop 2025-03-06 11:46:06 +01:00
Simon Alibert
fd64dc84ae Move stretch3 teleop 2025-03-06 10:24:27 +01:00
Simon Alibert
06988b2135 WIP stretch 3 robot & teleop 2025-03-04 13:32:58 +01:00
Simon Alibert
7ed7570b17 WIP Add stretch 2025-03-04 11:42:07 +01:00
Simon Alibert
e2d13ba7e4 Update paths 2025-03-04 11:38:31 +01:00
Simon Alibert
f6c1049474 Update errors 2025-03-04 11:24:05 +01:00
Simon Alibert
2b24feb604 Update constants 2025-03-04 11:07:15 +01:00
Simon Alibert
a13e49073c Add Moss Robot 2025-03-03 20:42:48 +01:00
Simon Alibert
2c7e0f17b6 Add SO-100 teleop 2025-03-03 20:31:04 +01:00
Simon Alibert
418866007e Fixes for Koch robot 2025-03-03 20:19:23 +01:00
Simon Alibert
5ab418dbeb Add feetech calibration 2025-03-03 20:17:54 +01:00
Simon Alibert
95f61ee9d4 Add SO-100 robot 2025-03-03 20:17:18 +01:00
Simon Alibert
ac89c8d226 Add Koch teleop 2025-03-03 18:58:54 +01:00
Simon Alibert
d75d904e43 Add teleoperator base class 2025-03-03 18:55:59 +01:00
Simon Alibert
ea4d8d990c Add Koch robot 2025-03-03 18:53:45 +01:00
Simon Alibert
c93cbb8311 Fix base robot class 2025-03-03 18:49:40 +01:00
Simon Alibert
c0137e89b9 Add calibration dir 2025-03-03 18:44:39 +01:00
Simon Alibert
3111ba78ad Add errors 2025-03-03 18:44:15 +01:00
Simon Alibert
3d3a176940 Move & organize motors, add base class 2025-03-03 18:18:24 +01:00
Simon Alibert
212c6095a2 Move & organize cameras, add base class 2025-03-03 18:16:30 +01:00
Simon Alibert
48469ec674 Move motor files 2025-03-02 21:33:22 +01:00
Simon Alibert
c7dfd32b43 Update DynamixelMotorsBus signature 2025-03-02 21:29:35 +01:00
Simon Alibert
731fb6ebaf Fix import 2025-02-26 19:02:15 +01:00
Simon Alibert
13e124302f Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-02-26 18:49:18 +01:00
Simon Alibert
59bdd29106 Move more files & objects around 2025-02-26 18:48:58 +01:00
Simon Alibert
124829104b Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots 2025-02-26 16:26:03 +01:00
Simon Alibert
21cd2940a9 Reorganize files 2025-02-26 16:22:07 +01:00
319 changed files with 16339 additions and 23581 deletions

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2015,
3058,
3061,
1071,
1071,
2035,
2152,
2029,
2499
],
"end_pos": [
-1008,
-1963,
-1966,
2141,
2143,
-971,
3043,
-1077,
3144
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-1024
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2035,
3024,
3019,
979,
981,
1982,
2166,
2124,
1968
],
"end_pos": [
-990,
-2017,
-2015,
2078,
2076,
-1030,
3117,
-1016,
2556
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2056,
2895,
2896,
1191,
1190,
2018,
2051,
2056,
2509
],
"end_pos": [
-1040,
-2004,
-2006,
2126,
2127,
-1010,
3050,
-1117,
3143
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2068,
3034,
3030,
1038,
1041,
1991,
1948,
2090,
1985
],
"end_pos": [
-1025,
-2014,
-2015,
2058,
2060,
-955,
3091,
-940,
2576
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

3
.gitattributes vendored
View File

@@ -11,10 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
*.memmap filter=lfs diff=lfs merge=lfs -text
*.stl filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.json !text !filter !merge !diff
tests/artifacts/cameras/*.png filter=lfs diff=lfs merge=lfs -text
*.bag filter=lfs diff=lfs merge=lfs -text

View File

@@ -0,0 +1,23 @@
name: Build documentation
on:
workflow_dispatch:
push:
paths:
- "docs/**"
branches:
- main
- doc-builder*
- v*-release
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: lerobot
additional_args: --not_python_module
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@@ -0,0 +1,19 @@
name: Build PR Documentation
on:
pull_request:
paths:
- "docs/**"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: lerobot
additional_args: --not_python_module

View File

@@ -0,0 +1,16 @@
name: Upload PR Documentation
on: # zizmor: ignore[dangerous-triggers] We follow the same pattern as in Transformers
workflow_run:
workflows: [ "Build PR Documentation" ]
types:
- completed
jobs:
build: # zizmor: ignore[excessive-permissions] We follow the same pattern as in Transformers
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: lerobot
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

8
.gitignore vendored
View File

@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# Dev scripts
.dev
# Logging
logs
tmp
@@ -26,7 +29,6 @@ outputs
# VS Code
.vscode
.devcontainer
# HPC
nautilus/*.yaml
@@ -92,10 +94,8 @@ coverage.xml
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
# Ignore .cache
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo

View File

@@ -36,8 +36,8 @@ repos:
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/crate-ci/typos
rev: v1.30.2
- repo: https://github.com/adhtruong/mirrors-typos
rev: v1.31.1
hooks:
- id: typos
args: [--force-exclude]
@@ -46,9 +46,9 @@ repos:
rev: v3.19.1
hooks:
- id: pyupgrade
exclude: '^(.*_pb2_grpc\.py|.*_pb2\.py$)'
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.10
rev: v0.11.5
hooks:
- id: ruff
args: [--fix]
@@ -57,12 +57,12 @@ repos:
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.24.0
rev: v8.24.3
hooks:
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.4.1
rev: v1.5.2
hooks:
- id: zizmor

View File

@@ -269,9 +269,6 @@ Follow these steps to start contributing:
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
it from PRs ready to be merged;
4. Make sure existing tests pass;
<!-- 5. Add high-coverage tests. No quality testing = no merge.
See an example of a good PR here: https://github.com/huggingface/lerobot/pull/ -->
### Tests

View File

@@ -23,21 +23,35 @@
</div>
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Build Your Own SO-100 Robot!</a></p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
Build Your Own SO-101 Robot!</a></p>
</h2>
<div align="center">
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<div style="display: flex; gap: 1rem; justify-content: center; align-items: center;" >
<img
src="media/so101/so101.webp?raw=true"
alt="SO-101 follower arm"
title="SO-101 follower arm"
style="width: 40%;"
/>
<img
src="media/so101/so101-leader.webp?raw=true"
alt="SO-101 leader arm"
title="SO-101 leader arm"
style="width: 40%;"
/>
</div>
<p><strong>Meet the SO-100 Just $110 per arm!</strong></p>
<p><strong>Meet the updated SO100, the SO-101 Just €114 per arm!</strong></p>
<p>Train it in minutes with a few simple moves on your laptop.</p>
<p>Then sit back and watch your creation act autonomously! 🤯</p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Get the full SO-100 tutorial here.</a></p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/12_use_so101.md">
See the full SO-101 tutorial here.</a></p>
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
<p>Want to take it to the next level? Make your SO-101 mobile by building LeKiwi!</p>
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
@@ -51,7 +65,6 @@
---
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier to entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
@@ -98,18 +111,25 @@ conda create -y -n lerobot python=3.10
conda activate lerobot
```
When using `miniconda`, if you don't have `ffmpeg` in your environment:
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg
conda install ffmpeg -c conda-forge
```
> **NOTE:** This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
pip install --no-binary=av -e .
pip install -e .
```
> **NOTE:** If you encounter build errors, you may need to install additional dependencies (`cmake`, `build-essential`, and `ffmpeg libs`). On Linux, run:
`sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
`sudo apt-get install cmake build-essential python3-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config`. For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
@@ -118,7 +138,7 @@ For simulations, 🤗 LeRobot comes with gymnasium environments that can be inst
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install --no-binary=av -e ".[aloha, pusht]"
pip install -e ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
@@ -201,7 +221,7 @@ dataset attributes:
│ ├ episode_index (int64): index of the episode for this sample
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
│ ├ timestamp (float32): timestamp in the episode
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
│ ├ next.done (bool): indicates the end of an episode ; True for the last frame in each episode
│ └ index (int64): general index in the whole dataset
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
@@ -250,7 +270,7 @@ See `python lerobot/scripts/eval.py --help` for more instructions.
### Train your own policy
Check out [example 3](./examples/3_train_policy.py) that illustrate how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
Check out [example 3](./examples/3_train_policy.py) that illustrates how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding `--wandb.enable=true`.
@@ -301,7 +321,7 @@ Once you have trained a policy you may upload it to the Hugging Face hub using a
You first need to find the checkpoint folder located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). Within that there is a `pretrained_model` directory which should contain:
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
- `train_config.json`: A consolidated configuration containing all parameter userd for training. The policy configuration should match `config.json` exactly. Thisis useful for anyone who wants to evaluate your policy or for reproducibility.
- `train_config.json`: A consolidated configuration containing all parameters used for training. The policy configuration should match `config.json` exactly. This is useful for anyone who wants to evaluate your policy or for reproducibility.
To upload these to the hub, run the following:
```bash

View File

@@ -17,12 +17,21 @@
import argparse
import datetime as dt
import os
import time
from pathlib import Path
import cv2
import rerun as rr
# see https://rerun.io/docs/howto/visualization/limit-ram
RERUN_MEMORY_LIMIT = os.getenv("LEROBOT_RERUN_MEMORY_LIMIT", "5%")
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int):
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int, duration: int):
rr.init("lerobot_capture_camera_feed")
rr.spawn(memory_limit=RERUN_MEMORY_LIMIT)
now = dt.datetime.now()
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
if not capture_dir.exists():
@@ -39,24 +48,21 @@ def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
frame_index = 0
while True:
start_time = time.time()
while time.time() - start_time < duration:
ret, frame = cap.read()
if not ret:
print("Error: Could not read frame.")
break
cv2.imshow("Video Stream", frame)
rr.log("video/stream", rr.Image(frame.numpy()), static=True)
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
frame_index += 1
# Break the loop on 'q' key press
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Release the capture and destroy all windows
# Release the capture
cap.release()
cv2.destroyAllWindows()
# TODO(Steven): Add a graceful shutdown via a close() method for the Viewer context, though not currently supported in the Rerun API.
if __name__ == "__main__":
@@ -86,5 +92,11 @@ if __name__ == "__main__":
default=720,
help="Height of the captured images.",
)
parser.add_argument(
"--duration",
type=int,
default=20,
help="Duration in seconds for which the video stream should be captured.",
)
args = parser.parse_args()
display_and_save_video_stream(**vars(args))

View File

@@ -32,11 +32,7 @@ import numpy as np
import pandas as pd
import PIL
import torch
from skimage.metrics import (
mean_squared_error,
peak_signal_noise_ratio,
structural_similarity,
)
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
from tqdm import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
@@ -98,11 +94,7 @@ def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> t
def save_decoded_frames(
imgs_dir: Path,
save_dir: Path,
frames: torch.Tensor,
timestamps: list[float],
fps: int,
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int
) -> None:
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
return
@@ -112,10 +104,7 @@ def save_decoded_frames(
idx = int(ts * fps)
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
shutil.copyfile(
imgs_dir / f"frame_{idx:06d}.png",
save_dir / f"frame_{idx:06d}_original.png",
)
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
@@ -131,11 +120,7 @@ def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
imgs_dataset = hf_dataset.select_columns(img_keys[0])
for i, item in enumerate(
tqdm(
imgs_dataset,
desc=f"saving {dataset.repo_id} first episode images",
leave=False,
)
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
):
img = item[img_keys[0]]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
@@ -290,9 +275,7 @@ def benchmark_encoding_decoding(
random.seed(seed)
benchmark_table = []
for timestamps_mode in tqdm(
decoding_cfg["timestamps_modes"],
desc="decodings (timestamps_modes)",
leave=False,
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
):
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
benchmark_row = benchmark_decoding(
@@ -433,7 +416,7 @@ if __name__ == "__main__":
"--vcodec",
type=str,
nargs="*",
default=["libx264", "libx265", "libsvtav1"],
default=["libx264", "hevc", "libsvtav1"],
help="Video codecs to be tested",
)
parser.add_argument(
@@ -463,7 +446,7 @@ if __name__ == "__main__":
# nargs="*",
# default=[0, 1],
# help="Use the fastdecode tuning option. 0 disables it. "
# "For libx264 and libx265, only 1 is possible. "
# "For libx264 and libx265/hevc, only 1 is possible. "
# "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
# )
parser.add_argument(

View File

@@ -14,7 +14,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
tcpdump sysstat screen tmux \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
speech-dispatcher portaudio19-dev libgeos-dev \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv python${PYTHON_VERSION}-dev \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install ffmpeg build dependencies. See:

137
docs/README.md Normal file
View File

@@ -0,0 +1,137 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
pip install -e ".[docs]"
```
You will also need `nodejs`. Please refer to their [installation page](https://nodejs.org/en/download)
---
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look before committing for instance). You don't have to `git commit` the built documentation.
---
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
doc-builder build lerobot docs/source/ --build_dir ~/tmp/test-build
```
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview lerobot docs/source/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
## Adding a new element to the navigation bar
Accepted files are Markdown (.md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/lerobot/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
```
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved sections set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md).
### Adding a new tutorial
Adding a new tutorial or section is done in two steps:
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. If you have a doubt, feel free to ask in a Github Issue or PR.
### Writing source documentation
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None or any strings should usually be put in `code`.
#### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
```
# first line of code
# second line
# etc
```
````
#### Adding an image
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.

26
docs/source/_toctree.yml Normal file
View File

@@ -0,0 +1,26 @@
- sections:
- local: index
title: LeRobot
- local: installation
title: Installation
title: Get started
- sections:
- local: getting_started_real_world_robot
title: Getting Started with Real-World Robots
- local: cameras
title: Cameras
title: "Tutorials"
- sections:
- local: so101
title: SO-101
- local: so100
title: SO-100
- local: koch
title: Koch v1.1
- local: lekiwi
title: LeKiwi
title: "Robots"
- sections:
- local: contributing
title: Contribute to LeRobot
title: "Contribute"

190
docs/source/cameras.mdx Normal file
View File

@@ -0,0 +1,190 @@
# Cameras
Here we describe how to set up and use a camera with LeRobot. We support different ways of capturing videos in LeRobot, such as using a phone camera, an integrated laptop camera, an external webcam, or an Intel realsense camera.
## Set up Cameras
There are three ways to connect and use a camera with LeRobot:
1. Use [Camera Class](./setup_cameras?use+phone=Mac#use-opencvcamera), which allows you to use any camera: usb, realsense, laptop webcam
2. Use [iPhone camera](./setup_cameras?use+phone=Mac#use-your-phone) with MacOS
3. Use [Phone camera](./setup_cameras?use+phone=Linux#use-your-phone) on Linux
### Use Camera Class
In LeRobot, you can efficiently record frames from most cameras using either the OpenCVCamera class or the RealSenseCamera class. For more details on compatibility for the OpenCVCamera class, see [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
To instantiate a camera, you need a camera index. When you only have one camera like a webcam of a laptop, the camera index is usually `0` but it might differ, and the camera index might change if you reboot your computer or re-plug your camera. This behavior depends on your operating system.
To find the camera indices, run the following script:
```bash
python lerobot/find_cameras.py list-cameras
```
The output will look something like this if you have two cameras connected:
```
--- Detected Cameras ---
Camera #0:
Name: OpenCV Camera @ 0
Type: OpenCV
Id: 0
Backend api: AVFOUNDATION
Default stream profile:
Format: 16.0
Width: 1920
Height: 1080
Fps: 15.0
--------------------
Camera #1:
Name: OpenCV Camera @ 1
Type: OpenCV
Id: 1
Backend api: AVFOUNDATION
Default stream profile:
Format: 16.0
Width: 1920
Height: 1080
Fps: 1.0
--------------------
```
> [!WARNING]
> On , you could get this error: `Error finding RealSense cameras: failed to set power state`, this can be solved by running the same command with `sudo` permissions.
### Use your phone
<hfoptions id="use phone">
<hfoption id="Mac">
To use your iPhone as a camera on macOS, enable the Continuity Camera feature:
- Ensure your Mac is running macOS 13 or later, and your iPhone is on iOS 16 or later.
- Sign in both devices with the same Apple ID.
- Connect your devices with a USB cable or turn on Wi-Fi and Bluetooth for a wireless connection.
For more details, visit [Apple support](https://support.apple.com/en-gb/guide/mac-help/mchl77879b8a/mac).
Your iPhone should be detected automatically when running the camera setup script in the next section.
</hfoption>
<hfoption id="Linux">
If you want to use your phone as a camera on Linux, follow these steps to set up a virtual camera
1. *Install `v4l2loopback-dkms` and `v4l-utils`*. Those packages are required to create virtual camera devices (`v4l2loopback`) and verify their settings with the `v4l2-ctl` utility from `v4l-utils`. Install them using:
```python
sudo apt install v4l2loopback-dkms v4l-utils
```
2. *Install [DroidCam](https://droidcam.app) on your phone*. This app is available for both iOS and Android.
3. *Install [OBS Studio](https://obsproject.com)*. This software will help you manage the camera feed. Install it using [Flatpak](https://flatpak.org):
```python
flatpak install flathub com.obsproject.Studio
```
4. *Install the DroidCam OBS plugin*. This plugin integrates DroidCam with OBS Studio. Install it with:
```python
flatpak install flathub com.obsproject.Studio.Plugin.DroidCam
```
5. *Start OBS Studio*. Launch with:
```python
flatpak run com.obsproject.Studio
```
6. *Add your phone as a source*. Follow the instructions [here](https://droidcam.app/obs/usage). Be sure to set the resolution to `640x480`.
7. *Adjust resolution settings*. In OBS Studio, go to `File > Settings > Video`. Change the `Base(Canvas) Resolution` and the `Output(Scaled) Resolution` to `640x480` by manually typing it in.
8. *Start virtual camera*. In OBS Studio, follow the instructions [here](https://obsproject.com/kb/virtual-camera-guide).
9. *Verify the virtual camera setup*. Use `v4l2-ctl` to list the devices:
```python
v4l2-ctl --list-devices
```
You should see an entry like:
```
VirtualCam (platform:v4l2loopback-000):
/dev/video1
```
10. *Check the camera resolution*. Use `v4l2-ctl` to ensure that the virtual camera output resolution is `640x480`. Change `/dev/video1` to the port of your virtual camera from the output of `v4l2-ctl --list-devices`.
```python
v4l2-ctl -d /dev/video1 --get-fmt-video
```
You should see an entry like:
```
>>> Format Video Capture:
>>> Width/Height : 640/480
>>> Pixel Format : 'YUYV' (YUYV 4:2:2)
```
Troubleshooting: If the resolution is not correct you will have to delete the Virtual Camera port and try again as it cannot be changed.
If everything is set up correctly, you can proceed with the rest of the tutorial.
</hfoption>
</hfoptions>
## Use Cameras
Below are two examples, demonstrating how to work with the API.
- **Asynchronous frame capture** using an OpenCV-based camera
- **Color and depth capture** using an Intel RealSense camera
### Asynchronous OpenCV Camera
This snippet shows how to:
* Construct an `OpenCVCameraConfig` with your desired FPS, resolution, color mode, and rotation.
* Instantiate and connect an `OpenCVCamera`, performing a warm-up read.
* Read frames asynchronously in a loop via `async_read(timeout_ms)`.
```python
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.cameras.opencv.camera_opencv import OpenCVCamera
from lerobot.common.cameras.configs import ColorMode, Cv2Rotation
config = OpenCVCameraConfig(
index_or_path=0,
fps=15,
width=1920,
height=1080,
color_mode=ColorMode.RGB,
rotation=Cv2Rotation.NO_ROTATION
)
camera = OpenCVCamera(config)
camera.connect(do_warmup_read=True)
try:
for i in range(10):
frame = camera.async_read(timeout_ms=1000)
print(f"Async frame {i} shape:", frame.shape)
finally:
camera.disconnect()
```
### Intel RealSense Camera (Color + Depth)
This snippet shows how to:
* Create a `RealSenseCameraConfig` specifying your cameras serial number and enabling depth.
* Instantiate and connect a `RealSenseCamera` with warm-up.
* Capture a color frame via `read()` and a depth map via `read_depth()`.
```python
from lerobot.common.cameras.intel.configuration_realsense import RealSenseCameraConfig
from lerobot.common.cameras.intel.camera_realsense import RealSenseCamera
from lerobot.common.cameras.configs import ColorMode, Cv2Rotation
config = RealSenseCameraConfig(
serial_number="233522074606",
fps=15,
width=640,
height=480,
color_mode=ColorMode.RGB,
use_depth=True,
rotation=Cv2Rotation.NO_ROTATION
)
camera = RealSenseCamera(config)
camera.connect(do_warmup_read=True)
try:
color_frame = camera.read()
depth_map = camera.read_depth()
print("Color frame shape:", color_frame.shape)
print("Depth map shape:", depth_map.shape)
finally:
camera.disconnect()
```

1
docs/source/contributing.md Symbolic link
View File

@@ -0,0 +1 @@
../../CONTRIBUTING.md

View File

@@ -0,0 +1,384 @@
# Getting Started with Real-World Robots
This tutorial will explain how to train a neural network to control a real robot autonomously.
**You'll learn:**
1. How to record and visualize your dataset.
2. How to train a policy using your data and prepare it for evaluation.
3. How to evaluate your policy and visualize the results.
By following these steps, you'll be able to replicate tasks, such as picking up a Lego block and placing it in a bin with a high success rate, as shown in [this video](https://x.com/RemiCadene/status/1814680760592572934).
This tutorial isnt tied to a specific robot: we walk you through the commands and API snippets you can adapt for any supported platform.
During data collection, youll use a “teloperation” device, such as a leader arm or keyboard to teleoperate the robot and record its motion trajectories.
Once youve gathered enough trajectories, youll train a neural network to imitate these trajectories and deploy the trained model so your robot can perform the task autonomously.
If you run into any issues at any point, jump into our [Discord community](https://discord.com/invite/s3KuuzsPFb) for support.
## Set up and Calibrate
If you haven't yet set up and calibrated your robot and teleop device, please do so by following the robot-specific tutorial.
## Teleoperate
In this example, well demonstrate how to teleoperate the SO101 robot. For each command, we also provide a corresponding API example.
<hfoptions id="teleoperate_so101">
<hfoption id="Command">
```bash
python -m lerobot.teleoperate \
--robot.type=so101_follower \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.cameras="{}" \
--robot.id=my_red_robot_arm \
--teleop.type=so101_leader \
--teleop.port=/dev/tty.usbmodem58760431551 \
--teleop.id=my_blue_leader_arm
```
</hfoption>
<hfoption id="API example">
```python
from lerobot.common.teleoperators.so101_leader import SO101LeaderConfig, SO101Leader
from lerobot.common.robots.so101_follower import SO101FollowerConfig, SO101Follower
robot_config = SO101FollowerConfig(
port="/dev/tty.usbmodem58760431541",
id="my_red_robot_arm",
)
teleop_config = SO101LeaderConfig(
port="/dev/tty.usbmodem58760431551",
id="my_blue_leader_arm",
)
robot = SO101Follower(robot_config)
teleop_device = SO101Leader(teleop_config)
robot.connect()
teleop_device.connect()
while True:
action = teleop_device.get_action()
robot.send_action(action)
```
</hfoption>
</hfoptions>
The teleoperate command will automatically:
1. Identify any missing calibrations and initiate the calibration procedure.
2. Connect the robot and teleop device and start teleoperation.
## Cameras
To add cameras to your setup, follow this [Guide](./cameras#setup-cameras).
## Teleoperate with cameras
With `rerun`, you can teleoperate again while simultaneously visualizing the camera feeds and joint positions. In this example, were using the Koch arm.
<hfoptions id="teleoperate_koch_camera">
<hfoption id="Command">
```bash
python -m lerobot.teleoperate \
--robot.type=koch_follower \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.id=my_koch_robot \
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
--teleop.type=koch_leader \
--teleop.port=/dev/tty.usbmodem58760431551 \
--teleop.id=my_koch_teleop \
--display_data=true
```
</hfoption>
<hfoption id="API example">
```python
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig
from lerobot.common.teleoperators.koch_leader import KochLeaderConfig, KochLeader
from lerobot.common.robots.koch_follower import KochFollowerConfig, KochFollower
camera_config = {
"front": OpenCVCameraConfig(index_or_path=0, width=1920, height=1080, fps=30)
}
robot_config = KochFollowerConfig(
port="/dev/tty.usbmodem585A0076841",
id="my_red_robot_arm",
cameras=camera_config
)
teleop_config = KochLeaderConfig(
port="/dev/tty.usbmodem58760431551",
id="my_blue_leader_arm",
)
robot = KochFollower(robot_config)
teleop_device = KochLeader(teleop_config)
robot.connect()
teleop_device.connect()
while True:
observation = robot.get_observation()
action = teleop_device.get_action()
robot.send_action(action)
```
</hfoption>
</hfoptions>
## Teleoperate LeKiwi
> [!TIP]
> If you're using a Mac, you might need to give Terminal permission to access your keyboard for teleoperation. Go to System Preferences > Security & Privacy > Input Monitoring and check the box for Terminal.
TODO(pepijn): modify these commands with new API, and explain you can also map the arms to a keyboard with the new API now
To teleoperate SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
```bash
python -m lerobot.common.robots.lekiwi.lekiwi_host
```
Then on your laptop, also run `conda activate lerobot` and this script:
```bash
python -m lerobot.teleoperate \
--robot.type=lekiwi \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.cameras="{}" \
--robot.id=my_lekiwi \
--teleop.type=so101_leader \
--teleop.port=/dev/tty.usbmodem58760431551 \
--teleop.id=my_blue_leader_arm
```
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`. For the `--control.type=remote_robot` you will also need to set `--control.viewer_ip` and `--control.viewer_port`
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
| ---------- | ------------------ | ---------------------- |
| Fast | 0.4 | 90 |
| Medium | 0.25 | 60 |
| Slow | 0.1 | 30 |
| Key | Action |
| --- | -------------- |
| W | Move forward |
| A | Move left |
| S | Move backward |
| D | Move right |
| Z | Turn left |
| X | Turn right |
| R | Increase speed |
| F | Decrease speed |
> [!TIP]
> If you use a different keyboard, you can change the keys for each command in the [`LeKiwiConfig`](../lerobot/common/robot_devices/robots/configs.py).
### Wired version
If you have the **wired** LeKiwi version, please run all commands on your laptop.
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset.
We use the Hugging Face hub features for uploading your dataset. If you haven't previously used the Hub, make sure you can login via the cli using a write-access token, this token can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens).
Add your token to the CLI by running this command:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then store your Hugging Face repository name in a variable:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Now you can record a dataset. To record 2 episodes and upload your dataset to the hub, execute this command tailored to the SO101.
```bash
python -m lerobot.record \
--robot.type=so101_follower \
--robot.port=/dev/tty.usbmodem585A0076841 \
--robot.id=my_red_robot_arm \
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
--teleop.type=so101_leader \
--teleop.port=/dev/tty.usbmodem58760431551 \
--teleop.id=my_blue_leader_arm \
--display_data=true \
--dataset.repo_id=aliberts/record-test \
--dataset.num_episodes=2 \
--dataset.single_task="Grab the black cube"
```
You will see a lot of lines appearing like this one:
```
INFO 2024-08-10 15:02:58 ol_robot.py:219 dt:33.34 (30.0hz) dtRlead: 5.06 (197.5hz) dtWfoll: 0.25 (3963.7hz) dtRfoll: 6.22 (160.7hz) dtRlaptop: 32.57 (30.7hz) dtRphone: 33.84 (29.5hz)
```
| Field | Meaning |
|:---|:---|
| `2024-08-10 15:02:58` | Timestamp when `print` was called. |
| `ol_robot.py:219` | Source file and line number of the `print` call (`lerobot/scripts/control_robot.py` at line `219`). |
| `dt: 33.34 (30.0 Hz)` | Delta time (ms) between teleop steps (target: 30.0 Hz, `--fps 30`). Yellow if step is too slow. |
| `dtRlead: 5.06 (197.5 Hz)` | Delta time (ms) for reading present position from the **leader arm**. |
| `dtWfoll: 0.25 (3963.7 Hz)` | Delta time (ms) for writing goal position to the **follower arm** (asynchronous). |
| `dtRfoll: 6.22 (160.7 Hz)` | Delta time (ms) for reading present position from the **follower arm**. |
| `dtRlaptop: 32.57 (30.7 Hz)` | Delta time (ms) for capturing an image from the **laptop camera** (async thread). |
| `dtRphone: 33.84 (29.5 Hz)` | Delta time (ms) for capturing an image from the **phone camera** (async thread). |
#### Dataset upload
Locally, your dataset is stored in this folder: `~/.cache/huggingface/lerobot/{repo-id}` (e.g. `data/cadene/so101_test`). At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/so101_test) that you can obtain by running:
```bash
echo https://huggingface.co/datasets/${HF_USER}/so101_test
```
Your dataset will be automatically tagged with `LeRobot` for the community to find it easily, and you can also add custom tags (in this case `tutorial` for example).
You can look for other LeRobot datasets on the hub by searching for `LeRobot` [tags](https://huggingface.co/datasets?other=LeRobot).
#### Record function
The `record` function provides a suite of tools for capturing and managing data during robot operation:
##### 1. Data Storage
- Data is stored using the `LeRobotDataset` format and is stored on disk during recording.
- By default, the dataset is pushed to your Hugging Face page after recording.
- To disable uploading, use `--dataset.push_to_hub=False`.
##### 2. Checkpointing and Resuming
- Checkpoints are automatically created during recording.
- If an issue occurs, you can resume by re-running the same command with `--control.resume=true`.
- To start recording from scratch, **manually delete** the dataset directory.
##### 3. Recording Parameters
Set the flow of data recording using command-line arguments:
- `--warmup_time_s=10`
Number of seconds before starting data collection (default: **10 seconds**).
Allows devices to warm up and synchronize.
- `--dataset.episode_time_s=60`
Duration of each data recording episode (default: **60 seconds**).
- `--dataset.reset_time_s=60`
Duration for resetting the environment after each episode (default: **60 seconds**).
- `--dataset.num_episodes=50`
Total number of episodes to record (default: **50**).
##### 4. Keyboard Controls During Recording
Control the data recording flow using keyboard shortcuts:
- Press **Right Arrow (`→`)**: Early stop the current episode or reset time and move to the next.
- Press **Left Arrow (`←`)**: Cancel the current episode and re-record it.
- Press **Escape (`ESC`)**: Immediately stop the session, encode videos, and upload the dataset.
#### Tips for gathering data
Once you're comfortable with data recording, you can create a larger dataset for training. A good starting task is grasping an object at different locations and placing it in a bin. We suggest recording at least 50 episodes, with 10 episodes per location. Keep the cameras fixed and maintain consistent grasping behavior throughout the recordings. Also make sure the object you are manipulating is visible on the camera's. A good rule of thumb is you should be able to do the task yourself by only looking at the camera images.
In the following sections, youll train your neural network. After achieving reliable grasping performance, you can start introducing more variations during data collection, such as additional grasp locations, different grasping techniques, and altering camera positions.
Avoid adding too much variation too quickly, as it may hinder your results.
If you want to dive deeper into this important topic, you can check out the [blog post](https://huggingface.co/blog/lerobot-datasets#what-makes-a-good-dataset) we wrote on what makes a good dataset.
#### Troubleshooting:
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so101_test
```
If you didn't upload with `--control.push_to_hub=false`, you can visualize it locally with (via a window in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so101_test \
--local-files-only 1
```
This will launch a local web server that looks like this:
<div style="text-align:center;">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/visualize_dataset_html.webp?raw=true" alt="Koch v1.1 leader and follower arms" title="Koch v1.1 leader and follower arms" width="100%"></img>
</div>
## Replay an episode
A useful feature is the `replay` function, which allows you to replay any episode that you've recorded or episodes from any dataset out there. This function helps you test the repeatability of your robot's actions and assess transferability across robots of the same model.
You can replay the first episode on your robot with:
```bash
python -m lerobot.replay \
--robot.type=so101_follower \
--robot.port=/dev/tty.usbmodem58760431541 \
--robot.id=black \
--dataset.repo_id=aliberts/record-test \
--dataset.episode=2
```
Your robot should replicate movements similar to those you recorded. For example, check out [this video](https://x.com/RemiCadene/status/1793654950905680090) where we use `replay` on a Aloha robot from [Trossen Robotics](https://www.trossenrobotics.com).
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/so101_test \
--policy.type=act \
--output_dir=outputs/train/act_so101_test \
--job_name=act_so101_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain the command:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so101_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor states, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so101_test/checkpoints`.
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so101_test` policy:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model/train_config.json \
--resume=true
```
#### Upload policy checkpoints
Once training is done, upload the latest checkpoint with:
```bash
huggingface-cli upload ${HF_USER}/act_so101_test \
outputs/train/act_so101_test/checkpoints/last/pretrained_model
```
You can also upload intermediate checkpoints with:
```bash
CKPT=010000
huggingface-cli upload ${HF_USER}/act_so101_test${CKPT} \
outputs/train/act_so101_test/checkpoints/${CKPT}/pretrained_model
```
## Evaluate your policy
TODO(pepijn): modify this command further
You can use the `record` script from [`lerobot/record.py`](https://github.com/huggingface/lerobot/blob/main/lerobot/record.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python -m lerobot.record \
--robot.type=so101_follower \
--robot.port=/dev/tty.usbmodem585A0076841 \
--robot.id=my_red_robot_arm \
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 1920, height: 1080, fps: 30}}" \
--teleop.type=so101_leader \
--teleop.port=/dev/tty.usbmodem58760431551 \
--teleop.id=my_blue_leader_arm \
--display_data=true \
--dataset.repo_id=aliberts/eval_act \
--policy.checkpoint_path=outputs/train/act_so101_test/checkpoints/last/pretrained_model \
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so101_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so101_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so101_test`).

19
docs/source/index.mdx Normal file
View File

@@ -0,0 +1,19 @@
<div class="flex justify-center">
<a target="_blank" href="https://huggingface.co/lerobot">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/lerobot/lerobot-logo-thumbnail.png" style="width: 100%"></img>
</a>
</div>
# LeRobot
**State-of-the-art machine learning for real-world robotics**
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started.
🤗 LeRobot hosts pretrained models and datasets on the LeRobot HuggingFace page.
Join the LeRobot community on [Discord](https://discord.gg/s3KuuzsPFb)

View File

@@ -0,0 +1,100 @@
# Installation
## Install LeRobot
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git
cd lerobot
```
Create a virtual environment with Python 3.10, using [`Miniconda`](https://docs.anaconda.com/miniconda/install/#quick-command-line-install)
```bash
conda create -y -n lerobot python=3.10
```
Now restart the shell by running:
<hfoptions id="shell_restart">
<hfoption id="Windows">
```bash
source ~/.bashrc
```
</hfoption>
<hfoption id="Mac">
```bash
source ~/.bash_profile
```
</hfoption>
<hfoption id="zshell">
```bash
source ~/.zshrc
```
</hfoption>
</hfoptions>
Then activate your conda environment, you have to do this each time you open a shell to use lerobot:
```bash
conda activate lerobot
```
When using `miniconda`, install `ffmpeg` in your environment:
```bash
conda install ffmpeg -c conda-forge
```
> [!TIP]
> This usually installs `ffmpeg 7.X` for your platform compiled with the `libsvtav1` encoder. If `libsvtav1` is not supported (check supported encoders with `ffmpeg -encoders`), you can:
> - _[On any platform]_ Explicitly install `ffmpeg 7.X` using:
> ```bash
> conda install ffmpeg=7.1.1 -c conda-forge
> ```
> - _[On Linux only]_ Install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1), and make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
Install 🤗 LeRobot:
```bash
cd lerobot && pip install
```
## Troubleshooting
If you encounter build errors, you may need to install additional dependencies: `cmake`, `build-essential`, and `ffmpeg libs`.
To install these for linux run:
```bash
sudo apt-get install cmake build-essential python-dev pkg-config libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev libswresample-dev libavfilter-dev pkg-config
```
For other systems, see: [Compiling PyAV](https://pyav.org/docs/develop/overview/installation.html#bring-your-own-ffmpeg)
## Sim
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
- [pusht](https://github.com/huggingface/gym-pusht)
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install -e ".[aloha, pusht]"
```
## Motor SDK
For Koch v1.1 install the Dynamixel SDK, for SO100/SO101/Moss install the Feetech SDK.
<hfoptions id="install motors">
<hfoption id="Feetech">
```bash
pip install -e ".[feetech]"
```
</hfoption>
<hfoption id="Dynamixel">
```bash
pip install -e ".[dynamixel]"
```
</hfoption>
</hfoptions>
## W&B
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
```bash
wandb login
```

1
docs/source/koch.md Symbolic link
View File

@@ -0,0 +1 @@
../../lerobot/common/robots/koch_follower/koch.md

1
docs/source/lekiwi.md Symbolic link
View File

@@ -0,0 +1 @@
../../lerobot/common/robots/lekiwi/lekiwi.md

1
docs/source/so100.md Symbolic link
View File

@@ -0,0 +1 @@
../../lerobot/common/robots/so100_follower/so100.md

1
docs/source/so101.md Symbolic link
View File

@@ -0,0 +1 @@
../../lerobot/common/robots/so101_follower/so101.md

View File

@@ -1,615 +0,0 @@
# Using the [SO-100](https://github.com/TheRobotStudio/SO-ARM100) with LeRobot
## Table of Contents
- [A. Source the parts](#a-source-the-parts)
- [B. Install LeRobot](#b-install-lerobot)
- [C. Configure the Motors](#c-configure-the-motors)
- [D. Step-by-Step Assembly Instructions](#d-step-by-step-assembly-instructions)
- [E. Calibrate](#e-calibrate)
- [F. Teleoperate](#f-teleoperate)
- [G. Record a dataset](#g-record-a-dataset)
- [H. Visualize a dataset](#h-visualize-a-dataset)
- [I. Replay an episode](#i-replay-an-episode)
- [J. Train a policy](#j-train-a-policy)
- [K. Evaluate your policy](#k-evaluate-your-policy)
- [L. More Information](#l-more-information)
## A. Source the parts
Follow this [README](https://github.com/TheRobotStudio/SO-ARM100). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts,
and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## B. Install LeRobot
> [!TIP]
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
On your computer:
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
#### 2. Restart shell
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
#### 3. Create and activate a fresh conda environment for lerobot
<details>
<summary><strong>Video install instructions</strong></summary>
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
</details>
```bash
conda create -y -n lerobot python=3.10
```
Then activate your conda environment (do this each time you open a shell to use lerobot!):
```bash
conda activate lerobot
```
#### 4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms :robot:.
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
## C. Configure the motors
> [!NOTE]
> Throughout this tutorial you will find videos on how to do the steps, the full video tutorial can be found here: [assembly video](https://www.youtube.com/watch?v=FioA2oeFZ5I).
### 1. Find the USB ports associated to each arm
Designate one bus servo adapter and 6 motors for your leader arm, and similarly the other bus servo adapter and 6 motors for the follower arm. It's convenient to label them and write on each motor if it's for the follower `F` or for the leader `L` and it's ID from 1 to 6 (F1...F6 and L1...L6).
#### a. Run the script to find port
<details>
<summary><strong>Video finding port</strong></summary>
<video src="https://github.com/user-attachments/assets/4a21a14d-2046-4805-93c4-ee97a30ba33f"></video>
<video src="https://github.com/user-attachments/assets/1cc3aecf-c16d-4ff9-aec7-8c175afbbce2"></video>
</details>
To find the port for each bus servo adapter, run the utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
#### b. Example outputs
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your MotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this MotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
#### c. Troubleshooting
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
#### d. Update config file
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`SO100RobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
```python
@RobotConfig.register_subclass("so100")
@dataclass
class So100RobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/so100"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
### 2. Assembling the Base
Let's begin with assembling the follower arm base
#### a. Set IDs for all 12 motors
<details>
<summary><strong>Video configuring motor</strong></summary>
<video src="https://github.com/user-attachments/assets/ef9b3317-2e11-4858-b9d3-f0a02fb48ecf"></video>
<video src="https://github.com/user-attachments/assets/f36b5ed5-c803-4ebe-8947-b39278776a0d"></video>
</details>
Plug your first motor F1 and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate. Replace the text after --port to the corresponding follower control board port and run this command in cmd:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
> [!NOTE]
> These motors are currently limited. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
#### b. Remove the gears of the 6 leader motors
<details>
<summary><strong>Video removing gears</strong></summary>
<video src="https://github.com/user-attachments/assets/0c95b88c-5b85-413d-ba19-aee2f864f2a7"></video>
</details>
Follow the video for removing gears. You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
## D. Step-by-Step Assembly Instructions
**Step 1: Clean Parts**
- Remove all support material from the 3D-printed parts.
---
### Additional Guidance
<details>
<summary><strong>Video assembling arms</strong></summary>
<video src="https://github.com/user-attachments/assets/488a39de-0189-4461-9de3-05b015f90cca"></video>
</details>
**Note:**
This video provides visual guidance for assembling the arms, but it doesn't specify when or how to do the wiring. Inserting the cables beforehand is much easier than doing it afterward. The first arm may take a bit more than 1 hour to assemble, but once you get used to it, you can assemble the second arm in under 1 hour.
---
### First Motor
**Step 2: Insert Wires**
- Insert two wires into the first motor.
<img src="../media/tutorial/img1.jpg" style="height:300px;">
**Step 3: Install in Base**
- Place the first motor into the base.
<img src="../media/tutorial/img2.jpg" style="height:300px;">
**Step 4: Secure Motor**
- Fasten the motor with 4 screws. Two from the bottom and two from top.
**Step 5: Attach Motor Holder**
- Slide over the first motor holder and fasten it using two screws (one on each side).
<img src="../media/tutorial/img4.jpg" style="height:300px;">
**Step 6: Attach Motor Horns**
- Install both motor horns, securing the top horn with a screw. Try not to move the motor position when attaching the motor horn, especially for the leader arms, where we removed the gears.
<img src="../media/tutorial/img5.jpg" style="height:300px;">
<details>
<summary><strong>Video adding motor horn</strong></summary>
<video src="https://github.com/user-attachments/assets/ef3391a4-ad05-4100-b2bd-1699bf86c969"></video>
</details>
**Step 7: Attach Shoulder Part**
- Route one wire to the back of the robot and the other to the left or in photo towards you (see photo).
- Attach the shoulder part.
<img src="../media/tutorial/img6.jpg" style="height:300px;">
**Step 8: Secure Shoulder**
- Tighten the shoulder part with 4 screws on top and 4 on the bottom
*(access bottom holes by turning the shoulder).*
---
### Second Motor Assembly
**Step 9: Install Motor 2**
- Slide the second motor in from the top and link the wire from motor 1 to motor 2.
<img src="../media/tutorial/img8.jpg" style="height:300px;">
**Step 10: Attach Shoulder Holder**
- Add the shoulder motor holder.
- Ensure the wire from motor 1 to motor 2 goes behind the holder while the other wire is routed upward (see photo).
- This part can be tight to assemble, you can use a workbench like the image or a similar setup to push the part around the motor.
<div style="display: flex;">
<img src="../media/tutorial/img9.jpg" style="height:250px;">
<img src="../media/tutorial/img10.jpg" style="height:250px;">
<img src="../media/tutorial/img12.jpg" style="height:250px;">
</div>
**Step 11: Secure Motor 2**
- Fasten the second motor with 4 screws.
**Step 12: Attach Motor Horn**
- Attach both motor horns to motor 2, again use the horn screw.
**Step 13: Attach Base**
- Install the base attachment using 2 screws.
<img src="../media/tutorial/img11.jpg" style="height:300px;">
**Step 14: Attach Upper Arm**
- Attach the upper arm with 4 screws on each side.
<img src="../media/tutorial/img13.jpg" style="height:300px;">
---
### Third Motor Assembly
**Step 15: Install Motor 3**
- Route the motor cable from motor 2 through the cable holder to motor 3, then secure motor 3 with 4 screws.
**Step 16: Attach Motor Horn**
- Attach both motor horns to motor 3 and secure one again with a horn screw.
<img src="../media/tutorial/img14.jpg" style="height:300px;">
**Step 17: Attach Forearm**
- Connect the forearm to motor 3 using 4 screws on each side.
<img src="../media/tutorial/img15.jpg" style="height:300px;">
---
### Fourth Motor Assembly
**Step 18: Install Motor 4**
- Slide in motor 4, attach the cable from motor 3, and secure the cable in its holder with a screw.
<div style="display: flex;">
<img src="../media/tutorial/img16.jpg" style="height:300px;">
<img src="../media/tutorial/img19.jpg" style="height:300px;">
</div>
**Step 19: Attach Motor Holder 4**
- Install the fourth motor holder (a tight fit). Ensure one wire is routed upward and the wire from motor 3 is routed downward (see photo).
<img src="../media/tutorial/img17.jpg" style="height:300px;">
**Step 20: Secure Motor 4 & Attach Horn**
- Fasten motor 4 with 4 screws and attach its motor horns, use for one a horn screw.
<img src="../media/tutorial/img18.jpg" style="height:300px;">
---
### Wrist Assembly
**Step 21: Install Motor 5**
- Insert motor 5 into the wrist holder and secure it with 2 front screws.
<img src="../media/tutorial/img20.jpg" style="height:300px;">
**Step 22: Attach Wrist**
- Connect the wire from motor 4 to motor 5. And already insert the other wire for the gripper.
- Secure the wrist to motor 4 using 4 screws on both sides.
<img src="../media/tutorial/img22.jpg" style="height:300px;">
**Step 23: Attach Wrist Horn**
- Install only one motor horn on the wrist motor and secure it with a horn screw.
<img src="../media/tutorial/img23.jpg" style="height:300px;">
---
### Follower Configuration
**Step 24: Attach Gripper**
- Attach the gripper to motor 5.
<img src="../media/tutorial/img24.jpg" style="height:300px;">
**Step 25: Install Gripper Motor**
- Insert the gripper motor, connect the motor wire from motor 5 to motor 6, and secure it with 3 screws on each side.
<img src="../media/tutorial/img25.jpg" style="height:300px;">
**Step 26: Attach Gripper Horn & Claw**
- Attach the motor horns and again use a horn screw.
- Install the gripper claw and secure it with 4 screws on both sides.
<img src="../media/tutorial/img26.jpg" style="height:300px;">
**Step 27: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to Leader arm assembly.*
---
### Leader Configuration
For the leader configuration, perform **Steps 123**. Make sure that you removed the motor gears from the motors.
**Step 24: Attach Leader Holder**
- Mount the leader holder onto the wrist and secure it with a screw.
<img src="../media/tutorial/img29.jpg" style="height:300px;">
**Step 25: Attach Handle**
- Attach the handle to motor 5 using 4 screws.
<img src="../media/tutorial/img30.jpg" style="height:300px;">
**Step 26: Install Gripper Motor**
- Insert the gripper motor, secure it with 3 screws on each side, attach a motor horn using a horn screw, and connect the motor wire.
<img src="../media/tutorial/img31.jpg" style="height:300px;">
**Step 27: Attach Trigger**
- Attach the follower trigger with 4 screws.
<img src="../media/tutorial/img32.jpg" style="height:300px;">
**Step 28: Mount Controller**
- Attach the motor controller on the back.
<div style="display: flex;">
<img src="../media/tutorial/img27.jpg" style="height:300px;">
<img src="../media/tutorial/img28.jpg" style="height:300px;">
</div>
*Assembly complete proceed to calibration.*
## E. Calibrate
Next, you'll need to calibrate your SO-100 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one SO-100 robot to work on another.
#### a. Manual calibration of follower arm
> [!IMPORTANT]
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/follower_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/so100/follower_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/so100/follower_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
#### b. Manual calibration of leader arm
Follow step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
## F. Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--robot.cameras='{}' \
--control.type=teleoperate
```
#### a. Teleop with displaying cameras
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=teleoperate
```
## G. Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with SO-100.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/so100_test \
--control.tags='["so100","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
## H. Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/so100_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/so100_test \
--local-files-only 1
```
## I. Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/so100_test \
--control.episode=0
```
## J. Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/so100_test \
--policy.type=act \
--output_dir=outputs/train/act_so100_test \
--job_name=act_so100_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/so100_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_so100_test/checkpoints`.
To resume training from a checkpoint, below is an example command to resume from `last` checkpoint of the `act_so100_test` policy:
```bash
python lerobot/scripts/train.py \
--config_path=outputs/train/act_so100_test/checkpoints/last/pretrained_model/train_config.json \
--resume=true
```
## K. Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=so100 \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_so100_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_so100_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_so100_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_so100_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_so100_test`).
## L. More Information
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
> [!TIP]
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#so100-arm`](https://discord.com/channels/1216765309076115607/1237741463832363039).

View File

@@ -1,579 +0,0 @@
# Using the [LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi) Robot with LeRobot
## Table of Contents
- [A. Source the parts](#a-source-the-parts)
- [B. Install software Pi](#b-install-software-on-pi)
- [C. Setup LeRobot laptop/pc](#c-install-lerobot-on-laptop)
- [D. Assemble the arms](#d-assembly)
- [E. Calibrate](#e-calibration)
- [F. Teleoperate](#f-teleoperate)
- [G. Record a dataset](#g-record-a-dataset)
- [H. Visualize a dataset](#h-visualize-a-dataset)
- [I. Replay an episode](#i-replay-an-episode)
- [J. Train a policy](#j-train-a-policy)
- [K. Evaluate your policy](#k-evaluate-your-policy)
> [!TIP]
> If you have any questions or need help, please reach out on [Discord](https://discord.com/invite/s3KuuzsPFb) in the channel [`#mobile-so-100-arm`](https://discord.com/channels/1216765309076115607/1318390825528332371).
## A. Source the parts
Follow this [README](https://github.com/SIGRobotics-UIUC/LeKiwi). It contains the bill of materials, with a link to source the parts, as well as the instructions to 3D print the parts, and advice if it's your first time printing or if you don't own a 3D printer.
Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
### Wired version
If you have the **wired** LeKiwi version you can skip the installation of the Raspberry Pi and setting up SSH. You can also run all commands directly on your PC for both the LeKiwi scripts and the leader arm scripts for teleoperating.
## B. Install software on Pi
Now we have to setup the remote PC that will run on the LeKiwi Robot. This is normally a Raspberry Pi, but can be any PC that can run on 5V and has enough usb ports (2 or more) for the cameras and motor control board.
### Install OS
For setting up the Raspberry Pi and its SD-card see: [Setup PI](https://www.raspberrypi.com/documentation/computers/getting-started.html). Here is explained how to download the [Imager](https://www.raspberrypi.com/software/) to install Raspberry Pi OS or Ubuntu.
### Setup SSH
After setting up your Pi, you should enable and setup [SSH](https://www.raspberrypi.com/news/coding-on-raspberry-pi-remotely-with-visual-studio-code/) (Secure Shell Protocol) so you can login into the Pi from your laptop without requiring a screen, keyboard and mouse in the Pi. A great tutorial on how to do this can be found [here](https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh). Logging into your Pi can be done in your Command Prompt (cmd) or if you use VSCode you can use [this](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-ssh) extension.
### Install LeRobot
On your Raspberry Pi:
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
#### 2. Restart shell
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
#### 3. Create and activate a fresh conda environment for lerobot
<details>
<summary><strong>Video install instructions</strong></summary>
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
</details>
```bash
conda create -y -n lerobot python=3.10
```
Then activate your conda environment (do this each time you open a shell to use lerobot!):
```bash
conda activate lerobot
```
#### 4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
## C. Install LeRobot on laptop
If you already have install LeRobot on your laptop you can skip this step, otherwise please follow along as we do the same steps we did on the Pi.
> [!TIP]
> We use the Command Prompt (cmd) quite a lot. If you are not comfortable using the cmd or want to brush up using the command line you can have a look here: [Command line crash course](https://developer.mozilla.org/en-US/docs/Learn_web_development/Getting_started/Environment_setup/Command_line)
On your computer:
#### 1. [Install Miniconda](https://docs.anaconda.com/miniconda/install/#quick-command-line-install):
#### 2. Restart shell
Copy paste in your shell: `source ~/.bashrc` or for Mac: `source ~/.bash_profile` or `source ~/.zshrc` if you're using zshell
#### 3. Create and activate a fresh conda environment for lerobot
<details>
<summary><strong>Video install instructions</strong></summary>
<video src="https://github.com/user-attachments/assets/17172d3b-3b64-4b80-9cf1-b2b7c5cbd236"></video>
</details>
```bash
conda create -y -n lerobot python=3.10
```
Then activate your conda environment (do this each time you open a shell to use lerobot!):
```bash
conda activate lerobot
```
#### 4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
#### 5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
Great :hugs:! You are now done installing LeRobot and we can begin assembling the SO100 arms and Mobile base :robot:.
Every time you now want to use LeRobot you can go to the `~/lerobot` folder where we installed LeRobot and run one of the commands.
# D. Assembly
First we will assemble the two SO100 arms. One to attach to the mobile base and one for teleoperation. Then we will assemble the mobile base.
## SO100 Arms
### Configure motors
The instructions for configuring the motors can be found [Here](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#c-configure-the-motors) in step C of the SO100 tutorial. Besides the ID's for the arm motors we also need to set the motor ID's for the mobile base. These needs to be in a specific order to work. Below an image of the motor ID's and motor mounting positions for the mobile base. Note that we only use one Motor Control board on LeKiwi. This means the motor ID's for the wheels are 7, 8 and 9.
<img src="../media/lekiwi/motor_ids.webp?raw=true" alt="Motor ID's for mobile robot" title="Motor ID's for mobile robot" width="60%">
### Assemble arms
[Assemble arms instruction](https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md#d-assemble-the-arms)
## Mobile base (LeKiwi)
[Assemble LeKiwi](https://github.com/SIGRobotics-UIUC/LeKiwi)
### Update config
Both config files on the LeKiwi LeRobot and on the laptop should be the same. First we should find the Ip address of the Raspberry Pi of the mobile manipulator. This is the same Ip address used in SSH. We also need the usb port of the control board of the leader arm on the laptop and the port of the control board on LeKiwi. We can find these ports with the following script.
#### a. Run the script to find port
<details>
<summary><strong>Video finding port</strong></summary>
<video src="https://github.com/user-attachments/assets/4a21a14d-2046-4805-93c4-ee97a30ba33f"></video>
<video src="https://github.com/user-attachments/assets/1cc3aecf-c16d-4ff9-aec7-8c175afbbce2"></video>
</details>
To find the port for each bus servo adapter, run the utility script:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
#### b. Example outputs
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
#### c. Troubleshooting
On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
#### d. Update config file
IMPORTANTLY: Now that you have your ports of leader and follower arm and ip address of the mobile-so100, update the **ip** in Network configuration, **port** in leader_arms and **port** in lekiwi. In the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py) file. Where you will find something like:
```python
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "172.17.133.91"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"mobile": OpenCVCameraConfig(camera_index="/dev/video0", fps=30, width=640, height=480),
"mobile2": OpenCVCameraConfig(camera_index="/dev/video2", fps=30, width=640, height=480),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/ttyACM0",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False
```
## Wired version
For the wired LeKiwi version your configured IP address should refer to your own laptop (127.0.0.1), because leader arm and LeKiwi are in this case connected to own laptop. Below and example configuration for this wired setup:
```python
@RobotConfig.register_subclass("lekiwi")
@dataclass
class LeKiwiRobotConfig(RobotConfig):
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
# Network Configuration
ip: str = "127.0.0.1"
port: int = 5555
video_port: int = 5556
cameras: dict[str, CameraConfig] = field(
default_factory=lambda: {
"front": OpenCVCameraConfig(
camera_index=0, fps=30, width=640, height=480, rotation=90
),
"wrist": OpenCVCameraConfig(
camera_index=1, fps=30, width=640, height=480, rotation=180
),
}
)
calibration_dir: str = ".cache/calibration/lekiwi"
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0077581",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431061",
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
"left_wheel": (7, "sts3215"),
"back_wheel": (8, "sts3215"),
"right_wheel": (9, "sts3215"),
},
),
}
)
teleop_keys: dict[str, str] = field(
default_factory=lambda: {
# Movement
"forward": "w",
"backward": "s",
"left": "a",
"right": "d",
"rotate_left": "z",
"rotate_right": "x",
# Speed control
"speed_up": "r",
"speed_down": "f",
# quit teleop
"quit": "q",
}
)
mock: bool = False
```
# E. Calibration
Now we have to calibrate the leader arm and the follower arm. The wheel motors don't have to be calibrated.
### Calibrate follower arm (on mobile base)
> [!IMPORTANT]
> Contrarily to step 6 of the [assembly video](https://youtu.be/FioA2oeFZ5I?t=724) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/lekiwi/mobile_calib_zero.webp?raw=true" alt="SO-100 follower arm zero position" title="SO-100 follower arm zero position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rotated.webp?raw=true" alt="SO-100 follower arm rotated position" title="SO-100 follower arm rotated position" style="width:100%;"> | <img src="../media/lekiwi/mobile_calib_rest.webp?raw=true" alt="SO-100 follower arm rest position" title="SO-100 follower arm rest position" style="width:100%;"> |
Make sure the arm is connected to the Raspberry Pi and run this script (on the Raspberry Pi) to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
### Wired version
If you have the **wired** LeKiwi version please run all commands including this calibration command on your laptop.
### Calibrate leader arm
Then to calibrate the leader arm (which is attached to the laptop/pc). You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| <img src="../media/so100/leader_zero.webp?raw=true" alt="SO-100 leader arm zero position" title="SO-100 leader arm zero position" style="width:100%;"> | <img src="../media/so100/leader_rotated.webp?raw=true" alt="SO-100 leader arm rotated position" title="SO-100 leader arm rotated position" style="width:100%;"> | <img src="../media/so100/leader_rest.webp?raw=true" alt="SO-100 leader arm rest position" title="SO-100 leader arm rest position" style="width:100%;"> |
Run this script (on your laptop/pc) to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
# F. Teleoperate
To teleoperate SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=remote_robot
```
Then on your laptop, also run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=teleoperate \
--control.fps=30
```
You should see on your laptop something like this: ```[INFO] Connected to remote robot at tcp://172.17.133.91:5555 and video stream at tcp://172.17.133.91:5556.``` Now you can move the leader arm and use the keyboard (w,a,s,d) to drive forward, left, backwards, right. And use (z,x) to turn left or turn right. You can use (r,f) to increase and decrease the speed of the mobile robot. There are three speed modes, see the table below:
| Speed Mode | Linear Speed (m/s) | Rotation Speed (deg/s) |
| ---------- | ------------------ | ---------------------- |
| Fast | 0.4 | 90 |
| Medium | 0.25 | 60 |
| Slow | 0.1 | 30 |
| Key | Action |
| --- | -------------- |
| W | Move forward |
| A | Move left |
| S | Move backward |
| D | Move right |
| Z | Turn left |
| X | Turn right |
| R | Increase speed |
| F | Decrease speed |
> [!TIP]
> If you use a different keyboard you can change the keys for each command in the [`LeKiwiRobotConfig`](../lerobot/common/robot_devices/robots/configs.py).
### Wired version
If you have the **wired** LeKiwi version please run all commands including both these teleoperation commands on your laptop.
## Troubleshoot communication
If you are having trouble connecting to the Mobile SO100, follow these steps to diagnose and resolve the issue.
### 1. Verify IP Address Configuration
Make sure that the correct ip for the Pi is set in the configuration file. To check the Raspberry Pi's IP address, run (on the Pi command line):
```bash
hostname -I
```
### 2. Check if Pi is reachable from laptop/pc
Try pinging the Raspberry Pi from your laptop:
```bach
ping <your_pi_ip_address>
```
If the ping fails:
- Ensure the Pi is powered on and connected to the same network.
- Check if SSH is enabled on the Pi.
### 3. Try SSH connection
If you can't SSH into the Pi, it might not be properly connected. Use:
```bash
ssh <your_pi_user_name>@<your_pi_ip_address>
```
If you get a connection error:
- Ensure SSH is enabled on the Pi by running:
```bash
sudo raspi-config
```
Then navigate to: **Interfacing Options -> SSH** and enable it.
### 4. Same config file
Make sure the configuration file on both your laptop/pc and the Raspberry Pi is the same.
# G. Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with LeKiwi.
To start the program on LeKiwi, SSH into your Raspberry Pi, and run `conda activate lerobot` and this script:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=remote_robot
```
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
On your laptop then run this command to record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/lekiwi_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
### Wired version
If you have the **wired** LeKiwi version please run all commands including both these record dataset commands on your laptop.
# H. Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/lekiwi_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://127.0.0.1:9090` with the visualization tool):
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/lekiwi_test \
--local-files-only 1
```
# I. Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/lekiwi_test \
--control.episode=0
```
## J. Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/lekiwi_test \
--policy.type=act \
--output_dir=outputs/train/act_lekiwi_test \
--job_name=act_lekiwi_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/lekiwi_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_lekiwi_test/checkpoints`.
## K. Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=lekiwi \
--control.type=record \
--control.fps=30 \
--control.single_task="Drive to the red block and pick it up" \
--control.repo_id=${HF_USER}/eval_act_lekiwi_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_lekiwi_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_lekiwi_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_lekiwi_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_lekiwi_test`).

View File

@@ -1,328 +0,0 @@
This tutorial explains how to use [Moss v1](https://github.com/jess-moss/moss-robot-arms) with LeRobot.
## Source the parts
Follow this [README](https://github.com/jess-moss/moss-robot-arms). It contains the bill of materials with link to source the parts, as well as the instructions to 3D print the parts and advice if it's your first time printing or if you don't own a 3D printer already.
**Important**: Before assembling, you will first need to configure your motors. To this end, we provide a nice script, so let's first install LeRobot. After configuration, we will also guide you through assembly.
## Install LeRobot
On your computer:
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
```bash
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
```
2. Restart shell or `source ~/.bashrc`
3. Create and activate a fresh conda environment for lerobot
```bash
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
4. Clone LeRobot:
```bash
git clone https://github.com/huggingface/lerobot.git ~/lerobot
```
5. Install LeRobot with dependencies for the feetech motors:
```bash
cd ~/lerobot && pip install --no-binary=av -e ".[feetech]"
```
## Configure the motors
Follow steps 1 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the use of our scripts below.
**Find USB ports associated to your arms**
To find the correct ports for each arm, run the utility script twice:
```bash
python lerobot/scripts/find_motors_bus_port.py
```
Example output when identifying the leader arm's port (e.g., `/dev/tty.usbmodem575E0031751` on Mac, or possibly `/dev/ttyACM0` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect leader arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0031751
Reconnect the usb cable.
```
Example output when identifying the follower arm's port (e.g., `/dev/tty.usbmodem575E0032081`, or possibly `/dev/ttyACM1` on Linux):
```
Finding all available ports for the MotorBus.
['/dev/tty.usbmodem575E0032081', '/dev/tty.usbmodem575E0031751']
Remove the usb cable from your DynamixelMotorsBus and press Enter when done.
[...Disconnect follower arm and press Enter...]
The port of this DynamixelMotorsBus is /dev/tty.usbmodem575E0032081
Reconnect the usb cable.
```
Troubleshooting: On Linux, you might need to give access to the USB ports by running:
```bash
sudo chmod 666 /dev/ttyACM0
sudo chmod 666 /dev/ttyACM1
```
#### Update config file
IMPORTANTLY: Now that you have your ports, update the **port** default values of [`MossRobotConfig`](../lerobot/common/robot_devices/robots/configs.py). You will find something like:
```python
@RobotConfig.register_subclass("moss")
@dataclass
class MossRobotConfig(ManipulatorRobotConfig):
calibration_dir: str = ".cache/calibration/moss"
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
leader_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem58760431091", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
follower_arms: dict[str, MotorsBusConfig] = field(
default_factory=lambda: {
"main": FeetechMotorsBusConfig(
port="/dev/tty.usbmodem585A0076891", <-- UPDATE HERE
motors={
# name: (index, model)
"shoulder_pan": [1, "sts3215"],
"shoulder_lift": [2, "sts3215"],
"elbow_flex": [3, "sts3215"],
"wrist_flex": [4, "sts3215"],
"wrist_roll": [5, "sts3215"],
"gripper": [6, "sts3215"],
},
),
}
)
```
**Configure your motors**
Plug your first motor and run this script to set its ID to 1. It will also set its present position to 2048, so expect your motor to rotate:
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 1
```
Note: These motors are currently limitated. They can take values between 0 and 4096 only, which corresponds to a full turn. They can't turn more than that. 2048 is at the middle of this range, so we can take -2048 steps (180 degrees anticlockwise) and reach the maximum range, or take +2048 steps (180 degrees clockwise) and reach the maximum range. The configuration step also sets the homing offset to 0, so that if you misassembled the arm, you can always update the homing offset to account for a shift up to ± 2048 steps (± 180 degrees).
Then unplug your motor and plug the second motor and set its ID to 2.
```bash
python lerobot/scripts/configure_motor.py \
--port /dev/tty.usbmodem58760432961 \
--brand feetech \
--model sts3215 \
--baudrate 1000000 \
--ID 2
```
Redo the process for all your motors until ID 6. Do the same for the 6 motors of the leader arm.
**Remove the gears of the 6 leader motors**
Follow step 2 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). You need to remove the gear for the motors of the leader arm. As a result, you will only use the position encoding of the motor and reduce friction to more easily operate the leader arm.
**Add motor horn to the motors**
Follow step 3 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). For Moss v1, you need to align the holes on the motor horn to the motor spline to be approximately 3, 6, 9 and 12 o'clock.
Try to avoid rotating the motor while doing so to keep position 2048 set during configuration. It is especially tricky for the leader motors as it is more sensible without the gears, but it's ok if it's a bit rotated.
## Assemble the arms
Follow step 4 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic). The first arm should take a bit more than 1 hour to assemble, but once you get use to it, you can do it under 1 hour for the second arm.
## Calibrate
Next, you'll need to calibrate your Moss v1 robot to ensure that the leader and follower arms have the same position values when they are in the same physical position. This calibration is essential because it allows a neural network trained on one Moss v1 robot to work on another.
**Manual calibration of follower arm**
/!\ Contrarily to step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the auto calibration, we will actually do manual calibration of follower for now.
You will need to move the follower arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/moss/follower_zero.webp?raw=true" alt="Moss v1 follower arm zero position" title="Moss v1 follower arm zero position" style="width:100%;"> | <img src="../media/moss/follower_rotated.webp?raw=true" alt="Moss v1 follower arm rotated position" title="Moss v1 follower arm rotated position" style="width:100%;"> | <img src="../media/moss/follower_rest.webp?raw=true" alt="Moss v1 follower arm rest position" title="Moss v1 follower arm rest position" style="width:100%;"> |
Make sure both arms are connected and run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_follower"]'
```
**Manual calibration of leader arm**
Follow step 6 of the [assembly video](https://www.youtube.com/watch?v=DA91NJOtMic) which illustrates the manual calibration. You will need to move the leader arm to these positions sequentially:
| 1. Zero position | 2. Rotated position | 3. Rest position |
| ------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
| <img src="../media/moss/leader_zero.webp?raw=true" alt="Moss v1 leader arm zero position" title="Moss v1 leader arm zero position" style="width:100%;"> | <img src="../media/moss/leader_rotated.webp?raw=true" alt="Moss v1 leader arm rotated position" title="Moss v1 leader arm rotated position" style="width:100%;"> | <img src="../media/moss/leader_rest.webp?raw=true" alt="Moss v1 leader arm rest position" title="Moss v1 leader arm rest position" style="width:100%;"> |
Run this script to launch manual calibration:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--robot.cameras='{}' \
--control.type=calibrate \
--control.arms='["main_leader"]'
```
## Teleoperate
**Simple teleop**
Then you are ready to teleoperate your robot! Run this simple script (it won't connect and display the cameras):
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--robot.cameras='{}' \
--control.type=teleoperate
```
**Teleop with displaying cameras**
Follow [this guide to setup your cameras](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#c-add-your-cameras-with-opencvcamera). Then you will be able to display the cameras on your computer while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=teleoperate
```
## Record a dataset
Once you're familiar with teleoperation, you can record your first dataset with Moss v1.
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Store your Hugging Face repository name in a variable to run these commands:
```bash
HF_USER=$(huggingface-cli whoami | head -n 1)
echo $HF_USER
```
Record 2 episodes and upload your dataset to the hub:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/moss_test \
--control.tags='["moss","tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=2 \
--control.push_to_hub=true
```
Note: You can resume recording by adding `--control.resume=true`.
## Visualize a dataset
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
```bash
echo ${HF_USER}/moss_test
```
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with:
```bash
python lerobot/scripts/visualize_dataset_html.py \
--repo-id ${HF_USER}/moss_test \
--local-files-only 1
```
## Replay an episode
Now try to replay the first episode on your robot:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=replay \
--control.fps=30 \
--control.repo_id=${HF_USER}/moss_test \
--control.episode=0
```
## Train a policy
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=${HF_USER}/moss_test \
--policy.type=act \
--output_dir=outputs/train/act_moss_test \
--job_name=act_moss_test \
--policy.device=cuda \
--wandb.enable=true
```
Let's explain it:
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/moss_test`.
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
4. We provided `policy.device=cuda` since we are training on a Nvidia GPU, but you could use `policy.device=mps` to train on Apple silicon.
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
Training should take several hours. You will find checkpoints in `outputs/train/act_moss_test/checkpoints`.
## Evaluate your policy
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
```bash
python lerobot/scripts/control_robot.py \
--robot.type=moss \
--control.type=record \
--control.fps=30 \
--control.single_task="Grasp a lego block and put it in the bin." \
--control.repo_id=${HF_USER}/eval_act_moss_test \
--control.tags='["tutorial"]' \
--control.warmup_time_s=5 \
--control.episode_time_s=30 \
--control.reset_time_s=30 \
--control.num_episodes=10 \
--control.push_to_hub=true \
--control.policy.path=outputs/train/act_moss_test/checkpoints/last/pretrained_model
```
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_moss_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_moss_test`).
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_moss_test`).
## More
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
If you have any question or need help, please reach out on Discord in the channel [`#moss-arm`](https://discord.com/channels/1216765309076115607/1275374638985252925).

View File

@@ -1,94 +0,0 @@
# Training a HIL-SERL Reward Classifier with LeRobot
This tutorial provides step-by-step instructions for training a reward classifier using LeRobot.
---
## Training Script Overview
LeRobot includes a ready-to-use training script located at [`lerobot/scripts/train_hilserl_classifier.py`](../../lerobot/scripts/train_hilserl_classifier.py). Here's an outline of its workflow:
1. **Configuration Loading**
The script uses Hydra to load a configuration file for subsequent steps. (Details on Hydra follow below.)
2. **Dataset Initialization**
It loads a `LeRobotDataset` containing images and rewards. To optimize performance, a weighted random sampler is used to balance class sampling.
3. **Classifier Initialization**
A lightweight classification head is built on top of a frozen, pretrained image encoder from HuggingFace. The classifier outputs either:
- A single probability (binary classification), or
- Logits (multi-class classification).
4. **Training Loop Execution**
The script performs:
- Forward and backward passes,
- Optimization steps,
- Periodic logging, evaluation, and checkpoint saving.
---
## Configuring with Hydra
For detailed information about Hydra usage, refer to [`examples/4_train_policy_with_script.md`](../examples/4_train_policy_with_script.md). However, note that training the reward classifier differs slightly and requires a separate configuration file.
### Config File Setup
The default `default.yaml` cannot launch the reward classifier training directly. Instead, you need a configuration file like [`lerobot/configs/policy/hilserl_classifier.yaml`](../../lerobot/configs/policy/hilserl_classifier.yaml), with the following adjustment:
Replace the `dataset_repo_id` field with the identifier for your dataset, which contains images and sparse rewards:
```yaml
# Example: lerobot/configs/policy/reward_classifier.yaml
dataset_repo_id: "my_dataset_repo_id"
## Typical logs and metrics
```
When you start the training process, you will first see your full configuration being printed in the terminal. You can check it to make sure that you config it correctly and your config is not overrided by other files. The final configuration will also be saved with the checkpoint.
After that, you will see training log like this one:
```
[2024-11-29 18:26:36,999][root][INFO] -
Epoch 5/5
Training: 82%|██████████████████████████████████████████████████████████████████████████████▋ | 91/111 [00:50<00:09, 2.04it/s, loss=0.2999, acc=69.99%]
```
or evaluation log like:
```
Validation: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:20<00:00, 1.37it/s]
```
### Metrics Tracking with Weights & Biases (WandB)
If `wandb.enable` is set to `true`, the training and evaluation logs will also be saved in WandB. This allows you to track key metrics in real-time, including:
- **Training Metrics**:
- `train/accuracy`
- `train/loss`
- `train/dataloading_s`
- **Evaluation Metrics**:
- `eval/accuracy`
- `eval/loss`
- `eval/eval_s`
#### Additional Features
You can also log sample predictions during evaluation. Each logged sample will include:
- The **input image**.
- The **predicted label**.
- The **true label**.
- The **classifier's "confidence" (logits/probability)**.
These logs can be useful for diagnosing and debugging performance issues.
#### Generate protobuf files
```bash
python -m grpc_tools.protoc \
-I lerobot/scripts/server \
--python_out=lerobot/scripts/server \
--grpc_python_out=lerobot/scripts/server \
lerobot/scripts/server/hilserl.proto
```

View File

@@ -32,10 +32,7 @@ import torch
from huggingface_hub import HfApi
import lerobot
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
LeRobotDatasetMetadata,
)
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
# We ported a number of existing datasets ourselves, use this to see the list:
print("List of available datasets:")
@@ -122,7 +119,7 @@ print(dataset.features[camera_key]["shape"])
delta_timestamps = {
# loads 4 images: 1 second before current frame, 500 ms before, 200 ms before, and current frame
camera_key: [-1, -0.5, -0.20, 0],
# loads 8 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
# loads 6 state vectors: 1.5 seconds before, 1 second before, ... 200 ms, 100 ms, and current frame
"observation.state": [-1.5, -1, -0.5, -0.20, -0.10, 0],
# loads 64 action vectors: current frame, 1 frame in the future, 2 frames, ... 63 frames in the future
"action": [t / dataset.fps for t in range(64)],
@@ -146,6 +143,6 @@ dataloader = torch.utils.data.DataLoader(
for batch in dataloader:
print(f"{batch[camera_key].shape=}") # (32, 4, c, h, w)
print(f"{batch['observation.state'].shape=}") # (32, 5, c)
print(f"{batch['observation.state'].shape=}") # (32, 6, c)
print(f"{batch['action'].shape=}") # (32, 64, c)
break

View File

@@ -13,12 +13,12 @@
# limitations under the License.
"""
This scripts demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
This script demonstrates how to evaluate a pretrained policy from the HuggingFace Hub or from your local
training outputs directory. In the latter case, you might want to run examples/3_train_policy.py first.
It requires the installation of the 'gym_pusht' simulation environment. Install it by running:
```bash
pip install --no-binary=av -e ".[pusht]"`
pip install -e ".[pusht]"
```
"""
@@ -119,7 +119,7 @@ while not done:
rewards.append(reward)
frames.append(env.render())
# The rollout is considered done when the success state is reach (i.e. terminated is True),
# The rollout is considered done when the success state is reached (i.e. terminated is True),
# or the maximum number of iterations is reached (i.e. truncated is True)
done = terminated | truncated | done
step += 1

View File

@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""This scripts demonstrates how to train Diffusion Policy on the PushT environment.
"""This script demonstrates how to train Diffusion Policy on the PushT environment.
Once you have trained a model with this script, you can try to evaluate it on
examples/2_evaluate_pretrained_policy.py
@@ -22,10 +22,7 @@ from pathlib import Path
import torch
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
LeRobotDatasetMetadata,
)
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.utils import dataset_to_policy_features
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
@@ -80,24 +77,7 @@ def main():
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to supervise the policy.
"action": [
-0.1,
0.0,
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8,
0.9,
1.0,
1.1,
1.2,
1.3,
1.4,
],
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
# We can then instantiate the dataset with these delta_timestamps configuration.

View File

@@ -1,10 +1,10 @@
This tutorial will explain the training script, how to use it, and particularly how to configure everything needed for the training run.
> **Note:** The following assume you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
> **Note:** The following assumes you're running these commands on a machine equipped with a cuda GPU. If you don't have one (or if you're using a Mac), you can add `--policy.device=cpu` (`--policy.device=mps` respectively). However, be advised that the code executes much slower on cpu.
## The training script
LeRobot offers a training script at [`lerobot/scripts/train.py`](../../lerobot/scripts/train.py). At a high level it does the following:
LeRobot offers a training script at [`lerobot/scripts/train.py`](../lerobot/scripts/train.py). At a high level it does the following:
- Initialize/load a configuration for the following steps using.
- Instantiates a dataset.
@@ -21,9 +21,9 @@ In the training script, the main function `train` expects a `TrainPipelineConfig
def train(cfg: TrainPipelineConfig):
```
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
You can inspect the `TrainPipelineConfig` defined in [`lerobot/configs/train.py`](../lerobot/configs/train.py) (which is heavily commented and meant to be a reference to understand any option)
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated for this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
When running the script, inputs for the command line are parsed thanks to the `@parser.wrap()` decorator and an instance of this class is automatically generated. Under the hood, this is done with [Draccus](https://github.com/dlwh/draccus) which is a tool dedicated to this purpose. If you're familiar with Hydra, Draccus can similarly load configurations from config files (.json, .yaml) and also override their values through command line inputs. Unlike Hydra, these configurations are pre-defined in the code through dataclasses rather than being defined entirely in config files. This allows for more rigorous serialization/deserialization, typing, and to manipulate configuration as objects directly in the code and not as dictionaries or namespaces (which enables nice features in an IDE such as autocomplete, jump-to-def, etc.)
Let's have a look at a simplified example. Amongst other attributes, the training config has the following attributes:
```python
@@ -43,14 +43,14 @@ class DatasetConfig:
```
This creates a hierarchical relationship where, for example assuming we have a `cfg` instance of `TrainPipelineConfig`, we can access the `repo_id` value with `cfg.dataset.repo_id`.
From the command line, we can specify this value with using a very similar syntax `--dataset.repo_id=repo/id`.
From the command line, we can specify this value by using a very similar syntax `--dataset.repo_id=repo/id`.
By default, every field takes its default value specified in the dataclass. If a field doesn't have a default value, it needs to be specified either from the command line or from a config file which path is also given in the command line (more in this below). In the example above, the `dataset` field doesn't have a default value which means it must be specified.
## Specifying values from the CLI
Let's say that we want to train [Diffusion Policy](../../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
Let's say that we want to train [Diffusion Policy](../lerobot/common/policies/diffusion) on the [pusht](https://huggingface.co/datasets/lerobot/pusht) dataset, using the [gym_pusht](https://github.com/huggingface/gym-pusht) environment for evaluation. The command to do so would look like this:
```bash
python lerobot/scripts/train.py \
--dataset.repo_id=lerobot/pusht \
@@ -60,10 +60,10 @@ python lerobot/scripts/train.py \
Let's break this down:
- To specify the dataset, we just need to specify its `repo_id` on the hub which is the only required argument in the `DatasetConfig`. The rest of the fields have default values and in this case we are fine with those so we can just add the option `--dataset.repo_id=lerobot/pusht`.
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../../lerobot/common/policies)
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../../lerobot/common/envs/configs.py)
- To specify the policy, we can just select diffusion policy using `--policy` appended with `.type`. Here, `.type` is a special argument which allows us to select config classes inheriting from `draccus.ChoiceRegistry` and that have been decorated with the `register_subclass()` method. To have a better explanation of this feature, have a look at this [Draccus demo](https://github.com/dlwh/draccus?tab=readme-ov-file#more-flexible-configuration-with-choice-types). In our code, we use this mechanism mainly to select policies, environments, robots, and some other components like optimizers. The policies available to select are located in [lerobot/common/policies](../lerobot/common/policies)
- Similarly, we select the environment with `--env.type=pusht`. The different environment configs are available in [`lerobot/common/envs/configs.py`](../lerobot/common/envs/configs.py)
Let's see another example. Let's say you've been training [ACT](../../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
Let's see another example. Let's say you've been training [ACT](../lerobot/common/policies/act) on [lerobot/aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human) using the [gym-aloha](https://github.com/huggingface/gym-aloha) environment for evaluation with:
```bash
python lerobot/scripts/train.py \
--policy.type=act \
@@ -74,7 +74,7 @@ python lerobot/scripts/train.py \
> Notice we added `--output_dir` to explicitly tell where to write outputs from this run (checkpoints, training state, configs etc.). This is not mandatory and if you don't specify it, a default directory will be created from the current date and time, env.type and policy.type. This will typically look like `outputs/train/2025-01-24/16-10-05_aloha_act`.
We now want to train a different policy for aloha on another task. We'll change the dataset and use [lerobot/aloha_sim_transfer_cube_human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human) instead. Of course, we also need to change the task of the environment as well to match this other task.
Looking at the [`AlohaEnv`](../../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
Looking at the [`AlohaEnv`](../lerobot/common/envs/configs.py) config, the task is `"AlohaInsertion-v0"` by default, which corresponds to the task we trained on in the command above. The [gym-aloha](https://github.com/huggingface/gym-aloha?tab=readme-ov-file#description) environment also has the `AlohaTransferCube-v0` task which corresponds to this other task we want to train on. Putting this together, we can train this new policy on this different task using:
```bash
python lerobot/scripts/train.py \
--policy.type=act \
@@ -135,7 +135,7 @@ will start a training run with the same configuration used for training [lerobot
## Resume training
Being able to resume a training run is important in case it crashed or aborted for any reason. We'll demonstrate how to that here.
Being able to resume a training run is important in case it crashed or aborted for any reason. We'll demonstrate how to do that here.
Let's reuse the command from the previous run and add a few more options:
```bash

View File

@@ -33,7 +33,7 @@ First, install the additional dependencies required for robots built with dynami
Using `pip`:
```bash
pip install --no-binary=av -e ".[dynamixel]"
pip install -e ".[dynamixel]"
```
Using `poetry`:
@@ -55,6 +55,9 @@ Finally, connect both arms to your computer via USB. Note that the USB doesn't p
Now you are ready to configure your motors for the first time, as detailed in the sections below. In the upcoming sections, you'll learn about our classes and functions by running some python code in an interactive session, or by copy-pasting it in a python file.
If you have already configured your motors the first time, you can streamline the process by directly running the teleoperate script (which is detailed further in the tutorial):
> **NOTE:** To visualize the data, enable `--control.display_data=true`. This streams the data using `rerun`.
```bash
python lerobot/scripts/control_robot.py \
--robot.type=koch \
@@ -80,7 +83,7 @@ python lerobot/scripts/configure_motor.py \
--brand dynamixel \
--model xl330-m288 \
--baudrate 1000000 \
--ID 1
--id 1
```
Then unplug your first motor and plug the second motor and set its ID to 2.
@@ -90,7 +93,7 @@ python lerobot/scripts/configure_motor.py \
--brand dynamixel \
--model xl330-m288 \
--baudrate 1000000 \
--ID 2
--id 2
```
Redo the process for all your motors until ID 6.
@@ -374,7 +377,7 @@ robot = ManipulatorRobot(robot_config)
The `KochRobotConfig` is used to set the associated settings and calibration process. For instance, we activate the torque of the gripper of the leader Koch v1.1 arm and position it at a 40 degree angle to use it as a trigger.
For the [Aloha bimanual robot](https://aloha-2.github.io), we would use `AlohaRobotConfig` to set different settings such as a secondary ID for shadow joints (shoulder, elbow). Specific to Aloha, LeRobot comes with default calibration files stored in in `.cache/calibration/aloha_default`. Assuming the motors have been properly assembled, no manual calibration step is expected for Aloha.
For the [Aloha bimanual robot](https://aloha-2.github.io), we would use `AlohaRobotConfig` to set different settings such as a secondary ID for shadow joints (shoulder, elbow). Specific to Aloha, LeRobot comes with default calibration files stored in `.cache/calibration/aloha_default`. Assuming the motors have been properly assembled, no manual calibration step is expected for Aloha.
**Calibrate and Connect the ManipulatorRobot**
@@ -396,7 +399,7 @@ And here are the corresponding positions for the leader arm:
You can watch a [video tutorial of the calibration procedure](https://youtu.be/8drnU9uRY24) for more details.
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask yo to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
During calibration, we count the number of full 360-degree rotations your motors have made since they were first used. That's why we ask you to move to this arbitrary "zero" position. We don't actually "set" the zero position, so you don't need to be accurate. After calculating these "offsets" to shift the motor values around 0, we need to assess the rotation direction of each motor, which might differ. That's why we ask you to rotate all motors to roughly 90 degrees, to measure if the values changed negatively or positively.
Finally, the rest position ensures that the follower and leader arms are roughly aligned after calibration, preventing sudden movements that could damage the motors when starting teleoperation.
@@ -619,7 +622,7 @@ camera_01_frame_000047.png
Note: Some cameras may take a few seconds to warm up, and the first frame might be black or green.
Finally, run this code to instantiate and connectyour camera:
Finally, run this code to instantiate and connect your camera:
```python
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
@@ -827,11 +830,6 @@ It contains:
- `dtRphone:33.84 (29.5hz)` which is the delta time of capturing an image from the phone camera in the thread running asynchronously.
Troubleshooting:
- On Linux, if you encounter any issue during video encoding with `ffmpeg: unknown encoder libsvtav1`, you can:
- install with conda-forge by running `conda install -c conda-forge ffmpeg` (it should be compiled with `libsvtav1`),
- or, install [Homebrew](https://brew.sh) and run `brew install ffmpeg` (it should be compiled with `libsvtav1`),
- or, install [ffmpeg build dependencies](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#GettheDependencies) and [compile ffmpeg from source with libsvtav1](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu#libsvtav1),
- and, make sure you use the corresponding ffmpeg binary to your install with `which ffmpeg`.
- On Linux, if the left and right arrow keys and escape key don't have any effect during data recording, make sure you've set the `$DISPLAY` environment variable. See [pynput limitations](https://pynput.readthedocs.io/en/latest/limitations.html#linux).
At the end of data recording, your dataset will be uploaded on your Hugging Face page (e.g. https://huggingface.co/datasets/cadene/koch_test) that you can obtain by running:

View File

@@ -26,10 +26,7 @@ import math
import torch
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
LeRobotDatasetMetadata,
)
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
@@ -54,24 +51,7 @@ def main():
# Load the previous action (-0.1), the next action to be executed (0.0),
# and 14 future actions with a 0.1 seconds spacing. All these actions will be
# used to calculate the loss.
"action": [
-0.1,
0.0,
0.1,
0.2,
0.3,
0.4,
0.5,
0.6,
0.7,
0.8,
0.9,
1.0,
1.1,
1.2,
1.3,
1.4,
],
"action": [-0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4],
}
# Load the last 10% of episodes of the dataset as a validation set.
@@ -86,7 +66,7 @@ def main():
print(f"Number of episodes in full dataset: {total_episodes}")
print(f"Number of episodes in training dataset (90% subset): {len(train_episodes)}")
print(f"Number of episodes in validation dataset (10% subset): {len(val_episodes)}")
# - Load train an val datasets
# - Load train and val datasets
train_dataset = LeRobotDataset(
"lerobot/pusht", episodes=train_episodes, delta_timestamps=delta_timestamps
)

View File

@@ -0,0 +1,98 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.robots.lekiwi.config_lekiwi import LeKiwiClientConfig
from lerobot.common.robots.lekiwi.lekiwi_client import OBS_STATE, LeKiwiClient
from lerobot.common.teleoperators.keyboard import KeyboardTeleop, KeyboardTeleopConfig
from lerobot.common.teleoperators.so100 import SO100Leader, SO100LeaderConfig
NB_CYCLES_CLIENT_CONNECTION = 250
def main():
logging.info("Configuring Teleop Devices")
leader_arm_config = SO100LeaderConfig(port="/dev/tty.usbmodem58760434171")
leader_arm = SO100Leader(leader_arm_config)
keyboard_config = KeyboardTeleopConfig()
keyboard = KeyboardTeleop(keyboard_config)
logging.info("Configuring LeKiwi Client")
robot_config = LeKiwiClientConfig(remote_ip="192.0.2.42", id="lekiwi")
robot = LeKiwiClient(robot_config)
logging.info("Creating LeRobot Dataset")
# The observations that we get are expected to be in body frame (x,y,theta)
obs_dict = {f"{OBS_STATE}." + key: value for key, value in robot.state_feature.items()}
# The actions that we send are expected to be in wheel frame (motor encoders)
act_dict = {"action." + key: value for key, value in robot.action_feature.items()}
features_dict = {
**act_dict,
**obs_dict,
**robot.camera_features,
}
dataset = LeRobotDataset.create(
repo_id="user/lekiwi" + str(int(time.time())),
fps=10,
features=features_dict,
)
logging.info("Connecting Teleop Devices")
leader_arm.connect()
keyboard.connect()
logging.info("Connecting remote LeKiwi")
robot.connect()
if not robot.is_connected or not leader_arm.is_connected or not keyboard.is_connected:
logging.error("Failed to connect to all devices")
return
logging.info("Starting LeKiwi teleoperation")
i = 0
while i < NB_CYCLES_CLIENT_CONNECTION:
arm_action = leader_arm.get_action()
base_action = keyboard.get_action()
action = {**arm_action, **base_action} if len(base_action) > 0 else arm_action
action_sent = robot.send_action(action)
observation = robot.get_observation()
frame = {**action_sent, **observation}
frame.update({"task": "Dummy Example Task Dataset"})
logging.info("Saved a frame into the dataset")
dataset.add_frame(frame)
i += 1
logging.info("Disconnecting Teleop Devices and LeKiwi Client")
robot.disconnect()
leader_arm.disconnect()
keyboard.disconnect()
logging.info("Uploading dataset to the hub")
dataset.save_episode()
dataset.push_to_hub()
logging.info("Finished LeKiwi cleanly")
if __name__ == "__main__":
main()

View File

@@ -181,7 +181,7 @@ available_robots = [
"koch_bimanual",
"aloha",
"so100",
"moss",
"so101",
]
# lists all available cameras from `lerobot/common/robot_devices/cameras`

84
lerobot/calibrate.py Normal file
View File

@@ -0,0 +1,84 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Helper to recalibrate your device (robot or teleoperator).
Example:
```shell
python -m lerobot.calibrate \
--teleop.type=so100_leader \
--teleop.port=/dev/tty.usbmodem58760431551 \
--teleop.id=blue
```
"""
import logging
from dataclasses import asdict, dataclass
from pprint import pformat
import draccus
from lerobot.common.cameras.opencv.configuration_opencv import OpenCVCameraConfig # noqa: F401
from lerobot.common.cameras.realsense.configuration_realsense import RealSenseCameraConfig # noqa: F401
from lerobot.common.robots import ( # noqa: F401
Robot,
RobotConfig,
koch_follower,
lekiwi,
make_robot_from_config,
so100_follower,
so101_follower,
)
from lerobot.common.teleoperators import ( # noqa: F401
Teleoperator,
TeleoperatorConfig,
koch_leader,
make_teleoperator_from_config,
so100_leader,
so101_leader,
)
from lerobot.common.utils.utils import init_logging
@dataclass
class CalibrateConfig:
teleop: TeleoperatorConfig | None = None
robot: RobotConfig | None = None
def __post_init__(self):
if bool(self.teleop) == bool(self.robot):
raise ValueError("Choose either a teleop or a robot.")
self.device = self.robot if self.robot else self.teleop
@draccus.wrap()
def calibrate(cfg: CalibrateConfig):
init_logging()
logging.info(pformat(asdict(cfg)))
if isinstance(cfg.device, RobotConfig):
device = make_robot_from_config(cfg.device)
elif isinstance(cfg.device, TeleoperatorConfig):
device = make_teleoperator_from_config(cfg.device)
device.connect(calibrate=False)
device.calibrate()
device.disconnect()
if __name__ == "__main__":
calibrate()

View File

@@ -0,0 +1,17 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .camera import Camera
from .configs import CameraConfig, ColorMode, Cv2Rotation
from .utils import make_cameras_from_configs

View File

@@ -0,0 +1,122 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import Any, Dict, List
import numpy as np
from .configs import CameraConfig, ColorMode
class Camera(abc.ABC):
"""Base class for camera implementations.
Defines a standard interface for camera operations across different backends.
Subclasses must implement all abstract methods.
Manages basic camera properties (FPS, resolution) and core operations:
- Connection/disconnection
- Frame capture (sync/async)
Attributes:
fps (int | None): Configured frames per second
width (int | None): Frame width in pixels
height (int | None): Frame height in pixels
warmup_time (int | None): Time reading frames before returning from connect (in seconds)
Example:
class MyCamera(Camera):
def __init__(self, config): ...
@property
def is_connected(self) -> bool: ...
def connect(self, warmup=True): ...
# Plus other required methods
"""
def __init__(self, config: CameraConfig):
"""Initialize the camera with the given configuration.
Args:
config: Camera configuration containing FPS and resolution.
"""
self.fps: int | None = config.fps
self.width: int | None = config.width
self.height: int | None = config.height
self.warmup_time: int | None = config.warmup_time
@property
@abc.abstractmethod
def is_connected(self) -> bool:
"""Check if the camera is currently connected.
Returns:
bool: True if the camera is connected and ready to capture frames,
False otherwise.
"""
pass
@staticmethod
@abc.abstractmethod
def find_cameras() -> List[Dict[str, Any]]:
"""Detects available cameras connected to the system.
Returns:
List[Dict[str, Any]]: A list of dictionaries,
where each dictionary contains information about a detected camera.
"""
pass
@abc.abstractmethod
def connect(self, warmup: bool = True) -> None:
"""Establish connection to the camera.
Args:
warmup: If True (default), captures a warmup frame before returning. Useful
for cameras that require time to adjust capture settings.
If False, skips the warmup frame.
"""
pass
@abc.abstractmethod
def read(self, color_mode: ColorMode | None = None) -> np.ndarray:
"""Capture and return a single frame from the camera.
Args:
color_mode: Desired color mode for the output frame. If None,
uses the camera's default color mode.
Returns:
np.ndarray: Captured frame as a numpy array.
"""
pass
@abc.abstractmethod
def async_read(self, timeout_ms: float = ...) -> np.ndarray:
"""Asynchronously capture and return a single frame from the camera.
Args:
timeout_ms: Maximum time to wait for a frame in milliseconds.
Defaults to implementation-specific timeout.
Returns:
np.ndarray: Captured frame as a numpy array.
"""
pass
@abc.abstractmethod
def disconnect(self) -> None:
"""Disconnect from the camera and release resources."""
pass

View File

@@ -0,0 +1,45 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass
from enum import Enum
import draccus
class ColorMode(str, Enum):
RGB = "rgb"
BGR = "bgr"
class Cv2Rotation(int, Enum):
NO_ROTATION = 0
ROTATE_90 = 90
ROTATE_180 = 180
ROTATE_270 = -90
@dataclass(kw_only=True)
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
fps: int | None = None
width: int | None = None
height: int | None = None
warmup_time: int | None = None
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)

View File

@@ -1,7 +1,4 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -15,9 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
@dataclass
class HILSerlConfig:
pass
from .camera_opencv import OpenCVCamera
from .configuration_opencv import OpenCVCameraConfig

View File

@@ -0,0 +1,513 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Provides the OpenCVCamera class for capturing frames from cameras using OpenCV.
"""
import contextlib
import logging
import math
import platform
import queue
import time
from pathlib import Path
from threading import Event, Thread
from typing import Any, Dict, List
import cv2
import numpy as np
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..camera import Camera
from ..utils import get_cv2_backend, get_cv2_rotation
from .configuration_opencv import ColorMode, OpenCVCameraConfig
# NOTE(Steven): The maximum opencv device index depends on your operating system. For instance,
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
# When you change the USB port or reboot the computer, the operating system might
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
MAX_OPENCV_INDEX = 60
logger = logging.getLogger(__name__)
class OpenCVCamera(Camera):
"""
Manages camera interactions using OpenCV for efficient frame recording.
This class provides a high-level interface to connect to, configure, and read
frames from cameras compatible with OpenCV's VideoCapture. It supports both
synchronous and asynchronous frame reading.
An OpenCVCamera instance requires a camera index (e.g., 0) or a device path
(e.g., '/dev/video0' on Linux). Camera indices can be unstable across reboots
or port changes, especially on Linux. Use the provided utility script to find
available camera indices or paths:
```bash
python -m lerobot.find_cameras opencv
```
The camera's default settings (FPS, resolution, color mode) are used unless
overridden in the configuration.
Example:
```python
from lerobot.common.cameras.opencv import OpenCVCamera
from lerobot.common.cameras.configuration_opencv import OpenCVCameraConfig, ColorMode, Cv2Rotation
# Basic usage with camera index 0
config = OpenCVCameraConfig(index_or_path=0)
camera = OpenCVCamera(config)
try:
camera.connect()
print(f"Connected to {camera}")
color_image = camera.read() # Synchronous read
print(f"Read frame shape: {color_image.shape}")
async_image = camera.async_read() # Asynchronous read
print(f"Async read frame shape: {async_image.shape}")
except Exception as e:
print(f"An error occurred: {e}")
finally:
camera.disconnect()
print(f"Disconnected from {camera}")
# Example with custom settings
custom_config = OpenCVCameraConfig(
index_or_path='/dev/video0', # Or use an index
fps=30,
width=1280,
height=720,
color_mode=ColorMode.RGB,
rotation=Cv2Rotation.ROTATE_90
)
custom_camera = OpenCVCamera(custom_config)
# ... connect, read, disconnect ...
```
"""
def __init__(self, config: OpenCVCameraConfig):
"""
Initializes the OpenCVCamera instance.
Args:
config: The configuration settings for the camera.
"""
super().__init__(config)
self.config = config
self.index_or_path = config.index_or_path
self.fps = config.fps
self.color_mode = config.color_mode
self.warmup_time = config.warmup_time
self.videocapture: cv2.VideoCapture | None = None
self.thread: Thread | None = None
self.stop_event: Event | None = None
self.frame_queue: queue.Queue = queue.Queue(maxsize=1)
self.rotation: int | None = get_cv2_rotation(config.rotation)
self.backend: int = get_cv2_backend()
if self.height and self.width:
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
self.capture_width, self.capture_height = self.height, self.width
else:
self.capture_width, self.capture_height = self.width, self.height
def __str__(self) -> str:
return f"{self.__class__.__name__}({self.index_or_path})"
@property
def is_connected(self) -> bool:
"""Checks if the camera is currently connected and opened."""
return isinstance(self.videocapture, cv2.VideoCapture) and self.videocapture.isOpened()
def connect(self, warmup: bool = True):
"""
Connects to the OpenCV camera specified in the configuration.
Initializes the OpenCV VideoCapture object, sets desired camera properties
(FPS, width, height), and performs initial checks.
Raises:
DeviceAlreadyConnectedError: If the camera is already connected.
ValueError: If the specified camera index/path is not found or accessible.
ConnectionError: If the camera is found but fails to open.
RuntimeError: If the camera opens but fails to apply requested FPS/resolution settings.
"""
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} is already connected.")
# Use 1 thread for OpenCV operations to avoid potential conflicts or
# blocking in multi-threaded applications, especially during data collection.
cv2.setNumThreads(1)
self.videocapture = cv2.VideoCapture(self.index_or_path, self.backend)
if not self.videocapture.isOpened():
self.videocapture.release()
self.videocapture = None
raise ConnectionError(
f"Failed to open OpenCV camera {self.index_or_path}."
f"Run 'python -m lerobot.find_cameras opencv' for details about the available cameras in your system."
)
self._configure_capture_settings()
if warmup:
if self.warmup_time is None:
raise ValueError(
f"Warmup time is not set for {self}. Please set a warmup time in the configuration."
)
logger.debug(f"Reading a warm-up frames for {self} for {self.warmup_time} seconds...")
start_time = time.time()
while time.time() - start_time < self.warmup_time:
self.read()
time.sleep(0.1)
logger.debug(f"Camera {self.index_or_path} connected and configured successfully.")
def _configure_capture_settings(self) -> None:
"""
Applies the specified FPS, width, and height settings to the connected camera.
This method attempts to set the camera properties via OpenCV. It checks if
the camera successfully applied the settings and raises an error if not.
Args:
fps: The desired frames per second. If None, the setting is skipped.
width: The desired capture width. If None, the setting is skipped.
height: The desired capture height. If None, the setting is skipped.
Raises:
RuntimeError: If the camera fails to set any of the specified properties
to the requested value.
DeviceNotConnectedError: If the camera is not connected when attempting
to configure settings.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"Cannot configure settings for {self} as it is not connected.")
if self.fps is None:
self.fps = self.videocapture.get(cv2.CAP_PROP_FPS)
logger.info(f"FPS set to camera default: {self.fps}.")
else:
self._validate_fps()
default_width = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_WIDTH)))
default_height = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
if self.width is None or self.height is None:
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
self.width, self.height = default_height, default_width
self.capture_width, self.capture_height = default_width, default_height
else:
self.width, self.height = default_width, default_height
self.capture_width, self.capture_height = default_width, default_height
logger.info(f"Capture width set to camera default: {self.width}.")
logger.info(f"Capture height set to camera default: {self.height}.")
else:
self._validate_width_and_height()
def _validate_fps(self) -> None:
"""Validates and sets the camera's frames per second (FPS)."""
success = self.videocapture.set(cv2.CAP_PROP_FPS, float(self.fps))
actual_fps = self.videocapture.get(cv2.CAP_PROP_FPS)
# Use math.isclose for robust float comparison
if not success or not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
raise RuntimeError(
f"Failed to set requested FPS {self.fps} for {self}. Actual value reported: {actual_fps} set success: {success})."
)
logger.debug(f"FPS set to {actual_fps} for {self}.")
def _validate_width_and_height(self) -> None:
"""Validates and sets the camera's frame capture width and height."""
success = self.videocapture.set(cv2.CAP_PROP_FRAME_WIDTH, float(self.capture_width))
actual_width = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_WIDTH)))
if not success or self.capture_width != actual_width:
raise RuntimeError(
f"Failed to set requested capture width {self.capture_width} for {self}. Actual value: {actual_width} (set success: {success})."
)
logger.debug(f"Capture width set to {actual_width} for {self}.")
success = self.videocapture.set(cv2.CAP_PROP_FRAME_HEIGHT, float(self.capture_height))
actual_height = int(round(self.videocapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
if not success or self.capture_height != actual_height:
raise RuntimeError(
f"Failed to set requested capture height {self.capture_height} for {self}. Actual value: {actual_height} (set success: {success})."
)
logger.debug(f"Capture height set to {actual_height} for {self}.")
@staticmethod
def find_cameras() -> List[Dict[str, Any]]:
"""
Detects available OpenCV cameras connected to the system.
On Linux, it scans '/dev/video*' paths. On other systems (like macOS, Windows),
it checks indices from 0 up to `MAX_OPENCV_INDEX`.
Returns:
List[Dict[str, Any]]: A list of dictionaries,
where each dictionary contains 'type', 'id' (port index or path),
and the default profile properties (width, height, fps, format).
"""
found_cameras_info = []
if platform.system() == "Linux":
possible_paths = sorted(Path("/dev").glob("video*"), key=lambda p: p.name)
targets_to_scan = [str(p) for p in possible_paths]
else:
targets_to_scan = list(range(MAX_OPENCV_INDEX))
logger.debug(f"Found potential paths: {targets_to_scan}")
for target in targets_to_scan:
camera = cv2.VideoCapture(target)
if camera.isOpened():
default_width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH))
default_height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))
default_fps = camera.get(cv2.CAP_PROP_FPS)
default_format = camera.get(cv2.CAP_PROP_FORMAT)
camera_info = {
"name": f"OpenCV Camera @ {target}",
"type": "OpenCV",
"id": target,
"backend_api": camera.getBackendName(),
"default_stream_profile": {
"format": default_format,
"width": default_width,
"height": default_height,
"fps": default_fps,
},
}
found_cameras_info.append(camera_info)
camera.release()
if not found_cameras_info:
logger.warning("No OpenCV devices detected.")
logger.info(f"Detected OpenCV cameras: {[cam['id'] for cam in found_cameras_info]}")
return found_cameras_info
def read(self, color_mode: ColorMode | None = None) -> np.ndarray:
"""
Reads a single frame synchronously from the camera.
This is a blocking call. It waits for the next available frame from the
camera hardware via OpenCV.
Args:
color_mode (Optional[ColorMode]): If specified, overrides the default
color mode (`self.color_mode`) for this read operation (e.g.,
request RGB even if default is BGR).
Returns:
np.ndarray: The captured frame as a NumPy array in the format
(height, width, channels), using the specified or default
color mode and applying any configured rotation.
Raises:
DeviceNotConnectedError: If the camera is not connected.
RuntimeError: If reading the frame from the camera fails or if the
received frame dimensions don't match expectations before rotation.
ValueError: If an invalid `color_mode` is requested.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
start_time = time.perf_counter()
# NOTE(Steven): Are we okay with this blocking an undefined amount of time?
ret, frame = self.videocapture.read()
if not ret or frame is None:
raise RuntimeError(
f"Failed to capture frame from {self}. '.read()' returned status={ret} and frame is None."
)
# Post-process the frame (color conversion, dimension check, rotation)
processed_frame = self._postprocess_image(frame, color_mode)
read_duration_ms = (time.perf_counter() - start_time) * 1e3
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
return processed_frame
def _postprocess_image(self, image: np.ndarray, color_mode: ColorMode | None = None) -> np.ndarray:
"""
Applies color conversion, dimension validation, and rotation to a raw frame.
Args:
image (np.ndarray): The raw image frame (expected BGR format from OpenCV).
color_mode (Optional[ColorMode]): The target color mode (RGB or BGR). If None,
uses the instance's default `self.color_mode`.
Returns:
np.ndarray: The processed image frame.
Raises:
ValueError: If the requested `color_mode` is invalid.
RuntimeError: If the raw frame dimensions do not match the configured
`width` and `height`.
"""
requested_color_mode = self.color_mode if color_mode is None else color_mode
if requested_color_mode not in (ColorMode.RGB, ColorMode.BGR):
raise ValueError(
f"Invalid requested color mode '{requested_color_mode}'. Expected {ColorMode.RGB} or {ColorMode.BGR}."
)
h, w, c = image.shape
if h != self.capture_height or w != self.capture_width:
raise RuntimeError(
f"Captured frame dimensions ({h}x{w}) do not match configured capture dimensions ({self.capture_height}x{self.capture_width}) for {self}."
)
processed_image = image
if requested_color_mode == ColorMode.RGB:
processed_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
logger.debug(f"Converted frame from BGR to RGB for {self}.")
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
processed_image = cv2.rotate(processed_image, self.rotation)
logger.debug(f"Rotated frame by {self.config.rotation} degrees for {self}.")
return processed_image
def _read_loop(self):
"""
Internal loop run by the background thread for asynchronous reading.
Continuously reads frames from the camera using the synchronous `read()`
method and places the latest frame into the `frame_queue`. It overwrites
any previous frame in the queue.
"""
logger.debug(f"Starting read loop thread for {self}.")
while not self.stop_event.is_set():
try:
color_image = self.read()
with contextlib.suppress(queue.Empty):
_ = self.frame_queue.get_nowait()
self.frame_queue.put(color_image)
logger.debug(f"Frame placed in queue for {self}.")
except DeviceNotConnectedError:
logger.error(f"Read loop for {self} stopped: Camera disconnected.")
break
except Exception as e:
logger.warning(f"Error reading frame in background thread for {self}: {e}")
logger.debug(f"Stopping read loop thread for {self}.")
def _start_read_thread(self) -> None:
"""Starts or restarts the background read thread if it's not running."""
if self.thread is not None and self.thread.is_alive():
self.thread.join(timeout=0.1)
if self.stop_event is not None:
self.stop_event.set()
self.stop_event = Event()
self.thread = Thread(
target=self._read_loop, args=(), name=f"OpenCVCameraReadLoop-{self}-{self.index_or_path}"
)
self.thread.daemon = True
self.thread.start()
logger.debug(f"Read thread started for {self}.")
def _stop_read_thread(self) -> None:
"""Signals the background read thread to stop and waits for it to join."""
if self.stop_event is not None:
self.stop_event.set()
if self.thread is not None and self.thread.is_alive():
self.thread.join(timeout=2.0)
if self.thread.is_alive():
logger.warning(f"Read thread for {self} did not terminate gracefully after 2 seconds.")
else:
logger.debug(f"Read thread for {self} joined successfully.")
self.thread = None
self.stop_event = None
logger.debug(f"Read thread stopped for {self}.")
def async_read(self, timeout_ms: float = 2000) -> np.ndarray:
"""
Reads the latest available frame asynchronously.
This method retrieves the most recent frame captured by the background
read thread. It does not block waiting for the camera hardware directly,
only waits for a frame to appear in the internal queue up to the specified
timeout.
Args:
timeout_ms (float): Maximum time in milliseconds to wait for a frame
to become available in the queue. Defaults to 2000ms (2 seconds).
Returns:
np.ndarray: The latest captured frame as a NumPy array in the format
(height, width, channels), processed according to configuration.
Raises:
DeviceNotConnectedError: If the camera is not connected.
TimeoutError: If no frame becomes available within the specified timeout.
RuntimeError: If an unexpected error occurs while retrieving from the queue.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
if self.thread is None or not self.thread.is_alive():
self._start_read_thread()
try:
return self.frame_queue.get(timeout=timeout_ms / 1000.0)
except queue.Empty as e:
thread_alive = self.thread is not None and self.thread.is_alive()
raise TimeoutError(
f"Timed out waiting for frame from camera {self} after {timeout_ms} ms. "
f"Read thread alive: {thread_alive}."
) from e
except Exception as e:
logger.exception(f"Unexpected error getting frame from queue for {self}: {e}")
raise RuntimeError(f"Error getting frame from queue for camera {self.index_or_path}: {e}") from e
def disconnect(self):
"""
Disconnects from the camera and cleans up resources.
Stops the background read thread (if running) and releases the OpenCV
VideoCapture object.
Raises:
DeviceNotConnectedError: If the camera is already disconnected.
"""
if not self.is_connected and self.thread is None:
raise DeviceNotConnectedError(f"{self} not connected.")
if self.thread is not None:
self._stop_read_thread()
if self.videocapture is not None:
self.videocapture.release()
self.videocapture = None
logger.info(f"{self} disconnected.")

View File

@@ -0,0 +1,71 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from pathlib import Path
from ..configs import CameraConfig, ColorMode, Cv2Rotation
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""Configuration class for OpenCV-based camera devices or video files.
This class provides configuration options for cameras accessed through OpenCV,
supporting both physical camera devices and video files. It includes settings
for resolution, frame rate, color mode, and image rotation.
Example configurations:
```python
# Basic configurations
OpenCVCameraConfig(0, 30, 1280, 720) # 1280x720 @ 30FPS
OpenCVCameraConfig(/dev/video4, 60, 640, 480) # 640x480 @ 60FPS
# Advanced configurations
OpenCVCameraConfig(128422271347, 30, 640, 480, rotation=Cv2Rotation.ROTATE_90) # With 90° rotation
```
Attributes:
index_or_path: Either an integer representing the camera device index,
or a Path object pointing to a video file.
fps: Requested frames per second for the color stream.
width: Requested frame width in pixels for the color stream.
height: Requested frame height in pixels for the color stream.
color_mode: Color mode for image output (RGB or BGR). Defaults to RGB.
rotation: Image rotation setting (0°, 90°, 180°, or 270°). Defaults to no rotation.
Note:
- Only 3-channel color output (RGB/BGR) is currently supported.
"""
index_or_path: int | Path
color_mode: ColorMode = ColorMode.RGB
rotation: Cv2Rotation = Cv2Rotation.NO_ROTATION
def __post_init__(self):
if self.color_mode not in (ColorMode.RGB, ColorMode.BGR):
raise ValueError(
f"`color_mode` is expected to be {ColorMode.RGB.value} or {ColorMode.BGR.value}, but {self.color_mode} is provided."
)
if self.rotation not in (
Cv2Rotation.NO_ROTATION,
Cv2Rotation.ROTATE_90,
Cv2Rotation.ROTATE_180,
Cv2Rotation.ROTATE_270,
):
raise ValueError(
f"`rotation` is expected to be in {(Cv2Rotation.NO_ROTATION, Cv2Rotation.ROTATE_90, Cv2Rotation.ROTATE_180, Cv2Rotation.ROTATE_270)}, but {self.rotation} is provided."
)

View File

@@ -0,0 +1,16 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .camera_realsense import RealSenseCamera
from .configuration_realsense import RealSenseCameraConfig

View File

@@ -0,0 +1,612 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Provides the RealSenseCamera class for capturing frames from Intel RealSense cameras.
"""
import contextlib
import logging
import queue
import time
from threading import Event, Thread
from typing import Any, Dict, List
import cv2
import numpy as np
try:
import pyrealsense2 as rs
except Exception as e:
logging.info(f"Could not import realsense: {e}")
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..camera import Camera
from ..configs import ColorMode
from ..utils import get_cv2_rotation
from .configuration_realsense import RealSenseCameraConfig
logger = logging.getLogger(__name__)
class RealSenseCamera(Camera):
"""
Manages interactions with Intel RealSense cameras for frame and depth recording.
This class provides an interface similar to `OpenCVCamera` but tailored for
RealSense devices, leveraging the `pyrealsense2` library. It uses the camera's
unique serial number for identification, offering more stability than device
indices, especially on Linux. It also supports capturing depth maps alongside
color frames.
Use the provided utility script to find available camera indices and default profiles:
```bash
python -m lerobot.find_cameras realsense
```
A `RealSenseCamera` instance requires a configuration object specifying the
camera's serial number or a unique device name. If using the name, ensure only
one camera with that name is connected.
The camera's default settings (FPS, resolution, color mode) from the stream
profile are used unless overridden in the configuration.
Example:
```python
from lerobot.common.cameras.realsense import RealSenseCamera, RealSenseCameraConfig
from lerobot.common.cameras import ColorMode, Cv2Rotation
# Basic usage with serial number
config = RealSenseCameraConfig(serial_number_or_name="1234567890") # Replace with actual SN
camera = RealSenseCamera(config)
camera.connect()
# Read 1 frame synchronously
color_image = camera.read()
print(color_image.shape)
# Read 1 frame asynchronously
async_image = camera.async_read()
# When done, properly disconnect the camera using
camera.disconnect()
# Example with depth capture and custom settings
custom_config = RealSenseCameraConfig(
serial_number_or_name="1234567890", # Replace with actual SN
fps=30,
width=1280,
height=720,
color_mode=ColorMode.BGR, # Request BGR output
rotation=Cv2Rotation.NO_ROTATION,
use_depth=True
)
depth_camera = RealSenseCamera(custom_config)
try:
depth_camera.connect()
depth_map = depth_camera.read_depth()
print(f"Depth shape: {depth_map.shape}")
finally:
depth_camera.disconnect()
# Example using a unique camera name
name_config = RealSenseCameraConfig(serial_number_or_name="Intel RealSense D435") # If unique
name_camera = RealSenseCamera(name_config)
# ... connect, read, disconnect ...
```
"""
def __init__(self, config: RealSenseCameraConfig):
"""
Initializes the RealSenseCamera instance.
Args:
config: The configuration settings for the camera.
"""
super().__init__(config)
self.config = config
if isinstance(config.serial_number_or_name, int):
self.serial_number = str(config.serial_number_or_name)
else:
self.serial_number = self._find_serial_number_from_name(config.serial_number_or_name)
self.fps = config.fps
self.color_mode = config.color_mode
self.use_depth = config.use_depth
self.warmup_time = config.warmup_time
self.rs_pipeline: rs.pipeline | None = None
self.rs_profile: rs.pipeline_profile | None = None
self.thread: Thread | None = None
self.stop_event: Event | None = None
self.frame_queue: queue.Queue = queue.Queue(maxsize=1)
self.rotation: int | None = get_cv2_rotation(config.rotation)
if self.height and self.width:
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
self.capture_width, self.capture_height = self.height, self.width
else:
self.capture_width, self.capture_height = self.width, self.height
def __str__(self) -> str:
return f"{self.__class__.__name__}({self.serial_number})"
@property
def is_connected(self) -> bool:
"""Checks if the camera pipeline is started and streams are active."""
return self.rs_pipeline is not None and self.rs_profile is not None
def connect(self, warmup: bool = True):
"""
Connects to the RealSense camera specified in the configuration.
Initializes the RealSense pipeline, configures the required streams (color
and optionally depth), starts the pipeline, and validates the actual stream settings.
Raises:
DeviceAlreadyConnectedError: If the camera is already connected.
ValueError: If the configuration is invalid (e.g., missing serial/name, name not unique).
ConnectionError: If the camera is found but fails to start the pipeline or no RealSense devices are detected at all.
RuntimeError: If the pipeline starts but fails to apply requested settings.
"""
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} is already connected.")
self.rs_pipeline = rs.pipeline()
rs_config = self._make_rs_pipeline_config()
try:
self.rs_profile = self.rs_pipeline.start(rs_config)
logger.debug(f"Successfully started pipeline for camera {self.serial_number}.")
except RuntimeError as e:
self.rs_profile = None
self.rs_pipeline = None
raise ConnectionError(
f"Failed to open {self} camera. Run 'python -m lerobot.find_cameras realsense' for details about the available cameras in your system."
) from e
logger.debug(f"Validating stream configuration for {self}...")
self._validate_capture_settings()
if warmup:
if self.warmup_time is None:
raise ValueError(
f"Warmup time is not set for {self}. Please set a warmup time in the configuration."
)
logger.debug(f"Reading a warm-up frames for {self} for {self.warmup_time} seconds...")
start_time = time.time()
while time.time() - start_time < self.warmup_time:
self.read()
time.sleep(0.1)
logger.info(f"{self} connected.")
@staticmethod
def find_cameras() -> List[Dict[str, Any]]:
"""
Detects available Intel RealSense cameras connected to the system.
Returns:
List[Dict[str, Any]]: A list of dictionaries,
where each dictionary contains 'type', 'id' (serial number), 'name',
firmware version, USB type, and other available specs, and the default profile properties (width, height, fps, format).
Raises:
OSError: If pyrealsense2 is not installed.
ImportError: If pyrealsense2 is not installed.
"""
found_cameras_info = []
context = rs.context()
devices = context.query_devices()
for device in devices:
camera_info = {
"name": device.get_info(rs.camera_info.name),
"type": "RealSense",
"id": device.get_info(rs.camera_info.serial_number),
"firmware_version": device.get_info(rs.camera_info.firmware_version),
"usb_type_descriptor": device.get_info(rs.camera_info.usb_type_descriptor),
"physical_port": device.get_info(rs.camera_info.physical_port),
"product_id": device.get_info(rs.camera_info.product_id),
"product_line": device.get_info(rs.camera_info.product_line),
}
# Get stream profiles for each sensor
sensors = device.query_sensors()
for sensor in sensors:
profiles = sensor.get_stream_profiles()
for profile in profiles:
if profile.is_video_stream_profile() and profile.is_default():
vprofile = profile.as_video_stream_profile()
stream_info = {
"stream_type": vprofile.stream_name(),
"format": vprofile.format().name,
"width": vprofile.width(),
"height": vprofile.height(),
"fps": vprofile.fps(),
}
camera_info["default_stream_profile"] = stream_info
found_cameras_info.append(camera_info)
logger.info(f"Detected RealSense cameras: {[cam['id'] for cam in found_cameras_info]}")
return found_cameras_info
def _find_serial_number_from_name(self, name: str) -> str:
"""Finds the serial number for a given unique camera name."""
camera_infos = self.find_cameras()
found_devices = [cam for cam in camera_infos if str(cam["name"]) == name]
if not found_devices:
available_names = [cam["name"] for cam in camera_infos]
raise ValueError(
f"No RealSense camera found with name '{name}'. Available camera names: {available_names}"
)
if len(found_devices) > 1:
serial_numbers = [dev["serial_number"] for dev in found_devices]
raise ValueError(
f"Multiple RealSense cameras found with name '{name}'. "
f"Please use a unique serial number instead. Found SNs: {serial_numbers}"
)
serial_number = str(found_devices[0]["serial_number"])
logger.info(f"Found serial number '{serial_number}' for camera name '{name}'.")
return serial_number
def _make_rs_pipeline_config(self) -> rs.config:
"""Creates and configures the RealSense pipeline configuration object."""
rs_config = rs.config()
rs.config.enable_device(rs_config, self.serial_number)
if self.width and self.height and self.fps:
logger.debug(
f"Requesting Color Stream: {self.capture_width}x{self.capture_height} @ {self.fps} FPS, Format: {rs.format.rgb8}"
)
rs_config.enable_stream(
rs.stream.color, self.capture_width, self.capture_height, rs.format.rgb8, self.fps
)
if self.use_depth:
logger.debug(
f"Requesting Depth Stream: {self.capture_width}x{self.capture_height} @ {self.fps} FPS, Format: {rs.format.z16}"
)
rs_config.enable_stream(
rs.stream.depth, self.capture_width, self.capture_height, rs.format.z16, self.fps
)
else:
logger.debug(f"Requesting Color Stream: Default settings, Format: {rs.stream.color}")
rs_config.enable_stream(rs.stream.color)
if self.use_depth:
logger.debug(f"Requesting Depth Stream: Default settings, Format: {rs.stream.depth}")
rs_config.enable_stream(rs.stream.depth)
return rs_config
def _validate_capture_settings(self) -> None:
"""
Validates if the actual stream settings match the requested configuration.
This method compares the requested FPS, width, and height against the
actual settings obtained from the active RealSense profile after the
pipeline has started.
Raises:
RuntimeError: If the actual camera settings significantly deviate
from the requested ones.
DeviceNotConnectedError: If the camera is not connected when attempting
to validate settings.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"Cannot validate settings for {self} as it is not connected.")
stream = self.rs_profile.get_stream(rs.stream.color).as_video_stream_profile()
if self.fps is None:
self.fps = stream.fps()
if self.width is None or self.height is None:
actual_width = int(round(stream.width()))
actual_height = int(round(stream.height()))
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
self.width, self.height = actual_height, actual_width
self.capture_width, self.capture_height = actual_width, actual_height
else:
self.width, self.height = actual_width, actual_height
self.capture_width, self.capture_height = actual_width, actual_height
logger.info(f"Capture width set to camera default: {self.width}.")
logger.info(f"Capture height set to camera default: {self.height}.")
else:
self._validate_width_and_height(stream)
if self.use_depth:
stream = self.rs_profile.get_stream(rs.stream.depth).as_video_stream_profile()
self._validate_width_and_height(stream)
def _validate_width_and_height(self, stream) -> None:
"""Validates and sets the internal capture width and height based on actual stream width."""
actual_width = int(round(stream.width()))
actual_height = int(round(stream.height()))
if self.capture_width != actual_width:
raise RuntimeError(
f"Failed to set requested capture width {self.capture_width} for {self}. Actual value: {actual_width}."
)
logger.debug(f"Capture width set to {actual_width} for {self}.")
if self.capture_height != actual_height:
raise RuntimeError(
f"Failed to set requested capture height {self.capture_height} for {self}. Actual value: {actual_height}."
)
logger.debug(f"Capture height set to {actual_height} for {self}.")
def read_depth(self, timeout_ms: int = 100) -> np.ndarray:
"""
Reads a single frame (depth) synchronously from the camera.
This is a blocking call. It waits for a coherent set of frames (depth)
from the camera hardware via the RealSense pipeline.
Args:
timeout_ms (int): Maximum time in milliseconds to wait for a frame. Defaults to 100ms.
Returns:
np.ndarray: The depth map as a NumPy array (height, width)
of type `np.uint16` (raw depth values in millimeters) and rotation.
Raises:
DeviceNotConnectedError: If the camera is not connected.
RuntimeError: If reading frames from the pipeline fails or frames are invalid.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
if not self.use_depth:
raise RuntimeError(
f"Failed to capture depth frame '.read_depth()'. Depth stream is not enabled for {self}."
)
start_time = time.perf_counter()
ret, frame = self.rs_pipeline.try_wait_for_frames(timeout_ms=timeout_ms)
if not ret or frame is None:
raise RuntimeError(f"{self} failed to capture frame. Returned status='{ret}'.")
depth_frame = frame.get_depth_frame()
depth_map = np.asanyarray(depth_frame.get_data())
depth_map_processed = self._postprocess_image(depth_map, depth_frame=True)
read_duration_ms = (time.perf_counter() - start_time) * 1e3
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
return depth_map_processed
def read(self, color_mode: ColorMode | None = None, timeout_ms: int = 100) -> np.ndarray:
"""
Reads a single frame (color) synchronously from the camera.
This is a blocking call. It waits for a coherent set of frames (color)
from the camera hardware via the RealSense pipeline.
Args:
timeout_ms (int): Maximum time in milliseconds to wait for a frame. Defaults to 100ms.
Returns:
np.ndarray: The captured color frame as a NumPy array
(height, width, channels), processed according to `color_mode` and rotation.
Raises:
DeviceNotConnectedError: If the camera is not connected.
RuntimeError: If reading frames from the pipeline fails or frames are invalid.
ValueError: If an invalid `color_mode` is requested.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
start_time = time.perf_counter()
ret, frame = self.rs_pipeline.try_wait_for_frames(
timeout_ms=timeout_ms
) # NOTE(Steven): This read has a timeout while opencv doesn't
if not ret or frame is None:
raise RuntimeError(
f"Failed to capture frame from {self}. '.read()' returned status={ret} and frame is None."
)
color_frame = frame.get_color_frame()
color_image_raw = np.asanyarray(color_frame.get_data())
color_image_processed = self._postprocess_image(color_image_raw, color_mode)
read_duration_ms = (time.perf_counter() - start_time) * 1e3
logger.debug(f"{self} synchronous read took: {read_duration_ms:.1f}ms")
return color_image_processed
def _postprocess_image(
self, image: np.ndarray, color_mode: ColorMode | None = None, depth_frame: bool = False
) -> np.ndarray:
"""
Applies color conversion, dimension validation, and rotation to a raw color frame.
Args:
image (np.ndarray): The raw image frame (expected RGB format from RealSense).
color_mode (Optional[ColorMode]): The target color mode (RGB or BGR). If None,
uses the instance's default `self.color_mode`.
Returns:
np.ndarray: The processed image frame according to `self.color_mode` and `self.rotation`.
Raises:
ValueError: If the requested `color_mode` is invalid.
RuntimeError: If the raw frame dimensions do not match the configured
`width` and `height`.
"""
if color_mode and color_mode not in (ColorMode.RGB, ColorMode.BGR):
raise ValueError(
f"Invalid requested color mode '{color_mode}'. Expected {ColorMode.RGB} or {ColorMode.BGR}."
)
if depth_frame:
h, w = image.shape
else:
h, w, _c = image.shape
if h != self.capture_height or w != self.capture_width:
raise RuntimeError(
f"Captured frame dimensions ({h}x{w}) do not match configured capture dimensions ({self.capture_height}x{self.capture_width}) for {self}."
)
processed_image = image
if self.color_mode == ColorMode.BGR:
processed_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
logger.debug(f"Converted frame from RGB to BGR for {self}.")
if self.rotation in [cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE]:
processed_image = cv2.rotate(processed_image, self.rotation)
logger.debug(f"Rotated frame by {self.config.rotation} degrees for {self}.")
return processed_image
def _read_loop(self):
"""
Internal loop run by the background thread for asynchronous reading.
Continuously reads frames (color and optional depth) using `read()`
and places the latest result (single image or tuple) into the `frame_queue`.
It overwrites any previous frame in the queue.
"""
logger.debug(f"Starting read loop thread for {self}.")
while not self.stop_event.is_set():
try:
frame_data = self.read(timeout_ms=500)
with contextlib.suppress(queue.Empty):
_ = self.frame_queue.get_nowait()
self.frame_queue.put(frame_data)
logger.debug(f"Frame data placed in queue for {self}.")
except DeviceNotConnectedError:
logger.error(f"Read loop for {self} stopped: Camera disconnected.")
break
except Exception as e:
logger.warning(f"Error reading frame in background thread for {self}: {e}")
logger.debug(f"Stopping read loop thread for {self}.")
def _start_read_thread(self) -> None:
"""Starts or restarts the background read thread if it's not running."""
if self.thread is not None and self.thread.is_alive():
self.thread.join(timeout=0.1)
if self.stop_event is not None:
self.stop_event.set()
self.stop_event = Event()
self.thread = Thread(target=self._read_loop, args=(), name=f"{self}_read_loop")
self.thread.daemon = True
self.thread.start()
logger.debug(f"Read thread started for {self}.")
def _stop_read_thread(self):
"""Signals the background read thread to stop and waits for it to join."""
if self.stop_event is not None:
self.stop_event.set()
if self.thread is not None and self.thread.is_alive():
self.thread.join(timeout=2.0)
if self.thread.is_alive():
logger.warning(f"Read thread for {self} did not terminate gracefully after 2 seconds.")
else:
logger.debug(f"Read thread for {self} joined successfully.")
self.thread = None
self.stop_event = None
logger.debug(f"Read thread stopped for {self}.")
# NOTE(Steven): Missing implementation for depth for now
def async_read(self, timeout_ms: float = 100) -> np.ndarray:
"""
Reads the latest available frame data (color or color+depth) asynchronously.
This method retrieves the most recent frame captured by the background
read thread. It does not block waiting for the camera hardware directly,
only waits for a frame to appear in the internal queue up to the specified
timeout.
Args:
timeout_ms (float): Maximum time in milliseconds to wait for a frame
to become available in the queue. Defaults to 100ms (0.1 seconds).
Returns:
np.ndarray:
The latest captured frame data (color image), processed according to configuration.
Raises:
DeviceNotConnectedError: If the camera is not connected.
TimeoutError: If no frame data becomes available within the specified timeout.
RuntimeError: If the background thread died unexpectedly or another queue error occurs.
"""
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
if self.thread is None or not self.thread.is_alive():
self._start_read_thread()
try:
return self.frame_queue.get(timeout=timeout_ms / 1000.0)
except queue.Empty as e:
thread_alive = self.thread is not None and self.thread.is_alive()
raise TimeoutError(
f"Timed out waiting for frame from camera {self} after {timeout_ms} ms. "
f"Read thread alive: {thread_alive}."
) from e
except Exception as e:
raise RuntimeError(f"Error getting frame data from queue for camera {self}: {e}") from e
def disconnect(self):
"""
Disconnects from the camera, stops the pipeline, and cleans up resources.
Stops the background read thread (if running) and stops the RealSense pipeline.
Raises:
DeviceNotConnectedError: If the camera is already disconnected (pipeline not running).
"""
if not self.is_connected and self.thread is None:
raise DeviceNotConnectedError(
f"Attempted to disconnect {self}, but it appears already disconnected."
)
if self.thread is not None:
self._stop_read_thread()
if self.rs_pipeline is not None:
logger.debug(f"Stopping RealSense pipeline object for {self}.")
self.rs_pipeline.stop()
self.rs_pipeline = None
self.rs_profile = None
logger.info(f"{self} disconnected.")

View File

@@ -0,0 +1,80 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..configs import CameraConfig, ColorMode, Cv2Rotation
@CameraConfig.register_subclass("intelrealsense")
@dataclass
class RealSenseCameraConfig(CameraConfig):
"""Configuration class for Intel RealSense cameras.
This class provides specialized configuration options for Intel RealSense cameras,
including support for depth sensing and device identification via serial number or name.
Example configurations for Intel RealSense D405:
```python
# Basic configurations
RealSenseCameraConfig(128422271347, 30, 1280, 720) # 1280x720 @ 30FPS
RealSenseCameraConfig(128422271347, 60, 640, 480) # 640x480 @ 60FPS
# Advanced configurations
RealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True) # With depth sensing
RealSenseCameraConfig(128422271347, 30, 640, 480, rotation=Cv2Rotation.ROTATE_90) # With 90° rotation
```
Attributes:
fps: Requested frames per second for the color stream.
width: Requested frame width in pixels for the color stream.
height: Requested frame height in pixels for the color stream.
serial_number_or_name: Unique serial number or human-readable name to identify the camera.
color_mode: Color mode for image output (RGB or BGR). Defaults to RGB.
use_depth: Whether to enable depth stream. Defaults to False.
rotation: Image rotation setting (0°, 90°, 180°, or 270°). Defaults to no rotation.
Note:
- Either name or serial_number must be specified.
- Depth stream configuration (if enabled) will use the same FPS as the color stream.
- The actual resolution and FPS may be adjusted by the camera to the nearest supported mode.
- For `fps`, `width` and `height`, either all of them need to be set, or none of them.
"""
serial_number_or_name: int | str
color_mode: ColorMode = ColorMode.RGB
use_depth: bool = False
rotation: Cv2Rotation = Cv2Rotation.NO_ROTATION # NOTE(Steven): Check if draccus can parse to an enum
def __post_init__(self):
if self.color_mode not in (ColorMode.RGB, ColorMode.BGR):
raise ValueError(
f"`color_mode` is expected to be {ColorMode.RGB.value} or {ColorMode.BGR.value}, but {self.color_mode} is provided."
)
if self.rotation not in (
Cv2Rotation.NO_ROTATION,
Cv2Rotation.ROTATE_90,
Cv2Rotation.ROTATE_180,
Cv2Rotation.ROTATE_270,
):
raise ValueError(
f"`rotation` is expected to be in {(Cv2Rotation.NO_ROTATION, Cv2Rotation.ROTATE_90, Cv2Rotation.ROTATE_180, Cv2Rotation.ROTATE_270)}, but {self.rotation} is provided."
)
values = (self.fps, self.width, self.height)
if any(v is not None for v in values) and any(v is None for v in values):
raise ValueError(
"For `fps`, `width` and `height`, either all of them need to be set, or none of them."
)

View File

@@ -0,0 +1,75 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
from pathlib import Path
from typing import TypeAlias
import numpy as np
from PIL import Image
from .camera import Camera
from .configs import CameraConfig, Cv2Rotation
IndexOrPath: TypeAlias = int | Path
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> dict[str, Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from .opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from .realsense.camera_realsense import RealSenseCamera
cameras[key] = RealSenseCamera(cfg)
else:
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
return cameras
def get_cv2_rotation(rotation: Cv2Rotation) -> int | None:
import cv2
if rotation == Cv2Rotation.ROTATE_90:
return cv2.ROTATE_90_CLOCKWISE
elif rotation == Cv2Rotation.ROTATE_180:
return cv2.ROTATE_180
elif rotation == Cv2Rotation.ROTATE_270:
return cv2.ROTATE_90_COUNTERCLOCKWISE
else:
return None
def get_cv2_backend() -> int:
import cv2
if platform.system() == "Windows":
return cv2.CAP_AVFOUNDATION
else:
return cv2.CAP_ANY
def save_image(img_array: np.ndarray, camera_index: int, frame_index: int, images_dir: Path):
img = Image.fromarray(img_array)
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
path.parent.mkdir(parents=True, exist_ok=True)
img.save(str(path), quality=100)

View File

@@ -17,12 +17,15 @@ from pathlib import Path
from huggingface_hub.constants import HF_HOME
OBS_ENV = "observation.environment_state"
OBS_ROBOT = "observation.state"
OBS_ENV_STATE = "observation.environment_state"
OBS_STATE = "observation.state"
OBS_IMAGE = "observation.image"
OBS_IMAGES = "observation.images"
ACTION = "action"
ROBOTS = "robots"
TELEOPERATORS = "teleoperators"
# files & directories
CHECKPOINTS_DIR = "checkpoints"
LAST_CHECKPOINT_LINK = "last"
@@ -34,12 +37,16 @@ OPTIMIZER_STATE = "optimizer_state.safetensors"
OPTIMIZER_PARAM_GROUPS = "optimizer_param_groups.json"
SCHEDULER_STATE = "scheduler_state.json"
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
if "LEROBOT_HOME" in os.environ:
raise ValueError(
f"You have a 'LEROBOT_HOME' environment variable set to '{os.getenv('LEROBOT_HOME')}'.\n"
"'LEROBOT_HOME' is deprecated, please use 'HF_LEROBOT_HOME' instead."
)
# cache dir
default_cache_path = Path(HF_HOME) / "lerobot"
HF_LEROBOT_HOME = Path(os.getenv("HF_LEROBOT_HOME", default_cache_path)).expanduser()
# calibration dir
default_calibration_path = HF_LEROBOT_HOME / "calibration"
HF_LEROBOT_CALIBRATION = Path(os.getenv("HF_LEROBOT_CALIBRATION", default_calibration_path)).expanduser()

View File

@@ -19,10 +19,7 @@ from lerobot.common.datasets.utils import load_image_as_numpy
def estimate_num_samples(
dataset_len: int,
min_num_samples: int = 100,
max_num_samples: int = 10_000,
power: float = 0.75,
dataset_len: int, min_num_samples: int = 100, max_num_samples: int = 10_000, power: float = 0.75
) -> int:
"""Heuristic to estimate the number of samples based on dataset size.
The power controls the sample growth relative to dataset size.
@@ -126,9 +123,7 @@ def _assert_type_and_shape(stats_list: list[dict[str, dict]]):
raise ValueError(f"Shape of '{k}' must be (3,1,1), but is {v.shape} instead.")
def aggregate_feature_stats(
stats_ft_list: list[dict[str, dict]],
) -> dict[str, dict[str, np.ndarray]]:
def aggregate_feature_stats(stats_ft_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
"""Aggregates stats for a single feature."""
means = np.stack([s["mean"] for s in stats_ft_list])
variances = np.stack([s["std"] ** 2 for s in stats_ft_list])
@@ -157,9 +152,7 @@ def aggregate_feature_stats(
}
def aggregate_stats(
stats_list: list[dict[str, dict]],
) -> dict[str, dict[str, np.ndarray]]:
def aggregate_stats(stats_list: list[dict[str, dict]]) -> dict[str, dict[str, np.ndarray]]:
"""Aggregate stats from multiple compute_stats outputs into a single set of stats.
The final stats will have the union of all data keys from each of the stats dicts.

View File

@@ -49,7 +49,7 @@ def resolve_delta_timestamps(
"observation.state": [-0.04, -0.02, 0]
"observation.action": [-0.02, 0, 0.02]
}
returns `None` if the the resulting dict is empty.
returns `None` if the resulting dict is empty.
"""
delta_timestamps = {}
for key in ds_meta.features:

View File

@@ -48,7 +48,6 @@ from lerobot.common.datasets.utils import (
embed_images,
get_delta_indices,
get_episode_data_index,
get_features_from_robot,
get_hf_features_from_features,
get_safe_version,
hf_transform_to_torch,
@@ -72,7 +71,6 @@ from lerobot.common.datasets.video_utils import (
get_safe_default_codec,
get_video_info,
)
from lerobot.common.robot_devices.robots.utils import Robot
CODEBASE_VERSION = "v2.1"
@@ -304,10 +302,9 @@ class LeRobotDatasetMetadata:
cls,
repo_id: str,
fps: int,
root: str | Path | None = None,
robot: Robot | None = None,
features: dict,
robot_type: str | None = None,
features: dict | None = None,
root: str | Path | None = None,
use_videos: bool = True,
) -> "LeRobotDatasetMetadata":
"""Creates metadata for a LeRobotDataset."""
@@ -317,33 +314,27 @@ class LeRobotDatasetMetadata:
obj.root.mkdir(parents=True, exist_ok=False)
if robot is not None:
features = {**(features or {}), **get_features_from_robot(robot)}
robot_type = robot.robot_type
if not all(cam.fps == fps for cam in robot.cameras.values()):
logging.warning(
f"Some cameras in your {robot.robot_type} robot don't have an fps matching the fps of your dataset."
"In this case, frames from lower fps cameras will be repeated to fill in the blanks."
)
elif features is None:
raise ValueError(
"Dataset features must either come from a Robot or explicitly passed upon creation."
)
else:
# TODO(aliberts, rcadene): implement sanity check for features
features = {**features, **DEFAULT_FEATURES}
# if robot is not None:
# features = get_features_from_robot(robot, use_videos)
# robot_type = robot.robot_type
# if not all(cam.fps == fps for cam in robot.cameras.values()):
# logging.warning(
# f"Some cameras in your {robot.robot_type} robot don't have an fps matching the fps of your dataset."
# "In this case, frames from lower fps cameras will be repeated to fill in the blanks."
# )
# check if none of the features contains a "/" in their names,
# as this would break the dict flattening in the stats computation, which uses '/' as separator
for key in features:
if "/" in key:
raise ValueError(f"Feature names should not contain '/'. Found '/' in feature '{key}'.")
# TODO(aliberts, rcadene): implement sanity check for features
features = {**features, **DEFAULT_FEATURES}
features = {**features, **DEFAULT_FEATURES}
# check if none of the features contains a "/" in their names,
# as this would break the dict flattening in the stats computation, which uses '/' as separator
for key in features:
if "/" in key:
raise ValueError(f"Feature names should not contain '/'. Found '/' in feature '{key}'.")
obj.tasks, obj.task_to_task_index = {}, {}
obj.episodes_stats, obj.stats, obj.episodes = {}, {}, {}
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, robot_type, features, use_videos)
obj.info = create_empty_dataset_info(CODEBASE_VERSION, fps, features, use_videos, robot_type)
if len(obj.video_keys) > 0 and not use_videos:
raise ValueError()
write_json(obj.info, obj.root / INFO_PATH)
@@ -785,7 +776,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
else:
self.image_writer.save_image(image=image, fpath=fpath)
def add_frame(self, frame: dict) -> None:
def add_frame(self, frame: dict, task: str, timestamp: float | None = None) -> None:
"""
This function only adds the frame to the episode_buffer. Apart from images — which are written in a
temporary directory — nothing is written to disk. To save those frames, the 'save_episode()' method
@@ -803,17 +794,14 @@ class LeRobotDataset(torch.utils.data.Dataset):
# Automatically add frame_index and timestamp to episode buffer
frame_index = self.episode_buffer["size"]
timestamp = frame.pop("timestamp") if "timestamp" in frame else frame_index / self.fps
if timestamp is None:
timestamp = frame_index / self.fps
self.episode_buffer["frame_index"].append(frame_index)
self.episode_buffer["timestamp"].append(timestamp)
self.episode_buffer["task"].append(task)
# Add frame features to episode_buffer
for key in frame:
if key == "task":
# Note: we associate the task in natural language to its task index during `save_episode`
self.episode_buffer["task"].append(frame["task"])
continue
if key not in self.features:
raise ValueError(
f"An element of the frame is not in the features. '{key}' not in '{self.features.keys()}'."
@@ -821,9 +809,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
if self.features[key]["dtype"] in ["image", "video"]:
img_path = self._get_image_file_path(
episode_index=self.episode_buffer["episode_index"],
image_key=key,
frame_index=frame_index,
episode_index=self.episode_buffer["episode_index"], image_key=key, frame_index=frame_index
)
if frame_index == 0:
img_path.parent.mkdir(parents=True, exist_ok=True)
@@ -869,10 +855,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
for key, ft in self.features.items():
# index, episode_index, task_index are already processed above, and image and video
# are processed separately by storing image path and frame info as meta data
if key in ["index", "episode_index", "task_index"] or ft["dtype"] in [
"image",
"video",
]:
if key in ["index", "episode_index", "task_index"] or ft["dtype"] in ["image", "video"]:
continue
episode_buffer[key] = np.stack(episode_buffer[key])
@@ -994,10 +977,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
cls,
repo_id: str,
fps: int,
features: dict,
root: str | Path | None = None,
robot: Robot | None = None,
robot_type: str | None = None,
features: dict | None = None,
use_videos: bool = True,
tolerance_s: float = 1e-4,
image_writer_processes: int = 0,
@@ -1009,10 +991,9 @@ class LeRobotDataset(torch.utils.data.Dataset):
obj.meta = LeRobotDatasetMetadata.create(
repo_id=repo_id,
fps=fps,
root=root,
robot=robot,
robot_type=robot_type,
features=features,
root=root,
use_videos=use_videos,
)
obj.repo_id = obj.meta.repo_id
@@ -1058,7 +1039,7 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
super().__init__()
self.repo_ids = repo_ids
self.root = Path(root) if root else HF_LEROBOT_HOME
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids}
self.tolerances_s = tolerances_s if tolerances_s else dict.fromkeys(repo_ids, 0.0001)
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
# are handled by this class.
self._datasets = [

View File

@@ -154,32 +154,14 @@ class OnlineBuffer(torch.utils.data.Dataset):
OnlineBuffer.NEXT_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": ()},
# Since the memmap is initialized with all-zeros, this keeps track of which indices are occupied
# with real data rather than the dummy initialization.
OnlineBuffer.OCCUPANCY_MASK_KEY: {
"dtype": np.dtype("?"),
"shape": (buffer_capacity,),
},
OnlineBuffer.INDEX_KEY: {
"dtype": np.dtype("int64"),
"shape": (buffer_capacity,),
},
OnlineBuffer.FRAME_INDEX_KEY: {
"dtype": np.dtype("int64"),
"shape": (buffer_capacity,),
},
OnlineBuffer.EPISODE_INDEX_KEY: {
"dtype": np.dtype("int64"),
"shape": (buffer_capacity,),
},
OnlineBuffer.TIMESTAMP_KEY: {
"dtype": np.dtype("float64"),
"shape": (buffer_capacity,),
},
OnlineBuffer.OCCUPANCY_MASK_KEY: {"dtype": np.dtype("?"), "shape": (buffer_capacity,)},
OnlineBuffer.INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.FRAME_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.EPISODE_INDEX_KEY: {"dtype": np.dtype("int64"), "shape": (buffer_capacity,)},
OnlineBuffer.TIMESTAMP_KEY: {"dtype": np.dtype("float64"), "shape": (buffer_capacity,)},
}
for k, v in data_spec.items():
complete_data_spec[k] = {
"dtype": v["dtype"],
"shape": (buffer_capacity, *v["shape"]),
}
complete_data_spec[k] = {"dtype": v["dtype"], "shape": (buffer_capacity, *v["shape"])}
return complete_data_spec
def add_data(self, data: dict[str, np.ndarray]):

View File

@@ -77,9 +77,7 @@ def check_repo_id(repo_id: str) -> None:
# TODO(aliberts): remove
def calculate_episode_data_index(
hf_dataset: datasets.Dataset,
) -> Dict[str, torch.Tensor]:
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.

View File

@@ -43,10 +43,7 @@ class EpisodeAwareSampler:
):
if episode_indices_to_use is None or episode_idx in episode_indices_to_use:
indices.extend(
range(
start_index.item() + drop_n_first_frames,
end_index.item() - drop_n_last_frames,
)
range(start_index.item() + drop_n_first_frames, end_index.item() - drop_n_last_frames)
)
self.indices = indices

View File

@@ -128,7 +128,7 @@ class SharpnessJitter(Transform):
raise TypeError(f"{sharpness=} should be a single number or a sequence with length 2.")
if not 0.0 <= sharpness[0] <= sharpness[1]:
raise ValueError(f"sharpnesss values should be between (0., inf), but got {sharpness}.")
raise ValueError(f"sharpness values should be between (0., inf), but got {sharpness}.")
return float(sharpness[0]), float(sharpness[1])

View File

@@ -40,7 +40,7 @@ from lerobot.common.datasets.backward_compatibility import (
BackwardCompatibilityError,
ForwardCompatibilityError,
)
from lerobot.common.robot_devices.robots.utils import Robot
from lerobot.common.robots import Robot
from lerobot.common.utils.utils import is_valid_numpy_dtype_string
from lerobot.configs.types import DictLike, FeatureType, PolicyFeature
@@ -225,10 +225,7 @@ def load_episodes(local_dir: Path) -> dict:
def write_episode_stats(episode_index: int, episode_stats: dict, local_dir: Path):
# We wrap episode_stats in a dictionary since `episode_stats["episode_index"]`
# is a dictionary of stats and not an integer.
episode_stats = {
"episode_index": episode_index,
"stats": serialize_dict(episode_stats),
}
episode_stats = {"episode_index": episode_index, "stats": serialize_dict(episode_stats)}
append_jsonlines(episode_stats, local_dir / EPISODES_STATS_PATH)
@@ -243,7 +240,7 @@ def load_episodes_stats(local_dir: Path) -> dict:
def backward_compatible_episodes_stats(
stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
) -> dict[str, dict[str, np.ndarray]]:
return {ep_idx: stats for ep_idx in episodes}
return dict.fromkeys(episodes, stats)
def load_image_as_numpy(
@@ -390,6 +387,52 @@ def get_hf_features_from_features(features: dict) -> datasets.Features:
return datasets.Features(hf_features)
def _validate_feature_names(features: dict[str, dict]) -> None:
invalid_features = {name: ft for name, ft in features.items() if "/" in name}
if invalid_features:
raise ValueError(f"Feature names should not contain '/'. Found '/' in '{invalid_features}'.")
def hw_to_dataset_features(
hw_features: dict[str, type | tuple], prefix: str, use_video: bool = True
) -> dict[str, dict]:
features = {}
joint_fts = {key: ftype for key, ftype in hw_features.items() if ftype is float}
cam_fts = {key: shape for key, shape in hw_features.items() if isinstance(shape, tuple)}
if joint_fts:
features[f"{prefix}.joints"] = {
"dtype": "float32",
"shape": (len(joint_fts),),
"names": list(joint_fts),
}
for key, shape in cam_fts.items():
features[f"{prefix}.cameras.{key}"] = {
"dtype": "video" if use_video else "image",
"shape": shape,
"names": ["height", "width", "channels"],
}
_validate_feature_names(features)
return features
def build_dataset_frame(
ds_features: dict[str, dict], values: dict[str, Any], prefix: str
) -> dict[str, np.ndarray]:
frame = {}
for key, ft in ds_features.items():
if key in DEFAULT_FEATURES or not key.startswith(prefix):
continue
elif ft["dtype"] == "float32" and len(ft["shape"]) == 1:
frame[key] = np.array([values[name] for name in ft["names"]], dtype=np.float32)
elif ft["dtype"] in ["image", "video"]:
frame[key] = values[key.removeprefix(f"{prefix}.cameras.")]
return frame
def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict:
camera_ft = {}
if robot.cameras:
@@ -412,7 +455,7 @@ def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFea
names = ft["names"]
# Backward compatibility for "channel" which is an error introduced in LeRobotDataset v2.0 for ported datasets.
if names is not None and names[2] in ["channel", "channels"]: # (h, w, c) -> (c, h, w)
if names[2] in ["channel", "channels"]: # (h, w, c) -> (c, h, w)
shape = (shape[2], shape[0], shape[1])
elif key == "observation.environment_state":
type = FeatureType.ENV
@@ -434,9 +477,9 @@ def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFea
def create_empty_dataset_info(
codebase_version: str,
fps: int,
robot_type: str,
features: dict,
use_videos: bool,
robot_type: str | None = None,
) -> dict:
return {
"codebase_version": codebase_version,
@@ -543,10 +586,7 @@ def check_timestamps_sync(
def check_delta_timestamps(
delta_timestamps: dict[str, list[float]],
fps: int,
tolerance_s: float,
raise_value_error: bool = True,
delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True
) -> bool:
"""This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance.
This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be
@@ -705,16 +745,12 @@ class IterableNamespace(SimpleNamespace):
def validate_frame(frame: dict, features: dict):
optional_features = {"timestamp"}
expected_features = (set(features) - set(DEFAULT_FEATURES.keys())) | {"task"}
actual_features = set(frame.keys())
expected_features = set(features) - set(DEFAULT_FEATURES)
actual_features = set(frame)
error_message = validate_features_presence(actual_features, expected_features, optional_features)
error_message = validate_features_presence(actual_features, expected_features)
if "task" in frame:
error_message += validate_feature_string("task", frame["task"])
common_features = actual_features & (expected_features | optional_features)
common_features = actual_features & expected_features
for name in common_features - {"task"}:
error_message += validate_feature_dtype_and_shape(name, features[name], frame[name])
@@ -722,12 +758,10 @@ def validate_frame(frame: dict, features: dict):
raise ValueError(error_message)
def validate_features_presence(
actual_features: set[str], expected_features: set[str], optional_features: set[str]
):
def validate_features_presence(actual_features: set[str], expected_features: set[str]):
error_message = ""
missing_features = expected_features - actual_features
extra_features = actual_features - (expected_features | optional_features)
extra_features = actual_features - expected_features
if missing_features or extra_features:
error_message += "Feature mismatch in `frame` dictionary:\n"

View File

@@ -27,7 +27,7 @@ from textwrap import dedent
from lerobot import available_datasets
from lerobot.common.datasets.v2.convert_dataset_v1_to_v2 import convert_dataset
from lerobot.common.robot_devices.robots.configs import AlohaRobotConfig
from lerobot.common.robots.aloha.configuration_aloha import AlohaRobotConfig
LOCAL_DIR = Path("data/")
@@ -118,10 +118,7 @@ DATASETS = {
"single_task": "Place the battery into the slot of the remote controller.",
**ALOHA_STATIC_INFO,
},
"aloha_static_candy": {
"single_task": "Pick up the candy and unwrap it.",
**ALOHA_STATIC_INFO,
},
"aloha_static_candy": {"single_task": "Pick up the candy and unwrap it.", **ALOHA_STATIC_INFO},
"aloha_static_coffee": {
"single_task": "Place the coffee capsule inside the capsule container, then place the cup onto the center of the cup tray, then push the 'Hot Water' and 'Travel Mug' buttons.",
**ALOHA_STATIC_INFO,
@@ -170,22 +167,13 @@ DATASETS = {
"single_task": "Pick up the plastic cup with the left arm, then pop its lid open with the right arm.",
**ALOHA_STATIC_INFO,
},
"aloha_static_ziploc_slide": {
"single_task": "Slide open the ziploc bag.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_scripted": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_static_ziploc_slide": {"single_task": "Slide open the ziploc bag.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_scripted_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_human": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
},
"aloha_sim_insertion_human": {"single_task": "Insert the peg into the socket.", **ALOHA_STATIC_INFO},
"aloha_sim_insertion_human_image": {
"single_task": "Insert the peg into the socket.",
**ALOHA_STATIC_INFO,
@@ -206,19 +194,10 @@ DATASETS = {
"single_task": "Pick up the cube with the right arm and transfer it to the left arm.",
**ALOHA_STATIC_INFO,
},
"pusht": {
"single_task": "Push the T-shaped block onto the T-shaped target.",
**PUSHT_INFO,
},
"pusht_image": {
"single_task": "Push the T-shaped block onto the T-shaped target.",
**PUSHT_INFO,
},
"pusht": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"pusht_image": {"single_task": "Push the T-shaped block onto the T-shaped target.", **PUSHT_INFO},
"unitreeh1_fold_clothes": {"single_task": "Fold the sweatshirt.", **UNITREEH_INFO},
"unitreeh1_rearrange_objects": {
"single_task": "Put the object into the bin.",
**UNITREEH_INFO,
},
"unitreeh1_rearrange_objects": {"single_task": "Put the object into the bin.", **UNITREEH_INFO},
"unitreeh1_two_robot_greeting": {
"single_task": "Greet the other robot with a high five.",
**UNITREEH_INFO,
@@ -228,31 +207,13 @@ DATASETS = {
**UNITREEH_INFO,
},
"xarm_lift_medium": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_image": {
"single_task": "Pick up the cube and lift it.",
**XARM_INFO,
},
"xarm_lift_medium_replay": {
"single_task": "Pick up the cube and lift it.",
**XARM_INFO,
},
"xarm_lift_medium_replay_image": {
"single_task": "Pick up the cube and lift it.",
**XARM_INFO,
},
"xarm_lift_medium_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_lift_medium_replay_image": {"single_task": "Pick up the cube and lift it.", **XARM_INFO},
"xarm_push_medium": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_image": {
"single_task": "Push the cube onto the target.",
**XARM_INFO,
},
"xarm_push_medium_replay": {
"single_task": "Push the cube onto the target.",
**XARM_INFO,
},
"xarm_push_medium_replay_image": {
"single_task": "Push the cube onto the target.",
**XARM_INFO,
},
"xarm_push_medium_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"xarm_push_medium_replay_image": {"single_task": "Push the cube onto the target.", **XARM_INFO},
"umi_cup_in_the_wild": {
"single_task": "Put the cup on the plate.",
"license": "apache-2.0",

View File

@@ -141,8 +141,8 @@ from lerobot.common.datasets.video_utils import (
get_image_pixel_channels,
get_video_info,
)
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.robot_devices.robots.utils import make_robot_config
from lerobot.common.robots import RobotConfig
from lerobot.common.robots.utils import make_robot_config
V16 = "v1.6"
V20 = "v2.0"
@@ -379,12 +379,7 @@ def fix_lfs_video_files_tracking(work_dir: Path, lfs_untracked_videos: list[str]
for i in range(0, len(lfs_untracked_videos), 100):
files = lfs_untracked_videos[i : i + 100]
try:
subprocess.run(
["git", "rm", "--cached", *files],
cwd=work_dir,
capture_output=True,
check=True,
)
subprocess.run(["git", "rm", "--cached", *files], cwd=work_dir, capture_output=True, check=True)
except subprocess.CalledProcessError as e:
print("git rm --cached ERROR:")
print(e.stderr)
@@ -407,17 +402,7 @@ def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
repo_url = f"https://huggingface.co/datasets/{repo_id}"
env = {"GIT_LFS_SKIP_SMUDGE": "1"} # Prevent downloading LFS files
subprocess.run(
[
"git",
"clone",
"--branch",
branch,
"--single-branch",
"--depth",
"1",
repo_url,
str(work_dir),
],
["git", "clone", "--branch", branch, "--single-branch", "--depth", "1", repo_url, str(work_dir)],
check=True,
env=env,
)
@@ -425,11 +410,7 @@ def _lfs_clone(repo_id: str, work_dir: Path, branch: str) -> None:
def _get_lfs_untracked_videos(work_dir: Path, video_files: list[str]) -> list[str]:
lfs_tracked_files = subprocess.run(
["git", "lfs", "ls-files", "-n"],
cwd=work_dir,
capture_output=True,
text=True,
check=True,
["git", "lfs", "ls-files", "-n"], cwd=work_dir, capture_output=True, text=True, check=True
)
lfs_tracked_files = set(lfs_tracked_files.stdout.splitlines())
return [f for f in video_files if f not in lfs_tracked_files]
@@ -443,11 +424,7 @@ def get_videos_info(repo_id: str, local_dir: Path, video_keys: list[str], branch
]
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id,
repo_type="dataset",
local_dir=local_dir,
revision=branch,
allow_patterns=video_files,
repo_id=repo_id, repo_type="dataset", local_dir=local_dir, revision=branch, allow_patterns=video_files
)
videos_info_dict = {}
for vid_key, vid_path in zip(video_keys, video_files, strict=True):
@@ -474,11 +451,7 @@ def convert_dataset(
hub_api = HfApi()
hub_api.snapshot_download(
repo_id=repo_id,
repo_type="dataset",
revision=v1,
local_dir=v1x_dir,
ignore_patterns="videos*/",
repo_id=repo_id, repo_type="dataset", revision=v1, local_dir=v1x_dir, ignore_patterns="videos*/"
)
branch = "main"
if test_branch:
@@ -508,7 +481,7 @@ def convert_dataset(
# Tasks
if single_task:
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices}
tasks_by_episodes = dict.fromkeys(episode_indices, single_task)
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_path:
@@ -536,21 +509,12 @@ def convert_dataset(
dataset = dataset.remove_columns(video_keys)
clean_gitattr = Path(
hub_api.hf_hub_download(
repo_id=GITATTRIBUTES_REF,
repo_type="dataset",
local_dir=local_dir,
filename=".gitattributes",
repo_id=GITATTRIBUTES_REF, repo_type="dataset", local_dir=local_dir, filename=".gitattributes"
)
).absolute()
with tempfile.TemporaryDirectory() as tmp_video_dir:
move_videos(
repo_id,
video_keys,
total_episodes,
total_chunks,
Path(tmp_video_dir),
clean_gitattr,
branch,
repo_id, video_keys, total_episodes, total_chunks, Path(tmp_video_dir), clean_gitattr, branch
)
videos_info = get_videos_info(repo_id, v1x_dir, video_keys=video_keys, branch=branch)
for key in video_keys:
@@ -579,11 +543,7 @@ def convert_dataset(
# Episodes
episodes = [
{
"episode_index": ep_idx,
"tasks": tasks_by_episodes[ep_idx],
"length": episode_lengths[ep_idx],
}
{"episode_index": ep_idx, "tasks": tasks_by_episodes[ep_idx], "length": episode_lengths[ep_idx]}
for ep_idx in episode_indices
]
write_jsonlines(episodes, v20_dir / EPISODES_PATH)
@@ -612,12 +572,7 @@ def convert_dataset(
hub_api.delete_folder(repo_id=repo_id, path_in_repo="data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(
repo_id=repo_id,
path_in_repo="meta_data",
repo_type="dataset",
revision=branch,
)
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta_data", repo_type="dataset", revision=branch)
with contextlib.suppress(EntryNotFoundError, HfHubHTTPError):
hub_api.delete_folder(repo_id=repo_id, path_in_repo="meta", repo_type="dataset", revision=branch)

View File

@@ -37,16 +37,8 @@ import logging
from huggingface_hub import HfApi
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
from lerobot.common.datasets.utils import (
EPISODES_STATS_PATH,
STATS_PATH,
load_stats,
write_info,
)
from lerobot.common.datasets.v21.convert_stats import (
check_aggregate_stats,
convert_stats,
)
from lerobot.common.datasets.utils import EPISODES_STATS_PATH, STATS_PATH, load_stats, write_info
from lerobot.common.datasets.v21.convert_stats import check_aggregate_stats, convert_stats
V20 = "v2.0"
V21 = "v2.1"
@@ -87,16 +79,10 @@ def convert_dataset(
hub_api = HfApi()
if hub_api.file_exists(
repo_id=dataset.repo_id,
filename=STATS_PATH,
revision=branch,
repo_type="dataset",
repo_id=dataset.repo_id, filename=STATS_PATH, revision=branch, repo_type="dataset"
):
hub_api.delete_file(
path_in_repo=STATS_PATH,
repo_id=dataset.repo_id,
revision=branch,
repo_type="dataset",
path_in_repo=STATS_PATH, repo_id=dataset.repo_id, revision=branch, repo_type="dataset"
)
hub_api.create_tag(repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")

View File

@@ -17,11 +17,7 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
from tqdm import tqdm
from lerobot.common.datasets.compute_stats import (
aggregate_stats,
get_feature_stats,
sample_indices,
)
from lerobot.common.datasets.compute_stats import aggregate_stats, get_feature_stats, sample_indices
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.utils import write_episode_stats
@@ -99,9 +95,5 @@ def check_aggregate_stats(
if key in reference_stats and stat in reference_stats[key]:
err_msg = f"feature='{key}' stats='{stat}'"
np.testing.assert_allclose(
val,
reference_stats[key][stat],
rtol=rtol,
atol=atol,
err_msg=err_msg,
val, reference_stats[key][stat], rtol=rtol, atol=atol, err_msg=err_msg
)

View File

@@ -13,16 +13,15 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import importlib
import json
import logging
import subprocess
import warnings
from collections import OrderedDict
from dataclasses import dataclass, field
from pathlib import Path
from typing import Any, ClassVar
import av
import pyarrow as pa
import torch
import torchvision
@@ -252,51 +251,83 @@ def encode_video_frames(
g: int | None = 2,
crf: int | None = 30,
fast_decode: int = 0,
log_level: str | None = "error",
log_level: int | None = av.logging.ERROR,
overwrite: bool = False,
) -> None:
"""More info on ffmpeg arguments tuning on `benchmark/video/README.md`"""
# Check encoder availability
if vcodec not in ["h264", "hevc", "libsvtav1"]:
raise ValueError(f"Unsupported video codec: {vcodec}. Supported codecs are: h264, hevc, libsvtav1.")
video_path = Path(video_path)
imgs_dir = Path(imgs_dir)
video_path.parent.mkdir(parents=True, exist_ok=True)
ffmpeg_args = OrderedDict(
[
("-f", "image2"),
("-r", str(fps)),
("-i", str(imgs_dir / "frame_%06d.png")),
("-vcodec", vcodec),
("-pix_fmt", pix_fmt),
]
video_path.parent.mkdir(parents=True, exist_ok=overwrite)
# Encoders/pixel formats incompatibility check
if (vcodec == "libsvtav1" or vcodec == "hevc") and pix_fmt == "yuv444p":
logging.warning(
f"Incompatible pixel format 'yuv444p' for codec {vcodec}, auto-selecting format 'yuv420p'"
)
pix_fmt = "yuv420p"
# Get input frames
template = "frame_" + ("[0-9]" * 6) + ".png"
input_list = sorted(
glob.glob(str(imgs_dir / template)), key=lambda x: int(x.split("_")[-1].split(".")[0])
)
# Define video output frame size (assuming all input frames are the same size)
if len(input_list) == 0:
raise FileNotFoundError(f"No images found in {imgs_dir}.")
dummy_image = Image.open(input_list[0])
width, height = dummy_image.size
# Define video codec options
video_options = {}
if g is not None:
ffmpeg_args["-g"] = str(g)
video_options["g"] = str(g)
if crf is not None:
ffmpeg_args["-crf"] = str(crf)
video_options["crf"] = str(crf)
if fast_decode:
key = "-svtav1-params" if vcodec == "libsvtav1" else "-tune"
key = "svtav1-params" if vcodec == "libsvtav1" else "tune"
value = f"fast-decode={fast_decode}" if vcodec == "libsvtav1" else "fastdecode"
ffmpeg_args[key] = value
video_options[key] = value
# Set logging level
if log_level is not None:
ffmpeg_args["-loglevel"] = str(log_level)
# "While less efficient, it is generally preferable to modify logging with Pythons logging"
logging.getLogger("libav").setLevel(log_level)
ffmpeg_args = [item for pair in ffmpeg_args.items() for item in pair]
if overwrite:
ffmpeg_args.append("-y")
# Create and open output file (overwrite by default)
with av.open(str(video_path), "w") as output:
output_stream = output.add_stream(vcodec, fps, options=video_options)
output_stream.pix_fmt = pix_fmt
output_stream.width = width
output_stream.height = height
ffmpeg_cmd = ["ffmpeg"] + ffmpeg_args + [str(video_path)]
# redirect stdin to subprocess.DEVNULL to prevent reading random keyboard inputs from terminal
subprocess.run(ffmpeg_cmd, check=True, stdin=subprocess.DEVNULL)
# Loop through input frames and encode them
for input_data in input_list:
input_image = Image.open(input_data).convert("RGB")
input_frame = av.VideoFrame.from_image(input_image)
packet = output_stream.encode(input_frame)
if packet:
output.mux(packet)
# Flush the encoder
packet = output_stream.encode()
if packet:
output.mux(packet)
# Reset logging level
if log_level is not None:
av.logging.restore_default_callback()
if not video_path.exists():
raise OSError(
f"Video encoding did not work. File not found: {video_path}. "
f"Try running the command manually to debug: `{''.join(ffmpeg_cmd)}`"
)
raise OSError(f"Video encoding did not work. File not found: {video_path}.")
@dataclass
@@ -332,78 +363,68 @@ with warnings.catch_warnings():
def get_audio_info(video_path: Path | str) -> dict:
ffprobe_audio_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"a:0",
"-show_entries",
"stream=channels,codec_name,bit_rate,sample_rate,bit_depth,channel_layout,duration",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
# Set logging level
logging.getLogger("libav").setLevel(av.logging.ERROR)
info = json.loads(result.stdout)
audio_stream_info = info["streams"][0] if info.get("streams") else None
if audio_stream_info is None:
return {"has_audio": False}
# Getting audio stream information
audio_info = {}
with av.open(str(video_path), "r") as audio_file:
try:
audio_stream = audio_file.streams.audio[0]
except IndexError:
# Reset logging level
av.logging.restore_default_callback()
return {"has_audio": False}
# Return the information, defaulting to None if no audio stream is present
return {
"has_audio": True,
"audio.channels": audio_stream_info.get("channels", None),
"audio.codec": audio_stream_info.get("codec_name", None),
"audio.bit_rate": int(audio_stream_info["bit_rate"]) if audio_stream_info.get("bit_rate") else None,
"audio.sample_rate": int(audio_stream_info["sample_rate"])
if audio_stream_info.get("sample_rate")
else None,
"audio.bit_depth": audio_stream_info.get("bit_depth", None),
"audio.channel_layout": audio_stream_info.get("channel_layout", None),
}
audio_info["audio.channels"] = audio_stream.channels
audio_info["audio.codec"] = audio_stream.codec.canonical_name
# In an ideal loseless case : bit depth x sample rate x channels = bit rate.
# In an actual compressed case, the bit rate is set according to the compression level : the lower the bit rate, the more compression is applied.
audio_info["audio.bit_rate"] = audio_stream.bit_rate
audio_info["audio.sample_rate"] = audio_stream.sample_rate # Number of samples per second
# In an ideal loseless case : fixed number of bits per sample.
# In an actual compressed case : variable number of bits per sample (often reduced to match a given depth rate).
audio_info["audio.bit_depth"] = audio_stream.format.bits
audio_info["audio.channel_layout"] = audio_stream.layout.name
audio_info["has_audio"] = True
# Reset logging level
av.logging.restore_default_callback()
return audio_info
def get_video_info(video_path: Path | str) -> dict:
ffprobe_video_cmd = [
"ffprobe",
"-v",
"error",
"-select_streams",
"v:0",
"-show_entries",
"stream=r_frame_rate,width,height,codec_name,nb_frames,duration,pix_fmt",
"-of",
"json",
str(video_path),
]
result = subprocess.run(ffprobe_video_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
raise RuntimeError(f"Error running ffprobe: {result.stderr}")
# Set logging level
logging.getLogger("libav").setLevel(av.logging.ERROR)
info = json.loads(result.stdout)
video_stream_info = info["streams"][0]
# Getting video stream information
video_info = {}
with av.open(str(video_path), "r") as video_file:
try:
video_stream = video_file.streams.video[0]
except IndexError:
# Reset logging level
av.logging.restore_default_callback()
return {}
# Calculate fps from r_frame_rate
r_frame_rate = video_stream_info["r_frame_rate"]
num, denom = map(int, r_frame_rate.split("/"))
fps = num / denom
video_info["video.height"] = video_stream.height
video_info["video.width"] = video_stream.width
video_info["video.codec"] = video_stream.codec.canonical_name
video_info["video.pix_fmt"] = video_stream.pix_fmt
video_info["video.is_depth_map"] = False
pixel_channels = get_video_pixel_channels(video_stream_info["pix_fmt"])
# Calculate fps from r_frame_rate
video_info["video.fps"] = int(video_stream.base_rate)
video_info = {
"video.fps": fps,
"video.height": video_stream_info["height"],
"video.width": video_stream_info["width"],
"video.channels": pixel_channels,
"video.codec": video_stream_info["codec_name"],
"video.pix_fmt": video_stream_info["pix_fmt"],
"video.is_depth_map": False,
**get_audio_info(video_path),
}
pixel_channels = get_video_pixel_channels(video_stream.pix_fmt)
video_info["video.channels"] = pixel_channels
# Reset logging level
av.logging.restore_default_callback()
# Adding audio stream information
video_info.update(**get_audio_info(video_path))
return video_info

View File

@@ -14,12 +14,10 @@
import abc
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple
import draccus
from lerobot.common.constants import ACTION, OBS_ENV, OBS_IMAGE, OBS_IMAGES, OBS_ROBOT
from lerobot.common.robot_devices.robots.configs import RobotConfig
from lerobot.common.constants import ACTION, OBS_ENV_STATE, OBS_IMAGE, OBS_IMAGES, OBS_STATE
from lerobot.configs.types import FeatureType, PolicyFeature
@@ -34,7 +32,8 @@ class EnvConfig(draccus.ChoiceRegistry, abc.ABC):
def type(self) -> str:
return self.get_choice_name(self.__class__)
@abc.abstractproperty
@property
@abc.abstractmethod
def gym_kwargs(self) -> dict:
raise NotImplementedError()
@@ -55,7 +54,7 @@ class AlohaEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"agent_pos": OBS_STATE,
"top": f"{OBS_IMAGE}.top",
"pixels/top": f"{OBS_IMAGES}.top",
}
@@ -96,8 +95,8 @@ class PushtEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"environment_state": OBS_ENV,
"agent_pos": OBS_STATE,
"environment_state": OBS_ENV_STATE,
"pixels": OBS_IMAGE,
}
)
@@ -138,7 +137,7 @@ class XarmEnv(EnvConfig):
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"agent_pos": OBS_ROBOT,
"agent_pos": OBS_STATE,
"pixels": OBS_IMAGE,
}
)
@@ -156,135 +155,3 @@ class XarmEnv(EnvConfig):
"visualization_height": self.visualization_height,
"max_episode_steps": self.episode_length,
}
@dataclass
class VideoRecordConfig:
"""Configuration for video recording in ManiSkill environments."""
enabled: bool = False
record_dir: str = "videos"
trajectory_name: str = "trajectory"
@dataclass
class WrapperConfig:
"""Configuration for environment wrappers."""
joint_masking_action_space: list[bool] | None = None
@dataclass
class EEActionSpaceConfig:
"""Configuration parameters for end-effector action space."""
x_step_size: float
y_step_size: float
z_step_size: float
bounds: Dict[str, Any] # Contains 'min' and 'max' keys with position bounds
use_gamepad: bool = False
@dataclass
class EnvWrapperConfig:
"""Configuration for environment wrappers."""
display_cameras: bool = False
use_relative_joint_positions: bool = True
add_joint_velocity_to_observation: bool = False
add_ee_pose_to_observation: bool = False
crop_params_dict: Optional[Dict[str, Tuple[int, int, int, int]]] = None
resize_size: Optional[Tuple[int, int]] = None
control_time_s: float = 20.0
fixed_reset_joint_positions: Optional[Any] = None
reset_time_s: float = 5.0
joint_masking_action_space: Optional[Any] = None
ee_action_space_params: Optional[EEActionSpaceConfig] = None
use_gripper: bool = False
gripper_quantization_threshold: float | None = None
gripper_penalty: float = 0.0
gripper_penalty_in_reward: bool = False
open_gripper_on_reset: bool = False
@EnvConfig.register_subclass(name="gym_manipulator")
@dataclass
class HILSerlRobotEnvConfig(EnvConfig):
"""Configuration for the HILSerlRobotEnv environment."""
robot: Optional[RobotConfig] = None
wrapper: Optional[EnvWrapperConfig] = None
fps: int = 10
name: str = "real_robot"
mode: str = None # Either "record", "replay", None
repo_id: Optional[str] = None
dataset_root: Optional[str] = None
task: str = ""
num_episodes: int = 10 # only for record mode
episode: int = 0
device: str = "cuda"
push_to_hub: bool = True
pretrained_policy_name_or_path: Optional[str] = None
reward_classifier: dict[str, str | None] = field(
default_factory=lambda: {
"pretrained_path": None,
"config_path": None,
}
)
def gym_kwargs(self) -> dict:
return {}
@EnvConfig.register_subclass("maniskill_push")
@dataclass
class ManiskillEnvConfig(EnvConfig):
"""Configuration for the ManiSkill environment."""
name: str = "maniskill/pushcube"
task: str = "PushCube-v1"
image_size: int = 64
control_mode: str = "pd_ee_delta_pose"
state_dim: int = 25
action_dim: int = 7
fps: int = 200
episode_length: int = 50
obs_type: str = "rgb"
render_mode: str = "rgb_array"
render_size: int = 64
device: str = "cuda"
robot: str = "so100" # This is a hack to make the robot config work
video_record: VideoRecordConfig = field(default_factory=VideoRecordConfig)
wrapper: WrapperConfig = field(default_factory=WrapperConfig)
mock_gripper: bool = False
features: dict[str, PolicyFeature] = field(
default_factory=lambda: {
"action": PolicyFeature(type=FeatureType.ACTION, shape=(7,)),
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 64, 64)),
"observation.state": PolicyFeature(type=FeatureType.STATE, shape=(25,)),
}
)
features_map: dict[str, str] = field(
default_factory=lambda: {
"action": ACTION,
"observation.image": OBS_IMAGE,
"observation.state": OBS_ROBOT,
}
)
reward_classifier: dict[str, str | None] = field(
default_factory=lambda: {
"pretrained_path": None,
"config_path": None,
}
)
@property
def gym_kwargs(self) -> dict:
return {
"obs_type": self.obs_type,
"render_mode": self.render_mode,
"max_episode_steps": self.episode_length,
"control_mode": self.control_mode,
"sensor_configs": {"width": self.image_size, "height": self.image_size},
"num_envs": 1,
}

View File

@@ -13,7 +13,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any
import einops
import gymnasium as gym
import numpy as np
import torch
from torch import Tensor
@@ -33,35 +37,29 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
"""
# map to expected inputs for the policy
return_observations = {}
# TODO: You have to merge all tensors from agent key and extra key
# You don't keep sensor param key in the observation
# And you keep sensor data rgb
for key, img in observations.items():
if "images" not in key:
continue
if "pixels" in observations:
if isinstance(observations["pixels"], dict):
imgs = {f"observation.images.{key}": img for key, img in observations["pixels"].items()}
else:
imgs = {"observation.image": observations["pixels"]}
# TODO(aliberts, rcadene): use transforms.ToTensor()?
if not torch.is_tensor(img):
for imgkey, img in imgs.items():
# TODO(aliberts, rcadene): use transforms.ToTensor()?
img = torch.from_numpy(img)
if img.ndim == 3:
img = img.unsqueeze(0)
# sanity check that images are channel last
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
# sanity check that images are channel last
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
return_observations[key] = img
# obs state agent qpos and qvel
# image
return_observations[imgkey] = img
if "environment_state" in observations:
return_observations["observation.environment_state"] = torch.from_numpy(
@@ -70,8 +68,7 @@ def preprocess_observation(observations: dict[str, np.ndarray]) -> dict[str, Ten
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing
# requirement for "agent_pos"
# return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
return_observations["observation.state"] = observations["observation.state"].float()
return_observations["observation.state"] = torch.from_numpy(observations["agent_pos"]).float()
return return_observations
@@ -89,44 +86,42 @@ def env_to_policy_features(env_cfg: EnvConfig) -> dict[str, PolicyFeature]:
else:
feature = ft
policy_key = env_cfg.features_map.get(key, key)
policy_key = env_cfg.features_map[key]
policy_features[policy_key] = feature
return policy_features
def preprocess_maniskill_observation(
observations: dict[str, np.ndarray],
) -> dict[str, Tensor]:
"""Convert environment observation to LeRobot format observation.
Args:
observation: Dictionary of observation batches from a Gym vector environment.
Returns:
Dictionary of observation batches with keys renamed to LeRobot format and values as tensors.
"""
# map to expected inputs for the policy
return_observations = {}
# TODO: You have to merge all tensors from agent key and extra key
# You don't keep sensor param key in the observation
# And you keep sensor data rgb
q_pos = observations["agent"]["qpos"]
q_vel = observations["agent"]["qvel"]
tcp_pos = observations["extra"]["tcp_pose"]
img = observations["sensor_data"]["base_camera"]["rgb"]
def are_all_envs_same_type(env: gym.vector.VectorEnv) -> bool:
first_type = type(env.envs[0]) # Get type of first env
return all(type(e) is first_type for e in env.envs) # Fast type check
_, h, w, c = img.shape
assert c < h and c < w, f"expect channel last images, but instead got {img.shape=}"
# sanity check that images are uint8
assert img.dtype == torch.uint8, f"expect torch.uint8, but instead {img.dtype=}"
def check_env_attributes_and_types(env: gym.vector.VectorEnv) -> None:
with warnings.catch_warnings():
warnings.simplefilter("once", UserWarning) # Apply filter only in this function
# convert to channel first of type float32 in range [0,1]
img = einops.rearrange(img, "b h w c -> b c h w").contiguous()
img = img.type(torch.float32)
img /= 255
if not (hasattr(env.envs[0], "task_description") and hasattr(env.envs[0], "task")):
warnings.warn(
"The environment does not have 'task_description' and 'task'. Some policies require these features.",
UserWarning,
stacklevel=2,
)
if not are_all_envs_same_type(env):
warnings.warn(
"The environments have different types. Make sure you infer the right task from each environment. Empty task will be passed instead.",
UserWarning,
stacklevel=2,
)
state = torch.cat([q_pos, q_vel, tcp_pos], dim=-1)
return_observations["observation.image"] = img
return_observations["observation.state"] = state
return return_observations
def add_envs_task(env: gym.vector.VectorEnv, observation: dict[str, Any]) -> dict[str, Any]:
"""Adds task feature to the observation dict with respect to the first environment attribute."""
if hasattr(env.envs[0], "task_description"):
observation["task"] = env.call("task_description")
elif hasattr(env.envs[0], "task"):
observation["task"] = env.call("task")
else: # For envs without language instructions, e.g. aloha transfer cube and etc.
num_envs = observation[list(observation.keys())[0]].shape[0]
observation["task"] = ["" for _ in range(num_envs)]
return observation

43
lerobot/common/errors.py Normal file
View File

@@ -0,0 +1,43 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class DeviceNotConnectedError(ConnectionError):
"""Exception raised when the device is not connected."""
def __init__(self, message="This device is not connected. Try calling `connect()` first."):
self.message = message
super().__init__(self.message)
class DeviceAlreadyConnectedError(ConnectionError):
"""Exception raised when the device is already connected."""
def __init__(
self,
message="This device is already connected. Try not calling `connect()` twice.",
):
self.message = message
super().__init__(self.message)
class InvalidActionError(ValueError):
"""Exception raised when an action is already invalid."""
def __init__(
self,
message="The action is invalid. Check the value follows what it is expected from the action space.",
):
self.message = message
super().__init__(self.message)

View File

@@ -0,0 +1 @@
from .motors_bus import Motor, MotorCalibration, MotorNormMode, MotorsBus

View File

@@ -0,0 +1,2 @@
from .dynamixel import DriveMode, DynamixelMotorsBus, OperatingMode, TorqueMode
from .tables import *

View File

@@ -0,0 +1,259 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO(aliberts): Should we implement FastSyncRead/Write?
# https://github.com/ROBOTIS-GIT/DynamixelSDK/pull/643
# https://github.com/ROBOTIS-GIT/DynamixelSDK/releases/tag/3.8.2
# https://emanual.robotis.com/docs/en/dxl/protocol2/#fast-sync-read-0x8a
# -> Need to check compatibility across models
import logging
from copy import deepcopy
from enum import Enum
from lerobot.common.utils.encoding_utils import decode_twos_complement, encode_twos_complement
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value, get_address
from .tables import (
AVAILABLE_BAUDRATES,
MODEL_BAUDRATE_TABLE,
MODEL_CONTROL_TABLE,
MODEL_ENCODING_TABLE,
MODEL_NUMBER_TABLE,
MODEL_RESOLUTION,
)
PROTOCOL_VERSION = 2.0
DEFAULT_BAUDRATE = 1_000_000
DEFAULT_TIMEOUT_MS = 1000
NORMALIZED_DATA = ["Goal_Position", "Present_Position"]
CONVERT_UINT32_TO_INT32_REQUIRED = ["Goal_Position", "Present_Position"]
logger = logging.getLogger(__name__)
class OperatingMode(Enum):
# DYNAMIXEL only controls current(torque) regardless of speed and position. This mode is ideal for a
# gripper or a system that only uses current(torque) control or a system that has additional
# velocity/position controllers.
CURRENT = 0
# This mode controls velocity. This mode is identical to the Wheel Mode(endless) from existing DYNAMIXEL.
# This mode is ideal for wheel-type robots.
VELOCITY = 1
# This mode controls position. This mode is identical to the Joint Mode from existing DYNAMIXEL. Operating
# position range is limited by the Max Position Limit(48) and the Min Position Limit(52). This mode is
# ideal for articulated robots that each joint rotates less than 360 degrees.
POSITION = 3
# This mode controls position. This mode is identical to the Multi-turn Position Control from existing
# DYNAMIXEL. 512 turns are supported(-256[rev] ~ 256[rev]). This mode is ideal for multi-turn wrists or
# conveyer systems or a system that requires an additional reduction gear. Note that Max Position
# Limit(48), Min Position Limit(52) are not used on Extended Position Control Mode.
EXTENDED_POSITION = 4
# This mode controls both position and current(torque). Up to 512 turns are supported (-256[rev] ~
# 256[rev]). This mode is ideal for a system that requires both position and current control such as
# articulated robots or grippers.
CURRENT_POSITION = 5
# This mode directly controls PWM output. (Voltage Control Mode)
PWM = 16
class DriveMode(Enum):
NON_INVERTED = 0
INVERTED = 1
class TorqueMode(Enum):
ENABLED = 1
DISABLED = 0
def _split_into_byte_chunks(value: int, length: int) -> list[int]:
import dynamixel_sdk as dxl
if length == 1:
data = [value]
elif length == 2:
data = [dxl.DXL_LOBYTE(value), dxl.DXL_HIBYTE(value)]
elif length == 4:
data = [
dxl.DXL_LOBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_LOWORD(value)),
dxl.DXL_LOBYTE(dxl.DXL_HIWORD(value)),
dxl.DXL_HIBYTE(dxl.DXL_HIWORD(value)),
]
return data
class DynamixelMotorsBus(MotorsBus):
"""
The Dynamixel implementation for a MotorsBus. It relies on the python dynamixel sdk to communicate with
the motors. For more info, see the Dynamixel SDK Documentation:
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_sdk/sample_code/python_read_write_protocol_2_0/#python-read-write-protocol-20
"""
available_baudrates = deepcopy(AVAILABLE_BAUDRATES)
default_baudrate = DEFAULT_BAUDRATE
default_timeout = DEFAULT_TIMEOUT_MS
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
model_encoding_table = deepcopy(MODEL_ENCODING_TABLE)
model_number_table = deepcopy(MODEL_NUMBER_TABLE)
model_resolution_table = deepcopy(MODEL_RESOLUTION)
normalized_data = deepcopy(NORMALIZED_DATA)
def __init__(
self,
port: str,
motors: dict[str, Motor],
calibration: dict[str, MotorCalibration] | None = None,
):
super().__init__(port, motors, calibration)
import dynamixel_sdk as dxl
self.port_handler = dxl.PortHandler(self.port)
self.packet_handler = dxl.PacketHandler(PROTOCOL_VERSION)
self.sync_reader = dxl.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
self.sync_writer = dxl.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
self._comm_success = dxl.COMM_SUCCESS
self._no_error = 0x00
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
pass
def _handshake(self) -> None:
self._assert_motors_exist()
def _find_single_motor(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
model = self.motors[motor].model
search_baudrates = (
[initial_baudrate] if initial_baudrate is not None else self.model_baudrate_table[model]
)
for baudrate in search_baudrates:
self.set_baudrate(baudrate)
id_model = self.broadcast_ping()
if id_model:
found_id, found_model = next(iter(id_model.items()))
expected_model_nb = self.model_number_table[model]
if found_model != expected_model_nb:
raise RuntimeError(
f"Found one motor on {baudrate=} with id={found_id} but it has a "
f"model number '{found_model}' different than the one expected: '{expected_model_nb}'. "
f"Make sure you are connected only connected to the '{motor}' motor (model '{model}')."
)
return baudrate, found_id
raise RuntimeError(f"Motor '{motor}' (model '{model}') was not found. Make sure it is connected.")
def configure_motors(self) -> None:
# By default, Dynamixel motors have a 500µs delay response time (corresponding to a value of 250 on
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
for motor in self.motors:
self.write("Return_Delay_Time", motor, 0)
def read_calibration(self) -> dict[str, MotorCalibration]:
offsets = self.sync_read("Homing_Offset", normalize=False)
mins = self.sync_read("Min_Position_Limit", normalize=False)
maxes = self.sync_read("Max_Position_Limit", normalize=False)
drive_modes = self.sync_read("Drive_Mode", normalize=False)
calibration = {}
for motor, m in self.motors.items():
calibration[motor] = MotorCalibration(
id=m.id,
drive_mode=drive_modes[motor],
homing_offset=offsets[motor],
range_min=mins[motor],
range_max=maxes[motor],
)
return calibration
def write_calibration(self, calibration_dict: dict[str, MotorCalibration]) -> None:
for motor, calibration in calibration_dict.items():
self.write("Homing_Offset", motor, calibration.homing_offset)
self.write("Min_Position_Limit", motor, calibration.range_min)
self.write("Max_Position_Limit", motor, calibration.range_max)
self.calibration = calibration_dict
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
for motor in self._get_motors_list(motors):
self.write("Torque_Enable", motor, TorqueMode.DISABLED.value, num_retry=num_retry)
def _disable_torque(self, motor_id: int, model: str, num_retry: int = 0) -> None:
addr, length = get_address(self.model_ctrl_table, model, "Torque_Enable")
self._write(addr, length, motor_id, TorqueMode.DISABLED.value, num_retry=num_retry)
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
for motor in self._get_motors_list(motors):
self.write("Torque_Enable", motor, TorqueMode.ENABLED.value, num_retry=num_retry)
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
for id_ in ids_values:
model = self._id_to_model(id_)
encoding_table = self.model_encoding_table.get(model)
if encoding_table and data_name in encoding_table:
n_bytes = encoding_table[data_name]
ids_values[id_] = encode_twos_complement(ids_values[id_], n_bytes)
return ids_values
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
for id_ in ids_values:
model = self._id_to_model(id_)
encoding_table = self.model_encoding_table.get(model)
if encoding_table and data_name in encoding_table:
n_bytes = encoding_table[data_name]
ids_values[id_] = decode_twos_complement(ids_values[id_], n_bytes)
return ids_values
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
"""
On Dynamixel Motors:
Present_Position = Actual_Position + Homing_Offset
"""
half_turn_homings = {}
for motor, pos in positions.items():
model = self._get_motor_model(motor)
max_res = self.model_resolution_table[model] - 1
half_turn_homings[motor] = int(max_res / 2) - pos
return half_turn_homings
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
return _split_into_byte_chunks(value, length)
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
for n_try in range(1 + num_retry):
data_list, comm = self.packet_handler.broadcastPing(self.port_handler)
if self._is_comm_success(comm):
break
logger.debug(f"Broadcast ping failed on port '{self.port}' ({n_try=})")
logger.debug(self.packet_handler.getTxRxResult(comm))
if not self._is_comm_success(comm):
if raise_on_error:
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
return
return {id_: data[0] for id_, data in data_list.items()}

View File

@@ -0,0 +1,197 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO(Steven): Consider doing the following:
# from enum import Enum
# class MyControlTableKey(Enum):
# ID = "ID"
# GOAL_SPEED = "Goal_Speed"
# ...
#
# MY_CONTROL_TABLE ={
# MyControlTableKey.ID.value: (5,1)
# MyControlTableKey.GOAL_SPEED.value: (46, 2)
# ...
# }
# This allows me do to:
# bus.write(MyControlTableKey.GOAL_SPEED, ...)
# Instead of:
# bus.write("Goal_Speed", ...)
# This is important for two reasons:
# 1. The linter will tell me if I'm trying to use an invalid key, instead of me realizing when I get the RunTimeError
# 2. We can change the value of the MyControlTableKey enums without impacting the client code
# {data_name: (address, size_byte)}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table
X_SERIES_CONTROL_TABLE = {
"Model_Number": (0, 2),
"Model_Information": (2, 4),
"Firmware_Version": (6, 1),
"ID": (7, 1),
"Baud_Rate": (8, 1),
"Return_Delay_Time": (9, 1),
"Drive_Mode": (10, 1),
"Operating_Mode": (11, 1),
"Secondary_ID": (12, 1),
"Protocol_Type": (13, 1),
"Homing_Offset": (20, 4),
"Moving_Threshold": (24, 4),
"Temperature_Limit": (31, 1),
"Max_Voltage_Limit": (32, 2),
"Min_Voltage_Limit": (34, 2),
"PWM_Limit": (36, 2),
"Current_Limit": (38, 2),
"Acceleration_Limit": (40, 4),
"Velocity_Limit": (44, 4),
"Max_Position_Limit": (48, 4),
"Min_Position_Limit": (52, 4),
"Shutdown": (63, 1),
"Torque_Enable": (64, 1),
"LED": (65, 1),
"Status_Return_Level": (68, 1),
"Registered_Instruction": (69, 1),
"Hardware_Error_Status": (70, 1),
"Velocity_I_Gain": (76, 2),
"Velocity_P_Gain": (78, 2),
"Position_D_Gain": (80, 2),
"Position_I_Gain": (82, 2),
"Position_P_Gain": (84, 2),
"Feedforward_2nd_Gain": (88, 2),
"Feedforward_1st_Gain": (90, 2),
"Bus_Watchdog": (98, 1),
"Goal_PWM": (100, 2),
"Goal_Current": (102, 2),
"Goal_Velocity": (104, 4),
"Profile_Acceleration": (108, 4),
"Profile_Velocity": (112, 4),
"Goal_Position": (116, 4),
"Realtime_Tick": (120, 2),
"Moving": (122, 1),
"Moving_Status": (123, 1),
"Present_PWM": (124, 2),
"Present_Current": (126, 2),
"Present_Velocity": (128, 4),
"Present_Position": (132, 4),
"Velocity_Trajectory": (136, 4),
"Position_Trajectory": (140, 4),
"Present_Input_Voltage": (144, 2),
"Present_Temperature": (146, 1),
}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#baud-rate8
X_SERIES_BAUDRATE_TABLE = {
9_600: 0,
57_600: 1,
115_200: 2,
1_000_000: 3,
2_000_000: 4,
3_000_000: 5,
4_000_000: 6,
}
# {data_name: size_byte}
X_SERIES_ENCODINGS_TABLE = {
"Homing_Offset": X_SERIES_CONTROL_TABLE["Homing_Offset"][1],
"Goal_PWM": X_SERIES_CONTROL_TABLE["Goal_PWM"][1],
"Goal_Current": X_SERIES_CONTROL_TABLE["Goal_Current"][1],
"Goal_Velocity": X_SERIES_CONTROL_TABLE["Goal_Velocity"][1],
"Present_PWM": X_SERIES_CONTROL_TABLE["Present_PWM"][1],
"Present_Current": X_SERIES_CONTROL_TABLE["Present_Current"][1],
"Present_Velocity": X_SERIES_CONTROL_TABLE["Present_Velocity"][1],
}
MODEL_ENCODING_TABLE = {
"x_series": X_SERIES_ENCODINGS_TABLE,
"xl330-m077": X_SERIES_ENCODINGS_TABLE,
"xl330-m288": X_SERIES_ENCODINGS_TABLE,
"xl430-w250": X_SERIES_ENCODINGS_TABLE,
"xm430-w350": X_SERIES_ENCODINGS_TABLE,
"xm540-w270": X_SERIES_ENCODINGS_TABLE,
"xc430-w150": X_SERIES_ENCODINGS_TABLE,
}
# {model: model_resolution}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#specifications
MODEL_RESOLUTION = {
"x_series": 4096,
"xl330-m077": 4096,
"xl330-m288": 4096,
"xl430-w250": 4096,
"xm430-w350": 4096,
"xm540-w270": 4096,
"xc430-w150": 4096,
}
# {model: model_number}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#control-table-of-eeprom-area
MODEL_NUMBER_TABLE = {
"xl330-m077": 1190,
"xl330-m288": 1200,
"xl430-w250": 1060,
"xm430-w350": 1020,
"xm540-w270": 1120,
"xc430-w150": 1070,
}
# {model: available_operating_modes}
# https://emanual.robotis.com/docs/en/dxl/x/{MODEL}/#operating-mode11
MODEL_OPERATING_MODES = {
"xl330-m077": [0, 1, 3, 4, 5, 16],
"xl330-m288": [0, 1, 3, 4, 5, 16],
"xl430-w250": [1, 3, 4, 16],
"xm430-w350": [0, 1, 3, 4, 5, 16],
"xm540-w270": [0, 1, 3, 4, 5, 16],
"xc430-w150": [1, 3, 4, 16],
}
MODEL_CONTROL_TABLE = {
"x_series": X_SERIES_CONTROL_TABLE,
"xl330-m077": X_SERIES_CONTROL_TABLE,
"xl330-m288": X_SERIES_CONTROL_TABLE,
"xl430-w250": X_SERIES_CONTROL_TABLE,
"xm430-w350": X_SERIES_CONTROL_TABLE,
"xm540-w270": X_SERIES_CONTROL_TABLE,
"xc430-w150": X_SERIES_CONTROL_TABLE,
}
MODEL_BAUDRATE_TABLE = {
"x_series": X_SERIES_BAUDRATE_TABLE,
"xl330-m077": X_SERIES_BAUDRATE_TABLE,
"xl330-m288": X_SERIES_BAUDRATE_TABLE,
"xl430-w250": X_SERIES_BAUDRATE_TABLE,
"xm430-w350": X_SERIES_BAUDRATE_TABLE,
"xm540-w270": X_SERIES_BAUDRATE_TABLE,
"xc430-w150": X_SERIES_BAUDRATE_TABLE,
}
AVAILABLE_BAUDRATES = [
9_600,
19_200,
38_400,
57_600,
115_200,
230_400,
460_800,
500_000,
576_000,
921_600,
1_000_000,
1_152_000,
2_000_000,
2_500_000,
3_000_000,
3_500_000,
4_000_000,
]

View File

@@ -0,0 +1,2 @@
from .feetech import DriveMode, FeetechMotorsBus, OperatingMode, TorqueMode
from .tables import *

View File

@@ -0,0 +1,441 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from copy import deepcopy
from enum import Enum
from pprint import pformat
from lerobot.common.utils.encoding_utils import decode_sign_magnitude, encode_sign_magnitude
from ..motors_bus import Motor, MotorCalibration, MotorsBus, NameOrID, Value, get_address
from .tables import (
FIRMWARE_MAJOR_VERSION,
FIRMWARE_MINOR_VERSION,
MODEL_BAUDRATE_TABLE,
MODEL_CONTROL_TABLE,
MODEL_ENCODING_TABLE,
MODEL_NUMBER,
MODEL_NUMBER_TABLE,
MODEL_PROTOCOL,
MODEL_RESOLUTION,
SCAN_BAUDRATES,
)
DEFAULT_PROTOCOL_VERSION = 0
DEFAULT_BAUDRATE = 1_000_000
DEFAULT_TIMEOUT_MS = 1000
NORMALIZED_DATA = ["Goal_Position", "Present_Position"]
logger = logging.getLogger(__name__)
class OperatingMode(Enum):
# position servo mode
POSITION = 0
# The motor is in constant speed mode, which is controlled by parameter 0x2e, and the highest bit 15 is
# the direction bit
VELOCITY = 1
# PWM open-loop speed regulation mode, with parameter 0x2c running time parameter control, bit11 as
# direction bit
PWM = 2
# In step servo mode, the number of step progress is represented by parameter 0x2a, and the highest bit 15
# is the direction bit
STEP = 3
class DriveMode(Enum):
NON_INVERTED = 0
INVERTED = 1
class TorqueMode(Enum):
ENABLED = 1
DISABLED = 0
def _split_into_byte_chunks(value: int, length: int) -> list[int]:
import scservo_sdk as scs
if length == 1:
data = [value]
elif length == 2:
data = [scs.SCS_LOBYTE(value), scs.SCS_HIBYTE(value)]
elif length == 4:
data = [
scs.SCS_LOBYTE(scs.SCS_LOWORD(value)),
scs.SCS_HIBYTE(scs.SCS_LOWORD(value)),
scs.SCS_LOBYTE(scs.SCS_HIWORD(value)),
scs.SCS_HIBYTE(scs.SCS_HIWORD(value)),
]
return data
def patch_setPacketTimeout(self, packet_length): # noqa: N802
"""
HACK: This patches the PortHandler behavior to set the correct packet timeouts.
It fixes https://gitee.com/ftservo/SCServoSDK/issues/IBY2S6
The bug is fixed on the official Feetech SDK repo (https://gitee.com/ftservo/FTServo_Python)
but because that version is not published on PyPI, we rely on the (unofficial) on that is, which needs
patching.
"""
self.packet_start_time = self.getCurrentTime()
self.packet_timeout = (self.tx_time_per_byte * packet_length) + (self.tx_time_per_byte * 3.0) + 50
class FeetechMotorsBus(MotorsBus):
"""
The FeetechMotorsBus class allows to efficiently read and write to the attached motors. It relies on the
python feetech sdk to communicate with the motors, which is itself based on the dynamixel sdk.
"""
available_baudrates = deepcopy(SCAN_BAUDRATES)
default_baudrate = DEFAULT_BAUDRATE
default_timeout = DEFAULT_TIMEOUT_MS
model_baudrate_table = deepcopy(MODEL_BAUDRATE_TABLE)
model_ctrl_table = deepcopy(MODEL_CONTROL_TABLE)
model_encoding_table = deepcopy(MODEL_ENCODING_TABLE)
model_number_table = deepcopy(MODEL_NUMBER_TABLE)
model_resolution_table = deepcopy(MODEL_RESOLUTION)
normalized_data = deepcopy(NORMALIZED_DATA)
def __init__(
self,
port: str,
motors: dict[str, Motor],
calibration: dict[str, MotorCalibration] | None = None,
protocol_version: int = DEFAULT_PROTOCOL_VERSION,
):
super().__init__(port, motors, calibration)
self.protocol_version = protocol_version
self._assert_same_protocol()
import scservo_sdk as scs
self.port_handler = scs.PortHandler(self.port)
# HACK: monkeypatch
self.port_handler.setPacketTimeout = patch_setPacketTimeout.__get__(
self.port_handler, scs.PortHandler
)
self.packet_handler = scs.PacketHandler(protocol_version)
self.sync_reader = scs.GroupSyncRead(self.port_handler, self.packet_handler, 0, 0)
self.sync_writer = scs.GroupSyncWrite(self.port_handler, self.packet_handler, 0, 0)
self._comm_success = scs.COMM_SUCCESS
self._no_error = 0x00
if any(MODEL_PROTOCOL[model] != self.protocol_version for model in self.models):
raise ValueError(f"Some motors are incompatible with protocol_version={self.protocol_version}")
def _assert_same_protocol(self) -> None:
if any(MODEL_PROTOCOL[model] != self.protocol_version for model in self.models):
raise RuntimeError("Some motors use an incompatible protocol.")
def _assert_protocol_is_compatible(self, instruction_name: str) -> None:
if instruction_name == "sync_read" and self.protocol_version == 1:
raise NotImplementedError(
"'Sync Read' is not available with Feetech motors using Protocol 1. Use 'Read' sequentially instead."
)
if instruction_name == "broadcast_ping" and self.protocol_version == 1:
raise NotImplementedError(
"'Broadcast Ping' is not available with Feetech motors using Protocol 1. Use 'Ping' sequentially instead."
)
def _assert_same_firmware(self) -> None:
firmware_versions = self._read_firmware_version(self.ids)
if len(set(firmware_versions.values())) != 1:
raise RuntimeError(
"Some Motors use different firmware versions. Update their firmware first using Feetech's software. "
"Visit https://www.feetechrc.com/software."
)
def _handshake(self) -> None:
self._assert_motors_exist()
self._assert_same_firmware()
def _find_single_motor(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
if self.protocol_version == 0:
return self._find_single_motor_p0(motor, initial_baudrate)
else:
return self._find_single_motor_p1(motor, initial_baudrate)
def _find_single_motor_p0(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
model = self.motors[motor].model
search_baudrates = (
[initial_baudrate] if initial_baudrate is not None else self.model_baudrate_table[model]
)
expected_model_nb = self.model_number_table[model]
for baudrate in search_baudrates:
self.set_baudrate(baudrate)
id_model = self.broadcast_ping()
if id_model:
found_id, found_model = next(iter(id_model.items()))
if found_model != expected_model_nb:
raise RuntimeError(
f"Found one motor on {baudrate=} with id={found_id} but it has a "
f"model number '{found_model}' different than the one expected: '{expected_model_nb}'. "
f"Make sure you are connected only connected to the '{motor}' motor (model '{model}')."
)
return baudrate, found_id
raise RuntimeError(f"Motor '{motor}' (model '{model}') was not found. Make sure it is connected.")
def _find_single_motor_p1(self, motor: str, initial_baudrate: int | None = None) -> tuple[int, int]:
import scservo_sdk as scs
model = self.motors[motor].model
search_baudrates = (
[initial_baudrate] if initial_baudrate is not None else self.model_baudrate_table[model]
)
expected_model_nb = self.model_number_table[model]
for baudrate in search_baudrates:
self.set_baudrate(baudrate)
for id_ in range(scs.MAX_ID + 1):
found_model = self.ping(id_)
if found_model is not None:
if found_model != expected_model_nb:
raise RuntimeError(
f"Found one motor on {baudrate=} with id={id_} but it has a "
f"model number '{found_model}' different than the one expected: '{expected_model_nb}'. "
f"Make sure you are connected only connected to the '{motor}' motor (model '{model}')."
)
return baudrate, id_
raise RuntimeError(f"Motor '{motor}' (model '{model}') was not found. Make sure it is connected.")
def configure_motors(self) -> None:
for motor in self.motors:
# By default, Feetech motors have a 500µs delay response time (corresponding to a value of 250 on
# the 'Return_Delay_Time' address). We ensure this is reduced to the minimum of 2µs (value of 0).
self.write("Return_Delay_Time", motor, 0)
# Set 'Maximum_Acceleration' to 254 to speedup acceleration and deceleration of the motors.
# Note: this address is not in the official STS3215 Memory Table
self.write("Maximum_Acceleration", motor, 254)
self.write("Acceleration", motor, 254)
def read_calibration(self) -> dict[str, MotorCalibration]:
if self.protocol_version == 0:
offsets = self.sync_read("Homing_Offset", normalize=False)
mins = self.sync_read("Min_Position_Limit", normalize=False)
maxes = self.sync_read("Max_Position_Limit", normalize=False)
drive_modes = dict.fromkeys(self.motors, 0)
else:
offsets, mins, maxes, drive_modes = {}, {}, {}, {}
for motor in self.motors:
offsets[motor] = 0
mins[motor] = self.read("Min_Position_Limit", motor, normalize=False)
maxes[motor] = self.read("Max_Position_Limit", motor, normalize=False)
drive_modes[motor] = 0
# TODO(aliberts): add set/get_drive_mode?
calibration = {}
for motor, m in self.motors.items():
calibration[motor] = MotorCalibration(
id=m.id,
drive_mode=drive_modes[motor],
homing_offset=offsets[motor],
range_min=mins[motor],
range_max=maxes[motor],
)
return calibration
def write_calibration(self, calibration_dict: dict[str, MotorCalibration]) -> None:
for motor, calibration in calibration_dict.items():
if self.protocol_version == 0:
self.write("Homing_Offset", motor, calibration.homing_offset)
self.write("Min_Position_Limit", motor, calibration.range_min)
self.write("Max_Position_Limit", motor, calibration.range_max)
self.calibration = calibration_dict
def _get_half_turn_homings(self, positions: dict[NameOrID, Value]) -> dict[NameOrID, Value]:
"""
On Feetech Motors:
Present_Position = Actual_Position - Homing_Offset
"""
half_turn_homings = {}
for motor, pos in positions.items():
model = self._get_motor_model(motor)
max_res = self.model_resolution_table[model] - 1
half_turn_homings[motor] = pos - int(max_res / 2)
return half_turn_homings
def disable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
for motor in self._get_motors_list(motors):
self.write("Torque_Enable", motor, TorqueMode.DISABLED.value, num_retry=num_retry)
self.write("Lock", motor, 0, num_retry=num_retry)
def _disable_torque(self, motor_id: int, model: str, num_retry: int = 0) -> None:
addr, length = get_address(self.model_ctrl_table, model, "Torque_Enable")
self._write(addr, length, motor_id, TorqueMode.DISABLED.value, num_retry=num_retry)
addr, length = get_address(self.model_ctrl_table, model, "Lock")
self._write(addr, length, motor_id, 0, num_retry=num_retry)
def enable_torque(self, motors: str | list[str] | None = None, num_retry: int = 0) -> None:
for motor in self._get_motors_list(motors):
self.write("Torque_Enable", motor, TorqueMode.ENABLED.value, num_retry=num_retry)
self.write("Lock", motor, 1, num_retry=num_retry)
def _encode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
for id_ in ids_values:
model = self._id_to_model(id_)
encoding_table = self.model_encoding_table.get(model)
if encoding_table and data_name in encoding_table:
sign_bit = encoding_table[data_name]
ids_values[id_] = encode_sign_magnitude(ids_values[id_], sign_bit)
return ids_values
def _decode_sign(self, data_name: str, ids_values: dict[int, int]) -> dict[int, int]:
for id_ in ids_values:
model = self._id_to_model(id_)
encoding_table = self.model_encoding_table.get(model)
if encoding_table and data_name in encoding_table:
sign_bit = encoding_table[data_name]
ids_values[id_] = decode_sign_magnitude(ids_values[id_], sign_bit)
return ids_values
def _split_into_byte_chunks(self, value: int, length: int) -> list[int]:
return _split_into_byte_chunks(value, length)
def _broadcast_ping(self) -> tuple[dict[int, int], int]:
import scservo_sdk as scs
data_list = {}
status_length = 6
rx_length = 0
wait_length = status_length * scs.MAX_ID
txpacket = [0] * 6
tx_time_per_byte = (1000.0 / self.port_handler.getBaudRate()) * 10.0
txpacket[scs.PKT_ID] = scs.BROADCAST_ID
txpacket[scs.PKT_LENGTH] = 2
txpacket[scs.PKT_INSTRUCTION] = scs.INST_PING
result = self.packet_handler.txPacket(self.port_handler, txpacket)
if result != scs.COMM_SUCCESS:
self.port_handler.is_using = False
return data_list, result
# set rx timeout
self.port_handler.setPacketTimeoutMillis((wait_length * tx_time_per_byte) + (3.0 * scs.MAX_ID) + 16.0)
rxpacket = []
while True:
rxpacket += self.port_handler.readPort(wait_length - rx_length)
rx_length = len(rxpacket)
if self.port_handler.isPacketTimeout(): # or rx_length >= wait_length
break
self.port_handler.is_using = False
if rx_length == 0:
return data_list, scs.COMM_RX_TIMEOUT
while True:
if rx_length < status_length:
return data_list, scs.COMM_RX_CORRUPT
# find packet header
for idx in range(0, (rx_length - 1)):
if (rxpacket[idx] == 0xFF) and (rxpacket[idx + 1] == 0xFF):
break
if idx == 0: # found at the beginning of the packet
# calculate checksum
checksum = 0
for idx in range(2, status_length - 1): # except header & checksum
checksum += rxpacket[idx]
checksum = ~checksum & 0xFF
if rxpacket[status_length - 1] == checksum:
result = scs.COMM_SUCCESS
data_list[rxpacket[scs.PKT_ID]] = rxpacket[scs.PKT_ERROR]
del rxpacket[0:status_length]
rx_length = rx_length - status_length
if rx_length == 0:
return data_list, result
else:
result = scs.COMM_RX_CORRUPT
# remove header (0xFF 0xFF)
del rxpacket[0:2]
rx_length = rx_length - 2
else:
# remove unnecessary packets
del rxpacket[0:idx]
rx_length = rx_length - idx
def broadcast_ping(self, num_retry: int = 0, raise_on_error: bool = False) -> dict[int, int] | None:
self._assert_protocol_is_compatible("broadcast_ping")
for n_try in range(1 + num_retry):
ids_status, comm = self._broadcast_ping()
if self._is_comm_success(comm):
break
logger.debug(f"Broadcast ping failed on port '{self.port}' ({n_try=})")
logger.debug(self.packet_handler.getTxRxResult(comm))
if not self._is_comm_success(comm):
if raise_on_error:
raise ConnectionError(self.packet_handler.getTxRxResult(comm))
return
ids_errors = {id_: status for id_, status in ids_status.items() if self._is_error(status)}
if ids_errors:
display_dict = {id_: self.packet_handler.getRxPacketError(err) for id_, err in ids_errors.items()}
logger.error(f"Some motors found returned an error status:\n{pformat(display_dict, indent=4)}")
return self._read_model_number(list(ids_status), raise_on_error)
def _read_firmware_version(self, motor_ids: list[int], raise_on_error: bool = False) -> dict[int, str]:
firmware_versions = {}
for id_ in motor_ids:
firm_ver_major, comm, error = self._read(
*FIRMWARE_MAJOR_VERSION, id_, raise_on_error=raise_on_error
)
if not self._is_comm_success(comm) or self._is_error(error):
return
firm_ver_minor, comm, error = self._read(
*FIRMWARE_MINOR_VERSION, id_, raise_on_error=raise_on_error
)
if not self._is_comm_success(comm) or self._is_error(error):
return
firmware_versions[id_] = f"{firm_ver_major}.{firm_ver_minor}"
return firmware_versions
def _read_model_number(self, motor_ids: list[int], raise_on_error: bool = False) -> dict[int, int]:
model_numbers = {}
for id_ in motor_ids:
model_nb, comm, error = self._read(*MODEL_NUMBER, id_, raise_on_error=raise_on_error)
if not self._is_comm_success(comm) or self._is_error(error):
return
model_numbers[id_] = model_nb
return model_numbers

View File

@@ -0,0 +1,251 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
FIRMWARE_MAJOR_VERSION = (0, 1)
FIRMWARE_MINOR_VERSION = (1, 1)
MODEL_NUMBER = (3, 2)
# TODO(Steven): Consider doing the following:
# from enum import Enum
# class MyControlTableKey(Enum):
# ID = "ID"
# GOAL_SPEED = "Goal_Speed"
# ...
#
# MY_CONTROL_TABLE ={
# MyControlTableKey.ID.value: (5,1)
# MyControlTableKey.GOAL_SPEED.value: (46, 2)
# ...
# }
# This allows me do to:
# bus.write(MyControlTableKey.GOAL_SPEED, ...)
# Instead of:
# bus.write("Goal_Speed", ...)
# This is important for two reasons:
# 1. The linter will tell me if I'm trying to use an invalid key, instead of me realizing when I get the RunTimeError
# 2. We can change the value of the MyControlTableKey enums without impacting the client code
# data_name: (address, size_byte)
# http://doc.feetech.cn/#/prodinfodownload?srcType=FT-SMS-STS-emanual-229f4476422d4059abfb1cb0
STS_SMS_SERIES_CONTROL_TABLE = {
# EPROM
"Firmware_Major_Version": FIRMWARE_MAJOR_VERSION, # read-only
"Firmware_Minor_Version": FIRMWARE_MINOR_VERSION, # read-only
"Model_Number": MODEL_NUMBER, # read-only
"ID": (5, 1),
"Baud_Rate": (6, 1),
"Return_Delay_Time": (7, 1),
"Response_Status_Level": (8, 1),
"Min_Position_Limit": (9, 2),
"Max_Position_Limit": (11, 2),
"Max_Temperature_Limit": (13, 1),
"Max_Voltage_Limit": (14, 1),
"Min_Voltage_Limit": (15, 1),
"Max_Torque_Limit": (16, 2),
"Phase": (18, 1),
"Unloading_Condition": (19, 1),
"LED_Alarm_Condition": (20, 1),
"P_Coefficient": (21, 1),
"D_Coefficient": (22, 1),
"I_Coefficient": (23, 1),
"Minimum_Startup_Force": (24, 2),
"CW_Dead_Zone": (26, 1),
"CCW_Dead_Zone": (27, 1),
"Protection_Current": (28, 2),
"Angular_Resolution": (30, 1),
"Homing_Offset": (31, 2),
"Operating_Mode": (33, 1),
"Protective_Torque": (34, 1),
"Protection_Time": (35, 1),
"Overload_Torque": (36, 1),
"Velocity_closed_loop_P_proportional_coefficient": (37, 1),
"Over_Current_Protection_Time": (38, 1),
"Velocity_closed_loop_I_integral_coefficient": (39, 1),
# SRAM
"Torque_Enable": (40, 1),
"Acceleration": (41, 1),
"Goal_Position": (42, 2),
"Goal_Time": (44, 2),
"Goal_Velocity": (46, 2),
"Torque_Limit": (48, 2),
"Lock": (55, 1),
"Present_Position": (56, 2), # read-only
"Present_Velocity": (58, 2), # read-only
"Present_Load": (60, 2), # read-only
"Present_Voltage": (62, 1), # read-only
"Present_Temperature": (63, 1), # read-only
"Status": (65, 1), # read-only
"Moving": (66, 1), # read-only
"Present_Current": (69, 2), # read-only
"Goal_Position_2": (71, 2), # read-only
# Factory
"Moving_Velocity": (80, 1),
"Moving_Velocity_Threshold": (80, 1),
"DTs": (81, 1), # (ms)
"Velocity_Unit_factor": (82, 1),
"Hts": (83, 1), # (ns) valid for firmware >= 2.54, other versions keep 0
"Maximum_Velocity_Limit": (84, 1),
"Maximum_Acceleration": (85, 1),
"Acceleration_Multiplier ": (86, 1), # Acceleration multiplier in effect when acceleration is 0
}
# http://doc.feetech.cn/#/prodinfodownload?srcType=FT-SCSCL-emanual-cbcc8ab2e3384282a01d4bf3
SCS_SERIES_CONTROL_TABLE = {
# EPROM
"Firmware_Major_Version": FIRMWARE_MAJOR_VERSION, # read-only
"Firmware_Minor_Version": FIRMWARE_MINOR_VERSION, # read-only
"Model_Number": MODEL_NUMBER, # read-only
"ID": (5, 1),
"Baud_Rate": (6, 1),
"Return_Delay_Time": (7, 1),
"Response_Status_Level": (8, 1),
"Min_Position_Limit": (9, 2),
"Max_Position_Limit": (11, 2),
"Max_Temperature_Limit": (13, 1),
"Max_Voltage_Limit": (14, 1),
"Min_Voltage_Limit": (15, 1),
"Max_Torque_Limit": (16, 2),
"Phase": (18, 1),
"Unloading_Condition": (19, 1),
"LED_Alarm_Condition": (20, 1),
"P_Coefficient": (21, 1),
"D_Coefficient": (22, 1),
"I_Coefficient": (23, 1),
"Minimum_Startup_Force": (24, 2),
"CW_Dead_Zone": (26, 1),
"CCW_Dead_Zone": (27, 1),
"Protective_Torque": (37, 1),
"Protection_Time": (38, 1),
# SRAM
"Torque_Enable": (40, 1),
"Acceleration": (41, 1),
"Goal_Position": (42, 2),
"Running_Time": (44, 2),
"Goal_Velocity": (46, 2),
"Lock": (48, 1),
"Present_Position": (56, 2), # read-only
"Present_Velocity": (58, 2), # read-only
"Present_Load": (60, 2), # read-only
"Present_Voltage": (62, 1), # read-only
"Present_Temperature": (63, 1), # read-only
"Sync_Write_Flag": (64, 1), # read-only
"Status": (65, 1), # read-only
"Moving": (66, 1), # read-only
# Factory
"PWM_Maximum_Step": (78, 1),
"Moving_Velocity_Threshold*50": (79, 1),
"DTs": (80, 1), # (ms)
"Minimum_Velocity_Limit*50": (81, 1),
"Maximum_Velocity_Limit*50": (82, 1),
"Acceleration_2": (83, 1), # don't know what that is
}
STS_SMS_SERIES_BAUDRATE_TABLE = {
1_000_000: 0,
500_000: 1,
250_000: 2,
128_000: 3,
115_200: 4,
57_600: 5,
38_400: 6,
19_200: 7,
}
SCS_SERIES_BAUDRATE_TABLE = {
1_000_000: 0,
500_000: 1,
250_000: 2,
128_000: 3,
115_200: 4,
57_600: 5,
38_400: 6,
19_200: 7,
}
MODEL_CONTROL_TABLE = {
"sts_series": STS_SMS_SERIES_CONTROL_TABLE,
"scs_series": SCS_SERIES_CONTROL_TABLE,
"sms_series": STS_SMS_SERIES_CONTROL_TABLE,
"sts3215": STS_SMS_SERIES_CONTROL_TABLE,
"sts3250": STS_SMS_SERIES_CONTROL_TABLE,
"scs0009": SCS_SERIES_CONTROL_TABLE,
"sm8512bl": STS_SMS_SERIES_CONTROL_TABLE,
}
MODEL_RESOLUTION = {
"sts_series": 4096,
"sms_series": 4096,
"scs_series": 1024,
"sts3215": 4096,
"sts3250": 4096,
"sm8512bl": 65536,
"scs0009": 1024,
}
MODEL_BAUDRATE_TABLE = {
"sts_series": STS_SMS_SERIES_BAUDRATE_TABLE,
"sms_series": STS_SMS_SERIES_BAUDRATE_TABLE,
"scs_series": SCS_SERIES_BAUDRATE_TABLE,
"sm8512bl": STS_SMS_SERIES_BAUDRATE_TABLE,
"sts3215": STS_SMS_SERIES_BAUDRATE_TABLE,
"sts3250": STS_SMS_SERIES_BAUDRATE_TABLE,
"scs0009": SCS_SERIES_BAUDRATE_TABLE,
}
# Sign-Magnitude encoding bits
STS_SMS_SERIES_ENCODINGS_TABLE = {
"Homing_Offset": 11,
"Goal_Velocity": 15,
}
MODEL_ENCODING_TABLE = {
"sts_series": STS_SMS_SERIES_ENCODINGS_TABLE,
"sms_series": STS_SMS_SERIES_ENCODINGS_TABLE,
"scs_series": {},
"sts3215": STS_SMS_SERIES_ENCODINGS_TABLE,
"sts3250": STS_SMS_SERIES_ENCODINGS_TABLE,
"sm8512bl": STS_SMS_SERIES_ENCODINGS_TABLE,
"scs0009": {},
}
SCAN_BAUDRATES = [
4_800,
9_600,
14_400,
19_200,
38_400,
57_600,
115_200,
128_000,
250_000,
500_000,
1_000_000,
]
MODEL_NUMBER_TABLE = {
"sts3215": 777,
"sts3250": 2825,
"sm8512bl": 11272,
"scs0009": 1284,
}
MODEL_PROTOCOL = {
"sts_series": 0,
"sms_series": 0,
"scs_series": 1,
"sts3215": 0,
"sts3250": 0,
"sm8512bl": 0,
"scs0009": 1,
}

File diff suppressed because it is too large Load Diff

View File

@@ -12,37 +12,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Protocol
from lerobot.common.robot_devices.motors.configs import (
DynamixelMotorsBusConfig,
FeetechMotorsBusConfig,
MotorsBusConfig,
)
from .configs import MotorsBusConfig
from .motors_bus import MotorsBus
class MotorsBus(Protocol):
def motor_names(self): ...
def set_calibration(self): ...
def apply_calibration(self): ...
def revert_calibration(self): ...
def read(self): ...
def write(self): ...
def make_motors_buses_from_configs(
motors_bus_configs: dict[str, MotorsBusConfig],
) -> list[MotorsBus]:
def make_motors_buses_from_configs(motors_bus_configs: dict[str, MotorsBusConfig]) -> list[MotorsBus]:
motors_buses = {}
for key, cfg in motors_bus_configs.items():
if cfg.type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
from .dynamixel import DynamixelMotorsBus
motors_buses[key] = DynamixelMotorsBus(cfg)
elif cfg.type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
from lerobot.common.motors.feetech.feetech import FeetechMotorsBus
motors_buses[key] = FeetechMotorsBus(cfg)
@@ -54,13 +38,16 @@ def make_motors_buses_from_configs(
def make_motors_bus(motor_type: str, **kwargs) -> MotorsBus:
if motor_type == "dynamixel":
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
from .configs import DynamixelMotorsBusConfig
from .dynamixel import DynamixelMotorsBus
config = DynamixelMotorsBusConfig(**kwargs)
return DynamixelMotorsBus(config)
elif motor_type == "feetech":
from lerobot.common.robot_devices.motors.feetech import FeetechMotorsBus
from feetech import FeetechMotorsBus
from .configs import FeetechMotorsBusConfig
config = FeetechMotorsBusConfig(**kwargs)
return FeetechMotorsBus(config)

View File

@@ -14,9 +14,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import asdict, dataclass, field
from dataclasses import asdict, dataclass
from pathlib import Path
from typing import Any
import draccus
import torch
@@ -45,7 +44,7 @@ class OptimizerConfig(draccus.ChoiceRegistry, abc.ABC):
return "adam"
@abc.abstractmethod
def build(self) -> torch.optim.Optimizer | dict[str, torch.optim.Optimizer]:
def build(self) -> torch.optim.Optimizer:
raise NotImplementedError
@@ -95,76 +94,7 @@ class SGDConfig(OptimizerConfig):
return torch.optim.SGD(params, **kwargs)
@OptimizerConfig.register_subclass("multi_adam")
@dataclass
class MultiAdamConfig(OptimizerConfig):
"""Configuration for multiple Adam optimizers with different parameter groups.
This creates a dictionary of Adam optimizers, each with its own hyperparameters.
Args:
lr: Default learning rate (used if not specified for a group)
weight_decay: Default weight decay (used if not specified for a group)
optimizer_groups: Dictionary mapping parameter group names to their hyperparameters
grad_clip_norm: Gradient clipping norm
"""
lr: float = 1e-3
weight_decay: float = 0.0
grad_clip_norm: float = 10.0
optimizer_groups: dict[str, dict[str, Any]] = field(default_factory=dict)
def build(self, params_dict: dict[str, list]) -> dict[str, torch.optim.Optimizer]:
"""Build multiple Adam optimizers.
Args:
params_dict: Dictionary mapping parameter group names to lists of parameters
The keys should match the keys in optimizer_groups
Returns:
Dictionary mapping parameter group names to their optimizers
"""
optimizers = {}
for name, params in params_dict.items():
# Get group-specific hyperparameters or use defaults
group_config = self.optimizer_groups.get(name, {})
# Create optimizer with merged parameters (defaults + group-specific)
optimizer_kwargs = {
"lr": group_config.get("lr", self.lr),
"betas": group_config.get("betas", (0.9, 0.999)),
"eps": group_config.get("eps", 1e-5),
"weight_decay": group_config.get("weight_decay", self.weight_decay),
}
optimizers[name] = torch.optim.Adam(params, **optimizer_kwargs)
return optimizers
def save_optimizer_state(
optimizer: torch.optim.Optimizer | dict[str, torch.optim.Optimizer], save_dir: Path
) -> None:
"""Save optimizer state to disk.
Args:
optimizer: Either a single optimizer or a dictionary of optimizers.
save_dir: Directory to save the optimizer state.
"""
if isinstance(optimizer, dict):
# Handle dictionary of optimizers
for name, opt in optimizer.items():
optimizer_dir = save_dir / name
optimizer_dir.mkdir(exist_ok=True, parents=True)
_save_single_optimizer_state(opt, optimizer_dir)
else:
# Handle single optimizer
_save_single_optimizer_state(optimizer, save_dir)
def _save_single_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> None:
"""Save a single optimizer's state to disk."""
def save_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> None:
state = optimizer.state_dict()
param_groups = state.pop("param_groups")
flat_state = flatten_dict(state)
@@ -172,44 +102,11 @@ def _save_single_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Pat
write_json(param_groups, save_dir / OPTIMIZER_PARAM_GROUPS)
def load_optimizer_state(
optimizer: torch.optim.Optimizer | dict[str, torch.optim.Optimizer], save_dir: Path
) -> torch.optim.Optimizer | dict[str, torch.optim.Optimizer]:
"""Load optimizer state from disk.
Args:
optimizer: Either a single optimizer or a dictionary of optimizers.
save_dir: Directory to load the optimizer state from.
Returns:
The updated optimizer(s) with loaded state.
"""
if isinstance(optimizer, dict):
# Handle dictionary of optimizers
loaded_optimizers = {}
for name, opt in optimizer.items():
optimizer_dir = save_dir / name
if optimizer_dir.exists():
loaded_optimizers[name] = _load_single_optimizer_state(opt, optimizer_dir)
else:
loaded_optimizers[name] = opt
return loaded_optimizers
else:
# Handle single optimizer
return _load_single_optimizer_state(optimizer, save_dir)
def _load_single_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> torch.optim.Optimizer:
"""Load a single optimizer's state from disk."""
def load_optimizer_state(optimizer: torch.optim.Optimizer, save_dir: Path) -> torch.optim.Optimizer:
current_state_dict = optimizer.state_dict()
flat_state = load_file(save_dir / OPTIMIZER_STATE)
state = unflatten_dict(flat_state)
# Handle case where 'state' key might not exist (for newly created optimizers)
if "state" in state:
loaded_state_dict = {"state": {int(k): v for k, v in state["state"].items()}}
else:
loaded_state_dict = {"state": {}}
loaded_state_dict = {"state": {int(k): v for k, v in state["state"].items()}}
if "param_groups" in current_state_dict:
param_groups = deserialize_json_into_object(

View File

@@ -49,11 +49,7 @@ class DiffuserSchedulerConfig(LRSchedulerConfig):
def build(self, optimizer: Optimizer, num_training_steps: int) -> LambdaLR:
from diffusers.optimization import get_scheduler
kwargs = {
**asdict(self),
"num_training_steps": num_training_steps,
"optimizer": optimizer,
}
kwargs = {**asdict(self), "num_training_steps": num_training_steps, "optimizer": optimizer}
return get_scheduler(**kwargs)
@@ -75,10 +71,7 @@ class VQBeTSchedulerConfig(LRSchedulerConfig):
progress = float(adjusted_step - self.num_warmup_steps) / float(
max(1, num_training_steps - self.num_warmup_steps)
)
return max(
0.0,
0.5 * (1.0 + math.cos(math.pi * float(self.num_cycles) * 2.0 * progress)),
)
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(self.num_cycles) * 2.0 * progress)))
return LambdaLR(optimizer, lr_lambda, -1)

View File

@@ -241,9 +241,7 @@ class ACTTemporalEnsembler:
# Note: The last dimension is unsqueeze to make sure we can broadcast properly for tensor
# operations later.
self.ensembled_actions_count = torch.ones(
(self.chunk_size, 1),
dtype=torch.long,
device=self.ensembled_actions.device,
(self.chunk_size, 1), dtype=torch.long, device=self.ensembled_actions.device
)
else:
# self.ensembled_actions will have shape (batch_size, chunk_size - 1, action_dim). Compute
@@ -255,10 +253,7 @@ class ACTTemporalEnsembler:
# The last action, which has no prior online average, needs to get concatenated onto the end.
self.ensembled_actions = torch.cat([self.ensembled_actions, actions[:, -1:]], dim=1)
self.ensembled_actions_count = torch.cat(
[
self.ensembled_actions_count,
torch.ones_like(self.ensembled_actions_count[-1:]),
]
[self.ensembled_actions_count, torch.ones_like(self.ensembled_actions_count[-1:])]
)
# "Consume" the first action.
action, self.ensembled_actions, self.ensembled_actions_count = (
@@ -338,11 +333,7 @@ class ACT(nn.Module):
# Backbone for image feature extraction.
if self.config.image_features:
backbone_model = getattr(torchvision.models, config.vision_backbone)(
replace_stride_with_dilation=[
False,
False,
config.replace_final_stride_with_dilation,
],
replace_stride_with_dilation=[False, False, config.replace_final_stride_with_dilation],
weights=config.pretrained_backbone_weights,
norm_layer=FrozenBatchNorm2d,
)
@@ -436,11 +427,7 @@ class ACT(nn.Module):
action_embed = self.vae_encoder_action_input_proj(batch["action"]) # (B, S, D)
if self.config.robot_state_feature:
vae_encoder_input = [
cls_embed,
robot_state_embed,
action_embed,
] # (B, S+2, D)
vae_encoder_input = [cls_embed, robot_state_embed, action_embed] # (B, S+2, D)
else:
vae_encoder_input = [cls_embed, action_embed]
vae_encoder_input = torch.cat(vae_encoder_input, axis=1)
@@ -553,10 +540,7 @@ class ACTEncoder(nn.Module):
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
def forward(
self,
x: Tensor,
pos_embed: Tensor | None = None,
key_padding_mask: Tensor | None = None,
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
) -> Tensor:
for layer in self.layers:
x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
@@ -619,10 +603,7 @@ class ACTDecoder(nn.Module):
) -> Tensor:
for layer in self.layers:
x = layer(
x,
encoder_out,
decoder_pos_embed=decoder_pos_embed,
encoder_pos_embed=encoder_pos_embed,
x, encoder_out, decoder_pos_embed=decoder_pos_embed, encoder_pos_embed=encoder_pos_embed
)
if self.norm is not None:
x = self.norm(x)

View File

@@ -33,7 +33,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from torch import Tensor, nn
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
@@ -209,10 +209,7 @@ class DiffusionModel(nn.Module):
# ========= inference ============
def conditional_sample(
self,
batch_size: int,
global_cond: Tensor | None = None,
generator: torch.Generator | None = None,
self, batch_size: int, global_cond: Tensor | None = None, generator: torch.Generator | None = None
) -> Tensor:
device = get_device_from_parameters(self)
dtype = get_dtype_from_parameters(self)
@@ -241,8 +238,8 @@ class DiffusionModel(nn.Module):
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch[OBS_ROBOT].shape[:2]
global_cond_feats = [batch[OBS_ROBOT]]
batch_size, n_obs_steps = batch[OBS_STATE].shape[:2]
global_cond_feats = [batch[OBS_STATE]]
# Extract image features.
if self.config.image_features:
if self.config.use_separate_rgb_encoder_per_camera:
@@ -257,10 +254,7 @@ class DiffusionModel(nn.Module):
# Separate batch and sequence dims back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features_list,
"(n b s) ... -> b s (n ...)",
b=batch_size,
s=n_obs_steps,
img_features_list, "(n b s) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
else:
# Combine batch, sequence, and "which camera" dims before passing to shared encoder.
@@ -270,15 +264,12 @@ class DiffusionModel(nn.Module):
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features,
"(b s n) ... -> b s (n ...)",
b=batch_size,
s=n_obs_steps,
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
global_cond_feats.append(img_features)
if self.config.env_state_feature:
global_cond_feats.append(batch[OBS_ENV])
global_cond_feats.append(batch[OBS_ENV_STATE])
# Concatenate features then flatten to (B, global_cond_dim).
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)
@@ -524,9 +515,7 @@ class DiffusionRgbEncoder(nn.Module):
def _replace_submodules(
root_module: nn.Module,
predicate: Callable[[nn.Module], bool],
func: Callable[[nn.Module], nn.Module],
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
) -> nn.Module:
"""
Args:
@@ -644,14 +633,10 @@ class DiffusionConditionalUnet1d(nn.Module):
self.mid_modules = nn.ModuleList(
[
DiffusionConditionalResidualBlock1d(
config.down_dims[-1],
config.down_dims[-1],
**common_res_block_kwargs,
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
),
DiffusionConditionalResidualBlock1d(
config.down_dims[-1],
config.down_dims[-1],
**common_res_block_kwargs,
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
),
]
)

View File

@@ -24,8 +24,8 @@ from lerobot.common.envs.configs import EnvConfig
from lerobot.common.envs.utils import env_to_policy_features
from lerobot.common.policies.act.configuration_act import ACTConfig
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.hilserl.classifier.configuration_classifier import ClassifierConfig
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
from lerobot.common.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
@@ -55,14 +55,10 @@ def get_policy_class(name: str) -> PreTrainedPolicy:
from lerobot.common.policies.pi0.modeling_pi0 import PI0Policy
return PI0Policy
elif name == "sac":
from lerobot.common.policies.sac.modeling_sac import SACPolicy
elif name == "pi0fast":
from lerobot.common.policies.pi0fast.modeling_pi0fast import PI0FASTPolicy
return SACPolicy
elif name == "hilserl_classifier":
from lerobot.common.policies.hilserl.classifier.modeling_classifier import Classifier
return Classifier
return PI0FASTPolicy
else:
raise NotImplementedError(f"Policy with name {name} is not implemented.")
@@ -78,8 +74,8 @@ def make_policy_config(policy_type: str, **kwargs) -> PreTrainedConfig:
return VQBeTConfig(**kwargs)
elif policy_type == "pi0":
return PI0Config(**kwargs)
elif policy_type == "hilserl_classifier":
return ClassifierConfig(**kwargs)
elif policy_type == "pi0fast":
return PI0FASTConfig(**kwargs)
else:
raise ValueError(f"Policy type '{policy_type}' is not available.")

View File

@@ -1,53 +0,0 @@
from dataclasses import dataclass
from typing import List
from lerobot.common.optim.optimizers import AdamWConfig, OptimizerConfig
from lerobot.common.optim.schedulers import LRSchedulerConfig
from lerobot.configs.policies import PreTrainedConfig
@PreTrainedConfig.register_subclass(name="hilserl_classifier")
@dataclass
class ClassifierConfig(PreTrainedConfig):
"""Configuration for the Classifier model."""
name: str = "hilserl_classifier"
num_classes: int = 2
hidden_dim: int = 256
dropout_rate: float = 0.1
model_name: str = "helper2424/resnet10"
device: str = "cpu"
model_type: str = "cnn" # "transformer" or "cnn"
num_cameras: int = 2
learning_rate: float = 1e-4
normalization_mode = None
# output_features: Dict[str, PolicyFeature] = field(
# default_factory=lambda: {"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(1,))}
# )
@property
def observation_delta_indices(self) -> List | None:
return None
@property
def action_delta_indices(self) -> List | None:
return None
@property
def reward_delta_indices(self) -> List | None:
return None
def get_optimizer_preset(self) -> OptimizerConfig:
return AdamWConfig(
lr=self.learning_rate,
weight_decay=0.01,
grad_clip_norm=1.0,
)
def get_scheduler_preset(self) -> LRSchedulerConfig | None:
return None
def validate_features(self) -> None:
"""Validate feature configurations."""
# Classifier doesn't need specific feature validation
pass

View File

@@ -1,237 +0,0 @@
import logging
from typing import Dict, Optional, Tuple
import torch
from torch import Tensor, nn
from lerobot.common.constants import OBS_IMAGE
from lerobot.common.policies.hilserl.classifier.configuration_classifier import (
ClassifierConfig,
)
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
class ClassifierOutput:
"""Wrapper for classifier outputs with additional metadata."""
def __init__(
self,
logits: Tensor,
probabilities: Optional[Tensor] = None,
hidden_states: Optional[Tensor] = None,
):
self.logits = logits
self.probabilities = probabilities
self.hidden_states = hidden_states
def __repr__(self):
return (
f"ClassifierOutput(logits={self.logits}, "
f"probabilities={self.probabilities}, "
f"hidden_states={self.hidden_states})"
)
class Classifier(PreTrainedPolicy):
"""Image classifier built on top of a pre-trained encoder."""
name = "hilserl_classifier"
config_class = ClassifierConfig
def __init__(
self,
config: ClassifierConfig,
dataset_stats: Dict[str, Dict[str, Tensor]] | None = None,
):
from transformers import AutoModel
super().__init__(config)
self.config = config
# Initialize normalization (standardized with the policy framework)
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
# Set up encoder
encoder = AutoModel.from_pretrained(self.config.model_name, trust_remote_code=True)
# Extract vision model if we're given a multimodal model
if hasattr(encoder, "vision_model"):
logging.info("Multimodal model detected - using vision encoder only")
self.encoder = encoder.vision_model
self.vision_config = encoder.config.vision_config
else:
self.encoder = encoder
self.vision_config = getattr(encoder, "config", None)
# Model type from config
self.is_cnn = self.config.model_type == "cnn"
# For CNNs, initialize backbone
if self.is_cnn:
self._setup_cnn_backbone()
self._freeze_encoder()
self._build_classifier_head()
def _setup_cnn_backbone(self):
"""Set up CNN encoder"""
if hasattr(self.encoder, "fc"):
self.feature_dim = self.encoder.fc.in_features
self.encoder = nn.Sequential(*list(self.encoder.children())[:-1])
elif hasattr(self.encoder.config, "hidden_sizes"):
self.feature_dim = self.encoder.config.hidden_sizes[-1] # Last channel dimension
else:
raise ValueError("Unsupported CNN architecture")
def _freeze_encoder(self) -> None:
"""Freeze the encoder parameters."""
for param in self.encoder.parameters():
param.requires_grad = False
def _build_classifier_head(self) -> None:
"""Initialize the classifier head architecture."""
# Get input dimension based on model type
if self.is_cnn:
input_dim = self.feature_dim
else: # Transformer models
if hasattr(self.encoder.config, "hidden_size"):
input_dim = self.encoder.config.hidden_size
else:
raise ValueError("Unsupported transformer architecture since hidden_size is not found")
self.classifier_head = nn.Sequential(
nn.Linear(input_dim * self.config.num_cameras, self.config.hidden_dim),
nn.Dropout(self.config.dropout_rate),
nn.LayerNorm(self.config.hidden_dim),
nn.ReLU(),
nn.Linear(
self.config.hidden_dim,
1 if self.config.num_classes == 2 else self.config.num_classes,
),
)
def _get_encoder_output(self, x: torch.Tensor) -> torch.Tensor:
"""Extract the appropriate output from the encoder."""
with torch.no_grad():
if self.is_cnn:
# The HF ResNet applies pooling internally
outputs = self.encoder(x)
# Get pooled output directly
features = outputs.pooler_output
if features.dim() > 2:
features = features.squeeze(-1).squeeze(-1)
return features
else: # Transformer models
outputs = self.encoder(x)
if hasattr(outputs, "pooler_output") and outputs.pooler_output is not None:
return outputs.pooler_output
return outputs.last_hidden_state[:, 0, :]
def extract_images_and_labels(self, batch: Dict[str, Tensor]) -> Tuple[list, Tensor]:
"""Extract image tensors and label tensors from batch."""
# Find image keys in input features
image_keys = [key for key in self.config.input_features if key.startswith(OBS_IMAGE)]
# Extract the images and labels
images = [batch[key] for key in image_keys]
labels = batch["next.reward"]
return images, labels
def predict(self, xs: list) -> ClassifierOutput:
"""Forward pass of the classifier for inference."""
encoder_outputs = torch.hstack([self._get_encoder_output(x) for x in xs])
logits = self.classifier_head(encoder_outputs)
if self.config.num_classes == 2:
logits = logits.squeeze(-1)
probabilities = torch.sigmoid(logits)
else:
probabilities = torch.softmax(logits, dim=-1)
return ClassifierOutput(logits=logits, probabilities=probabilities, hidden_states=encoder_outputs)
def forward(self, batch: Dict[str, Tensor]) -> Tuple[Tensor, Dict[str, Tensor]]:
"""Standard forward pass for training compatible with train.py."""
# Normalize inputs if needed
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
# Extract images and labels
images, labels = self.extract_images_and_labels(batch)
# Get predictions
outputs = self.predict(images)
# Calculate loss
if self.config.num_classes == 2:
# Binary classification
loss = nn.functional.binary_cross_entropy_with_logits(outputs.logits, labels)
predictions = (torch.sigmoid(outputs.logits) > 0.5).float()
else:
# Multi-class classification
loss = nn.functional.cross_entropy(outputs.logits, labels.long())
predictions = torch.argmax(outputs.logits, dim=1)
# Calculate accuracy for logging
correct = (predictions == labels).sum().item()
total = labels.size(0)
accuracy = 100 * correct / total
# Return loss and metrics for logging
output_dict = {
"accuracy": accuracy,
"correct": correct,
"total": total,
}
return loss, output_dict
def predict_reward(self, batch, threshold=0.6):
"""Legacy method for compatibility."""
images, _ = self.extract_images_and_labels(batch)
if self.config.num_classes == 2:
probs = self.predict(images).probabilities
logging.debug(f"Predicted reward images: {probs}")
return (probs > threshold).float()
else:
return torch.argmax(self.predict(images).probabilities, dim=1)
# Methods required by PreTrainedPolicy abstract class
def get_optim_params(self) -> dict:
"""Return optimizer parameters for the policy."""
return {
"params": self.parameters(),
"lr": getattr(self.config, "learning_rate", 1e-4),
"weight_decay": getattr(self.config, "weight_decay", 0.01),
}
def reset(self):
"""Reset any stateful components (required by PreTrainedPolicy)."""
# Classifier doesn't have stateful components that need resetting
pass
def select_action(self, batch: Dict[str, Tensor]) -> Tensor:
"""Return action (class prediction) based on input observation."""
images, _ = self.extract_images_and_labels(batch)
with torch.no_grad():
outputs = self.predict(images)
if self.config.num_classes == 2:
# For binary classification return 0 or 1
return (outputs.probabilities > 0.5).float()
else:
# For multi-class return the predicted class
return torch.argmax(outputs.probabilities, dim=1)

View File

@@ -79,46 +79,28 @@ def create_stats_buffers(
)
# TODO(aliberts, rcadene): harmonize this to only use one framework (np or torch)
if stats and key in stats:
if norm_mode is NormalizationMode.MEAN_STD:
if "mean" not in stats[key] or "std" not in stats[key]:
raise ValueError(
f"Missing 'mean' or 'std' in stats for key {key} with MEAN_STD normalization"
)
if isinstance(stats[key]["mean"], np.ndarray):
if stats:
if isinstance(stats[key]["mean"], np.ndarray):
if norm_mode is NormalizationMode.MEAN_STD:
buffer["mean"].data = torch.from_numpy(stats[key]["mean"]).to(dtype=torch.float32)
buffer["std"].data = torch.from_numpy(stats[key]["std"]).to(dtype=torch.float32)
elif isinstance(stats[key]["mean"], torch.Tensor):
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32)
buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32)
else:
type_ = type(stats[key]["mean"])
raise ValueError(
f"np.ndarray or torch.Tensor expected for 'mean', but type is '{type_}' instead."
)
elif norm_mode is NormalizationMode.MIN_MAX:
if "min" not in stats[key] or "max" not in stats[key]:
raise ValueError(
f"Missing 'min' or 'max' in stats for key {key} with MIN_MAX normalization"
)
if isinstance(stats[key]["min"], np.ndarray):
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = torch.from_numpy(stats[key]["min"]).to(dtype=torch.float32)
buffer["max"].data = torch.from_numpy(stats[key]["max"]).to(dtype=torch.float32)
elif isinstance(stats[key]["min"], torch.Tensor):
elif isinstance(stats[key]["mean"], torch.Tensor):
# Note: The clone is needed to make sure that the logic in save_pretrained doesn't see duplicated
# tensors anywhere (for example, when we use the same stats for normalization and
# unnormalization). See the logic here
# https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L97.
if norm_mode is NormalizationMode.MEAN_STD:
buffer["mean"].data = stats[key]["mean"].clone().to(dtype=torch.float32)
buffer["std"].data = stats[key]["std"].clone().to(dtype=torch.float32)
elif norm_mode is NormalizationMode.MIN_MAX:
buffer["min"].data = stats[key]["min"].clone().to(dtype=torch.float32)
buffer["max"].data = stats[key]["max"].clone().to(dtype=torch.float32)
else:
type_ = type(stats[key]["min"])
raise ValueError(
f"np.ndarray or torch.Tensor expected for 'min', but type is '{type_}' instead."
)
else:
type_ = type(stats[key]["mean"])
raise ValueError(f"np.ndarray or torch.Tensor expected, but type is '{type_}' instead.")
stats_buffers[key] = buffer
return stats_buffers
@@ -167,13 +149,12 @@ class Normalize(nn.Module):
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
# @torch.no_grad
@torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, ft in self.features.items():
if key not in batch:
# FIXME(aliberts, rcadene): This might lead to silent fail!
# NOTE: (azouitine) This continues help us for instantiation SACPolicy
continue
norm_mode = self.norm_map.get(ft.type, NormalizationMode.IDENTITY)
@@ -242,7 +223,7 @@ class Unnormalize(nn.Module):
setattr(self, "buffer_" + key.replace(".", "_"), buffer)
# TODO(rcadene): should we remove torch.no_grad?
# @torch.no_grad
@torch.no_grad
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
batch = dict(batch) # shallow copy avoids mutating the input batch
for key, ft in self.features.items():

View File

@@ -61,11 +61,7 @@ from lerobot.common.policies.pi0.conversion_scripts.conversion_utils import (
)
from lerobot.common.policies.pi0.modeling_pi0 import PI0Policy
PRECISIONS = {
"bfloat16": torch.bfloat16,
"float32": torch.float32,
"float16": torch.float16,
}
PRECISIONS = {"bfloat16": torch.bfloat16, "float32": torch.float32, "float16": torch.float16}
def slice_paligemma_state_dict(state_dict, config):

View File

@@ -48,32 +48,18 @@ def flex_attention_forward(
key_states = key_states[:, :, :, None, :]
key_states = key_states.expand(
batch_size,
key_states.shape[1],
num_key_value_heads,
num_key_value_groups,
head_dim,
batch_size, key_states.shape[1], num_key_value_heads, num_key_value_groups, head_dim
)
key_states = key_states.reshape(
batch_size,
key_states.shape[1],
num_key_value_heads * num_key_value_groups,
head_dim,
batch_size, key_states.shape[1], num_key_value_heads * num_key_value_groups, head_dim
)
value_states = value_states[:, :, :, None, :]
value_states = value_states.expand(
batch_size,
value_states.shape[1],
num_key_value_heads,
num_key_value_groups,
head_dim,
batch_size, value_states.shape[1], num_key_value_heads, num_key_value_groups, head_dim
)
value_states = value_states.reshape(
batch_size,
value_states.shape[1],
num_key_value_heads * num_key_value_groups,
head_dim,
batch_size, value_states.shape[1], num_key_value_heads * num_key_value_groups, head_dim
)
query_states = query_states.transpose(1, 2)

View File

@@ -24,7 +24,7 @@ Designed by Physical Intelligence. Ported from Jax by Hugging Face.
Install pi0 extra dependencies:
```bash
pip install --no-binary=av -e ".[pi0]"
pip install -e ".[pi0]"
```
Example of finetuning the pi0 pretrained model (`pi0_base` in `openpi`):
@@ -57,7 +57,7 @@ import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
from transformers import AutoTokenizer
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.constants import ACTION, OBS_STATE
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0.configuration_pi0 import PI0Config
from lerobot.common.policies.pi0.paligemma_with_expert import (
@@ -69,11 +69,7 @@ from lerobot.common.utils.utils import get_safe_dtype
def create_sinusoidal_pos_embedding(
time: torch.tensor,
dimension: int,
min_period: float,
max_period: float,
device="cpu",
time: torch.tensor, dimension: int, min_period: float, max_period: float, device="cpu"
) -> Tensor:
"""Computes sine-cosine positional embedding vectors for scalar positions."""
if dimension % 2 != 0:
@@ -275,7 +271,7 @@ class PI0Policy(PreTrainedPolicy):
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch = self.normalize_inputs(batch)
@@ -307,7 +303,7 @@ class PI0Policy(PreTrainedPolicy):
def forward(self, batch: dict[str, Tensor], noise=None, time=None) -> tuple[Tensor, dict[str, Tensor]]:
"""Do a full training forward pass to compute the loss"""
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[OBS_STATE] = self._pi_aloha_decode_state(batch[OBS_STATE])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
@@ -384,7 +380,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_language(self, batch) -> tuple[Tensor, Tensor]:
"""Tokenize the text input"""
device = batch[OBS_ROBOT].device
device = batch[OBS_STATE].device
tasks = batch["task"]
# PaliGemma prompt has to end with a new line
@@ -431,7 +427,7 @@ class PI0Policy(PreTrainedPolicy):
def prepare_state(self, batch):
"""Pad state"""
state = pad_vector(batch[OBS_ROBOT], self.config.max_state_dim)
state = pad_vector(batch[OBS_STATE], self.config.max_state_dim)
return state
def prepare_action(self, batch):
@@ -581,11 +577,7 @@ class PI0FlowMatching(nn.Module):
# Embed timestep using sine-cosine positional encoding with sensitivity in the range [0, 1]
time_emb = create_sinusoidal_pos_embedding(
timestep,
self.config.proj_width,
min_period=4e-3,
max_period=4.0,
device=device,
timestep, self.config.proj_width, min_period=4e-3, max_period=4.0, device=device
)
time_emb = time_emb.type(dtype=dtype)
@@ -617,15 +609,7 @@ class PI0FlowMatching(nn.Module):
return embs, pad_masks, att_masks
def forward(
self,
images,
img_masks,
lang_tokens,
lang_masks,
state,
actions,
noise=None,
time=None,
self, images, img_masks, lang_tokens, lang_masks, state, actions, noise=None, time=None
) -> Tensor:
"""Do a full training forward pass and compute the loss (batch_size x num_steps x num_motors)"""
if noise is None:
@@ -671,11 +655,7 @@ class PI0FlowMatching(nn.Module):
device = state.device
if noise is None:
actions_shape = (
bsize,
self.config.n_action_steps,
self.config.max_action_dim,
)
actions_shape = (bsize, self.config.n_action_steps, self.config.max_action_dim)
noise = self.sample_noise(actions_shape, device)
prefix_embs, prefix_pad_masks, prefix_att_masks = self.embed_prefix(

View File

@@ -293,18 +293,12 @@ class PaliGemmaWithExpertModel(PreTrainedModel):
# in `transformers`. (molbap)
key_states = torch.cat([past_key_values[layer_idx]["key_states"], key_states], dim=1)
value_states = torch.cat(
[past_key_values[layer_idx]["value_states"], value_states],
dim=1,
[past_key_values[layer_idx]["value_states"], value_states], dim=1
)
attention_interface = self.get_attention_interface()
att_output = attention_interface(
attention_mask,
batch_size,
head_dim,
query_states,
key_states,
value_states,
attention_mask, batch_size, head_dim, query_states, key_states, value_states
)
att_output = att_output.to(dtype=torch.bfloat16)
@@ -364,24 +358,12 @@ class PaliGemmaWithExpertModel(PreTrainedModel):
return attention_interface
def flash_attention_forward(
self,
attention_mask,
batch_size,
head_dim,
query_states,
key_states,
value_states,
self, attention_mask, batch_size, head_dim, query_states, key_states, value_states
):
raise NotImplementedError("FA2 is not implemented (yet)")
def eager_attention_forward(
self,
attention_mask,
batch_size,
head_dim,
query_states,
key_states,
value_states,
self, attention_mask, batch_size, head_dim, query_states, key_states, value_states
):
num_att_heads = self.config.paligemma_config.text_config.num_attention_heads
num_key_value_heads = self.config.paligemma_config.text_config.num_key_value_heads
@@ -393,31 +375,17 @@ class PaliGemmaWithExpertModel(PreTrainedModel):
sequence_length = key_states.shape[1]
key_states = key_states[:, :, :, None, :].expand(
batch_size,
sequence_length,
num_key_value_heads,
num_key_value_groups,
head_dim,
batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
)
key_states = key_states.reshape(
batch_size,
sequence_length,
num_key_value_heads * num_key_value_groups,
head_dim,
batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
)
value_states = value_states[:, :, :, None, :].expand(
batch_size,
sequence_length,
num_key_value_heads,
num_key_value_groups,
head_dim,
batch_size, sequence_length, num_key_value_heads, num_key_value_groups, head_dim
)
value_states = value_states.reshape(
batch_size,
sequence_length,
num_key_value_heads * num_key_value_groups,
head_dim,
batch_size, sequence_length, num_key_value_heads * num_key_value_groups, head_dim
)
# Attention here is upcasted to float32 to match the original eager implementation.

View File

@@ -0,0 +1,136 @@
from dataclasses import dataclass, field
from lerobot.common.optim.optimizers import AdamWConfig
from lerobot.common.optim.schedulers import (
CosineDecayWithWarmupSchedulerConfig,
)
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
@PreTrainedConfig.register_subclass("pi0fast")
@dataclass
class PI0FASTConfig(PreTrainedConfig):
# Input / output structure.
n_obs_steps: int = 1
chunk_size: int = 10
n_action_steps: int = 5
normalization_mapping: dict[str, NormalizationMode] = field(
default_factory=lambda: {
"VISUAL": NormalizationMode.IDENTITY,
"STATE": NormalizationMode.MEAN_STD,
"ACTION": NormalizationMode.MEAN_STD,
}
)
# Shorter state and action vectors will be padded
max_state_dim: int = 32 # 32
max_action_dim: int = 32 # 32
# Image preprocessing
resize_imgs_with_padding: tuple[int, int] = (224, 224)
interpolate_like_pi: bool = False
# Add empty images. Used by pi0_aloha_sim which adds the empty
# left and right wrist cameras in addition to the top camera.
empty_cameras: int = 0
# Converts the joint and gripper values from the standard Aloha space to
# the space used by the pi internal runtime which was used to train the base model.
adapt_to_pi_aloha: bool = False
# Converts joint dimensions to deltas with respect to the current state before passing to the model.
# Gripper dimensions will remain in absolute values.
use_delta_joint_actions_aloha: bool = False
# Tokenizer
tokenizer_max_length: int = 48
# Projector
proj_width: int = 1024
# Decoding
max_decoding_steps: int = 256
fast_skip_tokens: int = 128 # Skip last 128 tokens in PaliGemma vocab since they are special tokens
max_input_seq_len: int = 256 # 512
# Utils
use_cache: bool = True
# Frozen parameters
freeze_vision_encoder: bool = True
freeze_lm_head: bool = True
# Training presets
optimizer_lr: float = 1e-4
optimizer_betas: tuple[float, float] = (0.9, 0.95)
optimizer_eps: float = 1e-8
optimizer_weight_decay: float = 1e-5
scheduler_warmup_steps: int = 1_000
scheduler_decay_steps: int = 30_000
scheduler_decay_lr: float = 2.5e-6
checkpoint_path: str = None
padding_side: str = "right"
precision: str = "bfloat16"
grad_clip_norm: float = 1
# Allows padding/truncation of generated action tokens during detokenization to ensure decoding.
# In the original version, tensors of 0s were generated if shapes didn't match for stable decoding.
relaxed_action_decoding: bool = True
def __post_init__(self):
super().__post_init__()
"""Input validation (not exhaustive)."""
if self.n_action_steps > self.chunk_size:
raise ValueError(
f"The chunk size is the upper bound for the number of action steps per model invocation. Got "
f"{self.n_action_steps} for `n_action_steps` and {self.chunk_size} for `chunk_size`."
)
if self.n_obs_steps != 1:
raise ValueError(
f"Multiple observation steps not handled yet. Got `nobs_steps={self.n_obs_steps}`"
)
def validate_features(self) -> None:
for i in range(self.empty_cameras):
key = f"observation.images.empty_camera_{i}"
empty_camera = PolicyFeature(
type=FeatureType.VISUAL,
shape=(3, 480, 640),
)
self.input_features[key] = empty_camera
def get_optimizer_preset(self) -> AdamWConfig:
return AdamWConfig(
lr=self.optimizer_lr,
betas=self.optimizer_betas,
eps=self.optimizer_eps,
weight_decay=self.optimizer_weight_decay,
grad_clip_norm=self.grad_clip_norm,
)
def get_scheduler_preset(self):
return CosineDecayWithWarmupSchedulerConfig(
peak_lr=self.optimizer_lr,
decay_lr=self.scheduler_decay_lr,
num_warmup_steps=self.scheduler_warmup_steps,
num_decay_steps=self.scheduler_decay_steps,
)
@property
def observation_delta_indices(self) -> None:
return None
@property
def action_delta_indices(self) -> list:
return list(range(self.chunk_size))
@property
def reward_delta_indices(self) -> None:
return None

View File

@@ -0,0 +1,973 @@
#!/usr/bin/env python
# Copyright 2025 Physical Intelligence and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
π0+FAST: Efficient Action Tokenization for Vision-Language-Action Models
[Paper](https://arxiv.org/abs/2501.09747)
[Jax code](https://github.com/Physical-Intelligence/openpi)
Designed by Physical Intelligence. Ported from Jax by Hugging Face.
Example of finetuning the pi0+FAST pretrained model (`pi0_fast_base` in `openpi`):
```bash
python lerobot/scripts/train.py \
--policy.path=lerobot/pi0fast_base \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of training the pi0+FAST neural network with from scratch:
```bash
python lerobot/scripts/train.py \
--policy.type=pi0fast \
--dataset.repo_id=danaaubakirova/koch_test
```
Example of using the pi0 pretrained model outside LeRobot training framework:
```python
policy = PI0FASTPolicy.from_pretrained("lerobot/pi0fast_base")
```
"""
from collections import deque
from functools import partial
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
from PIL import Image
from scipy.fft import idct
from torch import Tensor, nn
from transformers import AutoProcessor, AutoTokenizer, PaliGemmaForConditionalGeneration
from transformers.cache_utils import HybridCache, StaticCache
from transformers.models.auto import CONFIG_MAPPING
from lerobot.common.constants import ACTION, OBS_ROBOT
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pi0fast.configuration_pi0fast import PI0FASTConfig
from lerobot.common.policies.pretrained import PreTrainedPolicy
PRECISION = {
"float16": torch.float16,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
def normalize(x, min_val, max_val):
return (x - min_val) / (max_val - min_val)
def unnormalize(x, min_val, max_val):
return x * (max_val - min_val) + min_val
def safe_arcsin(value):
# This ensures that the input stays within
# [1,1] to avoid invalid values for arcsin
return torch.arcsin(torch.clamp(value, -1.0, 1.0))
def aloha_gripper_to_angular(value):
# Aloha transforms the gripper positions into a linear space. The following code
# reverses this transformation to be consistent with pi0 which is pretrained in
# angular space.
#
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_POSITION_OPEN, PUPPET_GRIPPER_POSITION_CLOSED
value = unnormalize(value, min_val=0.01844, max_val=0.05800)
# This is the inverse of the angular to linear transformation inside the Interbotix code.
def linear_to_radian(linear_position, arm_length, horn_radius):
value = (horn_radius**2 + linear_position**2 - arm_length**2) / (2 * horn_radius * linear_position)
return safe_arcsin(value)
# The constants are taken from the Interbotix code.
value = linear_to_radian(value, arm_length=0.036, horn_radius=0.022)
# Normalize to [0, 1].
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
return normalize(value, min_val=0.4, max_val=1.5)
def aloha_gripper_from_angular(value):
# Convert from the gripper position used by pi0 to the gripper position that is used by Aloha.
# Note that the units are still angular but the range is different.
# The values 0.4 and 1.5 were measured on an actual Trossen robot.
value = unnormalize(value, min_val=0.4, max_val=1.5)
# These values are coming from the Aloha code:
# PUPPET_GRIPPER_JOINT_OPEN, PUPPET_GRIPPER_JOINT_CLOSE
return normalize(value, min_val=-0.6213, max_val=1.4910)
def aloha_gripper_from_angular_inv(value):
# Directly inverts the gripper_from_angular function.
value = unnormalize(value, min_val=-0.6213, max_val=1.4910)
return normalize(value, min_val=0.4, max_val=1.5)
class PI0FASTPolicy(PreTrainedPolicy):
"""Wrapper class around PI0FAST tokenizer and model to train and run inference within LeRobot."""
config_class = PI0FASTConfig
name = "pi0fast"
def __init__(
self,
config: PI0FASTConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.language_tokenizer = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224")
self.model = PI0FAST(config)
self.reset()
def reset(self):
"""This should be called whenever the environment is reset."""
self._action_queue = deque([], maxlen=self.config.n_action_steps)
def get_optim_params(self) -> dict:
return self.parameters()
def _pi_aloha_decode_state(self, state):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
state[:, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
state[:, motor_idx] = aloha_gripper_to_angular(state[:, motor_idx])
return state
def _pi_aloha_encode_actions(self, actions):
# Flip the joints.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular(actions[:, :, motor_idx])
return actions
def _pi_aloha_encode_actions_inv(self, actions):
# Flip the joints again.
for motor_idx in [1, 2, 8, 9]:
actions[:, :, motor_idx] *= -1
# Reverse the gripper transformation that is being applied by the Aloha runtime.
for motor_idx in [6, 13]:
actions[:, :, motor_idx] = aloha_gripper_from_angular_inv(actions[:, :, motor_idx])
return actions
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
self.eval()
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch = self.normalize_inputs(batch)
# Action queue logic for n_action_steps > 1. When the action_queue is depleted, populate it by
# querying the policy.
if len(self._action_queue) == 0:
actions = self.model.generate_actions(batch)
actions = actions[:, : self.config.n_action_steps]
original_action_dim = self.config.action_feature.shape[
0
] # self.config.max_action_dim # self.config.action_feature.shape[0]
actions = actions[:, :, :original_action_dim]
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.adapt_to_pi_aloha:
actions = self._pi_aloha_encode_actions(actions)
# `self.model.forward` returns a (batch_size, n_action_steps, action_dim) tensor, but the queue
# effectively has shape (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(actions.transpose(0, 1))
return self._action_queue.popleft()
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor]:
if self.config.adapt_to_pi_aloha:
batch[OBS_ROBOT] = self._pi_aloha_decode_state(batch[OBS_ROBOT])
batch[ACTION] = self._pi_aloha_encode_actions_inv(batch[ACTION])
batch = self.normalize_inputs(batch)
batch = self.normalize_targets(batch)
loss_dict = self.model.forward(batch)
return loss_dict["loss"], loss_dict
def block_causal_update_causal_mask(
attention_mask,
token_type_ids=None,
past_key_values=None,
cache_position=None,
input_tensor=None,
attn_implementation: str = "eager",
dtype: torch.dtype = "float32",
):
"""
Update the causal mask during training and generation. It can be customized to different attention masks.
"""
if attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(dtype).min
if input_tensor is None:
input_tensor = attention_mask
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache or isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
# Handle precomputed attention masks
if attention_mask is not None and attention_mask.dim() == 4:
return attention_mask
# Causal mask initialization
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
# Standard causal masking (triu ensures tokens can only attend to past)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
# Apply block causal mask
if token_type_ids is not None:
token_type_ids = token_type_ids.to(causal_mask.device).bool()
cumsum = torch.cumsum(token_type_ids, dim=1)
block_causal_mask = cumsum[:, None, :] <= cumsum[:, :, None]
# Combine causal_mask with block-wise attention mask
causal_mask = torch.where(block_causal_mask, 0.0, causal_mask)
causal_mask = causal_mask[:, None, :, :]
else:
# Apply past cache position constraint
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
-1, 1
)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
else:
# Apply past cache position constraint
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
-1, 1
)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # Copy to contiguous memory for in-place edits
mask_length = attention_mask.shape[-1]
# Apply padding mask
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
def prepare_inputs_for_generation(
# self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
attention_mask=None,
token_type_ids=None,
use_cache=True,
num_logits_to_keep=None,
labels=None,
self=None,
**kwargs,
):
# create block causal attention
if cache_position[0] > 0 and input_ids.shape[1] > 0:
input_tensor = input_ids[:, -1:]
new_positions = (
torch.ones(
(position_ids.shape[0], input_ids.shape[1]),
dtype=position_ids.dtype,
device=position_ids.device,
).cumsum(-1)
+ position_ids[:, -1:]
)
position_ids = torch.cat([position_ids, new_positions], dim=-1)
else:
input_tensor = inputs_embeds
attention_mask = block_causal_update_causal_mask(
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
input_tensor=input_tensor,
token_type_ids=token_type_ids,
dtype=self.dtype,
attn_implementation=self.config.text_config._attn_implementation,
)
# Overwritten -- custom `position_ids` and `pixel_values` handling
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
num_logits_to_keep=num_logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# Position_ids in Paligemma are 1-indexed
if model_inputs.get("position_ids") is not None:
model_inputs["position_ids"] += 1
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
is_training = token_type_ids is not None and labels is not None
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
causal_mask = self._update_causal_mask(
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
)
model_inputs["attention_mask"] = causal_mask
return model_inputs
class PI0FAST(nn.Module):
def __init__(self, config: PI0FASTConfig):
super().__init__()
self.config = config
# TODO: move tokenizers in Policy
fast_tokenizer_path = "physical-intelligence/fast"
pi0_paligemma_path = "google/paligemma-3b-pt-224"
self.paligemma_tokenizer = AutoTokenizer.from_pretrained(pi0_paligemma_path)
self.processor = AutoProcessor.from_pretrained(pi0_paligemma_path)
self.fast_tokenizer = AutoProcessor.from_pretrained(fast_tokenizer_path, trust_remote_code=True)
self.fast_skip_tokens = self.config.fast_skip_tokens
self.max_input_seq_len = self.config.max_input_seq_len
self.action_horizon = self.config.chunk_size
self.action_dim = self.config.action_feature.shape[
0
] # self.config.max_action_dim # self.config.action_feature.shape[0]
precision = config.precision
torch_precision = PRECISION.get(precision, torch.float32)
self.pad_token_id = (
self.paligemma_tokenizer.pad_token_id
if hasattr(self.paligemma_tokenizer, "pad_token_id")
else self.paligemma_tokenizer.eos_token_id
)
paligemma_config = CONFIG_MAPPING["paligemma"](
transformers_version="4.48.1",
_vocab_size=257152,
bos_token_id=2,
eos_token_id=1,
hidden_size=2048,
image_token_index=257152,
model_type="paligemma",
pad_token_id=0,
projection_dim=2048,
text_config={
"hidden_activation": "gelu_pytorch_tanh",
"hidden_size": 2048,
"intermediate_size": 16384,
"model_type": "gemma",
"num_attention_heads": 8,
"num_hidden_layers": 18,
"num_image_tokens": 256,
"num_key_value_heads": 1,
"torch_dtype": precision,
"vocab_size": 257152,
"_attn_implementation": "eager",
},
vision_config={
"hidden_size": 1152,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"num_image_tokens": 256,
"patch_size": 14,
"projection_dim": 2048,
"projector_hidden_act": "gelu_pytorch_tanh",
"torch_dtype": precision,
"vision_use_head": False,
},
)
self.pi0_paligemma = PaliGemmaForConditionalGeneration(config=paligemma_config)
self.pi0_paligemma.prepare_inputs_for_generation = partial(
prepare_inputs_for_generation, self=self.pi0_paligemma
)
# change important stuff in bf16
params_to_change_dtype = [
"language_model",
"vision_tower",
"multi_modal",
]
for name, param in self.pi0_paligemma.named_parameters():
if any(selector in name for selector in params_to_change_dtype):
param.data = param.data.to(dtype=torch_precision)
self.set_requires_grad()
self.image_keys = self.config.image_features.keys()
self.ignore_index = self.pi0_paligemma.config.ignore_index
self.padding_side = self.config.padding_side
def set_requires_grad(self):
if self.config.freeze_vision_encoder:
self.pi0_paligemma.vision_tower.eval()
for params in self.pi0_paligemma.vision_tower.parameters():
params.requires_grad = False
# To avoid unused params issue with distributed training
if self.config.freeze_lm_head:
for name, params in self.pi0_paligemma.named_parameters():
if "embed_tokens" in name: # lm heads and embedding layer are tied
params.requires_grad = False
def embed_tokens(self, tokens: torch.Tensor):
return self.pi0_paligemma.language_model.model.embed_tokens(tokens)
def prepare_inputs_for_generation(self, *args, **kwargs):
return self.pi0_paligemma.prepare_inputs_for_generation(*args, **kwargs)
def prepare_images(self, batch):
"""Preprocess LeRobot batch into Pi0 inputs"""
images = []
img_masks = []
present_img_keys = [key for key in self.image_keys if key in batch]
if len(present_img_keys) == 0:
raise ValueError(
f"All image features are missing from the batch. At least one expected. (batch: {batch.keys()}) (image_features:{self.config.image_features})"
)
# Preprocess image features present in the batch
num_empty_cameras = 0
for key in self.image_keys:
if key in present_img_keys:
img = batch[key]
if self.config.resize_imgs_with_padding is not None:
img = resize_with_pad(
img,
*self.config.resize_imgs_with_padding,
pad_value=0,
interpolate_like_pi=self.config.interpolate_like_pi,
)
# Normalize from range [0,1] to [-1,1] as expacted by siglip
img = img * 2.0 - 1.0
bsize = img.shape[0]
device = img.device
mask = torch.ones(bsize, dtype=torch.bool, device=device)
else:
if num_empty_cameras >= self.config.empty_cameras:
continue
img = torch.ones_like(img) * -1
bsize = img.shape[0]
device = img.device
mask = torch.ones(bsize, dtype=torch.bool, device=device)
num_empty_cameras += 1
images.append(img)
img_masks.append(mask)
return images, img_masks
def normalize_actions(self, actions: torch.Tensor) -> torch.Tensor:
mins = actions.amin(dim=(1, 2), keepdim=True) # [0]
maxs = actions.amax(dim=(1, 2), keepdim=True) # [0]
return 2 * (actions - mins) / (maxs - mins + 1e-8) - 1
def _act_tokens_to_paligemma_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
out = self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens - tokens
return out
def fast_tokenizer_wrapper(self, actions_norm):
"""
A wrapper for self.fast_tokenizer that ensures batch processing,
conversion to PyTorch tensors, and returns a dictionary without padding.
"""
batch_tokens = self.fast_tokenizer(actions_norm)
fast_out = self.processor.tokenizer.pad({"input_ids": batch_tokens}, return_tensors="pt")
return fast_out
def create_token_type_ids(self, padded_mask: torch.Tensor, prefix_len: int) -> torch.Tensor:
token_type_ids = torch.zeros_like(padded_mask, dtype=torch.bool)
# Compute cumulative sum mask
cumsum_mask = (padded_mask != 0).cumsum(dim=1)
# Suffix block (everything after prefix_len)
suffix_mask = cumsum_mask > prefix_len
token_type_ids = suffix_mask
return token_type_ids
def create_input_tokens(self, state, lang_text, actions=None):
bsize = state.shape[0]
device = state.device
bins = torch.linspace(-1, 1, 256 + 1, device=device)[:-1]
discretized = torch.bucketize(state, bins) - 1
discretized = discretized[:, :32]
prefix_texts = []
state_text = []
for txt, disc in zip(lang_text, discretized, strict=False):
cleaned = txt.lower().strip().replace("_", " ")
state_str = " ".join(str(val.item()) for val in disc)
prefix_texts.append(f"Task: {cleaned}, State: {state_str};\n")
state_text.append(f"State: {state_str};\n")
prefix_out = self.paligemma_tokenizer(
prefix_texts, add_special_tokens=True, return_tensors="pt", padding="longest", truncation=False
)
prefix_ids = prefix_out["input_ids"].to(device)
prefix_mask = prefix_out["attention_mask"].to(device)
prefix_lens = prefix_mask.sum(dim=1)[:, None].cpu()
if actions is not None:
actions_norm = self.normalize_actions(actions)
actions_pad = F.pad(
actions_norm, (0, max(0, self.config.max_action_dim - actions_norm.shape[2])), value=0
)[:, :, : self.config.max_action_dim]
fast_out = self.fast_tokenizer_wrapper(
actions_pad.cpu(),
)
act_ids = fast_out["input_ids"]
act_mask = fast_out["attention_mask"].to(device)
act_ids = self._act_tokens_to_paligemma_tokens(act_ids).to(device)
# Replace action with 0 to pad tokens
act_ids = torch.where(
act_ids == self.paligemma_tokenizer.vocab_size - 1 - self.fast_skip_tokens,
self.pad_token_id,
act_ids,
)
eos_token = torch.tensor(
[self.paligemma_tokenizer.eos_token_id], dtype=torch.long, device=device
).expand(bsize, -1)
eos_mask = torch.tensor([1], dtype=torch.long, device=device).expand(bsize, -1)
bos = self.paligemma_tokenizer("Action: ", add_special_tokens=False, return_tensors="pt")
bos_token = bos["input_ids"].expand(act_ids.shape[0], -1).to(device)
bos_mask = bos["attention_mask"].expand(act_ids.shape[0], -1).to(device)
act_ids = torch.cat([bos_token, act_ids, eos_token], dim=1)
act_mask = torch.cat([bos_mask, act_mask, eos_mask], dim=1)
act_mask = act_mask.to(device)
else:
act_ids = torch.empty(bsize, self.pad_token_id, dtype=torch.long, device=device)
act_mask = torch.empty(bsize, 0, dtype=torch.long, device=device)
final_ids = torch.cat([prefix_ids, act_ids], dim=1)
final_mask = torch.cat([prefix_mask, act_mask], dim=1)
batch_inputs = {"input_ids": final_ids.tolist(), "attention_mask": final_mask.tolist()}
# Use tokenizer pad function
padded_output = self.paligemma_tokenizer.pad(
batch_inputs, padding="longest", max_length=180, return_tensors="pt"
)
padded_mask = padded_output["attention_mask"]
# define tensor of padding lengths
att_mask = (padded_mask != 0).cumsum(dim=1) > prefix_lens
token_type_ids = self.create_token_type_ids(padded_mask=padded_mask, prefix_len=prefix_lens)
padded_output["padded_mask"] = padded_output.pop("attention_mask")
padded_output["attention_mask"] = att_mask
# loss is computed not on prefix, and not on padding
padded_output["loss_mask"] = att_mask & padded_output["padded_mask"]
padded_output["token_type_ids"] = token_type_ids
return padded_output
def shift_padding_side(
self,
tokens: torch.Tensor,
ar_mask: torch.Tensor,
padding_mask: torch.Tensor,
loss_mask: torch.Tensor,
targets: torch.Tensor,
token_type_ids: torch.Tensor,
padding_side: str = "right",
) -> tuple[torch.Tensor]:
if padding_side not in ["right", "left"]:
return tokens, ar_mask, padding_mask, loss_mask, targets, token_type_ids
new_tokens = torch.empty_like(tokens)
new_ar_masks = torch.empty_like(ar_mask)
new_padding_mask = torch.empty_like(padding_mask)
new_loss_mask = torch.empty_like(loss_mask)
new_targets = torch.empty_like(targets)
new_token_type_ids = torch.empty_like(token_type_ids)
batch_size = tokens.shape[0]
for i in range(batch_size):
padding_indices = torch.where(padding_mask[i] == 0)[0]
non_padding_indices = torch.where(padding_mask[i] == 1)[0]
if padding_side == "left":
new_indices = torch.cat((padding_indices, non_padding_indices), dim=0)
else:
new_indices = torch.cat((non_padding_indices, padding_indices), dim=0)
new_tokens[i] = tokens[i].index_select(0, new_indices)
new_ar_masks[i] = ar_mask[i].index_select(0, new_indices)
new_padding_mask[i] = padding_mask[i].index_select(0, new_indices)
new_loss_mask[i] = loss_mask[i].index_select(0, new_indices)
new_targets[i] = targets[i].index_select(0, new_indices)
new_token_type_ids[i] = token_type_ids[i].index_select(0, new_indices)
return new_tokens, new_ar_masks, new_padding_mask, new_loss_mask, new_targets, new_token_type_ids
def forward(self, batch: dict[str, Tensor]):
device = batch[OBS_ROBOT].device
# TODO: keep like this or move to the policy .forward
images, img_masks = self.prepare_images(batch)
padded_outs = self.create_input_tokens(
state=batch[OBS_ROBOT],
lang_text=batch["task"],
actions=batch[ACTION],
)
embs, pad_masks, _, targets, loss_mask, token_type_ids = self.embed_inputs(
images,
img_masks,
padded_outs["input_ids"],
padded_outs["padded_mask"],
padded_outs["attention_mask"],
padded_outs["loss_mask"],
padded_outs["token_type_ids"],
padding_side=self.padding_side,
)
position_ids = torch.cumsum(pad_masks, dim=1) - 1
token_type_ids = token_type_ids.to(dtype=torch.int64)
past_seen_tokens = 0
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + embs.shape[1], device=embs.device)
pad_masks = block_causal_update_causal_mask(
attention_mask=pad_masks,
past_key_values=None,
cache_position=cache_position,
input_tensor=embs,
token_type_ids=token_type_ids,
dtype=self.pi0_paligemma.dtype,
attn_implementation=self.pi0_paligemma.config.text_config._attn_implementation,
)
outputs = self.pi0_paligemma.forward(
input_ids=None,
token_type_ids=None,
attention_mask=pad_masks,
position_ids=position_ids,
past_key_values=None,
inputs_embeds=embs,
use_cache=False,
labels=None,
)
logits = outputs.logits
loss_fct = nn.CrossEntropyLoss(reduction="none")
# Shift left for next-step prediction
logits = logits[:, :-1, :]
targets = targets[:, 1:].to(device) # Shift targets
loss_mask = loss_mask[:, 1:].to(device) # Ensure correct shape
# Compute per-token loss
token_loss = loss_fct(logits.reshape(-1, logits.shape[-1]), targets.reshape(-1))
# Apply loss mask
token_loss = token_loss * loss_mask.reshape(-1)
# Compute final loss
loss = token_loss.sum() / torch.clamp(loss_mask.sum(), min=1)
# Return loss dictionary
loss_dict = {"ce_loss": loss.item(), "loss": loss}
return loss_dict
def decode_actions_with_fast(
self,
tokens: list[list[int]],
*,
time_horizon: int | None = None,
action_dim: int | None = None,
relaxed_decoding: bool = True,
) -> np.array:
"""
Adapt original decoding in FAST to always return actions instead of zeros.
"""
self.time_horizon = (
time_horizon or self.fast_tokenizer.time_horizon or self.fast_tokenizer.called_time_horizon
)
self.action_dim = (
action_dim or self.fast_tokenizer.action_dim or self.fast_tokenizer.called_action_dim
)
# Cache the time horizon and action dimension for the next call
self.called_time_horizon = self.time_horizon
self.called_action_dim = self.action_dim
assert self.time_horizon is not None and self.action_dim is not None, (
"Tokenizer not initialized, call encode() once or pass in time_horizon and action_dim."
)
decoded_actions = []
for token in tokens:
try:
decoded_tokens = self.fast_tokenizer.bpe_tokenizer.decode(token)
decoded_dct_coeff = np.array(list(map(ord, decoded_tokens))) + self.fast_tokenizer.min_token
if relaxed_decoding:
# Expected sequence length
expected_seq_len = self.time_horizon * self.action_dim
diff = expected_seq_len - decoded_dct_coeff.shape[0]
# Apply truncation if too long
if diff < 0:
decoded_dct_coeff = decoded_dct_coeff[:expected_seq_len] # Truncate on the right
# Apply padding if too short
elif diff > 0:
decoded_dct_coeff = np.pad(
decoded_dct_coeff, (0, diff), mode="constant", constant_values=0
)
decoded_dct_coeff = decoded_dct_coeff.reshape(-1, self.action_dim)
assert decoded_dct_coeff.shape == (
self.time_horizon,
self.action_dim,
), (
f"Decoded DCT coefficients have shape {decoded_dct_coeff.shape}, expected ({self.time_horizon}, {self.action_dim})"
)
except Exception as e:
print(f"Error decoding tokens: {e}")
print(f"Tokens: {token}")
decoded_dct_coeff = np.zeros((self.time_horizon, self.action_dim))
decoded_actions.append(idct(decoded_dct_coeff / self.fast_tokenizer.scale, axis=0, norm="ortho"))
return np.stack(decoded_actions)
def extract_actions(self, tokens: torch.Tensor, action_horizon: int, action_dim: int) -> torch.Tensor:
"""
Extracts actions from predicted output tokens using the FAST model.
Args:
tokens (torch.Tensor): The input tensor of tokenized outputs.
action_horizon (int): The number of timesteps for actions.
action_dim (int): The dimensionality of each action.
Returns:
torch.Tensor: The extracted actions as a tensor of shape (action_horizon, action_dim).
"""
# Decode predicted output tokens
decoded_tokens = self.paligemma_tokenizer.batch_decode(tokens, skip_special_tokens=True)
cleaned_tokens = [
tokens_sequence.replace("Action:", "").replace(":", "").strip().split("|")[0].strip()
for tokens_sequence in decoded_tokens
]
raw_action_tokens = [
self.processor.tokenizer.encode(sample_tokens, return_tensors="pt", padding=False)
for sample_tokens in cleaned_tokens
] # something like this should be robust #looks good
action_tokens = [
self._act_tokens_to_paligemma_tokens(raw_action_token) for raw_action_token in raw_action_tokens
]
# returns the tensor of decoded actions per sample in a list
decoded_actions = [
torch.tensor(
self.decode_actions_with_fast(
tok.tolist(),
time_horizon=action_horizon,
action_dim=action_dim,
relaxed_decoding=self.config.relaxed_action_decoding,
),
device=tokens.device,
).squeeze(0)
for tok in action_tokens
]
return torch.stack(
decoded_actions,
dim=0,
)
def generate_actions(self, batch: dict[str, Tensor]):
# TODO: keep like this or move to the policy .forward
images, img_masks = self.prepare_images(batch)
padded_outs = self.create_input_tokens(state=batch[OBS_ROBOT], lang_text=batch["task"], actions=None)
embs, pad_masks, att_masks2, targets, loss_mask, token_type_ids = self.embed_inputs(
images,
img_masks,
padded_outs["input_ids"],
padded_outs["padded_mask"],
padded_outs["attention_mask"],
padded_outs["loss_mask"],
padded_outs["token_type_ids"],
padding_side="left",
)
token_type_ids = token_type_ids.to(dtype=torch.int64)
prefix_position_ids = torch.cumsum(pad_masks, dim=1) - 1
output_tokens = self.pi0_paligemma.generate(
input_ids=None,
attention_mask=pad_masks,
position_ids=prefix_position_ids,
past_key_values=None,
inputs_embeds=embs,
use_cache=self.config.use_cache,
max_new_tokens=self.config.max_decoding_steps,
do_sample=False,
num_beams=1,
token_type_ids=token_type_ids,
)
actions = self.extract_actions(output_tokens, self.action_horizon, self.action_dim)
return actions
def embed_image(self, image: torch.Tensor):
return self.pi0_paligemma.get_image_features(image)
def embed_inputs(
self,
images,
img_masks,
tokens,
pad_mask,
ar_mask,
loss_mask,
token_type_ids,
padding_side: str = "right",
):
# TODO: avoid list in python and torch.cat ; prefer pre-allocation with torch.empty
# images are a list of same size
# vectorizing everything!
device = images[0].device
image_embedding_dim = images[0].shape[-1] # TODO should be from self.config
all_images = torch.stack(images, dim=1).to(device)
b, n, c, h, w = all_images.shape
all_images = all_images.view(b * n, c, h, w)
embedded = self.embed_image(all_images).to(device)
b_n, p, image_embedding_dim = embedded.shape # Extract current dimensions
m = b_n // b # Compute the number of images per sample dynamically
# Reshape dynamically
embedded = embedded.view(b, m, p, image_embedding_dim)
tokens_embs = self.embed_tokens(tokens.to(device))
img_masks = torch.stack(img_masks, dim=1).unsqueeze(-1).to(device)
num_img_emb = embedded.shape[2]
img_pad_masks = img_masks.repeat(1, 1, num_img_emb).view(b, -1)
img_att_masks = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
image_target_tokens = (
torch.ones((b, n, num_img_emb), dtype=torch.long, device=device) * self.pad_token_id
).reshape(b, -1)
image_loss_mask = torch.zeros((b, n, num_img_emb), dtype=torch.long, device=device).reshape(b, -1)
embedded = embedded.reshape(b, n * num_img_emb, image_embedding_dim) # Shape: (B, N*P, D)
embs = torch.cat([embedded, tokens_embs], dim=1).to(device)
pad_masks = torch.cat([img_pad_masks, pad_mask.to(device)], dim=1)
att_masks = torch.cat([img_att_masks, ar_mask.to(device)], dim=1)
loss_masks = torch.cat([image_loss_mask, loss_mask.to(device)], dim=1)
targets = torch.cat([image_target_tokens, tokens.to(device)], dim=1)
token_type_ids = torch.cat([img_att_masks, token_type_ids.to(device)], dim=1)
# Shift pad tokens to the left (.generate()) or right (.train())
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids = self.shift_padding_side(
embs, att_masks, pad_masks, loss_masks, targets, token_type_ids, padding_side=padding_side
)
targets = torch.where(targets == self.pad_token_id, self.ignore_index, targets)
return embs, pad_masks, att_masks, targets, loss_masks, token_type_ids
def resize_with_pad(img, width, height, pad_value=0, interpolate_like_pi=True):
# assume no-op when width height fits already
if img.ndim != 4:
raise ValueError(f"(b,c,h,w) expected, but {img.shape}")
cur_height, cur_width = img.shape[2:]
ratio = max(cur_width / width, cur_height / height)
resized_height = int(cur_height / ratio)
resized_width = int(cur_width / ratio)
if interpolate_like_pi:
img = (img * 255.0).to(dtype=torch.uint8)
img = img.permute(0, 2, 3, 1)
original_device = img.device
img = img.to(device="cpu").numpy()
imgs = []
for sub_img in img:
sub_img = Image.fromarray(sub_img)
resized_img = sub_img.resize((resized_width, resized_height), resample=2)
resized_img = torch.from_numpy(np.array(resized_img))
imgs.append(resized_img)
img = torch.stack(imgs, dim=0)
img = img.permute(0, 3, 1, 2)
resized_img = img.to(device=original_device, dtype=torch.float32) / 255.0
else:
resized_img = F.interpolate(
img, size=(resized_height, resized_width), mode="bilinear", align_corners=False
)
pad_height = max(0, int(height - resized_height))
pad_width = max(0, int(width - resized_width))
# pad on left and top of image
padded_img = F.pad(resized_img, (pad_width, 0, pad_height, 0), value=pad_value)
return padded_img

View File

@@ -1,227 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.optim.optimizers import MultiAdamConfig
from lerobot.configs.policies import PreTrainedConfig
from lerobot.configs.types import NormalizationMode
@dataclass
class ConcurrencyConfig:
actor: str = "threads"
learner: str = "threads"
@dataclass
class ActorLearnerConfig:
learner_host: str = "127.0.0.1"
learner_port: int = 50051
policy_parameters_push_frequency: int = 4
@dataclass
class CriticNetworkConfig:
hidden_dims: list[int] = field(default_factory=lambda: [256, 256])
activate_final: bool = True
final_activation: str | None = None
@dataclass
class ActorNetworkConfig:
hidden_dims: list[int] = field(default_factory=lambda: [256, 256])
activate_final: bool = True
@dataclass
class PolicyConfig:
use_tanh_squash: bool = True
log_std_min: int = -5
log_std_max: int = 2
init_final: float = 0.05
@PreTrainedConfig.register_subclass("sac")
@dataclass
class SACConfig(PreTrainedConfig):
"""Soft Actor-Critic (SAC) configuration.
SAC is an off-policy actor-critic deep RL algorithm based on the maximum entropy
reinforcement learning framework. It learns a policy and a Q-function simultaneously
using experience collected from the environment.
This configuration class contains all the parameters needed to define a SAC agent,
including network architectures, optimization settings, and algorithm-specific
hyperparameters.
Args:
actor_network: Configuration for the actor network architecture.
critic_network: Configuration for the critic network architecture.
policy: Configuration for the policy parameters.
n_obs_steps: Number of observation steps to consider.
normalization_mapping: Mapping of feature types to normalization modes.
dataset_stats: Statistics for normalizing different types of inputs.
input_features: Dictionary of input features with their types and shapes.
output_features: Dictionary of output features with their types and shapes.
camera_number: Number of cameras used for visual observations.
device: Device to run the model on (e.g., "cuda", "cpu").
storage_device: Device to store the model on.
vision_encoder_name: Name of the vision encoder model.
freeze_vision_encoder: Whether to freeze the vision encoder during training.
image_encoder_hidden_dim: Hidden dimension size for the image encoder.
shared_encoder: Whether to use a shared encoder for actor and critic.
num_discrete_actions: Number of discrete actions, eg for gripper actions.
concurrency: Configuration for concurrency settings.
actor_learner: Configuration for actor-learner architecture.
online_steps: Number of steps for online training.
online_env_seed: Seed for the online environment.
online_buffer_capacity: Capacity of the online replay buffer.
offline_buffer_capacity: Capacity of the offline replay buffer.
async_prefetch: Whether to use asynchronous prefetching for the buffers.
online_step_before_learning: Number of steps before learning starts.
policy_update_freq: Frequency of policy updates.
discount: Discount factor for the SAC algorithm.
temperature_init: Initial temperature value.
num_critics: Number of critics in the ensemble.
num_subsample_critics: Number of subsampled critics for training.
critic_lr: Learning rate for the critic network.
actor_lr: Learning rate for the actor network.
temperature_lr: Learning rate for the temperature parameter.
critic_target_update_weight: Weight for the critic target update.
utd_ratio: Update-to-data ratio for the UTD algorithm.
state_encoder_hidden_dim: Hidden dimension size for the state encoder.
latent_dim: Dimension of the latent space.
target_entropy: Target entropy for the SAC algorithm.
use_backup_entropy: Whether to use backup entropy for the SAC algorithm.
grad_clip_norm: Gradient clipping norm for the SAC algorithm.
"""
normalization_mapping: dict[str, NormalizationMode] = field(
default_factory=lambda: {
"VISUAL": NormalizationMode.MEAN_STD,
"STATE": NormalizationMode.MIN_MAX,
"ENV": NormalizationMode.MIN_MAX,
"ACTION": NormalizationMode.MIN_MAX,
}
)
dataset_stats: dict[str, dict[str, list[float]]] = field(
default_factory=lambda: {
"observation.image": {
"mean": [0.485, 0.456, 0.406],
"std": [0.229, 0.224, 0.225],
},
"observation.state": {
"min": [0.0, 0.0],
"max": [1.0, 1.0],
},
"action": {
"min": [0.0, 0.0, 0.0],
"max": [1.0, 1.0, 1.0],
},
}
)
# Architecture specifics
camera_number: int = 1
device: str = "cuda"
storage_device: str = "cpu"
# Set to "helper2424/resnet10" for hil serl
vision_encoder_name: str | None = None
freeze_vision_encoder: bool = True
image_encoder_hidden_dim: int = 32
shared_encoder: bool = True
num_discrete_actions: int | None = None
# Training parameter
online_steps: int = 1000000
online_env_seed: int = 10000
online_buffer_capacity: int = 100000
offline_buffer_capacity: int = 100000
async_prefetch: bool = False
online_step_before_learning: int = 100
policy_update_freq: int = 1
# SAC algorithm parameters
discount: float = 0.99
temperature_init: float = 1.0
num_critics: int = 2
num_subsample_critics: int | None = None
critic_lr: float = 3e-4
actor_lr: float = 3e-4
temperature_lr: float = 3e-4
critic_target_update_weight: float = 0.005
utd_ratio: int = 1 # If you want enable utd_ratio, you need to set it to >1
state_encoder_hidden_dim: int = 256
latent_dim: int = 256
target_entropy: float | None = None
use_backup_entropy: bool = True
grad_clip_norm: float = 40.0
# Network configuration
critic_network_kwargs: CriticNetworkConfig = field(default_factory=CriticNetworkConfig)
actor_network_kwargs: ActorNetworkConfig = field(default_factory=ActorNetworkConfig)
policy_kwargs: PolicyConfig = field(default_factory=PolicyConfig)
grasp_critic_network_kwargs: CriticNetworkConfig = field(default_factory=CriticNetworkConfig)
actor_learner_config: ActorLearnerConfig = field(default_factory=ActorLearnerConfig)
concurrency: ConcurrencyConfig = field(default_factory=ConcurrencyConfig)
def __post_init__(self):
super().__post_init__()
# Any validation specific to SAC configuration
def get_optimizer_preset(self) -> MultiAdamConfig:
return MultiAdamConfig(
weight_decay=0.0,
optimizer_groups={
"actor": {"lr": self.actor_lr},
"critic": {"lr": self.critic_lr},
"temperature": {"lr": self.temperature_lr},
},
)
def get_scheduler_preset(self) -> None:
return None
def validate_features(self) -> None:
has_image = any(key.startswith("observation.image") for key in self.input_features)
has_state = "observation.state" in self.input_features
if not (has_state or has_image):
raise ValueError(
"You must provide either 'observation.state' or an image observation (key starting with 'observation.image') in the input features"
)
if "action" not in self.output_features:
raise ValueError("You must provide 'action' in the output features")
@property
def image_features(self) -> list[str]:
return [key for key in self.input_features if "image" in key]
@property
def observation_delta_indices(self) -> list:
return None
@property
def action_delta_indices(self) -> list:
return None # SAC typically predicts one action at a time
@property
def reward_delta_indices(self) -> None:
return None

File diff suppressed because it is too large Load Diff

View File

@@ -35,15 +35,11 @@ import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from torch import Tensor
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.constants import OBS_ENV_STATE, OBS_STATE
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.tdmpc.configuration_tdmpc import TDMPCConfig
from lerobot.common.policies.utils import (
get_device_from_parameters,
get_output_shape,
populate_queues,
)
from lerobot.common.policies.utils import get_device_from_parameters, get_output_shape, populate_queues
class TDMPCPolicy(PreTrainedPolicy):
@@ -67,11 +63,7 @@ class TDMPCPolicy(PreTrainedPolicy):
config_class = TDMPCConfig
name = "tdmpc"
def __init__(
self,
config: TDMPCConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
def __init__(self, config: TDMPCConfig, dataset_stats: dict[str, dict[str, Tensor]] | None = None):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
@@ -130,7 +122,7 @@ class TDMPCPolicy(PreTrainedPolicy):
# When the action queue is depleted, populate it again by querying the policy.
if len(self._queues["action"]) == 0:
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch if key in self._queues}
# Remove the time dimensions as it is not handled yet.
for key in batch:
@@ -197,20 +189,13 @@ class TDMPCPolicy(PreTrainedPolicy):
# In the CEM loop we will need this for a call to estimate_value with the gaussian sampled
# trajectories.
z = einops.repeat(
z,
"b d -> n b d",
n=self.config.n_gaussian_samples + self.config.n_pi_samples,
)
z = einops.repeat(z, "b d -> n b d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
# Model Predictive Path Integral (MPPI) with the cross-entropy method (CEM) as the optimization
# algorithm.
# The initial mean and standard deviation for the cross-entropy method (CEM).
mean = torch.zeros(
self.config.horizon,
batch_size,
self.config.action_feature.shape[0],
device=device,
self.config.horizon, batch_size, self.config.action_feature.shape[0], device=device
)
# Maybe warm start CEM with the mean from the previous step.
if self._prev_mean is not None:
@@ -306,10 +291,9 @@ class TDMPCPolicy(PreTrainedPolicy):
if self.config.q_ensemble_size > 2:
G += (
running_discount
* torch.min(
terminal_values[torch.randint(0, self.config.q_ensemble_size, size=(2,))],
dim=0,
)[0]
* torch.min(terminal_values[torch.randint(0, self.config.q_ensemble_size, size=(2,))], dim=0)[
0
]
)
else:
G += running_discount * torch.min(terminal_values, dim=0)[0]
@@ -345,10 +329,7 @@ class TDMPCPolicy(PreTrainedPolicy):
# Apply random image augmentations.
if self.config.image_features and self.config.max_random_shift_ratio > 0:
observations["observation.image"] = flatten_forward_unflatten(
partial(
random_shifts_aug,
max_random_shift_ratio=self.config.max_random_shift_ratio,
),
partial(random_shifts_aug, max_random_shift_ratio=self.config.max_random_shift_ratio),
observations["observation.image"],
)
@@ -572,10 +553,7 @@ class TDMPCTOLD(nn.Module):
self._Qs = nn.ModuleList(
[
nn.Sequential(
nn.Linear(
config.latent_dim + config.action_feature.shape[0],
config.mlp_dim,
),
nn.Linear(config.latent_dim + config.action_feature.shape[0], config.mlp_dim),
nn.LayerNorm(config.mlp_dim),
nn.Tanh(),
nn.Linear(config.mlp_dim, config.mlp_dim),
@@ -724,26 +702,11 @@ class TDMPCObservationEncoder(nn.Module):
stride=2,
),
nn.ReLU(),
nn.Conv2d(
config.image_encoder_hidden_dim,
config.image_encoder_hidden_dim,
5,
stride=2,
),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
nn.ReLU(),
nn.Conv2d(
config.image_encoder_hidden_dim,
config.image_encoder_hidden_dim,
3,
stride=2,
),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
nn.Conv2d(
config.image_encoder_hidden_dim,
config.image_encoder_hidden_dim,
3,
stride=2,
),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(),
)
dummy_shape = (1, *next(iter(config.image_features.values())).shape)
@@ -786,14 +749,13 @@ class TDMPCObservationEncoder(nn.Module):
if self.config.image_features:
feat.append(
flatten_forward_unflatten(
self.image_enc_layers,
obs_dict[next(iter(self.config.image_features))],
self.image_enc_layers, obs_dict[next(iter(self.config.image_features))]
)
)
if self.config.env_state_feature:
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV]))
feat.append(self.env_state_enc_layers(obs_dict[OBS_ENV_STATE]))
if self.config.robot_state_feature:
feat.append(self.state_enc_layers(obs_dict[OBS_ROBOT]))
feat.append(self.state_enc_layers(obs_dict[OBS_STATE]))
return torch.stack(feat, dim=0).mean(0)
@@ -834,9 +796,7 @@ def update_ema_parameters(ema_net: nn.Module, net: nn.Module, alpha: float):
"""Update EMA parameters in place with ema_param <- alpha * ema_param + (1 - alpha) * param."""
for ema_module, module in zip(ema_net.modules(), net.modules(), strict=True):
for (n_p_ema, p_ema), (n_p, p) in zip(
ema_module.named_parameters(recurse=False),
module.named_parameters(recurse=False),
strict=True,
ema_module.named_parameters(recurse=False), module.named_parameters(recurse=False), strict=True
):
assert n_p_ema == n_p, "Parameter names don't match for EMA model update"
if isinstance(p, dict):

View File

@@ -193,12 +193,7 @@ class VQBeTConfig(PreTrainedConfig):
@property
def action_delta_indices(self) -> list:
return list(
range(
1 - self.n_obs_steps,
self.n_action_pred_token + self.action_chunk_size - 1,
)
)
return list(range(1 - self.n_obs_steps, self.n_action_pred_token + self.action_chunk_size - 1))
@property
def reward_delta_indices(self) -> None:

View File

@@ -29,11 +29,7 @@ from torch import Tensor, nn
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.utils import (
get_device_from_parameters,
get_output_shape,
populate_queues,
)
from lerobot.common.policies.utils import get_device_from_parameters, get_output_shape, populate_queues
from lerobot.common.policies.vqbet.configuration_vqbet import VQBeTConfig
from lerobot.common.policies.vqbet.vqbet_utils import GPT, ResidualVQ
@@ -328,8 +324,7 @@ class VQBeTModel(nn.Module):
# To input state and observation features into GPT layers, we first project the features to fit the shape of input size of GPT.
self.state_projector = MLP(
config.robot_state_feature.shape[0],
hidden_channels=[self.config.gpt_input_dim],
config.robot_state_feature.shape[0], hidden_channels=[self.config.gpt_input_dim]
)
self.rgb_feature_projector = MLP(
self.rgb_encoder.feature_dim, hidden_channels=[self.config.gpt_input_dim]
@@ -359,11 +354,7 @@ class VQBeTModel(nn.Module):
)
# Separate batch and sequence dims.
img_features = einops.rearrange(
img_features,
"(b s n) ... -> b s n ...",
b=batch_size,
s=n_obs_steps,
n=self.num_images,
img_features, "(b s n) ... -> b s n ...", b=batch_size, s=n_obs_steps, n=self.num_images
)
# Arrange prior and current observation step tokens as shown in the class docstring.
@@ -400,11 +391,7 @@ class VQBeTModel(nn.Module):
# Thus, it predicts a historical action sequence, in addition to current and future actions (predicting future actions : optional).
if len_additional_action_token > 0:
features = torch.cat(
[
features[:, historical_act_pred_index],
features[:, -len_additional_action_token:],
],
dim=1,
[features[:, historical_act_pred_index], features[:, -len_additional_action_token:]], dim=1
)
else:
features = features[:, historical_act_pred_index]
@@ -527,13 +514,7 @@ class VQBeTHead(nn.Module):
cbet_secondary_logits = self.map_to_cbet_preds_secondary_bin(
torch.cat(
(
x,
F.one_hot(
sampled_primary_centers,
num_classes=self.config.vqvae_n_embed,
),
),
(x, F.one_hot(sampled_primary_centers, num_classes=self.config.vqvae_n_embed)),
axis=1,
)
)
@@ -551,9 +532,7 @@ class VQBeTHead(nn.Module):
else:
cbet_logits = self.map_to_cbet_preds_bin(x)
cbet_logits = einops.rearrange(
cbet_logits,
"(NT) (G C) -> (NT) G C",
G=self.vqvae_model.vqvae_num_layers,
cbet_logits, "(NT) (G C) -> (NT) G C", G=self.vqvae_model.vqvae_num_layers
)
cbet_probs = torch.softmax(cbet_logits / self.config.bet_softmax_temperature, dim=-1)
NT, G, choices = cbet_probs.shape
@@ -751,9 +730,7 @@ class VQBeTRgbEncoder(nn.Module):
def _replace_submodules(
root_module: nn.Module,
predicate: Callable[[nn.Module], bool],
func: Callable[[nn.Module], nn.Module],
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
) -> nn.Module:
"""
Args:

View File

@@ -377,10 +377,7 @@ class ResidualVQ(nn.Module):
self.layers = nn.ModuleList(
[
VectorQuantize(
dim=codebook_dim,
codebook_dim=codebook_dim,
accept_image_fmap=accept_image_fmap,
**kwargs,
dim=codebook_dim, codebook_dim=codebook_dim, accept_image_fmap=accept_image_fmap, **kwargs
)
for _ in range(num_quantizers)
]

View File

@@ -1,114 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from dataclasses import dataclass
import draccus
@dataclass
class CameraConfig(draccus.ChoiceRegistry, abc.ABC):
@property
def type(self) -> str:
return self.get_choice_name(self.__class__)
@CameraConfig.register_subclass("opencv")
@dataclass
class OpenCVCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
OpenCVCameraConfig(0, 30, 640, 480)
OpenCVCameraConfig(0, 60, 640, 480)
OpenCVCameraConfig(0, 90, 640, 480)
OpenCVCameraConfig(0, 30, 1280, 720)
```
"""
camera_index: int
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
rotation: int | None = None
mock: bool = False
def __post_init__(self):
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")
@CameraConfig.register_subclass("intelrealsense")
@dataclass
class IntelRealSenseCameraConfig(CameraConfig):
"""
Example of tested options for Intel Real Sense D405:
```python
IntelRealSenseCameraConfig(128422271347, 30, 640, 480)
IntelRealSenseCameraConfig(128422271347, 60, 640, 480)
IntelRealSenseCameraConfig(128422271347, 90, 640, 480)
IntelRealSenseCameraConfig(128422271347, 30, 1280, 720)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, use_depth=True)
IntelRealSenseCameraConfig(128422271347, 30, 640, 480, rotation=90)
```
"""
name: str | None = None
serial_number: int | None = None
fps: int | None = None
width: int | None = None
height: int | None = None
color_mode: str = "rgb"
channels: int | None = None
use_depth: bool = False
force_hardware_reset: bool = True
rotation: int | None = None
mock: bool = False
def __post_init__(self):
# bool is stronger than is None, since it works with empty strings
if bool(self.name) and bool(self.serial_number):
raise ValueError(
f"One of them must be set: name or serial_number, but {self.name=} and {self.serial_number=} provided."
)
if self.color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"`color_mode` is expected to be 'rgb' or 'bgr', but {self.color_mode} is provided."
)
self.channels = 3
at_least_one_is_not_none = self.fps is not None or self.width is not None or self.height is not None
at_least_one_is_none = self.fps is None or self.width is None or self.height is None
if at_least_one_is_not_none and at_least_one_is_none:
raise ValueError(
"For `fps`, `width` and `height`, either all of them need to be set, or none of them, "
f"but {self.fps=}, {self.width=}, {self.height=} were provided."
)
if self.rotation not in [-90, None, 90, 180]:
raise ValueError(f"`rotation` must be in [-90, None, 90, 180] (got {self.rotation})")

View File

@@ -1,546 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains utilities for recording frames from Intel Realsense cameras.
"""
import argparse
import concurrent.futures
import logging
import math
import shutil
import threading
import time
import traceback
from collections import Counter
from pathlib import Path
from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
SERIAL_NUMBER_INDEX = 1
def find_cameras(raise_when_empty=True, mock=False) -> list[dict]:
"""
Find the names and the serial numbers of the Intel RealSense cameras
connected to the computer.
"""
if mock:
import tests.cameras.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
cameras = []
for device in rs.context().query_devices():
serial_number = int(device.get_info(rs.camera_info(SERIAL_NUMBER_INDEX)))
name = device.get_info(rs.camera_info.name)
cameras.append(
{
"serial_number": serial_number,
"name": name,
}
)
if raise_when_empty and len(cameras) == 0:
raise OSError(
"Not a single camera was detected. Try re-plugging, or re-installing `librealsense` and its python wrapper `pyrealsense2`, or updating the firmware."
)
return cameras
def save_image(img_array, serial_number, frame_index, images_dir):
try:
img = Image.fromarray(img_array)
path = images_dir / f"camera_{serial_number}_frame_{frame_index:06d}.png"
path.parent.mkdir(parents=True, exist_ok=True)
img.save(str(path), quality=100)
logging.info(f"Saved image: {path}")
except Exception as e:
logging.error(f"Failed to save image for camera {serial_number} frame {frame_index}: {e}")
def save_images_from_cameras(
images_dir: Path,
serial_numbers: list[int] | None = None,
fps=None,
width=None,
height=None,
record_time_s=2,
mock=False,
):
"""
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
associated to a given serial number.
"""
if serial_numbers is None or len(serial_numbers) == 0:
camera_infos = find_cameras(mock=mock)
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if mock:
import tests.cameras.mock_cv2 as cv2
else:
import cv2
print("Connecting cameras")
cameras = []
for cam_sn in serial_numbers:
print(f"{cam_sn=}")
config = IntelRealSenseCameraConfig(
serial_number=cam_sn, fps=fps, width=width, height=height, mock=mock
)
camera = IntelRealSenseCamera(config)
camera.connect()
print(
f"IntelRealSenseCamera({camera.serial_number}, fps={camera.fps}, width={camera.capture_width}, height={camera.capture_height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
images_dir = Path(images_dir)
if images_dir.exists():
shutil.rmtree(
images_dir,
)
images_dir.mkdir(parents=True, exist_ok=True)
print(f"Saving images to {images_dir}")
frame_index = 0
start_time = time.perf_counter()
try:
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
while True:
now = time.perf_counter()
for camera in cameras:
# If we use async_read when fps is None, the loop will go full speed, and we will end up
# saving the same images from the cameras multiple times until the RAM/disk is full.
image = camera.read() if fps is None else camera.async_read()
if image is None:
print("No Frame")
bgr_converted_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
executor.submit(
save_image,
bgr_converted_image,
camera.serial_number,
frame_index,
images_dir,
)
if fps is not None:
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
if time.perf_counter() - start_time > record_time_s:
break
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
frame_index += 1
finally:
print(f"Images have been saved to {images_dir}")
for camera in cameras:
camera.disconnect()
class IntelRealSenseCamera:
"""
The IntelRealSenseCamera class is similar to OpenCVCamera class but adds additional features for Intel Real Sense cameras:
- is instantiated with the serial number of the camera - won't randomly change as it can be the case of OpenCVCamera for Linux,
- can also be instantiated with the camera's name — if it's unique — using IntelRealSenseCamera.init_from_name(),
- depth map can be returned.
To find the camera indices of your cameras, you can run our utility script that will save a few frames for each camera:
```bash
python lerobot/common/robot_devices/cameras/intelrealsense.py --images-dir outputs/images_from_intelrealsense_cameras
```
When an IntelRealSenseCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
of the given camera will be used.
Example of instantiating with a serial number:
```python
from lerobot.common.robot_devices.cameras.configs import IntelRealSenseCameraConfig
config = IntelRealSenseCameraConfig(serial_number=128422271347)
camera = IntelRealSenseCamera(config)
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
camera.disconnect()
```
Example of instantiating with a name if it's unique:
```
config = IntelRealSenseCameraConfig(name="Intel RealSense D405")
```
Example of changing default fps, width, height and color_mode:
```python
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=30, width=1280, height=720)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480)
config = IntelRealSenseCameraConfig(serial_number=128422271347, fps=90, width=640, height=480, color_mode="bgr")
# Note: might error out upon `camera.connect()` if these settings are not compatible with the camera
```
Example of returning depth:
```python
config = IntelRealSenseCameraConfig(serial_number=128422271347, use_depth=True)
camera = IntelRealSenseCamera(config)
camera.connect()
color_image, depth_map = camera.read()
```
"""
def __init__(
self,
config: IntelRealSenseCameraConfig,
):
self.config = config
if config.name is not None:
self.serial_number = self.find_serial_number_from_name(config.name)
else:
self.serial_number = config.serial_number
# Store the raw (capture) resolution from the config.
self.capture_width = config.width
self.capture_height = config.height
# If rotated by ±90, swap width and height.
if config.rotation in [-90, 90]:
self.width = config.height
self.height = config.width
else:
self.width = config.width
self.height = config.height
self.fps = config.fps
self.channels = config.channels
self.color_mode = config.color_mode
self.use_depth = config.use_depth
self.force_hardware_reset = config.force_hardware_reset
self.mock = config.mock
self.camera = None
self.is_connected = False
self.thread = None
self.stop_event = None
self.color_image = None
self.depth_map = None
self.logs = {}
if self.mock:
import tests.cameras.mock_cv2 as cv2
else:
import cv2
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
elif config.rotation == 90:
self.rotation = cv2.ROTATE_90_CLOCKWISE
elif config.rotation == 180:
self.rotation = cv2.ROTATE_180
def find_serial_number_from_name(self, name):
camera_infos = find_cameras()
camera_names = [cam["name"] for cam in camera_infos]
this_name_count = Counter(camera_names)[name]
if this_name_count > 1:
# TODO(aliberts): Test this with multiple identical cameras (Aloha)
raise ValueError(
f"Multiple {name} cameras have been detected. Please use their serial number to instantiate them."
)
name_to_serial_dict = {cam["name"]: cam["serial_number"] for cam in camera_infos}
cam_sn = name_to_serial_dict[name]
return cam_sn
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is already connected."
)
if self.mock:
import tests.cameras.mock_pyrealsense2 as rs
else:
import pyrealsense2 as rs
config = rs.config()
config.enable_device(str(self.serial_number))
if self.fps and self.capture_width and self.capture_height:
# TODO(rcadene): can we set rgb8 directly?
config.enable_stream(
rs.stream.color,
self.capture_width,
self.capture_height,
rs.format.rgb8,
self.fps,
)
else:
config.enable_stream(rs.stream.color)
if self.use_depth:
if self.fps and self.capture_width and self.capture_height:
config.enable_stream(
rs.stream.depth,
self.capture_width,
self.capture_height,
rs.format.z16,
self.fps,
)
else:
config.enable_stream(rs.stream.depth)
self.camera = rs.pipeline()
try:
profile = self.camera.start(config)
is_camera_open = True
except RuntimeError:
is_camera_open = False
traceback.print_exc()
# If the camera doesn't work, display the camera indices corresponding to
# valid cameras.
if not is_camera_open:
# Verify that the provided `serial_number` is valid before printing the traceback
camera_infos = find_cameras()
serial_numbers = [cam["serial_number"] for cam in camera_infos]
if self.serial_number not in serial_numbers:
raise ValueError(
f"`serial_number` is expected to be one of these available cameras {serial_numbers}, but {self.serial_number} is provided instead. "
"To find the serial number you should use, run `python lerobot/common/robot_devices/cameras/intelrealsense.py`."
)
raise OSError(f"Can't access IntelRealSenseCamera({self.serial_number}).")
color_stream = profile.get_stream(rs.stream.color)
color_profile = color_stream.as_video_stream_profile()
actual_fps = color_profile.fps()
actual_width = color_profile.width()
actual_height = color_profile.height()
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_fps}."
)
if self.capture_width is not None and self.capture_width != actual_width:
raise OSError(
f"Can't set {self.capture_width=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_width}."
)
if self.capture_height is not None and self.capture_height != actual_height:
raise OSError(
f"Can't set {self.capture_height=} for IntelRealSenseCamera({self.serial_number}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.capture_width = round(actual_width)
self.capture_height = round(actual_height)
self.is_connected = True
def read(self, temporary_color: str | None = None) -> np.ndarray | tuple[np.ndarray, np.ndarray]:
"""Read a frame from the camera returned in the format height x width x channels (e.g. 480 x 640 x 3)
of type `np.uint8`, contrarily to the pytorch format which is float channel first.
When `use_depth=True`, returns a tuple `(color_image, depth_map)` with a depth map in the format
height x width (e.g. 480 x 640) of type np.uint16.
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.mock:
import tests.cameras.mock_cv2 as cv2
else:
import cv2
start_time = time.perf_counter()
frame = self.camera.wait_for_frames(timeout_ms=5000)
color_frame = frame.get_color_frame()
if not color_frame:
raise OSError(f"Can't capture color image from IntelRealSenseCamera({self.serial_number}).")
color_image = np.asanyarray(color_frame.get_data())
requested_color_mode = self.color_mode if temporary_color is None else temporary_color
if requested_color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
)
# IntelRealSense uses RGB format as default (red, green, blue).
if requested_color_mode == "bgr":
color_image = cv2.cvtColor(color_image, cv2.COLOR_RGB2BGR)
h, w, _ = color_image.shape
if h != self.capture_height or w != self.capture_width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
color_image = cv2.rotate(color_image, self.rotation)
# log the number of seconds it took to read the image
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
# log the utc time at which the image was received
self.logs["timestamp_utc"] = capture_timestamp_utc()
if self.use_depth:
depth_frame = frame.get_depth_frame()
if not depth_frame:
raise OSError(f"Can't capture depth image from IntelRealSenseCamera({self.serial_number}).")
depth_map = np.asanyarray(depth_frame.get_data())
h, w = depth_map.shape
if h != self.capture_height or w != self.capture_width:
raise OSError(
f"Can't capture depth map with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
depth_map = cv2.rotate(depth_map, self.rotation)
return color_image, depth_map
else:
return color_image
def read_loop(self):
while not self.stop_event.is_set():
if self.use_depth:
self.color_image, self.depth_map = self.read()
else:
self.color_image = self.read()
def async_read(self):
"""Access the latest color image"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
self.stop_event = threading.Event()
self.thread = Thread(target=self.read_loop, args=())
self.thread.daemon = True
self.thread.start()
num_tries = 0
while self.color_image is None:
# TODO(rcadene, aliberts): intelrealsense has diverged compared to opencv over here
num_tries += 1
time.sleep(1 / self.fps)
if num_tries > self.fps and (self.thread.ident is None or not self.thread.is_alive()):
raise Exception(
"The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called."
)
if self.use_depth:
return self.color_image, self.depth_map
else:
return self.color_image
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"IntelRealSenseCamera({self.serial_number}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None and self.thread.is_alive():
# wait for the thread to finish
self.stop_event.set()
self.thread.join()
self.thread = None
self.stop_event = None
self.camera.stop()
self.camera = None
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Save a few frames using `IntelRealSenseCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--serial-numbers",
type=int,
nargs="*",
default=None,
help="List of serial numbers used to instantiate the `IntelRealSenseCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",
type=int,
default=30,
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
)
parser.add_argument(
"--width",
type=str,
default=640,
help="Set the width for all cameras. If not provided, use the default width of each camera.",
)
parser.add_argument(
"--height",
type=str,
default=480,
help="Set the height for all cameras. If not provided, use the default height of each camera.",
)
parser.add_argument(
"--images-dir",
type=Path,
default="outputs/images_from_intelrealsense_cameras",
help="Set directory to save a few frames for each camera.",
)
parser.add_argument(
"--record-time-s",
type=float,
default=2.0,
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
)
args = parser.parse_args()
save_images_from_cameras(**vars(args))

View File

@@ -1,518 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains utilities for recording frames from cameras. For more info look at `OpenCVCamera` docstring.
"""
import argparse
import concurrent.futures
import math
import platform
import shutil
import threading
import time
from pathlib import Path
from threading import Thread
import numpy as np
from PIL import Image
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
from lerobot.common.robot_devices.utils import (
RobotDeviceAlreadyConnectedError,
RobotDeviceNotConnectedError,
busy_wait,
)
from lerobot.common.utils.utils import capture_timestamp_utc
# The maximum opencv device index depends on your operating system. For instance,
# if you have 3 cameras, they should be associated to index 0, 1, and 2. This is the case
# on MacOS. However, on Ubuntu, the indices are different like 6, 16, 23.
# When you change the USB port or reboot the computer, the operating system might
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
MAX_OPENCV_INDEX = 60
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
cameras = []
if platform.system() == "Linux":
print("Linux detected. Finding available camera indices through scanning '/dev/video*' ports")
possible_ports = [str(port) for port in Path("/dev").glob("video*")]
ports = _find_cameras(possible_ports, mock=mock)
for port in ports:
cameras.append(
{
"port": port,
"index": int(port.removeprefix("/dev/video")),
}
)
else:
print(
"Mac or Windows detected. Finding available camera indices through "
f"scanning all indices from 0 to {MAX_OPENCV_INDEX}"
)
possible_indices = range(max_index_search_range)
indices = _find_cameras(possible_indices, mock=mock)
for index in indices:
cameras.append(
{
"port": None,
"index": index,
}
)
return cameras
def _find_cameras(
possible_camera_ids: list[int | str], raise_when_empty=False, mock=False
) -> list[int | str]:
if mock:
import tests.cameras.mock_cv2 as cv2
else:
import cv2
camera_ids = []
for camera_idx in possible_camera_ids:
camera = cv2.VideoCapture(camera_idx)
is_open = camera.isOpened()
camera.release()
if is_open:
print(f"Camera found at index {camera_idx}")
camera_ids.append(camera_idx)
if raise_when_empty and len(camera_ids) == 0:
raise OSError(
"Not a single camera was detected. Try re-plugging, or re-installing `opencv2`, "
"or your camera driver, or make sure your camera is compatible with opencv2."
)
return camera_ids
def is_valid_unix_path(path: str) -> bool:
"""Note: if 'path' points to a symlink, this will return True only if the target exists"""
p = Path(path)
return p.is_absolute() and p.exists()
def get_camera_index_from_unix_port(port: Path) -> int:
return int(str(port.resolve()).removeprefix("/dev/video"))
def save_image(img_array, camera_index, frame_index, images_dir):
img = Image.fromarray(img_array)
path = images_dir / f"camera_{camera_index:02d}_frame_{frame_index:06d}.png"
path.parent.mkdir(parents=True, exist_ok=True)
img.save(str(path), quality=100)
def save_images_from_cameras(
images_dir: Path,
camera_ids: list | None = None,
fps=None,
width=None,
height=None,
record_time_s=2,
mock=False,
):
"""
Initializes all the cameras and saves images to the directory. Useful to visually identify the camera
associated to a given camera index.
"""
if camera_ids is None or len(camera_ids) == 0:
camera_infos = find_cameras(mock=mock)
camera_ids = [cam["index"] for cam in camera_infos]
print("Connecting cameras")
cameras = []
for cam_idx in camera_ids:
config = OpenCVCameraConfig(camera_index=cam_idx, fps=fps, width=width, height=height, mock=mock)
camera = OpenCVCamera(config)
camera.connect()
print(
f"OpenCVCamera({camera.camera_index}, fps={camera.fps}, width={camera.capture_width}, "
f"height={camera.capture_height}, color_mode={camera.color_mode})"
)
cameras.append(camera)
images_dir = Path(images_dir)
if images_dir.exists():
shutil.rmtree(
images_dir,
)
images_dir.mkdir(parents=True, exist_ok=True)
print(f"Saving images to {images_dir}")
frame_index = 0
start_time = time.perf_counter()
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
while True:
now = time.perf_counter()
for camera in cameras:
# If we use async_read when fps is None, the loop will go full speed, and we will endup
# saving the same images from the cameras multiple times until the RAM/disk is full.
image = camera.read() if fps is None else camera.async_read()
executor.submit(
save_image,
image,
camera.camera_index,
frame_index,
images_dir,
)
if fps is not None:
dt_s = time.perf_counter() - now
busy_wait(1 / fps - dt_s)
print(f"Frame: {frame_index:04d}\tLatency (ms): {(time.perf_counter() - now) * 1000:.2f}")
if time.perf_counter() - start_time > record_time_s:
break
frame_index += 1
print(f"Images have been saved to {images_dir}")
class OpenCVCamera:
"""
The OpenCVCamera class allows to efficiently record images from cameras. It relies on opencv2 to communicate
with the cameras. Most cameras are compatible. For more info, see the [Video I/O with OpenCV Overview](https://docs.opencv.org/4.x/d0/da7/videoio_overview.html).
An OpenCVCamera instance requires a camera index (e.g. `OpenCVCamera(camera_index=0)`). When you only have one camera
like a webcam of a laptop, the camera index is expected to be 0, but it might also be very different, and the camera index
might change if you reboot your computer or re-plug your camera. This behavior depends on your operation system.
To find the camera indices of your cameras, you can run our utility script that will be save a few frames for each camera:
```bash
python lerobot/common/robot_devices/cameras/opencv.py --images-dir outputs/images_from_opencv_cameras
```
When an OpenCVCamera is instantiated, if no specific config is provided, the default fps, width, height and color_mode
of the given camera will be used.
Example of usage:
```python
from lerobot.common.robot_devices.cameras.configs import OpenCVCameraConfig
config = OpenCVCameraConfig(camera_index=0)
camera = OpenCVCamera(config)
camera.connect()
color_image = camera.read()
# when done using the camera, consider disconnecting
camera.disconnect()
```
Example of changing default fps, width, height and color_mode:
```python
config = OpenCVCameraConfig(camera_index=0, fps=30, width=1280, height=720)
config = OpenCVCameraConfig(camera_index=0, fps=90, width=640, height=480)
config = OpenCVCameraConfig(camera_index=0, fps=90, width=640, height=480, color_mode="bgr")
# Note: might error out open `camera.connect()` if these settings are not compatible with the camera
```
"""
def __init__(self, config: OpenCVCameraConfig):
self.config = config
self.camera_index = config.camera_index
self.port = None
# Linux uses ports for connecting to cameras
if platform.system() == "Linux":
if isinstance(self.camera_index, int):
self.port = Path(f"/dev/video{self.camera_index}")
elif isinstance(self.camera_index, str) and is_valid_unix_path(self.camera_index):
self.port = Path(self.camera_index)
# Retrieve the camera index from a potentially symlinked path
self.camera_index = get_camera_index_from_unix_port(self.port)
else:
raise ValueError(f"Please check the provided camera_index: {self.camera_index}")
# Store the raw (capture) resolution from the config.
self.capture_width = config.width
self.capture_height = config.height
# If rotated by ±90, swap width and height.
if config.rotation in [-90, 90]:
self.width = config.height
self.height = config.width
else:
self.width = config.width
self.height = config.height
self.fps = config.fps
self.channels = config.channels
self.color_mode = config.color_mode
self.mock = config.mock
self.camera = None
self.is_connected = False
self.thread = None
self.stop_event = None
self.color_image = None
self.logs = {}
if self.mock:
import tests.cameras.mock_cv2 as cv2
else:
import cv2
self.rotation = None
if config.rotation == -90:
self.rotation = cv2.ROTATE_90_COUNTERCLOCKWISE
elif config.rotation == 90:
self.rotation = cv2.ROTATE_90_CLOCKWISE
elif config.rotation == 180:
self.rotation = cv2.ROTATE_180
def connect(self):
if self.is_connected:
raise RobotDeviceAlreadyConnectedError(f"OpenCVCamera({self.camera_index}) is already connected.")
if self.mock:
import tests.cameras.mock_cv2 as cv2
else:
import cv2
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
# when other threads are used to save the images.
cv2.setNumThreads(1)
backend = (
cv2.CAP_V4L2
if platform.system() == "Linux"
else cv2.CAP_DSHOW
if platform.system() == "Windows"
else cv2.CAP_AVFOUNDATION
if platform.system() == "Darwin"
else cv2.CAP_ANY
)
camera_idx = f"/dev/video{self.camera_index}" if platform.system() == "Linux" else self.camera_index
# First create a temporary camera trying to access `camera_index`,
# and verify it is a valid camera by calling `isOpened`.
tmp_camera = cv2.VideoCapture(camera_idx, backend)
is_camera_open = tmp_camera.isOpened()
# Release camera to make it accessible for `find_camera_indices`
tmp_camera.release()
del tmp_camera
# If the camera doesn't work, display the camera indices corresponding to
# valid cameras.
if not is_camera_open:
# Verify that the provided `camera_index` is valid before printing the traceback
cameras_info = find_cameras()
available_cam_ids = [cam["index"] for cam in cameras_info]
if self.camera_index not in available_cam_ids:
raise ValueError(
f"`camera_index` is expected to be one of these available cameras {available_cam_ids}, but {self.camera_index} is provided instead. "
"To find the camera index you should use, run `python lerobot/common/robot_devices/cameras/opencv.py`."
)
raise OSError(f"Can't access OpenCVCamera({camera_idx}).")
# Secondly, create the camera that will be used downstream.
# Note: For some unknown reason, calling `isOpened` blocks the camera which then
# needs to be re-created.
self.camera = cv2.VideoCapture(camera_idx, backend)
if self.fps is not None:
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
if self.capture_width is not None:
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.capture_width)
if self.capture_height is not None:
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.capture_height)
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
# Using `math.isclose` since actual fps can be a float (e.g. 29.9 instead of 30)
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
# Using `OSError` since it's a broad that encompasses issues related to device communication
raise OSError(
f"Can't set {self.fps=} for OpenCVCamera({self.camera_index}). Actual value is {actual_fps}."
)
if self.capture_width is not None and not math.isclose(
self.capture_width, actual_width, rel_tol=1e-3
):
raise OSError(
f"Can't set {self.capture_width=} for OpenCVCamera({self.camera_index}). Actual value is {actual_width}."
)
if self.capture_height is not None and not math.isclose(
self.capture_height, actual_height, rel_tol=1e-3
):
raise OSError(
f"Can't set {self.capture_height=} for OpenCVCamera({self.camera_index}). Actual value is {actual_height}."
)
self.fps = round(actual_fps)
self.capture_width = round(actual_width)
self.capture_height = round(actual_height)
self.is_connected = True
def read(self, temporary_color_mode: str | None = None) -> np.ndarray:
"""Read a frame from the camera returned in the format (height, width, channels)
(e.g. 480 x 640 x 3), contrarily to the pytorch format which is channel first.
Note: Reading a frame is done every `camera.fps` times per second, and it is blocking.
If you are reading data from other sensors, we advise to use `camera.async_read()` which is non blocking version of `camera.read()`.
"""
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
start_time = time.perf_counter()
ret, color_image = self.camera.read()
if not ret:
raise OSError(f"Can't capture color image from camera {self.camera_index}.")
requested_color_mode = self.color_mode if temporary_color_mode is None else temporary_color_mode
if requested_color_mode not in ["rgb", "bgr"]:
raise ValueError(
f"Expected color values are 'rgb' or 'bgr', but {requested_color_mode} is provided."
)
# OpenCV uses BGR format as default (blue, green, red) for all operations, including displaying images.
# However, Deep Learning framework such as LeRobot uses RGB format as default to train neural networks,
# so we convert the image color from BGR to RGB.
if requested_color_mode == "rgb":
if self.mock:
import tests.cameras.mock_cv2 as cv2
else:
import cv2
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
h, w, _ = color_image.shape
if h != self.capture_height or w != self.capture_width:
raise OSError(
f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead."
)
if self.rotation is not None:
color_image = cv2.rotate(color_image, self.rotation)
# log the number of seconds it took to read the image
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
# log the utc time at which the image was received
self.logs["timestamp_utc"] = capture_timestamp_utc()
self.color_image = color_image
return color_image
def read_loop(self):
while not self.stop_event.is_set():
try:
self.color_image = self.read()
except Exception as e:
print(f"Error reading in thread: {e}")
def async_read(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.thread is None:
self.stop_event = threading.Event()
self.thread = Thread(target=self.read_loop, args=())
self.thread.daemon = True
self.thread.start()
num_tries = 0
while True:
if self.color_image is not None:
return self.color_image
time.sleep(1 / self.fps)
num_tries += 1
if num_tries > self.fps * 2:
raise TimeoutError("Timed out waiting for async_read() to start.")
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(
f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first."
)
if self.thread is not None:
self.stop_event.set()
self.thread.join() # wait for the thread to finish
self.thread = None
self.stop_event = None
self.camera.release()
self.camera = None
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Save a few frames using `OpenCVCamera` for all cameras connected to the computer, or a selected subset."
)
parser.add_argument(
"--camera-ids",
type=int,
nargs="*",
default=None,
help="List of camera indices used to instantiate the `OpenCVCamera`. If not provided, find and use all available camera indices.",
)
parser.add_argument(
"--fps",
type=int,
default=None,
help="Set the number of frames recorded per seconds for all cameras. If not provided, use the default fps of each camera.",
)
parser.add_argument(
"--width",
type=str,
default=None,
help="Set the width for all cameras. If not provided, use the default width of each camera.",
)
parser.add_argument(
"--height",
type=str,
default=None,
help="Set the height for all cameras. If not provided, use the default height of each camera.",
)
parser.add_argument(
"--images-dir",
type=Path,
default="outputs/images_from_opencv_cameras",
help="Set directory to save a few frames for each camera.",
)
parser.add_argument(
"--record-time-s",
type=float,
default=4.0,
help="Set the number of seconds used to record the frames. By default, 2 seconds.",
)
args = parser.parse_args()
save_images_from_cameras(**vars(args))

View File

@@ -1,71 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Protocol
import numpy as np
from lerobot.common.robot_devices.cameras.configs import (
CameraConfig,
IntelRealSenseCameraConfig,
OpenCVCameraConfig,
)
# Defines a camera type
class Camera(Protocol):
def connect(self): ...
def read(self, temporary_color: str | None = None) -> np.ndarray: ...
def async_read(self) -> np.ndarray: ...
def disconnect(self): ...
def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[Camera]:
cameras = {}
for key, cfg in camera_configs.items():
if cfg.type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
cameras[key] = OpenCVCamera(cfg)
elif cfg.type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import (
IntelRealSenseCamera,
)
cameras[key] = IntelRealSenseCamera(cfg)
else:
raise ValueError(f"The camera type '{cfg.type}' is not valid.")
return cameras
def make_camera(camera_type, **kwargs) -> Camera:
if camera_type == "opencv":
from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
config = OpenCVCameraConfig(**kwargs)
return OpenCVCamera(config)
elif camera_type == "intelrealsense":
from lerobot.common.robot_devices.cameras.intelrealsense import (
IntelRealSenseCamera,
)
config = IntelRealSenseCameraConfig(**kwargs)
return IntelRealSenseCamera(config)
else:
raise ValueError(f"The camera type '{camera_type}' is not valid.")

Some files were not shown because too many files have changed in this diff Show More